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Abstract 
The importance of database anonymization has become increasingly 

critical for organizations that publish their database to the public. Current 
security measures for anonymization poses different manner of drawbacks. k-
anonymity is prone to many varieties of attack; !-diversity does not work well 
with categorical or numerical attributes; t-closeness erases too much information 
in the database. Moreover, some measures of information loss are designed for 
anonymization measure, such as k-anonymity, where sensitive attributes do not 
play a part in measuring database's security. Not measuring the re-distribution of 
sensitive attributes will result in an underestimate for information loss such as !-
diversity or t-closeness which intentionally tries removing the association between 
non-sensitive attributes and sensitive attributes for better protecting individuals 
from being indentified. 

This thesis provides a more generalized version of !-diversity that will 
better protect categorical attributes and numerical attributes and analyzes the 
effectiveness and complexity of our new security scheme. Another focus of this 
thesis is to design a better approach of measuring information loss and lay down 
a new standard for evaluating information loss on security measures such as !-
diversity and t-closeness and quantify actual information loss from deliberately 
hiding relations between non-sensitive attributes and sensitive attributes. This 
new standard of information loss measure should provide a better estimation of 
the data mining potential remained in a generalized database. 

This thesis also proves that unlike k-anonymity which can be solved in 
polynomial time when k=2. !-diversity in fact remains NP-Hard in the special 
case where 1=2, and even when there are only 2 possible sensitive attributes in 
the alphabet. 
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Chapter 1 

Introduction 

As computing technology advances, network connectivity and disk storage 
space have become highly efficient and low cost. It has become feasible for 
institutions such as governments and corporations to record information 
throughputs. Those data could later be studied and analyzed. In most cases, data 
holders operate autonomously. It is not required for them to have specific 
knowledge on the data nor do they have the specialty of data mining. It is crucial 
for the data holders to release information without compromising privacy and 
confidentiality. Failing to provide adequate protection when releasing the 
database would not only be harmful to the public or individuals recorded in the 
database. It may also threaten the survival of the database itself as individuals 
might no longer voluntarily provide their information to the database. 

In an effort of anonymize the database, data holders might release only 
implicit attributes and leave out the explicitly identifiable attributes such as SIN, 
name, address and telephone number. The result is often less than satisfiable. In 
most cases, the remaining data can still be used to identify individuals. The 
combination of several attributes can often link to individuals as these 
combinations may be unique within the database. 

Using 1990 U.S. Census summary data, it has been shown [1] that 87% of 
the population in United States can be uniquely identified by the combination of 
the set of attributes { 5-digits ZIP, gender, data of birth}. Clearly, data released 
containing such information about these individuals should not be considered 
anonymous. L. Sweeney [2] provided several other demonstrations of ways how 
data can be re-identified. 

There exist many techniques of protecting the anonymity of data. (A 
detailed discussion can be found in [3]) Such as: (1) releasing only samples of 
data. (2) inserting simulated data. (3) blurring, fuzzifying individual values by 
rounding, grouping or adding random errors. ( 4) excluding certain attributes and 
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(5) swapping, exchanging blocks of rows in a certain subsets of the table. The 
problem with (1) is that the samples being released are at bigger risk of being 
enclosed. (4) makes it harder for attackers to identify an individual; however, at 
the same time the removed attribute could not be studied. (2) and (5) destroys a 
significantly amount of data integrity and correctness, rendering the database 
somehow useless for statistically analysis. There are some techniques that make 
use of these principles, such as data swapping and randomization techniques 
[4],[5]. However we will not go over these techniques in this thesis. The technique 
of protecting privacy, called generalization is an example of (3). The 
generalization technique takes a set of targeted rows from a table and replaces 
each entry with more general values so each row becomes indistinguishable from 
another. It is the most popular approach among researchers because of its 
simplicity. The following is an example of generalization technique: 

ID ZIP code Age Nationality Condition 
1 13053 28 Russian Heart Disease 
2 13068 29 American Heart Disease 
3 13068 21 Japanese Viral Infection 
4 13053 23 American Viral Infection 
5 14853 50 Indian Cancer 
6 14853 55 Russian Heart Disease 
7 14850 47 American Viral Infection 
8 14850 49 American Viral Infection 
9 13053 31 American Cancer 
10 13053 37 Indian Cancer 
11 13068 36 Japanese Cancer 
12 13068 35 American Cancer 

Table 2.1-1 An example of a hospital record 

If we choose to group rows 1 ~4, 5~8, 9~ 12 and generalized rows of each 
group, the result might look something like this: 

ID ZIP code Age Nationality Condition 
1 130** <30 * Heart Disease 
2 130** <30 * Heart Disease 
3 130** <30 * Viral Infection 
4 130** <30 * Viral Infection 
5 1485* ;?40 * Cancer 
6 1485* ;?40 * Heart Disease 
7 1485* ;?40 * Viral Infection 
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8 1485* ):40 * Viral Infection 
9 130** 3* * Cancer 
10 130** 3* * Cancer 
11 130** 3* * Cancer 
12 130** 3* * Cancer 

Table 2.1-2 The generalization of Table 2.1-1 with the first three attributes of tuples 
1~4, 5~8, 9~ 12 becoming indistinguishable from one another within the group 

Attributes such as ZIP code, age, and nationality are easy to obtain by an 
adversary. This adversary could then try using such knowledge to re-identify the 
target on this table. For example, say Alice and Bob are neighbors. One day, 
Alice sees Bob being rushed to a hospital and she is interested to know what 
disease he might have. Since Alice is a neighbor of Bob, she knows the ZIP code 
of her neighborhood is 13068, and Bob is a twenty-nine years old American. If 
the hospital were to publish Table 2.1-1, Alice can easily identify that Bob on the 
table because only record 3 coincide with what she knows about Bob. The 
privacy of the patient from this hospital is therefore compromised. 

L. Sweeney [2] defined a security standard called k-anonymity. First, we 
call the set of attributes that has the potential to identify an individual as quasi-
identifier. The security standard k-anonymity requires every tuple in the table to 
have at least k- 1 other tuples with identical quasi-identifier. Take Table 2.1-2 as 
an example, if we consider {ZIP code, age, nationality} as the quasi-identifier, this 
table is an example of 4-anonymity. Within the group of tuples 1~4, 5~8, 9~ 12, 
each tuple has identical quasi-identifier from the others. If we review the example 
of Bob and Alice, she can no longer determine which record might represent 
Bob's medical condition because there are now four tuples (1~4) that coincide 
with her knowledge about Bob. 

However, this figure shows exactly what weakness k-anonymity has. What 
if Bob was a thirty-seven years old Indian? When Alice queries the 4-anonymized 
table, all four records coinciding with her knowledge on Bob all have cancer. She 
would be able to successfully discover Bob's medical condition in spite of the 4-
anonymity protection. In [6], a new security measure called [-diversity is 
proposed. It requires the data publisher to determine in advance what attributes 
are sensitive and should not be re-identified. The measure of [-diversity then 
require each quasi-identifier of the table to relate to at least l different sensitive 
values. [-diversity provides better protection against re-identification. There are 
other researches such as[7] that try to go one step further than Z-diversity by 
analyzing the distribution of sensitive attributes. We will be reviewing these 
security measures and come up with some of our own ideas in this thesis. 
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Whenever generalization is applied on the table during publishing, some 
information would be lost. There are numerous proposals of measuring 
information loss. In[2J [8], different ways of measuring information loss based on 
different generalization techniques are proposed. Almost all publications 
proposing new anonymization algorithm define their own information loss 
measures. However, these information loss measures could all be considered quite 
arbitrary sometimes. T. Gionis [9] provides a new and accurate way of measuring 
information loss based on information entropy. We will cover this information 
loss measure in detail in our thesis and provide some of our insights. 

All information loss measures designed so far only aim to measure 
information lost during generalization in the purpose of achieving k-
anonymization. These techniques target on computing how much information 
were lost on the quasi-identifiers because those are the only entries that are 
directly altered during generalization. We believe these information loss measures 
are not suitable to measure information loss caused by achieving Z-diversity or 
any other security measures that deal with sensitive attributes. We will show in 
this thesis that these security measures might cause more damage to the database 
than the traditional information loss measures can detect. They protect sensitive 
attributes by breaking down the relation between sensitive attributes and quasi-
identifiers. This action may have unexpected consequences that damage the data 
mining potential of the database. We will provide a new prospective of measuring 
information loss in this thesis. 

Finally, we examine the complexity of k-anonymity and [-diversity. Since 
its invention, k-anonymity is known to be NP-Hard fork;;:: 3. However, the 
complexity of 2-anonymity remained open until recently. With the invention of 
an algorithm called simplex-matching [10] that computes minimum matching 
with edges and 3-hyperedges satisfying certain condition, 2-anonymity has been 
shown to be solvable under polynomial time. The complexity of [-diversity is also 
known to be NP-Hard for l;;:: 3 because it is obvious that a k-anonymity problem 
can be easily reduced to an Z-diversity problem for k = l by adding a sensitive 
attribute to the table that never repeats. In this thesis, we will prove that 2-
diversity is NP-Hard. 
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Chapter 2 

Basic Frameworks 

In this section, we will provide the mathematical background and basic 
definitions that we will work with. 

2.1 Attributes 

In this section, we will define all the fundamental notations that will be 
used throughout this thesis. 

Definition 2.1.1 An attribute A is a finite set of values. For example, the 
attribute A = {a11 a21 •.• 1 ap} contains attribute values a1, a2, .•. , ap 0 

An example of attribute is "age" which can be the set of natural numbers 
from 1 to 130. Another example of attribute is "nationality" which can be the set 
{China,Canada1 U.S.,Japan,India ... }. Note that age is a linearly ordered attribute 
because natural number is linearly ordered. Nationality is a not linearly ordered. 
In fact, it does not have a natural order at all. However, the values in the 
attribute can be sorted into categories such as Asia = {China, Japan, India ... } and 
Americas= {U.S., Canada}. By convention, we will assume all attributes are either 
linearly ordered or categorical because these two types of attributes are the most 
common ones that we would have to deal with. Moreover, for all linearly ordered 
attributes, we assume the binary operators: <, > 1 ~~ ~ as well as the extrema 
functions for any subsets min , max are defined. For all categorical attributes we 
define the term least common category of any two values a1 , a2 as the smallest 
category containing both a1 and a2 • 

Definition 2.1.2 Let A be a linearly ordered attribute, then we say a subset A' 
of A is continuous if for all a1, a2 E A' such that a1 > a2 and, for all a3 E A such 
that a1 ~ a3 ~ a2 , we have a3 E A'. A subset of size less than or equal to 1 is 
defined to be continuous by default. 0 
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Definition 2.1.3 Let A be a categorical attribute, then we say a subset A' of A 
is continuous if for all a1, a2 E A', let A be the least common category of a1 and 
a2 then A ~ A'. A subset of size less than or equal to 1 is defined to be 
continuous by default. D 

Note that the definition on continuity can be considered too strict for 
some applications because it basically requires that the subset must include all 
elements in some category. To extend the definition of continuity, we will first 
have to examine the structure of a categorical attribute. Aggarwal et al. [11] 
considered a setting such that the categorical attribute A can correspond to a 
balanced tree Y(A) that describes a hierarchical clustering of A. Each node of 
Y(A) will represent a subset, i.e. category, of A. The root of the tree would be A 
itself, i.e. *· Each leaf represents different singleton subsets. 

Figure 2.1-1 Example of a tree representing attribute "nationality", i.e. Y(nationality) 

Note that the tree may not be balanced in some cases because some 
categories may bR broken down in more levels of sub-categories than others. For 
example, among the 5 continents of the world, Americas can be broken down to 
North America, Central America, and South America; however, Oceania cannot 
be broken down in similar way. \Ve can still balance the tree by inserting one 
child for each leaf that is on the lower height than others and assigning the child 
vertex with the same value of the parent. For example, a path from root to leaf 
"Canada" in the tree may be: * ---7 Americas ---7 North Am1 ica ---7 Canada, but 
the path from root to leaf "New Zealand" can be: * ---7 0 ce<:L t j a ---7 New Zealand ---7 

New Zealand. The balance of the tree would therefore be retained. 

With the hierarchical clustering tree in place, now vve can break down the 
continuity for categorical attributes. 

Definition 2.1.4 Let A be a categorical attribute with hierarchical clustering 
tree Y(A) with overall height H, and let 1 ~ n ~H. We say a subset A' of A is 
level-n continuous if, for all a E A' and for all a' E A, whenever a has a 
common ancestor with a' that has height H- n on Y(A), then a' must belong 
with A' as well. D 
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Now, take for example of Figure 2.1-1, the subset {China,India, UK, France} 
is not continuous but it is level-1 continuous. Also, a continuous subset is not 
always level-n continuous for all possible n. An example would be that subset 
{China,Japan} is continuous and level-1 continuous but not level-2 continuous. 

2.2 Table 

Now we have defined the attributes, we can construct our tables. 

Definition 2.2.1 A tuple t(A1, A2 , ... , An)) or simply t) is an dimensional 
vector over a Cartesian product of attributes A1 X A2 X ... X An. A table 
T(A1, A2, ... , An)) or simply T) is a finite collection of tuples t(A1, A 2 , ... , An). D 

Given table T(A1, A 2 , ... , An), let {Ai1, Ai2 , ... , Aim} ~ {A1, A 2 , ... , An} and a 
tuple t E T, then t[Ai1, Ai2 , ••• , Aim] denote the values in t corresponding to 
attributes Ai1, Ai2 , ••• , Aim· Also, T[Ai1 , Ai2 , ••• , Aim] denotes the projection of 
T(A1, Az, ... , An) onto attributes Ai1, Ai2 , ... , Aim. Let T(A1, Az, ... , An) be a 
projection of samples from a population, say 0. Each tuple t corrosponds to an 
individual Xt E 0 and Xt that consists of attributes A1, A2, .•. , An and their values 
are recorded as t[A1, A21 ••• 1 An]. Therefore, for any individual X E 0, we denote 
the values of it's attribute Ai1 , Ai2 ••• 1 Aim as X[Ai1, Ai2 ... 1 Aim]. 

An alternative way we will denote a table T is as T = {t1, t2, ... 1 tm}, 
because a table is a set of tuples. 

For simplicity, since the attributes are ordered in a table we will 
sometimes refer the attribute by index. In the case of T(A11 A 2, .•. 1 An), for 
1 ::-:; i ::-:; n, we will denote T[i] as the ith attribute, in this case, Ai. Similarly, for 
any tuple t(A1,A2 , ••• ,An), t[i] will refer to t[AJ For example, given a table 
T(A1, A2, •.• , An) = {t1, t2 , ••. , tm}, then ti[j] will denote the value on the ith row 
and jth column in T. 

Definition 2.2.2 Given a table T(AJ 1 A 2 , ... , An)· Let A = {Ai1, Ai
2

, ••• , Aim} be a 
subset of the table)s attributes (i.e. A~ {A1,A2, ... ,An}). Let 
f ,;r: (Ai1, Ai2 , •.• , Aim) ~ P(T) 1 be the function such that f ,4(a1, a21 ... , am) = { t I t E 

T and t[Ai1 , Ai2 , ••• 1 Aim] = (al, az, ... , am)}. Then we say A is a quasi-identifier if 
and only if 3t E T : f ,4(t[Ai1, Ai2 , ... , Aim]) = {t}. D 

1. P is the powerset notation. For any set S, P(S) denotes the set of all possible subset of S. 

7 



Note that every identifier (for example, primary key) for a table is also 
qualified as quasi-identifier. However, it is often pointless to publish any identifier 
when trying to protect anonymity of the data. In most cases, quasi-identifier is a 
set of columns that can be used to uniquely identify at least one individual in the 
table. In the previous example about 1990 U.S. Census summary data, we can 
say that the set of attributes { 5-digits ZIP, gender, data of birth} are an example 
of quasi-identifier due to the fact that 87% of residents can be identified by the 
combinations of these attributes. 

Quasi-identifiers that we are often concerned with are consisting of 
publicly available or easily obtainable attributes such as 5-digits ZIP, gender, 
data of birth. Therefore, it would be reasonable to assume that the attackers 
have already obtained these attributes prior to the attack. We have to try to 
preserve privacy in spite of easily obtainable quasi-identifier. 

2.3 Generalizations 

As mentioned in Chapter 1, we will use the technique called generalization 
to fuzzify table entries to achieve anonymity. In this section, we will provide a 
formal definition of generalization and related concepts. First, we start from 
defining how to generalize a tuple. 

Definition 2.3.1 Given a tuple t(A1, A 2 , ... , An) with values [vl, v2, ... , vn], 
simply t. A function g: A1 X A 2 X ... X An ~ :P(A1) X :P(A2) X ... X :P(An) is said to 
be a generalization on t if g(v1, v2 , ... , Vn) = (vi, v;, ... , v~) and for 1 ~ i ~ n, we 
have viE vi. 

Now we illustrate the concept of generalization on a tuple with the 
following examples: 

Trivial generalization: consider when g(v1, v2, ... , Vn) = ({vl}, (v2}, ... , (vn}). 
Simply put, each cell of generalized table T* is a singleton set containing the 
corresponding cell of T. The amount and the significance of information 
represented by T and T* are identical. There is no security enhancement or 
sacrifice on ability to analyze the table. 

Generalization by suppression: When generalize by suppression, we either 
retain the value of a cell or completely fuzzify that cell and make it fully 
indistinguishable from any values of that attribute. Therefore, g(v1, v2, ... , vn) = 
[vi,v;, ... ,v~] such that for 1 ~ i ~ n, viE {(vd,Ai}. We will denote the attribute 
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that is suppressed (altered to Ai instead of retaining its original value) by a * 
character because this cell has become completely anonymous. 

Generalization by hierarchical clustering trees: Consider the hierarchical 
clustering tree of an attribute. For any descendent, a1 , of any vertex, a0 , a1 s a0 , 

i.e. a1 is a sub-category of a0 . A generalization of any values of attribute A would 
then become replacing a value a E A with any of its ancestor a' according to 
Y(A). Generalization by suppression is a special case of this generalization with 
the height of the tree H(Y(A))=2. 

Unrestricted Generalization: hierarchical clustering trees are not without its 
restriction. For example: the categories are pre-determined; no two vertices in a 
tree can have same predecessors. For numerical attributes, it is more obvious to 
see the limitation of hierarchical clustering trees generalization. Say if we 
predetermine the age into [0~ 10], [10~20], [20~30] ... , it is impossible to generalize 
a person of age 19 as "young adults" if we define adult as 18 and older. On the 
other hand, say that "middle class" is defined as people with annual income 
$3K~$12K and "somewhat wealthy" is defined as people with annual income 
$10K~$25K. Given different situation, it may be desirable to generalize someone 
with income $11K to one of these classes over another. We will not be able to 
satisfy these scenarios under hierarchical clustering trees generalization no matter 
how we design the tree. Therefore, it is sometime desirable to allow unrestricted 
generalization, that is: for any value v in any attribute A, v can be generalized to 
any subset A of A such that v EA. Note that hierarchical clustering trees 
generalization is a special case of unrestricted generalization. 

Hierarchical 
clustering trees 

Unrestricted 
generalization 

Figure 2.3-1 The relation between every kinds of generalization mentioned in our 
example 

Note that, by definition, all generalization g belong to the set of 
unrestricted generalizations. Trivial generalization is unimportant to us because it 
does not change the database's properties at all. Generalization by suppression is 
useful when showing the complexity level of optimization problems because of its 
simplicity. 
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As of the generalization by hierarchical clustering tree, it has its own 
interesting property: 

Definition 2.3.2 Given an attribute A, and collection of subsets A~ :P(A). A 
is said to be proper if: (1) It includes all singleton subsets, and it includes A. (2) 
For all a1,a2 E A, a1 n a2 E {a1,a2,<jb} D 

Lemma 2.3.3 Given an attribute A, and collection of subsets A~ :P(A), A 
is proper if and only if it is consistent to hierarchical clustering trees.[9] D 

Now we have discussed generalization on tuples, we will define 
generalization on the entire table: 

Definition 2.3.4 Given a table T(AvA2 , ... , An), simply T, and a table T*. We 
say that T* is a generalization of T if there exists a bijection function g: T ~ T* 
such that the following is true: let t = [ v1, v2, .•• , vnl E T and t* = [vi, v; ... , v~] E T*, 
if g(t) = t* then for 1 ~ i ~ n, vi E vj or vi = vj. Whereas, the bijection function g 
is called a generalization. D 

Even thought g is a function from T to T* and only maps the tuples, for 
simplicity, we will also say g(T) = T*. Also, note that in the definition we allow 
entries not being generalized to sets but to stay as the original values. In the rest 
of the thesis, when we pick out a quasi-identifier Q, we always assume Q is 
generalized into Q* and all entries are generalized into subsets of its 
corresponding attributes (could be singleton set sometimes). For a sensitive 
attribute S, we always assume entries are not generalized into sets but stay the 
same after generalization. 

With the one-to-one relationship between tuples in T and tuples of the 
generalization g(T) = T\ we number the tuples of T and T* in the same order. In 
other words: T = {t1, t2, ... , t1}, g(T) = T* = {tj, t;, ... , ti} and for 1 ~ i ~ 1 , we have 
g(ti) = ti. The rest of the thesis will refer the tuples for any table T and its 
generalization T* in this fashion. 

Even though our definition of generalization on table is a bijection, we are 
only making use of the property that the number of tuples in T and g(T) = T* are 
the same and all tuples of T* are mapped to a distinct t E T. It is then implied 
that g(t1) = g(t2 ) if and only if t1 = t2 . It is true because each tuple are treated as 
distinct in a table if their indices are different. We do not assume anything about 
equivalence of values in the tuple (We will denote it by :=). Hence, the statement: 
t1 = t2 ~ g(t1) = g(t2) would be false and so is its inverse. The generalization 
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algorithms that enforce the property of t1 ~ t2 ¢::} g(t1) ~ g(t2 ) are called full-
domain generalization. 

With generalization defined, we define the following relations to create a 
partial ordering for generalized tuples and tables. 

Definition 2.3.5 Given a tuple t and two of its generalization ti = [vi
1

, .•. , viJ 
and ti = [vi

1
, ••• , viJ , we say that ti l: ti if and only if for alll ~ i ~ n we have 

* c * * * 0 v1. _ v2 . or v1. = v2 .. l 1 l l 

Definition 2.3.6 Given a table T and two of its generalization Ti = (ti
1

, .•• , t~) 

and T2_ = (t2.
1

, ••. , ti) . We say that Ti l: T2_ if and only if for alll ~ i ~I we have 
ti. ~ t2*. or ti = t2*.. o 

l l l l 

Definition 2.3. 7 Given a table T and two of its generalization Ti = (ti
1

, ••. , ti) 
and T2_ = {t2

1
, ••. , ti)· We say that Tic T2_ if Til: T2_ and Ti * T2_. 0 

The relation l: should be read as "at least as general as", and c should be 
read as "less general than". We will now define a few notations for convenience. 

Definition 2.3.8 Let T be a table and Q be a set of attributes in T. For all 
q E T[Q], q-block refers to the set of {tIt E T and t[Q] = q}. o 

Throughout this thesis, whenever we use the word "q-block" in a 
statement, we refer to a q-block in any table T and the statement would apply to 
any original table or any generalized table. On the other hand, if we use the word 
"q*-block" in a statement, we are referring to any q-block such that the identifier 
is generalized and the statement only applies on a q-block in a generalized table 
T*. Note that the difference here is that each entry in q can either be a value or a 
set of values but an entry in q* are always a set of values. 

Note that q*-block can be continuous on one dimension and not continuous 
on another. However, it is usually intuitive for a generalization to convert a 
quasi-identifier to a continuous q* -block. We will end the section with the 
following definition of describing the continuity of a q*-block on any categorical 
attribute: 

Definition 2.3.9 The continuity of a q* -block on a categorical attribute A is 
the maximum possible number n such that q*[A] is level-n continuous. 0 

2.4 Distributions 
11 



In this section, we will provide a framework for comparing statistical 
distributions. 

Definition 2.4.1 LetT be a set and lfl be a collection such that each element 
in lfl is an element ofT. The collection lfl allows repeat of a same element and 
the number of time an element yET appears is denoted by countw(y). Then we 
define distribution as a function D: T ---? lR such that for all y E T we have 
D(y) = countw(y) I llf'l· In this case, we say D is the distribution of lfl. We will 
also define the sets r lJf = {y I y E r and Dw(y) > 0}. 0 

Since we have defined the distribution as a function, then for any element 
y E T, D(y) denotes the frequency y appears in collection lfl. We will now define 
a new notation to represent the frequency of a subset of f. 

Definition 2.4.2 LetT be a set and D denotes the frequency function of 
elements ofT in the collection lJI. LetT' s T, for convenience we denote D{T'} 
as the possibility of any element from T' appearing in the collection lfl, i.e: 

D{T'} = ~ D(y) 
yEI" 

0 

It makes sense to come up with a formulation for comparing two 
distributions over the same domain. Rubner et. al.[12] made use of the solution of 
transportation problem[13] and define a notion to measure the distance between 
two distributions called Earth Mover's Distance (EMD). N. Li et. al.[7] used 
EMD to define distances between any two records. In Chapter 3 and Chapter 4, 
we will use it in similar fashion. 

We will make use of a special case of transportation problem of calculating 
the minimum cost of transporting resources from a set of suppliers that resides on 
a set of locations X = {x11 x21 ..• 1 Xm} with predetermined initial amount of stock 
represented by the function: P = {(x11 p1)1 (x21 p2)1 ••• 1 (Xm1 Pm)} to a set of consumer 
resides on the same set of locations with predetermined demand represented by 
the function Q = {(x1 1 ql), (x21 q2)1 ••• 1 (xw qm)}. The sum of supply and demand 
should be equal. Each pair of locations are associated with a unit cost value on 
transportation (or distance) represented by a function d: X x X ---? JR. For 
convenience, we will add a constraint to scale the supply and demands to 1, i.e. 
~~!Pi= ~~1 qi = 1. 
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Problem 2.4.3 Let F = {fij 11 < i < m1 1 < j < m} represent the flow needed 
between any pair of supplier and consumer in order to achieve the required 
amount then the transportation problem can be formulated into the following 
linear programming minimization problem TRANSPORT(X, Y,d): 

Objective: 

Constraints: 

m m 

mmtmtze: ~ ~ fijd(xi1 xj) 
i=1 j=1 

f .. > 0 !] 

Vl < i < m : Pi - ~;;,1 fij + ~~1 /ij = qi 

~~1 ~;;,1 fij = ~b:1 Pi = ~b:1 qi = 1 

Definition 2.4.4 Let r be a finite set {ylt Y2, ... I Ym}. Let d: r X r -7 1R be a 
function establishing the distances between any two elements in T. The Earth 
Mover's Distance (EMD) between two distributions D11 D2 over domain T is 
defined the be the optimal solution to the transportation problem 

0 

TRANSPORT(D1, D21 d) o 

Note that we do not have a closed formulation of calculating the EMD. 
There are known O(N2) algorithms and sometimes O(N) algorithms on special 
cases. A recent thesis from H. Ling[14] provided and reviewed some algorithms 
for EMD. We will not discuss the algorithms of calculation because for our 
purposes, the number of N, the number of possible sensitive values, would always 
be small. 

Lemma 2.4.5 Let D11 D21 ... 1 Dn ben distributions over the setS. Let 
f1 1 ~ f12 ~ ... , fln E 1R and ~~=1 fli = 1 and we define distribution D0 over S such that 
for all s E S we have D0 = ~~=1 fliDi· Let D1 be any distribution on S then we 
have: 

n 

~ fliEMD(Di, D1
) ~ EMD(D01 D1

) 

i=O 

Proof: We would now be providing a way of moving distribution D0 to D 1 with 
cost ~7=o f1iEMD(Di1 D1

) and since EMD is defined as the minimum cost of doing 
such action, we would have ~i=o f1iEMD(Di1 D1

) as the lower bound. Since it is 
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given that D 0 = 1:~=1 f.!iDi, we can split D0 into n components each with size !li 
(1 ~ i ~ n) and distribution Di· To alter a size 1 earth with distribution of Di to 
the distribution of D' would cost EMD(Di, D') amount of work; hence, to move 
this size Pi component with distribution Di to D' would cost !liEMD(Di, D'). 
After applying work in the sum of 1:~=1 !liDi to all n component split from D0 , 

those components all have distribution D'. Now, all the component have reached 
distribution D' means the overall distribution is also D'. We have altered D0 into 
D' with the total amount of work equals 1:~=1 fliDi. 0 

2.5 Queries 

It is important to consider how queries can run on a table or generalized 
table. In this section, we will invent some simple ways of of analyzing the output 
of queries in the perspective of researchers and data mining applications. 

Definition 2.5.1 Given a table T(A1, A 2 , ..•. , An) a query condition is a 
Boolean function qc: A1 X A 2 X ... X An ---7 {true, false}. Given a query condition qc 
and a table T = {t1, t2, ••• , tn}, the query result on table T is defined as: 
Tqc = {tIt E T and qc(t) =true}. o 

When running a query, a data mining application may not view the whole 
tuple that importantly. The idea of fundamentals for data mining usually depend 
on running a query with constraints on a set of identifiers such as gender, zip 
code, nationality or age and analyze the distribution of some targeted attributes 
such as salary, health or credit histories. 

Definition 2.5.2 Given a table T(A1, A 2, ... , An) and let qc be a query condition 
whose domain is A1 X A 2 X ... X An, a query result distribution on an attribute 
Ai = {a1, a2, •.• , am}, (1 ~ i ~ n) is a distribution function Dqc,Ai such that: 

0 

We may need to run a query on a genPra.lized table as well. This process 
may be slightly more complicated than qnerying on the original table. Consider 
the following example: Suppose we arc running a query on T*(generalized age, ... ) 
with the only condition: age< 25. However, there exist a tuple t E T* such that it 
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is partially matched, i.e. tfgeneralized age] = 20~30. The tuple only partially 
satisfies the query condition. 

Definition 2.5.3 Given a query condition qc: A 1 X A 2 X ... X An ~ {true, false} 
and a generalized table T*. Given a q* -block in T*, we say that the q* -block, with 
q* = {AJ., A~, ... , A~} fully satisfies qc if V q' E AJ. X A~ X ... X A~ we have 
qc(q') = true. We say that q* -block partially satisfies qc if 3q1, q2 E AJ. X A~ X ... X 

A~ such that qc(q1) =true and qc(q2) =false. Finally, we say that q*-block does 
not satisfy qc if V q' E AJ. X A~ X ... X A~ we have qc(q') = false. 0 

When looking for a query result distribution Dqc.A; in a generalized table 
and each q*-block either fully satisfies the query or does not satisfy the query, the 
query result can simply add up all the tuples of the q-block. Dqc,A;(aj) would be 
the sum of tuples of all tuples tin every q*-block that fully satisfies qc having 
t[Ail = aj divided by the sum of tuples of every q*-block that fully satisfies qc. It 
is also reasonable for a data mining application to treat a q*-block that partially 
satisfies qc as a fully satisfying block and add them to the sum in exactly the 
same way. The error introduced by this method might not be significant when 
each q*-block is small enough and qc is expected to return an enormous amount 
of fully satisfying tuples comparing to the partially satisfying tuples that would 
be "round up". 

Definition 2.5.4 Given a generalized table T*, a query qc: A 1 X A 2 X ... X An ~ 
{true,false}. The non-corrected query result distribution on the attributes 
Ai = {a1,a2, ... ,am} (1 ~ i ~ n), denoted by D~~,A; is a distribution function such 

that for (1 ~ j ~ m) we have: 

one (a·)= -'--l{t_*l_t*_E_T_' a_n_d t_*[_iD_=_a1--'-·}l 
qc,Ai J IT'I 

such that T' denotes all tuples in T* that either partially or fully satisfy qc 0 

However, it is better to correct a q*-block that only partially satisfies qc 
and only add in their fair share towards our query result. 

Definition 2.5.5 Given a generalized table T*, a query qc: A 1 X A2 X ... X An ~ 
{true,false}. The conditional probability corrected query result 
distribution on the attributes Ai = {a1, a2, ... , am} (1 ~ i ~ n), denoted by D~~,A; zs 

a distribution function such that for (1 ~ j ~ m) we have: 
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~t·ET; Pr(qc I t*) 
occ (a·) = -==---'J __ _ 

qc,Ai 1 ~t*ET Pr(qc I t*) 

such that T;j denote all tuples t* in T* such that t*[Ad = aj and Pr(qc I t*) denotes 
the probability of any elements in t* satisfying qc D 

Note that even though this method is perfectly reasonable, using 
conditional probability of t* given qc to correct the query result may not be the 
best way of calculating the actual distribution for a data mining application. 
There could be a more sophisticated algorithm what can use more complex 
methods of numerical analysis or other techniques to correct the query result 
distribution using the set of all fully /partially /not satisfying q*-blocks of qc 
returns by the query. However, we feel that this simple way of correcting query 
result best serves our purpose of showing if content of each q* -block have been 
distorted or noise have been introduced because it deals with each q-block 
independently. 

Sometimes even the conditional probability Pr(t* I qc) is more complicated 
to obtain than we wish, because we will need to have a relatively detailed 
knowledge of the entire table that we sample from, i.e.: 

Pr(t* n qc) 
Pr(qc I t*) = ( ) Pr t• 

We need to know that out of all possible entries, how likely the tuple 
would intersect with the query condition. However, if we can further assume that 
each attribute of the table is independent to each other, it would be even easier 
to correct our query result distribution. Given the assumption of each attribute of 
a table T(A1,A2, .•. ,An) being independent to each other, we can split a query 
condition qc: A 1 X A2 X .•. X An ---t {true, false} into n separate queries. qci: Ai ---t 

{true, false} for (1 ~ i ~ n), and then, for all t E T, we have: 

Hence: 

n n 

II II Pr(t*[i] n qci) 
Pr(qc It*)= Pr(qci I t*[i]) = Pr(t*[i]) 

i=l i=l 
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Before the simplification, we need to know that for all the tuples, within 
the tuples that are in t*, how many satisfy qc. Whereas, attributes being 
independent allows us break down a multi-dimensional problem into multiple 
single dimensional ones. We now only need to know the overall distribution of 
each attribute Ai, namely D A;' then we have Pr(t*[i] n qci) = D AY*[i] n qciJ, and 
Pr(t*[i]) = D A {t*[i]}. 

I 

Definition 2.5.6 Given a generalized table T*, a query condition qc and the 
independent queries of qc on each attribute, namely qc11 qc21 ••• 1 qcn. The 
independently corrected query result distribution on the attributes 

Ai = {al, a21 ••• 1 am} (1 :( i :( n), denoted by D~~,A; is a distribution function such 

that for (1 :( j :( m) we have: 

~t·ET; IIi=l Pr(qci I t*[i]) 

o~cc,A;(aJ = L.t*E: IIi=l Pr(qci I t*[i]) 

such that T;i denotes all tuples t* in T* such that T*[Ai] = aj and Pr(qci I t*[i]) 
denotes possibility of values in t*[i] satisfying qci 0 

Now, we will define the continuity of a query condition and we will discuss 
its implications. 

Definition 2.5. 7 Given a query condition qc whose domain is A 1 X A 2 X ... X 

An, we say that qc is continuous if for every two tuples t1 = (alt a2, .•. 1 an) and 
t2 = (b11 b21 ••• , bn) both satisfying qc, all tuples t3 = (c11 Cz1 ••• 1 en) satisfying the 
following conditions for all1 :( i :( n must satisfy qc as well: 

• Whenever Ai is a linearly ordered attribute, we have either ai :( ci :( bi or 
ai ~ ci ~ bi 

• If Ai is a categorical attribute, and there exist a number ni such that ai and 
bi shares a common ancestor Ai on the hierarchical clustering tree Y(AJ 
with height of H(Ai) = H(Y(A))- ni, then we have ci E Ai 

by default, any query condition having at most 1 satisfying tuple is defined to be 
continuous. Moreover, for each categorical attribute Ai we say that qc has 
continuity ni against Ai. Note that in the case of there being only 1 satisfying 
tuple, qc would be level-0 continuous on all the categorical attributes. 
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Let Ai be a linearly ordered attribute. It is obvious if all q*-blocks in the 
table are continuous on Ai and qc is also continuous, the intersection must be 
continuous as well. This makes it even easier to calculate the conditional 
probability of Pr(qc I t*[i]). Because if t*[i] is a subset of a linearly ordered 
attribute than: 

Pr(qc I t*[i]) = Pr(X ,;; rnax{qc n t*[i]} I t*[i])- Pr(X < rnin{qc n t*[i]} I t*[i]) 

in other words, we can look at what is the chance of a random variable X chosen 
in t*[i] not exceed the maximum value of qc or t*[i], subtract the chance that X 
is below the minimum bound of either qc or t*[i]. 

In the case of Ai being a categorical attributes, the complexity can be 
somehow reduced as well. Let ni be the continuity of qc against Ai and say that 
n; is the continuity of the q*-block against Ai· We can say that the continuity of 
their intersection is the minimum of these two numbers, i.e. n;' = rnin(ni, ni}. Let 
Ai be the subsets on the level H(Y(Ai))- ni' in Y(Ai), then we can calculate 
Pr(qc I t*[i]) as followed: 

Pr(qc I t*[i]) = ~ Pr(qc IT)· Pr(T I t*[i]) 
TEAi 

and note that each Pr(qc I T) is either 1 or 0 due to the continuity. 
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Chapter 3 

Security Measures 

It is important to provide a framework for measuring an anonymized 
table. There two measures on anonymized table: security and information loss. 
The goal here is to maximize security while minimize information loss. In this 
chapter we focus on security measures. 

There have been many proposals of security standards and measures. We 
will review some of these proposals and propose some new ways of the security 
measurements. 

3.1 Changing in Belief after Observing 
Published Table 

We will first try to formulate an attacker's reasoning. A. Machanavajjhala 
et al.[6] provided a way of analyze an ideal notation of privacy. It is called 
Bayes-Optimal Privacy since it involves modeling background knowledge as a 
probability distribution over the attributes and uses Bayesian inference 
techniques to reason about privacy. In this section, we will walk through how this 
formulation is derives in detail. 

Definition 3.1.1 A sample w from a population a is called simple random 
sample if, assuming every element of the population a is distinct, the possibility 
of w occuring is as likely as any other sampling w with lwl = lwl 

We will first set up variables for background information: Q, S, N, Nq, N 5 , 

and Nq,s· Q is defined to be a set of attributes belonging to all individuals X E 0 
that can protentially identify some individual X. S is defined to be a sensitive 
attribute belonging to all individuals X E 0. Define N = 101; furthermore, for all 
q E O[Q] and s E O(S]: let Nq denote the size of {X I X E 0 and X[Q] = q}; let N 5 
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denote the size of {X I X E 0 and X[S] = s}; and Ns,q denotes the size of 
{X I X E 0 and X[Q] = q and X[S] = s}. We assume that all N, Nq, N 5 , and Nq,s 
are known for now. (Knowing all Nq,s would imply knowing all possible Nq•,s -for 
q* denotes any generalized value of q) At the end of the section we will come back 
to visit these variables and reveal which among them are really needed for our 
calculation. 

Secondly, we will define variables for database: Let T be a table 
conctructed by a size n simple random sample of 0 consisting all attributes in Q 
and S ( Q could be a quasi-identifier of T; however it is irrevelant to our 
mathematics that follows. For simplicity, we will say that Q is a quasi-identifier). 
Let T* be a generalized table on T and the quasi-identifier Q is generalized into 
Q*. Given any q E T[Q], we will denote its generalized counterpart in T*[Q*] as 
q*. 

Definition 3.1.2 We are given an individual X, such that X[Q] = q0 and the 
knowledge that an entry about X is recorded in some table T. While T is not 
published, a generalized version ofT, g(T) = T* is published and q0 is generalized 
to q0 in T*. For a sensitive value s0 , the likelihood of X[S] = s0 is denoted by 
f3(qo, so, T*). 

Theorem 3.1.3 Let f represent the joint distribution for the relation between 
all s E S and all q E T[Q] U T*[Q*] over the domain of 0, i.e. f(slq) denotes the 
frequency of sensitive attribute s occurring for an individual X E 0 such that 
X[Q] = q (in the case where q E Q) or X[Q] E q (in the case where q E T*[Q*]), 
then: 

Proof: 

We are given T*. We know the relations between all the generalized quasi-
identifier q* E T*[Q*] and its relations to all s E Son T*. For all q* E T*[Q*] and 
s E S, we will denote the number of tuples t E T* such that t[Q] = q* and t[S] = s 
as n(q*,s). 

Let P be a set of all functions lj;: 0 ~ S such that for all s E S and 
q E T[Q], we have l{w I w E 0 and w[Q] = q and lf;(w) = s}l = Nq,s' i.e. \]I is the set 
of functions 1f; such that applying 1f; to 0 will map each sensitive value s to the 
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amount of Nq,s individuals who has quasi-identifier q. Let Ot/J be a "clone" of the 
population 0 such that all individuals X E 0 and its counterpart Xt/J E Ot/J are 
indentical except that Xt/J[S] = tf;(X). In other words, Ot/J is the imaginary word 
assuming tf; reflects the actual sensitive value of each individual. Finally, Let f rfl 

be the set of all simple random samples of size n drawn from population Ot/J 
coinciding with table T*. That is, r rfl is a set of all random sample y satisfying 
the condition: we are able to group the n individuals picked by y into groups Yq·,s 
with each IYq·,sl = n(q*,s) and for all q* E Q and s E S, all individuals wE Yq·,s has 
w[Q] E q* and tf;(w) = s. 

Now we can start solving for f3(q,s, T*) by analyzing elements in Y defined 
by followed: 

y = { ( tP I y) I tP E lJf and y ~ r l/'} 

Y is a set of random worlds coincides with our problem statements. Each 
element is equally likely to coincide with the real world (which means, tf; is the 
actual the mapping of sensitive values of all individuals in 0 and y is the actual 
sample selected and recorded into T.) 

Now, we will split Y into several disjoint subsets. The way we will split it 
is by the sensitive value of our targeted individual X. That is: Vs E S, 
Ys = {(tf;5 , Ys) I (tf;5 , Ys) E Y and tf;(X) = s}. Note that Y =UsES Y 5 • Therefore: 

Now, all we need is to figure out a way to count Y 5 for any givens. First, 
we count the number of ways to arrange tfs· Since we know X[Q] = q0 and 
X[S] = tf;5 (S) = s already, there are Nq0 -1 individuals left in 0 having quasi-
identifier q0 . We assign each of them a sensitive attribute. Nq

0
,5 -1 of them will 

get sensitive value s. For all the other sensitive attributes s' * s, exactly Nq0,51 of 
them will get sensitive value S1

• As for other individuals with other quasi-
identifiers q' * q0 . We assign exactly Nq~,s~ individuals for every sensitive value 
s' E S. Therefore, in total, the number of ways tfs can be arranged is as followed: 

(Nq0 -1 )! II Nq1! 

(N - 1 )' II N I' II N I I' qo,s · s1 # qo,s · q1 ioqo s1 ES q '5 • 
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Now, we count that given X[Q] = q0 and X[S] = s, how many ways can Ys 
be chosen. For each pair of q1 E Q* and 51 E S, we are choosing n(q1

, s1
) out of all 

Nq',s' individuals in the population having q' and 51 as their attributes, except 
when q1 = q0 and 5 1 = s. In that case, since we already know X must appear on 
our random sample, we are only choosing n(q0,s) -1 out of all Nq0,s -1 
individuals. Therefore the number of way to choose Ys is as followed: 

( 
Nq'Q,s -1 ) II ( Nq',s' ) 

n(q0,s)-1 ,, (•) n(q',s1
) 

(q ,s )* q0,s 

The number of possibilities for Y 5 is: 

N II N'' ( * ) ( N I I ) ~ q· xnqo,s II q,s 

Nqo q'ET[Q] rrs'ESNq',s'! Nq"Q,s (q',s')ET*[Q*]xS n(q',sl) 

* Nq0,s 1 II N~! II ( Nq',s' ) = n(q0,s)--x-
N. N N I ,I I I qo,s qo q'ET[Q] rrs'ES q ,s . (q',s')ET*[Q*]xS n(q Is ) 

N 
= n(q0, s) Nq~,s XC (where Cis indepedent from s) 

qo,s 

We can now express {3(q0 , s0 , T*) in terms of f. 
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s'ES 

( • , f(s'l qo) 
n qo, s ) f(s'l q0) 

Note that, by our final result, we know that attacker does not need to 
have full knowledge of each Nq, Ns, or Ns,q· If an attacker would target an 

D 

individual with quasi-identifier q0 . The knowledge needed is to have an accurate 
prior belief on all f (s I q0 ) over f (s I q0) for all s E S. We cannot control f; 
however, generalization technique focuses on making q0 sufficiently fuzzy so many 
mathematical properties would arise and make f3(q, s, T*) sufficiently small. In the 
following sections, we will discuss this topic in more detail. 

We will now define what constitutes a security breach for a tableT*. 
Basically, there are two fundamental ways information can be disclosed: 

Definition 3.1.4 Publishing the table T* results in a o -positive enclosure on 
some individual X if X is known to be recorded in an entry ofT* and 
f3(q,s, T*) > 1- o for some o > 0. 

Definition 3.1.5 Publishing the tableT* results in a E -negative enclosure 
on some individual X if X is known to be recorded in an entry ofT* and 

D 

f3(q,s, T*) < E for some E > 0. D 

Positive enclosure and negative enclosure are not always dangerous. It also 
depends on the attacker's prior belief, denoted by a(q, s ). It is always to keep 
a(q, s) and f3(q, s, T*) similar to each other. Evfimievski et. al.[15] came up with a 
privacy breach definition combining the two definitions above. 

Definition 3.1.6 Given a tableT* and two constants p1 , p2 , we say that a 
(pv p2 )-privacy breach has occurred when one of the following happens to some 
q* E T*[Q] and s E S 

~ a(q, s) < P1 and f3(q, s, T*) > P2 
~ a(q,s) > 1- P1 and f3(q,s, T*) < 1- P2 

A table is said to satisfy (p1 , p2)-privacy if no (p1, p2 )-privacy breach occurs. D 
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Although it is a reasonable way to model an attacker's reasoning, Bayes-
optimal privacy has a few drawbacks that make it sometimes hard to use in 
practice. We will try to address some of the issues and therefore provide fair 
judgments on the existing security measures. The problems that are addressed in 
[6] are as followed: 

Insufficient knowledge to 0 on the part of publisher: The data publisher 
is unlikely to know the full distribution f of sensitive and non-sensitive attributes 
over the general population 0 which T is the sample. 

The adversary's knowledge off is unknown: Although it has been shown 
that the adversary does not need the knowledge of the complete joint distribution 
between the attributes in Q versus S. Only the distributions closely related to the 
target are needed to provide an accurate estimate. However, the data publisher 
does not know how much the adversary knows. 

The adversary's may have additional knowledge about X[S]: The 
theoretical definition does not protect against knowledge that cannot be modeled 
probabilistically. For example: if the adversary knows the target personally and 
has the knowledge that he has not been coughing, this knowledge can be applied 
when looking up the hospital record. Diseases such as "common cold", "flu", 
"tuberculosis" which often has high probability of coughing as a symptom and can 
be easily ruled out by the attacker. This additional knowledge acts as an "extra 
dimension" on top of the original identifier q E T[Q] U T*[Q*] and is unrecorded or 
unpublished in T or T*. 

3.2 k-anonymity 

We will first discuss a security measure called k-anonymity proposed by 
L. Sweeney in [2]. This is the most basic of our security measures. 

Definition 3.2.1 Table T satisfies k-anonymity with respect to a quasi-
identifier Q if for all q E T[QL q-block has at least k tuples. 

Sensitive attributes do not play a role in the definition ink-anonymity. 
The only attack k-anonymity prevents is direct association attack. Knowing the 
quasi-identifier of any individual X, the attacker would always find k or more 
tuples in the tableT such that all of them match with X[Q]. However, if the 
attacker could further analyze the query result, the privacy could still be 
compromised under k-anonymity. The following are attacks that can be applied 
on a k-anonymized table: 
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Homogeneity Attack: This is the simplest attack to achieve. If X[Q] is 
generalized to q* but all tuples in q*-block has the same sensitive value s, the 
security has been compermised because X[S] = s no matter which tuple may 
represent X. 

Background Know ledge Attack: This attack occurs when the attacker has 
additional knowledge on X[S]. For example, say that the attacker is a neighbor of 
X and he has observed that X goes jogging alone every morning. One day, X 
goes to the hospital and the attacker wants to know what disease X might have. 
On the published tableT*, there are a few tuples matches with X[Q]; however, 
all sensitive values associated with these tuples are either s1 =asthma or 
s2 = diabetes. Since the probability of an asthma patient jogging in cold morning 
alone everyday should be close to 0, the attacker can reasonably conclude that X 
must have diabetes instead. In this case, "going jogging alone every morning" acts 
as an extra attribute that is not published in T* which changes the attacker's 
prior belief when attacking. 

These two attacks are instances of positive disclosure. When there are 
multiple attributes, positive disclosures are much more dangerous than negative 
disclosure because negative disclosure on sensitive value s still leaves the attacker 
guessing among the rest of sensitive values s' =F s. Also, note that homogeneity 
attack serves as the "base case" for the background knowledge attack. Therefore, 
it is sensible to want to have more verities of sensitive value among generalized 
tuple. Hence, !-diversity is proposed to take the place of k-anonymity. 

Since the formula:~ . , f(s'lq) does not model background knowledge 
~s'ES n(q ,s )f(s'lq*) 

n(q* s)f(slq) 
' f(si q*) 

attack as mentioned before, we could add in one more factor: the attacker's 
background knowledge on X. Let a(X,s) denote the attacker's knowledge of the 
possibility of X having sensitive value s for all s E S. The new formulation with 

n(q*,s)a(X,s/(sl q} 
individual background knowledge [3(X, s, T*) = L . , f(si,q ;(s'lq). The 

n(q ,s )a(X,s )f-( ,1 *) 
s'ES 5 q 

distribution switches towards sensitive values with higher values of a(X, s) and 
switches always from ones with lower values of a(X, s). 

3.3 !-diversity 

A. Machanavajjhala et al.[6] proposed a security measure called 1-diversity. 
The sensitive attributes now play a role in this security standard. !-diversity 
focus on the appearances of each sensitive attribute in each q* -block. 
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Definition 3.3.1 A q-block in tableT satisfies !-diversity if l{s It E 

T and t[Q] = q and T[S] = s}l ~ l. The table T satisfies [-diversity if all q-blocks are 
[-diverse. 0 

With !-diversity, both homogeneity attack and background knowledge 
attack are reduced. Homogeneity attack is impossible for I ~ 2. On background 
knowledge attack, even if the attacker can elimate some tuples in a q-block, the 
remaining tuples still forms a Z-1 diverse q block. We can actually go one step 
further. A q-block can be secure if all sensitive attributes included in q-block can 
be evenly distributed. In this case, no sensitive value can be easily eliminated. 
Ohrn and Ohno-Machado [16] proposed a security measure as followed: 

Definition 3.3.2 A q-block in table T satisfies entropy !-diversity if: 

- ~ p(q, s) Iog(p(q, s)) ~ log(l) 
sES 

where p(q,s) = b n(q,:) ') is the fraction of tuples in the q-block with sensitive 
s'ES n q,s 

attribute value equals to s. A table T satisfies entropy l-diversity when all q-blocks 
are entropy l-diverse. D 

It is straight forward why a table T need to have at least I sensitive values 
for it to be possible to generalize to a table T* that satisfies !-diversity. Whereas, 
the precondition of being able to generalize a table T to entropy !-diversity table 
T* is the following: 

- ~ p(s) log(s) ~ log(Z) 
sES 

where p(s) denotes the frequency s occurs in the table. The reason of that is 
because -x log(x) is a concave function and if you split a set of tuples t into two 
sets t1 and t2 we have entropy(t) ~ min (entropy(t1), entropy(t2)). Because of this 
restriction, entropy !-diversity is restrictive to databases with unevenly 
distributed sensitive attributes where some of the sensitive values are rare. 

There is another attempt to give a more secure measure for !-diversity 
called recursive !-diversity. This measure looks at the more frequent sensitive 
values appearing on the table and compares their frequency with the rest of the 
sensitive values in the same block. The goal is to prevent some values occurring 
too frequently and lead to a positive disclosure. 
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Definition 3.3.3 Given a q-block, we w'ill arrange each sensitive attribute to 
appear in descending order as such: s11 Sz 1 ••• 1 Sm and their respective frequency 
are denoted as r 11 r 21 ••• 1 r m. We say that the q-block satisfies ( c, I)-diversity if 
r1 < c(r1 + r1+1 + ... + rm)· A tableT satisfies (c, l)-diversity if all q-blocks in the 
table satisfies (c, l)-diversity. We also define (c,l)-diversity is always satisfied. D 

Note that when any sensitive value q-block satisfying ( c, I)-diversity is 
eliminated, the q-block is still ( c, l-1)-diverse. 

As mentioned in the introduction, sensitive attributes are defined if some 
of the possible values of this attribute are considered sensitive. Not all of them 
have to be so. Take the example of medical record: the attribute "disease" is 
considered sensitive because diseases such as terminal illness can be considered 
sensitive. However, a common cold might not be considered sensitive. We can 
take the advantage of more frequently occurring values are not usually sensitive 
and alter our definition of !-diversity that takes advantage of the fact that we do 
not need to protect the non-sensitive value. 

Given a sensitive value S. Say we do not care about the positive disclosure 
of they most frequent values in S, then the set of first y most frequent values in 
Sis called don't-care set, denoted by Y5 • 

Definition 3.3.4 LetS be a sensitive attribute. We arrange each values in 
descending order of their frequency s11 Sz 1 ... 1 sXI ••• 1 Sm and denote their frequency 
by r 11 r 21 ••• 1 fy 1 ... 1 rm respectively. Say that Y 5 = {s11 S21 ... 1Sy}. We say that a q-
block satisfies Positive Disclosure Recursive (PD-Recursive) ( c, I)-
diversity if the following are true: 

m 

ry+l < c ~ rj I if (l ~ y) 
j=l 
y m 

ry+l < c ~ rj + c ~ rj 1 if (l < y) 
j=l-l j=y+2 

A tableT is said to satisfy PD-Recursive (c, !)-diversity if all q-blocks in the table 
T satisfies PD-recursive ( c, !)-diversity. 

This definition prevents the most frequent value outside of don't-care set 
to be too frequent and lead to positive disclosure. We define the final security 
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measure of this section by adding the restriction of minimal frequency to avoid 
negative disclosure. 

Definition 3.3.5 A q-block satisfies NPD-Recursive (c11 c2, I)-diversity if it 
satisfies P D-Recursive (c1, I )-diversity and the least frequent sensitive appearing 
in q-block has the frequency of at least c2 . 

Requiring minimal frequency is not necessarily feasible and the gain of 
preventing negative disclosure does not have many applications. In this thesis we 
will focus more on positive disclosure. 

3.4 t-closeness 

N. Li et. al [7] proposed a security measure that goes a step further than!-
diversity. We will give a definition first and then review this much stricter 
security measure. We start by defining the notations: 

Definition 3.4.1 LetS= {s1,s2, ... ,sn} be a sensitive attribute in tableT. We 
denote the global sensitive distribution as Dr = {(s1, r1), (s2, r2), ... , (sm, r m)}, 
where, for 1 ~ i ~ n, we have: 

l{t I t E T and t[S] = sill 
ri = ITI 

0 

Definition 3.4.2 Let T(Alt A 2, .•. , Am, S) be a table and S = {slt s2, ... , sn} be its 
sensitive attribute. Let Q ~ {A1, A 2, •.. , Am}. For any tuple q E T[Q], we denote the 
local sensitive distribution as Dq = {(s1, r1), (s2, r2), ... (sw rm)} where, for 
1 ~ i ~ n we have: 

l{t I t E T and t[Q] = q and t[S] = siJI 
r· - "--------,---------,..---.....:. 

1 
- l{t I t E T and t[Q] = q}j 

0 

Consider simple hospital record with only two attributes: age and disease. 
Let's make Q = {age} and say there is only 1 record on the table with age 70 and 
the patient has cancer, then for t =(age: 70), we have Dt = {(cancer, 100%)}. 
Another example: suppose there are 5 records on the table with age of 50 and 
two of them have cancer, one has flu and two have cold. In this case, for 
t = (age:50), we have Dt = {(cancer,40%),(jiu,20%),(coid,40%)} 
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Definition 3.4.3 Let S = {s1, s2, ... , sn} be a sensitive attribute in table T and let 
Q be a quasi-identifier in T, then the table T satisfies t-closeness if for all 
q E T[Q] we have EMD(D,Dq) ~ t. o 

T -closeness force each q-block to be somewhat similar to the overall 
distribution. It assumes the attacker's background is close to zero and all the 
attacker's background knowledge is gained by looking at the overall sensitive 
values distribution of the table. Therefore, if the sensitive distribution in a q-
block is much different from overall distribution of the table, the attacker gains 
knowledge. The inventor oft-closeness has the following concerns about 1-
diversity: 

l-diversity might not be necessary to achieve: Consider a database of a 
examination of some diseases where only 0.1% of people were tested positive. If 
we were to force 2-diversity on every q-block, then clearly some of the blocks 
would be enormous and causes massive loss of information. However, we look at 
the overall distribution and realize that a q-block containing only negative results 
is not much difference from the overall distribution of the table. We than 
conclude it is safe to not force all tuples with negative test results to group with 
tuples with positive test result. By doing this, we save a lot of information that 
would have been lost on the table. 

Skewness attack: Consider the previous example. Assume there is a q-block in 
the medical record such that there are 1 positive test result and 1 negative test 
result. It would satisfy any 1-diversity measure, even recursive diversity measure. 
(l = 2). However, after observing the q-block, the attacker now obtained 
dangerously higher suspicion that the target has positive test result. 

Similarity attack: Consider a q-block containing salary informations. If salaries 
recorded in this q-block are all in the set {lOK, 15K, 20K}. The attacker will be 
able to tell that the target's income is between 10K and 20K. Therefore, the 
attacker can conclude the target's income is low. This is considered a security 
breach. 

T-closeness is an interesting idea and it serves as inspirations of some of 
our idea mentioned in this thesis. However, we remain critical to some of the 
reasoning's for t-closeness. 

Tuples not anonymized leads to joint attack: In t-closeness security 
measure, it is possible for tuple remain not anonymized, i.e. Let the distribution 
of sensitive attributeS in T beD, when t[S] = s1 and EMD(((s1, l)L D)~ t, then 
the trivial generalizon of t satisfies t-closeness. publishing unaltered tuples gives 
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an adversary the ability to link them to external data and identify the 
corresponding individuals. This may be considered a security breach [17] since it 
is reasonable for individuals to object to being identified as respondents in a 
survey. This is not necessarily a drawback oft-closeness but actually the trade off 
between keeping information and potential security breach. 

Skewness attack does not work for large l value: The example that was 
given has the property of lSI = !!positive, negative}! = 2. Therefore, !-diversity 
cannot be achieved for I > 2. On the ther hand, for a sufficiently large I, we can 
reduce the effect on skewness attack by using NPD-recursive (c1, c2, Z)-diversity for 
a large l and define c2 to be a value close to ~· In this case, the attacker's belief in 
any sensitive value should be smaller and arguably safe enough. 

t = 0: 0-closeness, ultimate information loss: We will talk more about 
information loss in the next chapter, but we will mention a general idea here. 
First, we argue that the data publisher publish the sensitive values in order for 
the public to research between the relation between the sensitive attribute from 
other attribute. Otherwise, there would be no point of publishing the sensitive 
values at all. Now, when we are running query using attributes in the quasi-
identifier q, the result would be a combination of several q-blocks. In a table 
satisfying t-closeness, for two distinct q-blocks qrblock and qrblocks having 
sensitive value's distribution D1 , D2 . Let the sensitive value's distribution of (qr 
block U qrblock) beD and the overall sensitive value's ditributin be D. Then we 
have EMD(D,D) :s::; max(EMD(D1,D),EMD(D2,D)) ~ t. Hence, any query we run 
with constraint on only attributes from Q would give us a distribution very 
similar to D. All information of the relation between any attribute in Q and the 
sensitive attribute S are lost. 

Although not mentioned in [7], we discovered that in the best case 
scenario, t-closeness is also effective against background knowledge attack. Recall 
the formula: 

( 
* ) j(sl q) 

n q ,s I 
f3(q, s, T*) = f (s q*) 

s'ES 

f(s'l q) 
n(q*,s') J(s'l q*) 

Because of its restrictiveness, we assume that t-closeness can produce a q*-block 
that is general enough so the attacker's knowledge on q*-block to remain similar 
to the overall distribution D, i.e. Vs' E S, j(s'lq*)::::: D(s). Since for all s' E S we 
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also have n(q*,s) propotional to D(s) to fit the ideal t-closeness requirement. Then 
we have :3€ E R, Vs' E S, n(q*l,s) :::::: €. This will then imply that R(q,s, T*):::::: j(siq). 

J(s' q*) 1-' 

Hence, the security goal is achieved. However, it is highly unlikely that the q*-
block can be produced in a way that f(slq*) become similar to the overall 
distribution. (Nor was it desirable because of the potential information loss.) On 
the other hand, if q*-block is not general enough for f(slq*) to be distorted, a 
background attack can still take place. Because of the fact that in most cases t-
closeness forces more common sensitive values to occur more on any q*-block and 
common sensitive values are usually not as private (negative test result), the 
likelihood of any attacks and the damage from a possible attack on a table that 
satisfies t-closeness are low. 

3.5 Categorical Diversity and Density Control 

We believe the maintaining the variance of each generalized q*-block (how 
each Dq varies from one another) plays an important role of keeping information 
in the table. This is why in general k-anonymity preserves more information than 
1-diversity, which in turn does a better job in keeping information than recursive 
!-diversity or t-closeness. Let's look at an example: 

Example 3.5.1 Say we have a very simple hospital database which only 
records age and disease. We will group the q-blocks according to age. Suppose the 
followings are three of the q-blocks: 

1. 10 records, all 10 years old, all have acute leukemia 
ii. 10 records, all 70 years old, nine have bladder cancer, one has flu 
111. 10 records, all 40 years old, six have pancreatic cancer, two have 

cold, and two have flu 

For the standard of 10-anonymity, all blocks are acceptable. We do not 
have to generalize the tuples in it with any other tuple. Information is preserved 
for all q-blocks. For 2-diversity, block ii and iii does not need to be generalized 
with any other tuple. However, tuples in i block need to generalize with others 
and causes loss of information. In the case of (1.5, 2)-recursive diversity, block i 
and ii fail the test and need to be generalized. Finally, if we consider the option 
of t-closeness, most likely tuples in all blocks have to be generalized with other 
ages because acute leukemia, bladder cancer, and pancreatic cancer are relatively 
rare out of all populations. Now, suppose we use generalization by suppression 
and there are enough tuples outside of block i, ii, and iii to achieve all security 
measures without having tuples in block i, ii, iii generalizing with each other. The 
following table describes what information is kept and what may have been lost: 
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Information 10-anonymity 2-diversity 
(1.5, 2)-recursive 

t-closeness 
!-diversity 

Acute leukemia is likely to 
Kept 

happen on children 
Lost Lost Lost 

Pancreatic cancer is likely to 
Kept 

happen to middle age persons 
Kept Kept Lost 

Bladder cancer is likely to happen 
Kept Kept Lost Lost 

to older adults 

Table 3.5-1 Information loss under various security measures 

Now, let's put our focus back on security. We know !-diversity take into 
account more factors thank-anonymity. It can prevent homogeneity attack for 

D 

l > 2 and has a better chance to guard against background knowledge attack for 
larger Z; whereas, the security oft-closeness is more disputed. We argue that the 
fundamental belief of which t-closeness is invented upon is not necessarily sound, 
but, t-closeness ultimately provides a secure generalization at the end because of 
its unintentional side effect. T-closeness stresses that Dq· :::::: DT implies a safe q*-
block. This belief is only true under the assumption that all attackers are clueless 
about the target at the beginning and have to gain background knowledge by 
scanning the entire table. However, if we assume the attacker comes in with a 
strong belief that the target may have a sensitive value s1 that is relatively rare 
throughout the whole table and he observed that the q*-block that contains his 
target matches the overall sensitive distribution which has a low chance of s1 
occuring. In this case, the attacker's belief would lower significantly after 
observing the table. Now, if Dq· :::::: DT does not necessarily make the q*-block safe, 
why do we still claim t-closeness still delivers a safe generalization? It is because 
it destroys local information by bloating the range of every q*-block. Take our 
previous example and assume this hospital is famous for its advanced cancer 
treatment therefore a significant number of patients come here with cancer. Since 
cancer is a disease that are likely to be age-specific, to achieve a q*-block that is 
close to DT would mean that we have to take patients from multiple age groups 
and merge them together. The result is that each q* -block is too large and spans 
over several age groups. The attacker's belief on q*-block is automatically 
weakened because q*-block becomes too large to manage. 

We will now provide a new security measure that manages the possibility 
of similarity attack. It would be an extension of !-diversity and it is inspired by t-
closeness. The goal of our new security measure is to preserve local information 
but at the same time controlling the density of the distribution. A security 
measure that preserves local information has the following advantages: 
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Reduce information loss: We will discuss information loss in more detail in 
the next chapter. However, by the example we have given before, we can clearly 
see the evidence of why information can be kept better if we preserve local 
information. 

Prevent attack from attackers with background knowledge: Recall the 
formula of {3(q, s, T*). We can try to make each n(q, s') not differ much from each 
other like recursive !-diversity does. Although we would not do as well as the best 
case scenario of t-closeness, we do not need to rely on attacker's knowledge of 
f(slq*) to be propotional to ~qET[QJ n(s, q) to have a reasonably safe q* block. 

The idea of density control is to not allow a q-block to lean too heavily 
towards a class or a category of sensitive attributes. We will deal with two kinds 
of sensitive attributes: linear and categorical. In this section, we will talk about 
the categorical attributes, and we will cover linear attributes in next section. 

For a discrete sensitive attribute S, we first have to define a set of subsets 
S = {Sv 52, ..• , Sn} c P(S) that we would not like to reveal to the public. We will 
refer to S as sensitive categories. For example, for S =disease, we might not want 
to reveal "terminal illness" or ''infectious disease" to the public. Note that "AIDS" 
is under both sensitive categories. 

Cancers 

Figure 3.5-1 Construction for 5 = {Terminal lllness, Infectious Disease} 

We will require that all sensitive values be either in "don't-care-set" Y or 
under at least one sensitive categories. In other words, S = UTE{Y}U{5} T. Also note 
that Vs E 5, Y Us= cp. Let's now review the definition of set cover before we 
reveal our new security measure. 

Definition 3.5.2 LetS be a set, S' ~ S and S ~ P(S). We say that S' ~ S 
forms a set cover over S' if S' = UsES's. Futhermore, we say that 5' is the 
minimum set cover if for all other set coverS" of 5', we have IS"I ~ IS'I D 
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Definition 3.5.3 Let S be a sensitive attribute of a table T and S be its 
sensitive categories. We say a q-block is !-categorical diverse if all sensitive 
values in q-block {i.e.{s I Vt E T and t[Q] = q and t[S] = s}) can be covered by a 
minimal set cover of size l using the subsets {Y} US. 

The !-categorical diverse privacy measure is recursive, that is, if the 
attacker is able to eliminate one category using background knowledge, the 
remaining q-block still remains l- 1 diverse for l ~ 2. 

Theorem 3.5.4 L-categorical diversity is recursive for l ~ 2. 

Proof: We start with a q-block that is 1-catorgical diverse. Suppose after 

D 

removing values of one sensitive category and the remaining sensitive values are 
only l - k diverse for some 1 < k ~ l. This means the reaming sensitive value can 
be covered by Z- k sensitive categories. Now, we add back the sensitive values 
that are eliminated previously. Since the sensitive values we eliminated earlier 
can be covered by just one set as we assumed. We will result in a size l- k + 1 set 
cover for the original q-block but we know Z- k + 1 < l. This is a contradiction of 
our very first assumption that q-block is !-categorical diverse since we have now 
found a set cover of the sensitive values in q-block that has size less than l. D 

Note that set cover is a known NP-complete problem. A complicated 
categorical structure having many categories and each sensitive value belonging 
to multiple categories will significantly increase the complexity of the problem 
especially if we require l to be large1

• Now we have two choices for advancing: the 
first choice is to come up with a simpler security measure; the second option is to 
father ensure the security by imitating the recursive diversity. 

Definition 3.5.5 Let S be a sensitive attribute of a table T and S be its 
sensitive categories. We say a q-block is is d-density controlled if each 
category inS U {Y} appears in q-block at the frequency of no more than d, ~.e: 

Vrr E S U Y, Dq{rr} ~ d 

The new definition of d-density control is easier, more efficient, and more 
scalable. However, if the categorical structure of our sensitive value is 
complicated and many sensitive values appear in multiple categories, d-density 

D 

1 There are known approximation algorithms for the set cover problem. If each element occurs in 
at most c sets, then there exist an approximation algorithm to produce a set cover with size at 
most c ·OPT. [14] It could be used to provide an approximation of the security for complicated 
categorical structures. 
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control could only provide a loose upper bound for r~ l categorical diverse and 
does not reflect the true potential of the generalized table. On the other hand, if 
the categories does not overlap much, d-density control is a perfect solution and 
the bound of r~ l would be much tighter in this case. 

Since we are working at categories, we assume the presence of "don't-care-
set" Y is always defined and we will always assume that positive disclosure of Y 
does not constitute a security threat. (Of course, Y =¢is always a valid option.) 
It is possible that the data publisher does not wish to disclose the information 
that an individual has a sensitive attribute under any sensitive categories. (For 
example, we do not want to let anyone know someone has a disease except 
common cold, flu or a rash) Since we do not have the option of including all 
elements from all sensitive categories in S into one big sensitive category because 
that would lead to a size 1 set cover. We define the following property that can 
be added into all security measures that we can define in this section. 

Definition 3.5.6 We say that a table T satisfies p-dilution ii in each q-block 
ofT, elements from "don't-care-set" Y occurs in frequency at least f1, i.e: 
Dq{Y} ~ fl· o 

Note that fl-dilution sometimes contradicts with parts of other security 
requirements, for example when f1 > d we cannot have fl-dilution with d-density 
control at the same time. In this case it is staright forward that fl-dilution should 
override any requirement from other privacy measures when we try to inject this 
requirement into it since we no longer care if Y is identified if we invoke fl-
dilution requirement. 

Recall the goal of recursive diversity. It is to enforce that even if one or 
several of the sensitive values are eliminated, the remaining q-block has certain 
diversity. We will try to reproduce it by defining the following: 

Definition 3.5. 7 Let S be the set of sensitive values, S deontes the sensitive 
categories, and Dq denote the distributions for a given q block. Let S ~ S and 
IS'I = n. We callS' ann-maximum covering if VS" ~ S and 15"1 = n we have 
Dq(UrES' T} ~ Dq(UrES" T}. We denote the number Dq{UrES' T} as n-max:Imum 
covering frequency MC(n). 

With this new definition in place, we will now produce something similar 
to recursive !-diversity. Note that we are no longer concerned about the "don't-
care-set" from now on and we are only stressing the diversity of S. 
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Definition 3.5.8 Let S be a sensitive attribute of a table T and S be its 
sensitive categories. We say a q-block is ( c, I)-categorical recursively diverse 
if it satisfies the following condition: Let r = maxs'Es{Dq{S'}}, we have 
r ~ c · (1- MC(l)). o 

Theorem 3.5.9 (c, l)-categorical recursive diversity is recursive for l ~ 2. 

Proof: Starting with a q-block that is ( c, I)-categorical recursively diverse, it 
suffices to show that if we eliminate one category from the q-block, both of the 
following clauses are true: 

1. Number of tuples covered by the largest set of the new q-block could only stay 
the same or decrease 

2. Number of tuples not covered by (l-1)-maximum covering in the new q-block is 
at least as many as number of tuples not covered by 1-maximum covering in the 
original q-block 

If the category we eliminated happens to be the single largest covering set, 
then number of tuples covered by the largest set decreases, otherwise it stays the 
same. Hence, clause 1 is true. 

To prove clause 2, we will break down to two cases. 

First, if the category we just eliminated belongs to the originall-maximum 
covering, we are left with an l - 1 covering that left out as many tuples that the 
original l covering left out in the original q-block. If this resulting l - 1 covering is 
not a maximum covering on the new q-block, we can find another l-1 covering 
on the new q-block that covers more tuples and add back the category we just 
removed and form a larger l covering on the old q-block; thus causing a 
contradiction. Hence, any (l-1) maximum covering in the new q-block must 
leave out the same amount of tuples as before. 

Now we discuss the case of which the category we just eliminated does not 
belong to the original maximum covering. Say that x previously uncovered tuples 
are removed from the q-block because of this. We have to show that we now will 
gain at least x uncovered tuples by only requiring l - 1 maximum covering in the 
new q-block. Let's suppose the original I maximum covering covers n tuples in the 
original q-block, and there is a Z-1 maximum covering in the new q-block 
covering n- x + 1 tuples. If we add back the category we just removed back to 
the new q-block, we get a l covering on the original q-block that covers n + 1 
tuples and found a contradiction. Therefore, clause 2 must be true as well. o 
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Unfortunately, n-maximum covering is NP-Hard because we would be able 
to solve minimum set cover problem by trying all possible values of n (from 1 to 
JSJ) and stop when the maximum covering becomes the size of S. Categorical 
recursive diversity is unscalable as well. We will now define the density control 
counterpart for recursive diversity. 

Definition 3.5.10 Let S be a sensitive attribute of a table T and S be its 
sensitive categories. We say a q-block is ( c, I)-density controlled if the 
following condition is satisfied: Let S' = {51, 52, ... , Sn} denote all sensitive 
categories occurred in q-block ordered decendingly and we have: 

n 

max S'ES { Dq{S'}} ~ c · L Dq{SJ 
i=l 

Because ( c, I)-density control imitates ( c, I)-recursive diversity directly, it 
can only be moderately accurate if each category does not intersect too 
frequently. However, it is a scalable alternative to category diversity. 

3.6 Linear Density Control 

0 

We have discussed how to protect sensitive attributes that have clear 
categories. Now we will address attributes that are linearly ordered such as 
salary. In a linearly ordered attribute, it is no longer suitable to consider each 
values to belong to a category. A more appropriate way to group and order all 
the values would be defining them as classes. Take for example of annual 
household earnings: $0~$8,000 may be considered poverty class; $15,000~$25,000 
may be considered low income class; $60,000~$100,000 may be considered middle 
class; $250,000~$1,000,000 may be considered high income; and above that might 
be considered wealthy. 

To start with linear density control, the data publishers have to first 
provide a class function. A class function is a increasing function c f: S ~ R such 
that for two elements s1, s2 E S, ic f (s1) - c f (s2)1 can be a good representation of 
the similarity of two attribute values. The purpose of a class function is to try to 
evenly distribute the sensitiveness of S. Take our previous example of salary, to 
make a class function that suits the description described, we should have 
cf($8000)- cf($0) = cf($25,000)- cf($15,000) = cf($100,000)- cf($60,000) = 
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cf($1,000,000)- cf($250,000) which would in turn equals 1. One way of 
constructing the function can be as follows: 

9.00 
8.00 
7.00 

,..-.... 6.00 :>, 
1-1 5.00 (1j 

'"@ 4.00 til .___, ..... 3.00 u 
2.00 
1.00 
0.00 

0 

cf(salary) 

3.90, 1.00 
0.00 

2 4 6 

6.00, 8.00 

8 

log( salary) 

Figure 3.6-1 an example for class function cf on salary as described above 

The numbers we picked in our example are quite arbitrary. Even though 
the class function described in Figure 3.6-1 serves our purpose, it is not that 
meaningful. Let's take another example of how class function of salary can be 
implemented. Suppose that the data publisher consider the "sensitiveness" of a 
range of wage being proportional to the number of people having salary in that 
range. For example, if there are N people in the population 0 having wage 
between 51 and 52 , and there is c · N people in the population 0 having wage 
between 53 and 54 for some c, then we should have c ·lcf(51)- cf(52)1 = 
lcf(53)- cf(54)1, then we should define the class function as the cumulative 
distribution function of salary. The distribution for salary often follows shifted 
Gompertz distribution [18]; hence, for some b, 17 E JR., we should have: 

c J (5) = ( 1 - e-bs )e-rye-bs 

Note that the parameter 5 can be replaced with any function f of s (i.e. we 
have cf(j(5)) as the class function) if the sensitiveness is related to the value 5 in 
some other way. Now, equipped with the basic tool, we can define our most 
primitive security measure of linear density control. 

Definition 3.6.1 LetS be an attribute and cfbe the class function. For a given 
q-block, let the set of sensitive attributes associated with it be S'. We define the 
range of q-block as: max51,s2Es'{cf(51)- cf(52)}. D 
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Definition 3.6.2 A q-block is said to satisfy o-range control if its range is at 
least o. The table T satisfies r-range control if all q-blocks in T satisfies r-range 
control. 0 

Requiring all q-blocks to have a certain range would certainly block the 
simplest form of skewness attack. When the attacker has no background 
knowledge at all, o-range control limits the knowledge an attacker can gain from 
simply observing the q-block. Even in the worst case, the attacker can only know 
that the class its target belongs to is between € and € + o for some €. However, 
we know o-range control is not enough. A security measure that can deal with 
background knowledge is needed. There are two aspects of dealing with 
background knowledge. Since we care more about positive disclosure, preventing 
direct positive disclosure is essential. The second aspect is that if q-block is not 
diverse enough, even a relatively weak background knowledge attack can 
eliminate some of the sensitive values and result in a positive disclosure. With 
this in mind, we should reuse our idea of categorical diversity. 

Definition 3.6.3 Given a linearly ordered attribute S and its class function c f. 
We define an r-cover as: 

C r = { s I s E S and s0 ~ c f (s) ~ s0 + r} 

for some s0 E S, and we will name the value s0 as the base of Cr 

For a pre-defined valuer, and r-cover can be consider as a category. 
Therefore, a direct translation of 1-category diverse to linearly ordered attribute 
would be: 

0 

Definition 3.6.4 Given a linearly ordered attribute S and its class function c f. 
We say that a q-block is (1, r)-linearly diverse if all sensitive values in q-block 
can be covered by the minimum number of l distinct r-cover 0 

Note that for an arbitrarily small number € > 0, two sensitive values s1 , s2 
such that c f (s1) - c f (s2 ) = r + € cannot be covered by a single r-cover. Therefore 
the selection of the value r is very important. It should be chosen so that if the 
attacker having belief that an individual whose sensitive value is either s1 or s2 , 

since these two sensitive values are still relatively close to each other, it can 
barely constitute an similarity attack, at least from publisher's stand point. 

In the reasoning of 1-diversity, we assumed that every sensitive value in a 
q-block is equally likely to be eliminated by the attacker's background knowledge. 
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That is because it is difficult to model attacker's reasoning. Whereas, with 
linearly ordered attribute, it is reasonable to assume that the attacker's belief can 
be modeled by some kind of bell shaped distribution. We will take the example of 
normal distribution. The attacker's belief may look something like this: 

Normal Distribution 
0.5 

0.4 
...... 
~ 0.3 Q) 
..0 ,_. 
0 0.2 ·;:::: 
0. 

0.1 

0 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
cf difference from prior suspicion 

Figure 3.6-2 It is likely to be the case that the attacker's prior belief is a bell-shaped 
distribution such as normal distribution when the sensitive attribute is linearly ordered 

The plot above follows the probability density function for normal 
distribution, where fl = 0 and a = 1: 

1 ( (x- f/)
2

) 
C[Jfl,a(x) = a~exp - 2a2 

In the case of attacker having background knowledge, such attacker's prior 
suspicion of the target's sensitive value, say s, is likely to be bell-shaped. That is, 
for any sensitive value s' * s, the attacker's belief of the target having sensitive 
values' gets lower as !cf(s)- cf(s')l increases. Therefore, the attacker is likely to 
be able to eliminate any value too far away from his prior suspicion. In the case 
of Figure 3.6-2, say that the attacker's prior suspicion is s, then any sensitive 
values' such that !cf(s)- cf(s')l?: 3 can be easily eliminated. Depending on the 
strengths on prior belief from different instances, the attacker's belief can be 
narrow or wide. 
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Because of these reasons, it is also reasonable to assume, for some values 
p, K E IR, t/Js0 (x) = K • CfJwJ(so)(x) can be used to model the average possibility for 
an arbitrary attacker with prior suspicion s0 not being able to eliminate an 
attribute values' with cf(s') = x. Let's assume we are given a q-block having a 
collection of values S = [s11 s2, ... ,snl (with the possibility of repeat) Moreover, 
assume each tuple is equally likely to be attacked. For tf;11,s(x) = 'L.sES tf; 11,cf(s)(x), 
the value of each t/Js(cj(s1)), t/Js(cf(s2)), ... , t/Js(cf(sn)) should be an indication of 
how secure each sensitive value is in this q-block. 

Note that t/Js(x) does not represent the actual possibility of sensitive value 
x being revealed because we ignored the case where there is overlap, i.e. say the 
q-block has sensitive value s1 and s2 , then the chance that s1 being eliminated 
overall is not the sum of chance of s1 not eliminated during an attack having 
prior suspicion s1 plus the chance of s1 not eliminated during an attack having 
prior suspicion s2 but rather the sum minus the intersection of both cases. Hence, 
t/Js(x) is an overestimation of each sensitive value's chance of being eliminated. 

s1 not eliminated 
during an attack 

having prior 
suspicion s1 

s1 not eliminated 
during an attack 

having prior 
suspicion s2 

However, tf;11,s(x) should still be a clue on the trend on how secure each 
sensitive value is in given q-block. The following is an example of tf; 11,s(x) given a 
q-block having sensitive value [s0, s11 s2, s2, s3, s4, s5, s6, s7, s8, s8] such that 
cf(s0) = 0, cf(s1) = 1, cf(sz) = 2, cj(s3) = 2.5, cf(s4) = 4, cf(ss) = 5, cf(s6) = 6, 
cf(s7) = 8, cf(s8) = 9. 
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Figure 3.6-3 Security estimates for each sensitive value in our example q-block with 
chances of each sensitive value being eliminated marked by blue vertical bars 

Similar values "confirm" each other as higher possibility of non-elimination 
overlaps. It serves as a protection against elimination. However, we need to avoid 
1ff!,s(x) being too high at any point due to accumulation of these overlaps because 
that is also a security breach for possible positive disclosure. We would like each 
q-block to consists similar amounts of sensitive values from similar classes but not 
concentrate on a narrow range. In the figure above, range between 51 and 53 
demonstrate the possibility of positive disclosure of having too many similar 
values. 

The maximum and the minimum sensitive values can only overlap with 
one side of their neighbor. With either one of the extrema, unless there is a 
higher concentration on that value (or nearby), it is easier to be eliminated than 
other values. It makes much sense because as long as the attacker can eliminate 
one value 5' in q-block, one of the extrema would be eliminated. The reason being 
the attacker must be able to eliminate either all values on the right hand side of 
5' or the left hand side of 5'. Thus, it is in general not worth it to allow many 
tuples that have sensitive values on or close by the extrema because it brings 
more risk. It makes sense to reduce the number of tuples close to the extrema 
because we cannot protect them well. The example on the figure above would be 
that 51 has higher chance of being eliminated than 53 , 54 , 55 even they all only 
appear once; even though 58 , appearing twice in the q-block, is relatively safe, it 
is still easier to eliminate than 51 and 53 and just barely safer than 54 and 55 . 

Finally, having a q-block whose range is unnecessarily large does not help 
the security because an attacker can easily eliminate at least some of the sensitive 
values anyway. However, a large range does not directly harm the security of a q-
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block. (Unless the algorithm in use limits the number of tuples of q-block, then in 
that case, it is wiser to not choose tuples with large difference in classes because 
some of them would have been easily eliminated by an attacker.) 

It is difficult to come up with a security standard based on these 
observations. However, it is possible to design a generalization algorithm that is 
aware of these properties. 
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Chapter 4 

Measures of Information Loss 

It is important to measure information lost during anonymization. We can 
get a perspective and estimation of how much macrodata that can be mined. In 
this section, we will provide a few ways of measuring information loss. 

4.1 Redaction Counting 

When k-anonymity was first proposed, Meyerson and Williams [19] first 
concentrated on generalization by suppression. Information loss is measured as 
simple as counting suppressed entries (number of *'s) in the anonymized table 
(we will refer this measure as redactions counting measure). Aggarwal et. al.[ll] 
who considered generalization by hierarchical clustering trees, offered the 
following measure (we will refer this measure as tree measure): Assume attribute 
A is arranged on a balanced hierarchical clustering tree Y(A) and H(Y(A)) = l + 
1. We will name the levels from bottom up as L0, L1, ... , L1 so L0 consists of leaves 
and L1 consists of the root ( *). If we replace an entry on table to a node on the 
tree, say A E Ln then we have lost information in the amount of T· The overall 
information loss of the anonymization would be the sum of all entry's information 
loss by this measure. 

It's easy to see that the redactions counting measure is a special instance 
as tree measure. In the case of redactions counting, all attribute's hierarchical 
clustering tree have only 2 levels. Conversely, tree measure is using the same 
underlining principle and same complexity as bit counting. Take for instance a 
table T(A 11 A21 ••• 1 An) with each attribute tree be Y(A1)1 Y(A2)~ ••• I Y(An) and 
their height Hi= H(Y(Ai)). We can replace each attribute Ai into Hi- 1 
attributes Ai,l 1 ••• 1 Ai,H1_ 1 by listing nodes in the path from leaf node to root, 
excluding root. For example, in Figure 2.1-1, the attribute value "Canada" would 
be replaced by "Americas" and "Canada". If we perform this transformation, then 
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information loss in tree measure on T equals to the information loss by redactions 
counting in the transformed table. 

There is a wide variety of information loss measures. Most of them fall 
into this category, including the entropy measure we are about to introduce in 
the next section. However, the entropy measure is much more sophisticated and 
it represents the amount of information lost during generalization more 
accurately. 

4.2 The Entropy Measure 

Gionis and Tassa [9) came up with a more innovative way of measuring 
information loss: the entropy measure. Information theorists have been using 
information entropy to measure the amount of information for packets. Arguably, 
the entropy measure is much more accurate than counting redactions due to the 
reasons that each tuple or entry in the table should be considered to have more 
meaning if it is rarer. 

The table T(A1, A2, ••. A,) induces a probability distribution for each 
attribute. We denote the number of tuples in T as n. For 1 ~ j ~ r, let Xj denote 
a random variable sampled from Aj, then for sme a E Ai, we have: 

( 
_ )_l{tltETandt[Aj]=a}l 

Pr Xj - a - --------'----
n 

The entropy of Xj is a measure of amount of information that is delivered 
by value of a random sample of Xj (or, equivalently, amount of uncertainity 
regarding the value of the random sample before it is revealed) is defined as: 

H(xj) =-~ Pr(Xj = a)log(Pr (Xj =a)) 
aEAj 

Note that hereinafter log = log 2 . Let Bj be a subset of Aj, then the 
conditional entropy H(Xj I Rj) is defined as: 

Where: 

H(Xj I Bj) = - ~ Pr(Xj =a I Bj) log(Pr (Xj =a I Bj)) 
aEBj 

j{tltETandt[Aj] =a}l 
Pr(Xj =a I Bj) = l{t It E T and t[Aj] E Bj}l 
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Note that if Bj = Aj we have H(XjiBj) = H(Xj), while in the other extreme 
case where Bj = {a} we have no uncertainity and H(XjiBj) = 0. The notation of 
entropy and conditional entropy allow us to define the information loss measure 
as follows: 

Definition 4.2.1 Let T(A1, A 2, .•• , Ar) = [t1, t2, ... , tn] be a table and let Xj be a 
random variable sampled from Aj· LetT* be a generalization ofT and each tuple 
t1, t2, ... , tn are generalized to ti, t2_, ... , t~. We define the entropy information 
loss as followed: 

n r 

IIe(T, T*) = ~ ~ H(Xj I t£[j]) 
i=l j=l 

0 

Under trivial generalization of changing an attribute value a E Aj to {a}, we 
notice that H(X I (a})= 0. On the other hand, if the attribute a is completely 
suppressed, then H( Xj I Aj) = H(Xj)· Hence, the entropy information loss will tell 
the difference between a suppression on simpler attributes such as "gender" and 
more complex attributes such as "zip code". Furthermore, entropy measure does a 
better job of calculating how much information is left in a generalized entry than 
the tree measure. Take the example of a table containing samples distributed as 
followed: {(China, 10%), (India, 10%), (Canada,45%), (United States,35%)}. 
Generalizing a tuple from "China" to "Asia" and generalizing "Canada" to 
"Americas" would result in the same information loss under the tree measures. 
However, the entropy measure would be able to capture the fact that tuples 
having attribute value "Asia" is still rarer; therefore there is more information left 
on the entry. This is likely to be an asset when applying data mining applications 
on the table. 

A property that one might naturally expect on an information loss 
measure is monotonicity: 

Definition 4.2.2 LetT be a table and let Ti, T2_ be two generalization ofT. 
Let II be a information loss measure. We say that II is monotone if II(T, Ti) ~ 
IT (T, T2_) whenever Ti !: T2_. o 

Clearly, the tree measure is monotone. However, the entropy measure is 
not always monotone, we will provide a proof here. 

Lemma 4.2.3 Entropy information loss measure is not monotonic. 
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Proof: Let T(A) be a table, attribute A = {a, b, c, d} with overall distribution 
{(a,l- 3E), (b, E), (c, E), (d, E)} where E :::::: 0. Hence, the entropy of the attribute A 
is H(X) :::::: 0. Furthermore, say that in the hierarchical clustering tree of A, a and 
b share a same parent x; c and d share a different parent y. If we generalize an 
entry d into y. We lose H(X I y) = -2 x 0.5log0.5 = 1 bit of information. On the 
other hand, if we have completely suppressed d into *, the information loss is 
H (X I *) = H (X) :::::: 0. The entropy measure reported a higher information loss for 
generalization into y than complete suppression into *, even though y cA. (Note 
that * represent the entire attribute A in this case) D 

In [9] it is shown that it is rare for the non-monotonicity to occur, and 
even if it does, there is a simple algorithm to modify the hierarchical clustering 
tree of an attribute so it will always obey the monotonicity rule. Basically, the 
algorithm would require searching through the tree and looking for edges that 
violate the monotonicity rule and if such edge is found, we merge the child with 
one of the siblings. It is also possible to modify our entropy measure so it will 
always follow the monotonicity rule: 

Definition 4.2.4 Let T(A1, A2, ... I A,) = [t1, t2, ... I tn] be a table and let xj be a 
random variable sampled from Aj- Let T* be a generalization ofT and each tuple 
t11 t2, ... , tn are generalized to ti, t;, ... , t~. Then the monotone entropy measure 
is defined as: 

Lemma 4.2.5 

n r 

IIme(T, T•) = ~ ~ Pr(ti[j]) · H(Xj I ti[j]) 
i=1 j=1 

M anatone Entropy information loss measure is monotone. 

Proof: Let A be any attribute, we take two different subset of A, say B and B' 
and we claim B' to be a subset of B. So, we can name elements in B' as 
a1,a2, •.• ,am and elements in B would be a1,a2, ... ,an for some m ( n. Now, it 
suffices to show that for some random variable X sampled over A, we have 
Pr(B') · H(XIB') ( Pr(B) · H(XIB). 

m Pr(a) Pr(a) 
Pr(B') · H(XIB') = - Pr(B') ( 1

) log 1 
. Pr B' Pr(B') 
;=1 

m Pr(B') 
= ~ Pr(aj) log Pr(a-) 

. 1 J ;= 
n Pr(B) 

( ~ Pr(aj) logPr(a·) = Pr(B) · H(XIB) 
. 1 J ;= 
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Let's revisit the example we used in the proof of lemma 4.2.3. Attribute 
A= {a,b,c,d} with overall distribution {(a,l-3E), (b,E), (c,E), (d,E)}. This time 
let's look at attribute value a and b. The generalization of a into x and the 
generalization of b into x would result in the same information loss whether we 
use entropy measure or monotone entropy measure. However, since b is much 
rarer than a, the generalization from b to x should result in a bigger information 
loss because there is a larger change in uncertainty. Clearly, a more careful 
information loss measure would take notice of each attribute's frequency in 
comparison to the generalized value. With this factor in mind, we will define the 
final entropy measure in this section as followed: 

0 

Definition 4.2.6 Let T(Al, A 2, ••. , Ar) = [tl, t2, ••. , tn] be a table. Let T* be a 
generalization ofT and each tuple t1, t2, ... , tn are generalized to ti, t2_, ... , t~. Then 
the non-uniform entropy measure is defined as: 

n r 

nne(T IT*) = ~ ~ -log Pr(ti[j] I t£[j]) 
i=l j=l 

In fact, the non-uniform entropy is more intuitive than the previous two 
measures of information remaining on the table. When we calculate the entropy 
of an attribute, namely H(Xj), the value represents the average amount of 
information per entry. However, if we look into the formula H(xj) = 
~aEAi Pr(Xj = a) log Pr(Xj = a), we can actually see that we are calculating the 
mean for log Pr(Xj = a) for each a E A. The reason is that each attribute value 
a E A carries variable amount of information and the amount of information 
carried by an entry with value a is actually log Pr(Xj = a). For two distinct 

0 

elements a, b E A sharing a common ancestor x, such that Pr(Xj =a) > Pr (Xj = 
b), the entropy measure unfairly penalize both generalizations from a to x and b 
to x by the same amount simply because the remaining uncertainity becomes the 
same. However, when generalizing a to the set x, the non-uniform entropy 
measure only looks at the bits of information that have been lost: 
amount of info(a)- amount of info(x) = -(logPr(a) -logPr(x)) = -logPr(a)/ 
Pr(x) = -log Pr (alx). 

Lemma 4.2.7 Non-uniform Entropy information loss measure is monotone. 

Proof: Let A be an attribute and an value a EA. Let B, B' be two subsets of A 
such that a E B' ~ B ~A. It is clear that -log Pr (alB') ~ -log Pr (alB). D 
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4.3 Relational Information Loss 

So far we have been discussing information loss designed solely for 
measuring effects caused by k-anonymity. vVe do not believe these information 
loss measures are good representation on security measures involving hiding 
specific sensitive attributes such as !-diversity and t-closeness. These security 
measures deliberately try to break down the relation between non-sensitive 
attributes and sensitive attributes in order to achieve better security. The only 
possible reason why data publisher would publish a database or table containing 
sensitive attributes in the first place is because they would like to allow third 
party researchers to discover the relation between the sensitive attributes and 
other non-sensitive attributes published on the table. Hence, how much of these 
relations still remain becomes a crucial question. To have a better understanding 
of information loss, we must look into the association between the sensitive 
values and non-sensitive values and how it changes after the generalization. In 
this section and beyond, we will define two sets of new measures of information 
loss measures that take these factors into consideration. We will start by the 
following example: 

Example 4.3.1 This is a very simple table of hospital records: 

Gender Nationality Disease 
M U.S. Flu 
M Canada Cold 
F U.S. Flu 
F Canada Cold 
M U.S. Flu 
M Canada Flu 
F U.S. Cold 
F Canada Cold 

Table 4.3-1 A simple unanonymized hospital record 

Consider 2 ways of achieving anonymity: 

Gender Nationality Disease Gender Nationality Disease 

* U.S. Flu M * Flu 
* Canada Cold M * Cold 

* u.s. Flu F * Flu 
* Canada Cold F * Cold 
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M 
M 
F 
F 

* 
* 
* 
* 

Flu 
Flu 

Cold 
Cold 

* 
* 
* 
* 

u.s. 
Canada 

u.s. 
Canada 

Flu 
Flu 

Cold 
Cold 

Table 4.3-2 (1) the table on the left only achieved 2-anonymity but 1-diversity; 
(2) the table on the right achieved both 2-anonymity, 2-diversity and 0-closeness 

We have introduced security measures in the last chapter. There is no 
doubt in our mind that Table 4.3-2(2) is more secure than Table 4.3-2(1). How 
about information loss of these tables? In the original table, the distribution of 
male and female is {(M,50%), (F,50%)}; the distribution of U.S. citizen and 
Canadian citizen is {(U.S. ,50%), (Canada, 50%)}. The information loss is the same 
in both generalizations regardless of using any information loss measure we 
mentioned earlier, even the most accurate non-uniform entropy measure. 

Let's further claim that the researchers are equally interested in finding 
out the relation between "disease versus gender" and "disease versus nationality"; 
hence, there is no reason for us to favor information loss in either gender or 
nationality attribute. After considering all these points, since Table 4.3-2(2) is 
more secure and causes the same amount of information loss, does that mean the 
generalization method which produce this generalization is superior? 

Suppose we have a data mining application that automatically runs the 
following SQL queries and then examine the distribution of each attribute versus 
each disease to calculate if gender or nationality affects the risk of having any 
disease: 

Query 1: 

SELECT gender, disease, COUNT(*) 
FROM anonymized-table 
GROUP BY gender, disease 

Query 2: 

SELECT nationality, disease, COUNT(*) 
FROM anonymized-table 
GROUP BY nationality, disease 

The following table shows what result this application would come up with 
on calculating the distributions. Note that we follow the formula that we defined 
earlier but we do not simplify the division and retain the fraction form to show 
that corrected distribution retain the sum of 8 tuples in any case; therefore it 
should be more reliable. 
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Query 
Table 4.3-2(1) Table 4.3-2(2) 

Table Attribute I Disease I D~~,A; I D~~,A Attribute I Disease I D~~,A; I D~~,A; 

Query 1 
------~---- _J ___ ~i~4 -- -,---~1~- --,---~1--- ---- --~-- --- --ii~-- ·i---~~~- --!---~~! ---
-------------- -;------------ -;--------- -;---------- -------------- ----------- ------- -;----------

F . Cold . 4/6 . 3/4 F Cold 3/6 I 2/4 
---------------~------------;----------~--------- -------------- ----------- --------~----------

F Flu 2/6 1/4 F Flu 3/6 2/4 
Canada Cold 4/6 3/4 Canada Cold . 3/6 2/4 

~~g~~~~~~ f:J~--- ?/_~ ~)/{~~ ~~g~~~~~-- ~}!~~~~:~~~~/{ --?/{~~ 
U.S. Cold 2/6 1/4 U.S. Cold 3/6 2/4 ----u.-8-.--- ---Fiu :---4i6- 3/4 ___ ----u--.s. -i?i~~---,---3;6- -2/4 __ _ 

Query 2 

Table 4.3-3 Query results gotten from query defined earlier on both tables from Table 
4.3-2 

Note that Table 4.3-2(1) preserved the information that an U.S. citizen is 
more likely to have flu than cold as well as a male more likely to have flu than a 
female. On the other hand, in Table 4.3-2(2) we see no such indication. The 
reason is simple. The way we protect privacy is to erase relations between easily 
identifiable attributes and sensitive attributes. At least some information we call 
"relational information" has to be given up. Table 4.3-2(1) did a terrible job at 
protecting privacy but as a consequence the relational information is kept. On 
the other hand, Table 4.3-2(2) protects privacy but the significance is that it has 
given up all information it carries. Our example is an extremely small one 
therefore protecting privacy and keeping information contradicts with each other 
directly. If we were given large enough databases, especially ones with wide 
variety of sensitive attributes, there would be more chance to try minimizing 
information loss while keeping the same security standard. 

4.4 Computing Remaining Variance 

We start with the most basic way of measuring relational information loss 
by reversing the idea oft-closeness. The proposal oft-closeness claims that the 
database is most secure when each Dq is similar to Dy. We will start from a 
different point of view. We claim that the when every Dq becomes the same as 
Dy we have the ultimate information loss. Hence we will like to measure how 
much variance is left on the database base on the idea that the database becomes 
"flat" when all Dq become the same. 
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Before we define how we calculate variance. In this section will redefine Dq 
for a more general use. We now will allow q to be a tuple belong to any set of 
non-sensitive attributes Q of the table. 

Definition 4.4.1 Given a table T, let Q be a set of attributes ofT. We define 
the tuple-wise variance in T over attributes Q as: 

Vary(Q) = ~ Vart(Q) 
tET 

where for a tuple t E T, let q = t[QL then Vart(Q) = EMD(Dy,Dq) 

Note that initial variance is very easy to calculate for tuples with quasi-
identifier that never repeats on the table. First of all, each sensitive attribute 
value carries a distinct initial variance so it only has to be evaluated once for 
every sensitive value. Second, since any Dq only has one possible sensitive 
attribute then, lets= t[S], we have EMD(Dq,DT) = Z:s'#d(s,s') · Dy(s') ford 
denotes the distance function between the two sensitive values. Now we will 
define how to use variance to find information loss. 

D 

Definition 4.4.2 Given a table T, a set of non-sensitive attributes Q ofT. Let 
T* be a generalization of T and say that attributes of Q has become Q*. Then 
the tuple-wise variance loss over Q is defined as followed: 

iltv(T, T*) = Vary(Q)- Vary-(Q*) 
D 

Note that for this measure of information loss to make sense, we have to 
prove that it is monotonic otherwise we might have Dtv(T, T*) being negative for 
some instances. 

Lemma 4.4.3 Tuple-wise variance loss measure is monotonic. 

Proof: It suffice to show that, for n ~ 2, if we merge qrblock, q2-block ... qn-block 
in to a q*-block. The sum of the tuple-wise variance of those n original blocks 
must have at least as much as the tuple-wise variance as the merged q*-block. 
This is clearly the case, as implied by lemma 2.4.5. Let distribution of q*-block be 
D0 and the size of the q*-block be m, and the overall distribution Dy be D'. For 
each 1 ~ i ~ n we have Pi be the size of qi-block divided by m and Di be the 
distribution of qi. Applying theses numbers in the formula and we can see the 
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tuple-wise variance of q*-block is smaller or equal to the sum of the tuple-wise 
variance of those n original blocks. 

The variance measure calculates how the structure of the distribution 
associated with a q-block changes. This is different from all the information loss 
measure we introduced in previous sections, which can be viewed as calculating 
how much q-block has increased in size. We will give a more formal definition 
here. 

Definition 4.4.4 Given an table T, a set of non-sensitive attributes Q ofT. 
Let q = [a1 , a2 , ... an] E T[Q], then we say the volume of q is possibility of q 
occurring in T, i.e. vol(q) = Pr(q). 

D 

D 

With all information loss measures we defined in previous sections, there is 
no guarantee vol(q1 ) ~ vol(q2 ) would imply that q1 has less or equal information 
loss than q2 . However, if we add the condition of q1 G q2 , then we would have the 
guarantee vol(q1 ) ~ vol(q2 ) implies q1 comes with less than or equal the 
information loss of q2 . Hence, we claim that all these information loss measures 
are based on volume of the q-block. Now, we will provide two information loss 
measures that purely base on the volume of the block. 

Definition 4.4.5 Given an table T, a set of non-sensitive attributes Q ofT 
and let T* be its generalization and Q* the subsequent generalized attributes. Say 
that t E T is generalized tot* and t[Q] = q, t*[Q*] = q*, then we say the volume 
inflation factor is Vi(q, q*) = Pr(q*)/ Pr(q) and entropy volume inflation factor 
is Vie(q,q*) = log(Vi(q,q*)). D 

Note that whenever attributes in Q are independent from one another, 
then vol(q) = I1/=1 Pr(ai)· For the pair of q = [a1,a2 , ... ,an] and q* = [ai,a;, ... ,a~] we 
have: 

n 
Vi( *) = II Pr(a;) 

q, q . Pr(ai) 
z=l 

and also, we have the entropy volume inflation factor being: 

n n 
. * II Pr(ai) ~ Pr(ai) 

V Ze(q, q ) = log i=l Pr(ai) = {;t log Pr(ai) 
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Note that under these assumptions, entropy volume inflation factor measures 
exactly the same as non-uniform entropy measure: 

Pr(ai) Pr(ai) * 
log-(-)= -log-(*)= -logPr(ai I ai) Pr ai Pr ai 

Now, we define the final information loss of this section. Since variance 
measures calculate how much relational information loss take place in a tuple and 
volume based information loss calculates how likely the tuple might be selected, 
then we can put them both together. 

Definition 4.4.6 Given an table T, a set of non-sensitive attributes Q ofT 
and let T* be its generalization and Q* the subsequent generalized attributes. For 
any tuple t E T we use t* to denote its generalized counterpart. Let n denote a 
volume based measure, then the hybrid information loss measure is defined as: 

IT'(T, T*) = L ( Var1(Q)- Varr(Q*)) · IT(t[Q], t*[Q*]) 
tET 

Lemma 4.4.7 The hybrid information loss measure is monotonic. 

Proof: In lemma 4.4.3 we have shown that tuple wise information loss is 
monotonic. Since volume of each T[Q] can only increase or stay the same after 
generalization, the monotonic property should remain when we take the product 

D 

of two monotonic information loss measures. D 

4.5 Noise Scanning 

In the final section of this chapter, we will provide another possible 
information loss measure that is more complex and harder to evaluate. However, 
this measure of information loss should be quite accurate and provide a better 
estimation for data mining applications than all measures defined above. 

Information loss not only varies on the distribution of generalized q*-block 
and how likely the q*-block can be selected. It also depends on the "physical 
location" of the original tuple within the new generalized block. Consider a q*-
block that is generalized from these original tuples: t1 = [1,3, sd, t2 = [2,4, s2], t3 = 
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[2,5, 53], t4 = [3,2, 54], t5 = [7,4, 55], t6 = [8,1, 56]. Assuming that the first two entries, 
namely A1 and A2 are the quasi-identifier and the third entry, namely Sis the 
sensitive values, the following graph shows the inner structure of the q*-block. 

5 
I 53 

4 I • • I 5z 5s 

3 t 51 

2 I +54 

56 I 1 

1 2 3 4 5 6 7 8 

Figure 4.5-1 Structure of the generalized q*-block and note that q* = [1~5,1~8] 

Now, we will discuss that we mean by "noise". Consider a query condition 
qc = (A1 ~ 3), then if we had ran the query in the original table, we would have 
gotten the distribution {(51, 1/4), (52, 1/4), (53, 1/4), (54, 1/4)}. However, after the 
generalization, the whole block would have been returned and we would have 
gotten the distribution {(51, 1/6), (52, 1/6), (53, 1/6), (54, 1/6), (55, 1/6), (56, 1/6)}. 
Therefore, we consider that the q*-block returns the desired result along with 
unwanted noise. In fact, this noise would occur whenever we have qc = (A1 ~c) 

where 3 ~ c < 7, which is a considerably wide range in this q*-block. This leads 
us to come up with the equation: 

N = ~ Pr(T) ·Nr 
TC:Tq• 

where Pr( T) denotes the possibility the subset of tuples in q* -block T being 
selected by a query if the query were run on the original table before 
generalization and NT denotes the noise, which could be defined as the earth 
mover's distance between the sensitive value distribution of that subset Dn called 
"original distribution" and the sensitive value distribution of the q*-block, DT • , 

q 

called "distribution after generalization". 

This measure of information loss should reflect how evenly the sensitive 
values distribute in the block. If on one side of the block we have a rare sensitive 
value but on the other do not, the generalization would have blurred the 
information and the whole q*-block would seem to have the same chance of 
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having that sensitive value. However, this measure of information loss is not 
without its flaws. 

• For a q*-block with n tuples, there are 2n possible subsets to go over. 
Moreover, for each subset T, the possibility Pr( T) is difficult to calculate. 
Even if we assume continuity there still does not seem to be an algorithm 
of manageable complexity for calculating Pr(T). 

• It is possible that if the query was run on the original table, it would not 
have selected any tuples that are generalized in this q* -block. However, 
after generalization, the query actually intersects with the q*-block. Take 
for example the q*-block given in Figure 4.5-1, the query (A1 ~ 2 and A 2 ~ 

2) or (4 ~ A2 ~ 6) would not have selected any original tuple but now it 
intersects with the q*-block. Our noise scanning approach would not be 
able to cover this possibility and nor would it be able to do anything with 
such data because there is no "original distribution" that we can compare 
the "distribution after generalization" to. 

• The full extent of impact this noise factor would affect the q*-block is hard 
to measure. For example, if the query ran was qc = (A1 ~ 2), then 
originally 3 tuples should have been returned with the distribution 
{(s11 1/3),(s2,1/3),(s3,1/3)}. However, when the query was run on the 
generalized table, even though we know that we would have gotten the 
distorted distribution {(s1, 1/6), (s2, 1/6), (s3, 1/6), (s4, 1/6), (s5, 1/6), (s6, 1/6)}, 
we are not sure what the researcher may do with this six tuples. This 
information loss measure assumes the researcher decides to go for the non-
corrected query result, the noise may be magnified because the query 
would then have collected whole six tuples worth of distorted information. 
On the other hand, the researcher might also be able to correct the error 
somehow, and that can reduce the effect instead but we cannot accurately 
assume how they would have corrected it. 

We do not have a resolution to these problems. However, we believe that 
this is the first and unique attempt to try analyzing the effect generalization 
could cause for each q*-block and it is worth the effort regardless. 
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Chapter 5 

Con1plexity of Anonyn1ization 

In general, complexity of data Anonymization is NP-Hard. In this 
section, we will explore further into the complexity of k-anonymity and !-
diversity. 

5.1 Complexity of k-anonymity 

k-anonymity fork~ 3 has been known to be NP-Hard since its invention 
[2]. In general, 3-anonymity is NP-Hard because for any k ~ 3 we can easily 
reduce k-anonymity problem to k-dimensional hypergraph matching problem. 
There are many researches that target special cases of 3-anonymity. Let L. denote 
the set of alphabets in which a database can draw entries from. Meyerson and 
Williams [19] have shown that when IL.I = O(n), 3-anonymity is NP-Hard. 
Aggarwal et al. [11] has shown that when II.I = 3, 3-anonymity is also NP-Hard. 
Finally, in 2007, Dondi et al. [20] have show that 3-anonymity even remains NP-
Hard when IL.I = 2. The problem of whether 2-anonymity is NP-Hard remained 
open until Anshelevich and Karagiozova [10] invented a polynomial time 
algorithm called "simplex matching". Given a set of vertices, a set of weighted 
hyperedges with either two or three endpoints, the simplex matching can find an 
optimal matching in polynomial time. The simplex matching can be directly 
reduced to 2-anonymity problem. The algorithm involve assigning each tuple into 
vertices and calculating information loss of generalizing every two, and every 
three tuples and assign the information loss as the weight of the hyperedges. 
Running the simplex matching algorithm on this hypergraph will result in an 
optimal 2-anonymity matching. This relation between 2-anonymity and simplex 
matching is mentioned in the lecture note of Ryan Williams and Manuel 
Blum.[21]. (We have not found a published thesis documenting the proof 
although it is straight forward) 
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5.2 Complexity of !-diversity 

It is clear that 3-diversity and beyond is NP-Hard. For any given positive 
integer n, we can reduce an n-anonymity problem to an n-diversity problem by 
appending a extra sensitive attribute with no tuple having same sensitive value. 
However, this reduction method does not describe the complexity of 2-diversity 
problem since 2-anonymity is shown to be solvable in polynominal time by 
reduction to simplex matching. In this section, we will provide a proof that 2-
diversity is, in general NP-Hard. 

First, we will review the definition of a known NP-Hard (more specifically, 
NP-Complete in this case) problem called clique. [GT19][22]: 

Definition 5.2.1 A clique problem CLIQUE(G, K) is defined as: 

INSTANCE: Graph G = (V,E), positive integer K ~ lVI 
QUESTION: Does G contain a clique of size K or more? i.e. there exists a subset 
V' c V with IV'I ~ K such that every two vertices in V' are joined by an edge in 
E? o 

Note that K ~ 2 because one vertex cannot have any edge going into itself 
in a simple graph. We will not directly reduce CLIQUE(G,K) to 2-diversity. First, 
we can establish the fact that the following problem is also NP-Hard. 

Definition 5.2.2 A restricted clique problem CLIQUE(G, Vv K) is defined as: 

INSTANCE: Graph G = (V, E), positive integer K ~ lVI, and a vertex v1 E V 
QUESTION: Does G contain a clique of size K or more containing v1 ? i.e. there 
exists a subset V' c V with IV'I ~ K and v1 E V' such that every two vertices in 
V' are joined by an edge in E? 0 

It is clear that CLIQUE(G, v11 K) is also NP-Hard because we could solve 
CLIQUE(G, K) by simply running CLIQUE(G, vi, K) for all 1 ~ i ~ lVI- K + 1. vVe 
will now reduce CLIQUE(G, v11 K) to 2-diversity problem. In other words, we will 
show that there exists a polynomial time algorithm of solving CLIQUE(G, Vv K) if 
there exist a polynomial time algorithm of 2-diversity. First, we will construct a 
table Tv1,c,K to run the 2-diversity algorithm on. For simplicity we will be using 
generalization by suppression and redaction counting for measure of information 
loss. 

The table Tv1,c,K consists of five different sub-tables T21,c,K' Ti;1,c,K' T?;1,G,K' 

T~1,G,K> and Sv1,c,K and their dimensions are shown here in Figure 5.2-1: 
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Vt,G,K 
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Vt,G,K 

IEI(IVI-1) 

IEI(2K -1)(1VI- K) 
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Vt,G,K 

y3 
Vt,G,K 
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rl 
"" fJ) 

'---y--1 
1 

Figure 5.2-1 Structure and dimensions for components in Tv
1
,c,K 

To easier visualize the table, in this section we will refer to tuples as rows 
and attributes as columns. Also, for simplicity, we will denote each T~ c K as Ti 

1' ' 
(0 ~ i ~ 4) , denote Sv1,c,K asS, and denote Tv1,c,K as T from now on. We just 
have to emphasize that throughout the proof each of these variables are defined 
by parameters in problem CLIQUE(G1 v1K): the variables are G, V, E, K, and, by 
implication V = {v11 v21 ••• 1 vw

1
} and E = {e11 e21 ••• 1 e1

£!} are variables that are also 
defined by the clique problem even though we do not show these variables as 
parameter to our tables and sub-tables. 

The overall dimension of the table consists of (21VI- K) rows and 
IEI(IVI-1) + IEI(2K -1)(1VI- K) + 1 columns. T0 has lVI rows and IEI(IVI- 1) 
columns; T1 has lVI- K rows and IEI(IVI- 1) columns; T2 has lVI rows and 
IEI(2K -1)(1VI- K) columns; T3 has lVI- K rows and IEI(2K -1)(1VI- K) columns; 
and S has 2IVI - K rows and only 1 column. 

To easier refer to cells in each component, for each Ti, we will use Ti[x][y] 
to denotes the cell in xth row and yth colum; Ti[x0 ... xd[y] denotes all cells 
between and including the x0th to x1th row at yth column; Ti[ ... ][y] denotes the 
entire yth column; Ti[x][y0 ... y1 ] denotes all cells on the xth row at between and 
including the y0th to y1th column; TJx][ ... ] denotes the entire xth row; finally 
Ti[x0 ... x1][y0 ... yd will denote all cells within the rectangle with endpoint (x0 1 y0 ) 

and (x11 y1 ). Since S only has 1 column, we will denote the cells with only row 
number, i.e. S[x] or S[x0 ... xd. Note that the index number starts with 1 in all 
components. 
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We will now describe the content for each component: 

• T0 is more complicated and we will describe its content later in 
Construction 5.2.3. 

• T1 and T2 consist only 0 in each cell 

• In T3 , for all 1 ::;; i::;; lVI- K, T3 [i][(i -1)1EI(2K -1) + 1 ... iiEI(2K -1)] all 
have value 1 and all other cells have value 0 

• In 5, we have 5[2 ... lVI] having value "white"; whereas 5[1] and 
5[1VI + 1 ... lVI - K] have value "black". Whenever we are talking about a 
row T[i][ ... ] such that 5[i] is black, we call it black row (Rblack); vice 
versa. (white row Rwhite) 

We will call the upper lVI rows of T upper rows (Rupper) and the lower 
11(1- K rows lower rows (Rzawer)· So the upper rows contain the entire T0 and T2 
and lower rows cotain the entire T1 and T3 . Also note that all the rows from 
upper rows are white except the first row, which is black; and all rows belonging 
to lower rows are black (Rzawer C Rblack). We will give an example of T later when 
we have shown the way to construct T0 . 

Before we construct the component T0 , we will number all the vertices and 
edges in G = (V,E), i.e. V = {v1 ,v2 , ... ,vw

1
} and E = {e1,e2, ... ,e

1
E

1
}. Also, for 

. 'll . d T ' l . t 1 1 1 2 2 lEI . convenience, we WI re-In ex 0 s co umns In o a11 a2, ... , aw
1
_ 1, a1, a2, ... , a!V

1
_ 1 , Le. 

for 1 ::;; i::;; lEI and 1 ::;; j::;; lVI- 1, we have T[ ... ][j + (i- 1)] refering to the same 
column as T[ ... ][aj]. We will call each group of columns having the same 
superscript as a column group (CG), i.e. for 1::;; i::;; E, CGi denotes 
T[ ... ][a~ ... afvl-1]. 

Construction 5.2.3 

INPUT: a simple graph G 
Output: fills all values of T0 

Initialize all cells of T0 as 0 

for each edge vpvq = ei E E do 

To[P HaD := 1 
T0 [q][aD := 2 

Let c := 2 
for eachj in {1,2, ... ,1VI} "- (p,q} do 

T0 (j][a~] := 1 
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c := c + 1 
end loop 

end loop D 

Lemma 5.2.4 
have: 

For all i, j, q, such that 1 ~ i ~ j ~ lVI and 1 ~ q ~ lEI, we 

1. To[i][aiJ * 0 and To[jHaiJ * 0 if and only if V 1V1 E E 

2. For each collection of cells T0 [i][ai ... a~v 1 _1 ], there is exactly one cell with 
non-zero value and every other cell contains value 0 

3. For each column T0[1 ... IVl][a;] such that 2 ,:;; p ,:;; lVI- 1, there is exactly 
one cell with non-zero value and every other cell contains value 0 

Proof: These are some straightforward properties following the way we construct 
the table. Note that the inner loop iterates to put value 1 on lVI- 2 columns 
{a~, a~, ... , a(v1_1 } for each 1 ~ i ~ lEI, and each value 1 on each column is put in the 
different row as it iterates. Since this inner loop visits exactly lVI - 2 rows: 
{1,2, ... ,lVI} " {p, q}. It's easy to see that each column covered by this loop has 
exactly one cell having value 1; and for each row whose row number is in the set 
{1,2, ... ,lVI} " {p, q}, there is exactly one cell that has a non-zero value. The only 
time that two rows can both have a non-zero value on the same column is when 
they shares an edge as the first two lines of the outer loop assigned. D 

We will now give an example on how to construct T0 . Given the following 
graph, we will construct an instance of T0 following steps in Construction 5.2.3. 

Figure 5.2-2 An example graph 

~ a1 
1 

a1 2 a1 3 a1 
4 ai a2 2 a2 

3 
a2 

4 
a3 

1 a~ a~ a3 
4 

a4 
1 

a4 
2 

a4 
3 a4 

4 
as 

1 
as 

2 
as 3 

as 
4 

w 

1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 
2 2 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 
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3 0 1 0 0 2 0 0 0 1 0 0 0 0 0 1 0 0 0 1 
4 0 0 1 0 0 0 1 0 2 0 0 0 2 0 0 0 0 0 0 
5 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 

Figure 5.2-3 T0 generated using the graph in Figure 5.2-2. 

Note that we use bold+italic font to represent the presense of an edge. 
Now that we have constructed T0 , we will now show what the complete tableT 
would look like forK = 3: 

0 
1 
0 

1000 0100 0100 0100 0100 0000000000000000000000000 0000000000000000000000000 • 

2000 1000 0010 1000 1000 0000000000000000000000000 0000000000000000000000000 D 

0100 2000 1000 0010 0010 0000000000000000000000000 0000000000000000000000000 D 

0010 0010 2000 2000 0001 0000000000000000000000000 0000000000000000000000000 D 

0001 0001 0001 0001 2000 0000000000000000000000000 0000000000000000000000000 D 

0000 0000 0000 0000 0000 1111111111111111111111111 0000000000000000000000000 • 

0000 0000 0000 0000 0000 0000000000000000000000000 1111111111111111111111111 • 

Figure 5.2-4 The table Tc,v1,3 when G is Figure 2.1-1 

Definition 5.2.5 Let R be a set of rows in a table or sub-table we defined. A 
grouping g(R) denote the action of generalizing all rows of R altogether. A 
grouping g(R) is said to saturate a column group CGi whenever R includes both 
rows, say x andy, of which T0 [x][ai] and T0 [y][ai] both contain non-zero value. 0 

Lemma 5.2.6 Let R be the rows on sub-table T0 with row number 
Uv jz, ... jd, then g(R) saturates column group CGi if and only if there exists 
1 ~ p < q ~ k such that v1P v1q = ei E E 

Proof: This is directly implied by the way we constructed T0 D 

The purpose of above corollary is to directly show the equivalency between 
saturating a column group and selecting an edge to use and note that each 
column group can only be saturated at most once. Now, we will define our 
symbol for denoting information loss. 

Definition 5.2. 7 Let T denote any table, sub-table, column group or a set of 
cells (for example T[x0 ... x1 ][y0 ... y1]). Let R be a set of rows in T. We denote the 
information loss by redaction count in the region included in T caused by the 
grouping g(R) as IL(T,g(R)) . D 

Now, armed with the basic definitions, we will start calculating 
generalization can be cost on T0 in different situations. 
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Lemma 5.2.8 Let CGi be a column group. Let R be a set of k rows. Given 
k ~ 2, the grouping g(R) would result in information loss as follows: 

if g(R) does not saturate CGi 

if g(R) saturates CGi 

Proof: There are k rows that will be affected by this generalization. In the case 
when CGi is not saturated, every row has a non-zero value on different column; 
hence k columns are affected, causing k x k = k2 cells to be redacted. In the case 
CGi is saturated, and two of the non-zero value share the same column, only k -1 
columns are affected causing k(k -1) = k2 - k cells to be redacted. o 

Lemma 5.2.9 Let R denote the rows in T0 and their row numbers are 
denoted by the set {i11 i21 ••• 1 id and we enforce k ~ 2. Let V = {vi11 Vi2 1 ••• I vik}. 

Moreover, let G = (V1 E) be the induced subgraph ofG induced by V, then the 
information loss is: 

IL(T0~g(R)) = 1Eik2 -IEik 

Proof: For all 1 ~ j ~ lEI, we know CGj is saturated if and only if both endpoints 
of ej belongs to V. Since G is an induced subgraph, we know that G contains all 
edges whose both endpoints are in V and only edges whose both end points are in 
V. Therefore, there are exactly lEI column groups that are saturated in T0 , and 
lEI - lEI not saturated. Since each R contains k rows, it will cause k2 - k 
information loss in saturated column group and k2 information in non-saturated 
column group. We have IEI(k2 - k) + IEI(k2) = IEik2 -IEik. 0 

Now, we will define a notation to represent the differential information 
loss, that is, the cost of adding an additional row into an existing grouping. 

Definition 5.2.10 LetT denote any table, sub-table, column group or a set of 
cells (for example T[x0 ... xd[y0 ... y1]). Let R be a set of rows in T and let r be a 
row in T but not in R. We denote the differential information loss in the region 
included in T causes by adding r into the grouping g(R) as IL11 (T 1 Y1 R), i.e: 

IL11 (T 1 Y1 R) = IL(T 1 g(R U {r})) -IL(T1 g(R)) 

Lemma 5.2.11 Let R denote the rows in T0 and their row number are 

0 

denoted by the set {i11 i21 ••• 1 ik} and we enforce k ~ 2. Let V = {vi1 1 vi2 1 ••• I vik}. Let 
G = (V1 E) be the induce subgraph of G induced by V. Let r be a rew in T0 not in 
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R with row number j. Finally, we use x to denote lEI, y to denote lEt and z to 
denote the number of edges adjacent to vj which is also adjacent to any vertices 

in E, i.e. z = l{v,v,, I v,v,, E E and vj' E v}l· Given these variables, we have: 

ILL'l (T0, r, R) = (x- y- z)(2k + 1) + y(2k) + zk 

Proof: If a column group CGi was saturated by R, it must also be saturated by 
R U {r}, hence: 

IL6 (CGi, r,R) = ((k + 1)2 - (k + 1))- (k2 - k) = 2k 

On the other hand, if CGi was not saturated by R but it is saturated by R U {r}, 
then: 

In the third and final case, if CGi was not saturated by R and it is also not 
saturated by R u {r}, then: 

There are z edges from Vj to V; there are y edges existing in G; and, the rest of 
the edges are still not in the new subgraph induced by V U {vj}. Translate the 
number of edges into column groups, we have the formula given above. D 

Lemma 5.2.12 Let R be a set of rows in T0 and their row numbers are 
denoted by the set {i1, i2, ... , id. Enforce k ~ 2. Moreover, let r be a row in T0 not 
in R, then, in all cases, we have: 

Proof: This corollary is clearly implied by previous corollary because we always 
have 2k + 1 > 2k > k. The differential information loss is maximized when y and z 
are 0; the differential information loss is minimized when x = z and y = 0. (This 
means: the case when differential information loss is maximized is when there is 
no edge in the induced subgraph corresponding toR U {r}; and it is minimized 
when every edge in the graph G is adjacent to vj each going to a vertex in V, 
which has to equal to V in this case) D 

Now we have establish all properties we need in T0 , we will expand our 
vision back to T. 
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Definition 5.2.13 A generalization r for tableT, is a set of grouping 
g(R1),g(R2), ... ,g(Rn) such that: 

n 

URi = T and Vl :,;; i < j :,;; n, Ri n Rj = ¢ 
i=l 

Furthermore, for a table T, an optimal 2-diverse genemlization, denoted by rapt is 
the generalization that costs at most as much as all possible 2-diverse 
generalization r' ofT, 'l. e: 

~ IL(T,g(R)):,;; ~ IL(T,g(R)) 
g(R)ETapt g(R)ET' 

Lemma 5.2.14 In an optimal 2-diverse genemlization rapt ofT, there does 
not exist a grouping such that there are more than two white rows and two black 
rows at the same time. 

D 

Proof: Assume there is a 2-diverse grouping g(R) such that it contains more than 
one white rows and more than one black rows at the same time. If we pick a 
white row, say r1 and a black row among the lower rows, say, r2 (such row must 
exist because there is only one black row in the upper rows, namely, row number 
1) and forms a new grouping. We can use it to form a new generalization 
f' = (f opt "- {g(R)}) U {g(R "- {r1, r2}),g({r1, r2})} and note that f' must remain 2-
diverse because we claimed R has more than one white row and more than one 
black row. Note that in the rows R "- {r1,r2}, we gain information in columns 
where either r1 or r2 have non-zero value and no rows in R "- {r1 , r2} have non-
zero values. We can easily find such example on r2 , in T3 , where all the l's are 
uniquely placed in different columns and no other rows in the table T have zero 
in the same column. Since the splitting of this grouping do not cause more 
information loss in any place due to the monotonicity of the information loss and 
we find places where information is gain back, information loss in r' is lower 
than information loss in r opt> hence, contradiction is reached and there cannot be 
a grouping where there are two white rows and two black rows in the same time.D 

Note that there cannot be two white rows and two black rows in a 
grouping at the same time in the optimal generalization. Using this simple claim, 
we can break down the cases in more detail. In the next two corollaries, we will 
present it is also not possible to have one lower row matching two or more white 
rows, or two black rows matching two or more white rows. 
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Lemma 5.2.15 In an optimal 2-diverse generalization Tapt ofT, there does 
not exist a grouping g(R) such that there is one black row in the lower rows and 
more than one white row at the same time, i.e. R n Rzower = {rd and R n Rwhite = 
{rh, rh, ... }. 

Proof: Suppose there are such g(R) E f opt and such ri, rh, rh, we will discuss two 
different possibilities: 

1. Suppose there is another grouping g(R') E f opt such that there are more 
than one black rows R' n Rblack = {ri1, ri

2
, ... }. Note that at least one of them 

is from lower rows, without loss of generality, we claim it is ri1 · Now, we 
will take rh out from g(R) and take ri1 out from R' and form a new 2-
diverse grouping while both R "- {rh} and R' "- {ri1} remains 2-diverse. 
When we pulled rh out of R, we recovered exactly IE1(2K -1) redactions in 
rh in region T2 due to the affect ri has on rh. In region T0 , rh must recover 
some redactions because ri1 must not have non-zero values in all places rh 
does, so we say it recovered at least 1 redaction and it must be true in any 
cases. (We use the value 1 because corollary 5.2.12 might not apply here, 
i.e. there might not be a third row in upper rows in R.) In T2, T3 region, ri

1 
must have been affecting both itself and ri2 in the minimum of 2IEI(2K- 1) 
cells because it has IEI(2K- 1) value 1 in unique columns and those 
redactions will be recovered when ri1 is pulled out. Removing rii rom R' 
also recover at least lEI redactions in ri1 at region T1 because in any cases 
there was at least one upper row affecting ri1 . Finally, it's easy to see if we 
merge ri1 with rh it would cost exactly 21EI + 2IEI(2K -1) redactions. There 
are exactly lEI non-zero values in rh and exactly IEI(2K -1) non-zero values 
in ri1 all on different columns. Let's sum of the net gain ILnet= 

ILnet ~ IEI(2K -1) + 1 + 2IEI(2K -1) +lEI- (2IEI + 2IEI(2K- 1)) 
= IEI(2K - 1) + 1 - lEI (K ~ 2) 
>0 

The contradiction is reached since fopt "- {g(R),g(R')} U {g(R "- {rh}),g(R "-
{ri1}),g({ri1, rh)} cost less than r opt· 

2. Suppose there is no other grouping such that there are two rows from 
lower rows. Now, there are IVI-1 white rows in total, at least two of them 
are in R as claimed in the statement of the proof. No other grouping 
having two lower rows means the lVI- K- 1 other lower rows must use up 
at least lVI- K- 1 white rows. Then, the grouping containing row number 
1, namely R1 must have group with at most lVI- 1-2- (lVI- K- 1) = K-
2 white rows. We will now pull out rh to join R1 . We have shown that 
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pulling out rh recovers at least IE1(2K -1) + 1 redactions. Let m denote the 
number of rows in R1, we know that R1 must originally have at least 2 
rows due to its 2-diversity. Inserting rh into R1 cost at most IEI(2m + 1) 
redactions in T0 region according to corollary 5.2.12. (k = m ~ 2). We also 
know that m < K- 2 + 1 = K -1 because it has at most K- 2 white rows 
and a black row, namely row number 1. The insertion of rh into R1 cost 
nothing in the T2 region. We sum up the net gain ILnet: 

ILnet = IEI(2K - 1) + 1 -IEI(2m + 1) 
~ IEI(2K- 1) + 1 -IEI(2(K -1) + 1) 
=1>0 

The contradiction is reached since fopt-...... {g(R),g(R1)} U {g(R-...... {rh}),g(R1 U 

{rh})} cost less than r opt· 0 

Lemma 5.2.16 In an optimal 2-diverse generalization Tapt ofT, there does 
not exist a grouping g(R) such that there is one white row and more than one 
black row at the same time, i.e. R n Rblack = {ri1 ,ri2 , ••. } and R n Rwhite = {rh}. 

Proof: Suppose there are such g(R) and such ri1 , ri2 , rh. 

1. Suppose one of ri1,ri2 is row number 1. There are at most lVI- K- 1 lower 
rows remaining and they are the only residual black rows to contribute to 
a 2-diversity generalization. There are exactly lVI- 2 white rows remaining 
to match with these lower rows. The previous two corollaries imply: when 
a grouping has multiple lower rows, there can only be one white row 
(5.2.14); where a grouping has one lower row, there can also only be one 
white row (5.2.15). In any cases, since K ~ 2, we have lVI- K -1 black 
rows and they can only handle at most lVI- 3 white rows and result in a 
contradiction since 2-diversity have been impossible to achieve if this is the 
case. 

2. Suppose both ri1, ri2 are lower row. There are lVI- K- 2 other lower rows 
and in any case they can only consume at most lVI- K- 2 white rows. 
Subtracting rh, this leaves the grouping containing row number 1, namely 
R 1 with at least (IVI-1) -1- (lVI- K- 2) = K white rows. We will name 
one of these white row rj and put ri

1 
in a grouping with it. Pulling out rj 

would release at least IEI(2K + 1) redactions according to corollary 5.2.12 
(k ~ K ~ 2). Pulling out ri

1 
would release at least 4IEI(2K -1) redactions on 

region T3 because ri
1 

and ri2 each has value 1 in IEI(2K -1) unique 
columns. It would also release at least lEI redactions in ri1 in region T1 due 
to the effect rh have on ri

1
• Combining rj with ri1 would cost 2IEI + 
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21EI(2K -1) with the same argument as 5.2.15. We will sum up the gain 
ILnet: 

ILnet = IEI(2K + 1) + 4IEI(2K -1) +lEI- (2IEI + 2IEI(2K -1)) 
= IEI(2K + 1) + 2IEI(2K -1) -lEI 
= 31E1(2K - 1) + lEI 
>0 

The contradiction is reached since f opt "- {g(R),g(Rl)} U {g(R "- {ri1}),g(Rl "-
{rj}),g({ri1, rj)} cost less than r opt· 0 

Now, combining corollary 5.2.15 and corollary 5.2.16, we have: 

Lemma 5.2.17 In any optimal 2-diverse generalization on T G,v1,K) we have 
every lower row matches with exactly one white row) and row number 1 matches 
with the rest K -1 white rows. 0 

We know what an optimal 2-diverse generalization looks like on the table 
T G,v1,K· Let's match it with properties of G. 

Lemma 5.2.18 Let P be the set of all possible subset of K vertices in graph 
G) i.e. P = {l/' IV'~ V and llf'l = K}. Let p: P ~ N be the function that calculate 
the number of edges each lf' E P induces in G. Then the optimal 2-diverse 
generalization ofT G,vl,K) namely rapt is: 

rapt= IEIK2 - mK + 4KIEI(IVI- K) 

Where m = maxl/JE'l'{P(lf')} 
Proof: According to corollary 5.2.17, each lower row will match with exactly one 
upper row. This will result in a constant information loss of 2IEI + 2IEI(2K -1) = 
4KIEI. There are lVI- K of such groupings. There are K rows in the last grouping 
with row number 1 and all of them are in upper row; hence the information loss 
for them equals the information loss they lose on Tg,v

1
,K. Depending on which K 

vertices these K rows represents, the information loss is varied depending on the 
number of edges between these vertices that are represented by these K rows. 
The more edges between these vertices the less the information loss. o 

With the formula of computing r opt given variable G, v1, K, we will be able 
to solve CLIQUE(G, v1,K). 

Lemma 5.2.19 CLIQUE(G, v1, K) is true if and only if the optimal2-diverse 
generalization forT G,v1,K) namely Topt is: 
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rapt = IEIK2 - (~) K + 4KIEI(IVI- K) 

Proof: A K-clique containing v1 exists if and only if the induced subgraph with K 

vertices incuding v1 and (~) edges exists in G, because that subgraph is the K-

clique. o 

Theorem 5.2.20 2-diversity problem is NP-Hard, even when the sensitive 
attribute has only 2 possible values. 0 

The following is an example of how T G v K look like after one of its optimal 
' 1' 

generalizations: 

rapt = {g({rowl, row2, row3}),g({row4, row6}),g((row5, row7})} 

The information loss is 159. 

**00 **00 ***0 ***0 ***0 0000000000000000000000000 0000000000000000000000000 • 

**00 **00 ***0 ***0 ***0 0000000000000000000000000 0000000000000000000000000 D 

**00 **00 ***0 ***0 ***0 0000000000000000000000000 0000000000000000000000000 D 

00*0 00*0 *000 *000 000* ************************* 0000000000000000000000000 D 

000* 000* 000* 000* *000 0000000000000000000000000 ************************* D 
00*0 00*0 *000 *000 000* ************************* 0000000000000000000000000 • 

000* 000* 000* 000* *000 0000000000000000000000000 ************************* • 

Figure 5.2-5 An example of optimal 2-diverse generalization of T G,v1,3 using the graph 
G in Figure 2.1-1 

However, if we have picked v2 and produced the tableT Gv K' one of its ' z, 
optimal generalization would have been: 

rapt = {g({row4, row2, row3}),g({rowl, row6}),g({row5, row7})} 

The information loss is 156 and the clique {v2, v3 , v4 } is found. 
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*000 0*00 0*00 0*00 0*00 ************************* 0000000000000000000000000 • 

***0 *0*0 *0*0 *0*0 *0** 0000000000000000000000000 0000000000000000000000000 0 

***0 *0*0 *0*0 *0*0 *0** 0000000000000000000000000 0000000000000000000000000 0 

***0 *0*0 *0*0 *0*0 *0** 0000000000000000000000000 0000000000000000000000000 0 

000* 000* 000* 000* *000 0000000000000000000000000 ************************* 0 
*000 0*00 0*00 0*00 0*00 ************************* 0000000000000000000000000 • 

000* 000* 000* 000* *000 0000000000000000000000000 ************************* • 

Figure 5.2-6 An example of optimal 2-diverse generalization of T G,v2,3 using the graph 
G in Figure 2.1-1 
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Chapter 6 

Conclusions and Proposals 

6.1 Concluding Remarks 

In this thesis, we have visited various aspects of database anonymization 
that focus on protecting sensitive attributes. 

There is a dilemma between eliminating the possibility of an adversary 
successfully linking a sensitive value to targeted individual and preserving 
information for data researcher or data mining applications. We believe the rule 
of thumb would be to try limiting attacker's knowledge gain within an acceptable 
bound while keeping information. Note that the researchers often have no 
background knowledge and seek to compile reports about the overall trend on 
how distributions of an attribute may be affected by other attributes. On the 
other hand, the attacker is someone who has background knowledge but only 
targets a particular individual. Only when the following two conditions both 
occur should an attack be considered successful: 1) The posterior belief of this 
attacker differs a great deal from the prior belief. 2) The posterior belief is 
dangerously high or low. On some level, both attackers and researchers rely on a 
database with competent information to achieve their goal; whereas, the 
attacker's needs are more specific and restrictive. A successful database 
anonymization scheme is to take advantage of these restrictions that the 
attackers might face and not blindly try to suppress all information. The bottom 
line is, blindly suppressing information often affects researchers more than it does 
adversary because the attackers possess background knowledge. 

Moreover, we have to keep in mind that whenever a data anonymization 
algorithm tries to conceal or break down the association between attributes such 
as quasi-identifier and sensitive attributes, any conventional information loss 
measure that is designed to measure information loss on k-anonymized table 
could underestimate the damage to the database's data mining potential. There is 
a dilemma between efficiency and effectiveness when designing an information 
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loss measure. The data publishers distribute the databases so that they do not 
need to analyze the databases heavily because they might not have the hardware 
or specialty to do so. However, an overly sophisticated information loss measure 
that aims to accurately predict data mining potentials might approach or even 
exceed an actual data mining application and there is no longer a point of 
publishing the database. 

Finally, in this thesis, we have discovered that 1-diversity is fundamentally 
a harder problem than k-anonymity in the sense that 2-anonymity is polynomial 
time hard but 2-diversity is nondeterministic polynomial-time hard. 

6.2 Proposals for Future Research 

There are a number of full-domain generalization algorithms with 
manageable complexity. One of the most notable algorithms is called incognito 
[23]. It is a bottom-up algorithm, and it starts with a table that is not generalized 
and at each step suppresses some attributes to try achieving some predetermined 
security measure. On the other hand, there are some algorithms that are called 
top-down algorithms [8]. A top-down algorithm would start with a table with all 
tuples completely suppressed and releases some information at every iteration 
and claim it as an advantage. Knowing that determining if a q-block is !-
categorical diverse is an NP-Hard problem, it seems that !-categorical diversity 
should be achieved by the bottom-up algorithms more efficiently than top-down 
algorithms. An experiment can be performed on this basis and it would be 
interesting to compare the top-down algorithm's performance against bottom up 
algorithm's performance. 

Another possible research direction is to come up with an efficient 2-
diversity approximation algorithm. We have proven that 2-diversity is NP-Hard. 
However, 2-diversity might still have some unique properties that we can take 
advantage of. There should be a number of applications of 2-diversity including 
protecting patients' medical test results that can only take one of two possible 
values: positive and negative. 

Also, there is another possible privacy protecting scheme we could propose 
here. It is called extended k-anonymity. The concept is simple: we treat the 
sensitive attributes as a part of quasi-identifier: Q = Q U {5}. This way, we would 
be able to run any k-anonymity algorithm and prevent homogeneity attack of the 
sensitive attributes. The drawback of this approach would be that the overall 
distribution sensitive attribute may be distorted to some degree because we allow 
the sensitive attribute to be generalized. There could be approaches to manage 
this drawback. 
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We would end this thesis with a conjecture. A database anonymization 
using generalization such as k-anonymity in fact has three inputs: a table T, a 
generalization method g (such as hierarchical clustering tree or suppression) and 
a information loss measure II. It is intuitive that the complexity of this 
anonymization problem depends not only on the number of tuples of T but also 
how much "information" is on each tuple. Note that the word "information" here 
is not the same "information" we were talking about earlier. Instead, it is 
describing how many generalizations it takes that the generalization method g 
needs to completely suppress a tuple according to the information loss measure 
II. For example, an entry under suppression generalization method and redaction 
counting may be considered to have less information than hierarchical clustering 
tree method and its related information loss measure because it would generally 
take more generalizations to suppress this entry's information completely. The 
more possibility of keeping partial information of each tuple, the more complex 
the problem should be. This "information" we speak of should affect the 
complexity of such anonymization problem in a super-polynomial fashion similar 
to how the height of a tree might give you an upper or lower bound of how many 
vertices there is in the tree if the structure of the tree follows some known 
pattern. We will now define a measure that might play a part of measure the 
complexity of database anonymization: 

Definition 6.2.1 For a set of rows R in tableT, a generalization function g 
and information loss measure II. We say that II is strictly increasing on R 
using g if, for every R" c R' s R, we have: 

II ( R", g(R")) II ( R', g(R')) 
_..:__ ___ _;_<--'-------'-

IR"I IR'I 
0 

The maximum size of strictly increasing set, namely it, is a measure that is 
related to all three inputs of a database anonymization problem IT, g, and T. We 
claim that the variable i\. in an anonymization problem should closely relate to 
the complexity of the anonymization problem in super-polynomial fashion. 
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