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Abstract

The spatial distribution of animals can arise through a variety of habitat-selection 

strategies. It is unclear which habitat characteristics lead to the evolution of one of these 

strategies over another. Thus I use an individual-based model of habitat selection to 

assess how the mean and standard deviation of breeding-site quality in a landscape of two 

habitats influence the geometric mean fitness of ideal free, ideal pre-emptive and ideal 

despotic habitat-selection strategies. Computer simulations revealed little difference in 

fitness among strategies. Most simulated habitats supported large populations that 

saturated breeding sites and fluctuated around their carrying capacities. Despotism 

yielded the highest geometric mean fitness when more-or-less homogeneous sites were of 

low average quality. The rank order of strategies by fitness depended on density and was 

consistent across all simulations. Despotic habitat selectors consistently possessed the 

highest geometric mean fitness at low density suggesting that despotism can invade other 

pure strategies. The results imply that multiple habitat-selection strategies may coexist in 

the same population. Coexisting strategies are most likely to occur at high population 

density or under conditions that cause frequent variation in population size.

Keywords: evolution, habitat selection, ideal despotic, ideal free, ideal pre-emptive, individual- 

based model



Introduction

Most species are distributed in landscapes consisting of habitats of varying 

quality. Individuals choosing one habitat over another can do so by a variety of 

mechanisms. Alternatives include passive dispersal (McPeek and Holt 1992), as well as 

more complex adaptive strategies of density-dependent habitat selection (Fretwell and 

Lucas 1969, Morris et al. 2004). The success of any habitat-selection strategy will be 

influenced by the quality and distribution of habitats in the landscape in which 

individuals reside.

In the classic ideal free distribution (Fretwell and Lucas 1969), individuals are 

assumed to accurately assess their potential fitness among habitats and choose the habitat 

where their fitness is highest. An individual’s fitness may, however, be constrained by the 

behaviour of dominants that usurp the best territories and interfere with the habitat 

choices of subordinates (ideal despotic distribution; Fretwell and Lucas 1969). The 

distribution of individuals among habitats may also be modified if individuals pre-empt 

use of the best sites in the landscape (ideal pre-emptive distribution; Pulliam and 

Danielson 1991), are constrained by the optimal choices of related individuals (Morris et 

al. 2001), or if the animals are not ideal, such as when they are unable to accurately 

assess fitness in a given habitat (Abrahams 1986).

Each habitat-selection strategy has been introduced in theoretical studies as a 

single favourable alternative to passive dispersal and occupation, often with the 

assumption that there is negligible cost to habitat choice (Pulliam and Danielson 1991, 

Rodenhouse et a/. 1997). Individuals in a population may, however, use more than one 

habitat-selection strategy (Pusenius and Schmidt 2002). Ideal individuals can either



choose habitats based on mean habitat quality, or they might select sites that differ in 

quality (Morris 2003). We do not know what habitat characteristics lead to the evolution 

of alternative ideal habitat-selection strategies, so it is clear that we must further explore 

the conditions which favour the evolution of one strategy over another. Thus, I use 

individual-based computer simulations to address the question: how do the mean and 

variance of site quality effect the evolution of habitat selection? I answer the question by 

contrasting three adaptive density-dependent habitat selection strategies (ideal free [IF], 

ideal despotic [ID], and ideal pre-emptive [IP]) and compare their fitness against a 

minimal-selection (MS) model, in which individuals choose the first suitable site they 

encounter, as a well as a fitness maximizing strategy (WMAX). I explore the dynamics of 

these strategies in landscapes consisting of habitats differing in mean and variance of site 

quality. Territorial behaviour is arguably the most extreme form of habitat selection, so I 

concentrate on identifying conditions under which the evolution of despotism is favoured 

or hindered.

Methods

Modelling habitat selection

I model the behaviour of an asexual, semelparous species using an individual- 

based model developed in Python 2.5.4 (Appendix V). Offspring form a common pool 

before selecting habitat and breeding sites. Individuals have sole use of the site they 

occupy. Habitat selection takes place in a model landscape consisting of 1000 breeding 

sites distributed equally between two habitats; population size is, therefore, a direct



measure of population density. The sequence of population dynamics is recruitment 

followed by dispersal and mortality (Figure 1).

The quality of each breeding site is measured by the net reproductive rate that an 

individual achieves by occupying that site (Ro). An individual’s fitness is further 

modified by the costs of finding, occupying and retaining the site.

Adaptive habitat-selection strategies are mimicked by varying the mechanisms 

(strategies) that individuals use to locate sites. The strategies differ in how many sites are 

sampled, and whether or not sampling is restricted to one habitat (Figure 2). All 

individuals, regardless of strategy, aspire to occupy a site that yields at least one 

descendent (aspiration level; i.e. Posch et al. 1999).

Individuals pay a search cost for every site they sample. Individuals can assess a 

site that is already occupied, but only ideal despotic individuals can usurp the site (see 

below). Costs are incorporated as deductions from the quality of the site that the 

individual chooses. Searching ends when costs accumulate to a threshold value (cost 

threshold). Upon reaching its cost threshold, the individual will occupy the best 

unoccupied site that it found. If no empty sites were sampled, the individual remains in 

the final habitat it sampled as a non-breeding individual (floater). Floaters do not occupy 

breeding sites, but do depress the fitness of all breeding individuals in the habitat by an 

equal amount. Each floater is assumed to consume enough resources to maintain itself 

without reproduction and thus reduces the sum of Ro achieved by breeding individuals in 

the habitat by 1. Floaters can arise in site-dependent strategies (Rodenhouse et al. 1997) 

whenever site seekers frequently encounter site holders (Sergio et al. 2009). I reasoned



Figure 1: Life cycle diagram for the asexual model species. The sequence of population 

dynamics is recruitment followed by dispersal and stochastic mortality. 

Populations are censused once each generation.
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Figure 2: Flow chart of computer simulations that model four different habitat-selection 

strategies (g = number of generations, MS = minimal selection, IF = ideal free, 

ID = ideal despotic, IF = ideal pre-emptive).
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that this will occur in populations above carrying capacity, when per capita fitness 

becomes negative.

Individuals using the minimal-selection strategy occupy the first site with 1 

that they find while sampling from the entire landscape. Ideal-free individuals sample 

similarly except that they choose the first unoccupied site (with 1) from the habitat 

that maximizes the total value of all unoccupied sites minus the number of floaters 

(the habitat yielding the highest expected fitness). This simple metric implicitly 

incorporates the density dependence of site availability and quality, as well as the 

density-dependent effects of floaters. In theory (Fretwell and Lucas 1969), ideal free 

habitat selectors scramble for resources and have equal effects on one another’s fitness. I 

imagined that the scramble would take place only in sites where reproduction was 

positive, and I modelled its effect by allowing individuals to choose the first unoccupied 

site encountered with a site quality greater than one. Thus, as IF or MS individuals 

accumulate in a habitat, the per capita fitness in the habitat should decline in direct 

proportion to the number of individuals living there.

Ideal despotic and ideal pre-emptive individuals sample a minimum number of 

sites before selecting one to occupy. If none of the sampled sites is suitable, then the 

individual undertakes another search until it finds a site or exceeds its cost threshold. 

Ideal pre-emptive individuals sample from the entire landscape whereas ideal despotic 

individuals sample only from the best habitat (highest expected fitness). Resident despots 

pay a defense cost each time their site is sampled by another individual. If an ideal 

despotic individual samples an occupied site in which the resident has accrued higher 

costs than the searcher, the searching individual can usurp that site but pays a

14



confrontation cost to do so. The ousted individual will resume its search for a new site, 

retaining search costs from its previous search. If search costs from the previous search 

are above the cost threshold, the individual becomes a floater in the habitat it previously 

occupied.

The density-dependent fitness of each strategy is compared against a fitness 

maximizing strategy whereby individuals choose the best available site in the landscape 

without cost (WMAX) (Table 1).

Assessing population dynamics

The model consists of two phases, a population dynamics phase and a separate 

density-dependent fitness assessment phase. In the population dynamics phase, pure 

populations of each strategy grow in isolation from other strategies, but in identical 

habitats. After all individuals have chosen breeding sites (or habitats by floaters), the 

population suffers stochastic mortality. The frequency and severity of stochastic mortality 

are drawn from separate uniform distributions. The model then adds:

Y j , R i - c d - V r  (1)

individuals to each habitat, where i?, is the value of a site occupied by individual i, c, is 

the total cost accrued by that individual and Vj is the total number of non-breeding 

individuals in the habitat. Each simulation records population dynamics for 1000 

generations before assessing density-dependent fitness.

Assessing density-dependent fitness

For each landscape I assess the density-dependent fitness (calculated as the 

geometric mean of per capita fitness -  equation (1) / N, e.g.. Levins 1962) of each

15



Table 1: A  summary o f  m odel parameters and symbols.
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Symbol Description
n Number o f  individuals in one habitat.
V Number o f  non-breeding individuals (floaters).
R Site value = net reproductive rate.
C Total fitness cost = total reduction in the number o f  offspring produced by individuals

(i.e., the sum o f  all costs listed below).
M odel Parameters

Search cost -  Reduction in the number o f  offspring produced for every site sampled.

Defense cost — Reduction in the number o f  offspring produced by an ID resident when 
its site is sampled by another individual.

Challenge cost -  Reduction in the number o f  offspring produced by an ID individual 
when it usurps a site occupied by a different ID resident.

Sample effort -  The minimum number o f  sites sampled by ID and IP individuals.

Cost threshold -  the maximum reduction in number offspring produced that individuals 
will accept before ceasing to search for new sites.

S Number o f  generations.

Stochastic frequency -  The probability {\!sj) that a stochastic event will occur in any 
given year.

Stochastic severity -T he maximum value defining a uniform distribution with a 
minimum o f  0, from which the percent mortality o f  stochastic events is drawn._________

dc

cc

m

ct

sv
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strategy at fixed population densities starting at N=10. Subsequent steps increment 

population density by 10, until the final step when N=1000. Each step begins by 

establishing a fixed population size and allowing individuals to distribute themselves 

among sites in the landscape according to their respective strategies. The model records 

the resulting distribution of individuals, site qualities and costs, then calculates the mean 

of values over nine replications. The level of replication was determined by balancing the 

need for replication with the prohibitively-long simulation time for each replicate 

(typically 15 hours on a PC with a 2.1GHz triple core processor and 3 GB of RAM).

Identifying winning strategies

I used two sets of simulations to search for scenarios in which the ID strategy 

yielded higher geometric mean fitness than either IP or IF strategies (Table 2). I first 

compared ID against IP strategies. I made two predictions. 1) If two habitats have the 

same mean and variance in site quality, then IP habitat selectors should accrue per capita 

fitness at least as high as ID selectors because the strategies sample from the same 

probability distribution. 2) If the variance in site quality is identical in the two habitats, 

but the mean site quality is higher in one than in the other, then the ID strategy should 

yield a higher geometric mean fitness than IP because ID individuals restrict sampling to 

the best habitat.

Accordingly, I maintained a constant variance in site quality, allowed the means 

to diverge between habitats, and searched for a minimum difference in mean site quality 

between habitats that led to the ID strategy accruing more fitness than the IP strategy. 

Simulations maintained a low constant mean site quality in habitat B (%g = 1) while they 

iteratively increased the mean site quality in habitat A (Table 2).

18



Table 2: A list of simulations used to assess habitat-selection strategies under 17

scenarios representing differences in the mean and variance of site qualities 

between two habitats. All simulations were replicated eight times. For all 

simulations: sc = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m = lO ,g=  1000, sf= 

1 (stochastic events occur every year), sv = 20.
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Sim ulation Replicates

M ean site 
quality in 
habitat A

Standard  
deviation in 

habitat A

M ean site 
quality in 
habitat B

Standard  
deviation in 

habitat B

Differences in mean site quality 8 0.75 0.2 1 0.2

Differences in mean site quality 8 1 0.2 1 0.2

Differences in mean site quality 8 1.25 0.2 1 0.2

Differences in mean site quality 8 1.5 0.2 1 0.2

Differences in mean site quality 8 1.75 0.2 1 0.2

Differences in mean site quality 8 2 0.2 1 0.2

Differences in mean site quality 8 2.5 0.2 1 0.2

Differences in mean site quality 8 3 0.2 1 0.2

Differences in mean site quality 8 3.5 0.2 1 0.2

Differences in mean site quality 8 4 0.2 1 0.2

Differences in standard deviation 8 1 0.01 1.5 0.01

Differences in standard deviation 8 1 0.05 1.5 0.05

Differences in standard deviation 8 1 0.1 1.5 0.1

Differences in standard deviation 8 1 0.2 1.5 0.2

Differences in standard deviation 8 1 0.3 1.5 0.3

Differences in standard deviation 8 1 0.4 1.5 0.4

Differences in standard deviation 8 1 0.5 1.5 0.5

20



Next, I contrasted ID with IF. I predicted that IF populations should yield higher 

geometric mean fitness than ID populations in invariant habitats because all sites are 

identical. The extra cost of sampling many sites by ID reduces its per capita fitness. If, 

however, site qualities in one habitat are more variable than those in the other, then the 

ID strategy should yield higher mean fitness because ID individuals have a greater 

probability of finding the best sites. I initiated these simulations with a mean site quality 

in habitat A of 1 and a mean site quality in habitat B of 1.5.1 then iteratively increased 

the standard deviation of site quality in each one from 0.01 to 0.5 to find scenarios in 

which ID yielded a higher geometric mean fitness than IF (Table 2). All simulations were 

replicated eight times and the grand mean of geometric mean fitness was used to rank 

strategies.

Finally, I conducted a preliminary sensitivity analysis to explore the relative 

effects of low and high values in key model parameters on fitness and population 

dynamics. I changed only one parameter at a time, and set remaining parameters at the 

values used in simulations exploring population dynamics. I explored values of the cost 

threshold such that, with a low cost threshold, ID and IP populations sampled, at most, 

only five additional sites beyond their minimal sample effort; ID and IP doubled their 

sample effort if no suitable sites were found under a high cost threshold, I doubled 

sample effort (the minimum number of sites ID and IP individuals will sample before 

choosing one to occupy) for the high treatment, and reduced it to one site for the low 

treatment. I explored challenge cost at 10'' the values used in the simulations for the low 

treatment, and high enough (0.05) so that only the best sites would be usurped in the high 

treatment. I explored search costs and defense costs at values 10'' and 10 times the values

21



used in the simulations exploring population dynamies. I did not replicate the simulations 

beeause I was interested only in detecting large ehanges in fitness and population 

dynamics.

Analysis

I calculated the grand mean and standard deviation of geometric mean fitness 

across the eight replicates of each simulation corresponding to a different site-quality 

scenario. I inferred that a particular habitat-selection strategy should evolve in scenarios 

where it had the highest geometric mean fitness [any difference in fitness, no matter how 

small, is evolutionarily significant (Fisher 1930)].

In order to test my a priori predictions, I plotted geometric mean fitness against 

the mean or standard deviation of site quality. Population size is arguably a better 

surrogate of fitness in stochastic environments than is growth rate (Benton and Grant 

2000). Thus, when comparing two strategies with approximately equal geometric mean 

fitness, I inferred that the strategy maintaining a higher mean population size had higher 

fitness. I used this “fitness assessment rule” whenever populations were maintained near 

their carrying capacities (because populations that maintain density near carrying 

capacity all possess a per capita fitness {Ro) near one).

I reasoned that differences in geometric mean fitness among strategies might arise 

through differences in status (breeders vs. floaters) and in the distribution of individuals 

between habitats. I tested for differences in distribution (number of individuals occupying 

the two habitats) among strategies with two general log-linear analyses (SPSS vl8): one 

analyzing data from a simulation in which the ID strategy ranked first in fitness, and

22



appeared to have a different distribution of individuals compared with other strategies, 

and one where ID ranked last in fitness.

I refined my search for “wirming strategies” by using the fitness assessment data 

to map each strategy’s fitness across an adaptive landscape for habitat selection (Wright 

1932). I mapped geometrie mean fitness against density of each simulation for each 

habitat-selection strategy (Morris 2003). Different strategies “win” at different densities, 

so I assessed the growth rate (fitness) at low density as an indicator of a mutant’s ability 

to invade other pure strategies (Mylius and Diekmann 1995). In order to assess the 

success of mutant strategies under different scenarios, I plotted geometric mean fitness at 

low density against the mean or standard deviation (depending on which varied in the 

simulation) in site quality. I used data from only the first three generations because 

populations typieally grew to carrying capacity within four generations.

Results

The minimal-selection strategy was more susceptible to extinction than other strategies

The minimal selection strategy often went extinct when mean site quality was low 

(%B= 1; X^= 0.75 or 1; 4 extinctions in 16 replicates). These frequent extinctions lowered 

the grand mean of geometric mean fitness among replicates (Figure 3). All other 

strategies attained, and maintained, high mean fitness.

All strategies accrued similar fitness and population size

There was little difference in the geometric mean fitness among strategies 

(Figures 3, 4, 5). The similarity in geometric mean fitness among strategies occurred 

because populations saturated both habitats quickly, and then fluctuated little around their

23



Figure 3: The geometric mean fitness of four different simulated habitat-selection

strategies when mean site quality in habitat A is low. IF, ID and IP populations 

accrued similar fitness. MS had lower and more variable mean fitness because 

it became extinct in 4 of 16 simulations (arrows). Error bars represent one 

standard deviation. For all simulations; 1.5, = 0.2, Uj, = 0.2, sc = 0.001,

dc = 0.0001, cc = 0.01, ct = 0.25, m = 10, g = 1000, sf=  1 (stochastic events 

occur every generation) and sv = 20.
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Figure 4: The geometric mean fitness of four different simulated habitat-selection 

strategies across a range of mean site qualities in habitat A. As mean site 

quality in habitat A increases, the geometric mean fitness of ID populations is 

more variable, and eventually lower, than other strategies (arrow) that accrued 

very similar fitness. Error bars represent one standard deviation. Fitness is the 

grand mean of 8 replications of each simulation. For all simulations: x^=  1.5, 

Oa = 0.2, Ui, = 0.2, sc = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m= 10, g  =

1000, sf=  1 (stochastic events occur every year) and 5v = 20.
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Figure 5: The geometric mean fitness of four simulated habitat-selection strategies

across a range of standard deviations in site quality. Geometric mean fitness 

varied more among replicates of a simulation than among different scenarios of 

site quality. Error bars represent one standard deviation. Fitness is the grand 

mean of 8 replications for each simulation. For all simulations: x^=  1.5, x^= 1, 

sc = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m= 10, g = 1000, s/=  1 

(stochastic events occur every year) and = 20.
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carrying capacities (Figure 6). Furthermore, there was little difference in mean population 

size among strategies within each simulation (Figure 7, Figure 8). Mean population 

growth rate in each 1000-generation simulation was thus dominated by low variance 

about stochastically-fluctuating densities near K.

ID populations accrued lower fitness in rich habitats than did other strategies

The ID strategy achieved similar geometric fitness as alternative strategies except 

when one habitat had a much higher mean site quality than the other (Figure 4). Unlike 

other strategies, the variance in mean fitness also increased for ID populations as habitats 

diverged in mean site quality. Nonetheless, ID population size was comparable with that 

produced by other strategies (Figure 7).

ID populations accrued the highest geometric mean fitness in only a narrow set o f  

conditions

ID populations accrued the highest geometric mean fitness among strategies only 

in scenarios with low mean site quality and low variance (Figure 5). Within simulations, 

however, ID populations accrued the highest geometric mean fitness among strategies in 

only 6 of 8 simulations. In the remaining two simulations, ID had the lowest geometric 

mean fitness among strategies.

ID populations were distributed differently than the populations o f  other strategies

In both scenarios in which I analyzed the distribution of individuals there were

more breeders than floaters (Table 3, low-quality habitat A: breeder, Z =  13.2, P < 0.001;

high-quality habitat A: breeder, Z =  6.1, f  < 0.001). Even so, ID population size was

lower than other strategies when both habitats had low mean site quality (ID significant
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Figure 6: Time series of population sizes produced from simulations of four different 

simulated habitat-selection strategies. Each population grew quickly to 

carrying capacity then fluctuated asynchronously in response to stochastic 

mortality. Parameter values as follows: = 2, Xh = I, Oa = 0.2, = 0.2, sc ■

0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m = 10, g  = 1000, sf=  1 (one 

stochastic event occurs every generation) and sv = 20.
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Figure 7: The mean population size of four different simulated habitat-selection 

strategies across a range of mean site qualities in habitat A. The mean 

population for each strategy is similar in most scenarios. Mean population sizes 

are the grand means of 8 replications of each simulation. Error bars represent 

one standard deviation. For all simulations: I, aa = 0.2, a}, = 0.2, sc =

0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m= \0, g=  1000, sf=  1 (stochastic 

events occur every year) and 5v = 20.
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Figure 8; The mean population size of four different simulated habitat-selection

strategies across a range of standard deviations in site quality in two habitats. 

There was little difference in mean population size among strategies in all 

simulations. Error bars represent one standard deviation. Mean population sizes 

are the grand mean of 8 replicates of each simulation. For all simulations: =

1.5, Xi, = 1, 5C = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m = \Q,g = 1000, sf=  

1 (stochastic events occur every year) and jv = 20.
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Table 3: Results from two log-linear analyses used to compare the distribution of 

individuals by strategy, status (breeders/floaters) and habitat. Each scenario 

(analysis) includes data from a single simulation with no replication. For the 

low-quality habitat A scenario: = 4,X^= aa = 0.2, = 0.2, sc = 0.001, dc

= 0.0001, cc = 0.01, ct = 0.25, m= \0, g=  1000, sf=  1 For the high-quality 

habitat A scenario: = 1, = 1.5, = 0.1, = 0.1, sc = 0.001, dc = 0.0001,

cc = 0.01, ct = 0.25, m=  10, g  = 1000, sf=  1 Significant parameters are 

indicated in bold. Z = standardized parameters (estimate / standard error). 

Redundant parameters (the last parameter in each class is fully explained by the 

remaining parameters in that class) are not shown.
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Standard
Scenario Parameter Estimate error Z Significance
Low-quality Constant 2.804 0.246 11.396 <0.001
habitat A MS 0.007 0.347 0.019 0.985

IF -0.084 0356 -&235 0.814
ID -1.011 0.476 -2.123 0.034
B reeder 3.297 0.251 13.156 <0.001
Habitat A -0.015 0.349 -0.042 0.967
MS * Breeder -0.016 0.354 -0.046 0.963
IF * Breeder 0.057 0.362 0.156 0.876
ID * B reeder 0.971 0.481 2.019 0.044
MS * Habitat A 0.016 0.492 0.033 0.973
IF * Habitat A 0.013 0.504 0.026 0.979
ID * Habitat A 1.704 0.565 3.017 0.003
Breeder * Habitat A -0.048 0.356 -0.135 0.893
MS * Breeder * Habitat A -0.011 0.501 -0.022 0.982
IF * Breeder * Habitat A 0.031 0.513 0.061 0.951
ID * B reeder * Habitat A -1.743 0.573 -3.042 0.002

High-quality Constant 5^43 0.060 94.809 <0.001
habitat A MS 0.005 0.084 0.057 &955

IF 0.002 0.084 0.029 0.977
ID 0.061 0.083 0.730 0.465
B reeder 0.464 0.076 6.104 <0.001
Habitat A -0.001 0.084 -0.010 0.992
MS * Breeder -0.005 0.107 -0.050 0.960
IF * Breeder -0.002 0.107 -0.022 0.982
ID * Breeder -0.150 0.107 -1.395 0.163
MS * Habitat A -0.004 0.119 -0.030 0.976
IF * Habitat A 0.002 0.119 0.018 0.986
ID * Habitat A -0.098 0.119 -0.822 0.411
Breeder * Habitat A 0.002 0.107 0.016 0.988
MS * Breeder * Habitat A 0.003 0.152 0.022 0.983
IF * Breeder * Habitat A -0.002 0.152 -0.015 0.988
ID * Breeder * Habitat A 0.186 0.152 L222 0.222
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z  =-2.1, P = 0.03). Specifically, ID had a lower population size in the low-quality habitat 

(ID X Habitat A, Z =3.0, P = 0.003) where ID populations generally accrued higher 

geometric mean fitness than other strategies. Most significantly, ID populations were 

distinguished by disproportionately more floaters in the lower-quality habitat in 

comparison with other strategies (Figure 9; Table 3, ID x Habitat A x Breeder, Z=-3.0, P 

=0 .002).

The rank order o f  habitat-selection strategies varied with population size

The WMAX strategy, as expected, outperformed all others (Figure 10). Ideal 

despotic populations accrued higher fitness than the remaining three strategies at low 

density, but lost second-best ranking to ideal pre-emptive habitat selectors at intermediate 

densities. The rankings of fitness for all strategies were consistent across simulations (not 

illustrated). Importantly, ideal despotic strategies consistently accrued the highest 

geometric mean fitness during population growth at low density (Figure 11).

Minimal-selection strategies fa il when search costs are high

The sensitivity analysis revealed high extinction probabilities for MS populations 

(very low fitness values in Table 4). Extinction occurred in 5 of the 10 simulations used 

in the sensitivity analysis: when challenge cost was low and high, when search cost was 

high, and in simulations where sample effort or defense cost was low. These extinctions 

occurred even though defense and challenge costs, and sample effort do not affect MS 

individuals, but MS populations grew in one simulation and went extinct in the other.

39



Figure 9: The abundance of breeders and floaters using four different simulated habitat- 

selection strategies to occupy two habitats differing in site quality. Distribution 

data are from two separate simulations with no replication. A) Mean site 

quality is lower in habitat A than in habitat B. = 1, A^= 1.5. B) Mean site 

quality much higher in habitat A than in habitat B.Ââ =4, Â  ̂= 1.5. The 

proportion of floaters was similar for all strategies except ID (that produced a 

higher proportion of floaters in the poor-quality habitat (A, Table 3). For all 

strategies: Oa = 0.1, = 0.1, sc = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m =

10, g = 1000, sf=  1 (stochastic events occur every generation) and 5v = 20.
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Figure 10: Fitness comparison of four different habitat selection strategies relative to the 

best attainable strategy (WMAX) across a range of population sizes. The ID 

strategy yielded the second highest geometric mean fitness at low density, and 

the lowest mean fitness at high density. For all strategies; ^  = 1, ^  = 1.5,

= 0.1, cr̂  = 0.1, sc = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, w = 10, g  = 1000, 

sf=  1 (stochastic events occur every generation) and 5v = 20.
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Figure 11: The geometric mean fitness from simulations of four different habitat-selection 

strategies during the first three generations of population growth. A) Geometric 

mean fitness across simulations that varied the mean site quality in habitat A 

(x^=  1, C'a = 0.1, (Tj, = 0.1). B) Geometric mean fitness of the four strategies 

across simulations that varied the standard deviation of site quality. The ID 

strategy consistently yielded the highest mean fitness during early population 

growth. = 1, = 1.5. Geometric mean fitness values are the grand mean of

8 replicates of each simulation. For all simulations: sc = 0.001, dc = 0.0001, cc 

= 0.01, ct = 0.25, m = 10, g = 1000, sf=  1 (stochastic events occur every 

generation) and sv = 20.
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Table 4; Geometric mean fitness of four simulated habitat-selection strategies when 

sampling effort and costs are high or low. Each scenario represents a single 

simulation with no replication.
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Costs o f habitat selection had little effect on IF, ID, and IP strategies, but IP populations 

accrued low fitness with low sampling effort

Changing defense cost, challenge cost, search cost and cost threshold had little effect on 

IF, ID, and IP strategies. IP populations, however, suffered from drastically reduced geometric 

mean fitness when sample effort was low (Table 4).

Discussion

I evaluated the relative success of four different habitat-selection strategies by simulating 

how individuals found and maintained breeding sites in two adjacent habitats differing in site 

quality. Despite my attempts to create conditions in which single strategies would accrue 

conspicuously higher geometric mean fitness than alternatives, most simulations yielded similar 

fitness for all strategies. Regardless of these similarities, it is nevertheless clear that the ID 

strategy accrued higher geometric mean fitness than all other realistic strategies at low density. 

Although it is thus possible to imagine that the ID strategy can displace others at low density, it 

quickly loses its advantage as populations grow toward carrying capacity.

Multiple habitat-selection strategies might coexist in populations near carrying capacity

The similarities in geometric mean fitness and population sizes of strategies suggest the 

intriguing possibility that several habitat-selection strategies may coexist in stable populations 

near their carrying capacities. This remarkable insight contravenes the long-held intuition that 

competitive neglect (Ripley 1959; Hutchinson and MacArthur 1959) and resource defense 

(Brown 1964) cause individuals to abandon despotic behaviours at high population density. 

Dominant territorial individuals are known to abandon interference competition and join con- 

specifics in scramble competition (Myers et al. 1979), or abandon their territories altogether and
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disperse to lower-density areas (Steneck 2006). How, then, can I account for the potential 

coexistence of multiple strategies emerging through my simulations of habitat selection?

The key to understanding the coexistence of multiple habitat-selection strategies likely 

lies in underappreciated differences between dominant and subordinate individuals. Current 

models of despotic and pre-emptive habitat selection assume that all individuals use the same 

habitat-selection strategy. Strategies might coexist, however, if dominant individuals restrict 

interference competition to the best-quality sites, thereby allowing subordinate individuals to 

subsist unobtruded in poorer-quality sites. Hojesjo et al. (2004) report a possible example from 

experiments assessing growth and survival of newly-emerged brown trout in simple and complex 

habitats. Dominant individuals grew more quickly than subordinate fry in simple environments 

(sand substrate), but lost their growth advantage in complex ones (gravel and stone substrate). 

The costs of aggression and resource defense likely increase when subordinates retreat into 

complex habitats, and thus change the cost/benefit ratio of dominant behaviour. Other factors, 

such as dominance hierarchies, can reduce the frequency or severity of competitive interactions 

(Maynard-Smith and Parker 1976; Eshel and Sansone 1995), thereby promoting the coexistence 

of dominant and subordinate individuals. A dominance hierarchy relating to habitat selection can 

similarly develop through differences in growth rates (Hakoyama and Iguchi 2001).

Perhaps the best evidence of coexisting strategies comes from habitat-selection by 

meadow voles (Microtus pennsylvanicus). For example, ideal despotic and ideal free habitat 

selectors have been observed in a single population (Pusenuis and Schmidt 2002). Dominant 

individuals used undisturbed patches in an ideal despotic manner, while subordinates followed 

an ideal free distribution among disturbed patches. The apparent co-existence of two pure 

strategies is particularly intriguing because the 100-800 voles/ha observed by Pusenius and
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Schmidt (2002) densities are near, or in excess of, typical meadow vole carrying capacity 

[population growth of meadow voles ceased at population densities ranging from 100-600 

voles/ha in grassland habitats in Indiana (Lin and Batzli 2001)].

Lin and Batzli (2004) also categorized meadow voles as ideal-free habitat selectors 

whereas Oatway and Morris (2007) referred to them as vague density-dependent habitat 

selectors. Individuals living at low density may be incapable of assessing habitat differences in 

habitats with high carrying capacities. Hence it is clear that habitat selection is not a fixed 

behavioural trait, but rather emerges from plastic responses shaped by tradeoffs such as the costs 

and benefits of aggression versus placid behaviours.

Multiple habitat selection strategies might also coexist in populations with fluctuating density

Recall that the rank order of strategies varied with density. A pure ID strategy might 

thereby predominate when density is maintained well below carrying capacity (e.g., by generalist 

predators; Hanski et a/. 1991). If, however, populations fluctuate (e.g., environmental 

stochasticity (Getz et al. 2006), then multiple strategies can be maintained through cyclical 

selection (Rosenzweig 1991). The potential of maintaining multiple strategies in stochastically 

varying environments is particularly important because temporal stochasticity influences our 

ability to detect habitat selection (Jonzén et al. 2001). My simulations suggest that stochasticity 

not only influences habitat-selection strategies, (Jonzén et al. 2004), but that it may also promote 

their coexistence. Temporal variation in habitat quality has been shown to lead to the coexistence 

of competing species (Schmidt et al. 2000), and also dominant and subordinate individuals 

(Hojesjo 2004).
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Experiments assessing habitat selection may be biased i f  they ignore density-dependent habitat- 

selection strategies

Although it is well acknowledged that habitat selection is both density and frequency 

dependent (Rosenzweig 1981; Rosenzweig 1991; Morris 2003), my simulations suggest that the 

strategy itself also depends on density. If true, then dire consequences await those who attempt to 

evaluate habitat selection using fixed-density experiments (or field observations). Despotism 

yields higher fitness at low population density, but gives way to ideal pre-emptive habitat 

selection at higher densities. And, if populations are allowed to grow to carrying capacity, then 

all strategies may be able to coexist.

Strategies o f habitat selection should be explored with an invasion analysis

An important caveat to drawing conclusions based on the geometric mean fitness of pure 

populations is that the geometric mean fitness of a strategy might change when multiple habitat- 

selection strategies coexist in the same simulation. Future simulations should explore coexistence 

with an invasion analysis similar to that used by Ranta and Kaitala (1999), where a rare mutant’s 

ability to invade a pure population is assessed simultaneously with a pure population’s resistance 

to invasion. It may be necessary, however, to contrast all possible combinations of strategies in 

order to assess their potential for invasion, resistance, and coexistence. The invasion analysis 

will also be complicated if individuals use their behavioural flexibility to play mixed strategies of 

habitat choice. Regardless of these complexities, despotic habitat selection should have an 

invasion advantage over other pure strategies owing to its high growth rate at low density (e.g., 

Mylius and Diekmann 1995). This result is intuitively satisfying because, in my simulations, 

only ideal-despotic individuals could oust individuals using other habitat-selection strategies. 

Successful invasion, however, will depend on population dynamics and its interaction with
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habitat quality. Although ID populations at low density possess higher mean fitness, poor-quality 

sites will be unoccupied and allow for coexistence of other strategies. The cost of despotic 

behaviours will increase with increasing population density, and may provide an opportunity for 

replacement by other strategies. These possibilities should be especially intriguing for those 

ecologists who believe that territorial behaviour stabilizes population dynamics. The simulations 

completed here suggest that despotic habitat selection may persist only through “re-invasion” in 

highly fluctuating populations.

Habitat selection is off en viewed as a fixed trait of a species. My simulations suggest that 

habitat-selection strategies are not fixed traits, and that coexisting strategies are not only 

possible, but likely. This interpretation has important implications for assessing habitat-selection 

strategies. The possibility of multiple coexisting habitat selection strategies complicates our 

ability to assess density-dependent habitat selection in populations; however, it also opens a new, 

largely unexplored and exciting avenue for our understanding of how animals use and distribute 

themselves among habitats.
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Appendix 1: Flow charts o f four habitat selection strategies
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Ideal free habitat selection:
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Are s e a rc h  
c o s t s  

e x h a u s t e d ?

n o D o e s  s i te  
h a v e  R > 1?

y e s

n o
y es

H a v e  all 
in d iv id u a ls  
s a m p l e d ?

y e s
y es lsg<

1000?

n o

E v a lu a te  h a b i t a t

S a m p l e  1 s i te

N ex t  in d iv idua l

S to c h a s t i c  m o r ta l i t y

O c c u p y  s i te

P o p u la t io n  g r o w t h

R e m a in  in h a b i t a t .  No 

b r e e d i n g  s i te  ( r e d u c e s  
p e r  c a p i ta  f i tn e ss )

M o v e  t o  h a b i t a t  w h e r e  
p r o b a b i l i ty  o f  m a x im iz in g  

f i tn e s s  is h ig h e s t
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Ideal despotic habitat selection:

In itia te  s im u la t io n  w i th  10  ind iv idua ls

N ex t  ind iv idual

R e m a in  in h a b i t a t .  No 
b r e e d i n g  s i te  ( r e d u c e s  

p e r  c a p i t a  f i tn e ss )no

yes

Are  s e a rc h  
c o s ts  

e x h a u s t e d ?

n oSample 1 
m ore site

Are s e a r c h  
co s ts  

e x h a u s t e d ?

Do a n y  s i te s  
in s a m p le  

J i a v e  R > 1%.

n oy es

y e s

H as ID 
indiv idual  
lo s t  s i te ?

y e s  (p re v io u s  r e s id e n t)

yes H ave  all 
ind iv idua ls  
s a m p le d ?

n o r o

1000?

y e s

no

y es!
Are an y  
s i te s  in 
s a m p le  

ivailable?
S a m p le  m  s i te s  ^

E va lu a te  h a b i t a t

C h o o s e  s i te  t h a t  
m a x im izes  f i tn e s s

P o p u la t io n  g r o w t h S to c h a s t i c  m o r ta l i ty

R e m a in  in h a b i t a t .  No 
b r e e d in g  s i te  ( r e d u c e s  

p e r  ca p i ta  f i tne ss )

M o v e  t o  h a b i t a t  w h e r e  
p ro b a b i l i ty  o f  m ax im iz ing  

f i tn e s s  is h ig h e s t
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Ideal pre-emptive habitat selection;

In i t ia te  s i m u l a t i o n  w i th  10  in d iv id u a l s  j \

n o

y e s
Sample 1 
m ore site

n o

Are  s e a r c h  

c o s t s  

e x h a u s t e d ?

D o e s  s i t e  in 

s a m p l e  h a v e  
_  R > 1 ?  _

n oy es

n o

y e s

H a v e  all 

in d iv id u a l s  

s a m p l e d ?

y e s

y e s

1000?

n o

A re  a n y  

s i t e s  in 

s a m p l e  

i v a i l a b le ^

S a m p l e  m s i t e s

N e x t  in d iv id u a l

C h o o s e  s i t e  t h a t  

m a x im iz e s  f i t n e s s

S t o c h a s t i c  m o r t a l i t y

R e m a in  in h a b i t a t .  No 

b r e e d i n g  s i t e  ( r e d u c e s  

p e r  c a p i t a  f i tn e s s )

P o p u l a t i o n  g r o w s  in e a c h  h a b i t a t
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Appendix 2 -  Population summaries
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Table A2-1: A  summary o f  distinct simulations and replications comparing four different

habitat-selection strategies.
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Distinct Replicates per Total 
Dataset Simulations simulation simulations
Differences in mean site quality 10 8 80
Differences in standard deviation 7 8 56
Sensitivity analysis 10 1 10
Total - - 146
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Table A2-2: A  summary o f  population dynamics from simulations comparing four different

habitat-selection strategies.

66



•S m

a t l  s
^ | | l

O  - a  < ;

H ç J> -2

■S CQ

•S <

Ïj oo - 
>S -S CQ

' III11^
ï> 00 c
•g .s  <

H ®

112 1
H  o

a

—  n  (N  (N 
o  o o  o o  o o

o o  o o  o o  ^

ir» oo vc en

oC \o v-T

m  v n  m  \ o  \ o

1—I o  On oo <N
\ 0  OO v n  (N

r n m c n m c N t N C N C S

m  un m  ( N
o o  0 0  OO (N

v - i O N T r o N C N T r r - ^ ^ o o o N O N O O  
w n u n o o o r 4 ' ^ O N O ' m ^ ^ “ ^ 
m c N - ^ 1 —' ^ N O u n u n c N * —' C 4  
f n m c n c n ( N f S < N < N

m  oo On NO
oo NO en o
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Appendix 3 -  Limitations and recommendation for future improvements to habitat-

selection models
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Limitations of the simulation model
The simulation models reported here produce populations that quickly grow to, and

remain near, their carrying capacities. Natural populations frequently have more variable 

dynamics (Ranta et al. 2006). It is clear from the adaptive landscape profiles (Figure 10) that 

fitness depends on density; and simulation results might change drastically if populations were 

less stable.

The ideal free model is meant to be a scramble (Nicholson 1954) whereby mean per 

capita fitness is depressed equally by each individual (Fretwell and Lucas 1969). In my 

simulations, however, 1 chose to model all strategies as site dependent. 1 modified a single site- 

selection algorithm to mimic all four habitat-selection strategies. In order to do this, 1 attributed 

an “aspiration level” (i.e. Posch et al. 1999), to individuals following minimal and ideal-free 

strategies. 1 considered several alternatives for modelling site use by IF and MS individuals. For 

example, allowing IF individuals to share sites, which would more closely resemble scramble 

competition, would not create a density-dependent response reflective of pure scramble 

competition because true IF individuals do not possess sites. Alternatively 1 might allow IF 

individuals to reduce mean site quality across the entire habitat. Then, assuming that carrying 

capacities for ID and IF individuals in identical habitats were the same, 1 would still need to 

decide on a maximum fitness and density-dependent fitness function for IF individuals. The form 

of the density-dependent decline in fitness would, presumably, influence output from the model. 

Removing site dependence from the IF strategy would introduce considerable complications for 

an invasion analysis. How, for example, should one compute the effects of ID individuals 

invading a pure IF strategy? Would IF individuals, for example, be displaced as floaters, or 

would they resample both habitats?
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Environmental stochasticity modifies population dynamics (Ranta et al. 2006) and habitat 

selection (Jonzén et al. 2004). Stochastic influence in my models was slight, and should likely be 

increased in future simulations. I imagined that environmental stochasticity fit a uniform 

distribution, but others have questioned this assumption (e.g., Bell et a/. 1993; Rohani et al.

2004). Increasing the stochasticity in my simulations would force populations away from 

carrying capacity and thus create differences in the fitness of strategies. The distribution of 

stochastic events might further modify population dynamics, depending on how individual 

strategies rebound from disturbance. Nonetheless, my simulations explore habitat selection 

strategies in populations near carrying capacity as might occur in stable populations. In 

particular, the best evidence for coexisting habitat-selection strategies comes from a population 

of meadow voles (Pusenius and Schimdt 2002) that was most likely above its natural carrying 

capacity [populations in grassland habitats in Indiana ceased population growth with lower 

population density Lin and Batzli 2001)].

The role of floaters

Simulated populations in my models consistently produced non-breeding floaters. 

Although some populations are known to support large floater populations (Blanco et al. 2009) 

below carrying capacity, floaters in my models arose mainly when populations exceeded 

carrying capacity. Critics might argue that floaters should have depressed fitness in proportion to 

density to force larger fluctuations in population dynamics. Floaters in real populations arise 

when breeding space is limited (Blanco et al. 2009), and can also dampen population fluctuations 

(Lôpez-Sepulcre and Kokko 2005). Nonetheless, even in rich habitats, future simulations should 

impose stronger density-dependent feedback on fitness.
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Suggestions for improvement

Several simulation alterations would improve our insight into the evolution of habitat 

selection:

1. A larger density-dependent feedback of floaters would create greater fluctuations in 

population density through time. My simulations explored populations fluctuating near 

carrying capacity; larger population fluctuations would allow for a more thorough 

exploration of alternative scenarios.

2. Future simulations should impose a broader range of stochastic patterns in population 

dynamics (e.g.. Bell et a/. 1993; Rohani et al. 2004).

3. Future simulations should evaluate strategies with an invasion analysis (below).

Outline of an invasion analysis

The fitness of a habitat-selection strategy depends on density and on frequency. As in 

other games, the evolutionary stability of a habitat-selection strategy should be thoroughly 

explored with an invasion analysis testing the ability of a rare mutant strategy to invade a pure 

strategy at its ecological equilibrium. A complete analysis of invasability would require 

assessing all combinations of behavioural phenotypes as both residents and invaders. The 

following steps outline an invasion analysis modified from Ranta and Kaitala (1999) that could 

be incorporated into future versions of my models.

1. Allow pure populations to grow for several generations (1000), until population dynamics 

stabilize.

2. Introduce a mutant with a habitat-selection strategy not yet in the established population.

3. Allow numerous generations to pass (1000).
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4. Sample the population for invaders and residents for 100 generations.

5. Explore coexistence by graphing resident and invader bifurcation diagrams. Bifurcation 

diagrams reveal three possible scenarios (exclusion of the invader, coexistence, and 

invader excludes previous resident), as well as population densities (Figure. A3-1).
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Figure A3-1: A example of a bifurcation diagram revealing stability of strategies across a range 

of growth rates, r. A population is allowed to establish over 1000 or more 

generations, then an invader is introduced at low density. After a thousand more 

generations, the population is sampled over 100 generations. The points on the 

graph represent attractors: stable equilibrium at low density, two-point limit cycles 

at moderate r values, and chaos at high r values. In zone 1, the sampling has 

revealed only the original population: invasion was not successful. In zone 2 and 3 

there is successful invasion. Zone 2 shows coexistence (not necessarily stable) and 

zone 3 reveals invasion and exclusion of the resident. Modified from Ranta and 

Kaitala (1999).

73



3

i l l  1 ; :

Growth rate, r

74



Literature Cited

Bell, G, Lechowicz, M.J., Appenzeller, A., Chandler, M., DeBlois, E., Jackson, L., Mackenzie, 

B., Preziosi, R., Schallenburg, M. and Tinker, N. 1993. The spatial structure of the physical 

environment. Oecologia. 96: 114-121.

Blanco, G., Pais, J.L., Fargallo, J.A., Potti, J., Lemus, J.A. and Garcia, J.A.D. 2009. Ehgh 

proportion of non breeding individuals in an isolated red-billed chough population on an 

oceanic island (La Palma, Canary Islands). Ardeola: 56: 229-329.

Jonzén, N., Wilcox, C., and Possingham, El.P. 2004. Habitat selection in temporally fluctuating 

environments. Am. Nat. 164: E103-E114.

Nicholson, A.J. 1954. An outline of the dynamics of animal populations. Aust. J. Zool. 2: 9-65.

Posch, M., Pichler, A., and Sigmund, K. 1999. The efficiency of adapting aspiration levels. Proc. 

R. Soc. Lond. B. 266: 1427-1435.

Lôpez-Sepulcre, A. and Kokko, H. 2005. Territorial defense, territory size, and population 

regulation. Am. Nat. 166: 317-329

Ranta, E. and Kaitala, V. 1999. Punishment of polygyny. Proc. R. Soc. Lond. B. 266: 2337-2341.

Ranta, E., Lundburg, P., and Kaitala, V. 2006. Ecology of populations. Cambridge University 

Press, Cambridge, UK.

Rohani, P. Miramontes, O. Keeling, M.J. 2004. The colour of noise in short ecological time 

series data. Math. Med. Biol. 21: 63-72.

75



Appendix 4 -  Habitat isodars
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Introduction and methods

Alternative strategies of habitat selection typically produce different signatures in habitat 

isodars (graphs of density in two adjacent habitats). Habitat isodars reveal how animals perceive 

and use available habitat choices (Morris 1987, 1988), and neatly illustrate the habitat selection 

strategy (Morris 1994). Accordingly, I regressed the density in the better-quality habitat versus 

that in the lower-quality habitat and fitted all isodars with both linear and quadratic models 

because ID and IP strategies may often produce curved isodars (Morris 1994, Knight et al.

2008). I removed density values of 0 from both habitats to reduce bias in the isodar slope, then 

used an ordinary least squares regression (SPSS vl8) to “solve” the isodar (densities were 

measured without error). I compared the linear and quadratic models using Akaike Information 

Criterion scores (Akaike 1974) (R statistical software v2.7.0).

Results & Discussion

All isodars consistently produced good fit with quadratic regressions (all coefficients of 

variation > 0.6, Tables A4-1, A4-2, Figures A4-1, A4-2). Habitat isodars for all strategies in 

these simulations were curvilinear. Quadratic regressions had higher AIC scores than linear 

regressions in all but three cases. True ideal free populations produce linear isodars (Morris 

1987, 1988). Despotism and pre-emption can produce curved isodars (Morris 1994, Knight et al. 

2008). The site-dependent growth and aspiration level of strategies in my model led to 

curvilinear isodars for all strategies. MS and IP populations generally had more steeply curved 

isodars than IF and ID, because MS and IP sample from the entire landscape when selecting 

sites.

The square term changed for the isodars of all four habitat-selection strategies when the 

mean site quality in habitat A surpassed that in habitat B (Table A4-1, Figure A4-1).
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Additionally, the square term changed for IP isodars as the mean site quality in habitat A 

increased (Table A4-1, Figure A4-1) because habitats supported larger populations, hence 

biasing the isodar toward high densities.

In general, increasing the difference in mean site quality between habitats increased the 

curvature of the isodars (Table A4-1, Figure A4-1); however, rich habitats (Table A4-1, Figure 

A4-1 Xa = 3) supported large populations which tended to be more equally distributed in both 

habitats. Thus biased toward high densities, the isodars become linear again.

Increasing the standard deviation in site quality provided more high-quality sites and 

allowed faster growth rates for ID and IP strategies (not shown). A larger population grovrih rate 

biased the isodars toward high densities, and caused the square term of the IP isodar to change 

sign.
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Table A4-1. Habitat isodars for simulations varying mean site quality in habitat A while 

site quality in habitat B remained constant. Quadratic models produced the best fit for all but one 

simulation. Analysis includes data from eight replications. The lower (better) of the paired AIC 

scores are indicated with bold type. For all simulations: = 1, (7̂  = 0.2, â , = 0.2, sc = 0.001, dc

= 0.0001, CO -  0.01, ct = 0.25, m = 10, g = 1000, sf=  1 (stochastic events occur every year) and 

sv = 20.

Mean site 
quality in

ibitat A Strategy Model Equation R-square AIC

0.75 MS Linear f(x) = 0 .2 6 x -2 .9 7 0.864 49831.27
0.75 MS Quadratic f(x) = .05x + O.OOlx  ̂+ 3.62 0.888 4844420
0.75 IF Linear f(x) = 0.83x - 66.51 0.719 52627.02
0.75 IF Quadratic f(x) = 0 .9 1 x - 2 .9 * I 0 V - 7 2 0.719 52627.86
0.75 ID Linear f(x) = 0.84x - 58.70 0.801 53524.74
0.75 ID Quadratic f(x) = 0.55x + 9 * l O V  - 36.98 0.802 53501.66
0.75 IP Linear f(x) =  0 .2 9 x - 11.95 0.812 50394.72
0.75 IP Quadratic f(x) = 0.45x + 8 * 1 0 V  + 0.47 0.833 49445.46

1 MS Linear f(x) = 0.98x + 0.03 0.998 29041.73
1 MS Quadratic f(x) = 0.99x - 3 .59*lO V  + -0.01 0.998 29039.34

’■ 1■■ ■/ IF Linear f(x) = 0.99x +  0.61 : 0.996 53874.59

' l' IF Quadratic f(x) =  0 .9 7 x + 5 .11 * 1 0 V  + 0.761 0.996 53864.08
1 ID Linear f(x) = 0.98x + 2.02 0.969 55948.56
1 ID Quadratic f(x )=  1 .04x- 1 * 1 0 V -2 .0 1 0.969 55888.23
1 IP Linear f(x) = 0.86x + 22.87 0.846 68179.20

. .'I'-'T.,'-. IP Quadratic f ( x ) = L 1 8 x - 0.001x^-3.47 0.856 67643.94
125 MS Linear f(x) = 0 .8 1 x + 141.00 0.744 81663.55
125 MS Quadratic f(x) = 2 .0 1 x - 0.002x^ + 7.72 0.904 73846.13
125 IF Linear f(x) =  0.775X + 98.85 

f(x) = 0.756X + 2.96*10-Y  +
0.948 60262.32

1.25 IF Quadratic 101.69 0.948 60259.97
125 ID Linear f(x) = 0.86x + 73.02 0.952 58762.17
125 ID Quadratic f(x) = 0.782X + 1 * 1 5 V  + 85.10 0.952 58707.43
1.25 IP Linear f(x )= 0 .5 8 x  + 233.01 0.604 78657.07
1.25 IP Quadratic f(x )=  1 .7 1 x -0.002x^ + 74.38 0.776 74104.58
1.5 MS Linear f(x) = 0.735x+ 139.79 0.792 77513.69
1.5 MS Quadratic f(x )=  1 .3 5 x -0.001x^ + 46.80 0.841 75365.28
1.5 IF Linear f(x) = 0.8x + 97.35 0.931 62436.32
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Mean site
quality in
habitat A Strategy Model Equation R-square AIC

1.5 IF Quadratic f(x) = 0.352x + 0.001x^+ 186.75 0.931 60969.55
1.5 ID Linear f(x) = 0.85x + 82.83 0.936 61565.09
1.5 ID Quadratic f(x) = 0.445X + O.OOlx  ̂+ 162.39 0.943 60651.97
1.5 IP Linear f(x) = 0.54x + 226.47 

f(x) = 0.57x-2.86*10-5x^ +
0.671 74794.07

1.5 IP Quadratic 222.41 0.671 74794.55
1.75 MS Linear f(x) = 0.78x+ 117.42 0.854 75073.13
1.75 MS Quadratic f(x) = 1.02x-3.1*10V + 74.37 0.86 74727.83

. 1.75 IF Linear f(x) = 0.852X + 76.02 0.939 63823.65
1.75 IF Quadratic f(x) = 0.12x + O.OOlx^+ 243.98 0.957 61049.55
1.75 ID Linear f(x) = 0.87x + 75.43 0.94 6385116
1.75 ID Quadratic f(x) = 0.215x + 0.00 Ix  ̂+ 217.28 0.954 61794.80
1.75 IP Linear f(x) = 0.65x+ 180.86 0.773 73679.57
1.75 IP Quadratic f(x) = -0.15x + 0.001x  ̂+ 350.72 0.816 72027.33

2 MS Linear f(x) = 0.84x + 89.32 0.898 73534.71
2 MS Quadratic f(x) = 0.85x - 2.05* 10V  + 85.64 0 898 73534.56
2 : IF Linear f(x) = 0.90x + 54.56 0.954 64131.79
2 ' IF Quadratic f(x) = 0.052X + 0.001x  ̂+ 262.37 0.969 61045.73
2 ID Linear f(x) = 0.9x + 63.65 0.948 64799.87
2 ID Quadratic f(x) = 0.04x + 0.00 Ix  ̂+ 217.28 0962 62279.77
2 . IP Linear f(x) = 0.769x+ 125.11 0.846 73614.04

/'■ 2 / IP Quadratic f(x) = -0.26X + 0.00 Ix̂  + 368.61 0.889 71026.61
2.5 MS Linear f(x) = 0.90x + 58.32 0.933 73616.91
2.5 MS Quadratic f(x) = 0.81x - 9.33* lO V  + 81.52 0933 73550.09

7 2.5 7 IF Linear f(x) = 0.94x + 33.56 0.971 64719,80
7 ' 2.5 IF Quadratic f(x) = 0.28X+ O.OOlx̂  + 215.73 0.979 62297.07

2.5 ID Linear f(x) = 0.94x + 44.75 0.967 65860.12
2.5 ID Quadratic f(x) = 0.27x + O.OOlx̂  + 222.64 0.975 63626.83
2.5 ; IP Linear f(x)=0.872x + 76.40 0.907 74197.75

7/  2 .5 ;'- 7 IP Quadratic f(x) = 0.08x+  0.00 lx  ̂+ 287.15 0.926 72436.06
3 MS Linear f(x) = 0.94x + 36.59 0.949 736LL59
3 MS Quadratic f(x) = 0.85x- 7.7*10-5x2 + 60.93 0.949 73554.18

. 3 IF Linear f(x) = 0.97x + 21.91 
f(x) = 0.533x + 5.8*10V +

0.98 64358.03

3 IF Quadratic 153.01 0.983 63052.74
3 ID Linear f(x) = 0.99x + 21.59 0982 63940.75
3 ID Quadratic f(x) = 0.71x + 2.3*10V+ 103.53 0.983 63509.24
3 IP Linear f(x) = 0.925x+ 48.43 0.934 7439L58
3 IP Quadratic f(x) = 0.41x + 4.2*10V+ 198.14 0.941 73469.89

3.5 MS Linear f(x) = 0.97x + 23.32 0.955 74335.09
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Mean site
quality in

bitat A Strategy Model Equation R-square AIC

3.5 MS Quadratic f(x) =  0.94x -2 .1 * 1 0 'V  + 31.82 0.955 74331.23
3.5 IF Linear f(x) = 0.99x +  7.53

f(x) = 0.89x + 7 .4 8 * 1 0 V  +
0.988 62325.45

3.5 IF Quadratic 42248 0.988 62238.07
3.5 ID Linear f(x) = 0 .9 9 x + 16.16 

f(x) = 0.62x + 2.8*10-4x2 +
0.981 65346.49

3.5 ID Quadratic 137.81 0.984 64327.42
3.5 IP Linear f(x) = 0.957x + 29.52 0.942 75047.50
3.5 IP Quadratic f(x) =  0.61X + 2.5 * 10""x̂  + 143.00 0.944 74704.24
4 MS Linear f(x) = 0.96x + 26.83 0.942 76099.48
4 MS Quadratic f(x) = 0.92X - 2 .8 7 * 1 0 V  + 40.00 0.942 76091.61
4 IF Linear f(x) =  0 .9 8 x +  15.87 0.981 65803.45
4 IF Quadratic f(x) = 0.54x + 2 .9 * 1 0 V  + 174.74 0.984 64461.60
4 ID Linear f(x) = 0.996x + 13.74 0.996 65018.68
4 ID Quadratic f(x) = 0.62X + 2 .6 * 1 0 V  + 146.80 0.619 64260.21
4 IP Linear f(x) = 0.968x + 22.22 0.959 75812.78
4 IP Quadratic f(x) =  0.84x + 9.57* 10" V  + 63.73 0.959 75742.83
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Figure A4-1. Illustrations of the isodars generated from 10 simulations of habitat selection that 

varied the standard deviation of site quality (Table A4-1). Each simulation was replicated 8

times.
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Mean site quality in habitat A = 1
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Mean site quality in habitat A = 1.5
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Mean site quality in habitat A = 1.75
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Mean site quality in habitat A = 2.5
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Mean site quality in habitat A = 3
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Mean site quality in habitat A = 3.5
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Mean site quality in habitat A = 4
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Table A4-2. Habitat isodars for simulations varying the standard deviation in site quality. 

Quadratic models produced the best fit for all but two simulation. Analysis includes data from 

eight replicates. The lower (better) of paired AIC scores are indicated with bold type. For all 

simulations: Ag = 1, = 1.5, sc = 0.001, dc = 0.0001, cc = 0.01, ct = 0.25, m = 10, g=  1000, s f

= 1 (stochastic events occur every year) and sv = 20.

Standard 
deviation of 
site quality

in each 
habitat Strategy Model Equation

R-
Square AIC

0.01 MS Linear f(x = 0.74x+ 138.39 0.797 77934.88
0.01 MS Quadratic f(x = 1.38x-0.001x  ̂+ 45.98 0.852 75446.12
0.01 IF Linear f(x = 0.82x + 85.57 0.944 61112.11
0.01 IF Quadratic f(x = 0.39X+0.00 lx  ̂+ 170.69 0.956 59337,15
0.01 ID Linear f(x = 0.77x+ 106.24 0.922 62078.59
0.01 ID Quadratic f(x = 0.46x + 4 .I*10V + 164.71 0 929 61412.29
0.01 IP Linear f(x = 0.5x + 246.26 0.636 73974.30
0.01 IP Quadratic f(x = 0.5x + 2.7* 10V  + 285.06 0.642 73841.23
0.05 MS Linear f(x = 0.74x + 138.53 0.796 77968.92
0.05 MS Quadratic f(x = 1.39x-0.001x  ̂+ 43.87 0.852 75440.41
0.05 IF Linear f(x = 0.82x+ 88.42 0.942 61347.88
0.05 IF Quadratic f(x = 0,38x + 0.001x^+175.22 0.953 59679.45
0.05 ID Linear f(x = 0.79x + 99.39 0.927 61836.80
0.05 ID Quadratic f(x = 0.44x + 4.5*10V+ 166.76 OjG3 61085.48
0.05 IP Linear f(x = 0.5x + 247.52 / 0.637 73948.90
0.05 IP Quadratic f(x = 0.27X + 3.0*10V + 290.62 0.644 73792.20
0.1 MS Linear f(x = 0.73x+ 143.50 0.784 7K36J^
0.1 MS Quadratic f(x = 1.39x-0.001x  ̂+ 45.64 0.842 75766.54
0.1 IF Linear f(x = 0.81x + 92.44 0.937 61956.52
0.1 IF Quadratic f(x = 0.38x + 0.001x^+ 176.38 0.948 60428.72
0.1 ID Linear f(x = 0.81x + 94.29 0925 61906.59
0.1 ID Quadratic f(x = 0.43x + 4.8*10V+ 166.28 0.933 61068.33
0.1 IP Linear f(x = 0.5x + 251.40 0.631 73855.80
0.1 IP Quadratic f(x = 0.17x + 4.0*10V + 3H.52 0.643 73588.87
0.2 MS Linear f(x = 0.74x + 139.24 0T94 77678.31
0.2 MS Quadratic f(x = 1.37X-0.001x  ̂+ 44.78 0.846 75327.43
0.2 IF Linear f(x = 0.80x + 98.20 0.932 62322.64
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Standard
deviation of
site quality

in each 
habitat Strategy Model Equation

R-
Square AIC

0.2 IF Quadratic f(x = 0.37x + 0.001x  ̂+ 182.11 0.943 60911.23
0.2 ID Linear f(x = 0.86x + 79.92 0.937 61807.88
0.2 ID Quadratic f(x = 0.43x + 0.00Ix^+ 162.69 0445 60735.76
0.2 IP Linear f(x = 0.5x + 228.58 0.676 74562.10
0.2 IP Quadratic f(x = .56x- 1.94*10-^x2 + 225.87 0.676 74563.36
0.3 MS Linear f(x = 0.75x+ 128.79 0.828 75068.51
0.3 MS Quadratic f(x = 1.29x-0.001x  ̂+ 44.70 0.863 73226.67
0.3 IF Linear f(x = 0.83x + 80.71 0.931 62407.47
0.3 IF Quadratic f(x = 0.24x + 0.001x  ̂+ 200.21 0.948 60198.33
0.3 ID Linear f(x = 0.90x + 66.52 0.941 61794.72
0.3 ID Quadratic % = 0.42x + 0.001x  ̂+ 161.66 0.949 60630.29
0.3 IP Linear f(x = 0.61x+196.92 0.782 74821,62
0.3 IP Quadratic f(x = .89x-3.8*10-^x^+ 145.55 0.739 74512.04
0.4 MS Linear f(x = 0.79x+ 109.63 0.866 72869.00
0.4 MS Quadratic f(x = 1.23x-0.001x  ̂+ 37.13 0.891 71250.84
0.4 IF Linear f(x = 0.87x + 62.97 0.941 61536.75
0.4 IF Quadratic f(x = 0.3x + 0.001x^+178.42 0.957 59070.89
0.4 ID Linear % = 0.93x + 63.30 0437 62805.22
0.4 ID Quadratic f(x = 0.48x + 0.001x^+ 153.44 0.942 62078.99
0.4 IP Linear f(x = 0.66x+ 173.77 0.775 74132.98
0.4 IP Quadratic f(x = 1:03x - 4.9*10^x^ +106,44 0.791 73544 14
0.5 MS Linear f(x = 0.82x + 91.73 0.901 72869.00
0.5 MS Quadratic f(x = 1.17x - 4.9* lO 'V + 34.08 0.915 71250.84
0.5 IF Linear f(x = 0.88x + 55.10 0945 60991.33
0.5 IF Quadratic f(x = 0,33x + 0.001x^+170.11 0.957 58979.67
0.5 ID Linear f(x = 0.96x + 52.07 0.947 62171.56
0.5 ID Quadratic f(x = 0.59X + 4.7* 10'V + 153.44 0.952 61537.43
0 5 IP Linear f(x = 0.69x+ 155.15 0.814 72390.56
0.5 IP Quadratic f(x = 1.03x-4.3*10V+93.07 0.826 71881.64
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Figure A4-2. Illustrations of the isodars generated from 7 simulations of habitat selection that 

varied the standard deviation of site quality (Table A4-2). Each simulation was replicated 8 

times.
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Standard deviation o f site quality in each habitat = 0.05
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Standard deviation of site quality in each habitat = 0.1
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Standard deviation of site quality in each habitat = 0.2
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Standard deviation o f site quality in each habitat = 0.4
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Standard deviation of site quality in each habitat = 0.5
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Appendix 5 — Code for habitat-seiection simulations (W indows, Python 2.5.4)
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#habSIMStochastic.py
#Title : Habitat Selection Evolution - Stochastic version
♦Author : Jody T. MacEachern
♦Contact: jraaceach@lakeheadu.ca
♦Date ; 18 Apr 2008
♦Edit : Aug 09
♦Purpose: To determine which environmental conditions lead to the evolution of
♦ different habitat selection strategies. Each strategy will select habitat in each
♦ environment. Then strategies will be compared with a fitness maximizing
♦ strategy for that environment, and their performance relative to
♦ (and also occurring with) other strategies.
♦ Stochastic influence affects individuals at random according to
♦ two variables eFq (frequency) and eSev (severity). The latter being
♦ the percentage of the population that dies.
♦Written for: python 2.5.2, with python(x,y) bundle
♦
♦Caveat: This version has been modified from the original to fit this document. Errors may have 
♦been introduced in the form of spacing, indents, line wrapping without line break characters
♦ ("\") . Etc.
♦
♦Key Variables:
♦HabA / HabB 
♦
♦
♦occupA / B 
♦
♦
♦CostA / B 
#
♦fXa / B 
#

♦

Array. The site qualities of habitat A s B, respectively,
where site quality is a measure of fitness
the occupying individual will acheive (excepting costs).
List/Array. The occupany (+/-) of a breeding site in habitat A & B, respectively.
Occupancy is coded for use in the invasion analysis.

0=VACANT, 1=NULL, 2=IF, 3=ID, 4=IP.
List/Array. The costs an individual at site i has accrued while searching for 
or defending a site.
Floaters - individuals who fail to find a breeding site yet remain in the 
landscape depressing
per capita fitness. X represents the stategy: N=NULL (i.e.fNa), F=IF, D=ID, P=IP.

♦SECTIONS
♦Section
♦Section
♦Section
#

♦
♦
♦
♦
♦Section
♦
#

♦Section
♦
♦
♦
♦
♦
♦Section
♦
♦
♦
♦
♦
♦

AND DEFITIONS:
1. User entered data and model initiation.
2. Population growth, results, and stochastic event definitions
3. Habitat selection defintions
3.1 Habitat comparison defintion
3.2.1 Passive selection (null) habitat selection
3.2.2 Ideal free habitat selection
3.2.3 Ideal despotic habitat selection
3.2.4 Ideal pre-emptive habitat selection
4. Normal population growth. Strategies

grow in pure populations for x generations.
4.1 Passive selection (null) population growth
4.2 Ideal free population growth
4.3 Ideal despotic population growth
4.4 Ideal pre-emptive population growth
5. Control density analysis (i.e. adaptive landscape)
5.1 Fitness maximizing strategy at controlled densities
5.2 Passive selection performance at controlled densities
5.3 Ideal free performance at controlled densities
5.4 Ideal despotic performance at controlled densities
5.5 Ideal pre-emptive performance at controlled densities
6. Invasion Analysis. Tests ability of best strategy from growth phase 

to resist invasion from other strategies.
6.1 IFD is best strategy
6.1.1 Introduce I DO
6.1.2 Introduce IPD
6.1.3 Introduce IDD & IPD
6.2 IDD is best strategy
6.2.1 Introduce IFD
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6.2.2 Introduce IPD
6.2.3 Introduce IFD and IPD
6.3 IPD is best strategy
6.3.1 Introduce IDD
6.3.2 Introduce IFD
6.3.3 Introduce IDD and IFD

♦DEFINTIONS
♦habsel : Initializes the model. Draws site qualities from distributions according
♦ : to user-entered parameters. Initializes output folder, parameter text file
♦ : and growth phase file. Stores landscape (habA/habB) as pickle files.
♦popgrowth ; Takes the habitat, occupancy, cost vectors, and "floaters” and returns
♦ : population growth for a given habitat.
♦Results : Takes the habitats, occupancy and cost vectors and floaters and returns a summary
♦ ; returns a summary of costs and fitness in the landscape (for output).
♦habcomp : Compares the two habitats based on total site quality and probability of getting
♦ : a site.
♦ : used by ID and IF strategies.
♦StochasticEvent : Takes the floaters, cost, and occupancy vectors and applies a user-defined
♦ : stochastic mortality event. Parameters are frequency (1 in x generations,
♦ : where x is drawn from a uniform
♦ : distribution, and severity (y drawn from a uniform distribution).
♦NULL : Habitat selection by passive selectors - chooses the first empty site in the
♦ : landscape
♦ : where the site quality is equal to or greater than replacement.
♦if : Ideal free habtitat selection. Chooses the first unoccupied site in the best
♦ : habitat where the site quality is equal to or greather than replacement.
♦ID : Ideal despotic habitat selection. Takes a minimum sample of sites from the best
♦ : habitat
♦ : and chooses the best. Can also take occupied sites. This definition also handles the
♦ : ousted individual (including potentially different strategies during the invasion
♦ : analysis).
♦IP : Ideal pre-emptive habitat selection. Takes a minimum sample of sites from the
♦ : landscape,and chooses the best unoccupied site that it finds.

♦Directions for usage, reads on input: 
print """Habitat selection algorithm.

Required input :
sc = the cost of sampling a site
dc = cost to resident when defending a site from a sampling individual
cc = cost of taking an occupied site (IDD-IDD)
cthres = the maximum cost an individual will pay while searching for a site
habsef = the minimum number of vacant sites a despotic or pre-emptive individual will sample 
gen = the number of generations to run for (default 1000)
eSev = max, of a uniform distribution defining the severity (as % mortality) of stochastic 
influence.
eFq = max. of a uniform distribution defining frequency of stochastic events. Set improbably 
large for
deterministic simulation. Set to 0 for annual stochastic event.

>»>> HABITAT PARAMETERS <<<<<
habl and hab2 are the habitat parameters, take the form [x,x,x]
NORMAL DISTRIBUTION (1,mean,standard deviation]
EXPONENTIAL DISTRIBUTION [2,beta,n/a]
UNIFORM DISTRIBUTION [3,min,max]'...

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦  
♦SECTION 1 
♦User entered data and site quality distributions 
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
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♦Required modules. External module numpy, rest are native modules, 
from numpy import * ♦Math, stats on arrays and matrices
from scipy import *
♦For random number generation, copying arrays/matrices 
import random, copy, time, os, cPickle, math
def habsel(habl, hab2, gen=1000, sc=0.01, dc=0.001, cc=0.05, cthres=l, habsef=10, eSev=20,\ 
eFq=0):

"""Habitat selection definition. Stochastic version. Runs the habitat selection algorithm. 
Takes

model parameters as arguments. This way you can queue up multiple iterations 
of the whole program, to, for example, compare parameter values or performance over 
specific habitats."""

♦Specifies variables as global for use in sub definitions.
global habA, habB, o c c u p ,  occupFA, occupFB, occupNA, occupNB, occupDA, occupDB, occupPA,\ 
occupPB, cost, costNA, costNB, costFA, costFB, costDA, costDB, costPA, costPB, sampler, 
sampler?

random.seed()

♦querying sys time, getting sys path
path = os.path.join(os.getcwd(), (str(time.localtime()[1]) + + str(time.localtime() [2])\
+ + str(time.localtime 0 [3]) + + str(time.localtime()[4])))

os.makedirs(path)
fnura = file(os.path.join(path, "growth.csv"), "w") ♦create the growth output

i = 0 
habA = [] 
habB = [J 
while i < 2:

♦Now fill a list with sites according to site quality distribution, 
if i == 0:

d = habl[01 
if d == 1:

meanD = habl[1] 
stdD = habl[2] 

elif d == 2 :
beta = habl[1] 

elif d == 3 :
a = habl[1] 
beta = habl[2]

else :
d = hab2[0] 
if d == 1:

meanD = hab2[l] 
StdD = hab2[2] 

elif d == 2 :
beta = hab2[1] 

elif d == 3:
a = hab2[1] 
beta = hab2[2]

♦Normal

♦Exponential 
♦ beta 

♦Uniform 
♦min 
♦max

j = 0
while j < 500:

if d == 2 or d == 3:

if d 2 :
r = random.expovariate(beta) 

elif d == 3:
r = random.uniform(a, beta)
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if X is 0: ttwrite to habitat A list
habA.append (r) 

else: #write to habitat B list
habB.append (r)

else: #d=l (normal, corrected)...
r = random.normalvariate(meanD, stdD) 
if r < 0 : 

r = 0
if i is 0: habA.append(r) 
else: habB.append(r) 

j = j + 1 
i = i + 1

fnum2 = file(os.path.join(path, "parameters.txt"), "w")
♦ Write parameter values to file :
fnum2.write("Parameters :\nSearch Cost :%s\nDefence Cost :%s\nChallenge Cost :%s\nCost\
Threshold:%s\nSample Effort :%s\nGenerations:%s\nStochastic Frequency: %s\nSeverity: %s\n" % 
(sc, dc, cc, cthres, habsef, gen, eFq, eSev))

fnum2.write("Habitat Parameters :\nHabitat A: %s, %s, %s\nHabitat B : %s, %s, %s\n" % (habl[0]\
, habl[1], habl[2], hab2[0], hab2[l], hab2[2]))

del fnum2
♦Write group headers:
fnum.write("NULL,,,,,,,,,,,,,IFD,,,,,,,,,,,,,IDD, ,,,,,,,,,,,, IPD, ,,,,,,,,,,, IDD ChallengerX 
Counterin'' )
♦Write variable labels:

f num. write ( "NT, NA, NB, RA, RB, COSTA, COSTS, FloatA, FloatB, MortNA, MortNB, MortFA, MortFB, NT, NA, NB, RA, RB, C 
OSTA, COSTS,FloatA,FloatB, MortNA, MortNB,MortFA,MortFB,NT,NA,NB,RA,RB,COSTA, COSTS, FloatA, FloatB,Mor 
tNA, MortNB, MortFA, MortFB, NT, NA, NB, RA, RB, COSTA, COSTS, FloatA, FloatB, MortNA, MortNB, MortFA, MortFB, IDD 
-out\n")

♦Create template cost, occupancy and sampling vectors.
cost = array<[0.0] * 500)
occup = array([0] * 500)
sampler = range(500)
sampler? = range (1000)

♦ To Iceep trac)c of floaters: 
fNa = 0
fNb = 0 
fFa = 0 
fFb = 0 
f Da = 0
fob = 0
fPa = 0 
f Pb = 0

♦Malte the habitat lists into arrays: 
habA = array(habA) 
habB = array(habB)

♦Save habitats for archives
pickle_file = file(os.path.join(path, "landscape.pickle"), "wb") 
cPickle.dump(habA, pickle_file, 2) 
cPickle.dump(habB, pickle_file, 2) 
del pickle_file
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
♦SECTION 2 #
♦Population growth definition, results definition #
♦Purpose: population growth by a density dependent time-lagged model: N(t+1) = Nt + r(TTL) #
♦results iterate through cost and occupancy vectors to assess fitness (incl costs) and density # 
♦ ♦♦♦♦♦###♦♦#♦♦♦♦♦♦♦♦♦♦♦#####♦#####♦♦#♦♦♦♦#♦#♦♦###♦###♦♦♦♦♦#♦♦♦♦♦♦♦#♦♦♦#♦♦♦#♦♦♦#♦♦♦###♦♦♦♦##♦###♦# 
def popgrowth(hab, cost, occup, X)
♦need only return n-ttl, can clear occup and cost with seed vectors 

i = 0 
n = 0  
r = 0 
w = 0  
nt = 0

if list(occup).count(X) == 0: 
return 0

♦If there are no individuals in sites.

else :
while i < 500:

if occup[i] == X:
w = hab[i] - cost[i] 
if w < 0 : 

w = 0 
r = r + w 
n = n + 1 

1 = i + 1
♦edit from previous version. Used to be r (total) + n (but all the adults die. 
if r < 0: return 0 #Don't return negative numbers
else: return int(r) ♦same as (r(average)/n) * n

♦If the site is occupied

♦Calculating a total r 
♦ tracic the number in population

♦Results calculator
♦All algorithms use the same loops, so they are written here. 
♦ -------------------------------------------------------------------------------------------------------------------------------------
def results(occupTA, occupTB, costTA, costTB, X):

"""Summarizes fitness and cost variables for entire landscape (single 
strategy, based on cost, occupancy and habitat vectors."""

RA = 0 
CA = 0 
RB = 0 
CB = 0
j = 0
while j < 500 :

if occupTA[j] == X:
RA = RA + habA[j] 
if habA[j] - costTA[j} < 0: 

CA = CA t habAfj] 
else :

CA = CA + costTA[j]

♦For every occupied site...
♦Calculate the fitness of the individual

♦THIS WAY W WILL NOT BE <0

if occupTB[j] == X:
RB = RB + habB(j] 
if habB[j] - costTB[j] < 0: 

CB = CB + habB[j ] 
else :

CB = CB + costTB[j]

♦THIS WAY W WILL NOT BE <0

j = j + 1 
return (RA, CA, RB, CB)
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#---------------------------------------------------------------------------------------------------------------------
♦Stochastic events
♦Takes strategy variables and stochastic parameters - applies stochastic mortality event.
♦ -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

def StochasticEvent(occupSA, occupSB, costSA, costSB, tFa, tFb, X, sev): 
inds = [1 
MNa = 0
MNb = 0
MFa = 0
MFb = 0

for i in xrange(0, 499, 1):
if occupSA[i] in X: 

inds.append(i) 
if occupSB[i] in X:

inds.append(i + 500)

randNum = len(inds) + tFa + tFb 
fat = float(sev) / 100 * randNum

for j in xrange(0, fat, 1);
unlucky = int(random.random() * randNum) 
if unlucky > len(inds) - 1: #A floater goes: 

fchoice = int(random.random() * 2) 
if (fchoice == 0 and tFa != 0) or tFb == 0: 

tFa = tFa - 1 
MFa = MFa + 1 

else :
tFb = tFb - 1 
MFb = MFb + 1

else :
if inds(unlucky] >= 500:

occupSB[inds[unlucky] - 500] = 0 
costSB[inds[unlucky] - 500] = 0
MNb — MNb + 1 

else :
occupSA[inds[unlucky]] = 0 
costSA[inds[unlucky]] = 0
MNa = MNa + 1 

inds.pop(unlucky)

♦Reset the random number limit 
randNum = len(inds) + tFa + tFb

return occupSA, occupSB, costSA, costSB, tFa, tFb, MNa, MNb, MFa, MFb

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ♦ # ♦ # ♦ ♦ # # # ♦ # # ♦ ♦ ♦ ♦ # ♦ ♦ ♦ # ♦ ♦ # ♦ # # # # ♦ # # ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ # # ♦ # # # # # # # # # ♦ #  

♦SECTION 3 #
♦Habitat Selection Definitions #
♦Purpose: Definitions related to the mechanisms behind habitat and site selection. #

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ♦ ♦ # ♦ ♦ # ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ # ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ # ♦ # ♦ ♦ # ♦ # #

♦3.1.1 Habitat comparision algorithm
♦Purpose: Determines the sum of site qualities of unoccupied sites in each habitat and
♦ sabstracts the floaters for that
♦ habitat. Whichever habitat has a higher value is the better habitat.
♦ This is akin to (W-F) / Nv * Nv/500. The Nv (number of unoccupied sites) term
♦ cancels. 500 is the total number for each site
♦ and this is the same for both habitats so it can be safely ignored.
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def hab_comp(occupTA, occupTB, fTa, fTb):
na = list(occupTA).count(0) #The number of unoccupied sites 
nb = list(occupTB).count(0)
wa = 0 #The sum of site qualities for unoccupied sites in hab a
wb = 0
i = 0 #loop counter

♦Record the unoccupied sites 
while i < 500:

if occupTA[iJ == 0: 
wa = wa + habA[i) 

if occupTB[i] == 0: 
wb = wb + habB(i] 

i = i + 1

wa = wa - fTa 
wb = wb - fTb

♦Which is better (validated for equality)
if wa == wb: ♦if equal, choose one at random,

i = int(random.random() * 2) 
if i == 0:

return 'A' 
else :

return 'B ' 
elif wa > wb: 

return 'A' 
else :

return 'B '

# 3 . 2
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ # ♦ ♦ ♦ # # ♦ # ♦ # # ♦ ♦ # # ♦ # # ♦ ♦ # # ♦ #  

♦Definitions for the habitat selection algorithms.

♦ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
♦3.2.1 Null model - Passive Selection
♦Purpose: This routine is called when passive individuals choose a habitat and site. It
♦ taltes
♦ the number of individual searching for sites(nt). Returns modified cost and
♦ occupancy vectors.
 ♦-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

def NULL (nt, fNa, fNb):

while nt > 0 : 
sites = [] 
sitesi = []
samps = copy.copy(samplerP) ♦To avoid sampling same sites twice
ocost = 0 
flagv = 0
habT = concatenate((habA, habB)) 
occupT = concatenate((occupNA, occupNB)) 
costT = concatenate((costNA, costNB))

♦Try/except accounts for low-cost high quality scenario (semantics)
♦when an all sites are occupied and an individual continues to sample 
try:

while ocost < cthres:
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♦Choose a site at random from those not yet sampled
n = int (random.random() * samps. len ())
n = samps.pop(n)
♦Validation - no sites left
if samps. len () == 0:

flagv = 1

if occupT[n] == 1: ♦if the site is occupied...
ocost = ocost + sc 

else: #If the site is empty
♦if the index is < 500, it is from habitat A. 
if habT[n] >= 1: 

if n < 500:
occupNA[n] = 1 
costNA[n] = ocost + sc

else :
occupNB[n - 500) = 1 ♦Take the first empty site
costNB[n - 500] = ocost + sc ♦Tally the search costs

break 
else :

sites.append(occupT[n]) 
sitesi.append(n) 
ocost = ocost + sc

if (ocost > cthres and (sites. len () >0)) or (flagv == 1) and\
sites. len () > 0:

Sind = sitesi[sites.index(max(sites))] 
if Sind < 500:

occupNA[sInd] = 1 
costNA[sInd] = ocost 

else :
occupNB [sInd - 500] == 1 
costNB[sInd - 500] = ocost

♦Catch the floaters
elif ocost > cthres or samps. len () == 0:

if n < 500 :
fNa = fNa + 1 

else :
fNb = fNb + 1 

break

nt = nt - 1

except IndexError: break

♦If habitats are full, stop searching.
if list(occupNA).count(0) == 0 and list(occupNB).count(0) == 0: 

i = 0
while i < nt:

n = int(random.random() * 2) 
if n == 0:

fNa = fNa + 1 
else :

fNb ■ fNb + 1 
i = i + 1 

break

return (occupNA, occupNB, costNA, costNB, fNa, fNb)

♦ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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#3.2.2 Ideal Free Habitat Selection
♦Purpose: This routine is called when ideal free individuals choose a habitat and site. It
♦ takes
♦ the number of individuals searching for sites, cost and occupancy vectors for each
♦ habitat sampling effort and carry over costs (in case the individual nt = 1) was
♦ bumped from a site by another searcher (IDD, IPD).
♦ Returns modified cost and occupancy vectors.
 ♦-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
def IFD(nt, occupTA, costTA, occupTB, costTB, fFa, fFb, c=0):

i = 0

while i < nt: 
flagv = 0 
sites = [] 
sitesi = [] 
ocost = c

♦Choose best habitat:
flag = hab_comp(occupTA, occupTB, fFa, fFb)
samp = copy.copy(sampler) ♦Remove sites previously sampled.

♦Set vectors for site selection in best habitat... 
if flag == 'A' :

habT = habA 
occupT = occupTA 
costT = costTA

else :
habT = habB 
occupT = occupTB 
costT = costTB

♦Search until unoccupied site found OR costs rise above threshold, 
while ocost < cthres and flagv == 0:

♦Choose a site at random from those not yet sampled
n = int (random.random() * (samp. len ()))
n = samp.pop(n)
♦Validation for sampling all sites:
if samp. len () == 0:

flagv = 1

if occupT[n] > 0: #If the site is occupied...
ocost = ocost + sc

else: #If the site is empty
if habT[n] >= 1: #If the site is above the aspiration level,

occupT[n] = 2 #Take the first empty site
costT[n] = o c o s t  + sc #Tally the search costs
break

else: #If the site quality is below the aspiration level,
sites.append(occupT[n]) 
sitesi.append(n) 
ocost = ocost + sc

♦Found some sites below aspiration level, ran out of cost
if ((ocost > cthres or flagv == 1) and sites. len () > 0):

sInd = sitesi[sites.index(max(sites))] 
occupT[sInd] = 2 
costT[slnd] = ocost 

♦Catch the floaters, 
elif ocost > cthres or flagv == 1: 

if flag == 'A ': 
fFa = fFa + 1
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else :
fFb = fFb + 1

elif samp.__ len () == 0;
if flag == 'A':

fFa = fFa + 1
else: fFb = fFb + 1

break 
i = i + 1

return(occupTA, occupTB, costTA, costTB, fFa, fFb)

#---------------------------------------------------------------------------------------------------------------------
#3.2.3 Ideal Despotic Habitat Selection
♦Purpose: This routine is called when ideal despotic individuals choose a habitat and site.
♦ It takes
♦ the number of individuals searching for sites (nt), the cost and occupancy
♦ vectors, and
♦ modified sampling effort and carry-over costs in the event the individual has been
♦ displaced from a previously chosen site (IDD).
♦ Returns modified cost and occupancy vectors.
 ♦--------------------------------------------------------------------------------------------------------------------------------------

def IDD (nt, occupTA, costTA, occupTB, costTB, fTa, fTb, habsef=habsef, c=0, IDDc=0): 
♦Validate for population overshoot:
♦ideal despotic habitat selection 
i = 0

while i < nt : ♦Loop ea. ind. in pop.
♦Reset variables
ocost = c ♦c is legacy cost if the individual is displaced after selection.
sent = 0
flag = hab_comp(occupTA, occupTB, fTa, fTb)
samp = copy.copy(sample r) ♦Marks sites that have been sampled
sites = [] ♦Holds a list of sites sampled.
sitesi = [)
habs = habsef
IFDc = 0 ♦Counters for challenger losers
IPDc = 0
flagv = 0

♦Sample sites and select best of:
if flag == 'A': ♦Choose a site from habitat A

habT = habA 
occupT = occupTA 
costT = costTA 

else :
habT = habB 
occupT = occupTB 
costT = costTB

♦Loop until the cost has exceed the threshold (see break exception) 
while ocost < cthres and flagv == 0:

n = samp.pop(int(random.random() * samp. len ())) ♦Choose random site
if samp. len () == 0:

flagv = 1

if occupT[n] == 3: #11 the site is occupied IDD...
ocost = ocost + sc ♦incur cost of sampling occupied site and
♦Attainable are added to the list.
♦If the searcher has less cost than the resident... *
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if (ocost + cc) < (costT[n]): 
sites . append (tiabT [n] -cc) 
sitesi.append(n) 

sent = sent + 1 
costT[n] = costT[n] + dc 

else :
ocost = ocost + sc 
sites.append(habT[n]) 
sitesi.append(n) 
sent = sent + 1

♦Record the site. Consider part of habsef

♦resident incurs defense cost.
♦If the site is occupied or unoccupied . 
♦incur cost of sampling unoccupied site. 
♦Record site quality and index.

♦If the correct number of sites have been sampled, see if any are good enough: 
if sent >= habs and sites. len () > 0:

♦Correct for changing sampling costs:
flagZ = 1
while flag2 == 1:

if sites. len () > 0:
Sind = sites.index(max(sites))
slnd2 = sitesi[sites.index(max(sites))]
if (occupT[slnd2] == 3 and (ocost + cc) > (costT[slnd2])) \
and sites. len () > 0:

sites.pop(slnd) 
sitesi.pop(slnd)

else :
flag2 = 0

else :
flag2 = 2

♦If the aspiration level has been met.
if sites. len () > 0 and max(sites) > 1:

slnd = sitesi[sites.index(max(sites))]
♦if the site is unoccupied: 
if occupT[slnd] == 0: 

occupT[slnd] = 3 
costT[slnd] = ocost 
brealc

♦if the site is occupied by an IFD or IPD individual: 
else :

tcost = costT[slnd] 
tstr = occupT[slnd] 
occupT[slnd] = 3
♦ IDD pays a cost for Iciclcing individuals out 
costT[slnd] = (ocost + cc) 
if tcost < cthres: 

if tstr == 2;
occupTA, occupTB, costTA, 
occupTA, costTA, occupTB,
IFDc = IFDc + 1 

elif tstr == 4:
occupTA, occupTB, costTA, 
occupTA, costTA, occupTB,
IPDc = IPDc + 1 

else :
occupTA, occupTB, costTA,

costTB,
costTB,

costTB,
costTB,

fTa,
fTa,

fTa,
fTa,

fTb = IFD(1, 
fTb, tcost)

fTb = IPDd, \ 
fTb, 1, tcost)

fTa, fTb, IFDc, IDDc, \costTB,
IPDc = IDD(1, occupTA, costTA, occupTB, costTB, fTa, \ 
fTb, 1, tcost, IDDc)
IDDc = IDDc + 1

else :
if flag == 'A ': 

fTa = fTa + 1 
else :
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f T b  = f T b  + 1
break

♦Now need to check if costs were too high.
♦If individual did not find site better than habitat mean before costs 
♦got too high...
♦or if there are no sites left to sample.
if (sent >= habs and ocost > cthres) or flagv == 1:

if sites. len () > 0: #If the individual found any unoccupied sites...

♦Correct for changing sampling costs:
flag2 = 1
while flag2 == 1:

if sites. len () > 0:
slnd = sites.index(max(sites))
slnd2 = sitesi[sites.index(max(sites))]
if (occupT[slnd2] == 3 and (ocost + cc) > (costT[slnd2])) \
and sites. len () > 0:

sites.pop(slnd) 
sitesi.pop(slnd)

else :
flag2 = 0

else :
flag2 = 2

if (sent >= habs and ocost > cthres) or flagv == 1:
♦Check again if there are available sites before proceeding with selection 
if sites. len () > 0: #If the individual found any unoccupied sites.

slnd = sitesi[sites.index(max(sites))]
♦if the site is unoccupied: 
if occupT[slnd] == 0: 

occupT[slnd] = 3 
costT[slnd] = ocost

♦ if the site is occupied by a IFD or IPD individual : 
else :

tcost = costT[slnd] 
tstr = occupT[slnd] 
occupT[slnd] = 3 
costT[slnd] = (ocost + cc) 
if tcost < cthres: 

if tstr == 2:
occupTA, occupTB, costTA, 
occupTA, costTA, occupTB,
IFDc = IFDc + 1 

elif tstr == 4:
occupTA, occupTB, costTA, 
occupTA, costTA, occupTB,
IPDc = IPDc + 1 

else :
occupTA, occupTB, costTA, costTB, fTa,

costTB,
costTB,

costTB,
costTB,

fTa,
fTa,

fTa,
fTa,

fTb = IFD(1, \ 
fTb, tcost)

fTb
fTb,

= IPDd, \ 
1, tcost)

IPDc = IDD(1, occupTA, 
tcost, IDDc)
IDDc = IDDc + 1

costTA, occupTB,
fTb, IFDc, IDDc, \ 
costTB, fTa, fTb, 1,\

else :
if f l a g  == 'A':

fTa = fTa + 1 
else :
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f T b  = f T b  + 1

#If any didn't find sites (floaters); 
else :

if flag == 'A' ;
fTa = fTa + 1 

else :
fTb = fTb + 1

i = i + 1

return occupTA, occupTB, costTA, costTB, fTa, fTb, IFDc, IDDc, IPDc

#----------
#3.2.4
♦ Purpose :
♦
♦
♦
♦ ------------------------------------------------------------------------------------------------------------------------------------------------------------------
def IPD (nt, occupTA, costTA, occupTB, costTB, fPa, fPb, habsef=habsef, c=0):

1  =  0

Ideal Pre-emptive Habitat Selection
This routine is called when ideal pre-emptive individuals choose a habitat and 
site. It talces the number of individual searching for sites. Returns modified cost 
and occupancy vectors. IPD individuals do no remove other IDD individuals or other 
IPD individuals, but can depose IFD individuals.

while i < nt :
flagv = 0
ocost = c ♦Reset variables
sent = 0
tent = 0
samp = copy.copy(samplerP) ♦Marks sites that have
sites = (] ♦Holds a list of sites
sitesi = []
habs = habsef

♦Sample sites and select best of
♦ IPD talce best of a sample of sites, regardless of habitat, so 
♦treat entire landscape like a single habitat. 

habT = concatenate((habA, habB)) 
occupT = concatenate((occupTA, occupTB)) 
costT = concatenate((costTA, costTB))

♦Loop until the cost has exceed the threshold (see break exception) 
while ocost < cthres and flagv == 0:

♦Landscape ♦ of patches.
n = int(random.random() * (samp. len ()))
n = samp.pop(n)
♦Validation flag for all sites sampled.
if samp. len () == 0:

flagv = 1

if occupT[n] > 0:
ocost = ocost + sc 
sent = sent + 1 

else :
ocost = ocost + sc 
sites.append(habT[n]) 
sitesi.append(n) 
sent = sent + 1

♦If the site is occupied ...
♦incur cost of sampling occupied site and

♦If the site is unoccupied or occupied by IFD...
♦incur cost of sampling unoccupied site. 
♦Record site quality and index.

♦If the correct number of sites have been sampled, see if any are good enough:
if sent >= habs and sites. len () > 0:

if max(sites) > 1:
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slnd = sitesi[sites.index(max(sites))] 
if slnd <= 499: #Hab A

♦The site is vacant 
if occupT[slnd] == 0: 

occupTA(slnd] = 4 
costTA[sInd] = (ocost) 

brealc
else: #Hab B

♦v a c a n t site
if occupT[slnd] == 0:

occupTB[slnd - 500] = 4 
costTB[sInd - 500] = (ocost)

brealc

♦ Now need to checic if costs were too high...
♦If individual did not find site better than habitat mean before costs got too high...

if ((sent >= habs and ocost > cthres or samp. len () = = 0  )) or flagv == 1:
if sites. len () > 0:

slnd = sitesi[sites.index(max(sites))] 
if slnd <= 499:

occupTA[sInd] = 4 
costTA[slnd] = (ocost) 

else :
occupTB[slnd - 500] = 4 
costTB[slnd - 500] = (ocost)

♦Catch the floaters 
elif ocost > cthres: 

if n < 500:
fPa = fPa + 1 

else :
fPb = fPb + 1

elif samp. len () == 0:
if n < 500:

fPa = fPa + 1 
else :

fPb = fPb + 1 
♦Next individual 
i = i + 1

return occupTA, occupTB, costTA, costTB, fPa, fPb

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ # ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦  
♦SECTION 4 #
♦Normal Population Growth ♦
♦Note: Single strategy in the landscape is growing for generations specified at ♦
♦ beginning of code. ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

invas = [0,0,0] ♦Population size achived, for use in invasion analysis,
g = 0
while g < gen :

event = int(random.random]) * (eFq +1)) #A random year for the stochastic event.

if event == 0: sev = int(random.random() * (eSev + 1))

♦ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
♦4.1 NULL Model population growth
♦ ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
♦Null model - passive dispersals

♦1. Allow the population to grow: 
if g > 0 :

116



ntl = popgrowth(habA, costNA, 
nt2 = popgrowth(habB, costNB, 
if ntl < 0: ntl = 0 
if nt2 < 0: nt2 = 0 
nt = ntl + nt2 

#set starting population here; 
else :

nt = 10

occupNA,
occupNB,

1 )

1 )

fNa
fNb

RA = 0
RB = 0
CA = 0
CB = 0
fNa = 0
fNb = 0
MNNa = 0
MNNb =̂ 0
MNFa = 0
MNFb := 0
fnum.write('%s' (nt) )

#For writing out value of r for each habitat

♦Mortality counters

occupNA = occup.copyO 
occupNB = occup.copy() 
costNA = cost.copyO 
costNB = cost.copy()

♦Reset occupancy & cost vectors

♦Send empty occupancy and cost vectors with population size to habitat 
♦selection algorithm.
if nt > 0; occupNA, occupNB, costNA, costNB, fNa, fNb = NULL(nt, fNa, fNb)

if event == 0: ♦If this is a year for stochastic event. 1 in eFq chance. 
occupNA, occupNB, costNA, costNB, fNa, fNb, MNNa, MNNb, MNFa, MNFb \
= StochasticEvent(occupNA, occupNB, costNA, costNB, fNa, fNb, [1], sev)

♦ Results :
RA, CA, RB, CB = results(occupNA, occupNB, costNA, costNB, 1)
NA = occupNA.sum()
NB = occupNB.sum()

♦Write out results
fnum.write (”,%s,%s,%s,%s,%s,%s,%s,%s,%s, 
fNb, MNNa, MNNb, MNFa, MNFb))

%s,%s,%s," (NA, NB, RA, RB, CA, CB, fNa, \

♦ -
♦ 4.
♦ —  
if

2 Ideal free growth

g > 0: 
ntl 
nt2
if ntl 
if nt2 
nt

= popgrowth(habA, costFA, 
= popgrowth(habB, costFB,

< 0: ntl = 0
< 0 : nt2 = 0 
= ntl + nt2

♦Set starting population size here, 
else :

nt = 10

occupFA, 
o c c u p F B ,

2 ) -  

2 ) -
fFa
fFb

RA
RB
CA
CB
fFa
fFb

ItFor recording output
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MFNa = 0
MFNb = 0
MFFa = 0
MFFb = 0
invas[0] = nt

occupFA = occup.copy0 #Reset vectors
occupFB = occup.copy 0 
costFA = cost.copy() 
costFB = cost.copy()
if nt > 0: occupFA, occupFB, costFA, costFB, fFa, fFb = IFD(nt, occupFA, costFA, \ 
occupFB, costFB, fFa, fFb)

if event == 0: #If this is a year for stochastic event. 1 in eFq chance.
occupFA, occupFB, costFA, costFB, fFa, fFb, MFNa, MFNb, MFFa, MFFb = \ 
StochasticEvent(occupFA, occupFB, costFA, costFB, fFa, fFb, [2], sev)

♦ Results :
RA, CA, RB, CB = results(occupFA, occupFB, costFA, costFB, 2)
NA = (occupFA.sum() / 2)
NB = (occupFB.sum() / 2)
♦write results to file
fnum. write ( "%s, %s, %s, %s, %s, %s, %s, %3, %3, %s, %s, %s, %s, " % (nt, NA, NB, RA, RB, CA, CB, \ 
fFa, fFb, MFNa, MFNb, MFFa, MFFb))

 ♦----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
♦4.3 Ideal despotic growth
♦ ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if g > 0 :

ntl = popgrowth(habA, costDA, occupDA, 3) - fDa 
nt2 = popgrowth(habB, costDB, occupDB, 3) - fDb 
if ntl < 0; ntl = 0 
if nt2 < 0: nt2 = 0 
nt = ntl + nt2 
invas[1] = nt 

♦Set stating population size here; 
else ;

nt = 10

RA = 0
RB = 0
CA = 0
CB = 0
fDa = 0
fDb = 0
MDNa = 0
MDNb = 0
MDFa = 0
MDFb = 0
occupDA = occup.copy()
occupDB = occup.copy()
costDA = cost.copy()
costDB = cost.copy()

♦ IFDc, IDDc, and IPDc are counters for individuals )cic)<ed out of their sites 
♦by ID individuals
♦IDDc is written at the end of the IPD data (to preserve analysis code already written) 
♦IFDc & IPDc are used only for the invasion analysis.
if nt > 0; occupDA, occupDB, costDA, costDB, fDa, fDb, IFDc, IDDc, IPDc = IDD(nt,\ 
occupDA, costDA, occupDB, costDB, fDa, fDb)

if event == 0; #If this is a year for stochastic event. 1 in eFq chance.
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occupDA, occupDB, costDA, costDB, fDa, fDb, MDNa, MDNb, MDFa, MDFb \
= StochasticEvent(occupDA, occupDB, costDA, costDB, fDa, fDb, [3], sev)

♦Results
RA, CA, RB, CB = results(occupDA, occupDB, costDA, costDB, 3)
NA = (occupDA.sum() / 3)
NB = (occupDB.sum() / 3)
♦Write results
fnum.write("%s, %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s," % (nt, NA, NB, RA, RB, CA, CB, \ 
fDa, fDb, MDNa, MDNb, MDFa, MDFb))

♦ ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
♦4.4 Ideal pre-emptive habitat selectors.
♦-----------------------------------------------------------------------------------------------------------
if g > 0 :

ntl = popgrowth(habA, costPA, occupPA, 4) - fPa
nt2 = popgrowth(habB, costPB, occupPB, 4) - fPb
if ntl < 0: ntl = 0 
if nt2 < 0; nt2 = 0 
nt = ntl + nt2

else :
nt = 10

invas[2] = nt 
RA = 0  
RB = 0  
CA = 0  
CB = 0  
fPa = 0 
fPb = 0 
MPNa = 0 
MPNb = 0 
MPFa = 0 
MPFb = 0

occupPA = occup.copyO 
occupPB = occup.copyO 
costPA = cost.copy() 
costPB = cost.copy()

if nt > 0: occupPA, occupPB, costPA, costPB, fPa, fPb = IPD(nt, occupPA, \ 
costPA, occupPB, costPB, fPa, fPb)

if event == 0: #If this is a year for stochastic event. 1 in eFq chance. 
occupPA, occupPB, costPA, costPB, fPa, fPb, MPNa, MPNb, MPFa, \
MPFb = StochasticEvent(occupPA, occupPB, costPA, costPB, fPa, fPb, [4], sev)

♦Results
RA, CA, RB, CB = results(occupPA, occupPB, costPA, costPB, 4)
NA = (occupPA.sum() / 4)
NB = (occupPB.sum() / 4)

♦Write results
fnum.write("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" % (nt, NA, NB, RA, \ 
RB, CA, CB, fPa, fPb, MPNa, MPNb, MPFa, MPFb, IDDc))

g = g + 1
♦delete file object 
fnum.close() 
del fnum
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# -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

#4.2 Results Summary
#Purpose : Print mean fitness values from population growth. Also records which value 
#is highest: used in invasion analysis.
# --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
g = 0 
fits = []
fnumt = file(os.path.join(path, "growth.csv"), "r")

wNOLL = [] 
wIFD = []
wIDD = []
wIPD = []

for i in 1, 2:
fnumt.readline()

temp = fnumt.readline() 
while temp:

temp2 = temp.split(',')
wNULL.append((float(temp2[3]) + float(temp2[4]) - float(temp2[5]) - float(temp2[6]) -\ 
float(temp2[7]) - float(temp2[81)) / (float(temp2[1]) + float(temp2[2]) + \ 
float(temp2[7]) + float(temp2[8])))

wIFD.append((float(temp2[16]) + float(temp2[17]) - float(temp2[18]) - float(temp2[19])\
- float(temp2[20]) - float(temp2[21])) / (float(temp2[14]) + float(temp2[15]) +\ 

float(temp2[20]) + float(temp2[21])))

wIDD.append((float(temp2[29]) + float(temp2[30]) - float(temp2[31]) - float(temp2[32]) \
- float(temp2[33]) - float(temp2[34])) / (float(temp2[27]) + float(temp2[28]) + \ 
float(temp2[33]) + float(temp2[34])))

wIPD.append((float(temp2[42]) + float(temp2[43]) - float(temp2[44]) - float(temp2[45]) \
- float(temp2[46]) - float(temp2[47])) / (float(temp2[40]) + float(temp2[41]) + \ 
float(temp2[46]) + float(temp2[47])))

temp = fnumt.readline()

ttConvert to arrays 
wNULL = array(wNULL) 
wIFD = array(wIFD) 
wIDD = array(wIDD) 
wIPD = array(wIPD)

while g < gen: tReplace Os with exceptionally low values for gmean calc.
if wNULL[g] <= 0:

wNULL[g] = 0.0001
if wIFD[g] <= 0:

wIFD[g] 0.0001
if wIDD[gl <= 0:

wIDD[g] 0.0001
if wIPD[g] <= 0:

wIPD[g] 0.0001

wNULL[g] = math.log(wNULL[g] , e) 
wIFD[g] = math.log(wIFD[g], e)
wIDD[g] = math.log(wIDD[g], e)
wIPD[g] = math.log(wIPD[g], e)

g = g + 1 
wO = exp(mean(wNULL))
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wl = exp(mean(wIFD)) 
w2 = exp(mean(wIDD)) 
w3 = exp(mean(wIPD)) 
fits = [wl, w2, w3]
flagi = fits.index(max{fits)) #Flag marks best strategy for invasion analysis, 
fnumt.close ( ) 
del fnumt
print """SUMMARY (Geometric mean fitnesses):\nNOLL\t%s\nIFD\t%s\nIDD\t%s\nIPD\t%s""" % \
(wO, wl, w2, w3)
fnum = file(os.path.join(path, 'parameters.txt'), 'a ')
fnum.write("""SUMMARY (Geometric mean fitnesses):\nNULL\t%s\nIFD\t%s\nIDD\t%s\nIPD\t%s""" \
% (wO, wl, w2, w3))
del fnum, wO, wl, w2, w3, wNULL, wIFD, wIDD, wIPD

################################################################################################# 
tSECTION 5 #
#Controlled density performance #
#Note: This section should determine what the best possible strategy would be, and then #
#further determine #
#which of the strategies has the best fit to that perfect strategy #

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#5.1: Determine the [cost-free] distribution that maximizes fitness 
#Searches for maximum per-capita growth rate in each habitat.

fnum = file(os.path.join(path, "fixed_density.csv"), 'w ')
fnum.write("iteration,strategy,NA,RA,CA,NB,RB,CB,FloatA,Floats,IDD-out\n")
#this section runs the longest - so assessing fitness at populations sizes from 1-1000 \
#at every 10.

for i in xrange(10,1001,10):
j = 1
acnt = 0 
bent = 0 
RA = 0  
RB = 0

tconvert habitat arrays back to lists, for different coding properties. 
habTA = list(habA) 
habTB = list(habB)

#Want to know the per-capita fitness in each habitat :
#Validate for no empty 
while j <= i :

#if/elif - if one site has no space left, just take sites from the other \
#site in order 
if len(habTA) == 0:

RB = RB + habTB.pop(habTB.index(max(habTB))) 
bent = bent + 1

elif len(habTB) == 0:
RA = RA + habTA.pop(habTA.index(max(habTA))) 
acnt = acnt + 1

#There are still sites left in both habitats 
else :

#If per-capita fitness is higher in A;
if (RA + max(habTA)) / (acnt + 1) > (RB + max(habTB)) / (bent + 1):
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RA = RA + habTA.pop(habTA.index(max(habTA))) 
acnt = acnt + 1

#If per-capita fitness is higher in B:
elif (RA + max(habTA)) / (acnt + 1) < (RB + max(habTB)) / (bent + 1): 

RB = RB + habTB.pop(habTB.index(max(habTB))) 
bent = bent + 1

#If the per-capita fitness is equal in each habitat... 
else :

#Check if there is a difference in the sites 
if max(habTA) > max(habTB):

RA = RA + habTA.pop(habTA.index(max(habTA))) 
acnt = acnt + 1

elif max(habTA) < max(habTB):
RB = RB + habTB.pop(habTB.index(max(habTB))) 
bent = bent + 1

#chose one at random 
else :

n = int(random.random() * 2) 

if n == 0 :
RA = RA + habTA.pop(habTA.index(max(habTA))) 
acnt = acnt + 1

else :
RB = RB + habTB.pop(habTB.index(max(habTB))) 
bent = bent + 1

j = j + 1
fnum.write("%s,fraax,%s,%s,,%3,%s\n" % ((i) , acnt, RA, bent, RB))

#4
#5.2 - The performance of the NULL model at controlled densities:

RA = 0  #For writing out value of r for each habitat
RB = 0
CA = 0
CB = 0
acnt = 0
bent = 0
for 3 in range (1,10): # (Averaging resutls)

fNa = 0 
fNb = 0

occupNA = occup.copy() #Reset occupancy & cost vectors
occupNB = occup.copy() 
costNA = cost.copy() 
costNB = cost.copy()

occupNA, occupNB, costNA, costNB, fNa, fNb = NULL (i, fNa, fNb) 

ttResults
RA, CA, RB, CB = results(occupNA, occupNB, costNA, costNB, 1)

#WRITE RESULTS
fnum.write("%s,NULL,%s,%s, %s,%s,%s, %s, %s,%s\n" % (i, (occupNA.sum()), RA, \
CA, occupNB.sum 0, RB, CB, fNa, fNb) )
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#5.3 - The performance of the IFD model at controlled densities:

RA
RB
CA
CB

#For recording output

#Reset vectors

acnt = 0 
bent = 0

for s in range (1,10): 
fFa = 0
fFb = 0
nt = i
occupFA = occup.copy 0 
occupFB = occup.copy() 
costFA = cost.copy() 
costFB = cost.copy()

occupFA, occupFB, costFA, costFB, fFa, fFb = IFD(nt, occupFA, costFA, \ 
occupFB, costFB, fFa, fFb)

#results
RA, CA, RB, CB = results(occupFA, occupFB, costFA, costFB, 2)

#write results to file
fnum.write("%s,IFD,%s,%s,%s,%s,%s,%s, %s, %s\n" % (i, (occupFA.sum() / 2), RA, \
CA, (occupFB.sum() / 2), RB, CB, fFa, fFb))

H -  +  +  +

#5.4 - The performance of the IDD model at controlled densities:

RA = 0  #For recording output
RB = 0
CA = 0
CB = 0
acnt = 0
bent = 0

f + + + + + + + + + + + +

for s in range (1,10): 
f Da = 0
fDb = 0
nt = i
occupDA = occup.copy 0 
occupDB = occup.copy 0 
costDA = cost.copy 0 
costDB = cost.copy()

#Reset vectors

#IFDc and IPDc are used only in the invasion analysis. 
occupDA, occupDB, costDA, costDB, fDa, fDb, IFDc, IDDc, IPDc = \
IDD(nt, occupDA, costDA, occupDB, costDB, fDa, fDb)

#Results
RA, CA, RB, CB = results(occupDA, occupDB, costDA, costDB, 3)
♦write results
fnum.write("%s,IDD,%s,%3,%s,%s,%s,%s,%s,%s,%s\n" % (i, (occupDA.sum() / 3), \ 
RA, CA, (occupDB.sum() / 3), RB, CB, fDa, fDb, IDDc))
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# + + + +

#5.5 - The performance of the IPD model at controlled densities: 
H - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4  

RA = 0  #For recording output
RB = 0  
CA = 0  
CB = 0  
acnt = 0 
bent = 0

for s in range (1,10): 
f Pa = 0
fPb = 0
nt = i
occupPA = occup.copy 0 #Reset vectors
occupFB = occup.copy() 
costPA = cost.copy() 
costFB = cost.copy 0

occupPA, occupFB, costPA, costFB, fFa, fPb = IPD(nt, occupFA, costPA, \ 
occupPB, costFB, fPa, fPb)

#Results
RA, CA, RB, CB = results(occupPA, occupPB, costPA, costFB, 4)
#write results
fnum.write("%s,IPD,%s,%3,%s,%s,%s,%s,%s,%s\n" % (i, (occupPA.sum() / 4), \
RA, CA, (occupPB.sum() / 4), RB, CB, fFa ,fPb))

#Section counter - increase density 
i = i + 1

del fnum

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
#SECTION 6 #
#Invasion Analysis (modified from Ranta and Kaitala 1999) #
#SECTION IN PROGRESS - CURRENTLY NOT WORKING - Oct 2009 #
# Considers the population size achieved after the growth phase above as the #
# establishment phase. #
# Population size is recorded from last generation. Then competing strategies are #
# added at very low density. After a thousand more generations the results are sampled #
# for 100 generations. This whole process is repeated several times. Ideally a #
# bifurcation diagram could be created from the data, showing #
# success of invading strategy across a range of a model parameter. #
# Uses summary information from above. Takes the best strategy, and assesses stability #
# to invasion from other strategies (each independently, and together). #
# The passive selection strategy is excluded from this analysis #

#################################################################################################

#4
# #6.1 IFD IS THE BEST STRATEGY 
#4-4-4-4
# fnum = file(os.path.join(path, "invasion.csv"), 'w ')
# fnum.write("Trial,StochasticSeverity,Resident,NA,NB,Istlnvader,NA,NB,2ndlnvader,\
# NA,NB,IFDc,IDDc,IFDcXn")
#
# #If the best strategy has crashed, start it off with a low population...
# if invas[flagi] == 0: invas[flagi] = 10
#
# for X in xrange(1,11,1): #run analysis lOx, in case one strategy crashes...
#
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4+++++++++++++4
# #6.1 IFD IS THE BEST STRATEGY

# #If IFD is best:
# if flagi == 0:
#

#6.1.1 Introduce IDD
#***'
#
#
#
#
#
#
#

******************************************************************************************** 
NTF = invas[0] 
fl = 0 
NTD = 1
i = 0
while i < 1100:

occupIA = occup.copy() 
occupIB = occup.copy() 
costIA = cost.copy 0 
costIB = cost.copy() 
fTa = 0 
fTb = 0

while NTF > 0 or NTD > 0:
#validation for one pop having all chosen sites: 
if NTF == 0:

occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
IDD(NTD, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
break 

elif NTD == 0:
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(NTF, \
occupIA, costIA, occupIB, costIB, fTa, fTb)
break

#fl/f2 flags used to choose a strategy at random, and 
#chose the second strategy the next time by. 
if fl == 0:

f2 = int(random.random() * 2) 
fl == 1 

else :
if f2 == 1: 

f2 = 0 
else :

f2 = 1 
fl == 0

#IFD first 
if f2 == 0:

#Allow one IFD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, occupIA, \
costIA, occupIB, costIB, fTa, fTb)
NTF = NTF - 1

#IDD 
if f2 == 1:

#Allow one IDD indiidual to choose habitat & site 
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, \
IPDc = IDD(1, occupIA, costIA, occupIB, costIB, fTa, fTb,IDDc=IDDc)
NTD = NTD - 1

#Stochastic Influence 
event = int (random. random( ) * (eFq 4-1)) #A random year for the stochastic event.
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# if event == 0:
# sev = int(random.normalvariate(40,10))
# occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, \
# b4 = StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, \
# [2,3,4], sev)
# else: sev = 0
# #Proportionate distribution of floater effect
# nta = popgrowth(habA, costIA, occupIA, 2)
# ntb = popgrowth(habB, costIB, occupIB, 2)
# ntaa = popgrowth(habA, costIA, occupIA, 3)
# ntbb = popgrowth(habB, costIB, occupIB, 3)
#
# #Correct for floaters.
# ta = nta + ntaa
# tb = ntb + ntbb
# if ta > 0:
# nta = nta - round((float(nta) / (ta)) * fTa)
# ntaa = ntaa - round((float(ntaa) / (ta)) * fTa)
# if tb > 0:
# ntb = ntb - round((float(ntb) / (tb)) * fTb)

ntbb = ntbb - round((float(ntbb) / (tb)) * fTb)

# [[Corrections :
# if nta < 0: nta = 0
# if ntb < 0: ntb = 0
# if ntaa < 0: ntaa = 0
# if ntbb < 0: ntbb = 0

# NTD = ntaa + ntbb
# NTF = nta + ntb

# if i > 99:
# fnum.write("%s, %s, IFD, %s, %s, IDD, %s, %s, , , , %s, %s\n" % \
# (x, sev, nta, ntb, ntaa, ntbb, IFDc, IDDc))

# #This validation truncates the analysis if one population crashes to extinction.
# if NTF == 0:
# brealc
# if NTD == 0:

brealc

# i = i + 1

#6.1.2 Introduce IPD

# NTF = invas[0]
# fl = 0
# NTP = 1
# i = 0
# while i < 1100:
# occupIA = occup.copy{)
# occupIB = occup.copy{)
# costIA = cost.copy()
# costIB = cost.copy()
# fTa = 0
# fTb = 0
#
# while NTF > 0 or NTP > 0:
# #Validation for all of one pop having chosen sites.
# if NTF == 0:
# occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(NTP, occupIA, \
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costIA, occupIB, costlB, fTa, fTb) 
break 

elif NTP == 0:
occupIA, occupIB, costIA, costlB, fTa, fTb = IFD(NTD, occupIA, \
costIA, occupIB, costlB, fTa, fTb)
break

#f1/f2 flags used to choose a strategy at random, and chose 
#the second strategy the next time by. 
if fl == 0:

f2 = int(random.random() * 2) 
fl == 1 

else :
if f2 == 1: 

f2 = 0 
else :

f2 = 1 
fl == 0

#1FD
if f2 == 0:

#Allow one IFD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, occupIA, \
costIA, occupIB, costIB, fTa, fTb)
NTF = NTF - 1

#IPD
if f2 == 1;

#Allow one IDD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, occupIA, \
costIA, occupIB, costIB, fTa, fTb)
NTP = NTP - 1

(eFq +1}) #A random year for the stochastic event.
#Stochastic Influence 

event = int(random.random() 
if event == 0:

sev = int(random.normalvariate(4 0,10))
occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 =\ 
StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], sev) 

else: sev = 0

nta = popgrowth(habA, costIA, occupIA, 2)
ntb = popgrowth(habB, costIB, occupIB, 2)
ntaa = popgrowth(habA, costIA, occupIA, 4)
ntbb = popgrowth(habB, costIB, occupIB, 4)

ttCorrect for floaters: 
ta = nta + ntaa 
tb = ntb + ntbb 
if ta > 0:

nta = nta - round((float(nta) / (ta)) * fTa) 
ntaa = ntaa - round((float(ntaa) / (ta)) * fTa) 

if tb > 0:
ntb = ntb - round((float(ntb) / (tb)) * fTb) 
ntbb = ntbb - round((float(ntbb) / (tb)) * fTb)

#Corrections: 
if nta < 0: nta = 0
if ntb < 0: ntb = 0
if ntaa < 0; ntaa = 0
if ntbb < 0: ntbb = 0
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NTF = nta + ntb 
NTP = ntaa + ntbb

if i > 99:
fnum.write("%s,%s,IFD,%s,%s,IPD,%s,%s\n"

#truncate analysis if a strategy crashes, 
if NTF == 0: 

break 
if NTP == 0: 

break 
i = i + 1

% (x, sev, nta, ntb, ntaa, ntbb))

^********-*******************
#6.1.3 Introduce IDD & IPD

NTF = invas[0]
NTP = 0 
NTD = 0
xg = int(random.random() * 100)
yg = int(random.random() * loO)
f 3  = []

i = 0
while i < 1100:

occupIA = occup.copy() 
occupIB = occup.copy 0 
costIA = cost.copy() 
costIB = cost.copy() 
fTa = 0 
fTb = 0

if i == xg:
NTP = 1 

if i == yg:
NTD = 1

while NTF > 0 or NTP > 0 or NTD > 0:

if f3 == [] :
f3 = [0,1,2]

f2 = f3.pop(int(random.random() ^

#Reusing the same starting conditions

#A random generation to introduce strategy 

#List of flags

(f3. len 0 - 1)))

#IFD
if f2 == 0 and NTF > 0:

#Allow one IFD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, \
occupIA, costIA, occupIB, costIB, fTa, fTb)
NTF = NTF - 1

#IPD
if f2 == 1 and NTP > 0:

#Allow one IDD indiidual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, \
occupIA, costIA, occupIB, costIB, fTa, fTb)
NTP = NTP - 1

if f2 == 2 and NTD > 0:
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = IDD(1, 

#occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
# NTD = NTD - 1
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(eFq +1)) #A random year for the stochastic event.
#Stochastic Influence 

event = int(random.random() 
if event ==0:

sev = int(random.normalvariate(40,10))
occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 =\ 
StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], sev) 

else: sev = 0

nta = popgrowth (ha)
ntb = popgrowth (ha)

costIA, occupIA, 2)
costIB, occupIB, 2)
costIA, occupIA, 3)
costIB, occupIB, 3)
costIA, occupIA, 4)
costIB, occupIB, 4)

#Correct for fitness 
ta = nta + ntaa + ntaaa 
tb = ntb + ntbb + ntbbb 
if ta > 0:

if

nta = 
ntaa = 
ntaaa = ntaaa 

tb > 0 : 
ntb = 
ntbb = 
ntbbb =

nta - 
ntaa

ntb - 
ntbb ■ 
ntbbb

round((float(nta) / (ta)) * fTa)
- round((float(ntaa) / (ta)) * fTa)
- round((float(ntaaa) / (ta)) * fTa)

round((float(ntb) / (tb)) * fTb)
- round((float(ntbb) / (tb)) * fTb)
- round((float(ntbbb) / (tb)) * fTb)

# ttCorrections:
# if nta < 0: nta = 0
# if ntb < 0: ntb = 0
# if ntaa < 0 : ntaa = 0
# if ntbb < 0 : ntbb = 0
# if ntaaa < 0: ntaaa = 0
# if ntbbb < 0: ntbbb = 0

NTF = nta + ntb 
NTD = ntaa + ntbb 
NTP = ntaaa + ntbbb

if i > 99:
fnum.write("%s,%s,IFD,%s,%s,IDD,%s,%s,IPD,%s,%s,%s,%s,%s\n" % (x, sev, \ 
nta, ntb, ntaa, ntbb, ntaaa, ntbbb, IFDc, IDDc, IPDc))

i = i + 1

[ 6 . 2  IDD IS THE BEST STRATEGY

# elif flagi == 1:

#6.2.1 Introduce IFD

# NTD = invas[1]
# fl = 0
# NTF = 1
# i = 0
# while i < 1100:
# occupIA = occup.copy 0
# occupIB = occup.copy 0
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costIA = cost.copy() 
costIB = cost.copy() 
fTa = 0 
fTb = 0

while NTF > 0 or NTD > 0:
tvalidation for one pop having chosen sites 
if NTF == 0;

occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
IDD(NTD, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
break

elif NTD == 0:
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
IFD(NTF, occupIA, costIA, occupIB, costIB, fTa, fTb)
break

#fl/f2 flags used to choose a strategy at random, and chose the 
#strategy the next time by. 
if fl == 0:

f2 = int(random.random() * 2) 
fl == 1 

else ;
if f2 == 1: 

f2 = 0 
else :

f2 = 1 
fl == 0

#IFD
if f2 == 0:

#Allow one IFD individual to choose habitat s site 
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, 
occupIB, costIB, fTa, fTb)
NTF = NTF - 1

occupIA, costIA,\

#IDD
if f2 == 1:

#Allow one IDD indiidual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \ 
IDD(1, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
NTD = NTD - 1

ttStochastic Influence 
event = int(random.random() 
if event == 0:

sev = int(random.normalvariate(40, 10)) 
occupIA, occupIB, costIA, costIB, fTa, fTb 
= StochasticEvent(occupIA, occupIB, costIA 

else: sev = 0

nta = popgrowth(habA, costIA, occupIA, 2)
ntb = popgrowth(habB, costIB, occupIB, 2)
ntaa = popgrowth(habA, costIA, occupIA, 3)
ntbb = popgrowth(habB, costIB, occupIB, 3)

tCorrection for floaters 
ta = nta + ntaa
tb = ntb + ntbb
if ta > 0:

nta = nta - round((float(nta) / (ta)) * fTa)
ntaa = ntaa - round((float(ntaa) / (ta)) * fTa)

(eFq +1)) #A random year for the stochastic event.

bl, b2, b3, b4 \ 
costIB, fTa, fTb, [2,3,4], sev)
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# if tb > 0:
# ntb = ntb - round((float(ntb) / (tb)) * fTb)
# ntbb = ntbb - round((float(ntbb) / (tb)) * fTb)
#
# if nta < 0: nta = 0
# if ntb < 0: ntb = 0
# if ntaa < 0: ntaa = 0
# if ntbb < 0: ntbb = 0
#
# NTF = nta + ntb
# NTD = ntaa + ntbb
#
# if i > 99:
# fnum.write("%s,%s,IDD, %s, %s, IFD, %s, %s,,,,%s,%s\n" % (x, sev, ntaa, \
# ntbb, nta, ntb, IFDc, IDDc))
#
# #Truncate analysis if one population has crashed
# if NTF == 0:
# brealc
# elif NTD == 0:
# brealc
# i = i + 1

#6.2.2 Introduce IPD

# NTD = invas[1]
# fl = 0
# NTP = 1
# i = 0
# while i < 1100:
# occupIA = occup.copy 0
# occupIB = occup.copy 0
# costIA = cost.copy 0
# costIB = cost.copy()
# fTa = 0
# fTb = 0
#
# while NTD > 0 or NTP > 0:
# #Validation for one pop having completely chosen sites
# if NTD == 0:
# occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(NTP, \
# occupIA, costIA, occupIB, costIB, fTa, fTb)
# brealc
# elif NTP == 0:
# occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
# IDD(NTD, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
# break
#
# #fl/f2 flags used to choose a strategy at random, and
# #chose the second strategy the next time by.
# if fl == 0:
# f2 = int(random.random() * 2)
# fl == 1
# else:
# if f2 == 1:
# f2 = 0
# else:
# f2 = 1
# fl == 0
#
# #IDD
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# if f2 == 0:
# occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
# IDD(1, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
# NTD = NTD - 1
#
# #IPD
# if f2 == 1:
# occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, occupIA, \
# costIA, occupIB, costIB, fTa, fTb)
# NTP = NTP - 1
#
# IStochastic Influence
# event = int(random.random() * (eFq +1)) #A random year for the stochastic event.
# if event == 0:
# sev = int(random.normalvariate{40, 10))
# occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 \
# = StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], sev)
# else: sev = 0
#
# nta = popgrowth(habA, costIA, occupIA, 3)
# ntb = popgrowth(habB, costIB, occupIB, 3)
# ntaa = popgrowth(habA, costIA, occupIA, 4)
# ntbb = popgrowth(habB, costIB, occupIB, 4)
#
# #Correction for floaters:
# ta = nta + ntaa
# tb = ntb + ntbb
#
# if ta > 0:
# nta = nta - round((float(nta) / (ta)) * fTa)
# ntaa = ntaa - round((float(ntaa) / (ta)) * fTa)
# if tb > 0:
# ntb = ntb - round((float(ntb) / (tb)) * fTb)
# ntbb = ntbb - round((float(ntbb) / (tb)) * fTb)
#

# if nta < 0
# if ntb < 0
# if ntaa < 0
# if ntbb < 0

nta = 0 
ntb = 0 
ntaa = 0 
ntbb = 0

# NTD = nta + ntb
# NTP = ntaa + ntbb
#

# if i > 99:
# fnum.write("%s, %s, IDD, %s, %s, IPD, %s, %s,,,,,%s,%s\n" % (x, \
# sev, nta, ntb, nta, ntbb, IDDc, IPDc))
# fValidation for one strategy being excluded
# if NTD == 0:
# break
# elif NTP == 0:
# break
# i = i + 1

*̂*********************************************************************************************** 
#6.2.3 Introduce IFD S IPD

# NTD = invas[1] #Reusing the same starting conditions
# NTF = 0
# NTP = 0
# xg = int(random.random{) * 100)
# yg int(random.random() * 100)
# f3 = [] #List of flags
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i = 0
while i < 1100:

occupIA = occup.copy 0 
occupIB = occup.copyO 
costIA = cost.copy() 
costIB = cost.copy() 
fTa = 0 
fTb = 0

♦introduce competitors: 
if i == xg:

NTF = 1 
if i == yg:

NTP = 1

#who chooses habitat:while NTF > 0 or NTP > 0 or NTD > 0: 
if f3 == (] :

f3 = [0,1,2]
f2 = f3.pop(int(random.random() * (f3. len () - 1)))

#IFD
if f2 == 0 and NTF > 0 :

♦Allow one IFD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, occupIA,
costIA, occupIB, costIB, fTa, fTb)
NTF = NTF - 1

#IPD

if f2 == 1 and NTP > 0:
♦Allow one IDD indiidual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, occupIA, ’
costIA, occupIB, costIB, fTa, fTb)
NTP = NTP - 1

if f2 == 2 and NTD > 0:
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc =
IDD(1, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc) 
NTD = NTD - 1

♦Stochastic Influence 
event = int(random.random() 
if event == 0:

sev = int(random.normalvariate(40, 10))
occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 =\ 
StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], 

else: sev = 0

(eFq +1)) #A random year for the stochastic event.

sev)

#
#
##
#
#

nta = popgrowth(habA, costIA, occupIA, 3) 
ntaa = popgrowth(habA, costIA, occupIA, 4) 
ntaaa = popgrowth(habA, costIA, occupIA, 2) 
ntb = popgrowth(habB, costIB, occupIB, 3) 
ntbb = popgrowth(habB, costIB, occupIB, 4) 
ntbbb = popgrowth(habB, costIB, occupIB, 2)

♦Fitness corrections: 
ta = nta + ntaa + ntaaa 
tb = ntb + ntbb + ntbbb 
if ta > 0:

nta = nta - round((float(nta) / (ta)) * fTa) 
ntaa = ntaa - round({float(ntaa) / (ta)) * fTa) 
ntaaa = ntaaa - round((float(ntaaa) / (ta)) * fTa)
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if tb > 0:
ntb = ntb - round((float(ntb) / (tb)) * fTb)
ntbb = ntbb - round((float(ntbb) / (tb)) * fTb) 
ntbbb = ntbbb - round((float(ntbbb) / (tb)) * fTb)

♦ if nta < 0: nta = 0
♦ if ntb < 0: ntb = 0
♦ if ntaa < 0: ntaa = 0
♦ if ntbb < 0: ntbb = 0
♦ if ntaaa < 0: ntaaa = 0
♦ if ntbbb < 0: ntbbb = 0

NTD = nta + ntb
NTP = ntaa + ntbb
NTF = ntaaa + ntbbb

if i > 99:
fnum.write("%s, %s, IDD, %s, %s, IPD, %s. IFD, %s, %s. i s , %s\n" \
% (X, sev, nta, ntb, ntaa, ntbb, ntaaa, ntbbb, IFDc, IDDc, IPDc)) 

i = i + 1

# +  + 4

#6.3 IPD IS THE BEST STRATEGY 

else :

Ik**'*:***'"*'*****'*’*****-*-*
#6.3.1 Introduce IDD 

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

NTP = invas[2] 
fl = 0 
NTD = 1 
i = 0
while i < 1100;

occupIA = occup.copy() 
occupIB = occup.copy 0 
costIA = cost.copy() 
costIB = cost.copy() 
fTa = 0 
fTb = 0

while NTP > 0 or NTD > 0:
♦Validation for one pop going to 0 
if NTP == 0:

occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
IDD(NTD, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
brealc

elif NTD == 0:
occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(NTP, occupIA,
costIA, occupIB, costIB, fTa, fTb)
break

♦f1/f2 flags used to choose a strategy at random, and chose
♦the second strategy the next time by.
if fl == 0:

f2 = int(random.random() * 2) 
f 1 == 1 

else ;
if f2 == 1:
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f2 = 0 
else :

f2 = 1 
fl == 0

#IFD first 
if f2 == 0:

♦Allow one IFD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, occupIA, \
costIA, occupIB, costIB, fTa, fTb)
NTP = NTP - 1

♦ IDD
if f2 == 1:

Allow one IDD indiidual to choose habitat 4 site
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \ 
IDD(1, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)

NTD = NTD - 1

♦Stochastic Influence 
event = int(random.random() 
if event == 0:

sev = int(random.normalvariate(40, 10))
occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 =\ 
StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], 

else: sev = 0

(eFq +1)) #A random year for the stochastic event.

sev)

nta = popgrowth(habA, costIA, occupIA, 4)
ntb = popgrowth(habB, costIB, occupIB, 4)
ntaa = popgrowth(habA, costIA, occupIA, 3)
ntbb = popgrowth(habB, costIB, occupIB, 3)

♦Fitness correction:
♦ ta = nta + ntaa
♦ tb = ntb + ntbb
♦
♦ if ta > 0 ;
♦ nta = nta - round((float(nta) / (ta)) * fTa)
# ntaa = ntaa - round((float(ntaa) / (ta)) * fTa)
# if tb > 0 :
# ntb = ntb - round((float(ntb) / (tb)) * fTb)
♦ ntbb = ntbb - round((float(ntbb) / (tb)) * fTb)
#
♦ if nta < 0 : nta = 0
# if ntb < 0 : ntb = 0
♦ if ntaa < 0 : ntaa = 0
# if ntbb < 0 : ntbb = 0
♦
♦ NTP = nta + ntb
♦ NTD = ntaa + ntbb
#
# if i > 99:
# fnum.write("%s, %s, IPD, %s, %s. IDD, %s. %s, , ,,,%s,%s\n" % (x, sev, nta,\

ntb, ntaa, ntbb, IDDc, IPDc)) 
♦Validation for one strategy being excluded 
if NTP == 0: 

break 
elif NTD == 0; 

break

i = i + 1
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#

#6.3.2 Introduce IFD

# NTP = invas[2]
# fl = 0
# NTF = 1
# i = 0
# while i < 1100:
# occupIA = occup.copy 0
# occupIB = occup.copy()
# costIA = cost.copy 0
# costIB = cost.copy()
# fTa = 0
# fTb = 0
#

# while NTF > 0 or NTP > 0:
# fValidation for one pop having selected its sites
# if NTF == 0:
# occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(NTP, occupIA, \
# costIA, occupIB, costIB, fTa, fTb)
# break
#

# elif NTP == 0:
# occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(NTF, occupIA, \
# costIA, occupIB, costIB, fTa, fTb)
# break
#

# #fl/f2 flags used to choose a strategy at random, and chose the
# ttsecond strategy the next time by.
# if fl == 0:
# f2 = int(random.random() * 2)
# fl == 1
# else:
# if f2 == 1:
# f2 = 0
# else:
# f2 = 1
# fl == 0
#

# #IFD
# if f2 == 0:
# #Allow one IFD individual to choose habitat & site
# occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, occupIA, \
# costIA, occupIB, costIB, fTa, fTb)
# NTF = NTF - 1
#
## #IPD
# if f2 == 1:
# #Allow one IDD individual to choose habitat & site
# occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, occupIA, \
# costIA, occupIB, costIB, fTa, fTb)
# NTP = NTP - 1
#
#
# fStochastic Influence
# event = int(random.random)) * (eFq +1)) #A random year for the stochastic event.
# if event == 0:
# sev = int(random.normalvariate(40, 10))
# occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 =\
# StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], sev)
# else: sev = 0
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nta = popgrowth(habA, costIA, occupIA, 2)
ntb = popgrowth(habB, costIB, occupIB, 2)
ntaa = popgrowth(habA, costIA, occupIA, 4)
ntbb = popgrowth(habB, costIB, occupIB, 4)

♦Floater correction
♦ ta = nta + ntaa
♦ tb = ntb 4 ntbb
♦
♦ if ta > 0 :
# nta = nta - round(i(float(nta) / (ta)) * fTa)
# ntaa = ntaa - roundi[(float(ntaa) /  ( t a ) ) * fTa

♦ if tb > 0 :
♦ ntb = ntb - round(1(float(ntb) / ( t b ) ) * fTb)
♦ ntbb = ntbb - round I((float(ntbb) /  ( t b ) ) * fTb:
♦
♦ if nta < 0 : nta = 0
♦ if ntb < 0 : ntb = 0
♦ if ntaa < 0 : ntaa = 0
♦ if ntbb < 0 : ntbb = 0
#
#

#
#
#
♦
#

#
♦
♦
♦
♦
♦
#

♦
♦
^*********

#6.3.3
^*********
#

NTF = nta + ntb 
NTP = ntaa + ntbb

if i > 99:
fnum.write("%s, %s, IPD, %s, %s, IFD, %s, %s\n” % (x, sev, ntaa, ntbb, \ 
nta, ntb))

♦Validation for one strategy being excluded 
if NTF == 0: 

break 
elif NTP == 0: 

break 
i = i + 1

Introduce IFD & IDD

NTP = invas[2]
NTF = 0 
NTD = 0
xg = int(random.random() * 99)
yg = int(random.random)) * 99)
f3 = [] 
i = 0
while i < 1100:

occupIA = occup.copy() 
occupIB = occup.copy() 
costIA = cost.copy() 
costIB = cost.copy 0 
fTa = 0 
fTb = 0

♦Reusing the same starting conditions

♦generation to introduce IFD 
♦generation to introduce IDD 

♦List of flags

♦Introduce competing strategies in a randomly selected generation 
♦within the first 100. 
if i == xg:

NTF = 1 
if i == yg:
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NTD = 1

while NTF > 0 or NTP > 0 or NTD > 0: 
if f3 == [] :

f3 = [0,1,2] 
f2 = f3 .pop(int(random.random() ’

♦Let all individuals choose habitats

(f3. len 0 1 ) ) )

♦ IFD
if f2 == 0 and NTF > 0:

♦Allow one IFD individual to choose habitat & site 
occupIA, occupIB, costIA, costIB, fTa, fTb = IFD(1, 
costIA, occupIB, costIB, fTa, fTb)
NTF = NTF - 1

♦ IPD
if f2 == 1 and NTP > 0:

♦Allow one IPD individual to choose habitat & site 
occupIA, occupIB, costIA, costIB, fTa, fTb = IPD(1, 
costIA, occupIB, costIB, fTa, fTb)
NTP = NTP - 1

occupIA, \

occupIA, \

if f2 == 2 and NTD > 0:
♦Allow one IDD individual to choose habitat & site
occupIA, occupIB, costIA, costIB, fTa, fTb, IFDc, IDDc, IPDc = \
IDD(1, occupIA, costIA, occupIB, costIB, fTa, fTb, IDDc=IDDc)
NTD = NTD - 1

(eFq +1)) #A random year for the stochastic event.
♦Stochastic Influence 

event = int(random.random() 
if event == 0:

sev = int(random.normalvariate(40, 10))
occupIA, occupIB, costIA, costIB, fTa, fTb, bl, b2, b3, b4 = \ 
StochasticEvent(occupIA, occupIB, costIA, costIB, fTa, fTb, [2,3,4], sev) 

else: sev = 0

nta = popgrowth(habA, costIA, occupIA, 2)
ntb = popgrowth(habB, costIB, occupIB, 2)
ntaa = popgrowth(habA, costIA, occupIA, 4)
ntbb = popgrowth(habB, costIB, occupIB, 4)
ntaaa = popgrowth(habA, costIA, occupIA, 3)
ntbbb = popgrowth(habB, costIB, occupIB, 3)

♦Floater correction 
ta = nta + ntaa + ntaaa
tb = ntb + ntbb + ntbbb
if ta > 0:

nta = nta - round((float(nta) / (ta)) * fTa)
ntaa = ntaa - round((float(ntaa) / (ta)) * fTa)
ntaaa = ntaaa - round((float(ntaaa) / (ta)) * fTa)

if tb > 0:
ntb = ntb - round((float(ntb) / (tb)) * fTb)
ntbb = ntbb - round((float(ntbb) / (tb)) * fTb)
ntbbb = ntbbb - round((float(ntbbb) / (tb)) * fTb)

♦ if nta < 0: nta = 0
♦ if ntb < 0; ntb = 0
♦ if ntaa < 0: ntaa = 0
♦ if ntbb < 0: ntbb = 0
♦ if ntaaa < 0; ntaaa = 0
♦ if ntbbb < 0: ntbbb = 0

NTF = nta + ntb
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# NTP = ntaa + ntbb
# NTD = ntaaa + ntbbb
#
# if i > 99:
# fnum.write("%s, %s, IPD, %s, %s, IFD, %s, %s, IDD, %s, %s, %s, %s, %s\n" \
# % (X, sev, ntaa, ntbb, nta, ntb, ntaaa, ntbbb, IFDc, IDDc, IPDc))
#
# i = i + 1
# del fnum
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