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Abstract

Progress made in Semantic Web technologies and Ubiquitous Computing has lead to
the development of mobile learning services that can adapt to the learner’s background,
learner’s needs, and surrounding environment. In particular, the emerging techniques
from these two technologies have the potential to revolutionize the way mobile learning
services available on the web are discovered, adapted, and delivered according to context.
Context acquisition and management, conceptual knowledge modeling and reasoning, and
adaptive services discovery are the main ingredients for designing such context-aware
mobile learning systems. However, a number of challenges are still facing the research
community in this field. These can be summarized in the following: (i) current mobile
learning services act as passive components rather than active components that can be
embedded with context awareness mechanisms, (ii) existing approaches for service
composition neglect contextual information on surrounding environment, and (iii) lack of
context modeling and reasoning techniques for integrating the various contextual features
for better personalization. In this thesis an attempt is made to solve the above-mentioned
problems. These challenges are addressed by proposing a personalized mobile learning
system based on a global ontology space to aggregate and manage context information
related to the learner, the used device, the surrounding environment, and the task at hand.
The system adopts a unified reasoning mechanism, around the global ontology space, in
order to adapt the learning sequence and the learning content based on the learner profile
and the perceived contextual information. The adopted approach for ontology reasoning
aims at achieving two types of adaptations — system-centric adaptation and — learner-
centric adaptation. These are implemented on a Run-Time Environment that identifies
new contextual changes and translates them into new adaptation constraints. We
developed and tested our system on a number of subject-domain ontologies using various

learning scenarios, and the obtained experimental results are very promising.

Keywords: Semantic Web, Ontology, Mobile Learning, Ubiquitous Computing, Context

Modeling and  Management, Ontology-based Reasoning, Web  Services.
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1.1 Motivation and Objectives

This study is concerned with the design and implementation of a mobile learning
system tailored to the needs and context of learners. Context acquisition and management
[1-3], conceptual knowledge modeling [4-5] for personalized learning, and adaptive
information discovery are the most important requirements for designing such an
intelligent mobile learning system. The goal of the research community in the field of
mobile learning is to develop ubiquitous learning environments capable of providing
useful learning resources on demand, anywhere, in a learner-driven context and on a
learner’s schedule [1]. In the ubiquitous environment, the context-awareness framework
needs to aggregate and integrate context information related to the learner (i.e. preferred
language, previously conducted learning interactions), the used device (i.e. operating
system, current available memory size), the surrounding environment (i.e. varying
network bandwidth, location), and the task at hand (i.e. current learner’s interaction, goal).
Research work in this field has been dominated by the use of ontologies and other related
semantic web technologies for context-awareness. Many approaches to context modeling

have been considered [4-7].

Another important aspect of mobile learning is the design and deployment of mobile
web services. This field is becoming a very active area of research and development [6-8].
However, some challenging aspects are facing the research community in the area of

personalized mobile services. These are:

e Current mobile web services act as passive components rather than active

components that can be embedded with context awareness mechanisms.
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e Existing approaches for service composition typically facilitate choreography only,

while neglecting contextual information on users, environment, and services.

e [Lack of context modeling techniques and middleware for integrating the various

contextual features for better personalization.

This study proposes a solution to the above mentioned problems by developing a
personalized mobile learning system with semantic-rich awareness information. In
particular, this study focuses on a new context modeling and ontology-based reasoning
mechanism. This approach is based on the fact that context is not simply the state of a
predefined environment with a fixed set of interaction resources, but it is part of a process
that is interacting with an ever-changing environment composed of a set of heterogeneous
atomic context elements [9]. Therefore, the proposed personalized mobile learning system
is based on a Run-Time Environment (RTE) that identifies the new contextual features
and translates them in to new adaptation constraints. For instance, the system
automatically updates the perceived — device or — environment context elements and uses
them to re-adjust inferred metadata that adapts the search for those compatible learning

resources. The main contributions of our work are as follows:

e A unified ontology space for context integration and aggregation based on learner
context, activity context, device context, and environment context. In addition, this
ontology space contains a domain ontology used to define the subject domain area of

interest.



o Efficient learning sequence management and subject domain knowledge
representation at different granularity levels to suit learners with various cognitive
skills.

e A Run-Time Environment model for context management to permit context
perception, context identification, and context adaptation. The system uses
ontology reasoning to infer high level context at the semantic level to achieve both

system-centric adaptation and learner-centric adaptation.

1.2 Structure of the Thesis

Chapter 2 introduces some basic background for Semantic Web technologies such as
the Resource Description Framework (RDF), Web Ontology Language (OWL), and
Semantic Web Rule Language (SWRL). It also describes current research work in the
field of mobile learning. Chapter 3 presents the overall system architecture and the main
functions of the system. It describes the approach used for context acquisition and
modeling. It also describes a global ontology space for context integration and
aggregation based on user context, activity context, device context, and environment
context. Chapter 4 describes the reasoning and learning strategies used to personalize
learning. Chapter 5 includes a number of case studies that illustrate the main functions of
the system. Chapter 5 also provides a performance evaluation study by comparing our
system with some other existing systems. Finally, conclusions from the work are drawn

and further research work is suggested.
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This chapter introduces basic technical background in the area of semantic web. It then
overviews the related research work in the field, and finally, it introduces the approach
adopted in this study for the design and implementation of a context-aware mobile

learning system.

2.1 Semantic Web

The semantic web is an extension of the World Wide Web, in which information and
services are given well-defined meaning, making it possible for the web to understand the
requests of people, and enabling computer and people to work in cooperation [10-11]. To
make possible the creation of the semantic web, the World Wide Web Consortium (W3C)
has been actively working on the definition of open standards [12]. Based on these
standards, the semantic web will empower intelligent services such as search agents,

information filters, and knowledge management systems.
2.2 Current Web v.s. Semantic Web

Today’s web is primarily composed of documents written in presentation mark-up
languages like Hyper Text Mark-up Language (HTML). HTML was designed for human
interpretation and use. Each web page has a Uniform Resource Locator (URL) address
and can be easily accessed by people. Humans can read information from web pages,
understand them and process item, but the machine is not smart enough to handle the
above task. It can not read, analyze, and interpret the meaning of the information in
presentation mark-up language form. Semantic web is used to express resources in a

machine-processable format that can be used by computers not only for display purposes,



but also for interoperability and integration between systems and applications [12]. It will
bring a structure to the meaningful web resources, and sets the inference rules for
automatic reasoning. Table 2.1 describes the overall difference between the current web

and the semantic web.

CurrentWeb SR Semantlc Web
Goe Sharmg e Res ourceSharmg T

B ST V) e VIR
e Human Interactlon S MachlneProcessable e 1
" Product / Download Dynam1c Web-Services
 Producer/Consumer ~ Collaborative virtual Communities
~ Bolton securlty | Detailed Securi?};Model ‘

" Table 2.1 Current Web v.s. Semantic Web
2.3 Semantic Web Technologies

The main web technologies used by the semantic web are Uniform Resource Identifier
(URI), Extensible Makeup Language (XML), RDF and OWL. People, places, and things
in the physical world will have online representations identified by URIs. XML is a
mark-up language that provides syntax for content structure within documents. It allows
everyone using open standard syntax to create their own documents. RDF is a data model
for representing resource’s information on the web [13]. Many Resources need to be
processed by applications instead of only displayed to people. The motivation of RDF is
to create a format for making assertions about resources and to combine data from several
applications. Subject, Predicate and Object are three main entities for representing an

RDF statement. The subject and predicate are URIs, while the object can be a URI or a
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literal. In RDF, there are only two types of data for property values: string and URIs.

Figure 2.1 shows a cell phone with a resolution of 320 * 240 pixels.
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Figure 2.1 Figure 2.1 RDF Graph for a Mobile Phone

The Semantic Web will build on XML's ability to define customized tagging schemes
and an RDF's flexible approach to representing data. The first level above RDF required
for semantic web is an ontology language which can formally describe the meaning of
terminology used in the web document [14]. OWL can be used to explicitly describe an
ontology that is a representation of concepts and their relationships. OWL provides three
increasingly expressive sublanguages that are OWL Lite, Web Ontology Language
Description Language (OWL DL), OWL Full. The ontology developer needs to consider
the sublanguages that best suit their need. The OWL Lite is a basic sublanguage that can
support a classification hierarchy and simple features. The OWL DL has more advantages
for maximizing expressiveness without losing computational completeness and
decidability of reasoning systems. The OWL Full developed for users who want
maximum expressiveness and syntactic freedom of RDF with no computational

guarantees. Figure 2.2 represents the seven layers structure for the semantic web.



Trust
Proof S
Data _5 Logic .5%
Ontology vocabulary g
RﬁF ’rd.fschema‘ - g

Figure 2.2 Semantic Web Structure

2.4 Reasoning Techniques

Ontology reasoning approaches can use various kinds of logic to support inference;
description logic, first order logic, temporal logic, and spatial logic to name a few [15].
Although there are many ontology reasoning languages [16-19], such as SWRL, Rule
Markup Language (RuleML), and Description Logic Programs (DLP), SWRL has been
proposed as the basic rules language for the semantic web. It is a combination of the
OWL DL and OWL Lite sublanguages of OWL with the Unary/Binary Datalog RuleML
sublanguages of the Rule Markup Language. While DLP is the intersection of Horn logic
[17-18] and OWL, SWRL is (roughly) the union of them. In DLP, the resultant language
is a very peculiar looking description logic and rather inexpressive language overall. It is

hard to see the restrictions are either natural or satisfying. Contrariwise, SWRL retains the



full power of OWL DL, but at the price of decidability and practical implementations [16].

SWRL is a logic language with rules expressed in the following format:

A,.A —B

Where A,..A, and B are atomic formulas. The set {A,,..A,} is referred to as the

antecedent (body) of a rule, and B is a consequent (head) of a rule. The atoms A,,...A,

and B can be of the form C(x), P(x,y), sameAs(X,y), differentFrom(x,y), or builtIn(r,x,...),
where C is an OWL description or data range, P is an OWL property, r is a built-in
relation, x and y are either variables, OWL class individuals or data values as appropriate
[19]. The following is an instance described by a SWRL rule. In this SWRL rule, the
concept person has been captured using an OWL class called Person; the parent, sister
and aunt relationships can be expressed using OWL object properties hasParent,

hasSister, and hasAunt respectively.

Rule-1:

Person (?x) “hasParent (?x, ?y) “hasSister (?y, ?z) >hasAunt (?x, ?z)

2.5 Related Work

Semantic web technologies have been used in recent years to develop personalized
learning systems. In particular, ontology-based approaches have been used for context
modeling and management; and logic approaches have been used for ontology inference

and reasoning {20-25].
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Such applications which take advantage of the context are called context-dependent or
context-aware applications and lead us to the development of context-aware systems [26-
29]. In Shehzad and Ngo, it is advocated that the use of formal modeling in context aware
systems will bring many advantages to the area [28], mainly when focusing on solving the
following problems: (1) sharing of common information semantics; (2) testability of
formalized knowledge; and (3) emergence of a pool of consistent contextual knowledge
available to different context-aware systems. Their work discussed context models for the
home domain and shows how it entails implicit reasoning. The formalized context model
is based on categorized context entities such as agent, devices, environment, location and
time. In particular, they defined the contextual information hierarchy among sensor based
information, elementary context, and composite context. In a similar study, four types of
context-awareness models are identified by Lee et al. for ubiquitous environments: (1) the
basic type is Sense-Context that is gathered from the sensors; (2) Combined-Context that
is calculated by Sensed-Context and the representation of calculation formula is
represented in SWRL; (3) Inferred—Context that is inferred by Sensed-Context and the
representation of inference is also represented in SWRL; and (4) Learned-Context that is

made by a learning algorithm such as Decision-Tree (DT) or Neural-Network (NN) [29].

Yang proposed a work for context model and context acquisition mechanism for
collecting contextual information at run time [30]. In particular, their work does not only
provide an ontology based context model but also utilizes two context acquisition
methods context detection and context extraction, for obtaining various contextual
information [30]. They developed two types of context ontologies: learner ontology, and

service ontology. The learner ontology consists of learner profile, preferences, Quality of

-11-



Learning Services (QoLS), environment, and services. The service ontology consists of
service profiles, and QoLS. In their work, the context detection is tracked from two sides:
server side (i.e. analysis of previous work), and client side (i.e. sense learners’
surrounding environment). The context is extracted from the learner’s default context
based on the preferences and derived contextual information from the calendar profile,

and social profile.

In the field of personalized mobile learning [31-34], Yu and Nakamura developed a
personalized and complete learning system to support mobile learners [31]. The system
consists mainly of three ontologies (Learner ontology, Learning Content Ontology, and
Domain Ontology), five rules for semantic relevance calculation, and an algorithm for
generating the learning path. For ontology modeling, they designed a learner ontology
that depicts context about the learner (i.e. subject or particular content already mastered,
learning goals, available learning time, current location, desired learning style, and
learning interests). For the learning content ontology, they defined a relation
hasPrerequisite that describes context dependency information. The domain ontology is
proposed to integrate existing consensus domain ontologies such as computer science and
chemistry. For semantic relevance calculation, their work adopts the following steps: (1)
map the user’s goal to the domain ontology; (2) locate the subject of the learning content
in the domain ontology; (3) estimate the conceptual proximity between the mapped
element and the subject node of the learning content [31]. According to their algorithm,
the system can generate a learning path connecting with prerequisite contexts
(hasPrerequisite relations) and the target learning context. In another study by Henze and

Dolog, the proposed system uses three types of ontologies (domain, user, and observation)

-12 -



to realize dynamically personalized e-learning tasks on the semantic web [28]. They
suggested a framework for such adaptive or personalized educational hypermedia system
based on a number of semantic web techniques. In particular, they show how rules can be
enabled to reason over distributed information resources in order to dynamically derive

hypertext relations which are used to recommend a sequence of learning tasks.

Berri and Benlamri have developed a learning system where extracted conceptual
knowledge from a source ontology is efficiently used by firing a set of rules based on the
learner profile to recommend a learning path [35]. In an extension of the same work,
Basaeed et al. have divided the learner context into two models: learning model (i.e.
authentication information, age) and learning preferences (i.e. learning style, difficulty
level). The device context is described in the terms of its device type and its capabilities
(i.e. navigation tools, bandwidth limitations). The system uses learner ontology, device
ontology, and domain ontology to enable better learner modeling, efficient context
acquisition and management, and reusable customized learning content [1]. The main
component in their system is the learning web constructor that operates in three-steps:
context sensing, context reasoning, and context adaptation. The system matches the
learner’s goal to the concepts in the ontology based on three relationships: necessary part-
of, part-of, and is-a. Then, the importance of Learning Objects (LOs) is inferred by using
rules that are retrieved from “context reasoning”. Finally, the system considers the time
issue, and then generates a learning path using necessary part-of, part-of, and is-a contexts
(assigned from higher to lower importance levels respectively). Accordingly, their system
achieves the initial goal providing “just enough, just in time, just for me” learning

delivery [1].

-13-



To achieve true context awareness, however, mobile systems must produce reliable
information in the presence of uncertainty, rapidly changing, and environment partially
true data from several sources [36-39]. In Korpipaa et al., fuzzy sets or crisp limits are
introduced for quantizing extracted features [36], where resource servers use one of two
methods for quantization: set crisp limits (true-false), or apply a fuzzy set for features (a
truth value between O and 1). The resource servers use an unstructured raw measurement
data, and return a representation défined in the context ontology for context management.
In a similar study by Pan and Stoilos, a system called -SWRL that is a fuzzy extension to
SWRL is developed [37]. The system includes fuzzy assertions and fuzzy rules. In their
work, the atoms in f-SWRL can include a “weight” that is a truth value between 0 and 1.

The “weight” represents the “importance™ of the atom in a rule. For example:

Rich(? p) *0.5 A Healthy(? p)*0.9 — Happy(? p)
where values 0.5 and 0.9 represents the weights for atoms Rich(? p) and Healthy(? p).

To design and implement personalized mobile learning systems on the semantic web,
there are at least three related research areas which need to be considered. These are:
context-awareness frameworks for ubiquitous environments, adaptive information
discovery, and ontology-based reasoning mechanisms. It should also be noted that the
characteristics and requirements of mobile learning are different and far more complex
than those of traditional learning systems. For example, low bandwidth, limited screen
resolution, and unsecured wireless communication are a just few technological constraints
that make up the system’s complexity. The proposed system attempts to solve some of the

above mentioned challenges.
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Our approach uses three hierarchical levels — atomic level, composite level, and high
level. Sensor based information, elementary context, and composite context are defined
for each contextual information hierarchy. In addition, the system integrate knowledge
related to the learner, learning activity, used mobile device, and surrounding environment
and it defines them at the semantic level using a global interrelated ontology space. Our
system uses ontology reasoning to infer high level context at semantic level for both
system-centric adaptations and learner-centric adaptations. System-centric adaptations
are used to ensure searched learning resources are suitable for the system-centric metadata.
For learner-centric adaptations, the system uses learner’s tacit knowledge to build a

learning path for better personalization.
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This chapter presents the overall system architecture and provides a detailed description
of its main components. It first describes the context sensing and acquisition system. It
then presents the major software components of the system design, and finally, it
introduces the user interaction with the system. This chapter also describes the approach
used for context acquisition and modeling. It designed a global ontology space based on

learner context, activity context, device context, environment context, and domain context.

3.1 Overall System Architecture

This section overviews the main components of the system architecture. Figure 3.1
describes the proposed learning system which consists of the context sensing and
acquisition unit, the ontology reasoning unit, and the service/resource discovery and

adaptation unit.

The context sensing and acquisition unit consists of three hierarchical levels — atomic
level, composite level, and high level. Atomic level retrieves the user interaction and
senses atomic context elements from different sources. At the composite level, the system
uses inference, computation, and a learning technique to translate atomic context elements
into meaningful symbolic context information. High level context consists of four-tuple
Crz(cl7CD7CE’CA)

, which are built out of configurations of composite context

elements sensed at time t around a specific learning domain [40]. It should be noted that
C,is learner context, C is device context, C, is environment context, and C,is activity
context. The above hierarchy is denoted by the context sensing and acquisition units

shown in Figure 3.1.
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Figure 3.1 System Architecture

The system uses a global ontology space to enable efficient context modeling and

management. It also adopts a unified reasoning mechanism to share and reuse

personalized learning content. As shown in Figure 3.1, the global ontology space consists

of a domain ontology and four interrelated sub-ontologies that are learner ontology,

device ontology, environment ontology and activity ontology. In this study, the system

used the OWL DL for describing the global ontology space. Ontology-based reasoning is

a key design for our global ontology space to enable personalized learning that can be

achieved in two different aspects: — system-centric adaptation — and learner-centric

adaptation. In system-centric adaptations, the system ensures searched learning resources

are suitable for the system-centric metadata generated from perceived device and
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environment atomic context elements. For the learner-centric adaptations, the system uses
learner’s tacit knowledge to build a learning path for better personalization. This is
achieved in terms of a sequence of service discovery and adaptations as described in

Figure 3.1.
3.1.1 Operational environment

This section describes the main software components for setting up our system
environment. Figure 3.2 describes the major technologies used to build our system as well

as the basic system processing steps.
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XML Java APL

8: Invoke Reasoning T OWL Oatolo
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Figure 3.2 Software Components

The system uses Apache — Tomcat 6.0.14 as the servlet container which can be
manually started and stopped. Java is the main programming language in our system.

System opted for an IDE (Eclipse SDK 3.3.1) as software development platform. For
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context modeling, system uses Protégé 3.4 Beta for ontology editing and knowledge
acquisition purposes. Jena API is a Java framework for building semantic web application.
It is used to read the global ontology space and to create prerequisite individuals. Dom4j
is used to process XML files such as reading data from learning resources and writing
retrieved data to buffer storage. For ontology reasoning, the system has utilized SWRL
Tab of Protégé to build the SWRL rules. Jess is a rule engine used as an interactive tool
for manipulating Protégé ontologies. SWRL ~ Jess Bridge is a subcomponent of the
SWRL Tab that provides a bridge between an OWL model with SWRL rules and rule
engine Jess 7.0. The sequence of processing between these main components as shown in

Figure 3.2 is described in more details in the next chapter.
3.1.2 User interface design

This section describes the user interaction of our system. The user interface uses a
menu-driven interface to control the main functions of the system and to help the user
navigate in the learning web. Figure 3.3 and Figure 3.4 show the major functions which

consist of:

Next: verify user’s password and turn into main page when user submit password

correctly.

e Search: Submit user typed query to web server.

¢ Go with Recommend: Submit user selected concept to web server.

e Default: Reset the user’s profile to initial state.
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e Back: Return to previous page.

The learner is exposed to an interface like the one shown in Figure 3.3.a when the user
opens the WAP 2.0 (Wireless Application Protocol) browser using his handheld device.
Figure 3.3.b shows the welcome page after authentication is passed. The user can then
type any keyword in the input query-part and submit it to the server by using the Search
button. Figure 3.4.a shows the related search results after the server has received the
user’s query. The system offers many optional concept-keyword and related learning
resources. For the optional concepts, the user can select Go with Recommendation button
to acquire more learning resources. The related learning resources represent all learning
resources about the user’s query. Any consumed learning resource or concept will not be
displayed to the user in this part. The Default button can help to reset the user’s profile to
initial state. This button deletes all history about consumed learning resources. Figure
3.4.b selects a specific learning resource when user clicks learning re‘source’s title with

URI link. The user can be returned to the previous page when selecting the Back button.
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E &

Welcome:Irene

Lezin Name:
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‘Home:
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Back
Home oo
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Figure3.3 User Interface (1)
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Figure3.4 User Interface (2)

3.2 Context Acquisition & Representation

According to Schilit, context is referred to as any information that can be used to
characterize the situation of any entity where an entity can be a person, place, and
physical or computational object {30]. While context entities are conceptual entities, the
information provided by them is called contextual information [28]. Contextual
information used in our system is defined at three hierarchical levels — atomic level, —

composite level, — and high level as shown in Figure 3.5.

The atomic level collects all atomic context raw-data from different hardware
sources, software sources, and the user interaction. The atomic context elements consists
of basic information describing the learner (i.e. preferred language, previously conducted
learning interactions), the used device (i.e. operating system, current available memory),
the surrounding environment (i.e. network bandwidth, location) and the task at hand (i.e.
current learner’s query, learning goal). Some of these atomic context elements are sensed

by software and hardware sensors and others are retrieved from user’s input, user’s profile,
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and used device. At this level, contextual information has its own static or dynamic
attribute. Some of the contextual information is static, such as screen resolution of a
specific handheld device, learner’s birth date, gender, and preferred language(s). The
other contextual information is dynamic such as network bandwidth, user’s location, and
current available memory. In addition, data type of raw-data is divided to quantized and
non-quantized contexts whose values are numeric, Boolean, and literals, and most of

which are time-stamped.

High Level Context . .
Management Context Aggregation and Adaptation
2
Composite Context P ! 1 T
Acquisition Context Inference | Context Computation | ! Context Learning
’ A
Atomic Context Atomic Context Atomic Context Atomic Context Atomic Context
Acquisition Sensor Sensor Sensor Sensor
’,,/—I'*\\\ //—“I'\\ - A_«’—‘Lm - o ’]—_\\‘\
Context Sources ("/ Raw-Context %, /~ Raw-Context \\ 7" Raw-Context ¢ Raw-Context >
)
AN / y N\
\\_\ADa‘a 7w D s . Daa - .. Daa -

Sy

Figure 3.5 Context Acquisitions and Management

At the composite level, the system uses inference, computation, and learning
techniques for translating all atomic contexts raw-data into symbolic values. The
computed composite context is calculated from the atomic context elements. The inferred
composite context is derived by inference using the Rule-Based Inference Engine written
in SWRL. Ideally, all dynamic contextual-changes need to be fed to the system as they

occur. However, the process of continuously sensing and updating the dynamic atomic
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context elements is time and resource consuming, especially in a mobile computing
environment where system resources are very expensive. To solve this problem, the
system adopts a learning technique where it senses precise values at some specific points
in time and it predicts the approximate symbolic value between the sensing points.
Example of computed composite context is user’s age that can be computed from user’s
date of birth. Another example is interaction time that can be computed from interaction
begin-time and end-time. Example of inferred composite context is inference of media
type that can be played by a handheld device based on current network bandwidth.
Example of learned context is translating current wireless network bandwidth to some

symbolic meaningful value using fuzzy logic.

At the High level is context aggregation and adaptation where system divides context

into four context groups: C, is learner context; Cpis device context; C,is environment

context; and C, is activity context. Learner context contains learner profile such as learner
ID, authentication information, and preferred languages. Device context is the main
source for determining the software and hardware capabilities of used devices. The
software information consists of operating system, support languages, support media type
for a particular mobile device. The hardware information consists of screen resolution,
memory size, and display type and so on. Environment context is the main source for
provisioning learner’s surrounding context information that includes current bandwidth,
current location, and used wireless network and so on. Activity context deals with
accessed services, consumed learning resources, adopted learning sequence, and domain-
knowledge management. The formal definition of these four context groups is defined as

follows:
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Context Aggregation = {Learner, Device, Environment, Activity}

T 1: Learner; Concepts ={Learner ID, Authentication Info, Preferred languages , Covered
Concept, Consumed learning resource}

T1.1 Authentication Info; Concepts = {Username, Password}
T2: Device; Concepts = {Device ID, Software, Hardware}

T2.1: Software; Concepts = {Operating system, Support languages, Support media type, Run
application}

T2.1.1 Operating system; Concepts = {Palm, Windows Mobile, RIM, GPE, OPIE, Symbian,
Linux, Windows...}

T2.1.2 Support languages; Concepts = {English, France, German, ...}
T2.1.3: Support media type; Concepts = {Text, Image, Video}
T2.1.4 : Run application ; Concepts = {Word, PowerPoint, JPEG ...}

T2.2: Hardware; Concepts ={Display type; Keyboard type, Max bandwidth, Available memory,
Screen resolution}

T2.2.1: Display type; Concepts = {Normal, Touch}
T2.2.1: Keyboard type; Concepts ={Virtual, Physical, Real}
T2.2.3: Screen Resolution; Concepts = {High. Width}

T3: Environment; Concepts = {Current bandwidth, Current Location, Sensed time, Wireless
network}

T3.1: Location; Concepts = {Longitude, Latitude}

T3.2: Sensed Time; Concepts = {Current{yyyy : mm : dd ; hh :mm)}
T4: Activity; Concepts = {Activity ID, Query, Learning path}

T4.1 Query; Concepts = {Keyword}

T4.1: Learning path ; Concepts = {Is-a, Prerequisite, Necessary part of, Part of}
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Table 3.1 shows some of the context data used in the system. These are identified

according to the four context groups.

Source ID (Type) Feature ID (Type) Value Symbolig(Probability)

1 (Device) 1 (Screen Resolution) Identifier  {High, Width} & N/A

1 (Device) 2 (08S) Identifier {Linux, Symbvian ...} &N/A

1 (Device) 3} (Media) Identifier =~ {Text, Image, Video} & N/A
2 (Environment) 1.1 (Network: Bandwidth) Kbps {Low, Mediﬁm, High} & N/A
2 (Environment) 1.2 (Network: Latency) Boolean {True, False}

2 (Envifonment) 1.3 (Network: Security) Boolean {True, False}

2 (Envi‘ronment) 2 (Location) v X, Y) {Stationary, On the Move}
2(Eﬂvhonnmn0 3(Thné) | | Identifier {Cunenmyyyynﬂnuda;ﬁh#nnﬂ}
2. (Environment)_ 4 (Situation)- " -qulean {True, Eal‘sev_}. ‘

3 Y(>Learner) 1 (Autheniticjzation info) Boolean {Tru;:, Fals;;}

3 (Learner) 2 (Languages) _ Identifier {E‘p'}g‘lis,h; Ffen'gh LY &N/A
3 (Lcafner) 3 (Preference) Idéntiﬁer {Name, ID, Address...} |
4 (Activity) I (Query) ~ Identifier  {keyword, domain} & N/A

Table3.1 Cbntext Definition

3.3 Ontology-based Context Modeling

The focus of current research work in the area of context-awareness is ontology-based
context acquisition and management [41-44]. For instance, Yang [30] adopted two types
of context ontologies: learner ontology and service ontology for collecting contextual
information. These two ontologies are employed by the system to build a context-aware
ubiquitous learning environment that can fully support the needs of peer-to-peer
collaborative learning communities. CAMUS context model [28] used ontologies to
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formally describe contextual information related to agent, environment, device, location,
and times. Their context model was used for the home domain and shows how it entails
implicit reasoning. The system uses ontology to model and manage high level contexts at
the semantic level to personalize the learning. In particular, it defines contextual
information using a global ontology space that includes four interrelated sub-ontologies —
learner ontology — activity ontology — device ontology — and environment ontology. In
addition, domain ontology is used to define the subject domain area to be taught. The
global ontology space describing knowledge about all context components is incremented
with the domain ontology knowledge, and used as a unified knowledge base for system
reasoning. As shown in Figure 3.6, the five ontologies are blended along the many

properties that link various classes used by these ontologies. For example:

e The properties HasCovered and ConsumedLearningResource relate the Learner
class to Concept and LearningResource class respectively. These relations are
useful to track already covered concepts and consumed learning resources by a

learner.

e The property ConductedLearningActivity relates the Learner class to Learning
Activity class. It is used to help the system infer and retrieve all previously

conducted learning interactions for a particular learner.
e Activity ontology and device ontology are linked through property UsedDevice.

e The environment ontology and learner ontology are linked by
HasSurroundingEnvironment and Locatedln properties which relate the Learner

class to Environment and Location classes respectively.
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The following sections describe in details each of these ontologies as well as the

relationships between them.

Learner Ontology

Activity Ontology

e .
/ / Learning Activity \
. |

N S Query /

Domain Ontology - s

.
\\\54,,/

Learning Resource

e

Device

| FRPRN SN o TR
Cpviroament Unt

Device Ontology

Figure 3.6 Global Ontology Space

3.3.1 Domain ontology

Domain ontology is used to represent and organize existing knowledge for a specific
subject domain. It is expressed in terms of a hierarchy of subject topics, each of which is
described by a set of concepts and their relationships. Figure 3.7 presents a hypothetical

ontology for C++ Programming designed for our system. The figure includes a number of
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concepts and many instances of the following four ontology based relationships:

prerequisite, part-of, necessary part-of and is-a [35].

C++ Progamming n
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Figure3.7 Domain Ontology for C++ Programming

Figure 3.8 illustrate the formal structure and relationships used to define a domain
ontology. The core class in the domain ontology is class Concept that can be used to
represents all concepts shown in Figure 3.7. The relations prerequisite, necessary part-of,
part-of and is-a describe prerequisite knowledge, core knowledge, related knowledge and
similar knowledge between the various concepts respectively. The property IsMappedTo
relates the Concept class to Learning Resource class. The properties HasType,
ExpressedIn ,and RunsOn relate an individual of class Learning Resource to its attributes
Media Type, Language(s), and OS respectively. These properties along with HasKeyword
property, which associates keywords input by the learner to most related ontology

concepts, are very useful for retrieving learning resources by mapping their metadata to
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ontology concepts, thus allowing resources sharing. The property HasCovered relates the
covered domain ontology concepts to individuals of class Leaner. The Concept class and
Learner class are linked through property HasLearningGoal that represents the learning
goal for a particular learner. It should be noted that the literal D means domain, and literal

R means range of the relationship in the following ontology figures.
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Figure3.8 Domain Ontology

3.3.2 Learner ontology

Learner ontology is an important part of our context model for representing contextual
knowledge about the learner. This knowledge is organized into ontology concepts and

relationships and used to map different contextual learner attributes onto service
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invocations, thus, enabling the system to discover, adapt, and deliver the most relevant
learning resources in response to queries made by the learner. Figure 3.9 shows the

structure and relationships used in this study to define a learner ontology.
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Figure 3.9 Learner Ontology

The property PreferredLanguage denotes learner preferred language(s) such as English,
French, etc. The data properties HasUserName and HasPassword relate individuals of
Learner class to their identification and authentication information. The properties
HasSurroundingEnvironment and LocatedIn relate individuals of Learner class to
Environment and Location classes, part of environment ontology respectively. These
relationships are useful for retrieving learner’s current environment (i.e. bandwidth),

learner’s location, and to infer new metadata for future system-centric adaptation. Other
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two important properties are HasCovered and ConsumedLearningResource which relate
individuals of Learner class to the covered concepts and consumed learning resources in
the domain ontology. These relations are useful to track already covered concepts and
consumed learning resources by the learner and plan learning path for future learner-
centric adaptation. The property ConductedLearningActivity relates the Learner class to
LearningActivity class in the activity ontology. This relationship can help the system to

infer and to retrieve all previously conducted learning interactions for a particular learner.

3.3.3 Device ontology

Device ontology is used to represent knowledge about the learner’s used device(s). This
knowledge is used for tracking the main characteristics of the used device in order to
retrieve adaptive learning resourses for that particuar device. The device ontology
includes knowledge related to both software-centric context and hardware-centric context.
The software-centric context is classified into support languages, support media type,
operation system, and software applications. The hardware-centric context is classified
into device type, display type, keyboard type, max bandwidth, available memory, network
adaptor, and screen resolution. Figure 3.10 shows the structure and relationships used by
device ontology. The property UsedDevice relates Device class to LearingActivity class in
activity ontology. This relationship is used to track the device used by a learner during a
specific learning activity. It should be noted that symbol *1 means the range of the

relationship is restricted to one. For instance, a device can only have one display type.
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Figure3.10 Device Ontology

3.3.4 Environment ontology

Environment ontology is used to describe the knowledge about learner’s surrounding
environment. This knowledge consists of temporal and spatial contextual features, as well
as network and security features. Figure 3.11 shows the structure and relationships for the

environment ontology. The properties HasWirelessNetworkType, IsSecured,

HasBandwidth denote that the learner is connected through that particualr wireless
network type, with a specific security status, and a specific current bandwidth respectively.
These contextual elements are very crucial for inferring and adjusting learning content
that is compatible in terms of size, media-type, and privacy, with the technological set-up
that

characterizes the surrounding environment. The

property

HasSurroundingEnvironment associates learner’s surrounding environment to individuals
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of Learner class. The property LocatedlIn relates learner’s location to individuals of

Learner class.
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Figure3.11 Environment Ontology

3.3.5 Activity ontology

Activity ontology is used to describe knowledge about a learning activity. This
knowledge records the learner’s interaction with a specific handheld device in a period of
time. Figure 3.12 shows the main concepts and their relationships for activity ontology.
The Learning Activity class is the core class in the activity ontology. The properties
Begin-time and End-time describe the time period of the learner’s interaction. These
relationships can be used to retrieve, for instance, the learner’s previous interactions in
case of network interruption. The property HasActivityID provides identification

information to an individual of LearningActivity class. It should be noted that a learner
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can only have one activity ID at any one time. This activity ID should be terminated when
the learner logs out. The property MakeQuery allows inferring all queries made during a
learning interaction with the system. The property HasKeyword relates Query class to
Concept class of domain ontology. Query keywords are directly mapped to domain
ontology concepts. Learners should use ontology vocabulary while composing their
queries. The Learning Activity class is related to Device class along the property Used

Device.
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Figure 3.12 Activity Ontology
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Here is a fragment of OWL description for the global ontology space as generated by

Protégé. This is used to define the classes, properties, and a specific learner.

<owl:Class rdf:about="#Learner">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="HasSurroundingEnvironment"/>
</owl.onProperty>
<owl:allvaluesFrom><owl:Class rdf:about="#Environment"/></owl:aliValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith> <owl:Class rdf:about="#Environment"/></owl:disjointWith>
<HasConsumed><owl:Class rdf:ID="LearningResource"/></HasConsumed>
<rdfs:subClassOf><owl:Restriction>
<owl:hasValue rdf.datatype="http://www.w3.0rg/2001/XMLSchematstring">Username
</owl:hasValue>
<owl:onProperty>
<owl:DatatypeProperty rdf:about="#AuthenticateBy"/>
</owl:onProperty>
</owl:Restriction></rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="LearnerlD"><rdfs:subClassOf rdf:resource="#Learner"/></owl:Class>

<owl:ObjectProperty rdf:about="#lsConsumedBy">
<rdfs:range rdf:resource="#Learner"/>
<owl:inverseOf><owl:ObjectProperty rdf:about="#HasConsumed"/></owl:inverseOf>
<rdfs:domain rdf:resource="#LearningResource"/>

</owl:ObjectProperty>

<Learner!D rdf:ID="Irene">
<HasConsumed>
<LearningResource rdf:iD="Computerl”>
<Mappes rdf:resource="#Computer"/>
<IsConsumedBy rdf:resource="#lrene"/>
</LearningResource>
</HasConsumed>
<HasCovered rdf:rresource="#Computer"/>
</Learner|D>
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This chapter describes the ontology reasoning and learning strategies used to
personalize mobile learning services. Ontology-based reasoning consists of system-centric
adaptations and learner-centric adaptations. The system-centric adaptations ensure
searched learning resources are exercisable on the used handheld device, while the goal of
learner-centric adaptations is to build a learning path that suits the learner’s background
and current activity. This chapter first presents the processing steps in a typical mobile

learning scenario. It then describes the various adaptations employed in this study.

4.1 Processing Steps in a Typical Learning Scenario

This section overviews the main processing steps in a typical learning scenario. The
high level context is fed to the ontology reasoning engine in order to personalize learning
services based on the learner context, device context, environment context, and activity
context. This adaptation process is achieved in two successive stages — system-centric
adaptation — and learner-centric adaptation. System-centric adaptation is based on device
ontology and environment ontology. It consists in applying a set of rules to infer the
system-centric metadata (i.e. media type, search language) for use in service discovery
process. Learner-centric adaptation is however based on learner ontology, activity
ontology, and domain ontology. It consists of applying a set of ontological rules to infer
metadata that can be used to customize the learning path. The sequence of steps given
below illustrates the personalization process in a typical learning scenario where a learner
wants to acquire knowledge in a specific learning domain. This learning scenario is also

depicted graphically in Figure 4.1.
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Figure 4.1 Processing Steps in a Typical Learning Scenario

When the learner logs in, his background, preferences, and previous learning
activity are retrieved.

The learner uses the domain ontology concepts to query the system.

The subject-domain ontology related to the learner’s query is retrieved.

Based on the learner’s query, the system infers the related ontology concepts and
identifies those concepts that are part of similar knowledge, prerequisite
knowledge, core-knowledge, and related knowledge using Is-a, HasPrerequisite,
HasNecessaryPartOf, and HasPartOf properties respectively.

Next, the system uses the perceived device and environment atomic context
elements to infer metadata that adapts the search for those learning resources that

are suitable for the system-centric context.
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6.

10.

The metadata generated in (4) that is associated with the related domain ontology
concepts, and the system-centric metadata generated in (5), are then used to
discover and filter out learning resources stored in various learning repository
based on system-centric context.

The system will then determine the learner’s expertise in the subject-domain (i.e.
tacit knowledge) by inferring previous learning activities, covered concepts,
adopted learning paths, and consumed learning resources. This knowledge is used
to build a personalized learning sequence by removing already covered learning
concepts, learning resources, and learning paths. Thus, the newly constructed
learning sequence consists of optimized system-centric learning resources related
to knowledge that has not been covered by the learner so far.

The personalized learning sequence is then provided to the learner for navigation.
Based on the newly selected concept, learner’s expertise is automatically updated
and the personalized learning path is re-adjusted by resuming processing from step
.

The learning activity terminates when either the learner logs out, or when all

domain concepts are covered.

4.2 System-Centric Adaptation

The system-centric adaptations aim at filtering out those learning resources that are

runnable on the used handheld device. This is achieved through inference of system-
centric metadata based on perceived device and environment atomic context elements.
The system-centric adaptation achieves its functionality in three steps: (1) media type and

file size adaptation, (2) search language adaptation and, (3) other resource-centric
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adaptation. The diagram shown in Figure 4.2 describes the logical steps to select the
media type of retrieved learning resources to make sure they are browsable on the used
device. When the learner logs in, the system will first sense the used network adaptor and
retrieves its connection speed. Connection speed is an attribute that is straightforward to
obtain and it is typically the maximum theoretical speed for the used wireless adapter [45].
Knowing the type of the network connection, such as IEEE 802.11 wireless LAN or
General Packet Radio Service (GPRS - wireless WAN), gives our reasoning engine the
insight that allows it to make some adaptation choices related to media-type and size of
resources to be retrieved. This is achieved by taking into account the available bandwidth
and device features. For example, if the network connection is IEEE 802.11, the system
will not keep sensing the network connection and will not make any restrictions on the
type and size of media because the available bandwidth is large enough to handle all type
of resources. However, if the sensed connection is GPRS, the system adapts the media-
type and resource size based on the available bandwidth as explained below. For example
for a GPRS connection, the maximum connection speed could be 48.0 kbps, however, the
actual network bandwidth is usually less than that due to traffic on the network [45].
Ideally, the system should continuously sense the current network bandwidth and update
the associated atomic context element whenever bandwidth change occurs. However, the
process of continuously sensing and updating such dynamic bandwidth is time and
resource consuming as it involves sending data packets through the network. To solve this
problem, the system only sense the actual bandwidth at some points in time, and it uses a
fuzzy logic approach in conjunction with SWRL rules to predict the available bandwidth

between these points. Also, to reason with bandwidth, fuzzy logic translate the predicted

-41 -



current bandwidth into meaningful symbolic values such as low, medium, and high
bandwidth as described below. Fuzzy logic is also used to predict the maximum data file
size that can be communicated to the used device to avoid experiencing long delays. For
instance, the system only search for learning resources with text type if a mobile device,
operating on a GPRS network for instance, has a low bandwidth. However, it can accept
learning resources of image or video type if the network bandwidth is high. The system-
centric adaptations also check whether the operating system that is required to run the

learning resource is similar to device’s operating system for compatibility purpose.

User Sense Type of Network
Web Borrower << Connection & Maximum
HIML <<Login>> Connection Speed

I @

N
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y —1 Actuai Network
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¥
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Resources to Devicel

Features Environment Repository

Figure 4.2 System-Centric Adaptations

Fuzzy logic’s symbolic values are used to describe the current network bandwidth and
available device memory as described above. The system make uses of the fuzzy logic

truth values in conjunction with SWRL rules to allocate symbolic value to the current
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network bandwidth. Figure 4.3 shows the way the system predicts the current network

bandwidth using the fuzzy qualifying linguistic variables such as Low, Medium, and High.

The symbol 4, (x) represents a truth value that is between 0 and 1. This can be computed

by Equation 4.1.

)
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Figure 4.3 Membership Function for Bandwidth

u,b)=1

:ﬂA(b)=_

b — Mediumband
Mediumband — Lowband
b — Lowband

b)= .
Mediumband — Lowband (Equation 4.1)
M, (b ) ==

b — Highband
Highband — Mediumband
b — Mediumband
Highband —~ Mediumband

Table 4.1describes the SWRL rules that are used to infer the truth values of classified

symbolic network bandwidth given in Equation 4.1. The property UsedDevice(?a,? y)

relates an individual learner identified by his/her activity identifier a to his/her mobile

device y. TruthValueRule-1 and TruthValueRule-2 are respectively related to L; and L

(Equation 4.1), and are used to infer the truth values associated to low network bandwidth.

TruthValueRule-3 and TruthValueRule-4 are respectively related to L; and Ly (Equation
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4.1), and are used to infer the truth values for medium network bandwidth. Finally,
TruthValueRule-5 and TruthValueRule-6 are respectively related to Ls and Ls (Equation
4.1), and are used to infer the truth values for high network bandwidth. The data
properties HasBandwidth and MaxBandwidth represent respectively the current network

bandwidth and maximum connection speed of used mobile devices.

TruthValueRule-1

ActivityID(?a) /A UsedDevice(?a, ?y)/\ HasBandwidth(?y, ?b)A

HasNetworkAdaptor (?y, GPRS)

/A MaxBandwidth (?y, ?Maxband) /\

swrlb:multiply (?Lowband, ?Maxband,

0.25) A

swrlb:lessThanOrEqual (?b,

?Lowband)

— ProbLow(?y, 1.0) ANetworkBandwidth(?y, "Low")

TruthValueRule-2

ActivityID(?a)/\ UsedDevice(?a, ?y)/\ HasBandwidth(?y, 2?b)A
HasNetworkAdaptor (?y, GPRS) /A MaxBandwidth (?y, ?Maxband) A
:multiply (?Lowband, ?Maxband, 0.25) A

multiply (?Mediumband, ?Maxband, 0.5) A

?Lowband) A

lessThanOrEqual (?b, ?Mediumband) A

?Mediumband, ?b) A

?Mediumband, ?Lowband) A
?zl, ?7z2)

?z) /A NetworkBandwidth (?vy,

swrlb
swrlb:
swrlb:greaterThan (?b,
swrlb:

swrlb:subtract (?z1,

SWRL
swrlb:

swrlb:

subtract (?z2,

Rules divide(?z,

— ProbLow (?y, "Low")

TruthValueRule-3
ActivityID(?a) A UsedDevice(?a, ?y)/AHasBandwidth(?y, ?b)A

HasNetworkadaptor (?y, GPRS) A MaxBandwidth (?y, ?Maxband) A
swrlb:multiply (?Lowband, ?Maxband, 0.25) A

swrlb:multiply (?Mediumband, ?Maxband, 0.5) A
swrlb:greaterThan (?b, ?Lowband) A
swrlb:lessThanOrEqual (?b, ?Mediumband) A
swrlb:subtract(?zl, ?b, ?Lowband) N
swrlb:subtract (?z2, ?Mediumband, ?Lowband) A
swrlb:divide(?z, ?zl1, ?2z2)

— ProbMedium(?y, ?z)/\ NetworkBandwidth(?y, "Medium")

TruthValueRule-4
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ActivityID(?a) A UsedDevice(?a, ?y)/\ HasBandwidth(?y, ?b) A
HasNetworkAdaptor (?y, GPRS) A MaxBandwidth(?y, ?Maxband) A
swrlb:multiply (?Highband, ?Maxband, 0.75) /\

swrlb:multiply (?Mediumband, ?Maxband, 0.5)A
swrlb:greaterThan (?b, ?Mediumband) A
swrlb:lessThanOrEqual (?b, ?Highband) A

swrlb:subtract (?z1, ?Highband, ?b)A

swrlb:subtract (?z2, ?Highband, ?Mediumband) A
swrlb:divide(?z, 221, ?z2)

— ProbMedium(?y, ?z)/\ NetworkBandwidth(?y, "Medium")

TruthValueRule-5

ActivityID(?a) AUsedDevice(?a, ?y)/\ HasBandwidth(?y, ?b) A
HasNetworkAdaptor (?y, GPRS)/\ MaxBandwidth (?y, ?Maxband) A
swrlb:multiply (?Highband, ?Maxband, 0.75) A

swrlb:multiply (?Mediumband, ?Maxband, 0.5) /A
swrlb:greaterThan (?b, ?Mediumband) A
swrlb:lessThanOrEqual (?b, ?Highband) A

swrlb:subtract(?zl, ?b, ?Mediumband) N

swrlb:subtract(?z2, ?Highband, ?Mediumband) A
swrlb:divide(?z,?2z1,?22)

— ProbHigh(?y, ?z) /\ NetworkBandwidth(?y, "High")

TruthValueRule-6

ActivityID(?a) /A UsedDevice(?a, ?y)/\ HasBandwidth(?y, ?b) A
HasNetworkAdaptor (?y, GPRS)/\ MaxBandwidth (?y, ?Maxband) A
swrlb:multiply (?Highband, ?Maxband, 0.75) /A
swrlb:greaterThanOrEqual (?b, ?Highband)

— ProbHigh(?y, 1.0)ANetworkBandwidth(?y, "High")

Table 4.1 SWRL Rules for Truth Value

The following example illustrates the way the system applies the SWRL rules shown in
Table 4.1 in a real-life scenario. For instance, let’s assume that Irene is using mobile
device MotoW270 with a maximum connection speed of 32.0 kbps. Let’s also assume
that the value (x"), the previously sensed actual network bandwidth, is found to be around
18.0 kbps, that is fluctuating between medium to high bandwidth with relation to the

maximum connection speed (see Figure 4.3). When TruthValueRule-2 and

-45 -



TruthValueRule-3 rules are applied, facts A2 and B2 are inferred, resulting into the

addition of four statements to the list of facts as shown in Table 4.2. These new facts

reveal the probabilities for the predicted current bandwidth which were found to be 0.75

for medium bandwidth and 0.25 for high bandwidth as shown in Table 4.2.

Facts

Ontology related Facts

Inferred Facts

Al) TruthvValueRule-4

ActivityID(Irene)

UsedDevice (Irene, MotoW270)
HasBandwidth (Motow270, 18.0)
HasNetworkAdaptor (MotoW270, GPRS)
MaxBand (MotoW270, 32.0)
swrlb:multiply (?Highband,32.0,0.75)
swrlb:multiply (?Mediumband, 32.0, 0.5)
swrlb:greaterThan(18.0, 16.0)
swrlb:lessThanOrEqual (18.0, 24.0)
swrlb:subtract (?z1, 24.0, 18.0)
swrlb:subtract (?z2, 24.0, 16.0)
swrlb:divide(?z, 6.0, 8.0)

A2)

ProbMedium (MotoW270,
0.75)
NetworkBandwidth
(MotoW270, "Medium")

B1l) TruthValueRule-5

ActivityID(Irene)

UsedDevice (Irene, MotoW270)
HasBandwidth (MotoW270, 18.0)
HasNetworkAdaptor (MotoW270, GPRS)
MaxBand (MotoW270, 32.0)
swrlb:multiply (?Highband,32.0,0.75)
swrlb:multiply (?Mediumband, 32.0, 0.5)
swrlb:greaterThan(18.0, 16.0)
swrlb:lessThanOrEqual(18.0, 24.0)
swrlb:subtract (?z1, 18.0, 16.0)
swrlb:subtract (?2z2, 24.0, 16.0)
swrlb:divide(?z,2.0,8.0)

B2)

ProbHigh (MotoW270,
0.25)

NetworkBandwidth
(MotoWw270, "High")

Table 4.2 Instance for Truth Value

The inferred probabilities of current bandwidth are then used to infer the maximum

allowable data file size. It should be noted that the resource size is checked for efficiency

purpose, as it is not practical to consider a large resource (i.e. Mbytes) if the used device
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operates on a low bandwidth (i.e. few kbps). So, based on the response time obtained in
experiments done on real mobile devices, the system identified some threshold values for
resource sizes that can typically be used for specific bandwidth ranges. Based on these
thresholds, it has adopted the following assumptions. If a mobile device has a connection
speed less than 32.0 kbps, it should not consider resources that exceed 500.0Kbytes. In
other words, system does not tolerate response times longer than 15 seconds. Similarly, if
the connection speed was between 32.0 kbps to 66.0 kbps, then resources over 1Mbytes
should not be considered. It should be noted that the maximum tolerable response time
can be easily modified to accommodate learners with more or less restrictive time
constraints. The system uses the predicted symbolic values associated with the current
available bandwidth to predict the maximum allowable size of resources. Figure 4.4
shows the membership function for file size. The three fuzzy sets Low, Medium, and High
describing predicted network bandwidth are used as an input space in the fuzzy system to
predict the maximum allowable file size. It also defines three fuzzy sets Small, Medium,
and Large as the output space (file size) as shown in Figure 4.4. Note that system uses
SmallSize, MediumSize, and LargeSize to refer to center average values for small fuzzy set,

medium fuzzy set, and large fuzzy set respectively as shown in Figure 4.4.
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Figure 4.4 Membership Function for File Size
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The rule base for our fuzzy logic system is given below.

R' : IF network bandwidth (B)is Low THEN file size (Z)is Small.

R*: IF network bandwidth (B)is Medium, THEN file size (Z)is Medium.

R’ : IF network bandwidth (B)is High, THEN file size (Z)is Large.

Then, the crisp output (file size) from the fuzzy system with singleton fuzzifier, product

inference engine, center average defuzzifier, and the rule base R, is given by Equation 4.2.

YA
Z*u (B . * o : . *
" 27"ty _ SmallSizé ft,,(B') + MediumSize fy (B ) + LargeSize* 1, (B)

i/[ (B*) #LOW(B*) +#Medium(B*) +1uLarge (B*)
Al

i=l

Equation 4.2

Table 4.3 defines the SWRL rule for Equation 4.2. In FileSizeRule-1, the data
properties ProbLow, ProbMedium, and ProbHigh are those obtained from Table 4.1. To
show how these rules are applied in our system, this section provides a real-life scenario.
Let’s assume that learner is using a GPRS connection with a maximum connection speed
of 32.0 kbps. This connection speed delimits the maximum file size to 500.0Kbytes as
described above. These assumptions are represented by fact A/ in Table 4.3. When rule
FileSizeRule-1 is applied, fact A2 is inferred, resulting into the addition of statement
FileSize(MotoW270, 281.25) to the list of facts. Therefore, since the previously sensed
network bandwidth was 18.0 kbps, our system chooses not to exchange data files over

281Kbytes as deduced from the set of inferences shown in Table 4.3.
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FileSizeRule-1

Aswrlb:multiply (?Lowsize, 0.25, ?Maxsize) A
SWRL swrlb:multiply (?Mediumsize, 0.5, ?Maxsize) A\
Rules swrlb:multiply (?Largesize, 0.75, ?Maxsize) A
swrlb:multiply(?1, ?Lowsize, ?T1)A
swrlb:multiply (?m, ?Mediumsize, ?Tm) /\

(

swrlb:divide(?z, ?z1, ?22) — FileSize(?y, ?2)

ActivityID(?a) AUsedDevice{?a, ?y) AProbLow(?y, ?T1) A
ProbMedium(?y, ?Tm) AProbHigh(?y, ?Th)/AMaxSize(?y, ?Maxsize)

swrlb:multiply (?h, ?Largesize,?Th) Aswrlb:add(?z1,?1,?m, ?h)A
swrlb:add(?z2, ?Tl, ?Tm, ?Th)Aswrlb:equal(?z2,

1A

Ontology related Facts

Inferred Facts

Al)

ActivityID(Irene)UsedDevice (Irene, MotoW270)
ProbLow (MotoW270, 0.0)

ProbMedium (MotoW270, 0.75)

ProbHigh (MotoW270, 0.25)

MaxSize (MotoW270, 500)

Facts | cyrlb:multiply(?Lowsize, 0.25, 500.0)
swrlb:multiply (?Mediumsize, 0.5, 500.0)
swrlb:multiply (?Largesize, 0.75, 500.0)
swrlb:multiply (?1, 125.0, 0.0)
swrlb:multiply (?m, 250.0, 0.75)
swrlb:multiply (?h, 375.0, 0.25)
swrlb:add(?z1, 0.0, 187.5, 93.75)
swrlb:add (?z2, 0.0, 0.75, 0.25)
swrlb:divide(?z, 281.25, 1)

A2)

FileSize
(MotoW270,281.2
5)

Table 4.3 SWRL Rule for File Size

Table 4.4 contains the SWRL rules used to select the media type of retrieved learning

resources based on current bandwidth. The data properties NetworkBandwidth and

AvailableMemory respectively represent the current bandwidth and available device

memory. In MediaRule-1, the system sets the media type to text format when the current

bandwidth is low. In MediaRule? the system sets the media type to text and image

formats when the current bandwidth is medium, while in MediaRule-3, the system sets the

media type to text, image, and video formats when the current bandwidth is high. The

system will also adjust the maximum allowable file size, computed in Table 4.3, based on

the device available memory. If the device memory size is smaller than the maximum

allowable file size computed in Table 4.3, then AllowedFileSizeRule-1 sets the maximum
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file size to the device memory size; otherwise the maximum file size remains unchanged

as stated in AllowedFileSizeRule-2.

MediaRule-1

ActivityID(?a) AUsedDevice (?a, ?y) ANetworkBandwidth (?y, "Low")
- HasMediaType (?y, Text)

MediaRule-2
ActivityID(?a) AUsedDevice (?a, ?y)/\NetworkBandwidth (?y,
"Medium") ~HasMediaType (?y, Text) /AHasMediaType (?y, Image)

MediaRule-3

ActivityID(?a) AUsedDevice (?a, ?y)/\NetworkBandwidth(?y, "High")
—~HasMediaType (?y, Text) /A HasMediaType (?y, Image) A

SWRL HasMediaType (?y, Video)

Rules
AllowedFileSizeRule-1

ActivityID(?a) AUsedDevice(?a, ?y)AFileSize(?y, ?Size) A
AvailableMemory (?y, ?MemorySize) A
swrlb:lessThan (?MemorySize, ?Size) —~AllowedSize (?y, ?MemorySize)

AllowedFileSizeRule-2
ActivityID(?a) AUsedDevice (?a,?y) AFileSize (?y,?Size) A
AvailableMemory(?y, ?MemorySize) A

swrlb:greaterThanOrEqual (?MemorySize, ?Size)—
AllowedSize (?y, ?Size)

Table 4.4 SWRL Rules for Media Type & Allowable File Size

To show how the above rules are applied this section uses the previous scenario of
learner Irene who is using device MotoW270 operating at a bandwidth of 18.0Kbps to
access the system services. Following the reasoning shown in Table 4.2, the system infers
a bandwidth fluctuating between medium to high as shown in facts Al and BI. When
applying MediatypeRule-2 and MediatypeRule-3, facts A2 and BZ are respectively
inferred and added to the list of facts. In CI, AllowedFileSizeRule-2 is applied to compare
the maximum allowable file size, inferred in Table 4.3, with the device available memory,
leading to the addition of statement AllowedSize (MotoW270, 281.25) to the list of facts as

shown in fact C2. As shown in Table 4.5, the system concludes that for this scenario, all

-50 -



types of media can be selected for delivery. It also concludes that these resources should
not exceed a size of 281.25Kbytes for them to be ported on the used device, and to avoid

long communication delays.

Ontology related Facts Inferred Facts

Al) A2)

ActivityID(Irene) HasMediaType (MotoW270, Text)

UsedDevice (Irene,MotoW270) HasMediaType (MotoW270, Image)

NetworkBandwidth

(Motow270, “Medium”)

B1) B2)

ActivityID(Irene) HasMediaType (MotoW270, Text)
Facts UsedDevice (Irene, MotoW270) HasMediaType (MotoW270, Image)

NetworkBandwidth HasMediaType (MotoW270,Video)

(MotowW270,”Large”)

Cc1) c2)
ActivityID (Irene) AllowedSize
UsedDevice{Irene, MotoW270) (MotoW270, 281.25)

FileSize (MotoW270, 281.25)
AvailableMemory (MotoW270, 1024.0)
swrlb:greaterThanOrEqual

(1024.0, 281.25)

Table 4.5 Instance for Media Type & File Size

Another system-centric adaptation considered in this study is to determine the language
to be used by the search agent. LanguageRule-1 in table 4.6 establishes a constraint
represented by the relationship SearchLannguage between an activity ID and a language.
The property PreferredLanguage(?a,?z) relates an ActivitylD a to a preferred language
z. The property HasSupportLanguage(? y,?z) relates learner’s handheld device y to it
support language z. For instance, let’s assume French is the preferred language for learner
Irene. Let’s also assume that English and French are languages supported by the used
device MotoW270. When applying LanguageRule-1, as shown by Al in Table 4.6, system
can infers A2 that is SearchLanguage (Irene, French), confirming that French can be used

by the agent as a search language because it is supported by the used device.
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LanguageRule-1

SWRL ActivityID(?a) AUsedDevice (?a, ?y) /A

Rules PreferredLanguage (?a, ?z)/\ HasSupportLanguage (?y, ?2z)
- Searchlanguages (?a, ?2z)

Ontology related Facts Inferred Facts
Al) A2)
ActivityID(Irene) SearchLanguages
Facts | gygedDevice (Irene, MotoW270) (Irene, French)

PreferredLanguage (Irene, French)
HasSupportLanguage (MotoW270, English)
HasSupportLanguage (MotoW270, French)

Table 4.6 SWRL Rule for Search Language

Finally, the last system-centric adaptation concerns the operating system required to
run the learning resources. Table 4.7 shows the rules used for this type of adaptation as
well as a scenario to illustrate such adaptation. In SystemCentricRule-1, it is shown that
only those resources that can run on the device’s operating system are considered. For
instance, let us assume that the learning resource C++ Loops is expressed in English and
it is of media type text. Its attributes are compatible with the learner’s used mobile device
MotoW270. These are represented by the facts A/ in Table 4.7. When rule
SystemCentricRule-1 is applied, fact A2 is inferred, resulting into the addition of

statement SystemCentric (Irene, C++Loops) to the list of facts.

SystemCentricRule-1
SWRL SearchLanguages (?y, ?z) /AExpressedIn (?LR, ?2) A\

Rules | ygedpevice (?y, ?D) A HasMediaType (?D, ?b) AHapType (?LR, ?b) A
Has0S(?D, ?¢) ARunsOn (?LR, ?¢c) ~ SystemCentric(?y, ?LR)
Ontology related Facts Inferred Facts
Al) Az2)
SearchLanguages (Irene,English) SystemCentric
Facts ExpressedIn(C++ Loops, English) (Irene,
UsedDevice(Irene, MotoW270) C++ Loops)

HasMediaType (MotoW270, Text)
HapType (C++ Loops, Text)
HasOS (MotoW270, Symbian)
RunsOn (C++ Loops, Symbian)

Table 4.7 SWRL Rule for System-Centric Adaptation
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4.3 Learner-Centric Adaptation

Usually a single learning resource will not be enough for the learner to meet his
learning goal, because learning contents themselves may have prerequisites that the user
has not mastered yet [31]. The learner-centric adaptation aims at building a personalized
learning path based on learner’s activity profile. The learner-centric adaptation achieves
its functionality in two steps: (i) the system retrieves the related ontology concepts and
learning resources by using an elimination process in the following order: similar
knowledge, prerequisite knowledge, core knowledge, and related knowledge; (ii) the
system removes learning concepts, learning resources, and learning paths that have

already been covered by the learner.

Table 4.8 shows some of the rules used to derive an optimum learning path that avoids
reiterated covered concepts and consumed learning resources. The property

IsMappedTo(?C,?LO) maps the concept related to the learner’s query to a corresponding
learning resource. SimilarLearningResourceRules-1 in Table 4.8 establishes a temporal
constraint represented by the temporal relationship SimilarLR between the activity ID (a)
and  learning resource  (LR). The properties —Covered(?L,7C;) and
—Consumed(?L,?7L0,) relate an individual learner to a concept or a learning resource
that has not been covered or consumed so far. It should be noted that the system
automatically establishes relations of  type —Covered(7L,7C,) and
—Consumed(?L,?L0,) for all those concepts and resources that have not been covered
or consumed by a particular learner. The learning sequence is generated by applying, in

order, the following relationships: Isa, HasPrerequisite, NecessaryPartOf, and Partof.
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SWRL
Rules

SimilarLearningResourceRule-1:
ConductedLearningActivity(?L, ?a)A MakeQuery(?a,?Q)A

HasKeyword (?Q, ?C) AlsMappedTo (?C, ?LR) —SimilarLR(?a, ?LR)

SimilarLearningResourceRule-2:
ConductedLearningActivity(?L, ?a) AMakeQuery (?a, ?Q) A

HasKeyword (?Q, ?C) AHas (?C, ?Ci) AmCovered (?L,?2Ci) A

IsMappedTo(?Ci,?LRi)AﬁConsumed(?L,?LRi)—*SimilarLR(?a,?LRi)

SimilarLearningResourceRule-3:
ConductedLearningActivity (?L, ?a) AMakeQuery (?a, ?Q) A

HasKeyword (?Q,?C)AIsa(?C,?Ci) A= Covered (?L,?Ci)A

IsMappedTo(?Ci, ?LR1i) A ~Consumed (?L, ?LRi) —8imilarLR (?a, ?LR1)

PrerequisiteLearningResourceRule-1:
ConductedLearningActivity (?L, ?a) AMakeQuery (?a, ?2Q) A

HasKeyword(?Q, ?C) AHasPrerequisite (?Q, ?Ci)A -~ Covered(?L,?Ci)A

IsMappedTo (?Ci, ?LR1i) A-Consumed (?L, ?LR1)
—PrerequisiteLR(?a, ?LR1)

CoreLearningResourceRule-1 :
ConductedLearningActivity (?L, ?a) AMakeQuery (?a, 2Q) A
HasKeyword (?Q, ?C) AHasNecessaryPart (?Q, ?Ci) A-Covered (?L, ?2Ci) A
IsMappedTo(?Ci, ?LRi)A - Consumed (?L, ?LRi) —CoreLR(?a, ?LRi)

CoreLearningResourceRule-2 :
ConductedLearningActivity(?L, ?a)AMakeQuery(?a,?Q)A

HasKeyword (?Q, ?C) AlsNecessaryPartOf (?Q, ?2Ci) A-Covered (?L, ?2Ci) A

IsMappedTo (?Ci, ?LRi) A-Consumed (?L, ?LRi)—CoreLR(?a,?LRi)

NonCoreRelatedLearningResourceRule-1:
ConductedLearningActivity (?L, ?a) AMakeQuery(?a, ?Q) A

HasKeyword (?Q, ?C) AHasPart (?Q, ?Ci) A-Covered (?L, ?Ci) A

IsMappedTo(?Ci, ?LRi) A-Consumed (?L, ?LR1)
—NonCoreRelatedLR (?a, ?LR1)

NonCoreRelatedLearningResourceRule-2:
ConductedLearningActivity (?L, ?a) A MakeQuery (?a, ?Q) A

HasKeyword (?Q, ?C) AIsPartOf (?Q, ?Ci)A -Covered(?L,?Ci)A

IsMappedTo (?Ci, ?LRi)A -Consumed (?L, ?LR1)
—NonCoreRelatedLR(?a, ?LR1)

Table 4.8 SWRL Rules for Learning Construction

The relation Isa(?C,?C,) states that concept C is similar to concept C;.

The

relationship Has Prerequisite(?C,?C,) involving concept C and concept C;, denotes that
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concept C; is a prerequisite knowledge of C and needs to be covered prior to it. The core

relationship HasNecessaryPart(7C,7C,) represents the necessary part-whole relation

where concept C cannot be completely understood without covering concept C;. In

addition, the relationship HasPart(?7C,7C;) represents the part-whole relation where

concept C; is part of concept C, in the sense that it represents a related knowledge

component of C.
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Figure4.5 Domain Ontology for C++ Programming

This section illustrates the logic used for learner adaptation by a learning scenario

where learner Irene wants to learn about “logic expressions” of the C++ programming

language. For this propose, system uses the C-++ programming ontology used in the

previous chapter and which is reproduced in Figure 4.5 for convenience. For instance,

let’s assume that learner Irene queries the system with "Logical Expression”. This query
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has similar keywords with concept C,3 which describes LogicalExpression in the domain
ontology. The reasoning engine is invoked and the system maps learning resources LR2s,
and LRys, to concept Cps. This is represented by facts Al in table 4.9. When rule
SimilarLearningResourceRule-1 is applied, facts A2 is inferred and added to the
knowledge base. For this example, it should be noted that concept Cag does not have any
prerequisite knowledge or similar knowledge in the domain ontology. However, concepts
Ca9, C3, C31, and Cs; are necessary parts of concept Cas. Let’s also assume that concepts
Cy9 and Cj3 have been covered by Irene in previous studies and therefore will not be
provided to her at this time. Furthermore, let’s assume that Learning resources (LRj3j,,
LR;3;5) and LR3, correspond to concepts C3; and Cjz; respectively, and that learning
resources LR3;, and LR3;, have not been consumed by Irene so far. This info is
represented by facts BI in Table 4.9. When rule CoreLearningResourceRule-1 is applied,
fact B2 is inferred and added to the knowledge base. Fact C/ states that concept Cyg is
part of Cs and has not been covered by Irene. Since LRs, and LRs,., which are the learning
resources corresponding to concept Cs have not been consumed by Irene so far; facts in
C2 can be inferred and added to the knowledge base. The above reasoning illustrated by
the application of the SWRL rules shown in Table 4.8 produces the learning sequence
shown in Figure 4.6.

The learning path shown in Figure 4.6.a is built without considering Irene’s previous
activity, while the learning path in Figure 4.6.b consists of the optimized learning path

using both system-centric adaptations and learner centric adaptations.
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Facts

Ontology related Facts

Inferred Facts

Al) A2)
ConductedLearningActivity(Irene, Al) SimilarLR
MakeQuery (Al, Logical Express) (A1, LRaga)
HasKeyword (Logical Express, Cag) SimilarLR
IsMappedTo (Cag, LRyga) IsMappedTo (Cag, LRagb) (Al, LRagp)
B1) B2)

ConductedLearningActivity (Irene,Al)
MakeQuery (A1, Logical Express)

HasKeyword (Logical Express, Cazg)
HasNecessaryPart (Cog, Cag)
HasNecessaryPart (Cag, C3o)
HasNecessaryPart (Cyg, C31)
HasNecessaryPart (Cog, Caz)
-Covered(Irene, C31)
~Covered{(Irene, C33)
IsMappedTo (C31, LR31a)
IsMappedTo (C31, LR31b)
IsMappedTo (Ciz, LR32a)
~Consumed (Irene, LR31p)
-Consumed (Irene, LR3zj)

CoreLR (Al,LR31p)
CoreLR (Al,LRzzg)

Cc1)
ConductedLearningActivity (Irene, Al)
MakeQuery (Al, Logical Express)

HasKeyword (Logical Express, Cag)
IsPartOf (Cyg,Cs)

~Covered(Irene, Cs)

IsMappedTo (Cs,LRsa)
IsMappedTo (Cs, LRsp)
IsMappedTo (Cs, LRsa)

-Consumed (Irene, LRsy)

c2)
NonCoreRelatedLR

(Al 1 LRSa)

Table 4.9 Instance for Build Learning Path
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Concept or LRs ID

Concept O Learning Resource

O Consumed Concept or LRs -—» Precedence Relation

Figure 4.6 Learning Construction
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CHAPTER 5

EXPERIMENTAL RESULTS

CONCLUSK)N




This section describes the operational environment éf the developed system. It then
shows some experimental results, and finally, it provides a performance evaluation study.
For a better illustration of the system’s main functions, this section first describes the
ontology authoring and knowledge base construction process, and then, it provides some
scenarios to demonstrate the main system services. Finally, it evaluates the performance

of the proposed system by comparing it to existing similar systems.
5.1 Ontology and Knowledge Base Construction

To illustrate the ontology authoring process, this section provides an example showing
the way we authored the C++ ontology used in chapter 4. It used Protégé to build the
global ontology space as shown in Figure 5.1. Figure 5.2 shows the class hierarchy of the
global ontology space which consists of learner ontology, activity ontology, device
ontology, environment o'ntology, and domain ontology. Finally, an example ontology
describing the subject domain of C++ programming is formally defined in Figure 5.3

using the various properties such Prerequisite, PartOf, NecessaryPartOf, and Isa.

-60-



4 Gicba¥inicegySpee Provins 2dbeta  (Sfe\lGiszaiCntok

Flo &t Broect OAL Rersonng Cose  Jedis

Window  Heip

i @ GlobelOntokogySpsce

; 7. HertwaePralie
it Davicatypo
= DisplayTypa
KeyoosedType
7 Networkhdoplor
MetwerkPratocol
¥ SoftwecaProfis °
MediaType .
0SType
S _Wappiication
SipportLonguege ¢

Concepl ot 4 [CPlustoops

- |

C4 ) e protdgé |

i 4 Metectala (Qrickoyt AUGBSST g} HeCimrves | 5k Ficperties | 4 indiviouais | S Fams . Jass | % SIRL Rues | {
‘ Risccmmae === " waanee ]

(netace of Cancept)

I -
- et cES A
froperty
rits:commert

4 FunclioneDecompositon

& FunciionCeb

B OCFIustwsBH T
4 CPusioops2?
4 CPlusLoopst

Figure 5.1 Global Ontology Space editing with Protégé

i

4 GlobalCniciogySpece Froéas 34 bete
Eile

{filesBAdlcha OnslagySpas

a0 stoingySpaceoar] OWL / ROF Files)

Edt Project QWA Reasoning Code

Tools Window Help

< C\\kprotégé

@ individusis © T Forms ¢ w7 Jess. | — SARL Rules
@ individue: F 7 4 =+ SWRL Rule

T omv

@ Jamosiaya |

. HasMetwork ='F——-— WirelessNetaohType

. EnvitoanmenntD S_wiapplieation

v Thing
" Device
DevicelD
¥ HardwereProtile
DeviceType
DisplayType
- KeyboardType
4 NetworkAdagptor
» SoftwareProtile
DomeinCriology
Enwirahment
EnvironmentiD
L HasNetwork
& Locetion
Lezrner

i Location < lediaType

SefenareProfile Supponttanguage

T asTrpe
B . DtsptayTypse
/ - WardwareProtily o

" Deviceid

T ReyboardType

DeviceTyps |

Cancept

““LeatningResourcs

...... - LearnedD

" Language

Leaming2otivity A cthsitAD

7 fwery

7 Hetwomadaptor -}

———" HetnowFrotacal

Figure 5.2 Class Hierarchy of the Global Ontology Space

-61-



- Coneept

" ®SsotreByAnalogy @M
@ Interactivel0 ®Fi0g_PS PR @ TheR: @HsaderFlies
#Programtanguags D @VoidFunctions
ey PAigorithmicPS e e
@InpulFaikire R - -
®Computer ,PS%MF@E‘}S"" - ; a
p —" L Qly_sansEndaAnaNsis g} @FunctienCall
®Fiisl0 ®Programio ®Program a4 - <
" P Divid2Conquer, - ; ! .
< @ BuildingSlocksApp @ DclarationsandDefs .
o . @®LocaVarisbles
@ Oupulf onmatting N .
@ CPIlusProgramming
@ tastedLoops o #Functions @Paanmters
PRI i D .
/ ~7  4Looping @ VaueRaiumningFets
/ je
SWhile | o - DasigningFunctions < o 2
D . _&Qpﬂumws “ . @Conmalfiow, R & ScopsONdentifisrs
7 - v @®Usards
' ¢ @ProgramDevelopmentPracess D -
PLoopingSubtasks @ LoepExacution 1
”anpoasign D N .
~ ®Sdection B, -,.inogan\COnslmctiun
@ ConrolFlewDesizn ) T N
- . @ Condtions ' @ TastingDebugging
v LA N
® EvantControlisdioops i #ProgramExzation
& @ifstatmant N
@ SwitchStat QCPIusPrB’grams Blua Sueaight Solié Line . .
@ BoolsanDala . — o Necessary Part-of Relation
L $Logicabapg. - Y Oranga Sresight Dotad Lins
s T I Part-of Reladon
e Silesteditstat Groan Curved 2alid Line
OLum:aJIQp_...v- - s Y -0 Prerequisite Relation
s @OpsPracadence Amathyat Curved Dottad Lin
®Relationaidp - o o e 5.2 Relation
C] Instance

Figure 5.3 Subject Domain Ontology: C++ Programming

SWRL Tab of Protégé (see Figure 5.4) is used to construct the SWRL rules which
represent the core of our knowledge base. All SWRL rules have been introduced in
chapter 4. These can be classified into system-centric rules (i.e. media rules, language rule)
and learner-centric rules (i.e. learning sequence rules). The system-centric rules use the
device and environment atomic context elements to infer metadata that can be used to
filter out learning resources that are compatible with the system operating environment.
The learner-centric rules are used to build a personalized learning path by removing
already covered learning concepts, learning resources, and learning sub-path(s). Thus, the
ultimate goal of the system is to optimize the learning path using both system-centric

adaptations and learner-centric adaptations.
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5.2 Experimental Results

To illustrate the ontology reasoning mechanisms used in this study, this section
provides a number of scenarios to demonstrate the various system-centric adaptations and
learner-centric adaptations. For system-centric adaptations, system used the C++
programming language ontology as described in Figure 5.3. The system asked few
learners to make queries related to C++ programming language using devices with
different software and hardware capabilities. Figure 5.5 shows the used mobile phones,
while Table 5.1 shows their capabilities and surrounding environment. In particular, for
the current bandwidth system used the predicted network bandwidth at the time we

performed the experiment.
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Figure 5.5 Experimental Results with Different Mobile Phone

Basic Nokia phone

Sony Ericsson

emulator W830C HTC S621
Operating system Symbian Sony Ericsson Java | Windows Mobile 6 Standard
Available Memory 256.0kbytes 6.0Mbytes 32.0Mbytes
Connection Speed 32.0kbps 48.0kbps 120.0kbps
Current Bandwidth 8.0kbps 16.0kbps 80.0kbps
Screen Resolution 128*96 pixels 320*240 pixels 320%240 pixels
Support Language(s) English English, French... | English, French, Chinese...
Keyboard Type Virtual Virtual Real
Media Type Text, Image Text, Image, Video Text, Image, Video
Display Type Monochrome 256k Colors 65536 Colors
Network Adaptor GSM 1900 GPRS, EDGE Wifi, Bluetooth, EDGE
Browser WAP 2.0 WAP 2.0 Internet Browser (WWW)

Table 5.1 Software & Hardware Capabilities for Mobile Phone
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Below is a fragment of the OWL description for the mobile phone showing the

capabilities of HTC S621.

<UsedDevice rdf:ID="HTCS621">

<HasSupportLanguage rdf:resource="#English"/>
<HasSupportLanguage rdf:resource="#French"/>
<HasSupportLanguage rdf:resource="#Chinese"/>
<HasDisplayType> <DisplayType rdf:ID="65536Colors"/> </HasDisplayType>
<HasOS rdf:resource="#WindowsMobile6Standard" />
<AvailableMemory rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">
320
</AvailableMemory>
<RunApplication> <S_W Application rdf:ID="Image"/> </RunApplication>
<RunApplication> <S_W Application rdf:ID="Text"/> </RunApplication>
<RunApplication> <S_W Application rdf:ID="Video"/> </RunApplication>
<HasKeyboardType> <KeyboardType rdf:ID="Real"/> </HasKeyboardType>
<HasNetworkAdaptor> <NetworkAdaptor rdf:ID="Wifi"/> </HasNetwork Adaptor>
<HasNetworkAdaptor> <NetworkAdaptor rdf:ID="Bluetooth"/> </HasNetworkAdaptor>
<HasNetworkAdaptor> <NetworkAdaptor rdf:ID="EDGE"/> </HasNetworkAdaptor>
<MaxConnectionSpeed rdf:datatype="http://www.w3.0rg/2001/ XMLSchema#float">
120.0
</MaxConnectionSpeed>
<HasBandwidth rdf:datatype="http://www.w3.0rg/2001/XMLSchema#float">
80.0
</HasBandwidth>
<HasScreenWidth rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">240</HasScreenWidth>
<HasScreenLength rdf:datatype="http://www.w3.0org/2001/XMLSchema#int">320</HasScreenLength>

</UsedDevice>

5.2.1 System-centric adaptation

Section 4.2 described the method used to filter out learning resources using system-

centric adaptations based on device and environment context elements. This section

presents some experimental results related to the system-centric adaptations obtained

using the three mobile phones shown in Table 5.1. In particular, the following steps have

been adopted to achieve these experimental results. The system is programmed to sense

the actual network bandwidth from time to time, and whenever queries are made, the

current bandwidth is predicted as shown in section 4.2, and then translated into

meaningful symbolic values such as low, medium, and high bandwidth. For example, the

-65-



http://www.w3.org/2001/XMLSchema%23int
http://www.w3.org/2001/XMLSchema%23float
http://www.w3.org/2001/XMLSchema%23float
http://www.w3.org/2001/XMLSchema%23int%22%3e240%3c/HasScreenWidth
http://www.w3.org/2001/XMLSchema%23int%22%3e320%3c/HasScreenLength

bandwidth predicted by the system for the HTC S621 was “high bandwidth”. Based on
this assumption, the system calculates the maximum data file size and selects the media
type of retrieved learning resources to ensure that they can be played on the device. This
step is achieved by applying Truth Value Rules, File Size Rule, Media type Rules, and
Allowed File Size Rules respectively as shown in section 4.2. When these rules are applied,
a number of facts are inferred resulting in the addition of many statements to the list of
facts. The next processing step is to select the language of retrieved learning resources to
make sure that this is similar to the learner’s preferred language, and that it can be
supported by the mobile device. This is achieved by applying LanguageRule-1 as given in
section 4.2. Once the language rule is applied, a new fact is inferred resulting in the

addition of statement SearchLanguage(UserName,Language) to the list of facts. It

should be noted here that there might be some resources that require software applications
that are not supported by the used mobile device. So, the final step is to check whether the
software applications requvired to play the retrieved learning resources are supported by
the used mobile device. This is achieved by applying SystemCentricRule-1 given in
section 4.2. Figure 5.6 describes the results of applying these rules on the three used
mobile devices as shown in Figure 5.5. It can be seen that the Nokia phone emulator has
low bandwidth. The Nokia emulator was used because it was not possible to experiment
our system on a real old cell phone device. Therefore, system has tested the system-
centric adaptations on the Nokia phone emulator which obviously has limited hardware
and software features. Due to the limited resources, the learning resources retrieved for
the Nokia phone have been reduced to text media type not exceeding 125Kbytes as shown

in Figure 5.6.a. The same experimental results for the Sony Ericsson W830C are
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presented in Figure5.6.b. These include some learning resources of image media type in
addition to text media type and were restricted to a maximum size of 250Kbytes. Figure
5.6.c however, shows the retrieved learning resources for the HTC S621 smart phone.
This device can support all types of media without any size restriction. This experiment

assumes that English is the preferred language for the learners.
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Figure 5.6 System-Centric Adaptations for Various Devices

5.2.2 Learner-Centric Adaptation

Chapter 4 showed the method used to generate personalized learning paths tailored to
the needs of the learners. This section presents some experimental results that illustrate
the various learner-centric adaptations. Let’s assume Irene is working on an assignment
for comparing some “object oriented programming languages”. Being a Java programmer
with a little knowledge about C++, Irene is confused about the syntax of “C++ Loops”.
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So, she used her mobile device to query the system using “C++ Loops”. Let’s also assume
that she has previously used our system to query other concepts. Once logged in, the
system tracks her previous login sessions, covered concepts, consumed learning resources,
and previously conducted learning interactions. The system will then proceed with the
following steps which describes the whole learning scenario.

Stepl: the system uses the keywords in the learner’ query and accesses the related
subject-domain ontology to infer those concepts that are part of similar knowledge,
prerequisite  knowledge, core-knowledge, and related knowledge using Is-a,
HasPrerequisite, HasNecessaryPart, and HasPart properties respectively. Consequently,
the concepts While, Do-While, and For are inferred and classified as “similar knowledge”
to C++ Loops. Similarly, concept Looping is inferred and classified as “related
knowledge” to C++ Loops. As shown in the C++ ontology no prerequisite or core sub-
concepts are allocated to concepts C++ Loops. So, in the next processing stage, the
system searches for the learning resources associated with the previously inferred
ontology concepts by using the following elimination order: similar knowledge, perquisite
knowledge, core knowledge, and then related knowledge if any. For our case, learning
resources LOy, and LOyy,, correspond to concept Cyy(C++Loops). The learning sequence
of this scenario is Cy; (C++ Loops) — Cqp (While) — Cy3(Do-While) — Cyy(For) — Cs
(Looping). In the third stage, the system builds a personalized learning path by removing
already covered concept, learning resources, and learning sub-path(s). This step is
achieved by applying the learning sequence rules as shown in the previous chapter. Once
the learning sequence rules are applied, inferred facts are added to the knowledge base.

Figure 5.7.a shows the learning path generated by applying the learning sequence rules
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without taking into consideration [Irene’s previous knowledge. The corresponding
experimental results using the WinWap emulator smart phone are presented in Figure 5.8.
Figure 5.7.b shows the generated personalized learning path after removing the already
covered concepts, learning resources, and learning sub-path(s). The experimental results

for this learning path are presented in Figure 5.9.
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The figure below shows the interaction with the learner after presenting the previously
recommended learning path. Figure 5.10.b shows the details of the learning resource after
being chosen as highlighted in Figure 5.10.a. The system will then automatically add the

newly explored learning resource to the list of consumed learning resources.
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Figure 5.10 Example of Select Learning Resource

In general, when the learner selects a new concept or sends a new query, learner’s
expertise is automatically updated and the personalized learning path is re-adjusted by

resuming processing steps 4 to 9 as shown in the algorithm given in Figure 4.1.
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To show the various logical steps that can be adopted to personalize the learning path,
this section provides another scenario. Now, let’s assume that Irene selects the concept
“Looping” which is submitted as a new query to the system. Based on C++ programming
ontology, the concepts Loop Execution, Loop Design, C++ Loops, Nested Loops, and
C++Programming are inferred as “related knowledge” of the query Looping. The concept
C++ Loops is inferred as “prerequisite knowledge” of the concept Nested Loops.
Therefore, the system will suggest the following sequence in ordering the concepts to be
provided to the learner (i.e. Cs (Looping) — C3zs(Loop Execution) — Cz7(Loop Design)
— Cy41 (C++ Loops) — Cys(Nested Loops)), and their associated learning resources are
searched for and retrieved as shown in Figure 5.11.a. Figure 5.11.b shows a personalized
learning path based on already removed covered concepts, learning resources, and
learning sub-path(s). For example, learning resource LR4iv, Understanding Loops in C++
which has already been consumed is therefore removed from the learning path as shown
in 5.11.b. Figure 5.12 shows some of the learning resources recommended to Irene as a

result of her query about the concept “Looping”.

Concept O Learning Resource @ Concept or LRs ID

O Consumed Concept or LRs —» Precedence Relation

Figure 5.11 Learning Path for Concept Cs
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Figure 5.12 Example of Learning Path

Recommended to the Learner
5.2.3 Experimental results with photography ontology

This section tries our system using another domain ontology. It uses the same global
ontology space by substituting the C++ ontology with the photography ontology which is
formally defined in Figure 5.13. The photography ontology is also described using
properties necessary-part-of, part-of, prerequisite, and is-a. This scenario assumes that
Irene would like to purchase a camera for her friend as a gift. In order to have a
background about this domain ‘to be able to make the right purchase decision, she used her
mobile device Sony Ericsson W830C to query the system using Camera as a keyword.
Figure 5.14 illustrates Irene’s profile while Figure 5.15 shows the Sony Ericsson

W830C’s software and hardware capabilities.
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Let’s assume that Irene is using her device Sony Ericsson W830C with an actual
network bandwidth of 40.0kbps. For system-centric adaptation, when Truth Value Rules
are applied, new facts are inferred resulting in the addition of some statements to the list
of facts. These new facts reveal the probabilities for the predicted current bandwidth
which was found to be 0.084 for medium bandwidth and 0.916 for high bandwidth. Then,
the system uses the obtained values to predict the maximum data file size and to select the
appropriate media type for the used device. When Media Type Rules and Allowed File
Size Rule are applied, facts HasMediaType(SonyEricssonW830C, Text/Image/Video) and
AllowedSize(SonyEricsson W830C, 546.875) are inferred, resulting in the addition of
other statements to the list of facts. The system infers that the learning resources to be

retrieved for the Sony Ericsson W830C device should be of text, image, or video media
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types and should not exceed 546.875Kbytes. The system will finally perform few
processing step for system-centric adaptation to check whether those retrieved learning
resources can be played on the used device. For learner-centric adaptations however, the
system retrieves the related .Ontology concepts and learning resources by using the
following elimination order: similar knowledge, prerequisite knowledge, core knowledge,
and related knowledge. In our experiment, the concept Digital Camera and Film Camera
are inferred as “similar knowledge” of the concept Camera. The concept Equipment is
inferred as ‘“related knowledge” of concept Camera. The learning sequence for this

scenario is C,(Camera) — C,((DigitalCamera) = C,(FilmCamera) — C,(Equipment) .

When Learning Resources Rules are applied, the system builds a personalized learning
path by removing already covered concepts, learning resources, and learning sub-path(s).
Figure 5.16 shows the experimental results for this scenario. All retrieved learning
resources are of text, image, or video media type. The data file size is smaller than

546.875KB. Figure 5.17 shows an instance of learning resource proposed to the learner.
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5.3 System Evaluation

This section compares the proposed mobile learning system with two similar systems —
context-aware E-learning [31] and — M-learning [1]. Table 5.2 shows the various criteria
we used to assess the performance of the three systems. As far as ontology is concerned,
unlike the two other systems, our approach uses a global ontology space giving the system
a reasoning power by referring to a unique domain space that is homogeneously used by
the inference engine. As for the ontology reasoning criterion, our system makes use of the
various context groups such as learner context, device context, environment context, and
activity context. In particular, learner context is used to represent provisioning
personalization. Device context is the main source for representing the software and
hardware capabilities of used device. Environment context deals with temporal and spatial
contextual information. Unlike the other two systems, our system is characterized by the
use of activity context as the basis for personalizing the learning path by tracking and
analyzing previous learner’s activities. Thus, our system uses activity context to help
improve learning content adaptation. For the system-centric adaptations, unlike the other
two systems, our system adopts a fuzzy logic approach in conjunction with SWRL rules
to translate context that is perceived with uncertainty to meaningful symbolic values. In
our case, this is used to predict the maximum data file size and the supported media type(s)
based on current bandwidth, current memory size, and screen resolution of the used
device. The inference about search language generates suitable information for retrieving
learning resources suitable to the learner’s linguistic preference. In addition, our system

avoids those learning resources that cannot be supported by the software applications on
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the used device. However, the similarity with the other two systems is that all systems

provide some sort of learner-centric adaptations to generate personalized learning paths.

Proposed mobile
learning system

Context-aware E-
learning [31]

M-Learning[1]

Context Modeling Global ontology Learner; Learner Learner; Device;
Space: Learner; Content; Domain o
Activity; Device; Connectivity;
Environment;
Domain
Ontology Reasoning System-Centric Generate Learning | Learning Path: Is-a;

Adaptations and

Path :Prerequisite

Part-Of; Necessary

Learner-Centric Part-Of
Adaptations o
Time issue
Inference Technique | SWRL and Fuzzy Rules
Logic

Table 5.2 Our System v.s. Other Two E-Learning Systems
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In this thesis, a personalized mobile learning system on the semantic web has been
developed. In particular, an attempt has been made to solve some of the challenges related
to context modeling and management; conceptual knowledge modeling for personalized
learning; and context-aware service discovery and adaptation. Atomic context is acquired
and classified into learner context, device context, environment context, and activity
context. These types of context are either sensed or profiled. Sensed atomic context is
dynamic in nature, while profiled atomic context is mostly static. The system used fuzzy
logic to predict current network bandwidth, allowable file-size, and the appropriate
media-type, in order to retrench the service’s and resource’s expenses. A global ontology
space is used to aggregate the above-mentioned context groups which are defined at the
semantic level. The role of the global ontology is to integrate a subject-domain ontology
along with the learner ontology, activity ontology, device ontology, and environment
ontology. Knowledge embedded in the global ontology space is used as the main source
to enable a unified reasoning mechanism that operates on facts instantiated by the
perceived heterogeneous context elements. In particular, the reasoning engine translates
context changes into new adaptation constraints in the operating environment, thus
enabling personalized learning. Both system-centric adaptations and learner-centric
adaptations have been considered in this study for better personalization of the learning
sequence. System-centric adaptations aim at filtering out those learning resources that can
run efficiently on the used mobile device, taking into account the attributes characterizing
the surrounding environment. The learner-centric adaptations however, aim at building a
personalized learning path based on learner’s current activity and profile. A number of

learning scenarios have been used to demonstrate the main functions of the proposed
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system. The experimental results have shown that the system successfully adapts the
media-type, file size, and other system-centric features, based on the used technology and
surrounding environment. The results have also shown successful use of the various
learner-centric adaptations to accommodate learners’ background and needs. In particular,
the system has been tested on two subject-domain ontologies using three different mobile

devices. These experiments were conducted under various system environments.

This research work can be extended in many ways. One possible extension is the use of
Mashup technology to make it possible to use multiple search agents in order to retrieve
learning resources from multiple sources, thus enhancing learning-content provision.
Other possible extension to our work is to improve the systems’ Quality-Of-Service
(QoS). For example, it is important to provide secured services, especially, when moving
from one wireless network to another. Trusted web-se‘rvicés are crucial for mobile
learning applications such as those related to telemedicine or corporate learning. One
further research direction is to use learning paths adopted by various users to build expert

knowledge for navigating the subject domain.
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Abstract. Flexible and personalized instruction is one of the most important re-
quirements to next generation intelligent educational systems. The intelligence
of any e-learning system is thus measured by its ability to sense, aggregate and
use, the various contextual elements to characterize the learner, and to react ac-
cordingly by providing a set of customized learning services. In this paper we
propose a proactive context aware mobile learning system on the Semantic
Web. The contribution of this work is a combined model using both a probabil-
istic learning technique and an ontology-based approach to enable intelligent
context processing and management. The system uses a Naive Bayesian classi-
fier to recognize high level contexts in terms of their constituent atomic context
elements. Recognized contexts are then interpreted as triggers of actions yield-
ing a Web service composition. This is achieved by reasoning on the ontologi-
cal description of atomic context elements participating in the high level con-
text.

1 Introduction-

Research work in the field of mobile learning [1]{2][3][4][5] has shown that the edu-
cational potential of mobile technologies is driven by the continuing expansion of
broadband wireless networks and the capacity of the new generation of cellular
phones. However, the utilization of these technologies for educational purposes has
been sparsely explored and many problems related to: context acquisition and man-
agement, conceptual knowledge modeling for personalized instruction, and adaptive
information discovery remain unresolved. This paper contributes towards this direc-
tion, aiming at using the evolving semantic web and mobile computing to enable
context-aware learning which delivers adaptive instructional resources on a learner’s
schedule. Context-aware learning is a critical support mechanism for educational
institutions and organizations to compete in the new economy. Today’s global market
requires adaptive, fast, just-in time, and relevant learning processes that can be initi-
ated by user profiles and business demands [6].

In this paper we propose an integrated approach to context modeling and reasoning
based on Naive Bayesian classifiers and ontological structures. First, higher-level
contexts are recognized using a Naive Bayesian classifier. Then, ontology-based



64

reasoning with the recognized contexts triggers actions yielding Web service compo-
sition that are customized to learner’s context, needs, and preferences. The contextual
information used in the personalization process encompasses all elements that charac-
terize the learner’s interaction, task at hand, the resources on which the Web services
are to be performed, and surrounding environment.

The remaining of the paper is organized as follows. Section 2 describes back-
ground knowledge and related work. Section 3 describes context representation and
modeling schemes. In section 4, we describe the higher-level context recognition
process. Section 5 presents the framework for ontology reasoning and Web services
composition to generate adaptive learning services. Finally, conclusions are drawn
and further research work is suggested.

2 Background and Related Work

A considerable amount of research in knowledge-based and intelligent e-learning
systems is now moving towards ontology-based context acquisition and management
for personalized learning [7][8][9]{10]. The main issues and challenges are however
related to the ability of such systems to model and consistently reason with high level
contexts at the semantic level. Although, some research attempts were made to solve
some of these problems [9][10][11][12], the shortcoming of most of these efforts is
their limitations to specific context elements and specific learning scenarios. General-
purpose modeling and reasoning with context is a complex problem, and much re-
search work is needed before achieving any real progress in this field. Most devel-
oped learning systems restrict the use of ontology relations and rules to describing
and adapting content and sequencing of leaming material according to some sensed
context. However, little contextual semantics has been embedded in the ontology
itself.

Other approaches to context modeling have also been considered. McCalla [13]
has introduced an approach to learning design where learners’ models are attached to
Leamning Objects (LOs) they interact with, and useful learning patterns are then de-
rived by mining those models. The problem with this approach is its limitation to
context that can be inferred from the learner’s profile only, ignoring other type of
context. Stojanovic et al. [6] however, have extended ontology usage to describe
content, context, and sequence of learning material. Content-ontology was used for
checking consistency as well as searching and navigating repositories of LOs. Con-
text-ontology was used to present learning material in various learning contexts.
However, learning style ontology was used to describe the way knowledge can be
dynamically connected to adapt to learners’ cognitive needs and preferences. Sets of
relations, rules and axioms have been separately defined for each type of adaptation.
The shortcoming of this approach is that efficient modeling of mobile leaming sce-
narios would require the definition of atomic context elements at the semantic level
and the use of the various ontologies in an orthogonal way. This is due to the fact that
context, content, and learning styles are semantically inter-related aspects of cognitive
learning [14]. This paper explores such a new dimension. The emphasis is on context
discovery and its semantic modeling and management. Mobile users equipped with



wireless devices go through several contextual changes as they move around in physi-
cal and social surroundings. These contextual changes could be used to drive ontol-
ogy navigation and reasoning for better modeling of mobile learning scenarios.

Another challenging aspect addressed in this paper is automation of metadata gen-
eration for mobile learning. Metadata provides a common set of tags for describing,
indexing, searching, and reusing learning materials on the Web in an interoperable
way [14]. However, it is really difficult to create and maintain metadata rich enough
to meet the diverse and ever changing needs of potential mobile learners. Mobile
leamning requires additional metadata to capture context. In this study, an attempt is
made to solve this problem by defining contextual information at three hierarchical
levels — atomic context — composite context — and higher-level context. Atomic con-
text elements are sensed from the learner’s interaction, task at hand, the used mobile-
device, and the surrounding environment. These are then grouped into four composite
context classes — learner context — activity context — device context and environment
context. Composite contexts are further aggregated to build meaningful time-stamped
higher-level contexts which are matched against context classes describing typical
learning scenarios. Context classes are simply built from previously sensed similar
higher-level contexts that have exhibited high degree of confidence. Matching higher-
level contexts against these context classes is performed using a Naive Bayesian clas-
sifier. The Naive Bayesian classifier technique is used to cope with the uncertainty
embedded in most sensed atomic contextual elements. Recognized contexts are then
interpreted as triggers of actions that are translated into Web service compositions.
This is achieved through ontological descriptions and reasoning with higher-level
context.

Fig. 1 describes the overall system architecture which consists of four main com-
ponents — context acquisition and aggregation — context recognizer — ontology rea-
soning engine — and Web-service composer. The context acquisition and aggregation
component controls the user’s interaction with the system and senses atomic context
information from different sources. These are then aggregated into domain related
contexts. Mobile learmners go through continuous contextual changes as they move in
their environments. It is the context acquisition and aggregator’s job to communicate
and update such changes yielding new contexts. The context recognizer identifies the
aggregated contexts by matching them against well defined context classes stored in a
context repository. The recognition process is performed using a Naive Bayesian
classifier. The context recognizer also allows for newly formed context classes to be
added to the context repository.

The third component of the system is an ontology reasoning engine which uses the
recognized higher-level contexts to customize learning services. Two ontologies are
used to perform such a task — device/environment ontology — and domain ontology.
The former is used to generate metadata that is used to discover Web-services that
can run in the learmer’s device/network environment. However, the later is used to
customize the learning content and the learning sequence according to the learner’s
current activity, background and preferences. This requires an ontological description
and interpretation of higher-level contexts in terms of their constituent atomic context
elements. Finally, the Web-service composer uses the generated device/environment
metadata and the inferred learning concepts’ sequence to compose Web-services
accordingly.
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3  Context Acquisition and Aggregation

Contextual information used in this study is defined at three hierarchical levels —
atomic context — composite context — and higher-level context. At the lower level,
atomic contextual elements consist of the basic information describing the learner’s
profile, the current learner’s activity, the used mobile device, and the surrounding
environment. These can be either direct or indirect atomic contextual elements. Direct
atomic contextual elements are those that can be directly sensed from the user interac-
tion with the system and may originate from different sources such as the used device
(i.e. device type, communication protocol), the task at hand (i.e. current learner’s
activity), and the surrounding environment (i.e. location, time, wireless network,
network security). Indirect atomic contextual elements are however those elements
that can be indirectly inferred from the direct atomic context elements. Inference of
indirect atomic context elements is performed by the context aggregator relying on
the device/environment repository and the learner profile repository. For instance,
information such as device’s operating system, device memory, and screen resolution
of a specific mobile device which is previously stored in a device repository can be
inferred using the atomic context element device-type. Similarly, other information
related to the learner’s pre-requisite knowledge, previously accessed services, and
learner’s preferences can be inferred from the learner profile repository. The use of
indirect contextual elements aims at reducing the amount of contextual information
that has to be sensed from the learner’s interaction, device, and surrounding environ-
ment, which significantly speedup the context recognition process.



An atomic context element ¢; is defined by:
¢ = (Ciuacip 0y

where ¢, 1s the context value, and Cp is the probability of context c;of value

¢, being part of a higher-level context. The context value ¢,

. » as shown below, can
be either a specific value (i.e. device type, learner identifier), a binary value (i.e.
whether the used device is browser-enabled or not, secured/non-secured wireless
network), or a value within a predefined range (i.e. network bandwidth, screen resolu-

tion).

specific_value )
¢, =3 binary_value

v

value € [v1..v2]

Composite contextual elements are aggregates of atomic context elements describ-
ing a specific context type. There are four context types — ¢, learner context — ¢, de-

vice context — € environment context — and ¢, activity context. Each of which is
defined by:

D ) 9
ccomposite - Z Ci—a’irect U ZC Jj~indirect (3)
i=1 =1

Finally, higher-level contexts consist of four-tuples C, = (¢, ,¢p,¢;,C,), which

are built out of configurations of composite context elements sensed at time ¢ and
which characterize typical learning scenarios in a specific domain. Classes of higher-
level contexts are defined at the ontological level in that they can be interpreted di-
rectly as triggers of learning actions implemented as Web service compositions.

4 Context Recognition

While ontologies have the ability to communicate context information by naming
different concepts in machine readable fashion and allowing for the use of everyday
words and concepts when interacting with the technology, they are unable to effi-
ciently recognize learners’ context. This is because the mapping between the defined
concepts and the sensed real world atomic context elements is not so straightforward
due to the uncertainty embedded in some atomic context elements. The mapping fails
because ontologies do not handle uncertainty. They rather rely on well defined logic
which assumes all information required to make a logical decision is available and
produces either true, false or undeterminable statements. Uncertainty on the other
hand produces similar statements but with degrees of truth or falseness [15]. To cope
with uncertainty, higher-level contexts are recognized using a Naive Bayesian Classi-
fier. Bayesian Classification is a probabilistic learning technique where prior knowl-
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edge can be combined with observed data. The aim is to recognize a currently ob-
served context state against a set of learned context classes. The input to the classifier
is thus a set of sensed/observed atomic context elements which describe the user’s
context at a given instant of time, while the output is a learned context class. The
classification process is thus performed with no user intervention or understanding
required. The Bayesian classification also makes the implicit assumption that the data
being handled is noisy and can tolerate any missing pieces of information. One differ-
ence between the Bayesian classification and the ontology approach is that once the
ontology is defined then it can be available immediately whereas in the Bayesian
classification approach each context has to be experienced at least once before being
recognized again [15].

Let X be a current context whose class label is unknown, and let H be a hypothesis
that X belongs to context class C, the classification problem consists of determining
P(H/X) that is the probability that the hypothesis holds given the observed context X.
This is defined by:

P | x)=PE LA )

where :
*  P(H) is the prior probability of hypothesis H (i.e. the initial probability be-
fore we sense the current context and reflects the background knowledge).
*  P(X) is the probability associated to the current context.
*  P(X]H) is the probability of observing the context X, given that the hypothe-
sis holds.

The above Bayesian model assumes that the observed context elements are re-
lated and depend on each other, and therefore, requires initial knowledge of many
probabilities, as well as, significant computational cost. However, since most sensed
atomic context elements are independent, the above model can be further simplified
by applying the Naive Bayesian classifier which is defined by:

n (5)
P(X{Ci)=k11P(xk C)

Where: C; is a context class, and the set of x;s are the atomic context elements
forming the higher-level context X as defined in section 3.1.

The Naive Bayesian classifier greatly reduces the complexity of the model, as well
as its computational requirements. The context recognition problem is solved by as-
signing the current context X to the class C; that satisfies the following condition:

X & CpP(XIC,) =Max(P(X|C) P(C,)}

where m is the number of recognized context classes.

Fig. 2 describes the context acquisition and recognition cycle. First, direct-atomic
context elements are sensed, these are then used to infer related indirect-context ele-
ments. Next, the Naive Bayesian classifier is applied to recognize the associated
higher-level context-class, and finally, changes to the learner’s context are sensed and
a new context recognition cycle is performed. It should be noted here that the context-

(6)



change detection process significantly speedup the recognition time of successive
high level contexts. This is because we just infer the indirect-atomic contexts of those
context elements that have undergone some changes. The subset of newly observed
context elements designated by Cepanges is defined by:

Cohanges = (€15CpCsCy ):M \(CL’CD?CE’CA)I,- @

where ‘“\” means set subtraction.
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Fig. 2. Context Acquisition and Recognition Cycle.

5 Ontology Reasoning and Web Service Composition

Recognized higher-level contexts are fed to the ontology reasoning engine in order to
customize learning services based on the learner’s context, preferences and back-
ground. Reasoning with recognized higher-level contexts is performed using the two
ontologies — device/environment ontology — and domain ontology. A set of ontologi-
cal rules are applied to the device/environment ontology to infer the computing re-
sources and the operational environment features compatible with the used mobile
device and its surrounding environment. We call this process, context-driven re-
sources adaptation. The output of this reasoning process is a set of metadata that will
help discovering the Web services that can run into such an operational environment.
The inference rules that are built around the domain ontology however are used to
provide the learner with a learning sequence and content tailored to his/her current
activity, previous background and preferences.

The two ontologies are coded in the Web Language Ontology — OWL; and the in-
ference engine is implemented in Rule Markup Language — RuleML. Metadata de-
rived from the ontology reasoning process is compliant with the IEEE-LTSC Leamn-
ing Object Metadata (LOM) specification which is coded in XML. In particular, the
XML description of both the inferred learning concepts and the device-related opera-
tional environment are used for Web services discovery. However, the inferred learn-
ing sequence which we call in this paper domain-context (i.e. the order of learning
concepts inferred using the properties and relations between the domain-ontology’s
classes [16]) is used for Web service composition. This is described in OWL-S. A
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domain context represents a control structure that makes it possible to adapt the do-
main knowledge to a particular higher-level context. This adaptation is facilitated by
the ontologyO,, for a given domainM . O,, is defined byO,, =(Co,,,R,,), Where

Co,, = {co,,...,co,} 1s a set of concepts and Ry ={r,...n,} 1s an ordered set of rules
defined as follows: p(co,...co;) =, q(co,...co;), where p and g are predicates

reflecting respectively the factual information and the resulting one based on the
inferential ruler, .

The semantic of the ontological links is obtained by the rules in R,,. These rules are
prioritized to reflect their importance or abstraction levels in a given knowledge tax-
onomy. For example, if the sensed higher-level context reflects a time-constrained
learning scenario, one would like to focus only on say “the necessary-part-of” rules of
the ontology to get a quick abstraction on the general structure of the requested
knowledge. In a less time-stringent learning scenario however, this abstraction could
further include the “part-of”, and/or “case-study” rules, etc. These knowledge-
supporting rules generate additional concepts of the ontology in multi-level clusters
which are used to infer a progressive knowledge based on the learners’ context de-
noted by C; and the activity context denoted by C, as described in section 3.

A software agent as shown in Fig. 1 is spawned at the server side to supervise a
learning session for each learner. The agent typically represents the learner on the
Semantic Web. The agent successively invokes the inference engine to get the current
learner’s focus, then discovers, composes, and invokes the chosen Web services ac-
cordingly.

To illustrate the main functions provided by our framework, we provide the fol-
lowing example ontologies describing a C++ programming course as a domain ontol-
ogy, and a device/environment ontology. These are shown in Fig. 3 and Fig. 4 respec-
tively.
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Fig. 3. Ontology for C++ Programming Course.
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Fig. 4. Device/Environment Ontology.

A fragment of the ontology shown in Fig. 3, describing concept 3 “Program De-
velopment Process”, is described in OWL in Fig. 5. The OWL definition of the se-
mantics of the different relationships used in the C++ programming ontology is also
given in Fig. 5.

Details about the rules used by the ontology reasoning engine to customize the
learning sequence can be found in our previous work [17].



72

<owl:0ObjectProperty rdf:ID="NecessaryPartOf">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<owl:inverseQOf rdf:resource="{#hasNecessaryPart"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isPartOf">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<owl :inverseOf rdf:resource="#hasPart"/>
</owl:ObjectProperty>
<owl:0ObjectProperty rdf:ID="is-a">
<rdf :type rdf:resource="g&owl;TransitiveProperty"/>
<owl:inverseOf rdf:resource="#has"/>
</owl:0bjectProperty>
<owl :0ObjectProperty rdf:ID="isPrerequisiteOf“>
<rdf:type rdf:resource="g&owl;TransitiveProperty"/>
<owl:inverseOf rdf:resource="#hasPrerequisite"/>

<owl:Class rdf:ID="Program Development Precess_3">
<rdfs:subClassOf rdf:resource="#C++ Programming 1"/>
<owl:disjointWith rdf:resource="#Prog and PS_2"7/>
<owl:disjointWith rdf:resource="#Program I/0O_4"/>
<owl:disjointWith rdf:resource="#Selection_5"/>
<owl:disjointWith rdf:resource="#Looping 6"/>
<owl:disjointWith rdf:resource="#Functions_7"/>

</owl:Class>

<owl:Class rdf:ID="C++ Programs_18"/>
<rdfs:subClassOf rdf:resource="#Program Development Process_3"/»>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isNecessaryPartOf"/>
<owl:allvValuesFrom rdf:resource="#program Development Process_3"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restrictions>
<owl:onProperty rdf:resource="#isPrerequisiteOf"/>
<owl:allvValuesFrom rdf:resource="#Testing and Debugging_21"/>
</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Program Construction_19"/>
<owl:disjointWith rdf:resource="#Program Execution_20"/>
<owl:disjointWith rdf:resource="#Testing and Debugging 21"/>
</owl:Class>

Fig. 5. Fragments of OWL description of the C++ Programming ontology.

6 Conclusions

In this paper, we proposed a proactive mobile-learning system on the Semantic Web.
We argued that a probabilistic learning model is more suitable that an ontology-based
approach for context recognition. This is mainly due to uncertainty embedded in
some atomic contextual information. Higher-level recognized contexts are however
described at the semantic level using ontology rules and axioms. The ontology rea-
soning process allows the system to react to any observed contextual changes by
interpreting the newly sensed contexts as triggers of actions yielding a Web service
composition. We are currently implementing a prototype of our framework as part of
our personalized-learning provision project.
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Abstract

In this paper we present a knowledge-driven model
Jor mobile learning based on the semantic web. The
knowledge model uses a global ontology space and a
unified reasoning mechanism to integrate and
aggregate knowledge describing both system-centric
and user-centric context information. The reasoning
engine perceives, understands, and translates context
changes into new adaptation constraints in the
operating environment o achieve personalized
learning. In particular, the system strives to adapt the
learning sequence and the learning content based on
the learner’s activity, profile, used technology, and
surrounding environment. An initial system prototype
Is described and the obtained experimental resulls are
very promising.

1. Introduction

The field of mobile services is becoming a very
active area of research and development [1-2].
However, very little has been accomplished in the area
of mobile learning. Several obstacles still hinder
personalization of mobile learning services, such as: (i)
current mobile web services act as passive components
rather than active components that can be embedded
with context awareness mechanisms, (i) existing
approaches for service composition typically facilitate
choreography only, while neglecting contextual
information on users and surrounding environment,
and (iii) lack of context modeling techniques and
reasoning strategies for integrating the various
contextual features for better personalization. In this
paper, an attempt is made to solve some of the above
mentioned problems, aiming to build a mobile learning
system with semantic-rich awareness information.

Semantic Web has the potential to revolutionize the
way learning services available on the web are
discovered, adapted, and delivered according to
context [3-6]. In this paper, we demonstrate such

capabilities by proposing a knowledge driven model
based on a unified reasoning mechanism and a global
ontology space that encompasses all context aspects to
achieve personalized mobile learning. In particular,
whenever context change occurs, the Run-Time
Environment (RTE) identifies the new contextual
features and translates them into new adaptation
constraints in the operational environment to achieve
both user-centric and system-centric adaptations. A
prototype system using the above mentioned
configuration is being developed and initial results are
very promising. The system combines Fuzzy Logic and
Semantic Web Rule Language (SWRL) to infer context
that is quantized with uncertainty, and that can be
inferred from ontology respectively. It also uses
Mashup  technology for service discovery and
invocation from different distributed repositories.

The remainder of this paper is organized as follows.
Section 2 describes the overall system design and
architecture. Section 3 describes the approach used for
context sensing and representation. Section 4 describes
ontology context modeling and reasoning to achieve
personalized leaming. We also show some
experimental results. Finally, conclusions are drawn
and further research is suggested.

2. System Design and Architecture

The core of the proposed system is based on a RTE
designed to maintain consistent behavior across
variations in the operating environment. The aim is to
provide leaming services adapted to the learner’s
global context. Therefore, the main function of the
RTE is to coordinate and facilitate integration and
fusion of the four main context components as they
emerge through the learner’s interaction with the
system. To achieve such complex task, we structured
the RTE into three hierarchical levels. As shown in
Figure 1, at the lower level of the hierarchy is the
context sensing layer which is provided by a collection
of hardware and software sensors that continuously



probe the wireless network features, temporal-spatial
data, device features, user’s background, and
preferences. The context sensing layer generates
quantized and non-quantized raw data whose values
are numeric, Boolean, and literals, and most of which
are time-stamped. To transform this context data into
meaningful context, the raw-data is translated into
symbolic information. The mapping is achieved by the
context perception layer through computation,
inference and learning techniques. The context
perception layer is independent from the context
sensing technology in the sense that it provides an
abstract context representation through the use of
ontologies.

At the higher level of the RTE hierarchy is context
identification and adaptation layer where learning
services are discovered and learning content is adapted
based on the interpreted context. The integrated
ontology space describing knowledge about all context
components is incremented with domain ontology
knowledge, and used as a unified knowledge base for
system reasoning. The result of the reasoning process
is a set of extracted metadata used for service
discovery and adaptation based on system-centric
context (device and environment context) and user-
centric context (learner and activity context). In
particular, the extracted metadata is used to personalize
both the learning path and learning content in order to
match the leamer’s background, prerequisite
requirements, previous tasks, leamner’s mobility,
available network bandwidth, privacy and connectivity
issues. Each of these adaptations is controlled by a
Context-Adaptation Logic in the form of ontology
reasoning steps.

3. Context Sensing and Representation

Context is any information that is relevant to the
interactions between a user and an environment [5].
This information is about the circumstances, objects,
and conditions by which the user is surrounded.
Contextual information can be classified into atomic
context and composite context. Atomic context
elements are associated to raw data that is either sensed
or profiled. Sensed atomic context is mainly dynamic
in nature such as user location or network bandwidth.
Profiled atomic context however is mainly static such
as screen resolution of a specific handheld device,
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Figure 1. Run-time environment hierarchy

user’s date of birth, gender, or preferred language(s).
Composite context on the other hand is derived from
atomic context elements through computation,
inference, or learning techniques.

In this study we divide context into four context
groups — User context — Activity context — Device
context — and Environment context. User context is the
main source for provisioning personalization. It also
extends activity context by providing information such
as user’s background, preferred language(s), and user’s
schedule. Activity context however deals with accessed
services, consumed learning resources, adopted
learning sequence, and domain-knowledge
management and adaptations. It uses learning domain
ontology as the main backbone for service adaptation
and content management. Device context on the other
hand is the main source for determining the software
and hardware capabilities of used devices and hence is
used for setting the right execution profile for the
accessed services. Information such as device
operating system, screen resolution, available memory,
and supported device applications are crucial to target
metadata that allow discovery of services that can run
on such devices. Finally, environment context deals
with information such as temporal and spatial
contextual information, network bandwidth, and other
service  quality features including  security.
Environment context extends device context by
adjusting the execution profile of accessed services.
For example, while choosing the media type of the
resources to be retrieved, we may not solely depend on
the capabilities of the used device, but we should also
take into consideration current network bandwidth.



Ideally, all context changes need to be fed to the
system as they occur. However, the process of
continuously sensing and updating the dynamic atomic
context elements is time and resource consuming,
especially in a mobile computing environment where
system resources are very expensive. To solve this
problem, we adopt an approach where precise values
about some of these context elements, such as network
bandwidth for instance, are sensed at some specific
points in time, and approximate values are predicted
with reasonable certainty outside these points. We use
fuzzy logic to predict the value of such dynamic
contextual elements.

Figure 1 shows the main components of the context
sensing and perception layers. At the low level,
software and hardware sensors are used to sense and
collect atomic context raw-data from different sources.
Some of these atomic contexts are sensed and others
are retrieved from device and user profiles. Other
atomic context such user identification and
authentication information are input by the leamner. The
sensed raw data is then translated into symbolic
meaningful context information through inference,
computation or learning techniques.

4. Context Modeling and Reasoning

At the semantic level we define contextual
information using a global ontology space that
integrates the four context ontologies and the subject
domain ontology. Context aggregation is enabled using
a shared ontology space and a unified reasoning
mechanism across these ontologies. In particular,
whenever context change occurs, the run-time
environment identifies the new contextual features and
translates them into new adaptation constraints in the
operational environment. Figure 3 shows the global
ontology space which encompasses the four context
ontologies and the domain ontology. Different types of
core ontology classes describing basic ontology
concepts (i.e. Device, Learning Resource), role
concepts (i.e. Leamer), and role holders (i.e.
LeamingActivity), are used to interrelate concepts
among the combined ontologies. As shown in Figure 2,
the five ontologies are integrated and blended along the
many properties that link various classes used by these
ontologies. Figure 2 shows only the relationships
among these ontologies. Below, we describe each of
these ontologies as well as the relationship between
them in more details.

Learner Ontolagy

Device Ontotogy

Figure 2. Global ontology space

The domain ontology is a conceptualization of a
knowledge organization of a specific subject domain. It
is expressed in terms of a hierarchy of subject topics,
each of which is described by a set of concepts and
their relationships. The power of domain ontology is
thus measured by its ability to model the semantical
role of its concepts in terms of their importance to the
described subject domain, as well as their temporal,
logical, and semantical dependencies. The class
concept 1s the ontology’s core class. Concepts are
interrelated along the properties HasPrerequisite,
PartOf, Isa, and NececassaryPartOf in order to
describe the temporal, part of, is a, and part-whole
dependencies between the wvarious sub-concepts
respectively. These properties can be employed to
build authoring tools capable of defining sub-concepts
at any desirable granularity level. They are also crucial
to support temporal and logical navigation of the
learning by providing the leamer with the right
learning sequence and content. In addition to the above
mentioned properties, we used the class property
IsMappedTo to annotate learming resources with
ontology concepts. This property along with
HasKeyword property, which associates keywords
input by the learner to most related ontology concepts,
are very useful for retrieving learning resources by
mapping their metadata to ontology concepts, thus
allowing resources sharing.




Learner Ontology is used to represent knowledge
about the learner to deliver personalized e-learning
services. This knowledge is organized into ontology
concepts and relationships and used to map different
contextual learner attributes onto service invocations,
thus, enabling the system to discover, adapt, and
deliver the most relevant learning resources in response
to queries made by the learner. The main properties
used in this ontology are HasCovered which relates
individuals of class Leaner to domain concepts that has
been covered 50 far, and property
ConsumedLearningResource which relates individuals
of class Leaner to consumed learning resources. These
relationships are used to infer those concepts that have
not been covered by the leamer, and thus help planning
his learning path. Path planning also involves the use
of the domain ontology relations HasPrerequisite,
NececassaryPartOf, PartQf, and Isa. Finally, the
property  ConductedLearningActivity relates the
Learner class to LearningActivity class. This enables
the system to infer and retrieve all previously
conducted learning interactions for a particular learner.
Thus knowledge embedded in activity ontology can
capture all learning activities (user interactions)
conducted by a learner over a period of time using a
specific handheld device, as well as queries previously
made by the leamer. It also allows the system to
recover from wireless network disconnections, which
could be frequent in a mobile environment, by
identifying the most recent learning activity and
restoring most recent leaming context. All queries
made by the learner are time-stamped to infer the order
in which ontology concepts were covered and their
respective leamning resources were consumed. This
feature is crucial to organize and adjust the learning
path every time a new query is made by the learner.

The device ontology however is used to represent
knowledge about used devices and their hardware and
software capabilities and limitations. This knowledge
is very useful for the discovery of leamning services
whose execution profile matches the characteristics of
the used device. For instance, knowledge such as
maximum bandwidth that can be supported by a
device; supported communication protocol; and
running operating system, is needed to adapt the used
device to the sensed wireless network. Other device
knowledge such as enabled software applications,
screen resolution, and available memory can also be
used to filter out leamning resources with a media type
matching the device capabilities. Finally, the

environment ontology formally describes the
knowledge about a learner’s environment which
consists mainly of temporal and spatial contextual
features, as well as networking, security, and
connectivity issues. The main properties of this
ontology are HasLocation which relates the class
Environment to the current location, and the properties
HasWirelessNetwork, IsSecured and Hasbandwith
which describe the wireless network the leamer is
connected through, its security status, and its current
bandwidth respectively. These contextual elements are
very crucial to adjust learning content that is
compatible, in terms of size, media-type, and privacy,
with the technological set-up that characterizes the
surrounding environment of the leamer.

The Semantic Web Rule Language (SWRL) is used
in this study to reason with the perceived context in
order to retrieve metadata that can be used for the
various adaptation tasks. Several SWRL rules are used
to infer new context based on the sensed atomic
context elements. For instance, the media-type of
leaming resources to be retrieved from the various
distributed learning objects’ repositories can be
inferred from the atomic context elements describing
network bandwidth, available memory and screen
resolution of the used device. For example, we only
search for learning objects with text type if a mobile
device has a small available memory, or if the network
has low bandwidth. Figure 3 describes the logical steps
to select the media type of retrieved learning objects to
make sure that they are browsable on the used device,

Figure 4 shows some of the experimental results for
a user who want to learn about digital photography.
We modeled a very simple ontology describing the
digital photography subject area and asked few users to
make queries related to that domain using devices with
different software and hardware capabilities. The
figures below show the results for a query using the
concept Camera. The learner is provided with a list of
concepts related to Camera using knowledge
embedded in the domain ontology, in addition to a set
of learning resources retrieved by various search agents
such as Wikipedia and Youtube. Our search engine is
based on mashup technology, which enables it to
integrate learning resources from various distributed
repositories. The retrieved resources are filtered out
based on the learner, device, and environment context.
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5. Conclusion

This paper attempts to solve some of the challenges
related to context management and mobile learning
design, making use of the progress made in ubiquitous
computing and the Semantic Web respectively. In
particular, our contribution is a method that integrates
knowledge related to the learner, learning activity, used
mobile technology, and surrounding environment, and
defines it at the semantic level using a global
interrelated ontology space. The proposed approach
allows reasoning with the perceived heterogeneous
context elements to translate context changes into new
adaptation constraints in the operating environment,
thus enabling personalized leaming. An early prototype
is built and the experimental results are very
promising. We are currently implementing the various
reasoning mechanisms to deal with the leamer’s
context, background, and preferences.
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