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Abstract

During spring and summer in Ontario, moose are commonly observed at sites known as 

moose aquatic feeding areas. Feeding on aquatic vegetation is thought to be an important source 

of sodium for moose at this time of year. The effects of different timber harvesting systems on 

the use of aquatic feeding areas by moose was studied in the Great Lakes -  St. Lawrence and 

boreal transition forests of central Ontario. During June to September 2002,1 compared the use 

of aquatic feeding sites by moose among selection cutting in the Algonquin Park Forest 

Management Unit (FMU), uniform shelterwood cutting in the French-Sevem FMU, and clear- 

cutting in the Spanish FMU. At >50 sites within each harvesting system I studied the 

relationships between moose use and age of forest stands adjacent to aquatic feeding areas, 

proximity of timber harvest, and amount of shoreline affected. The locations of potential study 

sites in the three FMUs were initially identified using GIS data (cut history and reserve widths), 

moose aquatic feeding area survey data, and air photos. Sites were assessed for moose use by 

recording the characteristics of trails, tracks, pellet-groups, and browsing. Physiographic and 

vegetative attributes of the aquatic and terrestrial landscape were also measured. Overall, moose 

use of aquatic feeding areas was greatest in areas harvested by selection cutting, followed by 

shelterwood cutting, and clear-cutting, respectively. The reserve width and time since last cut 

influenced the use of aquatic feeding areas by moose in all three silvicultural systems. Within 

areas harvested by selection cutting, moose use was greatest adjacent to old cuts (>20 years) and 

large reserve widths (>120m). The shelterwood areas showed more moose use of sites adjacent 

to recent cuts (<5 years) with >120m reserves. The clear-cut areas showed more moose use 

adjacent to cuts >10 years of age with >120m reserves. The results of stepwise multiple 

regressions, indicated that habitat characteristics other than forest age and reserve width were

IV
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also important for moose when selecting a site. The length of aquatic vegetation along the shore 

and midpoint basal area were important habitat variables within the selection cut system. 

Endpoint basal area was the only habitat variable important for moose use within the 

shelterwood system and there was no multiple regression model predicted in the clear-cut 

system. Subsequent correlation analyses indicated that the length of aquatic vegetation along the 

shore and reserve width were the only two variables related to moose use within all three 

silvicultural systems. Moose demonstrated both random and non-random patterns of use within 

reserves in all three systems. Random use was identified by an interconnection of moose trails 

within reserves that were not used repeatedly, indicating that sites were used less frequently. 

Non-random use was identified by a trail system heavily used within the reserve, indicating that 

trails were used repeatedly.

Because aquatic plants are an important source of nutrients for moose in spring and 

summer, forest management practices must ensure proper protection of these sites. This study 

shows that the time since last cut and the type of silvicultural system being used must be 

considered when applying a reserve around aquatic feeding areas, because the quality of the 

habitat within the adjacent reserve is important for moose using these sites. Although moose 

used aquatic feeding areas adjacent to narrow reserves (<60 m), the results of this study show 

that sites adjacent to 120-m reserves, as recommended in the Timber Management Guidelines for  

the Provision o f Moose Habitat, were used the most and have the greatest potential of meeting 

the life history requisites of moose in all three silvicultural systems.
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Introduction

Animals living in harsh northern environments experience great seasonal variation in 

both quality and quantity of available food and habitat. They have evolved physiological and 

behavioural adaptations to survive these seasonal changes in their food resources (OMNR 1990; 

VanBallenberghe and Miquelle 1990). Winter months can be particularly stressful, as foraging 

shifts from nutrient rich plants in summer to less nutritious vegetation in winter (Stewart et al. 

1977; Jackson et al. 1991; Renecker and Schwartz 1998). The efficiency with which an animal 

chooses its habitat and obtains energy from its diet is critical to its survival during such stressful 

periods (Klein 1970). Animals that are more efficient in selecting suitable habitat, with all the 

necessary elements for survival, have a better chance of meeting their nutritional requirements, 

reproducing each year, and maximizing their individual fitness (Foxcroft 1980; OMNR 1990; 

Crete and Huot 1993; Saether et al. 1996).

Most northern ungulates demonstrate annual growth patterns in body weight (Klein 1970; 

Saether et al. 1996). To compensate for seasonal fluctuations in weight, these ungulates 

experience a decreased metabolic rate (Silver et al. 1969), narrow their habitat range, and shift 

their feeding habits to available sources (Jackson et al. 1991). Caribou (Rangifer tarandus), for 

example, undergo annual migration between the tundra and the boreal forest in North America 

(Williams and Heard 1986). In winter, caribou feed on lichens, which are replaced with 

graminoids in the spring, followed by deciduous leaves in the summer (Thompson and McCourt 

1981; Gauthier et al. 1989). Elk {Cervis elaphus) also experience seasonal shifts in habitat use. 

They move to lower elevations in winter, where temperatures are warmer and their diets vary 

upon availability, plant diversity, and habitat type (Picton 1960; Miller et al. 1981; Marcum and 

Scott 1985). Moose (Alces alces) undergo seasonal elevation migrations in mountainous regions
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of British Columbia, Alaska, and Colorado. In all regions, moose migrate into forests in winter, 

adjacent to their sununer home range, which should include all essential requirements for 

survival (Dunn 1976; Crossley and Gilbert 1983). As snow depths increase, forage becomes 

depleted (Weixelman et al. 1998) and moose feed on taller shrubs and trees (Milke 1969), 

therefore foraging characteristics may vary among habitats occupied in winter (Spencer and 

Hakala 1964; Miquelle et al. 1992). Regardless of their adaptability to winter, ungulates 

experience weight loss, expend energy searching for food, and rarely meet the nutrient levels 

required for proper maintenance (Edge et al. 1988). In summer, moose are at their greatest 

nutritional demand (Belovsky et al. 1973); they increase their forage intake to replenish fats and 

proteins after surviving a low quality forage intake over winter (Silver et al. 1969; Parker and 

Robbins 1984; Weixelman et al. 1998). These factors make the summer months an important 

foraging period and reinforce the need for optimal habitat availability.

The composition of moose diets varies seasonally within their geographic range. In 

winter, moose are limited in availability of browse and feed primarily on early successional 

woody vegetation (Renecker and Schwartz 1998). The nutritional value of winter forage is 

lower than in summer, so moose consume a mixture of coniferous and deciduous twigs to 

provide an optimal winter diet (Jackson et al. 1991; Renecker and Schwartz 1998). In Norway, 

willow (Salix spp.) dominates the winter diet of moose (Saether and Andersen 1990), whereas 

89% of the diet in Finland is comprised of Scot’s pine (Pinus sylvestris L.) (Heikkila and 

Mikkonen 1992). In late fall and early winter, moose in Maine (Peek 1974) and some parts of 

Europe feed on fallen deciduous leaves (Renecker and Hudson 1992) and in Alaska, 95% of the 

diet is comprised of willow, trembling aspen (Populus tremuloides Michx.), and cottonwood 

(Populus spp.) (Spencer and Chatelain 1953). Willow is also the primary food preference of
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moose in the western ranges and the Rocky Mountains of North America (Martin et al. 1946; 

Cole 1956). A mixture of coniferous vegetation and deciduous shrubs such as dogwood (Comus 

spp.), mountain ash (Sorbus americana), and bog birch (Betula pumila) complements the willow 

diet. Because willow is limited in abundance on the east coast, moose rely heavily on balsam fir 

(Abies balsamea L.) and paper birch (Betula papyrifera Marsh.) (Pimlott 1953; Bergerud and 

Manuel 1968). Although the winter diet of moose in British Columbia is primarily willow, it 

resembles a diet on the east coast, including some fir and birch species (Ritcey 1965). Paper 

birch is the most palatable species in winter and is the principle food for moose throughout the 

boreal forest (Renecker and Schwartz 1998). In the boreal forest of Ontario, both coniferous and 

deciduous vegetation constitutes a winter diet for moose (Peterson 1953).

Moose limit their early summer foraging to preferred species and choose feeding sites 

that contain a greater diversity of plants than other times of the year (Edge et al. 1988). Food 

choices expand in summer to include leaf stripping and aquatic vegetation (Jordan et al. 1973; 

Fraser et al. 1980; Jackson et al. 1991). However, the abundance of aquatic plants is limited in 

some regions where moose occur (Peek 1974; Jordan 1987). Consequently, moose must rely on 

other vegetation with similar nutritional components (Murie 1934; Jordan 1987). In Norway, 

moose feed on deciduous trees and shrubs such as dwarf birch (Betula pubes cens), billberry 

(Vaccinium myrtillus), and bog asphodel (Narthecium ossifragum) during summer (Renecker and 

Hudson 1992). In Alaska, the western ranges, and the Rocky Mountains, willow remains the 

dominant foraging species, comprising almost 75% of a moose’s summer diet (Murie 1944; 

Hosley 1949; Peek 1974). Due to cold water temperatures and fast-flowing streams, aquatic 

vegetation can only provide up to 9.3% of a moose’s diet in the western ranges (McMillan 1953). 

In British Columbia, moose will feed on aquatic vegetation such as swamp horsetail (Equisetum
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fluviatile), burrweed (Sparganium augustifolium), and pondweeds {Potamogeton spp.) when 

available (Ritcey and Verbeek 1969). Where aquatic vegetation is not available, such as along 

the Saskatchewan River delta, moose will forage on available shrubs similar to their winter diet 

(Ritcey 1965). In comparison, balsam fir and hardwood trees like paper birch and trembling 

aspen remain the principle food for moose in the eastern ranges (Pimlott 1961; Bergerud and 

Manuel 1968). In northern Maine, moose feed almost equally on aquatic and terrestrial 

vegetation and do not show a preference for specific habitats (Leptich and Gilbert 1989). In 

Ontario, conifers are almost completely avoided from late spring to fall (Peterson 1953), and 

during late spring and early summer (late May-July), moose concentrate their feeding at sites 

known as moose aquatic feeding areas (MAPAs) where they eat aquatic plants in greater 

abundance than terrestrial browse (deVos 1958; Fraser et al. 1980; Jackson et al. 1991). Even 

though a variety of aquatic plants are available in great abundance in Ontario, moose commonly 

choose the more palatable pondweeds (Potamogeton spp.) and pond lilies, such as yellow pond 

lily (Nuphar variagatum) and fragrant white water lily (Nymphae tetragona) (deVos 1958,

Fraser et al. 1984).

Bergstrom and Danell (1986) suggest that moose try to consume foods high in 

magnesium and potassium during winter, whereas they focus their summer foraging on 

vegetation with high amounts of sodium (Belovsky 1981). Sodium is needed for hair 

replacement, antler growth, pregnancy, and lactation, and is thought to be desired when 

potassium (K^) intake is high (Jackson et al. 1991). Terrestrial vegetation provides only 7 -  14% 

of the annual sodium (Na^) requirements for moose (Botkin et al. 1973; Jordan et al. 1973). The 

sodium content of aquatic plants is 5-500 times richer than terrestrial browse (Jordan et al. 1973; 

Fraser et al. 1980) and, if eaten in adequate amounts, can provide the levels required for proper
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physiological functions (Botkin et al. 1973). Jordan et al. (1973) and Fraser et al. (1980) 

hypothesized that moose in Ontario focus their spring and summer feeding habits on receiving 

adequate amounts of sodium. Moose activity at sodium-rich springs and at sources of road salt 

(Peterson 1955; Fraser and Reardon 1980) provides evidence for this hypothesis.

Although moose populations exist across North America, aquatic plants may be sparse to 

non-existent in some areas, therefore aquatic vegetation is sometimes insignificant to a moose’s 

diet. Some studies suggest that moose use aquatic feeding areas because aquatic plants are more 

palatable than woody vegetation (Murie 1934; Peterson 1955; deVos 1958) and also as a means 

of escaping insect attacks (Hook 1959; Ritcey and Verbeek 1969). It has been estimated that 

moose will travel up to 30 kilometers to reach a preferred feeding location (Fraser et al. 1980).

A moose will feed at an aquatic site from a few minutes to several hours at a time (deVos 1958; 

Belovsky and Jordan 1978) and for up to three or more days (Fraser et al. 1980). Bulls enter 

aquatic feeding sites first, followed by cows. Cows spend 40-50% more of their time feeding at 

aquatic sites than bulls (Belovsky and Jordan 1978) because they must consume enough sodium 

for healthy reproduction and lactation (Jackson et al. 1991). Near the middle of August the 

abundance of aquatic plants decreases and moose again modify their feeding habits to available 

browse (Peterson 1955; Peek 1974; Jackson et al. 1991). This modification of food resources 

near the end of summer may also indicate sodium changes in plants or a change in the sodium 

requirements of moose.

Moose also meet their sodium requirements by attending mineral licks (Fraser and 

Reardon 1980; Jordan et al. 2000). Naturally occurring mineral licks and aquatic plants attract 

inland moose in northern ecosystems because they do not have the sodium supplements that are 

provided around marine coasts from salt deposits (Murie 1934; Botkin et al. 1973; Fraser and
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Reardon 1980). In Alberta, moose were found detouring from their usual travel routes to attend 

mineral licks, and some moose favoured licks over other vegetation in certain areas (Best et al. 

1977). The sodium content found in mineral licks is about 1 4 -1 2 0  times higher than in 

vegetation (Fraser 1980). Mineral licks are not found in all parts of Ontario, and in the central 

region of the province moose rely mainly on aquatic plants for sodium (Jackson et al. 1991).

Because aquatic feeding is a prominent behaviour for moose in Ontario, defining the 

characteristics surrounding moose aquatic feeding areas is critical to ensure proper habitat 

protection for moose use of those sites. Habitat characteristics of preferred MAFAs are difficult 

to predict because limited knowledge is available on the factors that influence the ability of a 

moose to accurately measure available food within the habitat (Provenza and Balph 1987). In 

Ontario, these characteristics are not fully understood because research has been limited to small 

sample sizes within only a few areas of the province (deVos 1958; Fraser et al . 1980; Brusnyk 

and Gilbert 1983). Existing studies are specific to areas where timber harvest and hunting are 

non-existent, such as Sleeping Giant Provincial Park (Cobus 1972; Fraser et al. 1984; 

Timmermann and Racey 1989) and Chapleau Game Preserve (deVos 1958; Fraser et al. 1980). 

Most of the studies on the use of aquatic feeding areas by moose focus on plant selection (Fraser 

et al. 1984), activity (deVos 1958; Fraser et al. 1980), importance of shoreline characteristics 

with respect to vegetation type, entry points, slope and shoreline substrate (Fraser et al. 1980; 

Timmermann and Racey 1989), and consumption of aquatic vegetation for sodium (Belovsky et 

al. 1973; Botkin et al. 1973; Jordan et al. 1973; Franzmann et al. 1975). Nonetheless, studies on 

the use of MAFAs reveal some consistency in habitat preference. Favoured characteristics not 

only include preferred aquatic vegetation but also sufficient cover, preferably less than 200m 

away. Nearby cover provides a secure hiding and resting place and secure access to aquatic
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plants (Peterson 1977; Timmermann and Racey 1989; Jackson et al. 1991; Kunkel and Pletscher 

2000). Adjacent cover minimizes heat stress from solar radiation by intercepting the sun’s rays 

to provide shade. Moose tend to bed in cool, shady areas adjacent to aquatic feeding sites during 

summer (Jackson et al. 1991) because the moisture from the forest floor acts as a cooling source 

to reduce the amount of heat stress (Kelsall and Telfer 1974). Forest cover also minimizes 

strong winds, thereby reducing dispersal of scent, which could attract predators. The adjacent 

cover that allows moose to escape predators in case of an attack is referred to as ‘escape cover’ 

(OMNR 1990).

Moose aquatic feeding areas can be influenced by natural and human disturbances that 

alter their characteristics from year to year. Landscape disturbance resulting from forestry, 

roads, fire, and mining significantly alters the biotic and abiotic factors within available habitat 

(OMNR 1990; Kimmins 1997). As a result, ungulates may be forced to search over greater 

distances for suitable winter and summer habitat (Enns 1992). Forest practices are the largest 

land-based disturbance (OMNR 1990), and the main human activity (OMNR 1983) affecting the 

ability of many ungulates to meet their life history requirements and from reaching suitable 

habitat. Woodland caribou {Rangifer tarandus) habitat in British Columbia, for example, is 

decreasing from timber salvage operations. Lichens that comprise the primary winter food for 

caribou are in low density because they are sparse in regenerating immature forests, thereby 

increasing caribou starvation (Enns 1992). On Texada Island, blacktailed deer (Odocoileus 

hemionus columbianus) were suffering from nutritional stress because forage was limited in parts 

of their range from successional growth in older clear-cuts (Forbes et al. 1993). Because moose 

venture into mature forest in winter, moose in the Okanagan subregion are facing reduced 

browse in cut blocks that are treated with glyphosates. Glyphosates are herbicides that release

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



conifer growth by inhibiting maturation of hardwood species (Lloyd 1990). Due to the potential 

impacts of forest practices on wildlife habitat at a large scale, timber harvesting in Ontario could 

have a negative effect on the use of MAFAs by moose.

In Ontario, land is primarily managed for timber harvest and the Ontario Ministry of 

Natural Resources (OMNR) has used moose as a featured species for sustainable forest 

management over the last 20 years (McLaren 1998). In the Great Lakes -  St. Lawrence and 

boreal transition forests of Ontario, MAFAs are the main attraction for moose in late spring, and 

many are situated within active Forest Management Units (FMUs). Within these forest regions, 

silvicultural systems try to emulate some aspects of natural disturbance to decrease the impact of 

harvesting on wildlife habitat (OMNR 1983). Timber harvest in this region is primarily, but not 

exclusively, limited to clear-cutting, shelterwood cutting, and selection cutting. The clear-cut 

silvicultural system is aimed at producing an even-aged stand, where new seeds become 

established in a fully exposed environment after most or all of the existing trees have been 

removed (OMNR 1983; Smith 1986). This can be done in blocks, strips, or patches. Clear- 

cutting may produce large forest openings with high light levels (OMNR 1983; Smith 1986). A 

clear-cut forest can produce sufficient habitat for moose in late winter because it creates an “edge 

effect” that allows moose to have cover as well as access to adjacent cut blocks to forage on 

early successional species. The shelterwood system also produces even-aged stands, but the 

trees in a block are harvested in a series of cuts for the purpose of obtaining natural regeneration 

under the shelter of the residual trees (OMNR 1983; Smith 1986). Selection cuts produce 

uneven-aged stands by removing only the mature and undesirable trees either individually or in 

small groups throughout an area. This allows the area to regenerate naturally (OMNR 1983; 

Smith 1986) and does not open the canopy enough to create large areas for moose habitat, as
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does clear-cutting (OMNR 1990). These three systems have been practiced in the Great Lakes -  

St. Lawrence region for at least three decades. As a result, forest composition has been modified 

throughout Ontario, significantly reducing the local abundance of some tree species and 

increasing the amount of fragmentation of the landscape (Bergerud 1981; Hunter 1990).

Because timber harvesting is the key approach to land management in Ontario, forest 

management practices must ensure proper protection of moose habitat. Evidence shows that 

moose numbers are greatest where the forest has been disturbed from fire, insect damage, and 

logging (OMNR 1990). However, along the shoreline of a MAFA, forest cover is critical for 

protection of moose as they feed in the open water. To that end, the Ontario Ministry of Natural 

Resources’ Timber Management Guidelines for the Provision o f Moose Habitat (OMNR 1988) 

recommend a minimum 120-m reserve in the boreal forest, and a modified 60-m reserve in the 

Great Lakes -  St. Lawrence forest around all moderate to high use aquatic feeding areas to 

provide sufficient cover and reduce human disturbance. The level of potential moose use is 

determined by a system developed to rank aquatic feeding areas. The scale ranges from 0 (no 

potential use by moose) to 4 (high potential use by moose) based on the amount of preferred 

aquatic plant species, the size of the water body, accessibility to the site, and evidence of moose 

use (Ranta 1988). MAFAs are aerial surveyed and ranked between the first week of June and the 

second week of July when the aquatic plants are fully developed (Ranta 1988).

MAFAs are generally located on coolwater lakes and medium and shallow rivers (Ranta 

1988), and are sometimes associated with beaver activity. Beaver activity is positively 

correlated with MAFAs and when present, the rank of a MAFA is reduced by one (Ranta 1988). 

For example, a site that would be given a rank of 4, would be reassigned a rank of 3 if beavers 

were present. Beavers cut down mature poplar and open the canopy to allow growth of early
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successional vegetation that moose feed on. It has been suggested that beaver dams alter the 

hydrology, energy flow, and nutrient cycling of aquatic systems (Naiman and Melillo 1984), 

helping to stabilize the flow of water (Scheffer 1938) and in turn, enhance the growth of aquatic 

vegetation. However, because beaver activity is ephemeral, once the dam collapses from 

abandonment, the pond is susceptible to draining and will reduce the potential for aquatic plant 

growth, reinforcing the rationale of reducing the rank of a MAFA with the presence of beavers 

(Ranta 1988).

Although timber harvesting may improve moose habitat (Peterson 1955; Payne et al. 

1988), cutting to shoreline around moose aquatic feeding areas could contribute to decreased 

moose use. Because moose are selective in choosing their feeding sites, there may be features 

other than timber harvesting that will discourage a moose from using a particular site. For 

example, moose entering an aquatic feeding area may be influenced more by shoreline 

characteristics, such as distance to cover and substrate, than the width of forest cover around the 

site (Cobus 1972). Therefore, as suggested by Timmerman and Racey (1989), forest cover may 

only be needed in specific areas adjacent to aquatic vegetation such as where moose enter the 

site.

The 120m reserve around MAFAs has not been accurately tested to ensure that it is 

important for moose accessing aquatic feeding areas. The relevance of a 120m reserve has 

become an important issue to forest managers because merchantable timber is being withheld 

from harvesting in these reserves and companies may be losing the economic value of that 

timber. Along with the importance of protecting aquatic feeding areas, the frequency of moose 

use at a site and the number of moose that use a site are relevant when applying the 120m 

reserve. The outcome of the 120m recommendation (OMNR 1988) on moose use around
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MAFAs is in need of evaluation, not only to determine if the 120m reserve is effective, but also 

to provide a better understanding of the immediate and long term impacts that forestry practices 

impose on moose populations.

There is limited published literature documenting the effects of stand age, reserve width, 

and use of shoreline reserves around aquatic feeding areas. This study examines the effects of 

timber harvesting on moose use of aquatic feeding areas in the Great Lakes -  St. Lawrence and 

boreal transition forests of central Ontario. Three main objectives of this study were: (1) to 

determine the relationship between moose use around aquatic feeding areas and the adjacent 

reserve width; (2) to investigate the relationship between moose use and the time since last cut 

adjacent to MAFAs; and (3) to investigate the overall intensity of moose use of aquatic feeding 

areas within three silvicultural systems.

11
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Study Area

The study area included three Forest Management Units (FMUs) located in the central 

region of Ontario (Figure 1), within the Great Lakes -  St. Lawrence and boreal transition forests 

(Farrar 1995). A variety of forest management techniques are practiced in Ontario, but only 

three silvicultural systems are predominant in the study area: (1) selection cut (Algonquin FMU); 

(2) uniform shelterwood cut (French-Sevem FMU); and (3) clear-cut (Spanish FMU). Both 

boreal coniferous softwoods and southern deciduous hardwoods characterize the forests in these 

three FMUs (Farrar 1995). Timber harvesting around all water bodies within these FMUs 

follows the Timber Management Guidelines for the Provision o f Moose Habitat (OMNR 1988). 

The location of MAFAs used in this study varied among three forest stand ages: recent cuts (0-5 

years), old cuts (10-15 years), and no cuts (no disturbance within the past 20 years). The 

proximity of harvesting to these sites was based on the width of the uncut reserve adjacent to 

each MAFA and fell into three classes; 0 -  60m, 61m -  120m, and greater than 120m. Timber 

harvesting was the last disturbance to occur at all sites examined.

The Algonquin FMU encompasses Algonquin Provincial Park (45°39’N, 78°39’W) with 

a total area of 7, 685 km^ (Corbett 1993). Highway 60 is the only main access road that passes 

through the Algonquin FMU. Other existing roads are secondary and tertiary and can only be 

accessed by permit. The Algonquin FMU has rolling topography over granite bedrock 

(Department of Energy and Mines (DEM) 1985) with various mixedwood forests dominated by 

red maple (Acer rubrum), eastern hemlock (Tsuga canadensis), yellow-birch (Betula luted), red 

pine (Pinus resinosa), and white pine (Pinus strobus) (Corbett 1993).

The French-Sevem FMU is located in the Parry Sound District (45°45’N, 79°50’W).

The landscape is ragged, with thick forests that lie on the Canadian Shield, covered primarily

12
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Figure 1. Locations of the 3 Forest Management Units (FMUs) in central Ontario. The Spanish FMU 
was subjected to clear-cutting, the French-Severn FMU was subjected to shelterwood cutting, and 
the Algonquin FMU was subjected to selection cutting.
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with red and white pines, trembling aspen, and some paper birch (Rowe 1972).

The Spanish FMU is located just north of Espanola in the Lake Temagami Site Region 

(Rowe 1972) at 46°15’N and 81°46’W. This area is comprised of rolling topography, light soils, 

and has been logged since the 18* century. The southern part of the Spanish FMU is home to 

one of the largest concentrations of red and white pine stands in Ontario (Rowe 1972).

All three FMUs experience similar climatic factors with a monthly precipitation between 

80nun and 160mm in July (DEM 1985). The mean summer temperature ranges from 5°C to 

30°C (DEM 1985). Numerous water bodies, such as small lakes, rivers, and streams, exist in all 

FMUs and drain into the St. Lawrence System. The wetlands are classified as Low Boreal 

wetlands (DEM 1985) that typically have cold winters and warm summers. Glacial lakes 

Algonquin and Iroquois once covered these areas that lie on the Laurentian landscape and 

contributed to the bedrock and unconsolidated material (DEM 1985). Soils are predominantly 

podzolic with some rockland in the French-Sevem FMU and some bmnisols in the Spanish FMU 

(DEM 1985).

14
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Materials and Methods

Site Selection

The locations of potential moose aquatic feeding areas sampled in this study were first 

identified using a Geographic Information System (GIS) (cut history and reserve widths), MAFA 

survey data, and air photos, as well as aerial and ground surveys in July and August 2001 and 

July 2002 to verify MAFA ranking and disturbance history. MAFAs were initially selected 

using the OMNR ranking system (Ranta 1988). The ranking system is a qualitative procedure 

that estimates the potential value of a wetland as a possible MAFA (Table 1).

MAFAs were not randomly selected for study from all potential ranks. Selected sites 

corresponded to ranks 3 and 4 (i.e., high and very high potential use by moose) of the OMNR 

ranking system because these sites routinely receive a 120m reserve. Final site selection was 

based on the observation of percent aquatic vegetation preferred by moose, accessibility to the 

site, influence of beaver activity, distance of aquatic vegetation from cover (Ranta 1988), and the 

size of the site (>1 hectare and <10 hectares). MAFAs easily accessible to observers were given 

highest preference.

Locations of previously ranked MAFAs in the French-Sevem FMU were provided by 

Ron Black, OMNR District Biologist in Parry Sound. These sites were verified using colour 

aerial photography from 1999. Because there were not enough previously ranked MAFAs 

recorded on existing maps, the remaining potential sites for the French-Sevem FMU were aerial 

selected by helicopter (Bell 206 Long Ranger) during July and August 2001. A total of 120 sites 

were selected in the French-Sevem FMU.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RANK POTENTIAL WETLAND SIZE OR 
TYPE

VEGETATION

0 No Lakes, creeks, rivers None

1 Low
Bog lakes, areas where 
moose have difficulty 
accessing the vegetation

Sparse vegetation

2 Moderate < 1 hectare in size Some preferred aquatic 
plants.
Dominated by graminoids, 
black spruce, and Jack pine 
along the shoreline

3 High > 1 hectare in size < 50% preferred aquatic 
species,
> 50% graminoids

4 Very High Large areas (>1 hectare) > 50% preferred aquatic 
species,
< 50% graminoids
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Previous MAP A data pertaining to the Algonquin FMU were not available; therefore, 

more than 300 potential sites were aerial surveyed using a Turbo Beaver fixed-wing plane during 

July and August 2001 and ranked according to the OMNR ranking system (Ranta 1988). Sites 

were selected based on their potential as a protected MAP A.

Preliminary sites were selected in the Spanish PMU using previous MAPA data provided 

by the OMNR district biologist, Christine Selinger, in Espanola. Aerial surveys could not be 

completed during the summer of 2001 due to time constraints. These sites were aerial surveyed 

by helicopter (Bell 206 Long Ranger) in the first week of July 2002, with the help of the Area 

Technician Ken Johnson and Area Porester Paul Leale (OMNR, Espanola), to verify MAPA 

ranking and disturbance history.

Three hundred and sixty MAP As were originally selected (120 MAP As in each PMU), to 

allow for seasonal changes (i.e., drought, fire, not accessible) that may alter the characteristics of 

some sites to the point that they would no longer be suitable for sampling. The final sites in each 

PMU to be studied were distributed among three age categories (recent, 0-5 years; old, 10-15 

years; no cut (control), no disturbance in the last 20 years) and three proximity (i.e., distance 

from the MAPA to timber harvest) classes (0-60m, 61-120m, greater than 120m).

Sampling Methods

A  total of 159 moose aquatic feeding areas were sampled between June and September 

2002: 56 in the Algonquin PMU (Appendix I), 55 in the Prench-Sevem PMU (Appendix H), and 

48 in the Spanish PMU (Appendix III).

Each site was ground surveyed for evidence of moose use to determine differences 

among proximity class, age class, and reserve width in the three PMUs. Surveys were completed
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during the hours of 0700 -  1600 and 0500 -  1400. Each survey crew consisted of two people.

At each site, the observers recorded their name, date, time, site number. Universal Transverse 

Mercator (UTM) coordinates (North American Datum 1983), and weather conditions. 

Photocopied maps were provided with data sheets to record all observations. Occasionally, a 

reserve did not completely encircle a pond and only the side with the aquatic vegetation had a 

reserve, therefore surveying took place on the side of the pond adjacent to the aquatic vegetation.

Each crew walked three transects, equal distance apart, one at each end of the aquatic 

vegetation boundary and one in the middle (Figure 2). All transects were perpendicular to the 

shoreline. Each transect continued for the width of the reserve or until the edge of the adjacent 

cutblock was reached. The length of each transect was recorded on the data sheets. The number 

of transects remained equal within proximity classes and the location and direction of each 

transect was marked on the map. Sampling began at the shoreline, although this area was not 

included in the reserve width. The area between the shoreline and trees >2m in height was 

identified as the transition zone between water and forest. Measurement of the reserve width 

began at trees >2m in height in order to test for the importance of the treed reserve in providing 

access to the site. Sampling continued into the trees for the remainder of the reserve width.

Direct evidence of moose use included observations of moose present and indirect 

evidence included the number of tracks, pellet groups, trails, and aquatic and terrestrial 

browsing. Evidence of other wildlife (i.e., waterfowl, bird nests, predator tracks, etc.) was 

identified and recorded for both the aquatic and terrestrial components of the sites

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LEGEND

Track plots

Pellet groups

Trails

Aquatic
vegetation

Browse

Aquatic
vegetation
plots

FEC PLOT'

Prism sweep

7.5 m 7.5 m

15 m 
MAFA

Figure 2. The layout of the sampling design used for data collection at each moose
aquatic feeding area (MAFA).
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(Fraser et al. 1982). Aquatic and terrestrial habitat characteristics such as slope, aspect, and 

substrate of the shoreline, pond size, canopy cover, vegetation, and the distance of aquatic plants 

from forest cover were used to develop statistical models to predict use of aquatic feeding areas 

by moose.

Measuring Intensity o f Moose Use

Game trails were used to determine the relative frequency of moose use at sites by 

measuring track and browse intensity and the number of pellet groups along each trail. The field 

crew walked along each of the 3 perpendicular transects at each site and recorded the locations of 

each intersecting trail (Figure 2). This established the number of trails in each reserve width.

The trails were followed from 5m outside the end transect line to 5m outside the other end 

transect line, if the trail crossed all three transects. If the trail went to the water, it was walked 

from the start (5m outside the first transect it intersected) to the water line. After flagging the 

start of the trail, a measuring tape and a compass were used to determine the length and direction 

of the trail (Timmermann and Racey 1989). Changes in the direction of the trail, and any 

obstacles that might have forced a moose to change direction (e.g., slope, rock cliff, roads), were 

recorded and mapped (Timmermann and Racey 1989). A general impression of trail use was 

estimated by a rank from 0 (no tracks) to 5 (a wide, heavily rutted trail) (Fraser et al. 1984).

Because moose tend to follow each other’s tracks when foraging together (i.e., cow and 

calf) (Shipley et al. 1998), tracks need to be fresh to determine the number of moose using a trail 

and the frequency of moose use. Along each trail, 2m x 2m track plots were set out at 5m on 

either side of the three perpendicular transects (Figure 2). There were a maximum of 6 track 

plots and a minimum of 2 track plots per trail. These plots were used to determine the number of
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tracks/m^ in a reserve. Any signs of pairs (cow-calf), the estimated age of the moose tracks, and 

the direction of trails were recorded.

Pellet-group surveys were also used to indicate moose use in an area. Pellet groups were 

counted along each trail within Im on either side of the trail (Figure 2). This provided a measure 

of pellet groups/m^ in each reserve.

Browse was measured in a similar manner to the method for counting pellet groups 

(Figure 2). Along each trail, stems within Im on either side of the trail that showed evidence of 

browsing (leaf/bark stripping) were recorded by species (shrub/tree). Recording each species 

browsed indicated the species richness of browse available within the reserve. A count of the 

number of times each species was browsed along the trail indicated the intensity with which each 

species was used by moose. These data provided a measure of the number of twigs browsed/m^ 

for each species of browse within the reserve.

If observers encountered moose at a site, they marked their own location on the map and 

the location of the moose. The number of moose present, if they were alone (i.e., cow and calf), 

sex of the moose, approximate age (by body size and antler growth), and any interactions 

between moose were recorded (deVos 1958; Fraser et al. 1984). The arrival and departure time 

of moose, as well as their behavioural and physical characteristics (antlers, markings), were also 

noted. Any evidence of moose mortality was documented with the cause of death, if it could be 

determined. Any evidence of deer use at a site was recorded on the data sheets and marked on 

the map. UTM coordinates and other locations marked on the map were determined using a 

handheld Global Positioning System (GPS) (Model Plus n , Garmin Inc., Olathe, Kansas).
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Aquatic Sampling

The aquatic sites were observed for evidence of moose browsing on aquatic plants and 

uprooted vegetation. Trails and tracks entering the water and bedding sites and pellet groups 

around the site were also recorded. Beaver activity (chewing, dams, lodges) was recorded and 

mapped according to the location observed. The length of aquatic vegetation along the shoreline 

was measured to determine the extent of aquatic vegetation at each site and subsequent 

placement of transect lines. At the end of each transect line, a Im x Im plot was set in the water, 

no further than 2m from shore (Figure 2), to identify the type of aquatic vegetation (emergent, 

submergent, floating-leafed) and percent coverage at the site (Fraser et al. 1980). The distance of 

aquatic vegetation from the shoreline was measured and recorded. The boundary of the entire 

aquatic community and distribution of aquatic plants according to each type (emergent, 

submergent, floating-leafed) were sketched on the map.

The substrate along the shoreline and at the bottom of the water (bare rock, soil, peat, 

stone, muck) (Fraser et al. 1984) was identified. The slope was measured, using a compass, by 

an observer standing at the shoreline facing the trees. Shoreline aspect was also determined 

using the compass. In the absence of a similar reference for south -  central Ontario, the wetland 

type of each site was established using the Field Guide to the Wetland Ecosystem Classification 

fo r Northwestern Ontario (Harris et al. 1996) and was identified by class (palustrine, lacustrine, 

riverine). The number of dead standing trees and an estimate of the water depth at Im from 

shore was also recorded.

Lateral cover for moose provided by the reserves was indexed by sightability distance. 

One observer held a Im x 0.5m painted red board at the shoreline, while the other observer 

walked back into the trees until the red board was no longer visible (Welch et al. 2000). The
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distance between the observers was recorded. This was done twice, once at Im high (calf height) 

and again at 2m high (adult height). The distance of the aquatic vegetation from the shoreline to 

the shrub layer (>2m and <5m in height) and from the shoreline to the treed cover (>5m in 

height) was also measured.

The width of the transition zone (i.e., the distance from the waterline to trees >2m in 

height) was measured using a measuring tape. The type of transition zone was identified by 

vegetation characteristics: sedge, grass, floating bog, shrub, or a combination of vegetation types.

Collection of Terrestrial Habitat Data

The Field Guide to Forest Ecosystems o f Central Ontario (Chambers et al. 1997) was 

used to determine the vegetation-type (V-type) of the forest adjacent to each site. A 10m radius 

plot was set in the middle of the reserve at the midpoint along the center transect (Figure 2).

Two 20m transect lines bisecting the center of the plot (north, east, south, west) were used to 

record the number and species of woody vegetation. An observer walked the transect line 

holding a 1-m ruler at waist height, with 50cm on each side, and recorded the species of woody 

vegetation that touched the ruler. The main stem of individual plants that touched the ruler was 

counted once, and not the number of branches that touched the ruler because shrubs usually have 

more than one branch. Woody vegetation that did not touch the ruler (e.g., Vaccinium 

myrtilloides), because it was lower than the height of the ruler, was also recorded. The 

vegetation was grouped into shrubs (>0.5m and <2m) and understorey trees (>2m and <5m). 

These measurements were used to quantify the number and species of woody vegetation 

available for browsing in the reserve. Canopy cover was estimated using a 5cm x 5cm cardboard 

tube as an ocular lens. At 10m from the center of the plot in 4 directions (north, east, south.
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west) canopy cover was estimated for understorey (<2m) and overstorey (>2m and <5m) 

vegetation. The four estimates were averaged to get one measure of canopy cover for the 

reserve. The dominant tree and shrub species were subjectively recorded as the most prevalent 

species within and around the FEC plot. Soil within the plot was identified by category: rocky 

(>2.5mm diameter), mucky (water-logged soil), gravel (<2mm diameter), or sand (fine 

sediment). Topographical features such as stumps, snags, surrounding cliffs, and hilly terrain 

were recorded. Any disturbances in the area such as roads, people, boats, vehicles, fires, canoe 

routes, and camping sites were also recorded.

Basal area measurements were obtained at each site using a 2-m^ wedge prism; one for 

the middle of the reserve and one at the end of the reserve (Figure 2). A total of 6 prism sweeps 

were completed at each site (two along each transect). The three midpoint measurements were 

averaged together and the three endpoint measurements were averaged together to get two basal 

area measurements/site.

If no aquatic vegetation was present at the site or the site had become a meadow, it was 

not sampled. In these cases, the site number and UTM coordinates were recorded and a 

substitute from the original 120 MAFAs for the FMU was used as a replacement.

Statistical Analysis

I tested for normality of data using Kolmogorov-Smimov tests (Zar 1999). Log, square 

root, and arcsine transformations were performed when data were not normally distributed. All 

tests were completed using the Statistical Package for the Social Sciences (Version 11.5, SPSS 

Inc., Chicago, Illinois).
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A Principal Components Analysis (PCA) was performed on the ten dependent variables 

(Table 2) to combine these measures into one dependent measure representing the intensity of 

moose use of individual sites in each FMU.

Variables removed from the PCA included shoreline trail intensity (Appendix IV), 

shoreline track intensity (Appendix V), and aquatic browsing (Appendix VI). These variables 

were measured subjectively on ordinal scales and, therefore, equal assessments may not have 

been applied across all sites by all observers. The intensity of shoreline browsing was also 

eliminated from the PCA due to a high number of zero values (> 90% of sites). Terrestrial 

browsing measures (Appendix VII) were excluded from the PCA because terrestrial browsing 

represented use of the treed reserve and not direct use of the aquatic feeding area.

The dependent variable with the highest factor loadings from the PCA was used in a 

Pearson Correlation Coefficient Analysis (Zar 1999) to test the strength of associations between 

the dependent variable and reserve width, time since last cut adjacent to the MAFA, and other 

habitat characteristics. Statistically significant relationships detected by the Pearson Correlation 

Analysis were checked in a scatterplot to detect outliers or skewed results. Highly 

intercorrelated variables (those with r > 0.8) were removed, retaining those with the highest 

correlation with moose use. This process resulted in 15 independent variables (Table 3) for all 

three FMUs that were subsequently refined by Stepwise Multiple Linear Regression (SMR) for 

each FMU using the PCA scores as the dependent variable. The SMR was used to extract the 

independent variables most related to moose use of surrounding habitat characteristics or 

combinations of them, other than reserve width and time since last cut, that were important 

factors for moose selecting an aquatic feeding area.
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Table 2. Dependent variables measured as
_______ indicators of moose use._____

Dependent Variables 
 Indicators of Moose Use______

Total number of moose trails 
Total length of moose trails 
Number of tracks
Number of pellet groups along trails 
Number of shoreline pellet groups 
Number of stems summer browsed 
Number of moose beds 
Shoreline track intensity 
Shoreline trail intensity 
Intensity of aquatic browsing
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A two-way Analysis of Variance (ANOVA) was completed to look at the interaction of 

the reserve width and time since last cut on the use of aquatic feeding areas by moose.
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Table 3. Independent variables associated with moose 
use as determined by Pearson Correlation

________Coefficient Analysis.______________
Independent Variables 

__________ Habitat Characteristics__________

Length of aquatic vegetation along the shore
Reserve width
Time since last cut
Midpoint basal area
Endpoint basal area
Distance of aquatic vegetation from shore
Number of dead standing trees
Percent cover trees >5m
Percent cover trees >2m and <5m
Distance to trees >5m
Sightability at 2m
Sightability at Im
Distance to trees >2m
Canopy cover overstorey
Canopy cover understorey
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Results

Selection Cut Silvicultural System

The Principal Components Analysis performed on the moose use variables (Table 4) 

extracted one component with an eigenvalue of 2.775, accounting for 55.5% of the standardized 

variance among moose use variables. The total length of moose trails, number of pellet groups 

along trails, number of beds, and number of tracks had positive loadings on the components 

(0.876, 0.844,0.322, and 0.616 respectively); however, the total number of moose trails had the 

highest positive loading (0.901).

The dominant site characteristics of all sites sampled in the selection cut silvicultural 

system are summarized in Table 5. Mean values (± 1 standard error) of other site characteristics 

sampled in the selection cut silvicultural system are summarized in Table 6. Pearson Correlation 

Coefficients showed a significant correlation between the total number of moose trails and 

reserve width, as well as time since last cut (Figure 3). The total number of trails increased as 

reserve width increased and in older cuts. However, the length of aquatic vegetation along the 

shore had a higher correlation with moose use than reserve width or time since last cut (Table 7). 

Midpoint basal area was also positively correlated with moose use of sites (Table 7). The 

remaining 11 habitat variables were not significantly correlated with the total number of moose 

trails at sites (Table 7).

A 2-way ANOVA indicated that the number of moose trails differed significantly 

between reserve groups (0-60m, >60m; p<0.05) but there was no difference among age groups 

(0-10 years, 10-20 years, >20 years; p>0.05). There was no significant interaction between 

reserve width and time since last cut with moose use (p>0.05).
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Table 4. Summary of the dependent variables at all sites (n = 56) sampled in the 
selection cut silvicultural system.

Dependent Variables 
Indicators of Moose Use

Mean ± 1 Standard Error

Total number of moose trails 7.7 ±4.6
Total length of moose trails 264.7m ± 239.6m
Number of tracks 6.0 ± 10.5
Number of pellet groups along trails 1.75 ±4.6
Number of shoreline pellet groups 0.5 ±1.4
Number of stems summer browsed 12.9 ±61.1
Number of moose beds 0.5 ±1.4
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Table 6. Mean values (± 1 SE) of site characteristics at all sites (n = 56)

Site Characteristic Mean Value (± ISE)

Length of aquatic vegetation along the shore 107.08
(m) (8.53)

Distance of aquatic vegetation from shore 1.05
(m) (0.25)

Distance from shore to trees >2m in height 8.99
(m)

Distance from shore to trees >5m in height 11.69
(m) (3.14)

Sightability at Im in height (m) 23.43
(1.03)

Sightability at 2m in height (m) 27.10
(1.07)

Transition zone width (m) 7.41
(0.96)

Canopy cover overstorey (%) 61
(20.8)

Canopy cover understorey (%) 37
(20.5)

Average number of dead standing trees 11
(21)

Midpoint basal area 45.6
(13.50

Endpoint basal area 41.9
(14.4)

Dominant species Balsam fir
Percent cover, trees > 5m 47

(27)

Dominant species Sugar maple
Percent cover, trees >2m and <5m 48

(26)
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Figure 3. The relationship between the total number of moose trails and 
reserve width (A) and the total number of moose trails and the 
time since last cut (B) in the selection cut silvicultural system.
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Table 7. Correlation coefficients between the total number of 
moose trails and site characteristics in the selection

Site Characteristic Correlation

Length of aquatic vegetation along shore 0.621*
Reserve width 0.464*
Time since last cut 0.320*
Midpoint basal area 0.304*
Endpoint basal area 0.185
Distance of aquatic vegetation from shore 0.171
Number of dead standing trees 0.138
Percent cover trees >5m 0.126
Percent cover trees >2m and <5m 0.120
Distance to trees >5m 0.025
Sightability at 2m -0.005
Sightability at Im -0.016
Distance to trees >2m -0.020
Canopy cover overstorey -0.074
Canopy cover understorey -0.130

* Significant at p < 0.05
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The Stepwise Multiple Regression (SMR) of data from the selection cut sites included 

two variables highly correlated with the intensity of moose use (the length of aquatic vegetation 

along the shoreline (R^ = 0.328, p = 0.00) and midpoint basal area (R^ = 0.378, p = 0.00). The 

overall model was statistically significant (PCA = 2.360 (length of aquatic vegetation along 

shoreline) + 0.018 (midpoint basal area) -  5.484 (constant)). Figure 4 shows the relationship 

between the PCA scores for moose use and the length of aquatic vegetation along the shore and 

basal area for the middle of the reserve. As the length of aquatic vegetation along the shore 

increased and the midpoint basal area increased, the intensity of moose use (PCA scores) 

increased.
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Figure 4. The relationship between the PCA scores for moose use and the length of aquatic 
vegetation along the shore (A) and midpoint basal area (B) in the selection cut 
silvicultural system.
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Shelterwood Cut Silvicultural System

The Principal Components Analysis performed on the moose use variables (Table 8) 

extracted one component with an eigenvalue of 1.901, accounting for 48% of the standardized 

variance among moose use variables. PCA scores indicated that factor loadings on the 

dependent variables were highest on the total number of moose trails within reserves (0.892).

The total length of moose trails, number of shoreline pellet groups, and number of pellet groups 

along moose trails also had positive loadings on the components (0.824, 0.523, and 0.391, 

respectively).

Pearson Correlation Coefficients indicated no significant correlation between the total 

number of moose trails and the time since last cut (r = -0.105, p = 0.45) (Figure 5B). However, 

the correlation between the total number of moose trails and reserve width was marginally 

significant (r = 0.302, p = 0.052) (Figure 5A). There was a slight decrease in the total number of 

moose trails from recent to older cuts but the total number of moose trails increased as reserve 

width increased.

The dominant site characteristics of all sites sampled in the shelterwood cut silvicultural 

system are summarized in Table 9. Mean values (± 1 standard error) of other site characteristics 

sampled in the shelterwood cut silvicultural system are summarized in Table 10. Pearson 

Correlation Coefficients showed no significant correlations between the total number of moose 

trails and any site characteristic other than reserve width sampled in the shelterwood silvicultural 

system (Table 11).
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Table 8. Summary of the dependent variables at all sites (n = 55) sampled in the

Dependent Variables 
Indicators of Moose Use

Mean ± 1 Standard Error

Total number of moose trails 6.8 ± 2.7
Total length of moose trails 211.8m + 137.9m
Number of tracks 5 ±6.2
Number of pellet groups along trails 1.5 ±2.2
Number of shoreline pellet groups 0.5 ± 1.2
Number of stems summer browsed 14.9 ± 22.5
Number of moose beds 0.5 ±1.2
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Figure 5. The relationship between the total number of moose trails and reserve 
width (A) and the total number of moose trails and the time since last 
cut (B) in the shelterwood cut silvicultural system.
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Table 9. Dominant characteristics of all sites (n = 55) in the shelterwood cut silvicultural system

Water
body
type

Water
level

Aquatic
substrate

WEC‘ Shoreline
substrate

Dominant 
shoreline 
spp. <2m

Dominant 
shoreline spp. 
>2m and <5m

Dominant 
shoreline 
spp. >5m

Transition 
zone type

Vegetation
type^

Disturbance
type

Ponds Moderate 
(>2m and 

<5m)

Muck W4 Muck Sedges White Pine White Pine Sedge, grass V29 Roads

Field Guide to the Wetland Ecosystem Classification for Northwestern Ontario (Harris et al. 1996)
Field Guide to Forest Ecosystems o f Central Ontario (Chambers et al. 1997)
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Table 10. Mean values (+ 1 SE) of site characteristics at all sites 
(n = 55) in the shelterwood cut silvicultural system.

Site Characteristic Mean Value (± ISE)

Length of aquatic vegetation along the shore 140.08
(m) (10.4)

Distance of aquatic vegetation from shore 1.04
(m) (0.3)

Distance from shore to trees >2m in height 6.73
(m) (0.83)

Distance from shore to trees >5m in height 8.58
(m) (0.96)

Sightability at Im in height (m) 27.71
(1.11)

Sightability at 2m in height (m) 32.07
(1.3)

Transition zone width (m) 7.41
(0.96)

Canopy cover overstorey (%) 56
(20.2)

Canopy cover understorey (%) 30
(21.6)

Average number of dead standing trees 31
(28)

Midpoint basal area 31.7
(11.7)

Endpoint basal area 29.1
(11)

Dominant species White pine
Percent cover, trees >5m 43.8

(24.2)

Dominant species Red maple
Percent cover, trees >2m and <5m 65

(26.7)
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Table 11. Correlation coefficients between the total number of 
moose trails and site characteristics in the shelterwood

Site Characteristic Correlation

Reserve width 0.302*
Canopy cover overstorey 0.214
Distance to trees >2m 0.202
Endpoint basal area 0.200
Distance to trees >5m 0.166
Sightability at Im 0.153
Sightability at 2m 0.122
Number of dead standing trees 0.105
Length of aquatic vegetation along shore 0.054
Midpoint basal area -0.009
Percent cover trees >2m and <5m -0.069
Percent cover trees >5m -0.077
Distance of aquatic vegetation from shore -0.087
Time since last cut -0.105
Canopy cover understorey -0.105

*Significant at p < 0.05
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A 2-way ANOVA showed that the total number of moose trails differed significantly 

among reserve groups (0-60m, 61-120m, >120m; p<0.05). There was no significant difference 

in the number of moose trails among age groups (0-10 years, 10-20 years, >20 years; p>0.05). 

The interaction between reserve width and the time since last cut was not statistically significant.

The Stepwise Multiple Regression of data from the shelterwood sites included one 

positively correlated variable, endpoint basal area, with the intensity of moose use (R^ = 0.10, p 

= 0.02). The model was statistically significant (PCA = 0.032 (endpoint basal area) -  0.954 

(constant)). Figure 6 shows the relationship between the PCA scores for moose use and basal 

area measurements for the edge of the reserve.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



so­

rt
o 40-
<
rt
(/)

m  30-

CXD

□ nn

c
oQ.

• oc
LU

mn
2 0 -

co

1 0 -

0 1 2 33 2 1

PCA Scores

Figure 6. The relationship between the PCA scores for moose use and the endpoint 
basal area in the shelterwood cut silvicultural system.
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Clear-cut Silvicultural System

The Principal Components Analysis performed on the moose use variables (Table 12) 

extracted one eigenvalue (2.759) explaining 55.2% of the standardized variance among moose 

use variables. The PCA scores indicated that factor loadings on the dependent variables were 

highest for the number of pellet groups counted along moose trails within reserves (0.863). The 

number of tracks, number of beds, total number of trails, and total length of trails also had 

positive loadings on the components (0.598,0.505,0.833,0.841, respectively).

There was little difference in the factor loadings for the number of pellet groups and total 

number of moose trails (0.863 vs. 0.833), therefore I used the total number of moose trails as the 

dependent variable in the Correlation Analysis for consistency with other analyses.

The dominant site characteristics of all sites sampled in the clear cut silvicultural system 

are summarized in Table 13. Mean values (± 1 standard error) of other site characteristics 

sampled in the clear cut silvicultural system are summarized in Table 14. Pearson Correlation 

Coefficients indicated no significant statistical relationship between the total number of moose 

trails and reserve width (r=0.211, p=0.224) or time since last cut (r=0.130, p=0.390) (Figure 7). 

However, there was a trend towards an increase in the total number of trails as reserve width 

increased, and in older cuts. There was no significant correlation between the total number of 

moose trails and any other habitat characteristic sampled in the clear-cut silvicultural system 

(Table 15).

A 2-way ANOVA indicated that the number of moose trails differed significantly among 

reserve groups (p = 0.002). The number of moose trails was marginally significant among age 

groups (p = 0.061). However, the interaction between age groups and reserve groups was not 

statistically significant.
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Table 12. Summary of the dependent variables at all sites (n = 48) sampled in the

Dependent Variables 
Indicators of Moose Use

Mean ± 1 Standard Error

Total number of moose trails 4.7 ±3.8
Total length of moose trails 164.1 + 160.8
Number of tracks 2.3 ± 5.4
Number of pellet groups along trails 1.3 ±3.1
Number of shoreline pellet groups 0.8 ± 3.5
Number of stems summer browsed 1.5 ±5.9
Number of moose beds 0.4 ± 1.0
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Water
body
type

Water
level

Aquatic
substrate

WEC* Shoreline
substrate

Dominant 
shoreline spp. 

<2m

Dominant 
shoreline spp. 
>2m and <5m

Dominant 
shoreline 
spp. >5m

Transition 
zone type

Vegetation
type^

Disturbance
type

Ponds Moderate 
(>2m and 

<lm)

Muck W3 Muck Sweetgale Black Spruce Black Spruce Sedge V39 Roads
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Q. Field Guide to Forest Ecosystems o f Central Ontario (Chambers et al. 1997)
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Table 14. Mean values (± 1 SE) of site characteristics at all sites

Site Characteristic Mean Value (± ISE)

Length of aquatic vegetation along the shore 108.99
(m) (7.65)

Distance of aquatic vegetation from shore 1.05
(m) (0.21)

Distance from shore to trees >2m in height 8.61
(m) (2.39)

Distance from shore to trees >5m in height 12.40
(m) (2.39)

Sightability at Im in height (m) 33.72
(3.16)

Sightability at 2m in height (m) 37.46
(3.65)

Transition zone width (m) 12.41
(2.42)

Canopy cover overstorey (%) 36
(21.8)

Canopy cover understorey (%) 24
(23)

Average number of dead standing trees 3
(6.4)

Midpoint basal area 25
(21.7)

Endpoint basal area 24.3
(19)

Dominant species Black spruce
Percent cover, trees >5m. 43

(24.2)

Dominant species Low-sweet blueberry
Percent cover, trees >2m and <5m 45

(19.6)
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Figure 7. The relationship between the total number of moose trails and reserve 
width (A) and the total number of moose trails and the time since last 
cut (B) in the clear-cut silvicultural system.
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Table 15. Correlation coefficients between the total number 
of moose trails and site characteristics in the

Site Characteristic Correlation

Reserve width 0.211
Time since last cut 0.130
Length of aquatic vegetation along shore 0.127
Canopy Cover overstorey 0.113
Percent cover trees >5m 0.020
Midpoint basal area 0.013
Sightability distance Im -0.007
Distance to trees >5m -0.008
Distance to trees >2m -0.024
Canopy cover understorey -0.037
Distance of aquatic vegetation from shore -0.041
Sightability distance 2m -0.071
Endpoint basal area -0.093
Number of dead standing trees -0.096
Percent cover trees >2m and <5m -0.177

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



There was no model predicted with the Stepwise Multiple Regression for the clear cut 

silvicultural system.

Overall Data

Among the three silvicultural systems, moose used reserves in the selection cut more 

intensively (mean number of trails ± 1 SE = 7.7 ± 4.7) than in the shelterwood cut (mean number 

of trails ± 1 SE = 6.8 ± 2.7), and reserves in the shelterwood cut more intensively than in the 

clear-cut (mean number of trails ± 1 SE= 4.7 ± 3.8) silvicultural system (Figure 8).

However, the way moose used sites was more similar between the selection cut and clear- 

cut silvicultural systems than the shelterwood cut silvicultural system. There were more 

common variables correlated with the level of moose use in the selection and clear-cut 

silvicultural systems than in the shelterwood sites (Tables 7,11, and 15). As well, the patterns of 

use among reserve widths and time since last cut were more similar between the selection and 

clear-cut systems than the shelterwood cut system. Moose use increased with wider reserves and 

older cuts in the selection and clear-cut systems, whereas moose use increased with wider 

reserve widths but declined as the time since last cut increased in the shelterwood system. 

However, the length of aquatic vegetation along the shore, and reserve width were positively 

correlated with moose use in all three silvicultural systems. Therefore, there was more moose 

use at larger aquatic sites and, as reserve width increased, the total number of trails increased.

The dominant wetland type (W3, W4) among all sites sampled was similar among the 

three Forest Management Units (Tables 5, 9, and 13). W3 is an open water marsh with mixed 

organic substrate (Harris et al 1996). The water is < 2m deep with emergent, submergent, and 

floating-leaved aquatic plant species. There are only a few plant species (sometimes only one)
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Figure 8. Mean number of moose trails at sites in each silvilcultural system.
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present in these wetlands (Harris et al. 1996). W4 is an open water marsh with floating-leaved 

plants covering >50% of the water surface. Few plant species are present and species 

composition is variable. Aquatic plant species at these sites include watershield (Brasneria 

schreberi), white water lily (Nymphaea tetragona), and large-leaf pondweed (Potamogeton 

amplifolius).
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Discussion

The three harvesting systems used in this study have differing effects on the landscape, 

which results in a difference in reforestation (i.e., a monoculture or a mixed wood) and the type 

of habitat available to moose. However, this study has shown that reserve width, time since last 

cut, and type of silvicultural system practiced all had an association with the use of aquatic 

feeding areas by moose.

Reserve Width

Reserve width was found to be statistically important in both the selection cut and 

shelterwood cut systems (Figure 3A, 5A) but not in the clear-cut system (Figure 7A). However, 

the same pattern of moose use was evident in all three silvicultural systems; moose use increased 

with an increase in reserve width. The lower number of sites sampled and the lower density of 

moose in the clear-cut system compared to the others may have affected the significance of 

reserve width in the study. Nonetheless, wider reserves (>120m) were used more frequently than 

narrower reserves (<120m) in the clear-cut system (Figure 7A).

Reserves around aquatic feeding areas are important to moose because they offer more 

available habitat. A moose’s home range encompasses more than a single clear-cut patch 

(Potvin et al. 1999) and, therefore, reserve widths become important because there are few areas 

left that offer security. Timmermann and Racey (1989) discussed the importance of shoreline 

reserves for allowing moose free access to and from aquatic feeding sites. Moreover, reserves 

adjacent to aquatic feeding areas offer more than just a travel corridor to the water. Larger treed 

reserves provide more entry points to the water (Timmermann and Racey 1989), a diversity of 

both terrestrial and aquatic browse (Belovsky et al. 1973), greater area to support more than one
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moose (deVos 1958; Fraser et al. 1980), and they may help with thermoregulation (Peterson 

1977; Jackson et al. 1991). If moose avoid areas of timber harvest, and insufficient treed 

reserves are available around aquatic feeding areas, moose may not use them. By lowering the 

number of MAFAs available to moose, this also decreases the availability of aquatic plants to 

satisfy their nutritional requirements in spring and summer (Belovsky et al. 1973).

Moose feed on both aquatic plants and terrestrial vegetation in spring and summer. 

Belovsky et al. (1973) studied the diets of moose in two different study areas (one area was more 

boreal, the other offered coastal vegetation characteristics) on Isle Royale and found them to be 

similar. They suggested that the diversity of browse available within these areas influenced the 

selection of habitat by moose (Belovsky et al. 1973). Areas that offer a diversity of browse 

enhance the overall quality of the habitat and when moose can forage on both terrestrial and 

aquatic browse they will use those areas more frequently (Belovsky et al. 1973; Peek et al.

1976). Therefore moose may prefer to use aquatic feeding areas if the adjacent reserve can also 

supplement a summer diet rich in terrestrial browse.

Brusnyk and Gilbert’s (1983) study of the use of shoreline reserves by moose in the 

Chapleau Game Preserve found that in winter moose preferred reserves over cut areas. These 

reserves were correlated with the proximity of adequate coniferous cover and an abundant source 

of browse. They found that 70% of browsing at sites occurred within the shoreline reserves. I 

found terrestrial browsing at sites within all silvicultural systems (Appendix VII) and sites with 

more available browse had higher intensities of moose use in summer. My results support Joyal 

and Scherrer (1978) who suggest that terrestrial browsing adjacent to aquatic feeding areas is an 

important factor in the use of a site by moose.
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The shoreline reserves studied by Brusnyk and Gilbert (1983) had both summer and 

winter pellet groups present. I also found that many of the reserves sampled had both summer 

and winter pellet groups. This indicates that these reserves are being used in winter as adjacent 

cover to cut blocks, as moose forage in cutover areas at that time (Brusnyk and Gilbert 1983).

Timmermann and Racey (1989) suggested that a treed reserve might only be needed 

adjacent to the actual feeding area or main entry points that moose use. In this study, trails were 

present from beyond the shoreline of aquatic vegetation but were only followed up to 5m outside 

the aquatic vegetation boundary. Therefore, I cannot verify the extent of shoreline that would 

actually require a reserve for moose using these sites.

My study found that the use of aquatic feeding areas by moose is not solely based on the 

width of the adjacent reserve. Habitat characteristics within the reserve, the time since last cut 

adjacent to the reserve, and the amount of disturbance at a site jointly influence a moose in 

selecting a foraging area. These results are supported by studies of de Vos (1958), Jordan et al. 

(1973), Peek et al. (1976), Fraser et al. (1980), and Timmermann and Racey (1989).

Time Since Last Cut

The time since last cut adjacent to aquatic feeding areas was statistically important in the 

selection cut system (Figure 3B) but not in the shelterwood cut (Figure 5B) or the clear-cut 

systems (Figure 7B). Joyal and Scherrer (1978) studied summer movements and feeding by 

moose in western Quebec where they considered a 10-year-old logged area to be good moose 

range. This was similar to the pattern of moose use in the selection cut and clear-cut systems 

that I studied, in which moose use increased with older cuts (i.e., cuts >10 years). Older forests 

provide better habitat for moose; there is more available browse and protective cover, which
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enhance the overall security for moose. Courtois et al. (1998) found that although moose in 

Quebec increased their daily movements immediately after a clear-cut, they detoured around 

clear-cut patches because moose rarely use recent clear-cuts (Brusnyk and Gilbert 1983). On the 

other hand, Potvin et al. (1999) found that moose density decreased immediately in areas after 

logging, suggesting that moose tend to avoid recent disturbances.

The pattern of use in the shelterwood cut system was different compared to that in the 

selection cut and clear-cut systems. As the time since last cut increased in the shelterwood cut 

system, the use of aquatic feeding areas by moose decreased. In this study area, the type of cut 

pattern together with the age of the cut may influence moose activity. A shelterwood cut might 

be different than a selection cut or a clear-cut in that it may produce high quality habitat with 

sufficient cover at a younger age than other harvesting systems. After studying the forest 

management planning process in Ontario, Payne et al. (1988) suggested that certain cutting 

patterns improve moose habitat. A seed tree shelterwood cut system leaves dispersed uncut 

timber throughout the harvested area thereby improving natural regeneration. This creates a 

more valuable ‘edge effect’ hence improving moose habitat (Payne et al. 1988) and may explain 

why moose were using sites adjacent to recent cuts more in the shelterwood system than in the 

selection or the clear-cut systems. This also indicates that the site selection process by moose 

includes consideration of the quality of habitat within the reserve, as well as the characteristics of 

the adjacent cutover (Peek et al. 1976).

Reserve Width and Time Since Last Cut

Although the 2-way ANOVAs indicated that reserve width and the time since last cut 

influenced moose use independently, there is evidence that the interaction of the two variables

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



had an effect on how moose chose to use an aquatic feeding area. In the selection cut and clear- 

cut systems, there was greater use of aquatic feeding areas by moose where the reserve width 

was >120m regardless of the time since last cut. There was also more variation in the use of 

reserve widths around aquatic feeding areas in these two systems when the adjacent cut was >10 

years old. Under natural conditions, stand age regulates forest characteristics. The vertical 

structure and spatial arrangement of the vegetation begins to blend with age, regardless of 

buffers left by harvesting (Kimmins 1997). Thus, the interaction of age and reserve width is 

important in the response by moose to an area, because once a stand reaches a certain age 

(approximately 10-20 years) it acts as a continuous piece of habitat regardless of reserve width.

Moose demonstrated a slightly different pattern of use in the shelterwood cut silvicultural 

system. Reserve width was statistically related to, and positively correlated with, moose use 

(Table 11). However, time since last cut was not statistically important and was negatively 

correlated with moose use in the shelterwood cut system (Table 11). Time since last cut had a 

different effect on the use of aquatic feeding areas by moose in the shelterwood cut system. As 

the time since last cut increased, the level of moose use declined. In this system, greater moose 

use occurred in recent cuts with reserve widths >120m.

During summer months in northeastern Minnesota, Peek et al. (1976) found that moose 

commonly used aquatic communities and sparsely stocked stands with a dense shrub 

understorey. Shelterwood cuts do not remove the entire canopy and therefore provide a rich 

understorey of vegetation along with a diversity of available browse. The recent cut blocks (0-10 

years) in the shelterwood cut system, adjacent to reserves, could be supporting more available 

terrestrial browse and attracting moose to the terrestrial browse on their way to feed on aquatic 

vegetation. In this study, over 50% of the sites sampled had evidence of terrestrial browsing
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within the adjacent reserve (Appendix VII). In the selection and clear-cut systems there was 

more evidence of aquatic browsing than terrestrial browsing. Cutovers were not sampled for 

evidence of moose use and therefore I cannot confirm the intensity of use, if any, of the cutover 

areas.

Patterns o f Moose Use o f Reserves

The patterns of moose use of reserves in this study are based on indirect evidence of 

moose use (trails, tracks, pellet-groups, browsing). Therefore, I am unable to determine how 

many aquatic feeding areas were used by one moose or how many moose used the same MAFA. 

However, I am able to describe patterns of moose use based on the direction of travel by moose 

with respect to physical features and habitat characteristics within adjacent reserves and 

silvicultural system.

Timmermann and Racey (1989) found that shoreline characteristics had the strongest 

influence on where moose entered the water at Joeboy Lake, Sleeping Giant Provincial Park, yet 

Costain and Matchett (1992) found it difficult to summarize the preferred characteristics 

surrounding aquatic feeding areas. These observations were shared by de Vos (1958), Cobus 

(1972), and Fraser et al. (1980). There is much debate on the different feeding behaviours of 

moose at aquatic feeding areas, de Vos (1958) observed moose feeding at one MAFA while 

other MAFAs had no moose. Fraser et al. (1980) observed moose in the Chapleau Game 

Preserve and found that feeding locations by some moose throughout the summer did not 

change. He observed one moose using Cooke Lake intensely for a few days and then it departed 

while another moose was observed in the same lake for two days and then never seen again. 

Costain and Matchett (1992) suggest that moose may be attracted to feeding sites by something
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other than the presence of aquatic plants. When they observed moose selecting aquatic feeding 

sites in British Columbia, they reported that one moose walked past a number of MAFAs before 

settling to feed at the Yaak River; other moose chose to stop at those same aquatic sites to feed. 

Fraser et al. (1980) reported that moose were attracted to a lake in the Chapleau Game Preserve 

when there was abundant woody vegetation in logged areas nearby. This suggests that moose 

are attracted to aquatic feeding areas when the adjacent reserve can also provide quality habitat.

Typically, there were two main moose trails leading to shore in the shelterwood cut 

silvicultural system. In more recent cuts (0-10 years old), one trail usually followed the edge of 

the cut block with trails leading off perpendicular through the reserve to the water. Secondary 

trails led into the cut block from this edge trail, suggesting that moose were using the entire 

reserve for cover while feeding in the cutover, and as protective cover in accessing the water.

The other main trail lay parallel to the shoreline and had multiple trails leading off into the water. 

With narrower reserves (<120m), it was more common for moose to enter the reserve from a trail 

parallel to the shoreline. The main trail along the edge of a cut block was not always present at 

sites with narrower reserves in the shelterwood cut system.

Moose had many entry points to aquatic feeding areas in the selection cut system. At 

older cut sites, moose use was variable. Moose entered the MAFA from the cut block into the 

reserve and walked perpendicular to the water’s edge. On occasion, moose traveled parallel to 

the shoreline until they reached the aquatic vegetation. In recent cuts, it was more common for 

moose to enter the MAFA from the side of the reserve paralleling the shoreline and on occasion 

they would walk through a recent cut block into the reserve. There was often a heavily used trail 

that paralleled the shoreline with smaller trails leading into the water.
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The pattern of moose use of reserves was similar between the clear-cut and selection cut 

systems. In no cut areas (>20 years) moose entered MAFAs from the cut block to the shore. In 

recent (0-10 years) and older cuts (10-20 years), it was more common for moose to enter a 

MAFA parallel to the shore. The avoidance of cut blocks in recent and older cuts suggests that 

moose are affected by the disturbance caused by timber harvest.

Timmermann and Racey (1989) identified a combination of trail use patterns. They 

found individual trails leading to shore, trails that were well spaced with only one 

interconnection, and found that the longest and most used trails were often associated with old 

logging roads (Timmermann and Racey 1989). I found the same interconnection of trails, as 

well as a main trail system, in most areas. Roads were the most common disturbance type in all 

three FMUs. I found that old roads (primary, secondary, and tertiary) might have enhanced 

moose use of the area. In the clear-cut system, roads often split reserves due to the physical 

features of the landscape. These roads were used as a main trail and moose walked off the road 

perpendicular to the shore.

In their study at Joeboy Lake, Sleeping Giant Provincial Park, Timmermann and Racey 

(1989) found that moose trails were influenced by slope. They found moose trails ran 

perpendicular to shore when the slope was <30% but where slopes were >30%, moose trails 

followed the contour of the slope before entering the MAFA. This same pattern was evident in 

all three silvicultural systems that I studied. However, because I used the OMNR MAFA 

ranking system (Ranta 1988) in the site selection process, characteristics such as slope, aspect, 

pond size, and aquatic vegetation were already taken into consideration. Therefore, there were 

only a few sites with a slope >30%. There were more sites with slopes >30% in the clear-cut 

system than the shelterwood or clear-cut areas due to differences in physical landscape features
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of each area. Where slopes were <30% there were more trails perpendicular to shore compared 

to sites with a slope of >30%, where trails ran more parallel to the water’s edge.

Overall, there was more use of aquatic feeding areas by moose where reserve widths 

were >120m. The pattern of use among sites was specific to age, reserve width, and the type of 

cut that occurred in the area. The general pattern of reserve use among all three silvicultural 

systems indicates that moose were avoiding the disturbance of timber harvest and walked from 

areas that had not been disturbed. Moose also followed the shoreline, depending on shoreline 

characteristics, until they reached the aquatic vegetation. In areas that had been disturbed, moose 

returned to those sites approximately 10-15 years after the cut. This suggests that once a 

preferred age of the forest is reached, reserve width becomes less important as the cut block and 

reserve blend into one continuous forest (Kimmins 1997); approximately >15 years.

Silvicultural System

There has been little research done in the Great Lakes -  St. Lawrence forest region 

detailing the response to partial cutting practices by moose throughout their seasonal habitat. 

Without studying the three silvicultural systems in one geographic area, direct comparisons of 

harvesting systems on the use of aquatic feeding areas by moose cannot be made. Because each 

silvicultural system leaves a different pattern on the landscape, it can be expected that moose will 

alter their pattern of use according to the type of disturbance.

Each Forest Management Unit that I studied is in a distinct geographic area that offers 

unique physical and vegetative characteristics. Although the areas lie within a transition zone of 

two forest regions (Farrar 1995), certain tree species become more dominant the more north or 

south of the transition. Therefore, as the Spanish FMU (clear-cut) is more northerly, it is
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representative of more northern boreal conifer communities, while the Algonquin FMU 

(selection cut) is more southerly and representative of more southern deciduous tree species 

(Farrar 1995). Moose densities in each FMU are also at different capacity, with higher moose 

densities in the Algonquin FMU followed by the French-Sevem FMU and Spanish FMU, 

respectively (A. Rodgers, OMNR, personal communication). With these factors combined, I 

cannot accurately explain why there were higher levels of intensity of moose use in the selection 

cut followed by the shelterwood cut and clear-cut, respectively, although the pattern of use 

appears to correspond with moose density. Although the silvicultural system was different in 

each FMU, a comparison can be made of the site-specific characteristics that were measured 

across all sites, such as canopy cover, shrub density, and sightability distance.

The clear-cut and selection cut systems were used in similar ways by moose. Moose use 

was positively correlated with basal area, sightability distance, percent shrub cover, and 

understorey canopy cover. These four habitat characteristics represent a measure of protective 

cover. Vegetative cover is an important habitat component during all seasons for moose 

(Timmermann and McNicol 1988). Lateral cover helps with thermoregulation by providing 

shade, blocking the wind and sun, and acts as concealment to protect from predators 

(Timmermann and McNicol 1988) by providing a secure hiding and resting place (Timmermann 

and Racey 1989; Jackson et al. 1991). Moose are more vulnerable to predation when open areas 

are nearby, such as roads and trails, because they allow for easier travel by predators (Kunkel 

and Pletscher 2000) and exposure to hunters (Rempel et al. 1997).

Endpoint basal area measurements were smaller than the midpoint basal area due to 

adjacent cut blocks. Using basal area as an estimate of tree cover is helpful because it is directly 

linked to the contribution of individual trees in providing protective cover (Cade 1997). Canopy
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closure is a useful measure of the contribution of tree crowns to providing thermal cover (Cade

1997). The percent canopy cover for both understorey and overstorey was positively correlated 

with moose use in the shelterwood cut and clear-cut systems and negatively correlated with 

moose use in the selection cut system. These relationships are due to the type of cut practiced.

A selection cut may be dominated by remaining hardwood trees (yellow birch, maple, aspen) that 

suppress browse species in the understorey (Jackson et al. 1991).

The length of aquatic vegetation along the shore was positively correlated with moose 

use in all three silvicultural systems. Moose may use the longer shoreline of aquatic vegetation 

to compensate for a narrower reserve. A greater length of aquatic vegetation along the shore also 

allows for greater abundance, distribution, and diversity of aquatic plants available at one site 

(deVos 1958; Belovsky et al. 1973; Fraser et al. 1984), and allows for more entry points to the 

water (Timmermann and Racey 1989). Because the Timber Management Guidelines (OMNR 

1988) recommend a 120m reserve only adjacent to aquatic vegetation, the longer the aquatic 

shoreline, the more protective cover left after harvesting.

Timber harvest can reduce the quality of habitat for wildlife by changing the distribution 

and type of food and shelter available (Jackson et al. 1991; Kimmins 1997). However it has also 

been suggested that timber harvest can enhance habitat available for moose (Payne et al. 1988). 

Moose are highly adaptable and can cope with varying disturbances including timber harvest and 

fire (Spencer and Hakala 1964; Costain and Matchett 1992; Potvin et al. 1999), insect outbreaks, 

herbicide spraying, and blowdown (Germain et al. 1990). Moose have demonstrated this by 

colonizing new areas where fire or logging has disrupted the landscape, or simply moving to new 

areas with more available browse (Costain and Matchett 1992). Timber harvest creates an “edge 

effect” that borders two ecotones; the cut area and the uncut area. Moose have adapted to using
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this edge effect and research has shown that harvesting systems such as a clear-cut or a 

shelterwood cut with adjacent cover nearby can provide good moose habitat (Payne et al. 1988). 

Potvin et al. (1999) found that moose avoided clear-cut patches, preferring uncut patches with 

dense shrub layers and conifer regeneration within their home range. In early winter, moose 

have been observed using cutovers with adjacent cover nearby for browsing (Jackson et al.

1991). Although, clear-cuts may quickly produce sufficient regeneration for moose browse, the 

negative effect of clear-cutting may last from 10-15 years; the time needed for lateral cover to 

grow (Potvin et al. 1999). New, clear-cut patches are not suitable for many wildlife species such 

as ruffed grouse, marten, snowshoe hare, and moose, unless cutovers provide necessary 

requirements such as large trees, snags, and coarse woody debris (Courtois et al. 1998; Potvin

1998).

Importance o f Reserves for Other Wildlife

Although reserves are left around aquatic feeding areas to protect their use by moose, 

other animals are also using the reserves. While observing moose at aquatic feeding areas, 

de Vos (1958) observed the abundance of other animals present including beavers, muskrats, 

waterfowl, and other big game species that were also feeding at these sites. I also observed other 

wildlife such as birds (Appendix VIH) and other mammals (Appendix DC) using both the aquatic 

and terrestrial areas. The riparian area of these sites, ‘the transition between the aquatic 

environment of a wetland and the upland terrestrial environment that is subject to periodic 

flooding’ (Molles 1999), also provides habitat for many amphibians and reptiles such as frogs, 

salamanders, and turtles; which is supported by my observations (Appendix X). Species richness 

at sites sampled varied among the three silvicultural systems. Higher numbers of other mammals
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and amphibians were present in the selection cut (12 mammal species, 6 amphibian species) and 

shelterwood cut (11 mammal species, 6 amphibian species) systems compared to sites sampled 

in the clear-cut system (7 mammal species, 3 amphibian species). There were few reptiles found 

among all three silvicultural systems. The shelterwood cut system had the highest number of 

avian species observed (32 species), followed by the clear-cut (29 species) and the selection cut 

(21 species), respectively.

Summary

This study indicates that both reserve width and the age of adjacent timber are important 

in determining moose use of aquatic feeding sites, regardless of the silvicultural system 

practiced. There was more use of sites by moose in the selection cut than in the shelterwood cut 

and more use of sites in the shelterwood cut than in the clear-cut. In all three silvicultural 

systems, there was more use of sites with greater reserve widths as well as access to both 

terrestrial and aquatic browse.

The reserves sampled in this study show evidence of use annually by moose; they browse 

in adjacent cutover areas in winter, and use reserves as a secure travel route to feed on aquatic 

vegetation in summer. Because aquatic plants are an important source of nutrients for moose in 

spring and summer, forest management practices must ensure proper protection of these sites. 

This study has shown that when applying a reserve, the time since last cut and the type of 

silvicultural system being used must be considered because the quality of the habitat within the 

adjacent reserve is important for moose using these sites. Although moose used aquatic feeding 

areas adjacent to narrow reserves (<60 m), the results of this study show that sites adjacent to 

120-m reserves, as recommended in the Timber Management Guidelines for the Provision of
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Moose Habitat, were used the most and have the greatest potential of meeting the life history 

requisites of moose in all three silvicultural systems.
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Appendix I

Locations, proximity of cuts, reserve widths, and year of last cut of sites sampled in the
Algonquin Forest Management Unit.

Site
Number

Easting Northing Proximity of Cut 
(m)

Reserve Width 
(m)

Year of 
Last cut

1 0723247 5065355 50 50 1983
2 0710791 5059090 60 60 1990
3 0710235 5069598 30 30 1992
4 0713243 5065741 120 120 1982
5 0719372 5068374 57 57 1985
6 0726642 5062672 110 120 1982
7 0716834 5020843 38 38 1988
8 0716056 5021667 44.7 44.7 1988
9 0716139 5022739 37.3 37.3 1987
10 0715892 5021727 38.7 38.7 1985
11 0715854 5022367 43 43 1987
12 0714995 5024002 41 41 1988
13 0713867 5025138 62.7 62.7 1986
14 0701740 5062377 53.7 53.7 1998
15 0708678 5057521 98 120 1984
16 0718040 5025323 45 45 1987
17 0697909 5066279 120 120 1982
18 0711010 5028963 55 60 1996
19 0711784 5029433 56 56 2000
20 0712100 5029234 50.7 50.7 2000
21 0697419 5034700 56.3 60 1983
22 0691570 5036278 120 120 1998
23 0693456 5036573 36.7 30 1994
24 0692390 5038173 30 30 1994
25 0698685 5032537 120 120 1999
26 0699496 5033051 60 60 2000
27 0695766 5033895 38.7 38.7 1983
28 0697116 5035060 34 34 1983
29 0698092 5036676 66.7 120 1980
30 0698618 5037832 120 120 1997
31 0709727 5061231 39.3 39.3 1989
32 0701586 5050385 120 120 1982
33 0697481 5040762 37.7 37.7 2000
34 0711312 5028253 34.3 34.3 1995
35 0713123 5028098 120 0 1985
36 0716014 5031624 90.3 90.3 1983
37 0718937 5017030 31 31 1983
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Site
Number

Easting Northing Proximity of Cut 
(m)

Reserve Width 
(m)

Year of 
Last cut

38 0720306 5016313 54.3 120 1982
39 0701640 5044744 120 120 1982
40 0701826 5055852 37.7 37.7 1993
41 0701519 5055900 62 62 1993
42 0693716 5036856 120 120 1982
43 0696098 5034258 33.7 33.7 1984
44 0703660 5050290 180 180 1982
45 0703991 5057708 180 180 1982
46 0701292 5057394 69 69 1984
47 0679803 5048212 120 120 1982
48 0685273 5047408 120 120 1982
49 0701651 5058430 63.7 63.7 1982
50 0701785 5056452 45.7 45.7 1987
51 0678307 5049277 120 120 1982
52 0708542 5052262 120 120 1982
53 0703436 5050696 120 120 1982
54 0712728 5048726 120 120 1982
55 0678835 5048651 120 120 1982
56 0712670 5048603 120 120 1982
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Appendix II

Locations, proximity of cuts, reserve widths, and year of last cut of sites sampled in the French-
Sevem Forest Management Unit.

Site
Number

Easting Northing Proximity of cut 
(m)

Reserve Width 
(m)

Year of 
Last Cut

1 0546947 5081466 120 0 1998
2 0542347 5078724 120 0 2000
3 0541844 5079584 36 36 2000
4 0542953 5079286 48.3 48.3 2000
5 0543878 5079505 120 0 1998
6 0547613 5081868 120 0 1997
7 0548465 5081201 115 0 1997
8 0548020 5080664 120 0 1997
9 0548504 5081921 120 100 1997
10 0553870 5081965 120 120 1985
11 0553172 5080011 36.7 36.7 1985
12 0553108 5079161 106.6 106.6 1985
13 0556389 5095471 100.7 100.7 1993
14 0557184 5095912 97 97 1989
15 0558773 5096408 40 40 1995
16 0558252 5096756 107.7 107.7 1995
17 0559642 5095875 120 120 1995
18 0534849 5076863 120 120 1982
19 0546296 5081243 120 0 1998
20 0547268 5079232 120 0 1979
21 0537912 5078320 120 120 1982
22 0537628 5077784 44.7 44.7 2001
23 0556530 5078562 120 120 1987
24 0552283 5078556 36.3 36.3 1982
25 0555998 5078354 37.7 37.7 1986
26 0555272 5077312 120 120 1985
27 0556573 5078805 39 39 1989
28 0551520 5059357 120 120 1982
29 0551511 5055624 120 120 1982
30 0549743 5054188 120 120 1979
31 0551617 5059110 45 120 1979
32 0549436 5054293 120 120 1979
33 0552967 5048874 120 60 2000
34 0537227 5077589 34.7 34.7 2000
35 0552974 5049185 120 0 1999
36 0552018 5055346 120 120 1985
37 0554965 5094852 90 90 1985
38 0553293 5053717 51.7 120 1978
39 0547213 5079710 39.3 120 1981
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Site
Number

Easting Northing Proximity of cut 
(m)

Reserve Width 
(m)

Year of 
Last Cut

40 0553501 5053575 45 120 1981
41 0553628 5053743 78.3 78.3 1978
42 0553371 5053168 48.3 120 1978
43 0551775 5059111 51.3 120 1982
44 0560087 5039880 103.7 103.7 1982
45 0550608 5055785 120 120 1980
46 0551411 5059134 40 40 1984
47 0548310 5055612 120 0 1982
48 0549968 5053345 120 120 1979
49 0549763 5052574 120 120 1982
50 0549959 5051794 120 120 1982
51 0549944 5051650 120 120 1982
52 0550289 5055937 120 120 1982
53 0569358 5035304 58 58 1982
54 0567852 5032052 120 120 1982
55 0551642 5058705 81.7 81.7 1982
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Appendix III

Locations, proximity of cuts, reserve widths, and year of last cut of sites sampled in the Spanish
Forest Management Unit.

Site
Number

Easting Northing Proximity of Cut 
(m)

Reserve Width 
(m)

Year of 
Last Cut

1 0403700 5204493 120 0 1992
2 0407159 5206095 90 90 1993
3 0407177 5195530 120 120 1982
4 0393242 5211266 80 80 1989
5 0392608 5212672 120 120 1986
6 0402609 5202050 120 120 1993
7 0399068 5220484 120 120 1989
8 0398721 5220578 64.7 120 1986
9 0390477 5206906 120 120 1987
10 0392929 5209397 120 120 1985
11 0394656 5207023 120 95 1987
12 0394845 5206589 105 105 1988
13 0395523 5206145 120 120 1988
14 0389270 5205791 120 120 1988
15 0395748 5219713 120 0 1999
16 0402896 5204811 86 80 1991
17 0406670 5201666 38.3 30 1993
18 0405504 5203794 120 120 1993
19 0405213 5203853 120 120 1982
20 0405964 5207983 109.7 110 1998
21 0403734 5206690 120 120 1992
22 0403972 5210727 40 40 1987
23 0417402 5175616 120 0 1988
24 0422591 5166269 120 120 1999
25 0408472 5182756 120 0 1989
26 0411226 5202210 120 90 1994
27 0411572 5201853 120 120 1994
28 0416504 5176904 120 9999 1988
29 0430638 5169047 120 120 1982
30 0430836 5169401 120 120 1982
31 0408255 5182793 81.7 80 1989
32 0411507 5181172 42.7 43 1990
33 0404908 5187942 78.3 78 1997
34 0411322 5180518 67.3 65 1991
35 0406152 5186016 120 120 1997
36 0427845 5164927 120 120 1982
37 0428357 5165353 120 120 1982
38 0428885 5175413 120 120 1982
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Site
Number

Easting Northing Proximity of Cut 
(m)

Reserve Width 
(m)

Year of 
Last Cut

39 0430946 5175030 120 120 1999
40 0425216 5176114 120 120 1982
41 0426095 5175655 120 120 1982
42 0415723 5171306 120 0 1990
43 0417459 5177578 120 0 1992
44 0416155 5170365 120 0 1990
45 0416173 5170951 36.7 36.7 1990
46 0417592 5171377 120 120 1989
47 0406637 5186515 105 105 1996
48 0436500 5172503 120 0 1997
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Appendix IV

Shoreline Moose Trail Intensity
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unclassified

Intensity levels of shoreline moose trails at sites (n=56) in the selection cut silvicultural system 
(O=not present, l=less than 5 trails, 2=more than 5 trails along the shoreline, or trails heavily 
used).

Shoreline Moose Trail Intensity
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Intensity Level

Intensity levels of shoreline moose trails at sites (n=55) in the shelterwood cut silvicultural 
system (O=not present, l=less than 5 trails, 2=more than 5 trails along the shoreline, or trails 
heavily used).
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Shoreline Moose Trail intensity

1

Intensity Level

Intensity levels of shoreline moose trails at sites (n=48) in the clear-cut silvicultural system 
(O=not present, l=less than 5 trails, 2=more than 5 trails along the shoreline, or trails heavily 
used).
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Appendix V

Shoreline M oose Track Intensity
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unclassified

Intensity levels of shoreline moose tracks at sites (n=56) in the selection cut silvicultural system 
(0 = not present, 1 = less than 3 sets of tracks, 2 = more than 3 sets of tracks).

Shoreline Moose Track intensity
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Intensity levels of shoreline moose tracks at sites (n=55) in the shelterwood cut silvicultural 
system (0 = not present, 1 = less than 3 sets of tracks, 2 = more than 3 sets of tracks).
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S h o re lin e  M oose Track Intensity
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Intensity levels of shoreline moose tracks at sites (n=48) in the clear-cut silvicultural system (0 ; 
not present, 1 = less than 3 sets of tracks, 2 = more than 3 sets of tracks).
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Appendix VI
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Aquatic Browsing Intensity

in tensity  Level

Intensity levels of aquatic browsing by moose at sites (n=56) in the selection cut silvicultural 
system (0= not present, 1 = less than half of the shoreline aquatics were browsed, 2 = more than 
half the shoreline aquatics were browsed).
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Intensity levels of aquatic browsing by moose at sites (n=55) in the shelterwood cut silvicultural 
system (0= not present, 1 = less than half of the shoreline aquatics were browsed, 2 = more than 
half the shoreline aquatics were browsed).
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A quatic Brow sing intensity
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Intensity leve ls  o f  aquatic brow sing b y  m oose at sites (n=48) in the clear- cut silvicultural system  
(0=  not present, 1 =  less than h a lf o f  the shoreline aquatics w ere brow sed, 2 =  m ore than h a lf the 
shoreline aquatics w ere brow sed).
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Appendix VII

Moose Browsing - Selection cut
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Browse Type

The total number of stems browsed by moose along trails at all sites (n = 56) in the selection cut 
silvicultural system.

Moose Browsing - Shelterwood cut
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The total number of stems browsed by moose along trails at all sites (n = 55) in the shelterwood 
cut silvicultural system.
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Moose Browsing - Clear-cut
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Total number of stems browsed by moose along trails at all sites (n = 48) in the clear-cut 
silvicultural system.
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Appendix VIII

Avian Species - Selection Cut

I
CO

i(0

Yellow-bellied Sapsucker 
Wookpecker Unknown 

Winter Wren 
Wtiite-throated Sparrow 

Spruce Grouse 
Ruffed Grouse 

Red-winged Blackbird 
Red-eyed Vireo 

Pileated Woodpecker 
Pfieasant 
Ovenbird 
Nutfiatcti 

Marsti Wren 
Kentucky Warbler 

Gull 
Flicker 

Dar-eyed Junco 
Ctiestnut-sided Warbler 

Blue Jay 
Black-capped Cfiickadee 

Belted Kingflstier

6 8 10 

Number of Sites

12 14 16

Birds observed at all sites (n=56) in the selection cut silvicultural system.
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Avian Species - Shelterwood Cut

Black-backed Woody 
Black-capped Chickadee 

Black-Throated Green Warbler 
Blue Jay 

Boreal Chickadee 
Chestnut-sided Warbler 

Common Loon 
Cormorant 

Dark-eyed Junco 
Ducks Unknown 

Grackle 
Great Blue Heron 

Hairy Woodpecker 
Hawk Unknown 

Hermit Thrush 
Least Flycatcher 

Olive-sided Flycatcher 
Ovenbird 

Ravens 
Red-eyed Vireo 

Red-winged Blackbird 
Ruffed Grouse 
Spnjce Grouse 

Swainson’s Thrush 
Tennesse Warbler 

White-Throated Sparrow 
Winter Wren 

Woodpecker Unknown 
Yellow Warbler 

Yeiiow-beliied Sapsucker 
Yeiiow-rumped Warbler

6 8 10 

Number of Sites
12 14 16

Birds observed at all sites (n=55) in the shelterwood cut silvicultural system.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Avian Species - Clear-cut
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American Crow 
Beited Kingfisher 

Biack-capped Chickadee 
Biue Jay 

Biue-headed Vireo 
Broad-Winged Hawk 

Brown Creeper 
Cape May Warbier 

Chestnut-sided warbier 
Common Loon 

Downy Woodpecker 
Ducks unknown 

Flicker 
Great Blue Heron 

Hairy Woodpecker 
Hermit Thmsh 

Kinglet 
Nashville Warbier 

Olive-sided Flycatcher 
Pine Siskin 

Red-eyed Vireo 
Red-vreasted Nuthatch 

Ruffed Grouse 
Spruce Grouse 

Swamp Sparrow 
Unknown Owl 

Unknown Raptor 
White Throated Sparrow 

Winter Wren 
Yeiiow-beliied Sapsucker 

Yeiiow-rumped Warbler

10 12
Number of Sites

Birds observed at all sites (n=48) in the clear-cut silvicultural system.
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Appendix IX

Mammals - Selection Cut

White-tailed Deer

Timber Wolf

Snowshoe Hare

Shrew

J
$
ë
m

Red Squirrel 

Red Fox

Moose

Mink

Elk

Eastern Chipmunk 

Biack Bear

Beaver

20 2510 150 5

Number of Sites

Mammals observed at all sites (n=56) in the selection cut silvicultural system.

Mammals - Shelterwood Cut

E
CO

1
Q.
CO

American Marten 

Beaver 

Black Bear 

Deer Mouse 

Eastern Chipmunk 

Snowshoe Hare 

Mink 

Otter 

Red Squirrel 

Wolf

White-tailed Deer

2 3 4

Number of Sites

Mammals observed at all sites (n=55) in the shelterwood cut silvicultural system.
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Mammals - Clear-cut

Black Bear

Eastern Chipmunk

S Jumping Mouse

CO
Z  
$
1

Red Squirrel

^ Snowshoe Hare

White-tailed Deer

Wolf

6 8 10 

Number of Sites

12 14 16

Mammals observed at all sites (n=48) in the clear-cut silvicultural system.
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Appendix X

Reptiles and Amphibians • Selection cut

Wood Frog

Spring Peeper

Mink Frog

Green Frog

Chorus Frog

Bull Frog

Number of Sites

Reptiles and amphibians observed at all sites (n=56) in the selection cut silvicultural system.

Reptiles and Amphibians - Shelterwood cut

American Toad 

Bull Frog 

C horus Frog 

Z  E astern G ardner Snake 

G reen Frog 

Mink Frog 

Sm ooth G reen Snake 

W ood Frog

I
$
e
Q .
CO

4 6 8 10
Number of Sites

12 14

Reptiles and amphibians observed at all sites (n=55) in the shelterwood cut silvicultural system.
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Reptiles and Amphibians - Clear-cut

Bull Frog

2  Eastern Gardner 
cB Snake

oj Green Frog 
CO

Spring Peeper

0.5 1 1.5 2 2.5

Number of Sites

3.5

Reptiles and amphibians observed at all sites (n=48) in the clear-cut silvicultural system.
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