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Abstract

The classical techniques for fault diagnosis require periodic shut down of machines 

for manual inspection. Although these techniques can be used for fault diagnosis in simple 

machines, they can rarely be used effectively for complex ones. Due to the rapid growing 

market competitiveness, more reliable and robust condition monitoring systems are 

critically needed in a wide array o f industries to improve production quality and reduce 

cost. As a result, in recent years more efforts have been taken to develop intelligent 

techniques for online condition monitoring in machinery systems. Several neural fuzzy 

classification schemes have been proposed in literature for fault detection. However, the 

reasoning architecture o f the classical neural fuzzy classifiers remains fixed, allowing only 

the system parameters to be updated in pattern classification operations. To improve the 

reliability o f machinery fault diagnostics, an evolving fuzzy classifier is developed in this 

work for gear system condition monitoring. The evolution is performed based on the 

comparison o f the potential of the incoming data set and the existing cluster centers. One 

key feature o f the developed evolving fuzzy classifier is that it has the ability o f developing 

continuously - by adding or subtracting rules and by modifying existing rules and 

parameters. In performance evaluation, the proposed evolving classifier is firstly tested 

with the use o f benchmark data sets, such as Iris data, Wisconsin breast cancer data and 

wine data. Then the adopted evolving classifier is implemented for gear fault diagnosis. A 

distinguishable pattern is determined between the input data and the output patterns to 

evaluate the data sets. Several signal processing techniques are utilized to generate 

representative features to train the proposed evolving fuzzy classifier. Simulation test



results show that the proposed classifier can effectively identify the condition o f a gear, 

both spur and helical types, and it outperforms provide other related methods.
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Chapter 1

1.0 Introduction

"There is a great satisfaction in building 

good tools fo r  other people to use. "

Fr e e m a n  Dy s o n

1.1 Motivation of the Research

Gear trains are widely used in various mechanism and machines, from watches to 

helicopters. Their malfunction can lead to costly shutdowns, lapses in production, and even 

human casualties. The detection of faults in mechanical systems, more precisely in gears, is 

of great interest nowadays. Many accidents can be prevented when a fault is detected at the 

right time, costs associated with repairs o f machinery can be reduced and inspection time 

of gear trains to find the faulty component is greatly reduced when an efficient gear fault 

detection technique is implemented.

There are two different classes o f gear defects known in literature: distributed and 

localized defects [1]. Two forms o f distributed faults are known: the adhesive wear and the 

abrasive wear [1]. The transfer o f metal particles from one tooth to a mating tooth by a 

welding action characterizes the adhesive wear whereas the abrasive wear is induced by the 

presence o f abrasive particles in the meshing process. A localized defect or rolling contact 

fatigue faults is a critical fault such as pitting, cracking and scoring [2].



Although both classes induce transmission errors and increase the noise and vibration in 

gearboxes, researchers give more attention to the latter o f the two. That is because 

localized gear defects can cause sudden failure o f the mechanical system, whereas the 

distributed faults are usually initiated with a localized fault. As a result, this work will 

focus on localized faults, as they can cause catastrophic failures in machines such as 

helicopters and airplanes.

1.1.1 Pitting

Gears are one example of solids bodies in relative motion coming into contact. The 

resulting normal and tangential forces at the contact region are transmitted from a surface 

to its pair [2]. When the contact stress is higher than the endurance limit o f the gear 

material, a type o f fault referred to as pitting occurs. Pitting is a surface fault characterized 

by pieces o f material detaching at the contact surface o f the tooth due to fatigue. In their 

research [2], Aslants and Tasgetiren have found that for an as-cast specimen, a pitting size

o f 500 jUm can develop after 1.850x10^ cycles. However, gear materials are generally 

subjected to heat treatment to prevent surface fatigue failures such as pitting.

1.1.2 Tooth Breaking

Another case o f fatigue failure is a tooth crack o f break. A tooth break usually 

originates as a crack and propagates until the tooth breaks off. Once the tooth breaks off, 

the subsequent tooth will exhibit higher impact loading therefore it is susceptible to 

breakage. If  undetected, this failure can cause serious damage in the operating machine.



1.1.3 Scoring

Although scoring is another example o f contact surface fault, it is primarily related 

to incorrect mounting, improper lubrication and overloading. Scoring arises when the 

lubrication film breaks down and the gear teeth are in direct metal-to-metal contact. Due to 

the high temperatures experienced by the teeth surfaces, they exhibit welding. As the gear 

rotates, this welded spots on the teeth surfaces break off. This type o f fault can also cause 

severe damage to the gearbox and consequently to the operating machine.

As a result, the focus o f this work is to develop an intelligent condition monitoring 

scheme for gearbox diagnosis. Before introducing the proposed scheme, an understanding 

of classical gear condition monitoring techniques is necessary.

1.2 Gear Condition Monitoring Techniques

The aforementioned faults arise during the operation o f a gear train. It is crucial that these 

defects are detected at an early stage without machinery disassembly in order to reduce 

downtime costs and prevent catastrophic failures. Several methods are used for the 

diagnosis o f gear trains. Based on signal properties, these methods are broadly classified as 

acoustic measurements, temperature monitoring, wear debris detection, and vibration 

analysis [3].

1.2.1 Acoustic Measurement

One o f the most effective acoustic-based health monitoring in rotating machinery, 

including gearboxes, is acoustic emission. The detection o f cracks is the prime application 

of acoustic emission. The measurement o f a machine’s sound can also be employed for



detecting defects in gearboxes. Typically, the accuracy of these methods depends on sound 

pressure and sound intensity data [3].

1.2.2 Temperature Monitoring

Frictional heating from contacts o f gear teeth is o f extreme importance for monitoring the 

condition o f a gear transmission under its continuing operation. The surface temperature 

holds the critical information about the condition o f a gear [3].

1.2.3 Wear Debris Analysis

In this method, the presence o f any metallic particles in the lubricant is detected with the 

aid o f sensors [3]. Wear particles are considered to be a critical alarm indicating the need to 

change the gear before a forced outage occurs.

1.2.4 Vibration Measurement

Vibration is a symptom of an internal defect. In fact, it is a very sensitive and early 

predictor o f a developing fault. A vibration signal indicating a fault is generated by the 

interaction between gears regardless o f the defect type. Consequently, a vibration analysis 

can be employed for the diagnosis o f all types o f faults, either localized or distributed. 

Furthermore, low-cost sensors, accurate results, simple setups, specific information on the 

damage location, and comparable rates o f damage are other benefits o f the vibration 

measurement method [3]. It is for this reason that vibration analysis is widely employed in 

the industry, which also will be used in this work.

1.3 Vibration Based Condition Monitoring

Signal processing is the process in which representative features are extracted from 

the collected vibration signals. There are many signal processing techniques proposed in



literature for gear fault detection. Based on processing tools, these techniques can be 

classified into three categories, that is, methods in the time-domain, frequency domain, and 

time-frequency domain, respectively.

Condition monitoring based on vibration analysis can monitor all parts o f a gearbox 

(i.e. bearings, shafts and gears); however, the focus o f this thesis is directly related to 

gears. In order to focus only on the important part o f the vibration signal, the time domain 

signal is synchronously averaged. This signal average is then used for advanced analysis to 

compute condition indicators (CIs), which are compared in the decision-making unit.

Condition indicators have been introduced in 1977 when Stewart developed FMO, 

FM4 and some other techniques [4]. Since then, research had progressed and Zakrejsek [5] 

introduced NA4. NA4 has further been improved by Decker [6] and then by Demsey [7] 

for a better performance related to torque changes. One o f the many techniques available 

for detecting gear faults such as cracks, files and chips is the order cepstrum analysis. In 

order to process signals using this procedure, vibration signals are collected at constant 

time increments in time domain and then data is resampled in angle-domain such that the 

non-stationary signals are changed into stationary signals. Order cepstrum is then 

implemented for accurate diagnosis [8]. Suppose data is collected at variable rotational 

speeds in time-domain. As the rotational speed changes, the sampling dots change 

generating a “frequency ambiguity”. This ambiguity does not occur when data is sampled 

in angle-domain. The sampling in the angle-domain is called order tracking and it has 

advantages over the traditional spectral analysis since it samples signals at constant angle 

generating constant sampling dots and thus changing the non-stable signal to a stable one. 

The necessary assumption for this procedure is that the acceleration is constant. In



literature, autoregressive (AR) models have been established for signal analysis from a 

monitored gearbox under healthy conditions [9]. This model was used as a prediction filter 

that filtered future signals o f the same gearbox. A discrete time signal x{n)  can be 

represented as a regression on itself plus an approximation error; this process is called 

autoregression [10]. This model is used as a linear predictor, generating AR residual 

signals when the filtered signals are subtracted from the original signal. In the case in 

which the gears in the gearbox are healthy, the residual signal is the prediction error o f the 

AR model, generally having a random distribution. On the other hand, when the gears 

become unhealthy, the AR model carmot predict the vibration signals therefore the residual 

signal deviates from being randomly distributed at the location o f the fault [11].

The wavelet analysis is one o f the time-frequency methods for detecting faults in 

gears by detecting sudden changes in non-stationary signals. The advantage o f  the 

continuous wavelet transform is that it has a constant relative resolution which means that 

it has good time resolution at high frequencies and good frequency resolution at low 

frequencies [11]. Another time-frequency method for detecting gear faults is the ensemble 

empirical mode decomposition followed by Hilbert-Huang transform. This method 

introduced by Ai and Li involves the decomposition o f the vibration signal using ensemble 

empirical mode decomposition followed by calculation o f the Hilbert-Huang transform 

(HHT) and finishing with a diagnostic conclusion according to the HHT spectrum [10], 

[11]. More popular methods in literature, which will also be utilized throughout this thesis, 

are presented in Chapter 6. Through the use of the aforementioned signal processing 

techniques, it is possible to obtain vital diagnostic information from the vibration signals. 

However, these techniques require a good deal of expertise to apply them successfully. For



this reason, simpler approaches are sought which can generate decision options on gear 

conditions automatically and reliably.

1.4 Literature Review

In order to prevent this several neural fuzzy classification schemes have been 

proposed in literature for fault detection. To better understand neural fuzzy schemes, a 

review o f neuro-fuzzy (NF) and soft computing techniques [13,14] was necessary. Some of 

the NNs reviewed include adaptive networks with emphasis on feedforward networks 

(FFNN) and supervised-leaming neural networks emphasizing on radial basis function 

networks (RBFN).

Some optimization techniques implemented for training o f the linear and non-linear 

parameters are least-squares estimate (LSE), and Lavenburg-Marquardt, and gradient 

techniques. While these methods have shown promising, they do tend to converge to poor 

local optima. For this reason, other training techniques, not introduced in [13], namely 

Kalman filter methods have been investigated. It was demonstrated that the EKF algorithm 

exhibits faster training, both in terms o f the number o f presentations o f training data and in 

total training time on a sequential computer, than a standard implementation of 

backpropagation for problems in pattern classification and function approximation [15]. 

The node decoupled extended Kalman filter algorithm for NNs was studied [16], [17]. 

Studies have shown that the NDEKF algorithm significantly reduces the complexity and 

memory requirements o f the extended Kalman filter (EKF). Also, it was shown in studies 

that the covariance matrices have a significant impact on the Kalman filtering performance 

[18]. Hence, techniques to improve the performance o f the Kalman filter by updating the



covariance matrices have been investigated [19-22] in order to develop a better training 

technique.

The abovementioned methods were implemented in training o f the premise and 

consequent parameters. Adaptive neuro-fuzzy inference system (ANFIS) was also 

introduced by Jang as a universal approximator for NF modeling [13]. Since ANFIS does 

not have the ability to identify the structure, several data clustering techniques were 

studied, such as K-means clustering [23], which is the simplest unsupervised learning 

clustering algorithm and the fuzzy C-means clustering developed by Dunn [24] and 

improved by Bezdek [25].

Due to ANFIS's limitation, a neuro-fuzzy system, which can adapt not only the 

parameters but also the structure itself, has been investigated. Dr. Angelov' work, the 

pioneer o f evolving fuzzy systems, was given special attention [26-30]. In his work, he 

introduces the concept o f rule base evolution over time such that the dependence on 

computationally expensive techniques is minimized. Conversely, there exist other 

interesting evolving clustering methods. The method proposed in [31] performs a one-pass, 

maximum distance-based clustering without any optimization. Unlike Angelov's clustering 

method, which does not allow for center update, the method in [31] updates both the 

centers and the radiuses o f the cluster. Other methods, developed by the same author as in 

[31], propose transductive NF inference systems with weighted data normalization 

(TWNFI) [32] and NF inference method (NFI) [33] for transductive reasoning systems. 

The latter is a continuation Kasabov's dynamic evolving NF inference system (DENFIS) 

[34]. DENFIS evolves through incremental supervised or unsupervised learning 

accommodating new data inputs and new features and classes. All these methods are based

8



on the Takgi-Sugeno (TS) Type I fuzzy model and can be implemented online as well as 

offline. On the other hand, these methods have not been applied on systems monitoring 

gear trains. Research related to gear trains has been done by Dr. Wang and his research 

group, in which they developed several types o f NF classifiers for machinery condition 

diagnostics with applications to gears [35-40]. In their work, several condition indicators 

have also been developed. However, the previous work was mainly for forecasting 

applications. On the other hand, this work focuses on developing an intelligent classifier 

for gearbox diagnosis.

1.5 Objectives and Contributions

The objective o f this research is to develop an advanced evolving NF scheme, 

called ie^TS-sDEKF, for diagnostic classification o f gear systems.

The following contributions have been made during the course o f this research

work:

1. A novel ie^TS-sDEKF system has been proposed to improve the classification 

efficiency. A decision-making component has been introduced to determine whether or not 

the rules should be updated as well as the method in which they are updated. By 

introducing the design parameter, the proposed clustering technique, ie^TS, became more 

flexible in regards to the overlap o f the clusters.

2. An improvement has been made to the network training technique. Since the covariance 

matrices in a Kalman filter have a great impact on the performance o f the filter, a scaling



method has been proposed so that the covariance matrices are not fixed but update after 

each epoch. This can result in an overall improvement to the stability and performance of 

the network.

3. Systematic tests have been taken to verify the effectiveness o f the proposed evolving 

classifier and the related techniques. Three robust signal indices were used for 

classification operations. Test results have shown that the proposed classifier outperforms 

other related classifiers.

1.6 Outline of Thesis

In Chapter 2, a review o f Intelligent Tools is presented. First, the concept of Fuzzy 

Logic is introduced and a description o f its uses is presented. Second, NNs are also 

introduced and its advantages and disadvantages are presented. Third, Adaptive NF 

Inference Systems as well as Evolving Networks are presented with focus on evolving TS 

networks; these are commonly used for classification.

The aim o f Chapter 3 is to introduce the proposed clustering technique. The process of 

clustering is explained in detail and its advantages and disadvantages are discussed.

Chapter 4 deals with the training o f the fuzzy classifier. Three steps are involved in 

training the fuzzy classifier. In the first step the network is identified using the clustering 

technique presented in Chapter 3. Next, during the forward pass the consequent parameters 

are updated. Then, the premise parameters are updated in the backward pass. Notably, in
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this chapter the proposed scaling o f the covariance matrices technique will also be 

presented. This technique is implemented in the backward pass.

Once the network identification and the training o f the network are presented, the 

performance o f fuzzy classifier is examined. Three sets o f benchmark data have been 

implemented in order to assess the performance of the proposed classifier. First, the Iris 

Benchmark data was utilized. Second, wine has been classified using the Wine Benchmark 

Data. Third, the Wisconsin Breast Cancer Data has been used. The performance results are 

presented in Chapter 5.

Chapter 6  primarily dealt with applications. The experimental setup is introduced, 

followed by a discussion o f the classification method. Helical gears as well as spur gears 

with various faults have been used. With the use o f the proposed fiizzy classifier, the gear 

trains were successfully classified into two classes: healthy or damaged. Results for the 

proposed and other related schemes are presented herein.

In Chapter 7 the concluding remarks and future work are discussed.
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Chapter 2

2.0 Intelligent Tools

“Intelligence is the capacity to receive, 

decode and transmit information efficiently. "

Ro b e r t  An t o n  W il s o n

Real-world problems, for which a mathematical model is sometimes impossible to 

obtain, depend on intelligent systems for analysis. Intelligent schemes adapt themselves to 

a variety o f environments by learning, evolving and making decisions. The foundations of 

these systems are NNs, fuzzy logic (FL), and neural fuzzy synergistic schemes (e.g. 

ANFIS), which will be discussed briefly in this chapter.

2.1 Fuzzy Logic

Dr. Zadeh, a professor at the University of California at Berkley, firstly conceived 

the concept o f FL [41]. Such concept allowed the processing o f data by introducing partial 

set membership rather than crisp set membership or non-membership. FL has been 

conceived as a better method for sorting and handling data since it mimics human control 

logic. It uses an imprecise but very descriptive language to deal with input data more like a 

human operator.

There are three types o f fuzzy reasoning models described as follows:
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Type I; Mamdani âizzy model

In a Mamdani fiizzy model the inputs are crisp values whereas the output is a fiizzy set. A 

defuzzification process is necessary in a Mamdani model in order to extract a crisp value 

from the fuzzy sat. There are five defuzzification methods such as centroid o f area, bisector 

of area, mean o f maximum, smallest o f maximum and largest o f maximum [13].

A typical fuzzy rule in a Mamdani model is of the following form:

IF X is A and y  is B THEN z is C

where A, B and C are fiizzy sets, x and y are inputs whereas z is the output.

Type II: Sugeno fuzzy model

Also known as a TSK fuzzy model, this model was proposed by Takagi, Sugeno and Kank 

in order to generate fuzzy rules from a given input-output data set [13]. The fuzzy rules can 

be represented as follows:

IF X is A and y is B THEN z  = f { x , y )

where A and B are fuzzy sets in the antecedent and z is a crisp value in the consequent. 

When the output is a first order function, the model is called a first-order Sugeno fuzzy 

model whereas when the function is a constant, it is called a zero-order Sugeno fuzzy 

model [13].

Type III: Tsukamoto fuzzy model

13



In this model, the consequent o f each rule is represented by a fuzzy set with a monotonical 

membership function (MF). Hence, the output o f each rule is defined as a crisp value. The 

rules can be represented as follows:

IF X is small then Y is C

To illustrate the performance o f fuzzy logic, consider the following example:

The aim is to control the speed o f a motor by changing the input voltage. Suppose a set 

point is defined and in the case in which the motor runs faster, we need to slow it down by 

reducing the input voltage. On the other hand, if the motor slows below the set point, the 

input voltage must be increased so that the motor speed reaches the set point.

Let the input status words be: Too slow, ju s t right and too fa s t

Let the output sets be: Less voltage, not much change and more voltage.

The rule-base is defined as follows:

911. IF the motor is running too slow, THEN apply more voltage.

9Î2 . IF the motor speed is about right, THEN not much change.

913. IF the motor speed is to fast, THEN apply less voltage.

The corresponding membership functions for inputs and output variable are shown in 

Figure 2.1.
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Figure 2.1 - Cause-Effect 

The case when the motor's speed increases from 2420 RPM to 2437.4 RPM is depicted on 

the membership functions (MFs) as shown in Figure 2.2

1.0
^ 00%)

about

M easured sp e e d  2437.4  Rprn 
Intersects about right triangle a t . 
Intersects too fast triangle at .3

2362 2420
Speed - RPM

Figure 2.2 - Speed above set point

The intersection points with the second MF and the third MF are 0.4 and 0.3, respectively. 

This is depicted in Figure 2.2. The corresponding changes for the input voltage are 

represented in Figure 3.3.
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Through simple math, the area o f the "Not much change" triangle and "Slow down" 

triangle can be determined to be 0.008 and 0.012, respectively. The output is determined 

by obtaining the point at which two triangles are balanced.

Thus,

0.008 Dj =0.01202 

+ O2 = 0.04

(Zl)

(2 2)

From Eq. (2.1) and Eq. (2.2) we obtainO, =0.024 and D2 = 0 .016. Thus the voltage 

required would be 2.40-0.024=2.376 V

From the above example, it is obvious that fuzzy logic has advantages and disadvantages. 

The advantages are that it allows the use o f  linguistic terms in the rules and it reasons 

similar to the human brain. However, it is difficult to estimate the MFs requiring 

experience or trial and error.
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2.2 Neural Networks

A NN is a parallel system, capable o f resolving paradigms that linear computing 

cannot. It is composed o f artificial neurons or nodes connected through directional links. 

Typically, adaptive networks are classified into two classes: feedforward NNs and 

recurrent NNs; however, throughout this work feedforward NNs have been employed. 

Figure 2.4 presents an example o f such a network.

Layer 2 L ayer 3L ayer 1Input
L ayer

Figure 2.4 - A feedforward network structure 

Feedforward networks propagate from the input to the output through the 

directional links and nodes. Each node has a node function whereas the links connecting 

them represent the causal relationship between the connected nodes [13]. Some o f the 

nodes in a neural network are adaptive, meaning that the outputs o f these nodes are subject 

to change as the parameters pertaining to these nodes update. There are many learning 

paradigms proposed in literature, some derivative based such as steepest descent and others 

derivative-free such as sequential simplex. For this work, the recursive least square 

estimator is employed in order to estimate the consequent parameters, and the premise 

parameters are updated using the node decoupled extended Kalman filter (DEKF). This
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update is performed in two passes: forward pass and backward pass with the use of a data 

set (i.e. training data set). This training data set consisted o f desired input/output data pairs 

o f the system to be modeled. At the end of the forward pass, the network calculates the 

error between the actual output and desired output such that

N i l )

E ,=  ^ { y , - k , )  (2.3)

where k* component o f the p‘̂  desired output vector and is the k“’ component of

the actual output vector produced by presenting the p'*’ input vector. The purpose o f the 

training is to minimize the error. Obviously, the error is minimized when the actual and 

target outputs are identical.

Based on this error, the network proceeds to perform the backward pass. During the 

backward pass the nonlinear parameters are updated.

There are two learning paradigms found in literature to suit the need of different 

applications. One paradigm refers to the off-line training in which the update o f the 

parameters is performed once the whole training data set has been presented. That is, at the 

end o f the epoch. The second paradigm refers to an on-line training method where the 

parameters are updated immediately after the input/output data pair is presented. When 

modeling is performed based on given input/output data sets, the networks are referred to 

as supervised learning neural networks.

Similar to any other system, NN have advantages and disadvantages. The advantages are 

that a NN can perform tasks that a linear program cannot, it has the ability to learn and it 

can be implemented in any application. However, a NN is a "black box", meaning the user
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can take no approach to establish what happens between the input into the NN and the 

output. Although it has the ability to learn, it needs to be trained through a process which 

can be time consuming depending on the size of the NN.

Since both FL and NN have their advantages and disadvantages, alternative is to use their 

synergistic paradigm, that is, neural fuzzy (NF) method.

2.3 Adaptive Neuro-Fuzzy Systems

An NF scheme (e.g., ANFIS) is an intelligent system that combines the human-like 

reasoning style o f fuzzy systems with the learning and connectionist structure o f neural 

networks. In literature, such schemes are referred to as Neuro-Fuzzy Systems (NFS) or 

Fuzzy Neural Networks (FNN) [14]. One example o f such a NFS would be Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS), which will be employed throughout this work. 

ANFIS is a class o f adaptive networks that are functionally equivalent to fuzzy inference 

systems. The structure is presented in Figure 2.5.

Layer 1 Layer 4

Layer 2  Layer 3
Layer 5

x y

Figure 2.5 - ANFIS structure [4]
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There are five layers numbered from Layer 1 to Layer 5, and each layer has nodes 

with node function described below.

Layer 1 : Nodes are adaptive with a node function

(-̂ )> fo’’ ' -

()')> ' -  ^ '4

where (x) and Msi - l i y )  are MFs specifying the degree to which the given inputs

satisfy the quantifier.

Layer 2; Nodes are fixed and the output is the product of all incoming signals:

02,i = = Mm  {x)MBi(y)4 = 1,2 (2.5)

Layer 3 Nodes are fixed and the output is the normalized firing strength

w-
O3 ;• = Wj = ------'■—  ,i = 1,2  (2 .6 )

’ Wj + W2

Layer 4 Nodes are adaptive with output

O4,, = w j .  (2.7)

/i — 1̂-̂ 1 + ^ 2 ^ 2  ^3

^  A = ^4X1 + 05X2 + ^6

and 0 ,,/ = 1,2 .. . ,6  is the linear parameter set to be updated

Layer 5 Single fixed node with output as the summation o f all incoming signals

O;.! = ' = 1,2  (2  8)

One o f N F’s advantages is that it uses a hybrid learning procedure for estimation o f the 

premise and consequent parameters [13]. Different optimization techniques such as 

gradient descent (GD), least square estimate (LSE) could be implemented in order to
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optimize the structure's linear (i.e. consequent) and nonlinear (i.e. premise) parameters. 

The disadvantage o f ANFIS is that the structure remains fixed allowing only the 

parameters to update. To overcome this problem, evolving fuzzy systems were developed.

2.4 Evolving Neural/Fuzzy Systems

Evolving fuzzy systems (EES) can be defined as self-developing, self-leaming 

fuzzy rule-based or neuro-fiizzy systems that have both their parameters and their structure 

self-adapting [29]. The fuzzy systems developed by Dr. Angelov gradually develop 

mimicking the evolutionary process that takes place in populations o f individuals. Meaning 

that EFS are mathematical paradigms that can approximate the human-like reasoning by 

representing it with dynamically evolving fuzzy rule-based structure. Similar to ANFIS, 

EFS structural framework is utilizing the Takagi-Sugeno (TS) [Takagi-Sugeno] fuzzy rule- 

based system. This system is o f the following form:

91  ̂ : IF ( X, is A/  ) AND ( is ^  ) AND ... (x , is ) THEN ( ŷ . = / / ' )  (2.9)

where 3i j  denotes the yth fuzzy rule, y e  [1, Nr]; N  is the total number o f fuzzy rules 

(clusters); A/  is the yth fuzzy set fbrx,, /e [ l ,  «]; y j = [ y j \ , y j 2 , is an M-

dimensional consequent (output) structure [42].

The evolving TS (eTS) fuzzy system has the ability to be represented as a neural 

network therefore, it can also be considered a neural-fuzzy system [43]. It is this structural 

framework that can be used to solve a range o f problems offering flexibility, adaptation, 

robustness, and improved precision with small computational efforts. Some o f the

2 1



problems that can be solved using this paradigm are related to clustering (i.e. network 

identification), time-series prediction or filtering and classification.

Although this method works particularly well, it also has its shortcomings in that the 

cluster centers and radiuses stay fixed. A method to alleviate this problem was introduced 

in [28] however, it solves the problem of the radiuses only. Hence, this thesis introduces a 

technique to improve the performance of eTS.
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Chapter 3

3.0 Network Identifîcation Techniques

It,Not everything that counts can be counted, 

and not everything that can be counted counts. "

Al b e r t  Ein s t e in

Clustering of numerical data forms the basis o f many modeling and pattern 

classification algorithms. The purpose o f clustering is to find natural groupings of data in a 

large data set, thus revealing patterns in the data that can provide a concise representation 

o f the data behavior. As stated in Chapter 1, several NF schemes have been proposed in 

literature for pattern classification applications. Most of the current NF classifiers, 

however, only deal with parameter identification whereas system structure is determined 

based on expertise and remains unchanged in operations. The alternative is to use cluster- 

based evolving methods [29, 42]. The proposed evolving fuzzy (EF) classifier will be 

discussed in this chapter.

3.1 Proposed Clustering Technique

The proposed EF classifier is a data-driven, non-iterative, one-pass technique 

modeled off of other potential based algorithms. Different from previous potential based 

models [29, 42], this technique performs a feasibility check on the incoming data sample. 

If  the data point is located within the influence range o f an existing cluster, then the new
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data point is not treated as a new cluster center. Otherwise, if  the data point is beyond a 

specified distance from the cluster center, then calculate its potential as well as its potential 

to be a cluster center. Whether the incoming data point is selected as a cluster center 

depends on its potential. The proposed cluster center as well as the radius is chosen based 

on standard deviation. Before a decision is made, the potential o f the proposed cluster 

center is being calculated. A decision is made whether the proposed cluster center becomes 

a cluster center or the incoming data point is a better candidate. This procedure is presented 

in Figure 3.1. Subsequently, a step-by-step explanation of the process is also given.

The performance to the proposed clustering technique, named ie^TS, will be tested 

using three sets o f benchmark data. The number o f identification errors (i.e. misclassified 

data during the identification process) generated during the identification process 

determines the performance o f the proposed clustering technique. The results pertaining to 

this technique are presented in Chapter 5.
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Step 1: The structure is initialized with one cluster. Nr \ = \ . The first data sample is the 

center o f the cluster and the spread o f the cluster is predefined such that;

k:=\  P (z Q := l

X, o[ ■= spread  (3.1)m,

Vi (71 \= spread

where are the cluster centers and user defined spreads in the input and

output space, respectively, at the k‘̂  time step and P  )  is the potential o f the first data

point, z{={x^  y ,].

Step 2: Next data sample is being presented, z[ = [x̂ . y^ ], where k = k + \ .

Step 3: The feasibility o f the point to become a cluster center is calculated. The Euclidian 

distance from the incoming point to all existing cluster centers is determined and compared 

to the radiuses o f the clusters, as described in Eq. 3.2.

where i=  1,2,...,Nr  and N r  is the number o f clusters generated.

If  5  ̂ < Ç where g is a user defined distance, then go to Step 7. 

Step 4: The potential [29] o f the new data sample is calculated by;

(3.2)

k - l
{ k - \ ) { û , + \ ) y - r , - 2 v ,

_  (3.2)
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n + l  ,  « + 1

^l-l ■
j=l j=\ j=[

f7T 1 /y fi'rl  ̂ x/Ti
where := £  (z/ ) ; / , : =  y,_, + £  (z/_, J  ; t;, := £  z //)/ Pi := A'-i +

Step 5: The potential of the existing clusters are being updated by:

,  (3.3)

^ - 2  + A - , ( ^ O X f e - o )
j=\

where := zi -  z*_i ^^d / = [l, A r] , Nr is the number o f clusters.

Step 6: The potential o f the new data sample is compared to the potential of all existing 

cluster centers and ajdecision is made as follows:--------------------      —  ----------

a. IF potential o f new data point is higher than the potential o f all existing cluster centers

AND new data point is close to an existing center

THEN the new cluster center is [42]

^  (3.4)

1=1
where n denotes a new temporary point , j  is an index such that z* =argm in(]|zj -w ,||) ,  

= [m ' ,m °  ]  and N  is the number o f samples in the cluster .

Calculate the potential o f by Eq. 3.2.

Update the potential o f existing clusters by Eq. 3.3.
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IF potential o f ) is greater than potential o f existing cluster centers

THEN the newly assigned point replaces the cluster center, cluster radius and potential are 

updated by

ELSE the data point replaces the cluster center and potential is updated

END IF

b. ELSE IF potential of new data point is higher than the potential o f all existing cluster 

centers

THEN a new cluster is formed:

N r ^  Nr+\; 4 =  ^ ( 4 ) =  P,{z,)

END IF

Step 7: Consequent parameters are updated by 

Step 8: Output at the next time step is predicted by

yk+\~¥k^ic’ k  = 2,3,...

Step 9: Output is elassified
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By introducing Step 3 in the identification procedure, the user is able to define the amount 

of cluster overlapping. In other words, it ensures that a new cluster is not being created if 

the incoming point is within a cluster. If  the incoming data set is not feasible, calculating 

its potential would be unnecessary. This computation redundancy is being eliminated as a 

result o f introducing the feasibility check.

Different than the method in [16], in this method a new decision is made before

accepting the proposed data set as a cluster center. This step is ensuring that the proposed

data set is indeed a better candidate to become a cluster center before accepting it. I f  the 

proposed data set is not a better candidate to become a cluster center, then the proposed 

data set is being disregarded and the incoming data set become the cluster center.

Each cluster center found is in essence a prototypical data point that exemplifies a 

characteristie input/output behavior o f the system. Also, each cluster center represents a 

fuzzy rule that describes the system performance [49]. Hence, we can translate each cluster 

into a fuzzy rule describing the network. For example, suppose after clustering was applied

to the group o f data, cluster center mjj with a radius cr( was found. This cluster center and

radius provide the rule:

. IF input is near mjj then y j  = / /

This can also be represented in the TS-1 form as per Eq. 2.9:

9 ly .IF (x , is A /) AND (x; is A^) AND ... (x„ is A^) THEN (y^ -  / / ' )  

where
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e!A / = g   ̂  ̂ (3.5)

X II II
Remark A: Cluster compatibility is achieved when where W, = argmin[|A«^ -x ^ ||

X ,, II
and Wq = argmin|/Mjj^ - y , | | .  This ensures that noise affected data is excluded and more

meaningful clusters are created.
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Chapter 4

4.0 Training of the Evolving Fuzzy Classifier

"AI is the science o f  making machines do 

tasks that humans can do or try to do. "

Jam es  F. Allen

Once the structure o f the EF classifier is created based on the proposed 

clustering technique as discussed in Ghapter 3, its parameters should be trained properly ter

provide optimal classification operations. In this chapter, the training technique 

implemented throughout this work is presented. Section 4.1 presents the training o f the 

consequent parameters whereas Section 4.2 presents the training o f the premise parameters. 

In Section 4.2.2 an improvement to the classical Kalman filter training technique is 

presented.

4.1 Offline Training based on R-LSE

Four steps are involved in the fiizzy classifier. First, the structure is identified using 

the procedure. Second, the linear consequent parameters are estimated in the forward pass 

using R-LSE algorithm [44, 45]. Third, the output is classified into different categories. 

Fourth, the nonlinear premise parameters are optimized in the backward pass using a new 

method, scaled Node Decoupled Kalman Filter (sDEKF) presented in the next section. The 

learning paradigm employed throughout this work is supervised learning meaning that the 

input/output data pairs are given and the scope is to find a function that best matches the
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input/output pair. In other words, the goal is to infer how the mapping implied by the data 

and the cost function is related to the mismatch between the mapping and the data.

In this work, the consequent parameters (m j and crj ) o f the TS-1 fuzzy model are 

estimated using R-LSE. The objective function at time instant t is given by

= (4-1)

where Y t  is vector o f inputs weighted by the firing levels o f the rules. The update o f the 

consequent parameters is performed by:

^,+1 (4.2)

Xt+i —
^ X, ¥, wJx,  ^ (4.3)

where t = 0 , l , . . . , ( P - l ) ,  P is the number o f observation, CĈ is a forgetting factor and Xt is

the covariance matrix. At the initial time, the covariance matrix is initiated as Xq ~  

where p  is a constant. Since the performance o f the algorithm is dependent on the initial 

values, many trials were performed in order to find the initial covariance matrix as well as 

the initial vector o f parameters that give the best performance. Therefore, in this work p

was selected as 10  ̂whereas the vector o f parameters has been initiated to 6q =0 .
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4.2 Training Based on DEKF

It is known that the process noise covariance matrix {Q) and observation error 

covariance matrix (R) have a considerable impact on the performance o f Kalman filter 

since they are dependent on the application environment and process dynamics [18]. Q and 

R are responsible for the weight that the system applies between measurements. 

Consequently, the filter may diverge or never achieve optimal results given Q and R 

exhibit errors.

Generally, the covariance matrices are fixed to a value determined from intensive 

empirical analysis. However, for a complex dynamic system in a noisy environment, 

determination of the covariance matrices in advance is sometimes unachievable. 

Accordingly, a covariance matrix updating technique is proposed in this thesis. The 

motivation behind this comes from the high possibility for improved performance of 

DEKF. Before explaining the proposed sDEKF technique, a brief introduction to Kalman 

filter is given.

4.2.1 Conventional Kalman Filter

Updating and predicting are the two distinct phases o f  Kalman filter. During the 

prediction phase, the posteriori state estimate from the previous time step is used to 

produce an estimate o f the state at the current time step. The In the update phase, the priori 

prediction is combined with the current information to refine the state estimate as well as 

the posteriori error covariance matrix.

Consider a multivariable system o f the form:

= (4.4)
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(4.5)

where an ( n x l )  state vector, is an ( n x n )  transition matrix, Zk is an ( r x l )

observation vector and Hj  ̂ is an ( r x n )  observation matrix, is the process noise and

Vjç is the observation noise. Both are considered white Gaussian noise with zero means 

and covariances given by;

E{wk)  = E{v/^)=0

(4.6)

E (^k^J )=

[0 , i ^  k

\R k ,

lO, i j ^ k

where E  (*) denotes the expectation, Qĵ  and are the process noise and observation 

noise covariance matrices, respectively.

1) Prediction Phase

Predicted state:

h \ k ~ \  -  P k h - \ \ k - \  (4.7)

Predicted estimate covariance matrix (a measure o f the estimated accuracy o f the state 

estimate):

E ï\k-\ -  E kE '(-i\k -iE k  + Q k (4.8)

where -  cov 4 |/t )
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2) Updating Phase 

Measurement residual:

(4.9)

Optimal Kalman gain:

jf* + a* (4.10)

State estimate update:

^k\k ~ ^k\k-\ ^  ̂ kVk  (4-11)

Estimate covariance matrix update:

P(\k - Pk\k-\ + ̂ k̂ kPk\k-\ (4 .12)

where represents the estimate o f x  at time instant k  given observations up to and

including& -1.

4.2.2 Proposed Updating of Process Noise and Observation Error Covariance 

Matrices

Covariance provides a measure o f the strength o f the correlation between two or more 

sets of random variables. The process noise covariance matrix and the observation noise 

covariance matrix are responsible for the performance o f the Kalman filter [18]. In general, 

when a mathematical model o f the system can be obtained, the covariance matrices are 

chosen based on experience or through experiments. However, this can be a daunting
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process. It is very difficult (if not impossible) to derive accurate mathematical models for 

many complex systems. This leaves the system to be approximated by a Kalman filter. As 

a consequence, the covariance matrices must also be approximated. This process leaves 

room for a significant amount o f error making the training technique somewhat unreliable. 

Therefore, a new method to update process noise and observation error covariance matrices 

is proposed in this section to improve robustness o f the training technique. From Eq. 4.10 

the innovation covariance matrix is defined as:

= (4.13)

and from Eq. 4.8, = F ,^Pk-\\k-\F k + Q k  ■

Intuitively, the updates o f the process noise and observation error are performed with the 

help o f the innovation covariance matrix such that:

F-k\k -  F-k\k-\ + Fk\k-\ {^k Ÿ  (4-14)

Q t\k = Q t» - , - Q m - x ( S k f  (4.15)

where /? is a design parameter between 0 and 1.

The process noise covariance matrix and observation error covariance matrix are 

diagonal matrices initialized at 0.01 and 0.85, respectively. Different tests were performed 

with initialization values ranging between 0.0001 and 1. After each epoch, the update of 

the noise covariance matrix and observation error covariance matrix is performed utilizing 

Eq. 4.14 and Eq. 4.15, respectively. The motivation for adopting this direct modification of
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the algorithm lies in the fact that the performance o f the Kalman filter is dependently 

related on the covariance matrices. Since there exist no direct method to determine the 

parametric values o f these error matrices, the algorithm is modified to account for this task.

During the training with sDEKF all covariance matrices update to achieve more 

robust Kalman filter. It has been noted that with the introduction o f the scaling factor, the 

predicted estimate covariance matrix, P, changes at a slower rate whereas the process noise 

covariance matrix and observation error covariance matrix change at a faster rate. This can 

only imply that the observed error and process noise covariance matrices are poorly 

approximated. Since all covariance matrices are being updated the state estimate update is 

more robust making the training technique more reliable, as it can be noted in Chapter 5.

Many trials have been conducted in order to find the optimal value of In this

work, a value o f /? = —-— will be utilized. Details o f implementation and system training 
2 N r

based on the suggested sDEKF will be discussed in the following chapter.
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Chapter 5

5.0 Performance Evaluation

"Errors using inadequate data are 

much less than those using no data at all. "

Ch a r l e s  Ba b b a g e  (1791  - 1871)

The methods outlined in the previous chapters, which were utilized to identify the 

networks (i.e. ie^TS) as well as to train the networks (i.e. sDEKF), are tested in this 

chapter. The results pertaining to the clustering and training technique are presented and 

discussed in the following sections. At this point it is important to note that the proposed 

network is a combination o f the identification technique ie^TS and training technique 

sDEKF, denoted as ie^TS-sDEKF. As a comparison, ie^TS-DEKF is the paradigm 

employing the proposed clustering technique without the scale modification to the Kalman 

filter. The network denoted e^TS-DEKF is a related method proposed by the author's 

research group in [45], whereas eTS-DEKF is the algorithm developed by Angelov and 

Filev in [29]. The rest o f the chapter is organized as follows: Section 5.1 illustrates the 

classification process for the three benchmark data sets. Section 5.2 displays the 

performance results. Section 5.2 illustrates the processing results using the Iris benchmark 

data [46], the Wisconsin breast cancer data [47] and the Wine benchmark data [48], 

respectively.
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5.1 Classification Process

As stated previously, classification is the process by which large amounts o f data 

are divided into different categories corresponding to different states. The input/output data 

pairs are presented to the network, the consequent parameters are optimized and the output 

is computed. Before the network back propagates, the output is classified. The 

classification rules are presented in the performance evaluation section.

5.2 Performance Evaluation 

5.2.1 Iris Benchmark Data

Since Iris Benchmark Data [46] is classified into three classes (i.e. Setosa, Versicolor, 

Virginica), the following rules are employed:

911 : IF Output < 0.33 THEN Iris is Setosa.

912 : IF Output > 0.33 AND Output < 0.67 THEN Iris is Versicolor.

913 : IF Output > 0.67 THEN Iris is Virginica.

As discussed previously, the network structure is identified prior to the training o f the 

structure. The Iris benchmark data consisted of four inputs and one output, which is to be 

further classified into three classes. Seventy-five input/output data pairs are utilized to 

identify the network, train the network and test the performance o f the network. For 

comparison purposes, identical design parameters are given to all four techniques,

5nji_̂  = 0.01 and <j'̂  = 0 .1 2 . The networks are tested under different design parameters,

however, the ones indicated returned the most promising results.
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The generated clusters and their corresponding membership functions (MFs) are 

illustrated in Figures 5.1 and 5.2 for ie^TS-sDEKF. The clusters were formed such that 

only relevant data was included. With the help of the introduced design parameter in ie^TS, 

redundant overlapping o f the clusters was prevented.
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Figure 5.1 - Generated clusters and corresponding MFs for the petal using ie^TS-sDEKF - Iris 

Particularly, the radius o f the ellipse gives the MFs spread whereas the center of 

MFs is the origin o f the ellipse. Two clusters were generated which represent the two rules 

in the network. The evolution of the cluster generation is represented in Figure 5.3. It can 

be observed that after about 15 samples the number o f rules converged to 2.
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Figure 5.4 represents the identified network output and classification error. As it can be 

observed, there is a low discrepancy between the actual output and the target output o f the 

network. Since the error between the actual and target output is not significant, the chosen 

classification scheme places the data in the proper class. In this case there existed only one 

misclassification.

Table 5.1 demonstrates the comparison of the related techniques. Evidently, the proposed 

technique provides an improvement over the other techniques. Starting with the 

identification process, the proposed scheme, ie^TS, generated only one misclassification 

error whereas e^TS produced 49 and eTS produced 25. The number o f rules generated by 

the identification procedure is also an indication o f an improvement. The proposed scheme, 

ie^TS, generated half the rules generated by the other schemes. In training, the results also 

show improvement. The proposed technique, ie'TS-sDEKF, obtained 3.993 average 

training errors whereas the other schemes obtained values above 5. Since the average 

RMSE for the proposed scheme ie^TS-sDEKF, in Table 5.1 is lower than the other 

schemes, it can be stated that the training technique is improved. In testing, the proposed 

scheme, ie^TS, also generated less errors thus, obtaining a recognition rate o f 96% whereas 

the schemes used for comparison obtained a recognition rate o f 93.333%. In terms of 

efficiency, it can also be stated that the proposed scheme is more efficient than the schemes 

utilized for comparison. Observing the average training time per epoch, it is obvious that 

the proposed scheme was trained faster. This is the result o f the identification procedure 

generating less rules.
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Iris Benchmark Data

Method
Number

of
Clusters

Epochs
Avg. Training 

Time per Epoch
(s)

Identification
Errors

Average
Training
E rrors

Testing
Errors

Rate Avg.
RMSE

eTS-
DEKF

4 150 0.09905 25 5 1 5 3 5 93.333 0.1033

c=TS-
DEKF

4 ISO 041758 49 5.913 5 93.333 0.1034

ANFIS-
DEKF

4 150 0.09997 n/a 5.940 5 93.333 0.1037

ie’TS-
DEKF

2 150 0TK709 1 5^93 5 93.333 0.1011

ie-’TS-
sDEKF 2 150 0.05500 1 1993 3 96.000 0.0884

Table 5.1 - Iris benchmark data results
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Figure 5.4 - Identified network output and classification error using ie^TS-sDEKF - Iris
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Figure 5.5 and 5.6 illustrate the clusters as well as the MFs at the end o f the training 

technique, and Figure 5.7 illustrates the network output and classification error. The 

robustness o f the identification procedure can be realized in the error produced at the 

identification process (i.e. one error) as opposed to the error at the end o f the training 

process (i.e. four errors).
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The network misclassified only four o f the instances at the end o f the training process; the 

performance o f the proposed method, sDEKF, can also be evaluated using the root mean 

square error (RMSE). Figure 5.8 clearly indicates the proposed technique generates the 

lowest RMSE compared with other related methods. In addition, the RMSE of sDEKF 

quickly stabilizes when compared to the other methods.
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Figure 5.8 - Root mean squared error - Iris Benchmark Data

As shown in Figure 5.9, during testing, the network performed well, producing 3 

classification errors and a recognition rate o f 96%. All other methods produced a 

recognition rate o f 93.33%, each having 5 testing errors in this case. These results are 

summarized in Table 5.1.
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5.2.2 Wisconsin Breast Cancer Benchmark Data

In this section, the Wisconsin breast cancer data [47] is used for analysis. The Wisconsin 

breast cancer data consisted o f nine inputs, namely nine attributes corresponding to the 

shape and sizes o f the cells, and one output. This output can be further classified into two 

classes: malignant or benign.

The rules employed are as follows:

911 : IF  Output < 0.5 THEN Breast Cancer is Benign.

912 : IF  Output > 0 . 5  TH EN  Breast Cancer is Malignant.
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Two hundred and fifty input/output data pairs have been utilized to identify the network 

structure. For comparison, all networks are initialized under the same conditions for

=0.025 and cr/ =0 .25 .

Wisconsin Breast Cancer Benchmark Data

Method
Number

of
Clusters

Epochs
Avg. Training 

Time per Epoch
(s)

Identification
Errors

Average
training
E rrors

Testing
E rrors

Rate Avg.
RMSE

cTS-
DEKF

4 150 7.27950 3 006 2 99 04862

ê TS-
DEKF

2 150 0.65595 10 006 2 99 04864

ANFIS-
DEKF

4 150 7.10940 n/a 060 2 99 0.1858

ic-TS-
DEKF

2 150 0.60573 8 0.06 2 99 04677

ie-TS-
sDEKF 2 150 0.60147 8 0.05 0 100 04682

Table 5.2 - Wisconsin breast cancer benchmark data results

The results are tabulated in Table 5.2. The ie^TS technique identified two rules (i.e. 

large or small) corresponding to MFs as illustrated in Figure 5.10. The evolution o f the two 

rules generated is illustrated in Figure 5.11. The identification procedure misclassified 

eight instances out o f two hundred and fifty. e^TS method misclassified ten instances and 

eTS misclassified three instances. Although the eTS only produced three errors, it 

generated double the number o f clusters than e^TS and ie^TS. Compared with ie^TS- 

sDEKF and ie^TS-DEKF in Table 5.2, the training method sDEKF generated lower 

training errors and RMSE than the classical DEKF; it can effectively optimize the 

performance o f the overall networks. The RMSE o f sDEKF network is also smoother 

between epochs indicating a more stable operation when compared to the other networks.
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Figure 5.13 shows the updated MFs whereas Figure 5.14 illustrates the network 

output and classification error. Two hundred data sets were utilized for testing. It is seen 

that the proposed network (ie^TS-sDEKF) produced zero testing errors over the two 

hundred input/output instances. Consequently, the recognition rate is 100%, which 

validates the robustness o f the proposed network.

In terms o f efficiency, once again the proposed scheme proves more efficient. It is 

faster that eTS-DEKF since it produced half the rules as noted in Table 5.2. When 

comparing the proposed scheme, ie^TS-sDEKF, to e^TS-DEKF a slight improvement in the 

training time can be observed. The reason for which e^TS is slower is due to the introduced
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constraints w hich add four if  statements in the training algorithm, thus decreasing its 

efficiency.
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Figure 5.13 - Updated MFs using ie^TS-sDEKF - Wisconsin Breast Cancer
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5.2.3 Wine Quality Benchmark Data

Another commonly used benchmark data set in the research o f pattern classification 

is Wine benchmark data [48].

The Wine Benchmark Data set consists o f three classes. The rules utilized are as follows:

911 : IF Output < 0.33 THEN Wine is Class I.

912 : IF Output > 0.33 AND Output < 0.67 THEN Wine is Class II.

913 : IF Output < 0.67 THEN Wine is Class III.

53



This data set has eleven inputs and one output pertaining to three classes as shown above.. 

Some o f the inputs consisted of: alcohol, malic acid, ash, etc. Four rules were identified by 

using ie^TS. The identified MFs are illustrated in Figure 5.17. The rule generation process 

is illustrated in Figure 5.18. It is clear that after about 80 samples it converged to 4 rules. 

During the identification procedure ie^TS and eTS misclassified 1 instance, whereas e^TS 

misclassified 73 instances.

Remark B: Due to the nature o f e^TS, in which cluster centers are chosen without 

verifying the potential o f the cluster center, it is possible for e^TS to generate significantly 

more identification errors than the other techniques. This is evident from the results as 

illustrated in Table 5.3.

Wine Benchmark Data

Method
Number

of
(Clusters

Epoelis
Avg. Training 

Time per Epoch
(s)

Identification
Errors

Average
Training
E rrors

Testing
Errors

Rate Avg.
RMSE

eTS-
DEKF

7 100 12.6015 1 18.06 11 81.667 04438

e^TS-
DEKF

4 100 4.0M8 73 150.86 39 33.146 0.9732

ANFIS-
DEKF

7 100 12.1173 n/a 71.00 35 28TW0 &5448

ie-TS-
DEKF

4 100 4.2718 1 18.52 12 80.000 0.1458

ie-TS-
sDEKF 4 100 AZÜ2 1 6.48 8 86.670 0 1187

Table 5.3 - Wine benchmark data results
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Figure 5.17 - Identified MFs using ie TS-sDEKF - Wine

Remark C: It can be noted from comparing the identification errors and the testing errors 

that it is sometimes possible to obtain a larger amount o f errors in testing the network than 

was found in the initial identification. One of reasons for this problem is that the data used 

in identification is different from that employed in testing the network.
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Figure 5.20 - Updated membership functions using ie TS-sDEKF - Wine 

In training, it can be observed from Figures 5.21 and 5.22 that ie^TS-sDEFK converged to 

an RMSE o f about 0.12 after 10 epochs. This corresponds to 8 testing errors and 6.48 

training errors. The other techniques using DEFK generated more errors, which can be 

observed in Table 5.3 and in Figures 5.23 and 5.24 where the RMSE convergence is shown 

per epoch.
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From the results, one can state with confidence that the proposed technique ie^TS- 

sDEKF is an efficient evolving classifier. In all three test instances, the proposed technique 

generated the least clusters/rules. This is because the introduced design parameter, ç , can 

make the identification technique more flexible. This was explained in detail in Chapter 3. 

The efficient classification performance o f the proposed ie2TS-sDEKF technique can also 

be recognized by the number o f errors in identification, training and testing. Although the 

proposed classifier technique requires slightly more computational effort than the existing 

ones, the amount o f additional effort is negligible particularly offline training operations.
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Chapter 6

6.0 Gear Fault Diagnosis

"Machines will be capable, within twenty years, 

o f  doing any work that a man can do. "

He r b e r t  Si m o n  (1 9 1 6 -2 0 0 1 )

The primary objective o f this chapter o f this thesis is to implement the developed 

teehniques for gear fault detection. The main results o f this section utilize the proposed 

clustering technique (i.e. ie^TS) for identifying the network and the training technique (i.e. 

sDEKF) to train the network. To make a comparison, test results from other related 

networks will also be discussed.

This chapter is organized as follows; Section 6.1 gives a description o f the 

experimental apparatus. Section 6.2 introduces the employed condition indicators whereas 

Section 6.3 describes the classification procedure and test results.

6.1 Experimental Apparatus

To study the signatures o f the gearbox faults, the SpectraQuest's Maehinery 

Dynamics Simulator has been used, as shown in Figure 6.1. This system is set up in the
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Laboratory for Intelligent Mechatronic Systems (LIMS) at Lakehead University. It reflects 

a modular design that provides versatility, operational simplicity and robustness.

The experimental setup is driven by a 3Hp DC motor with a speed range &om 20 to 

4200 RPM. The shaft's rotational speed is controlled by a speed controller (Delta VFD-

G  ^

Figure 6.1 - Machinery fault/gearbox dynamics simulator



The collected signals are fed to the computer through a data acquisition board (NI- 

DAQ PCI-4472) which has built-in A/D converters and antialiasing filters. Vibrations 

induced by the gears were collected using industrial, ceramic shear ICP accelerometers 

(ICP-IMI, SN98697) with a sensitivity o f lOOmV/g. The accelerometers are secured on the 

gearbox as shown in Figure 6.2. The reference signals are collected using a mini-bean 

high-speed retro optical sensor (SM 312LVMHS). Two disks apply a static load whereas 

the variable load is applied by a magnetic brake system (Placid Industries, B150-24-H) 

through a bevel gearbox and a belt drive.

Real-time Matlab code has been developed to control the data acquisition 

processes. Signal analysis and classification operations are also performed in MATLAB.

Signals are collected using a sampling frequency =10^ Hz in order to attenuate the 

noise.

Figure 6.2 - Gearbox and accelerometers 

There are three shafts in the gearbox: the input shaft, the intermediate shaft and the 

output shaft. The configuration o f the spur gears in the gearbox is presented in Figure 6.3

63



[50] whereas the contiguration o f the helical gears can be seen in Figure 6.4. The results 

presented in this work are pertaining to the gear on the input shaft.

Figure 6.3 - Spur gears configuration

# # 0

Figure 6.4 - Helical gears configuration
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Since the scope of this research is to detect faults in gearboxes, various faulted 

gears have been introduced: Figure 6.5 shows a helical gear with a 40% chipped tooth and 

Figure 6.5 illustrates a spur gear with a 90% missing tooth. Other gear conditions used for 

testing were severe cracked gears, minor cracked gears, and o f course, healthy gears.

Y** ?

— . ----  T-jkV

Figure 6.5 - Broken tooth on a helical gear

Figure 6.6 - Chipped tooth on a spur gear



The collected signals under different healthy and faulty gear conditions will be analyzed 

for automatic fault detection as discussed in the following sections.

6.2 Condition Indicators

As mention in Chapter 1, one o f the most popular methods for gearbox diagnosis 

used in literature is the time domain analysis. First, the time synchronous average is 

performed such that any noises non-synchronous with the gear being inspected are 

removed. Although this process has been proven to be efficient in filtering out noise and 

other such events, it has a disadvantage when it comes to detecting slight damages since 

very small variations in the synchronous time average may occur. These variations may be 

so small that any change in tooth condition would be hard to detect against the dominated 

pattern o f the tooth meshing vibration. Condition indicators are then calculated using 

different methods. Although the root mean square value (RMSV) is not sensitive to early 

stage defects [3], it is the simplest method employed to determine the overall health o f a 

gear. Crest Factor is another indicator used in literature [51], [3]. Authors have proven that 

the crest factor is a good indicator o f small size defects; although, when localized damage 

propagates, the value of the crest factor decreases significantly due to the increasing 

RMSV. Kurtosis is also a well-used condition indicator as it gives valuable information 

regarding the peakedeness o f the signal. Although, researchers [3] have found the Kurtosis 

value to be more useful, when it is compared with the RMS and crest factor when 

monitoring bearings, these methods were employed for monitoring gears as well [51]. 

Another condition indicator utilized for classification o f gears in this study is energy
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operator (EO). Computed similar to Kurtosis, energy operator also provides valuable 

information regarding the state o f the gears being monitored.

6.2.1 Time Synchronous Average (TSA)

Since gear signals are periodic, it is possible to extract the signature corresponding 

to each gear in the gearbox by using the TSA technique. TSA was firstly proposed by 

McFadden [52]. It is an averaging process over a large number o f cycles, synchronous with 

the running speed o f a specific shaft in the gearbox. As a result, signatures that are not 

synchronous with the rotation o f the gear being monitored will be filtered out over 

sufficient rotation cycles, and the resulting feature specific to this gear is represented only 

over one complete revolution in the time domain [53]. In the case o f a fault being present 

in the monitored gear, an impulse signal would be present in the signal average, which will 

produce additional amplitudes and phase modulations o f the vibration signal.

Assuming the collected vibration signal y ( t)  consists o f R revolutions, each revolution 

has L data samples and the time interval between two samples is At = 1 / where is the

sampling frequency, then the TSA signal can be represented as follows:

^  r = 0

where t = , k = 0 ,1 ,...,(L - 1), A( = 1 / is the time interval between two samples with

being the sampling frequency, L is the number of data samples and R is the number of 

revolutions obtained from the vibration signal y (t) . R should be taken as large as possible
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in order to reduce the noise efficiently. The obtained signal is referred to as signal average. 

Figure 6.7 illustrates the TSA processes.

Ilfi

Figure 6.7 - Extraction o f  gear signature via time synchronous average

Several revised TSA techniques have been proposed in literature. For example, in 

[54], Vachtsevanos introduced the frequency domain TSA in which the discrete Fourier 

Transform is taken between each tachometer zero crossings. Combet [55] suggested a 

tachometer less TSA to reduce influence o f noise in tachometer readings. All these 

techniques were evaluated in [56] by Bechhoefer et al.
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6.2.2 Kurtosis

In mathematical terms, kurtosis is the forth moment o f the signal normalized by the 

square o f the variance. Consider a time signal s, the kurtosis is defined as:

K urt = ---- —------------------------------------------------------   (6.2)

f ife -? /]

where Kurt is kurtosis, N  is the number o f total sample points in time signal s , is the 

point in time signal s and J  is the mean value o f the time signal s .

Kurtosis can describe the shape o f the signal [51, 57]. More specifically, kurtosis is 

a measure o f how peaky or flat a signal is. A signal containing sharp peaks with high 

amplitude would return a higher kurtosis value, which, in general, is attributed to a faulty 

gear [51].

6.2.3 Energy Operator

Consider a signal x, the energy operator (EG) is defined as:

N^f^{Ax,-Axf
E 0  = ----- É1-------------------------------------------------------------------------------------------------------- - (6.3)

 ̂^ 2 Y
%  (A x,-A x y

where Ax is the mean value o f signal A x, A  is the number o f points in dataset x and 

Ax,; = -  s f  where and s f  are the (/ + l)'*’ and i“’ data points in the signal average,

respectively.
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The energy operator is also sensitive to fluctuations in the signal. A signal with high 

amplitude peaks would have a higher energy operator therefore a indicating a faulty gear.

6.2.4 Crest Factor

The crest factor (CF) is defined by ratio o f the peak-to-peak value o f the signal 

average to the RMSV o f the signal average as follows:

(6.4)
^rmsv

where CF is the crest factor, is the peak-to-peak value o f the residual signal s ,

and Sy^. is root mean square value given by:

= I— Y S ^

N is the number o f points in the signal average s, and Sj is the i ’̂ component o f the signal 

average, s.

The purpose of the crest factor calculation is to give an analyst a quick idea of how 

much impacting is occurring in a waveform. Impacting is often associated with roller 

bearing wear, cavitation and gear tooth wear. This parameter enables very tiny damages to 

be detected at an early stage [51].
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6.3 Gear Fault Diagnosis Using the Proposed EF Classifier

In order to make a decision related to the condition o f gears in the gearbox, which 

are inaccessible without dismantling the machine, it is important to analyze external 

relevant information. Typically, the most relevant information comes from different types 

of vibration signals. Running speeds and loading conditions are two important parameters 

affecting the vibration levels in gearboxes [57]. Since these parameters are usually held 

constant in condition monitoring, changes in vibration signals are mostly attributed to 

faulty gears such as, tooth breakage, tooth fracture and pitting.

The condition monitoring work presented here has been conducted in spur gears as 

well as helical gears. Although sometimes it is possible to recognize the fault condition in 

spur gears directly from the vibration signature, this is not always the case, especially in 

real industrial situations where noise signals disrupt the primary signature. In the case in 

which helical gears are used, classification by signal signature alone is almost impossible 

in real applications [53]. As a result, tools for automatic fault detection tools using 

decision-making intelligent schemes are sought. Therefore, the developed ie^TS-sDEKF 

technique will be implemented for gear fault diagnosis.

The condition monitoring scheme starts with processing the vibration signals 

collected with the three accelerometers shown in Figure 6.2. However, the results shown in 

this work are pertaining to the accelerometer closer to the gear being monitored and 

perpendicular to the shaft. Although many tests were performed under different shaft 

speeds and different loading conditions, some results, obtained from the operating
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conditions o f shaft speed o f 15Hz with the loading levels o f no loading, 100mA, 150mA 

and 250mA will be used to demonstrate the effectiveness o f the proposed techniques. The 

signals are time synchronous averaged in order to extract the vibration signature o f the gear 

to be analyzed from the total vibration o f the gearbox. Figures 6.8(a)-6.8(c) illustrate an 

example o f TSA signal for a healthy helical gear whereas Figures 6.9(a)-6.9(c) illustrates a 

faulty helical gear. A change in the vibration signal is observable in the three graphs of 

both figures representing different loading conditions. However, when comparing Figure 

6.8 with Figure 6.9 (i.e. faulty gear signal with healthy helical gear) under same loads (e.g. 

Graph (a) - no load) a conclusion regarding the condition o f the two gears is unattainable. 

This was the case for all experiments. A simple investigation o f the averaged signals could 

not draw any conclusive results with confidence. In fact, it is suggested that this would be 

the case in real industrial applications.
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Figure 6.8 - Time synchronous average for a healthy helical gear: (a) -  no load, (b) -  load level of
150mA, (c) -  load level of 250mA
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Figure 6.9 - Time synchronous average for a faulty helical gear: (a) -  no load, (b) -  load level of

150mA, (c) -  load level of 250mA

One o f the primary reasons why it is more difficult to detect fault in helical gears 

directly from the averaged time signal is related to the meshing properties. In a helical gear 

the load is shared among more pairs o f mating teeth than in spur gears; the changes in 

vibration magnitude become less significant when a tooth enters or leaves the meshing 

region under load. As a result, it becomes more difficult to examine feature modulations 

due to defects in helical gears.

Figure 6.10(a)-6.10(c) and 6,1 l(a)-6.11(c) are examples of TSA signals for a 

healthy spur gear and a faulty spur gear, respectively. When inspecting Figures 6.10(a)- 

6.10(c), it is clear that the load conditions have an impact on the resulting averaged time 

signal. To some extent, when the load increases in the gear train the signature modulation
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due to gear defect will become more prominent. This can be attributed to changes in the 

signal to noise ratio. Consequently, it is difficult to recognize difference between the gear 

signatures with no load (i.e. Graph (a)) and with 150 mA load level (i.e. Graph (b)); 

however, the signature o f the gear is recognizable in Graph (c) when a load level o f 250 

mA was applied.

From visual inspection o f Figures 6.8 to 6.11, changes in vibrations can be seen in 

the signatures o f the spur gears under different loading conditions, as well as those of 

helical gears. Since it is difficult to identify clear signature modulations that may be related 

to faulty gear conditions, advanced analysis using more features is required, as discussed 

next.
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Figure 6.10 - Time synchronous average for a healthy spur gear; (a) -  no load, (b) -  load level of

150mA, (c) -  load level of 250mA
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Figure 6.11 - Time synchronous average for a faulty spur gear: (a) -  no load, (b) -  load level of

150mA, (c) -  load level of 250mA

Condition monitoring indicators have been computed for different fault conditions 

and under different loading conditions for both spur and helical gears. These indicators are 

computed from features of the related signal processing techniques. Although many real 

life applications such as in marine and aeronautics require condition analysis o f the gears 

per tooth, this study focused on individual gears on the gear train with the scope of 

deciding the condition o f the entire gear without focusing on the type o f fault.

Tables 6.1 and 6.2 display some values of the condition indicators of the related the 

aforementioned techniques. By examining the condition indices, one conclusion can be 

drawn: the condition indicators are not robust for gear fault detection. For example, there is 

no expected significant change in the values of the kurtosis indicator for a healthy and

75



damaged spur gear (refer to Table 6.1) under a load level o f 250mA. The situation is even 

worse as the faulty gear indicators are even lower than the ones for the healthy gear for 

0mA and 150mA load levels. Similar conclusions can be drawn in examining the 

processing results using the crest factor indicator and the energy operator indicator, 

respectively. One reason for the discrepancy between CTs o f faulty and healthy gears can 

be attributed to the averaged time signal being corrupted by noise. Notably, the signal to 

noise ratio is lower for the cases with lesser load.
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Condition Indicators for Spur Gears

Loading conditions; 0

Kurtosis Crest Factor
Energy

Operator Condition

3.909 0.23646 6.1531

healthy gear
4.8036 0.2203 6.4672
4.7033 0.229 5.8284
4.6247 0.23571 5.6874
4.9348 0.2272 7.118
3.3718 0.25725 6.673

faulty gear
3.8774 0.23451 6.1721
3.4649 0.23928 5.9235
^3108 0.24717 5.7699
4.0645 0.23611 7.716

Loading conditions: 150

2.8831 0.30385 5.7217

healthy gear
2.7186 0,32037 5.2966
2.6828 0.32855 5.5347
2.6856 0.32268 5.5027
2.7255 0.33142 5.2165
2.4183 0.34603 5.9678

faulty gear
2.4059 0.32035 4.7182
2.3753 0.35584 4.9798
2.5332 0.35116 6.1804
2.5074 0.33015 4.6591

Loading conditions: 250

2.0015 0.34678 5.4112

healthy gear
2.1035 0.33984 6.2695
2.0786 0.32725 5.1522
1.8998 0.42837 6.1234
2.0431 0.35836 5.2894
2.1412 0.31985 5.3088

faulty gear
2.0494 0.35569 6.1688
1.9612 0.34872 6.0344
1.8543 0.38043 5.8159
2.0729 0.34559 5.486

Table 6.1 - Spur gear condition indicators using different techniques
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Condition Indicators lor Helical Gears
Loading conditions: 0

Kurtosis Crest Factor
Energy

Operator Condition

2.9794 0.32458 5.2458

healthy gear
2.9788 0.31438 6.7411
2.9815 0.2894 5.0539
2.733 0.32193 4.8636
2.7115 0.34152 5.6053
6.3388 0.18785 5.0913

faulty gear
5.2069 0.20335 4.6823
4.9681 0.19967 5.5381
6.4048 0.18353 4.8808
5.2863 0.20632 5.0246

Loading conditions; 100
2.9542 0.33105 5.3425

healthy gear
2.9744 0.32405 5.5813
2.7816 0.32674 5.3804
2.9433 0.31456 6.3746
2.9537 0.33572 5.5516
3.0021 0.29318 5.4503

ftrulty gear
2.9912 0.295 7.3838
2.9304 0.30131 6.4985
3.0043 0.28806 5.9877
3.142 0.2895 5.7547

Loading conditions: 250
3.2869 0.25728 5.4399

healthy gear
3.2997 0.25429 5.6884
3.149 0.2639 4.9158
3.2954 0.26282 4.8596
3.5134 0.25292 4.4767
3.1675 0.26167 5.3027

faulty gear
3.1324 0.25036 5.4033
3.3559 0.24758 4.6343
3.2061 0.25419 4.7488
3.2725 0.25369 4.8626

Table 6.2 - Condition indicators for helical gears
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It can be concluded that that the selected indicators are not very robust, but each 

has its own advantages and limitations. It is difficult to achieve reliable gear fault diagnosis 

if  only one indicator is used in this case. Corresponding, the strategy in this work is to use 

the proposed EF classifier to integrate the strengths of the selected indicators so as to 

provide a more positive assessment o f the gear health conditions.

In classification analysis the same condition indices computed above are used as 

inputs intro the proposed classifier. The network has one output, further classified into two 

classes as follows;

: IF  Output < 0.5 TH EN  Gear is Faulty 

• IF  Output > 0.5 THEN Gear is Healthy

An output o f one represents 100% healthy state whereas an output o f zero indicates 

the 100% faulty condition. The appropriate number of rules has been created using the 

clustering techniques mentioned in Chapter 3. The classifiers are trained over 50 epochs 

using the data sets corresponding to the spur gears and helical gears, respectively. Both

classifiers are trained under different values for and rj  ̂ ranging from rĵ  =0.5-1.5 and 

77. = 1.0X10“  ̂~ 1.0 where /? = — / ,  Q = —  I  and I  is the identity matrix. The results are

discussed in the following subsections. Even though all classifiers were tested, the primary 

scope was to test the proposed classifier.
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6.3.1 Spur Gear

The results obtained for spur gears have been obtained using 77^=0.85 and 

77̂  = 1.0 X 10“  ̂. A total o f eighty-five input/output data pairs for three loading conditions

have been computed using the techniques presented previously (i.e. ie2TS-sDEKF). Fifty 

data pairs have been used to generate the necessary amount o f clusters using the 

aforementioned clustering technique. The results o f the clustering technique as well as the 

MFs and evolving rules are presented in Figures 6.12 and 6.13, respectively.

1“
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Universe
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0.80.4 0.60 0.2 1
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Figure 6.12 - Identified membership functions using ie^TS-sDEKF - Spur gears
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Figure 6.13 - Evolution of rules using ie TS-sDEKF - Spur gears

Figure 6.14 displays the output, where the demonstrated error is that produced after 

the identification of the EF classifier. It is clear that once the EF architecture is identified 

using the first fifty data sets, no sets have been misclassified in the following test process.

Other classifiers used for comparison produced one misclassified data set for the loading 

conditions however, the networks have done so by producing more clusters (i.e. fuzzy 

rules). Table 6.3 displays the results generated for different loading conditions.
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Spur Gear Results
Load =250

Method
Number

of
Clusters

Epochs
Avg. Training 

Time per 
Epoch (s)

Identification
E rrors

Average
Training
E rrors

Testing
E rrors

Rate Avg.
R.MSE

eTS-
DEKF

4 50 0.067462 2 4 4 92 0.3155

e-TS-
DEKF

4 50 0.066015 2 4.52 4 92 0.3112

ie-TS-
DEKF

2 50 0.041957 5 4.06 4 92 0.3166

ie-TS-
sDEKF 2 50 0.042156 5 3.86 4 92 0.3137

Load =150

Method
Num ber

of
Clusters

Epochs
Avg. Training 

Time per 
Epoch (s)

Identification
Errors

Average
Training

E rrors

Testing
E rrors

Rate Avg.
RMSE

eTS-
DEKF

3 SO 0.048902 1 1 I 98 0.1583

ĉ TS-
DEKF

3 50 0.050405 1 1 1 98 0.1577

ie'TS-
DEKF

2 50 0.03688 1 I 1 98 0.159

ie'TS-
sDEKF 2 50 0.037358 1 0 0 100 0.0956

Load = 0

Method
Num ber

of
Clusters

Epochs
Avg. Training 

Time per 
Epoch (s)

Identification
E rrors

Average
Training

E rrors

Testing
E rrors

Rate
Avg.

RM SE

elS -
DEKF

3 50 0.04281 1 1.02 1 98 0.2271

ê TS-
DEKF

3 50 0.056417 1 1 1 98 0.2267

ie-TS-
DEKF

2 50 0.041573 0 I 1 98 0.2274

ie-TS-
sDEKF

2 50 0.041972 0 1 1 98 0.2108

Table 6.3 - Spur gear results
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Figure 6.14 - Network identification output and classification error using ie^TS-sDEKF - Spur gear

The MFs at the end o f the training procedure using the proposed classifier, ie TS- 

sDEKF, are illustrated in Figure 6.15.
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Figure 6.15 - Membership functions after training using ie^TS-sDEKF - Spur gears

Figure 6.16 displays the output o f the proposed classifier, ie^TS-sDEKF, as well as 

the classification error. It can be seen that at the end o f the training procedure, one instance 

has been misclassified. Figure 6.17 shows the testing results using 50 data sets. It is clear 

that the proposed classifier, ie^TS-sDEKF, can effectively assess the gears' health 

conditions during the testing process, with only one instance misclassified. Although the 

classifiers used for comparison generated the same amount o f errors, they did so at the 

expense o f more clusters. Consequently, the efficiency o f the classifiers used for 

comparison is degraded, as it can be observed in Table 6.3.
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Figure 6.16 - Trained network output using ie TS-sDEKF - Spur gears
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Figure 6.17 - Verification output and classification error using ie^TS-sDEKF - Spur gears
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When comparing the root mean square error (RMSE) produced during the training of all 

classifiers utilized for fault condition monitoring, the proposed training technique (i.e. 

ie^TS-sDEKF) can effectively converge to a lower RMSE, as demonstrated in Figures 6.18 

to 6.20. Although the RMSE is not significantly lower for the 250mA loading levels, the 

proposed classifiers is able to generate fewer clusters than the other classifiers. Also, the 

RMSE of the ie^TS-sDEKF converged quickly to a desired value whereas the RMSE for 

the other classifiers stayed unstable for the entire training process. Evidently, the proposed 

ie^TS-sDEKF classifier can effectively determine the states o f  the gear trains with a higher 

confidence level than other related classification schemes.
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Figure 6.18 • Root mean square error for spur gears - 250mA load level
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Figure 6.19 - Root mean square error for spur gear - 150mA load level
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Figure 6.20 - Root mean square error - 0 load
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Figure 6.21 displays the identified structure for spur gears classification.
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Figure 6.21 - Identified structure for spur gears using ie^TS-sDEKF 

6.3.2. Helical Gears

In this section, the proposed classification technique is implemented for fault 

detection o f helical gears. Similar to spur gears, the results obtained for helical gears have

been obtained using % =0.85 and t]̂  = 1 .0x10“^. 60 data pairs are used for clustering

and training o f the network where another 60 data pairs will be employed for verification. 

The developed ie^TS-sDEKF classifier has generated two clusters (i.e., two rules), where 

the related MFs are shown in Figure 6.22.
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Figure 6.23 - Evolution of rules generation using ie^TS-sDEKF- Helical gears
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The proposed ie TS-sDEKF outperforms other related classifiers except in one 

identification case when load level is 250mA as depicted in Table 6.4. Figure 6.24 

illustrated the identification results for the case when no external loading conditions were 

applied.
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Figure 6.24 - Identified network output and classification error using ie^TS-sDEKF- Helical gear
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Figure 6.25 - Membership functions after training using ie^TS-sDEKF - Helical gears

The proposed classifier, however, indicates a better performance being able to 

produce no classification errors at the end o f the training process. This effect is 

demonstrated in Figure 6.26.
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Figure 6.26 - Trained network output using ie^TS-sDEKF - Helical gears

60

In the verification process, once again, the proposed classifier was able to classify 

all gear conditions accurately without classification errors. This is an indication o f an 

effective training procedure, which can be demonstrated in Figure 6.27 based on the 

network output and the classification error.
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Figure 6.27 - Verification output and classification error using ie TS-sDEKF - Helical gear

The classification performance o f all other related classifiers is summarized in 

Table 6.4. Some interesting aspects can be noted in Table 6.4 mainly in the identification 

errors for no loading levels. That is, the number o f errors generated by the classifier e^TS- 

DEKF significantly higher than all the other networks. This is thought to be due to the 

classifiers' identification technique in which cluster centers and radiuses are being assigned 

without verifying their potential. Hence, the numbers o f errors indicates that the clusters 

generated are not clusters with the highest potential. Another aspect worth mentioning is 

pertaining to the loading levels of 100mA. Although all classifiers identified the same 

number o f clusters, the proposed classified had the ability to generate fewer errors in a 

slightly faster time. This validates the proposed classifier's robustness.
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Helical Gears Results
Load = 250

Method
Number

of
Clusters

Epochs

Avg. 
Training 
Time per 
Epoch (s)

Identification
Errors

Average
Training

Errors

Average
Testing
E rrors

Rate
Avg.

RMSE

eTS-
DEKF

3 50 0.061558 6 5.9 6 90 0306

e-TS-
DEKF

3 50 0.062941 6 6 6 90 0.2812

ie^TS-
DEKF

2 50 0.047287 7 6.04 6 90 0 301

ie'TS-
sDEKF 2 50 0.047375 7 6 6 90 0.2746

Load = 100

M ethod
Number

of
Clusters

Epochs

Avg. 
Training 
Time per 
Epoch (s)

Identification
E rrors

Average
Training
E rrors

Average
Testing
Errors

Rate
Avg.

RMSE

cTS-
DEKF

2 50 0.049132 5 5.96 6 90 0.2999

e'TS-
DEKF 2 50 0.048437 6 6^8 7 8833 0.2999

ie-TS-
DEKF

2 50 0.047476 4 6 6 90 0.3001

ie-TS-
sDEKF 2 50 0.047618 4 3.4 4 9333 0.2499

Load = 0

Method
Num ber

of
Clusters

Epochs

Avg. 
Training 
Time per 
Epoch (s)

Identification
Errors

Average
Training

P>rors

Average
Testing
Errors

Rate
Avg.

RMSE

eTS-
DEKF

4 50 0.075822 1 0.04 1 9833 0.1733

e-TS-
DEKF

4 50 0.075473 58 0.12 1 9833 0.17

ie-TS-
DEKF

2 50 0.047102 1 0 0 100 0.1756

ie^TS-
sDEKF 2 50 0.047102 1 0 0 100 0.1488

Table 6.4 - Helical gears results
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Although ie TS-DEKF classifier was also able to classify most instances correctly, 

its classification accuracy is still lower than ie^TS-sDEKF, indicating the effective 

convergence o f the proposed sDEKF technique. This can be observed in Figures 6.28-6.30 

as well as Table 6.4.
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Figure 6.28 - Root mean square error for helical gears - 250mA load level
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Figure 6.31 displays the identified structure for classifying helical gears.

KU K U C F EO
! i i

K U C F E O

Figure 6.31 - Identified structure for helical gears 

Remark D: The EF classifier was able to accurately classify both spur and helical gears 

despite the CIs inconsistency. This is the result o f an efficient training technique.
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Chapter 7

7.0 Conclusion and Future Work

"Reasoning draws a conclusion, 

but does not make the conclusion certain, 

unless the mind discovers it by the path o f  experience. "

Ro g e r  Ba c o n

The aim o f this research was to develop an improved intelligent classifier that can be 

implemented for machinery condition monitoring. Notably, a few direct improvements 

have been made and the proposed classifier has been shown to have a more flexible 

clustering initiation and better performing training technique.

Firstly, an improvement was made to the network identification technique. A 

feasibility check is performed once the input/output data pair is presented. By introducing 

the feasibility check one can ensure that the incoming data point considered for a cluster 

center is not overlapping another cluster. Once the input/output data set passes the 

feasibility check its potential to become a cluster center is calculated. If  the data point is 

deemed a good cluster center candidate, a new point calculated using standard deviation is 

also proposed as cluster center. Different from other techniques, in this work a new step is 

introduced. Before accepting the proposed point as cluster center, its potential to be a
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cluster center is calculated. The point is accepted as a cluster center if  its potential is higher 

than the potential o f the incoming point. Otherwise, the incoming point is chosen as a 

cluster center. These changes have been shown to make the clustering technique more 

robust and more flexible, allowing the user to define how far apart the clusters could be.

Second, an improvement has been made to the training technique based on the node 

decoupled Kalman filter. The motivation o f this improvement lies in known inherent 

attributes o f the Kalman filter. The main attribute is the fact that the performance o f the 

Kalman filter is directly dependent on the covariance matrices. For this reason, an updating 

of the covariance matrices during the training technique has been proposed. It has been 

found that the performance o f the network is improved. This was validated in testing and in 

training by analyzing the root mean square error produced. The proposed classifier has 

been compared with other classification methods to validate the findings.

Industries utilizing machinery are in great need o f reliable online monitoring 

systems to detect the occurrence o f defects in machines and therefore prevent their 

performance degradation, malfunction, and even catastrophic failures. As a result, in this 

research a more reliable condition-monitoring scheme has been used for the classification 

o f spur and helical gears in an experimental system. Preprocessing o f signals using signal 

processing techniques such as time synchronous average, and condition monitoring 

indicators computed using methods such as kurtosis, root mean square value, crest factor 

and energy operator has been performed and discussed. Classification in this work mainly 

focuses on neural fuzzy based classifiers. These classifiers have the ability to adapt the 

rules keeping the structure fixed as shown in Chapter 6. The proposed classifier had the 

ability to successfully classify the gears into two categories, namely, healthy or damaged,
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based on fifty input/output pairs. Such a classification would not have been possible based 

on inspection o f  the time synchronous averaged signals, or further based on the condition 

indicators computed using the aforementioned methods alone, thus illustrating the 

effectiveness o f  utilizing intelligent tools for machinery condition monitoring.

Future works pertaining to the applications consist o f the following:

• implementation o f the intelligent system for online condition monitoring. In case of 

machinery performance degradation, the intelligent system can identify the faulty 

components such that repair personnel can efficiently act upon it.

• computation o f condition indices pert tooth rather than per gear as well as detection of 

type o f fault (i.e. pitting, cracking, tooth breaking)

• developing a sensor such as the one presented in [59], in which the classification 

paradigm could be programmed in the sensor and the decision would be displayed on 

line. Such a sensor is connected to a laptop by means o f a USB cable therefore it 

would be very useful in industry where space is limited and a large condition 

monitoring setup would not be advantageous. Another advantage would be the price; 

production of such a sensor would cost about $500 whereas other condition 

monitoring setups would cost at least $5000.

In the future, the following endeavors pertaining to intelligent tools will be carried out:

Implement the developed ie2TS-sDEKF for a wide range o f real applications such as 

bearing classification, shaft misalignment 

. Develop online training strategies for classification
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Develop more effective training algorithms to further improve training performance 

and prevent local minima

. One way o f achieving this would be to change the optimization process to ensure 

that a convergence to a global minimum is achieved. Optimizations processes such 

as genetic algorithm and particle swarm optimization are some examples.

Test the performance o f the classifier using data from a different set-up in order to 

ensure that testing and training data independence.

Test the performance o f the classifier in real applications to ensure its robustability.
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