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Abstract

The classical techniques for fault diagnosis require periodic shut down of machines
for manual inspection. Although these techniques can be used for fault diagnosis in simple
machines, they can rarely be used effectively for complex ones. Due to the rapid growing
market competitiveness, more reliable and robust condition monitoring systems are
critically needed in a wide array of industries to improve production quality and reduce
cost. As a result, in recent years more efforts have been taken to develop intelligent
techniques for online condition monitoring in machinery systems. Several neural fuzzy
classification schemes have been proposed in literature for fault detection. However, the
reasoning architecture of the classical neural fuzzy classifiers remains fixed, allowing only
the system parameters to be updated in pattern classification operations. To improve the
reliability of machinery fault diagnostics, an evolving fuzzy classifier is developed in this
work for gear system condition monitoring. The evolution is performed based on the
comparison of the potential of the incoming data set and the existing cluster centers. One
key feature of the developed evolving fuzzy classifier is that it has the ability of developing
continuously - by adding or subtracting rules and by modifying existing rules and
parameters. In performance evaluation, the proposed evolving classifier is firstly tested
with the use of benchmark data sets, such as Iris data, Wisconsin breast cancer data and
wine data. Then the adopted evolving classifier is implemented for gear fault diagnosis. A
distinguishable pattern is determined between the input data and the output patterns to
evaluate the data sets. Several signal processing techniques are utilized to generate

representative features to train the proposed evolving fuzzy classifier. Simulation test




results show that the proposed classifier can effectively identify the condition of a gear,

both spur and helical types, and it outperforms provide other related methods.
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Chapter 1

1.0 Introduction

"There is a great satisfaction in building

good tools for other people to use."”

FREEMAN DYSON

1.1 Motivation of the Research

Gear trains are widely used in various mechanism and machines, from watches to
helicopters. Their malfunction can lead to costly shutdowns, lapses in production, and even
human casualties. The detection of faults in mechanical systems, more precisely in gears, is
of great interest nowadays. Many accidents can be prevented when a fault is detected at the
right time, costs associated with repairs of machinery can be reduced and inspection time
of gear trains to find the faulty component is greatly reduced when an efficient gear fault

detection technique is implemented.

There are two different classes of gear defects known in literature: distributed and
localized defects [1]. Two forms of distributed faults are known: the adhesive wear and the
abrasive wear [1]. The transfer of metal particles from one tooth to a mating tooth by a
welding action characterizes the adhesive wear whereas the abrasive wear is induced by the
presence of abrasive particles in the meshing process. A localized defect or rolling contact

fatigue faults is a critical fault such as pitting, cracking and scoring [2].




Although both classes induce transmission errors and increase the noise and vibration in
gearboxes, researchers give more attention to the latter of the two. That is because
localized gear defects can cause sudden failure of the mechanical system, whereas the
distributed faults are usually initiated with a localized fault. As a result, this work will
focus on localized faults, as they can cause catastrophic failures in machines such as

helicopters and airplanes.

1.1.1 Pitting

Gears are one example of solids bodies in relative motion coming into contact. The
resulting normal and tangential forces at the contact region are transmitted from a surface
to its pair [2]. When the contact stress is higher than the endurance limit of the gear
material, a type of fault referred to as pitting occurs. Pitting is a surface fault characterized
by pieces of material detaching at the contact surface of the tooth due to fatigue. In their

research [2], Aslants and Tasgetiren have found that for an as-cast specimen, a pitting size

of 500 um can develop after 1.850x 10 cycles. However, gear materials are generally

subjected to heat treatment to prevent surface fatigue failures such as pitting.

1.1.2 Tooth Breaking

Another case of fatigue failure is a tooth crack of break. A tooth break usually
originates as a crack and propagates until the tooth breaks off. Once the tooth breaks off,
the subsequent tooth will exhibit higher impact loading therefore it is susceptible to

breakage. If undetected, this failure can cause serious damage in the operating machine.




1.1.3 Scoring

Although scoring is another example of contact surface fault, it is primarily related
to incorrect mounting, improper lubrication and overloading. Scoring arises when the
lubrication film breaks down and the gear teeth are in direct metal-to-metal contact. Due to
the high temperatures experienced by the teeth surfaces, they exhibit welding. As the gear
rotates, this welded spots on the teeth surfaces break off. This type of fault can also cause

severe damage to the gearbox and consequently to the operating machine.

As a result, the focus of this work is to develop an intelligent condition monitoring
scheme for gearbox diagnosis. Before introducing the proposed scheme, an understanding

of classical gear condition monitoring techniques is necessary.

1.2 Gear Condition Monitoring Techniques

The aforementioned faults arise during the operation of a gear train. It is crucial that these
defects are detected at an early stage without machinery disassembly in order to reduce
downtime costs and prevent catastrophic failures. Several methods are used for the
diagnosis of gear trains. Based on signal properties, these methods are broadly classified as
acoustic measurements, temperature monitoring, wear debris detection, and vibration

analysis [3].

1.2.1 Acoustic Measurement
One of the most effective acoustic-based health monitoring in rotating machinery,
including gearboxes, is acoustic emission. The detection of cracks is the prime application

of acoustic emission. The measurement of a machine’s sound can also be employed for




detecting defects in gearboxes. Typically, the accuracy of these methods depends on sound

pressure and sound intensity data [3].

1.2.2 Temperature Monitoring
Frictional heating from contacts of gear teeth is of extreme importance for monitoring the
condition of a gear transmission under its continuing operation. The surface temperature

holds the critical information about the condition of a gear [3].

1.2.3 Wear Debris Analysis
In this method, the presence of any metallic particles in the lubricant is detected with the
aid of sensors [3]. Wear particles are considered to be a critical alarm indicating the need to

change the gear before a forced outage occurs.

1.2.4 Vibration Measurement

Vibration is a symptom of an internal defect. In fact, it is a very sensitive and early
predictor of a developing fault. A vibration signal indicating a fault is generated by the
interaction between gears regardless of the defect type. Consequently, a vibration analysis
can be employed for the diagnosis of all types of faults, either localized or distributed.
Furthermore, low-cost sensors, accurate results, simple setups, specific information on the
damage location, and comparable rates of damage are other benefits of the vibration
measurement method [3]. It is for this reason that vibration analysis is widely employed in

the industry, which also will be used in this work.

1.3 Vibration Based Condition Monitoring

Signal processing is the process in which representative features are extracted from

the collected vibration signals. There are many signal processing techniques proposed in




literature for gear fault detection. Based on processing tools, these techniques can be
classified into three categories, that is, methods in the time-domain, frequency domain, and

time-frequency domain, respectively.

Condition monitoring based on vibration analysis can monitor all parts of a gearbox
(i.e. bearings, shafts and gears); however, the focus of this thesis is directly related to
gears. In order to focus only on the important part of the vibration signal, the time domain
signal is synchronously averaged. This signal average is then used for advanced analysis to

compute condition indicators (Cls), which are compared in the decision-making unit.

Condition indicators have been introduced in 1977 when Stewart developed FMO,
FM4 and some other techniques [4]. Since then, research had progressed and Zakrejsek [5]
introduced NA4. NA4 has further been improved by Decker [6] and then by Demsey [7]
for a better performance related to torque changes. One of the many techniques available
for detecting gear faults such as cracks, files and chips is the order cepstrum analysis. In
order to process signals using this procedure, vibration signals are collected at constant
time increments in time domain and then data is resampled in angle-domain such that the
non-stationary signals are changed into stationary signals. Order cepstrum is then
implemented for accurate diagnosis [8]. Suppose data is collected at variable rotational
speeds in time-domain. As the rotational speed changes, the sampling dots change
generating a “frequency ambiguity”. This ambiguity does not occur when data is sampled
in angle-domain. The sampling in the angle-domain is called order tracking and it has
advantages over the traditional spectral analysis since it samples signals at constant angle
generating constant sampling dots and thus changing the non-stable signal to a stable one.

The necessary assumption for this procedure is that the acceleration is constant. In




literature, autoregressive (AR) models have been established for signal analysis from a

monitored gearbox under healthy conditions [9]. This model was used as a prediction filter

that filtered future signals of the same gearbox. A discrete time signal x(n) can be

represented as a regression on itself plus an approximation error; this process is called
autoregression [10]. This model is used as a linear predictor, generating AR residual
signals when the filtered signals are subtracted from the original signal. In the case in
which the gears in the gearbox are healthy, the residual signal is the prediction error of the
AR model, generally having a random distribution. On the other hand, when the gears
become unhealthy, the AR model cannot predict the vibration signals therefore the residual

signal deviates from being randomly distributed at the location of the fault [11].

The wavelet analysis is one of the time-frequency methods for detecting faults in
gears by detecting sudden changes in non-stationary signals. The advantage of the
continuous wavelet transform is that it has a constant relative resolution which means that
it has good time resolution at high frequencies and good frequency resolution at low
frequencies [11]. Another time-frequency method for detecting gear faults is the ensemble
empirical mode decomposition followed by Hilbert-Huang transform. This method
introduced by Ai and Li involves the decomposition of the vibration signal using ensemble
empirical mode decomposition followed by calculation of the Hilbert-Huang transform
(HHT) and finishing with a diagnostic conclusion according to the HHT spectrum [10],
[11]. More popular methods in literature, which will also be utilized throughout this thesis,
are presented in Chapter 6. Through the use of the aforementioned signal processing
techniques, it is possible to obtain vital diagnostic information from the vibration signals.

However, these techniques require a good deal of expertise to apply them successfully. For




this reason, simpler approaches are sought which can generate decision options on gear

conditions automatically and reliably.

1.4 Literature Review

In order to prevent this several neural fuzzy classification schemes have been
proposed in literature for fault detection. To better understand neural fuzzy schemes, a
review of neuro-fuzzy (NF) and soft computing techniques [13,14] was necessary. Some of
the NNs reviewed include adaptive networks with emphasis on feedforward networks
(FFNN) and supervised-learning neural networks emphasizing on radial basis function

networks (RBFN).

Some optimization techniques implemented for training of the linear and non-linear
parameters are least-squares estimate (LSE), and Lavenburg-Marquardt, and gradient
techniques. While these methods have shown promising, they do tend to converge to poor
local optima. For this reason, other training techniques, not introduced in [13], namely
Kalman filter methods have been investigated. It was demonstrated that the EKF algorithm
exhibits faster training, both in terms of the number of presentations of training data and in
total training time on a sequential computer, than a standard implementation of
backpropagation for problems in pattern classification and function approximation [15].
The node decoupled extended Kalman filter algorithm for NNs was studied [16], [17].
Studies have shown that the NDEKF algorithm significantly reduces the complexity and
memory requirements of the extended Kalman filter (EKF). Also, it was shown in studies
that the covariance matrices have a significant impact on the Kalman filtering performance

[18]. Hence, techniques to improve the performance of the Kalman filter by updating the




covariance matrices have been investigated [19-22] in order to develop a better training

technique.

The abovementioned methods were implemented in training of the premise and
consequent parameters. Adaptive neuro-fuzzy inference system (ANFIS) was also
introduced by Jang as a universal approximator for NF modeling {13]. Since ANFIS does
not have the ability to identify the structure, several data clustering techniques were
studied, such as K-means clustering [23], which is the simplest unsupervised learning
clustering algorithm and the fuzzy C-means clustering developed by Dunn [24] and

improved by Bezdek [25].

Due to ANFIS's limitation, a neuro-fuzzy system, which can adapt not only the
parameters but also the structure itself, has been investigated. Dr. Angelov' work, the
pioneer of evolving fuzzy systems, was given special attention [26-30]. In his work, he
introduces the concept of rule base evolution over time such that the dependence on
computationally expensive techniques is minimized. Conversely, there exist other
interesting evolving clustering methods. The method proposed in [31] performs a one-pass,
maximum distance-based clustering without any optimization. Unlike Angelov's clustering
method, which does not allow for center update, the method in [31] updates both the
centers and the radiuses of the cluster. Other methods, developed by the same author as in
[31], propose transductive NF inference systems with weighted data normalization
(TWNFI) [32] and NF inference method (NFI) [33] for transductive reasoning systems.
The latter is a continuation Kasabov's dynamic evolving NF inference system (DENFIS)
[34]. DENFIS evolves through incremental supervised or unsupervised learning

accommodating new data inputs and new features and classes. All these methods are based




on the Takgi-Sugeno (TS) Type I fuzzy model and can be implemented online as well as
offline. On the other hand, these methods have not been applied on systems monitoring
gear trains. Research related to gear trains has been done by Dr. Wang and his research
group, in which they developed several types of NF classifiers for machinery condition
diagnostics with applications to gears [35-40]. In their work, several condition indicators
have also been developed. However, the previous work was mainly for forecasting
applications. On the other hand, this work focuses on developing an intelligent classifier

for gearbox diagnosis.

1.5 Objectives and Contributions

The objective of this research is to develop an advanced evolving NF scheme,

called ie’TS-sDEKF, for diagnostic classification of gear systems.

The following contributions have been made during the course of this research

work:

1. A novel ie’TS-sDEKF system has been proposed to improve the classification
efficiency. A decision-making component has been introduced to determine whether or not
the rules should be updated as well as the method in which they are updated. By
introducing the design parameter, the proposed clustering technique, ie’TS, became more

flexible in regards to the overlap of the clusters.

2. An improvement has been made to the network training technique. Since the covariance

matrices in a Kalman filter have a great impact on the performance of the filter, a scaling




method has been proposed so that the covariance matrices are not fixed but update after
each epoch. This can result in an overall improvement to the stability and performance of

the network.

3. Systematic tests have been taken to verify the effectiveness of the proposed evolving
classifier and the related techniques. Three robust signal indices were used for
classification operations. Test results have shown that the proposed classifier outperforms

other related classifiers.

1.6 Outline of Thesis

In Chapter 2, a review of Intelligent Tools is presented. First, the concept of Fuzzy
Logic is intreduced and a description of its uses is presented. Second, NNs are also
introduced and its advantages and disadvantages are presented. Third, Adaptive NF
Inference Systems as well as Evolving Networks are presented with focus on evolving TS

networks; these are commonly used for classification.

The aim of Chapter 3 is to introduce the proposed clustering technique. The process of

clustering is explained in detail and its advantages and disadvantages are discussed.

Chapter 4 deals with the training of the fuzzy classifier. Three steps are involved in
training the fuzzy classifier. In the first step the network is identified using the clustering
technique presented in Chapter 3. Next, during the forward pass the consequent parameters

are updated. Then, the premise parameters are updated in the backward pass. Notably, in
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this chapter the proposed scaling of the covariance matrices technique will also be

presented. This technique is implemented in the backward pass.

Once the network identification and the training of the network are presented, the
performance of fuzzy classifier is examined. Three sets of benchmark data have been
implemented in order to assess the performance of the proposed classifier. First, the Iris
Benchmark data was utilized. Second, wine has been classified using the Wine Benchmark
Data. Third, the Wisconsin Breast Cancer Data has been used. The performance results are

presented in Chapter 5.

Chapter 6 primarily dealt with applications. The experimental setup is introduced,
followed by a discussion of the classification method. Helical gears as well as spur gears
with various faults have been used. With the use of the proposed fuzzy classifier, the gear
trains were successfully classified into two classes: healthy or damaged. Results for the

proposed and other related schemes are presented herein.

In Chapter 7 the concluding remarks and future work are discussed.
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Chapter 2

2.0 Intelligent Tools

“Intelligence is the capacity to receive,

decode and transmit information efficiently."

ROBERT ANTON WILSON

Real-world problems, for which a mathematical model is sometimes impossible to
obtain, depend on intelligent systems for analysis. Intelligent schemes adapt themselves to
a variety of environments by learning, evolving and making decisions. The foundations of
these systems are NNs, fuzzy logic (FL), and neural fuzzy synergistic schemes (e.g.

ANFIS), which will be discussed briefly in this chapter.

2.1 Fuzzy Logic

Dr. Zadeh, a professor at the University of California at Berkley, firstly conceived
the concept of FL [41]. Such concept allowed the processing of data by introducing partial
set membership rather than crisp set membership or non-membership. FL has been
conceived as a better method for sorting and handling data since it mimics human control
logic. It uses an imprecise but very descriptive language to deal with input data more like a

human operator.

There are three types of fuzzy reasoning models described as follows:
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Type I: Mamdani fuzzy model

In a Mamdani fuzzy model the inputs are crisp values whereas the output is a fuzzy set. A
defuzzification process is necessary in a Mamdani model in order to extract a crisp value
from the fuzzy sat. There are five defuzzification methods such as centroid of area, bisector

of area, mean of maximum, smallest of maximum and largest of maximum [13].
A typical fuzzy rule in a Mamdani model is of the following form:
IFxisAandyis BTHEN zis C

where A, B and C are fuzzy sets, x and y are inputs whereas z is the output.
Type II: Sugeno fuzzy model

Also known as a TSK fuzzy model, this model was propesed by Takagi, Sugeno and Kank
in order to generate fuzzy rules from a given input-output data set [13]. The fuzzy rules can

be represented as follows:
IF x is A and y is B THEN z= f(x,y)

where A and B are fuzzy sets in the antecedent and z is a crisp value in the consequent.
When the output is a first order function, the model is called a first-order Sugeno fuzzy
model whereas when the function is a constant, it is called a zero-order Sugeno fuzzy

model [13].

Type III: Tsukamoto fuzzy model

13



In this model, the consequent of each rule is represented by a fuzzy set with a monotonical
membership function (MF). Hence, the output of each rule is defined as a crisp value. The

rules can be represented as follows:
IF X is small then Y is C
To illustrate the performance of fuzzy logic, consider the following example:

The aim is to control the speed of a motor by changing the input voltage. Suppose a set
point is defined and in the case in which the motor runs faster, we need to slow it down by
reducing the input voltage. On the other hand, if the motor slows below the set point, the

1nput voltage must be increased so that the motor spééd reaches the set boint.
Let the input status words be: Too slow, just right and too fast

Let the output sets be: Less voltage, not much change and more voltage.

The rule-base is defined as follows:

R1. IF the motor is running too slow, THEN apply more voltage.

R2 . IF the motor speed is about right, THEN not much change.

R3. IF the motor speed is to fast, THEN apply less voltage.

The corresponding membership functions for inputs and output variable are shown in

Figure 2.1.
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Figure 2.1 - Cause-Effect

The case when the motor's speed increases from 2420 RPM to 2437.4 RPM is depicted on

the membership functions (MFs) as shown in Figure 2.2

Measured speed 2437 4 Rpm
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Figure 2.2 - Speed above set point
The intersection points with the second MF and the third MF are 0.4 and 0.3, respectively.
This is depicted in Figure 2.2. The corresponding changes for the input voltage are

represented in Figure 3.3.
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Through simple math, the area of the "Not much change" triangle and "Slow down"
triangle can be determined to be 0.008 and 0.012, respectively. The output is determined

by obtaining the point at which two triangles are balanced.

Thus,
0.008D, =0.012D, @.1)

From Eq. (2.1) and Eq. (2.2) we obtainD; =0.024 and D, =0.016. Thus the voltage

required would be 2.40-0.024=2.376 V

From the above example, it is obvious that fuzzy logic has advantages and disadvantages.
The advantages are that it allows the use of linguistic terms in the rules and it reasons
similar to the human brain. However, it is difficult to estimate the MFs requiring

experience or trial and error.
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2.2 Neural Networks

A NN is a parallel system, capable of resolving paradigms that linear computing
cannot. It is composed of artificial neurons or nodes connected through directional links.
Typically, adaptive networks are classified into two classes: feedforward NNs and
recurrent NNs; however, throughout this work feedforward NNs have been employed.

Figure 2.4 presents an example of such a network.

,/' —..\\
- 8 e Xs
\ //‘.,
\v,/
\.\’ ...............
9 Xo
] A A A
i ]
input Layer 1 Layer 2 Layer 3
Layer

Figure 2.4 - A feedforward network structure

Feedforward networks propagate from the input to the output through the
directional links and nodes. Each node has a node function whereas the links connecting
them represent the causal relationship between the connected nodes [13]. Some of the
nodes in a neural network are adaptive, meaning that the outputs of these nodes are subject
to change as the parameters pertaining to these nodes update. There are many learning
paradigms proposed in literature, some derivative based such as steepest descent and others
derivative-free such as sequential simplex. For this work, the recursive least square
estimator is employed in order to estimate the consequent parameters, and the premise

parameters are updated using the node decoupled extended Kalman filter (DEKF). This
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update is performed in two passes: forward pass and backward pass with the use of a data
set (i.e. training data set). This training data set consisted of desired input/output data pairs
of the system to be modeled. At the end of the forward pass, the network calculates the
error between the actual output and desired output such that

N(L) . 2
E,=> (y-5..) (2.3)

k=1

where y, k™ component of the p™ desired output vector and Y. is the k™ component of

the actual output vector produced by presenting the p™ input vector. The purpose of the
training is to minimize the error. Obviously, the error is minimized when the actual and-

target outputs are identical.

Based on this error, the network proceeds to perform the backward pass. During the

backward pass the nonlinear parameters are updated.

There are two learning paradigms found in literature to suit the need of different
applications. One paradigm refers to the off-line training in which the update of the
parameters is performed once the whole training data set has been presented. That is, at the
end of the epoch. The second paradigm refers to an on-line training method where the
parameters are updated immediately after the input/output data pair is presented. When
modeling is performed based on given input/output data sets, the networks are referred to

as supervised learning neural networks.

Similar to any other system, NN have advantages and disadvantages. The advantages are
that a NN can perform tasks that a linear program cannot, it has the ability to learn and it

can be implemented in any application. However, a NN is a "black box", meaning the user
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can take no approach to establish what happens between the input into the NN and the
output. Although it has the ability to learn, it needs to be trained through a process which

can be time consuming depending on the size of the NN.

Since both FL. and NN have their advantages and disadvantages, alternative is to use their

synergistic paradigm, that is, neural fuzzy (NF) method.

2.3 Adaptive Neuro-Fuzzy Systems

An NF scheme (e.g., ANFIS) is an intelligent system that combines the human-like
reasoning style of fuzzy systems with the learning and connectionist structure of neural
networks. In literature, such schemes are referred to as Neuro-Fuzzy Systems (NFS) or
Fuzzy Neural Networks (FNN) [14]. One example of such a NFS would be Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), which will be employed throughout this work.
ANFIS is a class of adaptive networks that are functionally equivalent to fuzzy inference

systems. The structure is presented in Figure 2.5.

Layer 1 Layer 4
v Layer2 Layer3 v
| :
{A, :

w v
@™ Q" {Jwn
y B W;? N |t

x 44l

Figure 2.5 - ANFIS structure [4]
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There are five layers numbered from Layer 1 to Layer 5, and each layer has nodes

with node function described below.

Layer 1: Nodes are adaptive with a node function

Ol,i = ﬂAi (X), fori= 1,2

' (2.4)
Oy, = Hpi2 ()’) fori=3,4

where [y; (x) and HUpg;_» (y) are MFs specifying the degree to which the given inputs

satisfy the quantifier.

Layer 2: Nodes are fixed and the output is the product of all incoming signals:

Oa; =w; =ty (g (¥).i = 1,2 7 (29
Layer 3 Nodes are fixed and the output is the normalized firing strength

0y =W, = . Twz Q=12 (2.6)
Layer 4 Nodes are adaptive with output

0,,=w./f 2.7

fi=0x+6,x,+6,

h
where f,=0,x+0sx, + 6

and 6,,i =1,2...,6 is the linear parameter set to be updated

Layer 5 Single fixed node with output as the summation of all incoming signals

05, =Y, wf, i=12 (2.8)

One of NF’s advantages is that it uses a hybrid learning procedure for estimation of the
premise and consequent parameters [13]. Different optimization techniques such as

gradient descent (GD), least square estimate (LSE) could be implemented in order to
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optimize the structure's linear (i.e. consequent) and nonlinear (i.e. premise) parameters.
The disadvantage of ANFIS is that the structure remains fixed allowing only the

parameters to update. To overcome this problem, evolving fuzzy systems were developed.

2.4 Evolving Neural/Fuzzy Systems

Evolving fuzzy systems (EFS) can be defined as self-developing, self-learning
fuzzy rule-based or neuro-fuzzy systems that have both their parameters and their structure
self-adapting [29]. The fuzzy systems developed by Dr. Angelov gradually develop
mimicking the evolutionary process that takes place in populations of individuals. Meaning
that EFS are mathematical paradigms that can approximate the human-like reasoning by
representing it with dynamically evolving fuzzy rule-based structure. Similar to ANFIS,
EFS structural framework is utilizing the Takagi-Sugeno (TS) [Takagi-Sugeno] fuzzy rule-

based system. This system is of the following form:
R, :IF (x, is 4/ ) AND (x, is4] ) AND ... (x, is 4] ) THEN (y, = f/) (2.9)

where R, denotes the jth fuzzy rule, je[l, Nr]; N is the total number of fuzzy rules
(clusters); A/ is the jth fuzzy set forx,, ie[l, n]; yj=[yj,,yj~é, . Y;ml 1 an M-
dimensional consequent (output) structure [42].

The evolving TS (eTS) fuzzy system has the ability to be represented as a neural
network therefore, it can also be considered a neural-fuzzy system [43]. It is this structural

framework that can be used to solve a range of problems offering flexibility, adaptation,

robustness, and improved precision with small computational efforts. Some of the
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problems that can be solved using this paradigm are related to clustering (i.e. network

identification), time-series prediction or filtering and classification.

Although this method works particularly well, it also has its shortcomings in that the
cluster centers and radiuses stay fixed. A method to alleviate this problem was introduced
in [28] however, it solves the problem of the radiuses only. Hence, this thesis introduces a

technique to improve the performance of eTS.
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Chapter 3

3.0 Network Identification Techniques

" Not everything that counts can be counted,

and not everything that can be counted counts."

ALBERT EINSTEIN

Cluétering of numerical data forms the Basis of mahy modeling and pattern
classification algorithms. The purpose of clustering is to find natural groupings of data in a
large data set, thus revealing patterns in the data that can provide a concise representation
of the data behavior. As stated in Chapter 1, several NF schemes have been proposed in
literature for pattern classification applications. Most of the current NF classifiers,
however, only deal with parameter identification whereas system structure is determined
based on expertise and remains unchanged in operations. The alternative is to use cluster-
based evolving methods [29, 42]. The proposed evolving fuzzy (EF) classifier will be

discussed in this chapter.

3.1 Proposed Clustering Technique

The proposed EF classifier is a data-driven, non-iterative, one-pass technique
modeled off of other potential based algorithms. Different from previous potential based
models [29, 42], this technique performs a feasibility check on the incoming data sample.

If the data point is located within the influence range of an existing cluster, then the new
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data point is not treated as a new cluster center. Otherwise, if the data point is beyond a
specified distance from the cluster center, then calculate its potential as well as its potential
to be a cluster center. Whether the incoming data point is selected as a cluster center
depends on its potential. The proposed cluster center as well as the radius is chosen based
on standard deviation. Before a decision is made, the potential of the proposed cluster
center is being calculated. A decision is made whether the proposed cluster center becomes
a cluster center or the incoming data point is a better candidate. This procedure is presented

in Figure 3.1. Subsequently, a step-by-step explanation of the process is also given.

7 The pe;fo;’manqe to the proposed clustering technique, named ie’TS, will be tested
using three sets of benchmark data. The number of identification errors (i.e. misclassified
data during the identification process) generated during the identification process
determines the performance of the proposed clustering technique. The results pertaining to

this technique are presented in Chapter 5.
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Step 1: The structure is initialized with one cluster, Nr:=1. The first data sample is the

center of the cluster and the spread of the cluster is predefined such that:

k=1 P (zl’ ):= 1
m! =x, o] =spread 3.1
m’ =y, ol =spread

where mj,m’,0},06° are the cluster centers and user defined spreads in the input and

output space, respectively, at the k” time step and P(zl' ) is the potential of the first data

point, z/ =[x, v,].

Step 2: Next data sample is being presented, z, = [xk Y, ], where k=k+1.

Step 3: The feasibility of the point to become a cluster center is calculated. The Euclidian
distance from the incoming point to all existing cluster centers is determined and compared

to the radiuses of the clusters, as described in Eq. 3.2.
5, = ”z,{ - m{" 3.2)
where i=1,2,...,Nr and N7 is the number of clusters generated.

If 5, <G where ¢ is a user defined distance, then go to Step 7.

Step 4: The potential [29] of the new data sample is calculated by:

k-1
T sy ey G2
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n+l 2 n+l . 2 nbo . . .
where ¥, = Z(Z,ﬁ) s Ve = Yo +2(z,{_l) ; U= Zz,{ﬁk’ Bi=Bl+zi,.
j=1 J=1 Jj=1
Step 5: The potential of the existing clusters are being updated by:

(k - 1)Pk—1 (Z;)

P, (z,* ):= — (3.3)

k242, ()3, ()

where d},_=2z]-z{_, and /=[L,Nr], Nris the number of clusters.

Step 6: The potential of the new data sample is compared to the potential of all existing

cluster centers and a decision is made as follows: - e
a. IF potential of new data point is higher than the potential of all existing cluster centers
AND new data point is close to an existing center

THEN the new cluster center is [42]

2
m,’, = m/’ +——-——Z (ij\; m/] )

2
o_ 1 Z(yk—mjo

(3.4)

Nr
. Y . * .
where n denotes a new temporary point , j is an index such that z; = arg rlrnn (]lzk -m,
i=

)

m, = [m,{ ,mff] and N is the number of samples in the cluster .

Calculate the potential of m, by Eq. 3.2.

Update the potential of existing clusters by Eq. 3.3.
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IF potential of F, (mn) is greater than potential of existing cluster centers

THEN the newly assigned point replaces the cluster center, cluster radius and potential are

updated by

n

. 2
. . 0',- "'m,, *
Zj=m ;O'j:¥;])/c(zj):a(zﬂ)

ELSE the data point replaces the cluster center and potential is updated

b. ELSE IF potential of new data point is higher than the potential of all existing cluster

centers

THEN a new cluster is formed:
Nr=Nr+l; 4, = 35 B(4,)= B(z)

END IF

Step 7: Consequent parameters are updated by

Step 8: Output at the next time step is predicted by

Vit =W/Z. 01(, k=2,3,...

Step 9: Output is classified
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By introducing Step 3 in the identification procedure, the user is able to define the amount
of cluster overlapping. In other words, it ensures that a new cluster is not being created if
the incoming point is within a cluster. If the incoming data set is not feasible, calculating
its potential would be unnecessary. This computation redundancy is being eliminated as a

result of introducing the feasibility check.

Different than the method in [16], in this method a new decision is made before
accepting the proposed data set as a cluster center. This step is ensuring that the proposed
data set is indeed a better candidate to become a cluster center before accepting it. If the

proposed data set is not a better candidate to become a cluster center, then the proposed

data set is being disregarded and the incoming data set become the cluster center.

Each cluster center found is in essence a prototypical data point that exemplifies a
characteristic input/output behavior of the system. Also, each cluster center represents a
fuzzy rule that describes the system performance [49]. Hence, we can translate each cluster

into a fuzzy rule describing the network. For example, suppose after clustering was applied
to the group of data, cluster center m,ﬁ with a radius O',;Ij was found. This cluster center and

radius provide the rule:

3R ;. IF input is near mé then y; = 5

This can also be represented in the TS-1 form as per Eq. 2.9:

R;.IF (x, is A ) AND (x, isA]) AND ... (x, isA]) THEN (y; = f/)

where
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1\
_z[xf—mu)
. !
oo 2 (3.5)

|

K
Remark A: Cluster compatibility is achieved when W, =W_ where W, = arg min“m I —x,
k=1

K
and W, =arg rrk1in“mf ~ y,“, This ensures that noise affected data is excluded and more
=l

meaningful clusters are created.
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Chapter 4

4.0 Training of the Evolving Fuzzy Classifier

"4l is the science of making machines do
tasks that humans can do or try to do."

JAMES F. ALLEN

Once the structure of the EF classifier is created based on the proposed

--——clustering technique as-discussed in Chapter 3;-its-parameters-should be trained properly to

provide optimal classification operations. In this chapter, the training technique
implemented throughout this work is presented. Section 4.1 presents the training of the
consequent parameters whereas Section 4.2 presents the training of the premise parameters.
In Section 4.2.2 an improvement to the classical Kalman filter training technique is

presented.

4.1 Offline Training based on R-LSE

Four steps are involved in the fuzzy classifier. First, the structure is identified using
the procedure. Second, the linear consequent parameters are estimated in the forward pass
using R-LSE algorithm [44, 45]. Third, the output is classified into different categories.
Fourth, the nonlinear premise parameters are optimized in the backward pass using a new
method, scaled Node Decoupled Kalman Filter (SDEKF) presented in the next section. The
learning paradigm employed throughout this work is supervised learning meaning that the

input/output data pairs are given and the scope is to find a function that best matches the
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input/output pair. In other words, the goal is to infer how the mapping implied by the data

and the cost function is related to the mismatch between the mapping and the data.

In this work, the consequent parameters (m§ and o‘j) of the TS-1 fuzzy model are

estimated using R-LSE. The objective function at time instant ¢ is given by

E(@F%Z(%*WQY 4.1)

t=1

where VY, is vector of inputs weighted by the firing levels of the rules. The update of the

consequent parameters is performed by: ' _

T
9t+l = 9: T XV, (yt -V, et) 4.2)
T
Kins = (x, - AV L ] | (43)
o+, XY,

where ¢ =0,1,...,(P—1), P is the number of observation, &, is a forgetting factor and ¥, is

the covariance matrix. At the initial time, the covariance matrix is initiated as Y = p/
where p is a constant. Since the performance of the algorithm is dependent on the initial
values, many trials were performed in order to find the initial covariance matrix as well as

the initial vector of parameters that give the best performance. Therefore, in this work p

was selected as 10° whereas the vector of parameters has been initiated to 6y =0
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4.2 Training Based on DEKF

It is known that the process noise covariance matrix (Q) and observation error
covariance matrix (R) have a considerable impact on the performance of Kalman filter
since they are dependent on the application environment and process dynamics [18]. Q and
R are responsible for the weight that the system applies between measurements.
Consequently, the filter may diverge or never achieve optimal results given Q and R

exhibit errors.

Generally, the covariance matrices are fixed to a value determined from intensive
empirical analysis. However, for a complex dynamic system in a noisy environment,
determination of the covariance matrices in advance is sometimes unachievable.
Accordingly, a covariance matrix updating technique is proposed in this thesis. The
motivation behind this comes from the high possibility for improved performance of
DEKF. Before explaining the proposed sDEKF technique, a brief introduction to Kalman

filter is given.

4.2.1 Conventional Kalman Filter

Updating and predicting are the two distinct phases of Kalman filter. During the
prediction phase, the posteriori state estimate from the previous time step is used to
produce an estimate of the state at the current time step. The In the update phase, the priori
prediction is combined with the current information to refine the state estimate as well as

the posteriori error covariance matrix.

Consider a multivariable system of the form:

X = By + v (“4.4)
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Zk =Hkxk +Vk (45)

where Xis an (nx1) state vector, F; is an (nxn) transition matrix, z; is an (rx1)
observation vector and H} is an (an) observation matrix. W, is the process noise and

Vv is the observation noise. Both are considered white Gaussian noise with zero means

and covariances given by:

E(wy)=E (v )=0

Qk’ l=k
E(wnl )= {0, %k (+6)
Ry, i=k
™\ | R
B )_{o, ik

where E (.) denotes the expectation, ¢, and R, are the process noise and observation

noise covariance matrices, respectively.
1) Prediction Phase

Predicted state:
-1 = FiXi-pe- (4.7)

Predicted estimate covariance matrix (a measure of the estimated accuracy of the state

estimate):
T
Py = Fe Py Fe + s (4.8)

Where 1)k|k—1 =COoV (xk - xklk )
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2) Updating Phase
Measurement residual:
Ve =2 = Hi X (4.9)

Optimal Kalman gain:

Ky = P HY (HkPklk—lHlf + Ry >_1 (4.10)
State estimate update:

Xk = Xt + Ki 7 (4.11)
Estimate covariance matrix update:

Py = Bypet + K Hi ey (4.12)

where Xy represents the estimate of x at time instant £ given observations up to and

including k-1,

4.2.2 Proposed Updating of Process Noise and Observation Error Covariance
Matrices

Covariance provides a measure of the strength of the correlation between two or more
sets of random variables. The process noise covariance matrix and the observation noise
covariance matrix are responsible for the performance of the Kalman filter [18]. In general,
when a mathematical model of the system can be obtained, the covariance matrices are

chosen based on experience or through experiments. However, this can be a daunting
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process. It is very difficult (if not impossible) to derive accurate mathematical models for
many complex systems. This leaves the system to be approximated by a Kalman filter. As
a consequence, the covariance matrices must also be approximated. This process leaves
room for a significant amount of error making the training technique somewhat unreliable.
Therefore, a new method to update process noise and observation error covariance matrices
is proposed in this section to improve robustness of the training technique. From Eq. 4.10

the innovation covariance matrix is defined as:
—1
Sy = (HkPk]k—IHI{ + Ry ) (4.13)

and from Eq. 4.8, B, = FkPk—l]k—leT +0.

Intuitively, the updates of the process noise and observation error are performed with the

help of the innovation covariance matrix such that:

Ry = Rigpey + Rt (Si )ﬂ (4.14)

O = D1 — Qi1 (Sk )ﬁ (4.15)

where [ is a design parameter between 0 and 1.

The process noise covariance matrix and observation error covariance matrix are
diagonal matrices initialized at 0.01 and 0.85, respectively. Different tests were performed
with initialization values ranging between 0.0001 and 1. After each epoch, the update of
the noise covariance matrix and observation error covariance matrix is performed utilizing

Eq. 4.14 and Eq. 4.15, respectively. The motivation for adopting this direct modification of
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the algorithm lies in the fact that the performance of the Kalman filter is dependently
related on the covariance matrices. Since there exist no direct method to determine the

parametric values of these error matrices, the algorithm is modified to account for this task.

During the training with sDEKF all covariance matrices update to achieve more
robust Kalman filter. It has been noted that with the introduction of the scaling factor, the
predicted estimate covariance matrix, P, changes at a slower rate whereas the process noise
covariance matrix and observation error covariance matrix change at a faster rate. This can
only imply that the observed error and process noise covariance matrices are poorly
approximated. Since all covariance matrices are being updated the state estimate update is

more robust making the training technique more reliable, as it can be noted in Chapter 5.
Many trials have been conducted in order to find the optimal value of 3. In this
1 . . . . -
work, a value of = Py will be utilized. Details of implementation and system training
r

based on the suggested SDEKF will be discussed in the following chapter.
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Chapter 5

5.0 Performance Evaluation

"Errors using inadequate data are

much less than those using no data at all.”

CHARLES BABBAGE (1791 - 1871)

The methods outlined in the previous chapters, which were utilized to identify the
networks (i.e. ie’TS) as well as to train the networks (i.e. SDEKF), are tested in this
chapter. The results pertaining to the clustering and training technique are presented and
discussed in the following sections. At this point it is important to note that the proposed
network is a combination of the identification technique ie’TS and training technique
sDEKF, denoted as ie’TS-sDEKF. As a comparison, i¢’TS-DEKF is the paradigm
employing the proposed clustering technique without the scale modification to the Kalman
filter. The network denoted ¢’TS-DEKF is a related method proposed by the author's
research group in [45], whereas eTS-DEKF is the algorithm developed by Angelov and
Filev in [29]. The rest of the chapter is organized as follows: Section 5.1 illustrates the
classification process for the three benchmark data sets, Section 5.2 displays the
performance results. Section 5.2 illustrates the processing results using the Iris benchmark
data [46], the Wisconsin breast cancer data [47] and the Wine benchmark data [48],

respectively.
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5.1 Classification Process

As stated previously, classification is the process by which large amounts of data
are divided into different categories corresponding to different states. The input/output data
pairs are presented to the network, the consequent parameters are optimized and the output
is computed. Before the network back propagates, the output is classified. The

classification rules are presented in the performance evaluation section.
5.2 Performance Evaluation

5.2.1 Iris Benchmark Data
Since Iris Benchmark Data [46] is classified into three classes (i.e. Setosa, Versicolor,
Virginica), the following rules are employed:

R1: IF Output < 0.33 THEN Iris is Setosa.
R2: IF Qutput = 0.33 AND Output < 0.67 THEN Iris is Versicolor.
R3: IF Output = 0.67 THEN Iris is Virginica.

As discussed previously, the network structure is identified prior to the training of the
structure. The Iris benchmark data consisted of four inputs and one output, which is to be
further classified into three classes. Seventy-five input/output data pairs are utilized to
identify the network, train the network and test the performance of the network. For

comparison purposes, identical design parameters are given to all four techniques,
6 =001 and 0'11 =0.12. The networks are tested under different design parameters,

however, the ones indicated returned the most promising resuits.
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The generated clusters and their corresponding membership functions (MFs) are
illustrated in Figures 5.1 and 5.2 for ie®TS-sDEKF. The clusters were formed such that
only relevant data was included. With the help of the introduced design parameter in ie’TS,

redundant overlapping of the clusters was prevented.
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Figure 5.1 - Generated clusters and corresponding MFs for the petal using ie*TS-sDEKF - Iris
Particularly, the radius of the ellipse gives the MFs spread whereas the center of
MFs is the origin of the ellipse. Two clusters were generated which represent the two rules
in the network. The evolution of the cluster generation is represented in Figure 5.3. It can

be observed that after about 15 samples the number of rules converged to 2.
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Figure 5.4 represents the identified network output and classification error. As it can be
observed, there is a low discrepancy between the actual output and the target output of the
network. Since the error between the actual and target output is not significant, the chosen
classification scheme places the data in the proper class. In this case there existed only one

misclassification.

Table 5.1 demonstrates the comparison of the related techniques. Evidently, the proposed
technique provides an improvement over the other techniques. Starting with the
identification process, the proposed scheme, ie’TS, generated only one misclassification
error whereas ¢*TS produced 49 and eTS produced 25. The number of rules generated by
the identification procedure is also an indication of an improvement. The proposed scheme,
ie’TS, generated half the rules generated by the other schemes. In training, the results also
show improvement. The proposed technique, ie’TS-sDEKF, obtained 3.993 average
training errors whereas the other schemes obtained values above 5. Since the average
RMSE for the proposed scheme ie’TS-sDEKF, in Table 5.1 is lower than the other
schemes, it can be stated that the training technique is improved. In testing, the proposed
scheme, ie’TS, also generated less errors thus, obtaining a recognition rate of 96% whereas
the schemes used for comparison obtained a recognition rate of 93.333%. In terms of
efficiency, it can also be stated that the proposed scheme is more efficient than the schemes
utilized for comparison. Observing the average training time per epoch, it is obvious that
the proposed scheme was trained faster. This is the result of the identification procedure

generating less rules.
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Iris Benchmark Data
Numt Avg. Traini Average
‘ umber . - '8 ral‘mng Identification ,.V?r‘}gt Testing | Avg.
Method of Epochs | Time per Epoch R I'raining | Rate >
Errors Errors RMSE
Clusters (s) Errors
eTS-
: .0990 S 253 : 3.333 10.1033
DEKF 4 150 0.09905 2 5.253 5 93.333 10.1033
e'TS- 4 150 0.11758 49 5.913 5 93.333 {0.1034
DEKF J . : 3. J 3.292 .
ANFIS-
d /a R 3 3.33; 103
DEKE 4 150 0.09997 n‘a 5.940 5 93.333 10.1037
ie"TS- -
05709 5.5 3.333 | 0.
DEKE 2 150 0.0570 1 5.593 S 93.333 {0.1011
ieTS- 2 150 0.05500 1 3.993 3 96.000 | 0.0884
SDEKF 3 3 S FS J 0. .

Table 5.1 - Iris benchmark data results
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Figure 5.5 and 5.6 illustrate the clusters as well as the MFs at the end of the training
technique, and Figure 5.7 illustrates the network output and classification error. The
robustness of the identification procedure can be realized in the error produced at the

identification process (i.e. one error) as opposed to the error at the end of the training

process (i.e. four errors).
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The network misclassified only four of the instances at the end of the training process; the
performance of the proposed method, sDEKF, can also be evaluated using the root mean
square error (RMSE). Figure 5.8 clearly indicates the proposed technique generates the
lowest RMSE compared with other related methods. In addition, the RMSE of sDEKF

quickly stabilizes when compared to the other methods.
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Figure 5.8 - Root mean squared error - Iris Benchmark Data

As shown in Figure 5.9, during testing, the network performed well, producing 3
classification errors and a recognition rate of 96%. All other methods produced a
recognition rate of 93.33%, each having § testing errors in this case. These results are

summarized in Table 5.1.

46



=
% e

04
0.4

b=
v

Network Qutput

=

19 20 30 40 50 60 70
Time Steps

c.

- = Actual Output —— Target Qutput ~ = ~ Classitied Output

04

rror

02

£

E

7

0

0 14 20 30 40 50 60 70
Time Steps

Figure 5.9 - Network verification output and classification error ie’TS-sDEKF - Iris

5.2.2 Wisconsin Breast Cancer Benchmark Data

In this section, the Wisconsin breast cancer data [47] is used for analysis. The Wisconsin
breast cancer data consisted of nine inputs, namely nine attributes corresponding to the
shape and sizes of the cells, and one output. This output can be further classified into two

classes: malignant or benign.
The rules employed are as follows:
R1: IF Output < 0.5 THEN Breast Cancer is Benign.

R2: IF Output = 0.5 THEN Breast Cancer is Malignant.
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Two hundred and fifty input/output data pairs have been utilized to identify the network

structure. For comparison, all networks are initialized under the same conditions for

8., =0025 and o} =0.25.

Wisconsin Breast Cancer Benchmark Data
N Avg, Traini A
umber < - vE ran:1 e Identification .[.\v‘fr?ge Testing Avg.
Method of Epochs | Time per Epoch » Training Rate x
Errors . Errors RMSE
Clusters (s) Errors
eTS- - .
5 P 2
DEKE 4 150 7.27950 3 0.06 2 99 0.1862
e’TS- ' '
2 65595 ) 9 .
DEKE 150 0.6559 10 0.06 2 99  [0.1864
ANFIS- . . . ) L
150 194 : . ¢ 185
DEKF 4 7.10940 n/a 0.60 2 99 0.1858
i TS- )
5 605 ) 2 ¢ .
DEKE 2 150 0.60573 8 0.06 99 10.1677
1e°TS- .
SDEKF 2 ISO 0.60147 8 ().()5 0 | 100 (.).1§82

Table 5.2 - Wisconsin breast cancer benchmark data results

The results are tabulated in Table 5.2. The ie’TS technique identified two rules (i.e.
large or small) corresponding to MFs as illustrated in Figure 5.10. The evolution of the two
rules generated is illustrated in Figure 5.11. The identification procedure misclassified
eight instances out of two hundred and fifty. ¢’TS method misclassified ten instances and
eTS misclassified three instances. Although the eTS only produced three errors, it
generated double the number of clusters than ¢’TS and ie’TS. Compared with ie’TS-
sDEKF and ie’TS-DEKF in Table 5.2, the training method sDEKF generated lower
training errors and RMSE than the classical DEKF; it can effectively optimize the
performance of the overall networks. The RMSE of sDEKF network is also smoother

between epochs indicating a more stable operation when compared to the other networks.
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Figure 5.13 shows the updated MFs whereas Figure 5.14 illustrates the network
output and classification error. Two hundred data sets were utilized for testing. It is seen
that the proposed network (ie’TS-sDEKF) produced zero testing errors over the two
hundred input/output instances. Consequently, the recognition rate is 100%, which

validates the robustness of the proposed network.

In terms of efficiency, once again the proposed scheme proves more efficient. It is
faster that eTS-DEKF since it produced half the rules as noted in Table 5.2. When
comparing the proposed scheme, ie’TS-sDEKF, to e’TS-DEKEF a slight improvement in the

training time can be observed. The reason for which ¢*TS is slower is due to the introduced
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constraints which add four if statements in the training algorithm, thus decreasing its

efficiency.
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5.2.3 Wine Quality Benchmark Data

Another commonly used benchmark data set in the research of pattern classification

is Wine benchmark data [48].

The Wine Benchmark Data set consists of three classes. The rules utilized are as follows:
9R1: IF Output < 0.33 THEN Wine is Class 1.

R2: IF Output = 0.33 AND Output < 0.67 THEN Wine is Class II.

R3: IF Output < 0.67 THEN Wine is Class II1.

53



This data set has eleven inputs and one output pertaining to three classes as shown above..
Some of the inputs consisted of: alcohol, malic acid, ash, etc. Four rules were identified by
using ie’TS. The identified MFs are illustrated in Figure 5.17. The rule generation process
is illustrated in Figure 5.18. It is clear that after about 80 samples it converged to 4 rules.
During the identification procedure ie’TS and eTS misclassified 1 instance, whereas ¢*TS

misclassified 73 instances.

Remark B: Due to the nature of e’TS, in which cluster centers are chosen without
verifying the potential of the cluster center, it is possible for e*TS to generate significantly
more identification errors than the other techniques. This is evident from the results as

illustrated in Table 5.3.

Wine Benchmark Data
Number " :f“'g' Trax‘n "8 Vydentification ,Ifm{nfge Testing Avg,
Method of  {Epochs|Time per Epoch ) I'raining " Rate
. Errors . Errors RMSE
Clusters (s) Errors
eTS- .
' | 3. . 143
DEKF 7 100 12.6015 1 18.06 11 81.667 }0.1438
e’TS- 4 100 4.0848 73 150.86 39 33.146 [0.9732
DEKF
ANFIS- , , : o rac
A7 y . 35 . 544
DEKF 7 100 12.1173 n‘a 71.00 28.090 |0.5448
ie"TS- ,
DEKF 4 100 4.2718 ! 18 12 80.000 (0.1458
ie*TS.- 4 100 4.2252 1 6.48 8 86.670 | 0.1187
sDEKE ¥ ik . . 8 0.0 e

Table 5.3 - Wine benchmark data results
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Figure 5.17 - Identified MFs using ie’TS-sDEKF - Wine

Remark C: It can be noted from comparing the identification errors and the testing errors
that it is sometimes possible to obtain a larger amount of errors in testing the network than
was found in the initial identification. One of reasons for this problem is that the data used

in identification is different from that employed in testing the network.
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Figure 5.20 - Updated membership functions using ie’TS-sDEKF - Wine
In training, it can be observed from Figures 5.21 and 5.22 that ie’TS-sDEFK converged to
an RMSE of about 0.12 after 10 epochs. This corresponds to 8 testing errors and 6.48
training errors. The other techniques using DEFK generated more errors, which can be
observed in Table 5.3 and in Figures 5.23 and 5.24 where the RMSE convergence is shown

per epoch.

57



» A . *
1 “ Sndg . ,L §' L
3 vt 4y v
B 08 § ! -
g {
= 3 )
& .6 ."-;,)zl o 'ﬁ — “‘ '
£ 04 oY K Y
S ] 5 !
= Ed Y ¥ i
= (L3 . t 4 y ¢ %
; “, o i LN / 4 { !
Vi i e} TS, ¢ '
I t L N
-02 : ; : : . . v
0 20 40 60 R0 100 120 140 160 180
Time Steps
% - - = Actual Qutput == Target Gutput = - ~ Classitied Qutput’
0.6
04
o
°
=
w02
L]
] 20 40 60 80 f00 1269 140 160 180
Time Steps
Figure 5.21 - Trained network output and classification error - Wine
1
K]
=
=
S 08
2
™
o
z
£ o
z
-0.5 - - y
0 10 20 36 40 30 60
Time Steps
- Actual Output ——Turgel Output = = = Classified Output
i}
0.8
= 0.6
£
=04
0.2
0 10 20 30 40 56 60

Time Steps

Figure 5.22 - Verification network output and classified error using ie’TS-sDEKF - Wine

58



[ ]
t~ the

RMSE
;:;

E ,\.."-*\,—\v--«.—ms—---n———— A e mm w om oaw e S T
L Y
| -
\4
0.5 :
8 20 40 6l 80 100
Epochs
wen (0 PS—sDEKF == e I§-DEKF = = = ¢*IS-DEKF ~ ¢FS=DEKF == ANFIS

Figure 5.23 - Root mean squared error - Wine

0.16

0.14

.12} ﬁr—

0.1}

RMSE

0.08}:

0.06["

0.04 ' y o
0 28 40 60 80 104

Epochs

e 0 TS—SDEKF = je?[S~DEKF - * ¢IS=DEKF

Figure 5.24 - Root mean square error - close up - Wine

59




From the results, one can state with confidence that the proposed technique ie*TS-
sDEKEF is an efficient evolving classifier. In all three test instances, the proposed technique

generated the least clusters/rules. This is because the introduced design parameter,¢ , can

make the identification technique more flexible. This was explained in detail in Chapter 3.
The efficient classification performance of the proposed ie2TS-sDEKF technique can also
be recognized by the number of errors in identification, training and testing. Although the
proposed classifier technique requires slightly more computational effort than the existing

ones, the amount of additional effort is negligible particularly offline training operations.
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Chapter 6

6.0 Gear Fault Diagnosis

"Machines will be capable, within twenty years,
of doing any work that a man can do."

HERBERT SIMON (1916-2001)

The primary objective of this chapter of this thesis is to implement the developed
techniques for gear fault detection. The main results of this section utilize the proposed
clustering technique (i.e. ie*TS) for identifying the network and the training technique (i.e.
sDEKF) to train the network. To make a comparison, test results from other related

networks will also be discussed.

This chapter is organized as follows: Section 6.1 gives a description of the
experimental apparatus, Section 6.2 introduces the employed condition indicators whereas

Section 6.3 describes the classification procedure and test results.

6.1 Experimental Apparatus

To study the signatures of the gearbox faults, the SpectraQuest's Machinery

Dynamics Simulator has been used, as shown in Figure 6.1. This system is set up in the
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Laboratory for Intelligent Mechatronic Systems (LIMS) at Lakehead University. It reflects

a modular design that provides versatility, operational simplicity and robustness.

The experimental setup is driven by a 3Hp DC motor with a speed range from 20 to
4200 RPM. The shaft's rotational speed is controlled by a speed controller (Delta VFD-

PUO1).

Figure 6.1 - Machinery fault/gearbox dynamics simulator
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The collected signals are fed to the computer through a data acquisition board (NI-
DAQ PCI-4472) which has built-in A/D converters and antialiasing filters. Vibrations
induced by the gears were collected using industrial, ceramic shear ICP accelerometers
(ICP-IMI, SN98697) with a sensitivity of 100mV/g. The accelerometers are secured on the
gearbox as shown in Figure 6.2. The reference signals are collected using a mini-bean
high-speed retro optical sensor (SM312LVMHS). Two disks apply a static load whereas
the variable load is applied by a magnetic brake system (Placid Industries, B150-24-H)

through a bevel gearbox and a belt drive.

Real-time Matlab code has been developed to control the data acquisition

processes. Signal analysis and classification operations are also performed in MATLAB.

Signals are collected using a sampling frequency F; = 10° Hz in order to attenuate the

noise.

Figure 6.2 - Gearbox and accelerometers

There are three shafts in the gearbox: the input shaft, the intermediate shaft and the

output shaft. The configuration of the spur gears in the gearbox is presented in Figure 6.3
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[50] whereas the configuration of the helical gears can be seen in Figure 6.4. The results

presented in this work are pertaining to the gear on the input shaft.

Figure 6.4 - Helical gears configuration
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Since the scope of this research is to detect faults in gearboxes, various faulted
gears have been introduced: Figure 6.5 shows a helical gear with a 40% chipped tooth and
Figure 6.5 illustrates a spur gear with a 90% missing tooth. Other gear conditions used for

testing were severe cracked gears, minor cracked gears, and of course, healthy gears.

Figure 6.6 - Chipped tooth on a spur gear
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The collected signals under different healthy and faulty gear conditions will be analyzed

for automatic fault detection as discussed in the following sections.

6.2 Condition Indicators

As mention in Chapter 1, one of the most popular methods for gearbox diagnosis
used in literature is the time domain analysis. First, the time synchronous average is
performed such that any noises non-synchronous with the gear being inspected are
removed. Although this process has been proven to be efficient in filtering out noise and
other such events, it has a disadvantage when it comes to detecting slight damages since
very small variations in the synchronous time average may occur. These variations may be
so small that any change in tooth condition would be hard to detect against the dominated
pattern of the tooth meshing vibration. Condition indicators are then calculated using
different methods. Although the root mean square value (RMSV) is not sensitive to early
stage defects [3], it is the simplest method employed to determine the overall health of a
gear. Crest Factor is another indicator used in literature [51], [3]. Authors have proven that
the crest factor is a good indicator of small size defects; although, when localized damage
propagates, the value of the crest factor decreases significantly due to the increasing
RMSV. Kurtosis is also a well-used condition indicator as it gives valuable information
regarding the peakedeness of the signal. Although, researchers [3] have found the Kurtosis
value to be more useful, when it is compared with the RMS and crest factor when
monitoring bearings, these methods were employed for monitoring gears as well [51].

Another condition indicator utilized for classification of gears in this study is energy
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operator (EO). Computed similar to Kurtosis, energy operator also provides valuable

information regarding the state of the gears being monitored.

6.2.1 Time Synchronous Average (TSA)

Since gear signals are periodic, it 1s possible to extract the signature corresponding
to each gear in the gearbox by using the TSA technique. TSA was firstly proposed by
McFadden [52]. It is an averaging process over a large number of cycles, synchronous with
the running speed of a specific shaft in the gearbox. As a result, signatures that are not
synchronous with the rotation of the gear being monitored will be filtered out over
sufficient rotation cycles, and the resulting feature specific to this gear is represented only
over one complete revolution in the time domain [53]. In the case of a fault being present
in the monitored gear, an impulse signal would be present in the signal average, which will

produce additional amplitudes and phase modulations of the vibration signal.

Assuming the collected vibration signal y(¢) consists of R revolutions, each revolution
has L data samples and the time interval between two samples is At =1/ F; where F; is the

sampling frequency, then the TSA signal can be represented as follows:
| R-1
x(t)zEZy(tﬂ*LA,) (6.1)
r=0

where t =kA,, k= 0,1,...,(L - 1), A, =1/ f; is the time interval between two samples with
f, being the sampling frequency, L is the number of data samples and R is the number of

revolutions obtained from the vibration signal y(t). R should be taken as large as possible

67



in order to reduce the noise efficiently. The obtained signal is referred to as signal average.

Figure 6.7 illustrates the TSA processes.
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Figure 6.7 - Extraction of gear signature via time synchronous average

Several revised TSA techniques have been proposed in literature. For example, in
[54], Vachtsevanos introduced the frequency domain TSA in which the discrete Fourier
Transform is taken between each tachometer zero crossings. Combet [S55) suggested a
tachometer less TSA to reduce influence of noise in tachometer readings. All these

techniques were evaluated in [56] by Bechhoefer et al.
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6.2.2 Kurtosis
In mathematical terms, kurtosis is the forth moment of the signal normalized by the

square of the variance. Consider a time signal s, the kurtosis is defined as:

NS (s -5)

Kurt=—11 (6.2)

(i(‘gi _g)zj

where Kurt is kurtosis, N is the number of total sample points in time signal s, §; is the i

point in time signal sand 5 is the mean value of the time signal 5.

Kurtosis can describe the shape of the signal [51, 57]. More specifically, kurtosis is
a measure of how peaky or flat a signal is. A signal containing sharp peaks with high
amplitude would return a higher kurtosis value, which, in general, is attributed to a faulty

gear [51].

6.2.3 Energy Operator

Consider a signal x, the energy operator (EO) is defined as:

N
N?Y (Ax, - AF)
EO=—1*l (6.3)

@(Ax,«—mz]

where Ax is the mean value of signal Ax, N is the number of points in dataset x and

Ax; = 5%, —s* where s%, and s? are the (i+1)" and i" data points in the signal average,

respectively.
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The energy operator is also sensitive to fluctuations in the signal. A signal with high

amplitude peaks would have a higher energy operator therefore a indicating a faulty gear.

6.2.4 Crest Factor
The crest factor (CF) is defined by ratio of the peak-to-peak value of the signal

average to the RMSV of the signal average as follows:

CF = M (6.4)

Srmsv

where CF is the crest factor, §p.qr— pear is the peak-to-peak value of the residual signal s ,

and §,,, is root mean square value given by:

N is the number of points in the signal average s, and s; is the i component of the signal

average, S.

The purpose of the crest factor calculation is to give an analyst a quick idea of how
much impacting is occurring in a waveform. Impacting is often associated with roller
bearing wear, cavitation and gear tooth wear. This parameter enables very tiny damages to

be detected at an early stage [51].
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6.3 Gear Fault Diagnosis Using the Proposed EF Classifier

In order to make a decision related to the condition of gears in the gearbox, which
are inaccessible without dismantling the machine, it is important to analyze external
relevant information. Typically, the most relevant information comes from different types
of vibration signals. Running speeds and loading conditions are two important parameters
affecting the vibration levels in gearboxes [57]. Since these parameters are usually held
constant in condition monitoring, changes in vibration signals are mostly attributed to

faulty gears such as, tooth breakage, tooth fracture and pitting.

The condition monitoring work presented here has been conducted in spur gears as
well as helical gears. Although sometimes it is possible to recognize the fault condition in
spur gears directly from the vibration signature, this is not always the case, especially in
real industrial situations where noise signals disrupt the primary Signamre. In the case in
which helical gears are used, classification by signal signature alone is almost impossible
in real applications [53]. As a result, tools for automatic fault detection tools using
decision-making intelligent schemes are sought. Therefore, the developed ie’TS-sDEKF

technique will be implemented for gear fault diagnosis.

The condition monitoring scheme starts with processing the vibration signals
collected with the three accelerometers shown in Figure 6.2. However, the results shown in
this work are pertaining to the accelerometer closer to the gear being monitored and
perpendicular to the shaft. Although many tests were performed under different shaft

speeds and different loading conditions, some results, obtained from the operating
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conditions of shaft speed of 15Hz with the loading levels of no loading, 100mA, 150mA
and 250mA will be used to demonstrate the effectiveness of the proposed techniques. The
signals are time synchronous averaged in order to extract the vibration signature of the gear
to be analyzed from the total vibration of the gearbox. Figures 6.8(a)-6.8(c) illustrate an
example of TSA signal for a healthy helical gear whereas Figures 6.9(a)-6.9(c) illustrates a
faulty helical gear. A change in the vibration signal is observable in the three graphs of
both figures representing different loading conditions. However, when comparing Figure
6.8 with Figure 6.9 (i.e. faulty gear signal with healthy helical gear) under same loads (e.g.
Graph (a) - no load) a conclusion regarding the condition of the two gears is unattainable.
This was the case for all experiments. A simple investigation of the averaged signals could
not draw any conclusive results with confidence. In fact, it is suggested that this would be

the case in real industrial applications.
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Figure 6.8 - Time synchronous average for a healthy helical gear: (a) — no load, (b) — load level of
150mA, (c) — load level of 250mA
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Figure 6.9 - Time synchronous average for a faulty helical gear: (a) — no load, (b) — load level of
150mA, (c) — load level of 250mA

One of the primary reasons why it is more difficult to detect fault in helical gears
directly from the averaged time signal is related to the meshing properties. In a helical gear
the load is shared among more pairs of mating teeth than in spur gears; the changes in
vibration magnitude become less significant when a tooth enters or leaves the meshing
region under load. As a result, it becomes more difficult to examine feature modulations

due to defects in helical gears.

Figure 6.10(a)-6.10(c) and 6.11(a)-6.11(c) are examples of TSA signals for a
healthy spur gear and a faulty spur gear, respectively. When inspecting Figures 6.10(a)-
6.10(c), i