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Abstract
Progress made in Semantic Web technologies and Ubiquitous Computing has lead to 

the development of mobile learning services that can adapt to the learner’s background, 

learner’s needs, and surrounding environment. In particular, the emerging techniques 

from these two technologies have the potential to revolutionize the way mobile learning 

services available on the web are discovered, adapted, and delivered according to context. 

Context acquisition and management, conceptual knowledge modeling and reasoning, and 

adaptive services discovery are the main ingredients for designing such context-aware 

mobile learning systems. However, a number of challenges are still facing the research 

community in this field. These can be summarized in the following: (i) current mobile 

learning services act as passive components rather than active components that can be 

embedded with context awareness mechanisms, (ii) existing approaches for service 

composition neglect contextual information on surrounding environment, and (iii) lack of 

context modeling and reasoning techniques for integrating the various contextual features 

for better personalization. In this thesis an attempt is made to solve the above-mentioned 

problems. These challenges are addressed by proposing a personalized mobile learning 

system based on a global ontology space to aggregate and manage context information 

related to the learner, the used device, the surrounding environment, and the task at hand. 

The system adopts a unified reasoning mechanism, around the global ontology space, in 

order to adapt the learning sequence and the learning content based on the learner profile 

and the perceived contextual information. The adopted approach for ontology reasoning 

aims at achieving two types of adaptations -  system-centric adaptation and -  learner- 

centric adaptation. These are implemented on a Run-Time Environment that identifies 

new contextual changes and translates them into new adaptation constraints. We 

developed and tested our system on a number of subject-domain ontologies using various 

learning scenarios, and the obtained experimental results are very promising.

Keywords: Semantic Web, Ontology, Mobile Learning, Ubiquitous Computing, Context 

Modeling and Management, Ontology-based Reasoning, Web Services.
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1.1 Motivation and Objectives

This study is concerned with the design and implementation of a mobile learning 

system tailored to the needs and context of learners. Context acquisition and management 

[1-3], conceptual knowledge modeling [4-5] for personalized learning, and adaptive 

information discovery are the most important requirements for designing such an 

intelligent mobile learning system. The goal of the research community in the field of 

mobile learning is to develop ubiquitous learning environments capable of providing 

useful learning resources on demand, anywhere, in a learner-driven context and on a 

learner’s schedule [1]. In the ubiquitous environment, the context-awareness framework 

needs to aggregate and integrate context information related to the learner (i.e. preferred 

language, previously conducted learning interactions), the used device (i.e. operating 

system, current available memory size), the surrounding environment (i.e. varying 

network bandwidth, location), and the task at hand (i.e. current learner’s interaction, goal). 

Research work in this field has been dominated by the use of ontologies and other related 

semantic web technologies for context-awareness. Many approaches to context modeling 

have been considered [4-7].

Another important aspect of mobile learning is the design and deployment of mobile 

web services. This field is becoming a very active area of research and development [6-8]. 

However, some challenging aspects are facing the research community in the area of 

personalized mobile services. These are;

• Current mobile web services act as passive components rather than active 

components that can be embedded with context awareness mechanisms.
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• Existing approaches for service composition typically facilitate choreography only, 

while neglecting contextual information on users, environment, and services.

• Lack of context modeling techniques and middleware for integrating the various 

contextual features for better personalization.

This study proposes a solution to the above mentioned problems by developing a 

personalized mobile learning system with semantic-rich awareness information. In 

particular, this study focuses on a new context modeling and ontology-based reasoning 

mechanism. This approach is based on the fact that context is not simply the state of a 

predefined environment with a fixed set of interaction resources, but it is part of a process 

that is interacting with an ever-changing environment composed of a set of heterogeneous 

atomic context elements [9]. Therefore, the proposed personalized mobile learning system 

is based on a Run-Time Environment (RTE) that identifies the new contextual features 

and translates them in to new adaptation constraints. For instance, the system 

automatically updates the perceived -  device or -  environment context elements and uses 

them to re-adjust inferred metadata that adapts the search for those compatible learning 

resources. The main contributions of our work are as follows;

• A unified ontology space for context integration and aggregation based on learner 

context, activity context, device context, and environment context. In addition, this 

ontology space contains a domain ontology used to define the subject domain area of 

interest.
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• Efficient learning sequence management and subject domain knowledge 

representation at different granularity levels to suit learners with various cognitive 

skills.

•  A Run-Time Environment model for context management to permit context 

perception, context identification, and context adaptation. The system uses 

ontology reasoning to infer high level context at the semantic level to achieve both 

system-centric adaptation and learner-centric adaptation.

1.2 Structure of the Thesis

Chapter 2 introduces some basic background for Semantic Web technologies such as 

the Resource Description Framework (RDF), Web Ontology Language (OWL), and 

Semantic Web Rule Language (SWRL). It also describes current research work in the 

field of mobile learning. Chapter 3 presents the overall system architecture and the main 

functions of the system. It describes the approach used for context acquisition and 

modeling. It also describes a global ontology space for context integration and 

aggregation based on user context, activity context, device context, and environment 

context. Chapter 4 describes the reasoning and learning strategies used to personalize 

learning. Chapter 5 includes a number of case studies that illustrate the main functions of 

the system. Chapter 5 also provides a performance evaluation study by comparing our 

system with some other existing systems. Finally, conclusions from the work are drawn 

and further research work is suggested.
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CHAPTER 2

BACKGROUND & RELATED WORK



This chapter introduces basic technical background in the area of semantic web. It then 

overviews the related research work in the field, and finally, it introduces the approach 

adopted in this study for the design and implementation of a context-aware mobile 

learning system.

2.1 Semantic Web

The semantic web is an extension of the World Wide Web, in which information and 

services are given well-defined meaning, making it possible for the web to understand the 

requests of people, and enabling computer and people to work in cooperation [10-11]. To 

make possible the creation of the semantic web, the World Wide Web Consortium (W3C) 

has been actively working on the definition of open standards [12]. Based on these 

standards, the semantic web will empower intelligent services such as search agents, 

information filters, and knowledge management systems.

2.2 Current Web v.s. Semantic Web

Today’s web is primarily composed of documents written in presentation mark-up 

languages like Hyper Text Mark-up Language (HTML). HTML was designed for human 

interpretation and use. Each web page has a Uniform Resource Locator (URL) address 

and can be easily accessed by people. Humans can read information from web pages, 

understand them and process item, but the machine is not smart enough to handle the 

above task. It can not read, analyze, and interpret the meaning of the information in 

presentation mark-up language form. Semantic web is used to express resources in a 

machine-processable format that can be used by computers not only for display purposes,
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but also for interoperability and integration between systems and applications [12]. It will 

bring a structure to the meaningful web resources, and sets the inference rules for 

automatic reasoning. Table 2.1 describes the overall difference between the current web 

and the semantic web.

Current Web Semantic Web

Context Sharing Resource Sharing

Presentation Mark-UP Semantic Mark-UP

Human Interaction Machine Processable

Product / Download Dynamic Web-Services |

Producer / Consumer Collaborative virtual Communities I
; - I

Bolt on security Detailed Security Model i

Table 2.1 Current Web v.s. Semantic Web

2.3 Semantic Web Technologies

The main web technologies used by the semantic web are Uniform Resource Identifier 

(URI), Extensible Makeup Language (XML), RDF and OWL. People, places, and things 

in the physical world will have online representations identified by URIs. XML is a 

mark-up language that provides syntax for content structure within documents. It allows 

everyone using open standard syntax to create their own documents. RDF is a data model 

for representing resource’s information on the web [13]. Many Resources need to be 

processed by applications instead of only displayed to people. The motivation of RDF is 

to create a format for making assertions about resources and to combine data from several 

applications. Subject, Predicate and Object are three main entities for representing an 

RDF statement. The subject and predicate are URIs, while the object can be a URI or a
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literal. In RDF, there are only two types of data for property values; string and URIs. 

Figure 2.1 shows a cell phone with a resolution of 320 * 240 pixels.
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Figure 2.1 Figure 2.1 RDF Graph for a Mobile Phone 

The Semantic Web will build on XML's ability to define customized tagging schemes 

and an RDF's flexible approach to representing data. The first level above RDF required 

for semantic web is an ontology language which can formally describe the meaning of 

terminology used in the web document [14]. OWL can be used to explicitly describe an 

ontology that is a representation of concepts and their relationships. OWL provides three 

increasingly expressive sublanguages that are OWL Lite, Web Ontology Language 

Description Language (OWL DL), OWL Full. The ontology developer needs to consider 

the sublanguages that best suit their need. The OWL Lite is a basic sublanguage that can 

support a classification hierarchy and simple features. The OWL DL has more advantages 

for maximizing expressiveness without losing computational completeness and 

decidability of reasoning systems. The OWL Full developed for users who want 

maximum expressiveness and syntactic freedom of RDF with no computational 

guarantees. Figure 2.2 represents the seven layers structure for the semantic web.
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2.4 Reasoning Techniques

Ontology reasoning approaches can use various kinds of logic to support inference; 

description logic, first order logic, temporal logic, and spatial logic to name a few [15]. 

Although there are many ontology reasoning languages [16-19], such as SWRL, Rule 

Markup Language (RuleML), and Description Logic Programs (DLP), SWRL has been 

proposed as the basic rules language for the semantic web. It is a combination of the 

OWL DL and OWL Lite sublanguages of OWL with the Unary/Binary Datalog RuleML 

sublanguages of the Rule Markup Language. While DLP is the intersection of Horn logic 

[17-18] and OWL, SWRL is (roughly) the union of them. In DLP, the resultant language 

is a very peculiar looking description logic and rather inexpressive language overall. It is 

hard to see the restrictions are either natural or satisfying. Contrariwise, SWRL retains the
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full power of OWL DL, but at the price of decidability and practical implementations [16]. 

SWRL is a logic language with rules expressed in the following format:

A  >- -A ^

Where A, and B are atomic formulas. The set [A, ,...A„} is referred to as the

antecedent (body) of a rule, and R is a consequent (head) of a rule. The atoms A, ,...A„

and B can be of the form C(x), P(x,y), sameAs(x,y), differentFrom(x,y), or builtln(r,x,...), 

where C is an OWL description or data range, P is an OWL property, r is a built-in 

relation, x and y are either variables, OWL class individuals or data values as appropriate 

[19]. The following is an instance described by a SWRL rule. In this SWRL rule, the 

concept person has been captured using an OWL class called Person', the parent, sister 

and aunt relationships can be expressed using OWL object properties hasParent, 

hasSister, and hasAunt respectively.

Rule-1 :

Person (?x) ̂ hasParent (?x, ?y) ̂ hasSister (?y, ?z) -^hasAunt (?x, ?z)

2.5 Related Work

Semantic web technologies have been used in recent years to develop personalized 

learning systems. In particular, ontology-based approaches have been used for context 

modeling and management; and logic approaches have been used for ontology inference 

and reasoning [20-25].
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Such applications which take advantage of the context are called context-dependent or 

context-aware applications and lead us to the development of context-aware systems [26- 

29]. In Shehzad and Ngo, it is advocated that the use of formal modeling in context aware 

systems will bring many advantages to the area [28], mainly when focusing on solving the 

following problems: (1) sharing of common information semantics; (2) testability of 

formalized knowledge; and (3) emergence of a pool of consistent contextual knowledge 

available to different context-aware systems. Their work discussed context models for the 

home domain and shows how it entails implicit reasoning. The formalized context model 

is based on categorized context entities such as agent, devices, environment, location and 

time. In particular, they defined the contextual information hierarchy among sensor based 

information, elementary context, and composite context. In a similar study, four types of 

context-awareness models are identified by Lee et al. for ubiquitous environments: (1) the 

basic type is Sense-Context that is gathered from the sensors; (2) Combined-Con text that 

is calculated by Sensed-Context and the representation of calculation formula is 

represented in SWRL; (3) Inferred-Context that is inferred by Sensed-Context and the 

representation of inference is also represented in SWRL; and (4) Learned-Context that is 

made by a learning algorithm such as Decision-Tree (DT) or Neural-Network (NN) [29].

Yang proposed a work for context model and context acquisition mechanism for 

collecting contextual information at run time [30]. In particular, their work does not only 

provide an ontology based context model but also utilizes two context acquisition 

methods context detection and context extraction, for obtaining various contextual 

information [30]. They developed two types of context ontologies: learner ontology, and 

service ontology. The learner ontology consists of learner profile, preferences. Quality of
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Learning Services (QoLS), environment, and services. The service ontology consists of 

service profiles, and QoLS. In their work, the context detection is tracked from two sides: 

server side (i.e. analysis of previous work), and client side (i.e. sense learners’ 

surrounding environment). The context is extracted from the learner’s default context 

based on the preferences and derived contextual information from the calendar profile, 

and social profile.

In the field of personalized mobile learning [31-34], Yu and Nakamura developed a 

personalized and complete learning system to support mobile learners [31]. The system 

consists mainly of three ontologies (Learner ontology. Learning Content Ontology, and 

Domain Ontology), five rules for semantic relevance calculation, and an algorithm for 

generating the learning path. For ontology modeling, they designed a learner ontology 

that depicts context about the learner (i.e. subject or particular content already mastered, 

learning goals, available learning time, current location, desired learning style, and 

learning interests). For the learning content ontology, they defined a relation 

hasPrerequisite that describes context dependency information. The domain ontology is 

proposed to integrate existing consensus domain ontologies such as computer science and 

chemistry. For semantic relevance calculation, their work adopts the following steps: (1) 

map the user’s goal to the domain ontology; (2) locate the subject of the learning content 

in the domain ontology; (3) estimate the conceptual proximity between the mapped 

element and the subject node of the learning content [31]. According to their algorithm, 

the system can generate a learning path connecting with prerequisite contexts 

{hasPrerequisite relations) and the target learning context. In another study by Henze and 

Dolog, the proposed system uses three types of ontologies (domain, user, and observation)
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to realize dynamically personalized e-leaming tasks on the semantic web [28]. They 

suggested a framework for such adaptive or personalized educational hypermedia system 

based on a number of semantic web techniques. In particular, they show how rules can be 

enabled to reason over distributed information resources in order to dynamically derive 

hypertext relations which are used to recommend a sequence of learning tasks.

Berri and Benlamri have developed a learning system where extracted conceptual 

knowledge from a source ontology is efficiently used by firing a set of rules based on the 

learner profile to recommend a learning path [35]. In an extension of the same work, 

Basaeed et al. have divided the learner context into two models: learning model (i.e. 

authentication information, age) and learning preferences (i.e. learning style, difficulty 

level). The device context is described in the terms of its device type and its capabilities 

(i.e. navigation tools, bandwidth limitations). The system uses learner ontology, device 

ontology, and domain ontology to enable better learner modeling, efficient context 

acquisition and management, and reusable customized learning content [1]. The main 

component in their system is the learning web constructor that operates in three-steps: 

context sensing, context reasoning, and context adaptation. The system matches the 

learner’s goal to the concepts in the ontology based on three relationships: necessary part- 

of, part-of, and is-a. Then, the importance of Learning Objects (LOs) is inferred by using 

rules that are retrieved from “context reasoning”. Finally, the system considers the time 

issue, and then generates a learning path using necessary part-of, part-of, and is-a contexts 

(assigned from higher to lower importance levels respectively). Accordingly, their system 

achieves the initial goal providing “just enough, just in time, just for me” learning 

delivery [1].
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To achieve true context awareness, however, mobile systems must produce reliable 

information in the presence of uncertainty, rapidly changing, and environment partially 

true data from several sources [36-39]. In Korpipaa et ah, fuzzy sets or crisp limits are 

introduced for quantizing extracted features [36], where resource servers use one of two 

methods for quantization; set crisp limits (true-false), or apply a fuzzy set for features (a 

truth value between 0 and 1). The resource servers use an unstructured raw measurement 

data, and return a representation defined in the context ontology for context management. 

In a similar study by Pan and Stoilos, a system called f-SWRL that is a fuzzy extension to 

SWRL is developed [37]. The system includes fuzzy assertions and fuzzy rules. In their 

work, the atoms in f-SWRL can include a “weight” that is a truth value between 0 and 1. 

The “weight” represents the “importance” of the atom in a rule. For example:

Richip. p) * 0.5 A Healthyp. p) * 0.9 Happy(l p) 

where values 0.5 and 0.9 represents the weights for atoms Richil p) and Healthy{l p ) .

To design and implement personalized mobile learning systems on the semantic web, 

there are at least three related research areas which need to be considered. These are: 

context-awareness frameworks for ubiquitous environments, adaptive information 

discovery, and ontology-based reasoning mechanisms. It should also be noted that the 

characteristics and requirements of mobile learning are different and far more complex 

than those of traditional learning systems. For example, low bandwidth, limited screen 

resolution, and unsecured wireless communication are a just few technological constraints 

that make up the system’s complexity. The proposed system attempts to solve some of the 

above mentioned challenges.
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Our approach uses three hierarchical levels -  atomic level, composite level, and high 

level. Sensor based information, elementary context, and composite context are defined 

for each contextual information hierarchy. In addition, the system integrate knowledge 

related to the learner, learning activity, used mobile device, and surrounding environment 

and it defines them at the semantic level using a global interrelated ontology space. Our 

system uses ontology reasoning to infer high level context at semantic level for both 

system-centric adaptations and learner-centric adaptations. System-centric adaptations 

are used to ensure searched learning resources are suitable for the system-centric metadata. 

For learner-eentrie adaptations, the system uses learner’s tacit knowledge to build a 

learning path for better personalization.

15



CHAPTER 3

SYSTEM DESIGN &

ARCHITECTURE

"'"TRONDUcnON

ONTqioQY
'̂ EASOMiMg

‘Conclusion



This chapter presents the overall system architecture and provides a detailed description 

of its main components. It first describes the context sensing and acquisition system. It 

then presents the major software components of the system design, and finally, it 

introduces the user interaction with the system. This chapter also describes the approach 

used for context acquisition and modeling. It designed a global ontology space based on 

learner context, activity context, device context, environment context, and domain context.

3.1 Overall System Architecture

This section overviews the main components of the system architecture. Figure 3.1 

describes the proposed learning system which consists of the context sensing and 

acquisition unit, the ontology reasoning unit, and the service/resource discovery and 

adaptation unit.

The context sensing and acquisition unit consists of three hierarchical levels -  atomic 

level, composite level, and high level. Atomic level retrieves the user interaction and 

senses atomic context elements from different sources. At the composite level, the system 

uses inference, computation, and a learning technique to translate atomic context elements 

into meaningful symbolic context information. High level context consists of four-tuple 

C, = (C^, C g, Cg, ), which are built out of configurations of composite context

elements sensed at time t around a specific learning domain [40]. It should be noted that 

Cgis learner context, Cg is device context, C^is environment context, and C^is activity 

context. The above hierarchy is denoted by the context sensing and acquisition units 

shown in Figure 3.1.
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Figure 3.1 System Architecture

The system uses a global ontology space to enable efficient context modeling and 

management. It also adopts a unified reasoning mechanism to share and reuse 

personalized learning content. As shown in Figure 3.1, the global ontology space consists 

of a domain ontology and four interrelated sub-ontologies that are learner ontology, 

device ontology, environment ontology and activity ontology. In this study, the system 

used the OWL DL for describing the global ontology space. Ontology-based reasoning is 

a key design for our global ontology space to enable personalized learning that can be 

achieved in two different aspects: -  system-centric adaptation -  and learner-centric 

adaptation. In system-centric adaptations, the system ensures searched learning resources 

are suitable for the system-centric metadata generated from perceived device and
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environment atomic context elements. For the learner-centric adaptations, the system uses 

learner’s tacit knowledge to build a learning path for better personalization. This is 

achieved in terms of a sequence of service discovery and adaptations as described in 

Figure 3.1.

3.1.1 Operational environment

This section describes the main software components for setting up our system 

environment. Figure 3.2 describes the major technologies used to build our system as well 

as the basic system processing steps.
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Figure 3.2 Software Components 

The system uses Apache -  Tomcat 6.0.14 as the servlet container which can be 

manually started and stopped. Java is the main programming language in our system. 

System opted for an IDE (Eclipse SDK 3.3.1) as software development platform. Eor
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context modeling, system uses Protégé 3.4 Beta for ontology editing and knowledge 

acquisition purposes. Jena API is a Java framework for building semantic web application. 

It is used to read the global ontology space and to create prerequisite individuals. Dom4j 

is used to process XML files such as reading data from learning resources and writing 

retrieved data to buffer storage. For ontology reasoning, the system has utilized SWRL 

Tab of Protégé to build the SWRL rules. Jess is a rule engine used as an interactive tool 

for manipulating Protégé ontologies. SWRL -  Jess Bridge is a subcomponent of the

SWRL Tab that provides a bridge between an OWL model with SWRL rules and rule

engine Jess 7.0. The sequence of processing between these main components as shown in 

Figure 3.2 is described in more details in the next chapter.

3.1.2 User interface design

This section describes the user interaction of our system. The user interface uses a 

menu-driven interface to control the main functions of the system and to help the user 

navigate in the learning web. Figure 3.3 and Figure 3.4 show the major functions which 

consist of:

• Next: verify user’s password and turn into main page when user submit password 

correctly.

• Search: Submit user typed query to web server.

• Go with Recommend: Submit user selected concept to web server.

• Default: Reset the user’s profile to initial state.
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•  Back: Return to previous page.

The learner is exposed to an interface like the one shown in Figure 3.3.a when the user 

opens the WAP 2.0 (Wireless Application Protocol) browser using his handheld device. 

Figure 3.3.b shows the welcome page after authentication is passed. The user can then 

type any keyword in the input query-part and submit it to the server by using the Search 

button. Figure 3.4.a shows the related search results after the server has received the 

user’s query. The system offers many optional concept-key word and related learning 

resources. For the optional concepts, the user can select Go with Recommendation button 

to acquire more learning resources. The related learning resources represent all learning 

resources about the user’s query. Any consumed learning resource or concept will not be 

displayed to the user in this part. The Default button can help to reset the user’s profile to 

initial state. This button deletes all history about consumed learning resources. Figure 

3.4.b selects a specific learning resource when user clicks learning resource’s title with 

URI link. The user can be returned to the previous page when selecting the Back button.
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Figure3,3 User Interface (1)
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3.2 Context Acquisition & Representation

According to Schilit, context is referred to as any information that can be used to 

characterize the situation of any entity where an entity can be a person, place, and 

physical or computational object [30]. While context entities are conceptual entities, the 

information provided by them is called contextual information [28]. Contextual 

information used in our system is defined at three hierarchical levels -  atomic level, -  

composite level, -  and high level as shown in Figure 3.5.

The atomic level collects all atomic context raw-data from different hardware 

sources, software sources, and the user interaction. The atomic context elements consists 

of basic information describing the learner (i.e. preferred language, previously conducted 

learning interactions), the used device (i.e. operating system, current available memory), 

the surrounding environment (i.e. network bandwidth, location) and the task at hand (i.e. 

current learner’s query, learning goal). Some of these atomic context elements are sensed 

by software and hardware sensors and others are retrieved from user’s input, user’s profile.
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and used device. At this level, contextual information has its own static or dynamic 

attribute. Some of the contextual information is static, such as screen resolution of a 

specific handheld device, learner’s birth date, gender, and preferred language(s). The 

other contextual information is dynamic such as network bandwidth, user’s location, and 

current available memory. In addition, data type of raw-data is divided to quantized and 

non-quantized contexts whose values are numeric. Boolean, and literals, and most of 

which are time-stamped.
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Atomic Context 
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Sensor
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Figure 3.5 Context Acquisitions and Management

At the composite level, the system uses inference, computation, and learning

techniques for translating all atomic contexts raw-data into symbolic values. The

computed composite context is calculated from the atomic context elements. The inferred

composite context is derived by inference using the Rule-Based Inference Engine written

in SWRL. Ideally, all dynamic contextual-changes need to be fed to the system as they

occur. However, the process of continuously sensing and updating the dynamic atomic
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context elements is time and resource consuming, especially in a mobile computing 

environment where system resources are very expensive. To solve this problem, the 

system adopts a learning technique where it senses precise values at some specific points 

in time and it predicts the approximate symbolic value between the sensing points. 

Example of computed composite context is user’s age that can be computed from user’s 

date of birth. Another example is interaction time that can be computed from interaction 

begin-time and end-time. Example of inferred composite context is inference of media 

type that can be played by a handheld device based on current network bandwidth. 

Example of learned context is translating current wireless network bandwidth to some 

symbolic meaningful value using fuzzy logic.

At the High level is context aggregation and adaptation where system divides context 

into four context groups: C^is learner context; Cg is device context; Cg is environment 

context; and is activity context. Learner context contains learner profile such as learner 

ID, authentication information, and preferred languages. Device context is the main 

source for determining the software and hardware capabilities of used devices. The 

software information consists of operating system, support languages, support media type 

for a particular mobile device. The hardware information consists of screen resolution, 

memory size, and display type and so on. Environment context is the main source for 

provisioning learner’s surrounding context information that includes current bandwidth, 

current location, and used wireless network and so on. Activity context deals with 

accessed services, consumed learning resources, adopted learning sequence, and domain- 

knowledge management. The formal definition of these four context groups is defined as 

follows:
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Context Aggregation = {Learner, Device, Environment, Activity}

T 1; Learner; Concepts ={Learner ID, Authentication Info, Preferred languages , Covered 
Concept, Consumed learning resource}

T l . l  Authentication Info; Concepts = {Username, Password}

T2: Device; Concepts = {Device ID, Software, Hardware}

T2.1: Software; Concepts = {Operating system. Support languages. Support media type. Run 
application}

T2.1.1 Operating system; Concepts = {Palm, Windows Mobile, RIM, GPE, OPIE, Symbian, 
Linux, Windows...}

T2.1.2 Support languages; Concepts = {English, France, G erm an,...}

T2.1.3: Support media type; Concepts = {Text, Image, Video}

12.1.4 ; Run application ; Concepts = {Word, PowerPoint, JPEG ...}

12.2: Hardware; Concepts ={Display type; Keyboard type. Max bandwidth. Available memory. 
Screen resolution}

12.2.1: Display type; Concepts = {Normal, Touch}

T2.2.1: Keyboard type; Concepts ={Virtual, Physical, Real}

T2.2.3: Screen Resolution; Concepts = {High. W idth}

T3: Environment; Concepts = {Current bandwidth. Current Location, Sensed time. Wireless 
network}

T3.1: Location; Concepts = {Longitude, Latitude}

T3.2: Sensed Time; Concepts = {Current(yyyy : mm : dd ; hh :mm)}

T4: Activity; Concepts = {Activity ID, Query, Learning path}

T4.1 Query; Concepts = {Keyword}

T4.1: Learning path ; Concepts = {Is-a, Prerequisite, Necessary part of. Part of}
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Table 3.1 shows some of the context data used in the system. These are identified

according to the four context groups.

Source ID (Type) Feature ID (Type) Value Symbolic(Probability)

1 (Device) 1 (Screen Resolution) Identifier {High, Width} & N/A

1 (Device) 2 (OS) Identifier {Linux, Symbian ...} &N/A

1 (Device) 3 (Media) Identifier {Text, Image, Video} & N/A

2 (Environment) 1.1 (Network: Bandwidth) Kbps (Low, Medium, High} & N/A

2 (Environment) 1.2 (Network; Latency) Boolean {True, False}

2 (Environment) 1.3 (Network: Security) Boolean (True, False}

2 (Environment) 2 (Location) (X .Y ) {Stationary, Qn the Move}

2 (Environment) 3 (Time) Identifier {Current(yyyy:mm:dd; hh:mm)}

2 (Environment) 4 (Situation) Boolean (True, False}

3 (Learner) 1 (Authentication Info) Boolean (True, False}

3 (Learner) 2 (Languages) Identifier (English/French ...}  & N/A

3 (Learner) 3 (Preference) Identifier (Name, ID, Address...}

4 (Activity) 1 (Query) Identifier (keyword, domain} & N/A

Tables. 1 Context Definition

3.3 Ontology-based Context Modeling

The focus of current research work in the area of context-awareness is ontology-based 

context acquisition and management [41-44]. For instance, Yang [30] adopted two types 

of context ontologies: learner ontology and service ontology for collecting contextual 

information. These two ontologies are employed by the system to build a context-aware 

ubiquitous learning environment that can fully support the needs of peer-to-peer 

collaborative learning communities. CAMUS context model [28] used ontologies to
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formally describe contextual information related to agent, environment, deviee, location, 

and times. Their context model was used for the home domain and shows how it entails 

implicit reasoning. The system uses ontology to model and manage high level contexts at 

the semantie level to personalize the learning. In particular, it defines contextual 

information using a global ontology spaee that includes four interrelated sub-ontologies -  

learner ontology -  activity ontology -  device ontology -  and environment ontology. In 

addition, domain ontology is used to define the subject domain area to be taught. The 

global ontology space describing knowledge about all context components is incremented 

with the domain ontology knowledge, and used as a unified knowledge base for system 

reasoning. As shown in Figure 3.6, the five ontologies are blended along the many 

properties that link various classes used by these ontologies. For example:

The properties HasCovered and ConsumedLearningResource relate the Learner 

class to Concept and LearningResource class respectively. These relations are 

useful to traek already covered eoneepts and consumed learning resourees by a 

learner.

• The property ConductedLearningActivity relates the Learner elass to Learning 

Activity class. It is used to help the system infer and retrieve all previously 

conducted learning interactions for a particular learner.

• Activity ontology and device ontology are linked through property UsedDevice.

• The environment ontology and learner ontology are linked by 

HasSurroundingEnvironment and Locatedin properties which relate the Learner 

class to Environment and Location classes respectively.
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The following sections describe in details each of these ontologies as well as the 

relationships between them.

Learner Ontology
Activity Ontology

Learner. L e a rn in g  A c tiv i ty

Query
Domain Ontology

.Concept

Learning Resource

D e v ic e

Device Ontologyl i

Figure 3.6 Global Ontology Space

3.3.1 Domain ontology

Domain ontology is used to represent and organize existing knowledge for a specific 

subject domain. It is expressed in terms of a hierarchy of subject topics, each of which is 

described by a set of concepts and their relationships. Figure 3.7 presents a hypothetical 

ontology for C++ Programming designed for our system. The figure includes a number of
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concepts and many instances of the following four ontology based relationships; 

prerequisite, part-of necessary part-ofmà. is-a [35].
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Figure3.7 Domain Ontology for C++ Programming

Figure 3.8 illustrate the formal structure and relationships used to define a domain 

ontology. The core class in the domain ontology is class Concept that can be used to 

represents all concepts shown in Figure 3.7. The relations prerequisite, necessary part-of, 

part-of Ané is-a describe prerequisite knowledge, core knowledge, related knowledge and 

similar knowledge between the various concepts respectively. The property IsMappedTo 

relates the Concept class to Learning Resource class. The properties HasType, 

Expressedin ,and RunsOn relate an individual of class Learning Resource to its attributes 

Media Type, Language(s), and OS respectively. These properties along with HasKeyword 

property, which associates keywords input by the learner to most related ontology 

concepts, are very useful for retrieving learning resources by mapping their metadata to
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ontology concepts, thus allowing resources sharing. The property HasCovered relates the 

covered domain ontology concepts to individuals of class Leaner. The Concept class and 

Learner class are linked through property HasLearningGoal that represents the learning 

goal for a particular learner. It should be noted that the literal D means domain, and literal 

R  means range of the relationship in the following ontology figures.
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Figures.8 Domain Ontology

3.3.2 Learner ontology

Learner ontology is an important part of our context model for representing contextual 

knowledge about the learner. This knowledge is organized into ontology concepts and 

relationships and used to map different contextual learner attributes onto service
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invocations, thus, enabling the system to discover, adapt, and deliver the most relevant 

learning resources in response to queries made by the learner. Figure 3.9 shows the 

structure and relationships used in this study to define a learner ontology.
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Figure 3.9 Learner Ontology

The property PreferredLanguage denotes learner preferred language(s) such as English, 

French, etc. The data properties HasUserName and HasPassword relate individuals of 

Learner class to their identification and authentication information. The properties 

HasSurroundingEnvironment and Locatedin relate individuals of Learner class to 

Environment and Location classes, part of environment ontology respectively. These 

relationships are useful for retrieving learner’s current environment (i.e. bandwidth), 

learner’s location, and to infer new metadata for future system-centric adaptation. Other
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two important properties are HasCovered and ConsumedLearningResource which relate 

individuals of Learner class to the covered concepts and consumed learning resources in 

the domain ontology. These relations are useful to track already covered concepts and 

consumed learning resources by the learner and plan learning path for future learner- 

centric adaptation. The property ConductedLearningActivity relates the Learner class to 

LearningActivity class in the activity ontology. This relationship can help the system to 

infer and to retrieve all previously conducted learning interactions for a particular learner.

3.3.3 Device ontology

Device ontology is used to represent knowledge about the learner’s used device(s). This 

knowledge is used for tracking the main characteristics of the used device in order to 

retrieve adaptive learning resourses for that particuar device. The device ontology 

includes knowledge related to both software-centric context and hardware-centric context. 

The software-centric context is classified into support languages, support media type, 

operation system, and software applications. The hardware-centric context is classified 

into device type, display type, keyboard type, max bandwidth, available memory, network 

adaptor, and screen resolution. Figure 3.10 shows the structure and relationships used by 

device ontology. The property UsedDevice relates Device class to LearingActivity class in 

activity ontology. This relationship is used to track the device used by a learner during a 

specific learning activity. It should be noted that symbol *1 means the range of the 

relationship is restricted to one. For instance, a device can only have one display type.
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Figures. 10 Device Ontology

3.3.4 Environment ontology

Environment ontology is used to describe the knowledge about learner’s surrounding 

environment. This knowledge consists of temporal and spatial contextual features, as well 

as network and security features. Figure 3.11 shows the structure and relationships for the 

environment ontology. The properties HasWirelessNetworkType, IsSecured, 

HasBandwidth denote that the learner is connected through that particualr wireless 

network type, with a specific security status, and a specific current bandwidth respectively. 

These contextual elements are very crucial for inferring and adjusting learning content 

that is compatible in terms of size, media-type, and privacy, with the technological set-up 

that characterizes the surrounding environment. The property 

HasSurroundingEnvironment associates learner’s surrounding environment to individuals
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of Learner class. The property Locatedin relates learner’s location to individuals of 

Learner class.
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Figures. 11 Environment Ontology

3.3.5 Activity ontology

Activity ontology is used to describe knowledge about a learning activity. This 

knowledge records the learner’s interaction with a specific handheld device in a period of 

time. Figure 3.12 shows the main concepts and their relationships for activity ontology. 

The Learning Activity class is the core class in the activity ontology. The properties 

Begin-time and End-time describe the time period of the learner’s interaction. These 

relationships can be used to retrieve, for instance, the learner’s previous interactions in 

case of network interruption. The property HasActivitylD provides identification 

information to an individual of LearningActivity class. It should be noted that a learner
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can only have one activity ID at any one time. This activity ID should be terminated when 

the learner logs out. The property MakeQuery allows inferring all queries made during a 

learning interaction with the system. The property HasKeyword relates Query class to 

Concept class of domain ontology. Query keywords are directly mapped to domain 

ontology concepts. Learners should use ontology vocabulary while composing their 

queries. The Learning Activity class is related to Device class along the property Used 

Device.
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Figure 3.12 Activity Ontology
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Here is a fragment of OWL description for the global ontology space as generated by 

Protégé. This is used to define the classes, properties, and a specific learner.

<owliCIass rdf:about="#Learner">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>

<owl;ObjectProperty rdf:ID="HasSurroundingEnvironment"/>
</owl:onProperty>
<owl:allValuesFrom><owl:Class rdf:about="#Environment"/></owl;allValuesFrom> 

</owl:Restriction>
</rdfs;subClassOf>

<owl:disjointWith> <owl:Class rdf:about="#Environment"/></owl:disjointWith> 
<HasConsumedxowl:Class rdf:ID="LearningResource"/></HasConsumed> 
<rdfs:subClassOf><owl:Restriction>

<owl:hasValue rdf;datatype="http;//www.w3.org/2001/XMLSchema#string">Username 
</owl:hasValue>
<owl:onProperty>
<owl:DatatypeProperty rdf:about="#AuthenticateBy"/>

</owl:onProperty>
</owl;Restrictionx/rdfs;subClassOf>

</owl;Class>

<owl:Class rdf:ID=''LearnerlD"xrdfs:subClassOf rdf:resource="#Learner"/></owl:Class>

<owl:ObjectProperty rdf:about="#lsConsumedBy">
<rdfs:range rdf:resource-'#Learner"/>
<owl;inverseOfxowl;ObjectProperty rdf:about="#HasConsumed"/x/owl:inverseOf> 
<rdfs:domain rdf:resource="#LearningResource"/>

</owl:ObjectProperty>

<LearnerlD rdf:ID="lrene">
<HasConsumed>

<LearningResource rdf:ID="Computerl">
<Mappes rdf:resource="#Computer"/>
<lsConsumedBy rdf:resource="#lrene"/>

</LearningResource>
</HasConsumed>

<HasCovered rdf:resource="#Computer"/>
</LearnerlD>
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This chapter describes the ontology reasoning and learning strategies used to 

personalize mobile learning services. Ontology-based reasoning consists of system-centric 

adaptations and learner-centric adaptations. The system-centric adaptations ensure 

searched learning resources are exercisable on the used handheld device, while the goal of 

learner-centric adaptations is to build a learning path that suits the learner’s background 

and current activity. This chapter first presents the processing steps in a typical mobile 

learning scenario. It then describes the various adaptations employed in this study.

4.1 Processing Steps in a Typical Learning Scenario

This section overviews the main processing steps in a typical learning scenario. The 

high level context is fed to the ontology reasoning engine in order to personalize learning 

services based on the learner context, device context, environment context, and activity 

context. This adaptation process is achieved in two successive stages -  system-centric 

adaptation -  and learner-centric adaptation. System-centric adaptation is based on device 

ontology and environment ontology. It consists in applying a set of rules to infer the 

system-centric metadata (i.e. media type, search language) for use in service discovery 

process. Learner-centric adaptation is however based on learner ontology, activity 

ontology, and domain ontology. It consists of applying a set of ontological rules to infer 

metadata that can be used to customize the learning path. The sequence of steps given 

below illustrates the personalization process in a typical learning scenario where a learner 

wants to acquire knowledge in a specific learning domain. This learning scenario is also 

depicted graphicall y in Fi gure 4.1.
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Figure 4.1 Processing Steps in a Typical Learning Scenario

1. When the learner logs in, his background, preferences, and previous learning 

activity are retrieved.

2. The learner uses the domain ontology concepts to query the system.

3. The subject-domain ontology related to the learner’s query is retrieved.

4. Based on the learner’s query, the system infers the related ontology concepts and 

identifies those concepts that are part of similar knowledge, prerequisite 

knowledge, core-knowledge, and related knowledge using Is-a, HasPrerequisite, 

HasNecessaryPartOf, and f/uYPartO/properties respectively.

5. Next, the system uses the perceived device and environment atomic context 

elements to infer metadata that adapts the search for those learning resources that 

are suitable for the system-centric context.
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6. The metadata generated in (4) that is associated with the related domain ontology 

concepts, and the system-centric metadata generated in (5), are then used to 

discover and filter out learning resources stored in various learning repository 

based on system-centric context.

7. The system will then determine the learner’s expertise in the subject-domain (i.e. 

tacit knowledge) by inferring previous learning activities, covered concepts, 

adopted learning paths, and consumed learning resources. This knowledge is used 

to build a personalized learning sequence by removing already covered learning 

concepts, learning resources, and learning paths. Thus, the newly constructed 

learning sequence consists of optimized system-centric learning resources related 

to knowledge that has not been covered by the learner so far.

8. The personalized learning sequence is then provided to the learner for navigation.

9. Based on the newly selected concept, learner’s expertise is automatically updated 

and the personalized learning path is re-adjusted by resuming processing from step 

(4).

10. The learning activity terminates when either the learner logs out, or when all 

domain concepts are covered.

4.2 System-Centric Adaptation

The system-centric adaptations aim at filtering out those learning resources that are 

runnable on the used handheld device. This is achieved through inference of system- 

centric metadata based on perceived device and environment atomic context elements. 

The system-centric adaptation achieves its functionality in three steps: (1) media type and 

file size adaptation, (2) search language adaptation and, (3) other resource-centric
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adaptation. The diagram shown in Figure 4.2 describes the logical steps to select the 

media type of retrieved learning resources to make sure they are browsable on the used 

device. When the learner logs in, the system will first sense the used network adaptor and 

retrieves its connection speed. Connection speed is an attribute that is straightforward to 

obtain and it is typically the maximum theoretical speed for the used wireless adapter [45]. 

Knowing the type of the network connection, such as IEEE 802.11 wireless LAN or 

General Packet Radio Service (GPRS - wireless WAN), gives our reasoning engine the 

insight that allows it to make some adaptation choices related to media-type and size of 

resources to be retrieved. This is achieved by taking into account the available bandwidth 

and device features. For example, if the network connection is IEEE 802.11, the system 

will not keep sensing the network connection and will not make any restrictions on the 

type and size of media because the available bandwidth is large enough to handle all type 

of resources. However, if the sensed connection is GPRS, the system adapts the media- 

type and resource size based on the available bandwidth as explained below. For example 

for a GPRS connection, the maximum connection speed could be 48.0 kbps, however, the 

actual network bandwidth is usually less than that due to traffic on the network [45]. 

Ideally, the system should continuously sense the current network bandwidth and update 

the associated atomic context element whenever bandwidth change occurs. However, the 

process of continuously sensing and updating such dynamic bandwidth is time and 

resource consuming as it involves sending data packets through the network. To solve this 

problem, the system only sense the actual bandwidth at some points in time, and it uses a 

fuzzy logic approach in conjunction with SWRL rules to predict the available bandwidth 

between these points. Also, to reason with bandwidth, fuzzy logic translate the predicted
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current bandwidth into meaningful symbolic values such as low, medium, and high 

bandwidth as described below. Fuzzy logic is also used to predict the maximum data file 

size that can be communicated to the used device to avoid experiencing long delays. For 

instance, the system only search for learning resources with text type if a mobile device, 

operating on a GPRS network for instance, has a low bandwidth. However, it can accept 

learning resources of image or video type if the network bandwidth is high. The system- 

centric adaptations also check whether the operating system that is required to run the 

learning resource is similar to device’s operating system for compatibility purpose.

Sense Type o f  Network  
Connection & M aximum  

Connection Speed

User

Web Borrower 
HTM L

« L o g i n »

Sense & Update 
Actual Network  

Bandwidth

System  Centric Adaptation

Infer Current 
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WAP Borrower 
W M L

« N e w  Q u e r y > ;

Compute M aximum  
File S ize Global O ntology Space

Infer M edia  
Type

Device Repository

Adapt Retrieved  
Resources to D evice  

Features E nvironm ent Repository

Figure 4.2 System-Centric Adaptations

Fuzzy logic’s symbolic values are used to describe the current network bandwidth and 

available device memory as described above. The system make uses of the fuzzy logic 

truth values in conjunction with SWRL rules to allocate symbolic value to the current
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network bandwidth. Figure 4.3 shows the way the system predicts the current network 

bandwidth using the fuzzy qualifying linguistic variables such as Low, Medium, and High. 

The symbol represents a truth value that is between 0 and 1. This can be computed 

by Equation 4.1.

V a ( B )  Low Medium High

 kTA /  Q

b  Lowband g *  Mediumband Highband Maxband

Figure 4.3 Membership Function for Bandwidth

'■ U /lih) -  1

^2 :^ ^ (b )=  -

^3 -UAib)

b  —  M edium band

M edium band — Lowband  
b — Lowband

^4 ■ U^ib) —

hi : f iAb)  =

M edium band  —  Lowband  
b — Highband

(Equation 4.1)

H ighband  -  M edium band  

b  —  M edium band

H ighband  -  M edium band

h(, • (^) ~ 1

Table 4.1 describes the SWRL rules that are used to infer the truth values of classified 

symbolic network bandwidth given in Equation 4.1. The property f/5e£/Device(? a, ?y) 

relates an individual learner identified by his/her activity identifier a to his/her mobile 

device y. TruthValueRule-1 and TruthValueRule-2 are respectively related to Lj and L 2  

(Equation 4.1), and are used to infer the truth values associated to low network bandwidth. 

TruthValueRule-3 and TruthValueRule-4 are respectively related to L3 and L4  (Equation
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4.1), and are used to infer the truth values for medium network bandwidth. Finally, 

TruthValueRule-5 and TruthValueRule-6 are respectively related to L5 and Lg (Equation

4.1), and are used to infer the truth values for high network bandwidth. The data 

properties HasBandwidth and MaxBandwidth represent respectively the current network 

bandwidth and maximum connection speed of used mobile devices.

SWRL
Rules

TruthValueRule-1

ActivitylD(?a)A UsedDevice(?a, ?y)A HasBandwidth(?y, ?b)A 
HasNetworkAdaptor(?y, GPRS) A  MaxBandwidth(?y,PMaxband)A 
swrlb: multiply(?Lowband,?Maxband, 0.25)A 
swrlb:lessThanOrEqual(?b, ?Lowband)

ProbLow(?y, 1. 0)ANetworkBandwidth(?y, "Low")

TruthValueRule-2

ActivitylD(?a)A UsedDevice(?a, ?y)A HasBandwidth(?y, ?b)A
HasNetworkAdaptor(?y, GPRS) A MaxBandwidth(?y,?Maxband)A
swrlb:multiply(?Lowband,?Maxband,0.25)A
swrlb : multiply ( ?Mediutnband, ?Maxband, 0 . 5) A
swrlb:greaterThan(?b, ?Lowband)A
swrlb:lessThanOrEqual(?b, ?Mediumband)A
swrlb: subtract(?zl, ?Mediumband, ?b)A
swrlb: subtract(?z2, ?Mediumband, ?Lowband)A
swrlb: divide(?z, ?zl, ?z2)

ProbLow(?y, ?z)A NetworkBandwidth(?y, "Low")

TruthValueRule-3

ActivitylD(?a)A UsedDevice(?a, ?y) AHasBandwidth(?y, ?b)A
HasNetworkAdaptor(?y, GPRS) A  MaxBandwidth(?y,?Maxband)A
swrlb: multiply(?Lowband,?Maxband,0.25)A
swrlb:multiply(?Mediumband, ?Maxband, 0.5)A
swrlb:greaterThan(?b, ?Lowband)A
swrlb:lessThanOrEqual(?b, ?Mediumband)A
swrlb: subtract(?zl, ?b, ?Lowband)A
swrlb: subtract(?z2 , ?Mediumband, ?Lowband)A
swrlb;divide(?z, ?zl, ?z2)

ProbMedium(?y, ?z)A NetworkBandwidth(?y, "Medium")

TruthValueRule-4
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ActivitylD (?a)A UsedDevice(?a, ?y) A HasBandwidth(?y, ?b)A
HasNetworkAdaptor(?y, GPRS)A MaxBandwidth(?y, ?Maxband)A
swrlb:multiply(?Highband,?Maxband,0.75)A
swrlb:multiply(?Mediumband, ?Maxband, 0.5)A
swrlb:greaterThan(?b, ?Mediumband)A
swrlb:lessThanOrEqual(?b, ?Highband)A
swrlb: subtract(?zl, PHighband, ?b)A
swrlb: subtract(?z2, PHighband, PMediumband)A
swrlb: divide(Pz, Pzl, Pz2)

ProbMedium(Py, Pz)A NetworkBandwidth(Py, "Medium")

TruthValueRule-5

ActivitylD (Pa)AusedDevice(Pa, Py) A HasBandwidth(Py, Pb)A
HasNetworkAdaptor(Py, GPRS)A MaxBandwidth(Py,PMaxband)A
swrlb .-multiply ( PHighband, PMaxband, 0.75) A
swrlb:multiply(PMediumband, PMaxband, 0.5) A
swrlb;greaterThan(Pb, PMediumband)A
swrlb:lessThanOrEqual(Pb, PHighband)A

swrlb:subtract(Pzl, Pb, PMediumband)A
swrlb: subtract(Pz2, PHighband, PMediumband) A
swrlb:divide(Pz,Pzl,Pz2)

ProbHigh(Py, Pz) A  NetworkBandwidth(Py, "High")

TruthValueRule-6

ActivitylD(Pa)A UsedDevice(Pa, Py) A  HasBandwidth(Py, Pb)A 
HasNetworkAdaptor (Py, GPRS)A MaxBandwidth(Py,PMaxband)A 
swrlb: multiply(PHighband,PMaxband,0.75)A 
swrlb:greaterThanOrEqual(Pb, PHighband)

ProbHigh(Py, 1.0)ANetworkBandwidth(Py, "High")

Table 4.1 SWRL Rules for Truth Value

The following example illustrates the way the system applies the SWRL rules shown in 

Table 4.1 in a real-life scenario. For instance, let’s assume that Irene is using mobile 

device MotoW270 with a maximum connection speed of 32.0 kbps. Let’s also assume 

that the value (k"), the previously sensed actual network bandwidth, is found to be around 

18.0 kbps, that is fluctuating between medium to high bandwidth with relation to the 

maximum connection speed (see Figure 4.3). When TruthValueRule-2 and
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TruthValueRule-3 rules are applied, facts A2 and B2 are inferred, resulting into the 

addition of four statements to the list of facts as shown in Table 4.2. These new facts 

reveal the probabilities for the predicted current bandwidth which were found to be 0.75 

for medium bandwidth and 0.25 for high bandwidth as shown in Table 4.2.

Facts

Ontology related Facts
A l )  TruthValueRule-4

ActivitylD(Irene)
UsedDevice(Irene, MotoW270) 
HasBandwidth(MotoW270, 18.0) 
HasNetworkAdaptor(MotoW270, GPRS) 
MaxBand(MotoW270, 32.0) 
swrlb: multiply(PHighband,32.0,0.75) 
swrlb:multiply(PMediumband, 32.0, 0.5) 
swrlb:greaterThan(18.0, 16.0) 
swrlb:lessThanOrEqual(18.0, 24.0) 
swrlb:subtract(Pzl, 24.0, 18.0) 
swrlb: subtract { Pz2, 24.0, 16.0) 
swrlb;divide(Pz, 6.0, 8.0)

B l ) TruthValueRule-5

ActivitylD(Irene)
UsedDevice(Irene, MotoW270) 
HasBandwidth(MotoW270, 18.0) 
HasNetworkAdaptor(MotoW270, GPRS) 
MaxBand(MotoW270, 32.0) 
swrlb:multiply(PHighband,32.0,0.75) 
swrlb:multiply(PMediumband, 32.0, 0.5) 
swrlb:greaterThan(18.0, 16.0) 
swrlb:lessThanOrEqual(18.0, 24.0) 
swrlb:subtract(Pzl, 18.0, 16.0) 
swrlb: subtract ( ?z2, 24.0, 16.0) 
swrlb; divide(Pz,2.0,8.0)

Inferred Facts

A 2 )

ProbMedium(MotoW270, 
0.75)
NetworkBandwidth 
(MotoW2 70, "Medium")

B 2 )

ProbHigh(MotoW2 70, 
0.25)

NetworkBandwidth 
(MotoW270, "High")

Table 4.2 Instance for Truth Value

The inferred probabilities of current bandwidth are then used to infer the maximum 

allowable data file size. It should be noted that the resource size is checked for efficiency 

purpose, as it is not practical to consider a large resource (i.e. Mbytes) if the used device
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operates on a low bandwidth (i.e. few kbps). So, based on the response time obtained in 

experiments done on real mobile devices, the system identified some threshold values for 

resource sizes that can typically be used for specific bandwidth ranges. Based on these 

thresholds, it has adopted the following assumptions. If a mobile device has a connection 

speed less than 32.0 kbps, it should not consider resources that exceed SOO.OKbytes. In 

other words, system does not tolerate response times longer than 15 seconds. Similarly, if 

the connection speed was between 32.0 kbps to 66.0 kbps, then resources over I Mbytes 

should not be considered. It should be noted that the maximum tolerable response time 

can be easily modified to accommodate learners with more or less restrictive time 

constraints. The system uses the predicted symbolic values associated with the current 

available bandwidth to predict the maximum allowable size of resources. Figure 4.4 

shows the membership function for file size. The three fuzzy sets Low, Medium, and High 

describing predicted network bandwidth are used as an input space in the fuzzy system to 

predict the maximum allowable file size. It also defines three fuzzy sets Small, Medium, 

and Large as the output space (file size) as shown in Figure 4.4. Note that system uses 

SmallSize, MediumSize, and LargeSize to refer to center average values for small fuzzy set, 

medium fuzzy set, and large fuzzy set respectively as shown in Figure 4.4.

Medium Large

SmallSize MediumSize LargeSize MaxSize

Figure 4.4 Membership Function for File Size 
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The rule base for our fuzzy logic system is given below.

i?' : IF network bandwidth (B) is Low THEN file size (Z) is Small.

: IF network bandwidth (B) is Medium, THEN file size (Z) is Medium.

: IF network bandwidth (B) is High, THEN file size (Z) is Large.

Then, the crisp output (file size) from the fuzzy system with singleton fuzzifier, product 

inference engine, center average defuzzifier, and the rule base R^, is given by Equation 4.2.

3

z*  =
_  SmallSizè ) + M e d i u m S i z ë )+ BarggBfzg*//^^, (B )

<■=1

Equation 4.2

Table 4.3 defines the SWRL rule for Equation 4.2. In FileSizeRule-1, the data 

properties ProbLow, ProbMedium, and ProbHigh are those obtained from Table 4.1. To 

show how these rules are applied in our system, this section provides a real-life scenario. 

Let’s assume that learner is using a GPRS connection with a maximum connection speed 

of 32.0 kbps. This connection speed delimits the maximum file size to SOO.OKbytes as 

described above. These assumptions are represented by fact A l  in Table 4.3. When rule 

FileSizeRule-1 is applied, fact A2 is inferred, resulting into the addition of statement 

FileSize(MotoW270, 281.25) to the list of facts. Therefore, since the previously sensed 

network bandwidth was 18.0 kbps, our system chooses not to exchange data files over 

281 Kbytes as deduced from the set of inferences shown in Table 4.3.
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SWRL
Rules

FileSizeRule-1
ActivitylD (?a) AUsedDevice (?a, ?y) AProbLow (?y, ?T1) A
ProbMedium(?y, ?Tm) AProbHigh(?y, ?Th) AMaxSize ( ?y, ?Maxsize)
Aswrlb:multiply(?Lowsize, 0.25, ?Maxsize)A
swrlb:multiply(?Mediumsize, 0.5, ?Maxsize)A
swrlbrmultiply(?Largesize, 0.75, ?Maxsize)A
swrlb:multiply(?1, ?Lowsize, ?T1)A
swrlbrmultiply(?m, ?Mediumsize, ?Tm)A
swrlbrmultiply(?h, ?Largesize,?Th) Aswrlb : add(?zl,?1,?m, ?h) A 
swrlb: add(?z2, ?T1, ?Tm, ?Th) Aswrlb:equal(?z2, 1)A 
swrlbrdivide(?z, ?zl, ?z2) FileSize(?y, ?z)

Ontology related Facts

Facts

Al)
ActivitylD(Irene)UsedDevice(Irene, MotoW270) 
ProbLow(MotoW270, 0.0)
ProbMedium(MotoW270, 0.75)
ProbHigh(MotoW270, 0.25)
MaxSize(MotoW270, 500)
swrlbrmultiply(?Lowsize, 0.25, 500.0)
swrlbrmultiply(PMediumsize, 0.5, 500,
swrlbrmultiply(?Largesize, 0.75, 500 
swrlbrmultiply(?1, 125.0, 0.0) 
swrlbrmultiply(?m, 250.0, 0.75)
swrlbrmultiply(?h, 375.0, 0.25) 
swrlbradd(?zl, 0.0, 187.5, 93.75) 
swrlbradd(?z2, 0.0, 0.75, 0.25)
swrlbrdivide(?z, 281.25, 1)

0 )

0 )

Inferred Facts
A2)
FileSize
(MotoW270,281.2
5)

Table 4.3 SWRL Rule for File Size 

Table 4.4 contains the SWRL rules used to select the media type of retrieved learning

resources based on current bandwidth. The data properties NetworkBandwidth and

AvailableMemory respectively represent the current bandwidth and available device

memory. In MediaRule-1, the system sets the media type to text format when the current

bandwidth is low. In MediaRulel the system sets the media type to text and image

formats when the current bandwidth is medium, while in MediaRule-3, the system sets the

media type to text, image, and video formats when the current bandwidth is high. The

system will also adjust the maximum allowable file size, computed in Table 4.3, based on

the device available memory. If the device memory size is smaller than the maximum

allowable file size computed in Table 4.3, then AllowedFileSizeRule-1 sets the maximum
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file size to the device memory size; otherwise the maximum file size remains unchanged 

as stated in AllowedFileSizeRule-2.

SWRL
Rules

MediaRule-1
ActivitylD(? a )AUsedDevice(? a ,?y) ANetworkBandwidth(?y,"Low") 

HasMediaType (?y, Text)

MediaRule-2
ActivitylD ( ?a)AUsedDevice(?a, ?y)ANetworkBandwidth(?y,
"Medium")-^HasMediaType(?y, Text)AHasMediaType(?y, Image)

MediaRule-3
ActivitylD(?a)AusedDevice(?a, ?y) ANetworkBandwidth(?y, "High")
-^HasMediaType(?y,Text)A HasMediaType(?y,Image)A 
HasMediaType(?y,Video)

AllowedFileSizeRuIe-1
ActivitylD(?a)AusedDevice(?a, ?y)AFileSize(?y, ?Size)A 
AvailableMemory(?y,?MemorySize)A
swrlb:lessThan(?MemorySize,?Size)— AllowedSize(?y,?MemorySize) 

AllowedFlleSlzeRule-2
ActivitylD(?a)AUsedDevice(?a,?y)AFileSize(?y,?Size)A
AvailableMemory (?y, ?MemorySize)A
swrlb:greaterThanOrEqual(?MemorySize, ?Size)-»
AllowedSize(?y,?Size)

Table 4.4 SWRL Rules for Media Type & Allowable File Size

To show how the above rules are applied this section uses the previous scenario of 

learner Irene who is using device MotoW270 operating at a bandwidth of 18.0Kbps to 

access the system services. Following the reasoning shown in Table 4.2, the system infers 

a bandwidth fluctuating between medium to high as shown in facts A l  and B L  When 

applying MediatypeRule-2 and MediatypeRule-3, facts A2 and B2 are respectively 

inferred and added to the list of facts. In Cl, AllowedFileSizeRule-2 is applied to compare 

the maximum allowable file size, inferred in Table 4.3, with the device available memory, 

leading to the addition of statement AllowedSize (MotoW270, 281.25) to the list of facts as 

shown in fact C2. As shown in Table 4.5, the system concludes that for this scenario, all
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types of media can be selected for delivery. It also concludes that these resources should 

not exceed a size of 281.25Kbytes for them to be ported on the used device, and to avoid 

long communication delays.

Ontology related Facts Inferred Facts
A l )
ActivitylD(Irene) 
UsedDevice(Irene,MotoW27 0) 
NetworkBandwidth 
(MotoW270,"Medium")

A 2 )
HasMediaType(MotoW270,Text) 
HasMediaType(MotoW2 7 0,Image)

Facts

B l )
ActivitylD(Irene)
UsedDevice(Irene, MotoW270) 
NetworkBandwidth 
(MotoW270,"Large")

3 2 )
HasMediaType(MotoW270,Text) 
HasMediaType(MotoW270,Image) 
HasMediaType(MotoW270,Video)

Cl )
ActivitylD(Irene)
UsedDevice(Irene, MotoW270) 
FileSize(MotoW270, 281.25) 
AvailableMemory(MotoW270, 1024.0) 
swrlb:greaterThanOrEqual 
(1024.0, 281.25)

C2)
AllowedSize 
(MotoW270, 281.25)

Table 4.5 Instance for Media Type & File Size 

Another system-centric adaptation considered in this study is to determine the language 

to be used by the search agent. LanguageRule-1 in table 4.6 establishes a constraint 

represented by the relationship SearchLannguage between an activity ID and a language. 

The property Pi eferredLanguageÇ?a,7 z) relates an ActivitylD a to a preferred language 

Z. The property HasSupportLanguage{7 y ,7z) relates learner’s handheld device y to it 

support language z. For instance, let’s assume French is the preferred language for learner 

Irene. Let’s also assume that English and French are languages supported by the used 

device MotoW270. When applying LanguageRule-1, as shown by A l  in Table 4.6, system 

can infers A2 that is SearchLanguage (Irene, French), confirming that French can be used 

by the agent as a search language because it is supported by the used device.
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SWRL
Rules

LanguageRule-1
ActivitylD (?a) AusedDevice (?a, ?y) A
PreferredLanguage(?a, ?z)A HasSupportLanguage(?y,?z) 

SearchLanguages (?a, ?z)

Facts

Ontology related Facts Inferred Facts
A l )
ActivitylD(Irene)
UsedDevice(Irene, MotoW270)
PreferredLanguage(Irene,French) 
HasSupportLanguage(MotoW270, English) 
HasSupportLanguage(MotoW270, French)

A 2 )
SearchLanguages 
(Irene, French)

Table 4.6 SWRL Rule for Search Language 

Finally, the last system-centric adaptation concerns the operating system required to

run the learning resources. Table 4.7 shows the rules used for this type of adaptation as

well as a scenario to illustrate such adaptation. In SystemCentricRule-1, it is shown that

only those resources that can run on the device’s operating system are considered. For

instance, let us assume that the learning resource C++ Loops is expressed in English and

it is of media type text. Its attributes are compatible with the learner’s used mobile device

MotoW270. These are represented by the facts A l  in Table 4.7. When rule

SystemCentricRule-1 is applied, fact A2 is inferred, resulting into the addition of

statement SystemCentric (Irene, C++Loops) to the list of facts.

SWRL
Rules

SystemCentricRule-1
SearchLanguages (?y, ?z)AExpressedIn(?LR,?z)A
UsedDevice (?y, ?D) A HasMediaType(?D,?b) AHapType(?LR,?b)A
HasOS(?D,?c)ARunsOn(?LR,?c)—  SystemCentric ( ?y, ?LR)

Facts

Ontology related Facts Inferred Facts
A l )
SearchLanguages(Irene,English) 
Expressedin(C++ Loops, English) 
UsedDevice(Irene, MotoW270) 
HasMediaType(MotoW270, Text) 
HapType(C++ Loops, Text)
HasOS(MotoW270,Symbian) 
Runs0n(C++ Loops, Symbian)

A2 )
SystemCentric
(Irene,
C++ Loops)

Table 4.7 SWRL Rule for System-Centric Adaptation
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4.3 Learner-Centric Adaptation

Usually a single learning resource will not be enough for the learner to meet his 

learning goal, because learning contents themselves may have prerequisites that the user 

has not mastered yet [31]. The learner-centric adaptation aims at building a personalized 

learning path based on learner’s activity profile. The learner-centric adaptation achieves 

its functionality in two steps: (i) the system retrieves the related ontology concepts and 

learning resources by using an elimination process in the following order: similar 

knowledge, prerequisite knowledge, core knowledge, and related knowledge; (ii) the 

system removes learning concepts, learning resources, and learning paths that have 

already been covered by the learner.

Table 4.8 shows some of the rules used to derive an optimum learning path that avoids 

reiterated covered concepts and consumed learning resources. The property 

lsMappedTo{l C,1LO) maps the concept related to the learner’s query to a corresponding 

learning resource. SimilarLearningResourceRules-1 in Table 4.8 establishes a temporal 

constraint represented by the temporal relationship SimilarLR between the activity JD (a) 

and learning resource (LR). The properties —iCovered(lL,TC-) and

—,Consumed{lL,1 LOj) relate an individual learner to a concept or a learning resource 

that has not been covered or consumed so far. It should be noted that the system 

automatically establishes relations of type —̂ Covered{l L,1 C ■) and 

—iConsumed{lL,1 LOj) for all those concepts and resources that have not been covered

or consumed by a particular learner. The learning sequence is generated by applying, in 

order, the following relationships: Isa, HasP re requisite, NecessaryPartOf, and Partof
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SWRL
Rules

SimilarLearningResourceRule-1:
ConductedLearningActivity(?L,?a)a MakeQuery(?a,?Q)a 
HasKeyword(?Q,?C)AlsMappedTo(?C,?LR) ^SimilarLR(?a,?LR) 
SimilarLearningResourceRule-2;
ConductedLearningActivity(?L,?a)AMakeQuery(?a,?Q)a 
HasKeyword ( ?Q, ?C) AHas ( ?C, ?Ci) A-iCovered ( ?L, ?Ci) a

IsMappedTo ( ?Ci , ?LRi) A-iConsumed ( ?L, ?LRi) — >SimilarLR (?a, ?LRi) 
SimilarLearningResourceRule-3:
ConductedLearningActivity(?L,?a)AMakeQuery(?a,?Q)a 
HasKeyword (?Q, ?C)Alsa(?C,?Ci)A-' Covered (?L, ?Ci) a

IsMappedTo (?Ci , ?LRi ) a ̂ Consumed ( ?L, ?LRi) — »SimilarLR ( ?a, ?LRi)
PrerequisiteLearningResourceRule-1:
ConductedLearningActivity(?L,?a)AMakeQuery(?a,?Q)a
HasKeyword ( ?Q, ?C) a  Has Prerequisite ( ?Q, ?Ci) a  -■ Covered ( ?L, ?Ci) a

IsMappedTo(?Ci, ?LRi)A^Consumed(?L,?LRi)
^PrerequisiteLR ( ?a, ?LRi)
CoreLearningResourceRule-1 :
ConductedLearningActivity(?L,?a)AMakeQuery(?a,?Q)a
HasKeyword(?Q,?C) AHasNecessaryPart(?Q,?Ci)A^Covered(?L,?Ci)a 
IsMappedTo ( ?Ci , ?LRi ) a  -■ Consumed (?L, ?LRi) — »CoreLR ( ?a, ?LRi) 
CoreLearningResourceRule-2 :
ConductedLearningActivity(?L, ?a)AMakeQuery(?a,?Q)a
HasKeyword ( ?Q, ?C) AlsNecessaryPartOf ( ?Q, ?Ci ) A-iCovered ( ?L, ?Ci ) a  

IsMappedTo(?Ci,?LRi)A^Consumed(?L, ?LRi) — >CoreLR(?a,?LRi)
NonCoreRelatedLearningResourceRule-1:
ConductedLearningActivity(?L,?a)AMakeQuery(?a,?Q)a
HasKeyword(?Q, ?C)AHasPart(?Q,?Ci)A^Covered(?L,?Ci)a
IsMappedTo(?Ci, ?LRi)A^Consumed(?L,?LRi)
— >-NonCoreRelatedLR (?a, ?LRi)
NonCoreRelatedLearningResouroeRule-2;
ConductedLearningActivity ( ?L, ?a) a  MakeQuery ( ?a, ?Q) a

HasKeyword(?Q,?C)AlsPartOf(?Q,?Ci)a ^Covered(?L,?Ci)a
IsMappedTo (?Ci, ?LRi) a  -iConsumed (?L, ?LRi)
— >-NonCoreRelatedLR ( ?a, ?LRi )

Table 4.8 SWRL Rules for Learning Construction

The relation Isa{lC ,lC -)  states that concept C is similar to concept C,. The 

relationship HasPxerequisite{lC,2C involving concept C and concept C,, denotes that
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concept Ci is a prerequisite knowledge of C and needs to be covered prior to it. The core 

relationship HasNecessaryPart{lC,lC^) represents the necessary part-whole relation 

where concept C cannot be completely understood without covering concept C,. In 

addition, the relationship H asP art{lC ,lC -) represents the part-whole relation where

concept C, is part of concept C, in the sense that it represents a related knowledge 

component of C.
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Figure4.5 Domain Ontology for C++ Programming

This section illustrates the logic used for learner adaptation by a learning scenario 

where learner Irene wants to learn about “logic expressions” of the C++ programming 

language. For this propose, system uses the C++ programming ontology used in the 

previous chapter and which is reproduced in Figure 4.5 for convenience. For instance, 

let’s assume that learner Irene queries the system with "Logical Expression". This query
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has similar keywords with concept C28 which describes LogicalExpression in the domain 

ontology. The reasoning engine is invoked and the system maps learning resources LRzsa 

and LRzsb to concept Cas- This is represented by facts A l  in table 4.9. When rule 

SimilarLeamingResourceRule-1 is applied, facts A2 is inferred and added to the 

knowledge base. For this example, it should be noted that concept Cas does not have any 

prerequisite knowledge or similar knowledge in the domain ontology. However, concepts 

C29, Cso, C3 1 , and Csa are necessary parts of concept Cas- Let’s also assume that concepts 

C29 and C3 0  have been covered by Irene in previous studies and therefore will not be 

provided to her at this time. Furthermore, let’s assume that Learning resources (LRsia, 

LR 3 ib) and LBj2a correspond to concepts C31 and C32 respectively, and that learning 

resources LR3 J1, and LR3 2a have not been consumed by Irene so far. This info is 

represented by facts B l  in Table 4.9. When rule CoreLeamingResourceRule-I is applied, 

fact B2 is inferred and added to the knowledge base. Fact C l states that concept C2 8  is 

part of Cj and has not been covered by Irene. Since LRsa and LRsc, which are the learning 

resources corresponding to concept Cj, have not been consumed by Irene so far; facts in 

C2 can be inferred and added to the knowledge base. The above reasoning illustrated by 

the application of the SWRL mles shown in Table 4.8 produces the learning sequence 

shown in Figure 4.6.

The learning path shown in Figure 4.6.a is built without considering Irene’s previous 

activity, while the learning path in Figure 4.6.b consists of the optimized learning path 

using both system-centric adaptations and learner centric adaptations.
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Ontology related Facts Inferred Facts
A l )
ConductedLearningActivity(Irene, Al ) 
MakeQuery(Al, Logical Express)
HasKeyword(Logical Express, C2 8 ) 
IsMappedTo (Czg, LRssa) IsMappedTo (Cjs - LRjgb)

A2)
SimilarLR 
(Al, LR28a) 
SimilarLR 
(Al, LRjsb)

Facts

B l )
ConductedLearningActivity(Irene,Al) 
MakeQuery(Al, Logical Express) 
HasKeyword(Logical Express, C23) 
HasNecessaryPart (C2 3 , C29) 
HasNecessaryPart (C23, C30) 
HasNecessaryPart (C23, C31) 

HasNecessaryPart (C23, C32)
-■Covered(Irene, C3 1 )
-■Covered ( I rene, C3 2 )
IsMappedTo (C3 i,LR3 ia)
IsMappedTo (C31, LR3 ib)
IsMappedTo (C32, LR32&)
-■Consumed (Irene, LRsib)
-■Consumed (Irene, LR3 2 a)

B2)
CoreLR (Al,LRgib) 
CoreLR (Al,LR3 2 a)

Cl )
ConductedLearningAc t ivi ty(Irene,Al) 
MakeQuery(Al, Logical Express) 
HasKeyword(Logical Express, C2 3 ) 
IsPartOf ( C 2 3 ,C5 )
-■Covered (Irene, C5 )
IsMappedTo (C5, LRga)
IsMappedTo(C5, LRgb)
IsMappedTo (C5,LRga)
-■Consumed (Irene, LRsa)

C2)
NonCoreRelatedLR
( A l , L R 5a)

Table 4.9 Instance for Build Learning Path
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Figure 4.6 Learning Construction
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CHAPTER 5

EXPERIMENTAL RESULTS

semantic WEB



This section describes the operational environment of the developed system. It then 

shows some experimental results, and finally, it provides a performance evaluation study. 

For a better illustration of the system’s main functions, this section first describes the 

ontology authoring and knowledge base construction process, and then, it provides some 

scenarios to demonstrate the main system services. Finally, it evaluates the performance 

of the proposed system by comparing it to existing similar systems.

5.1 Ontology and Knowledge Base Construction

To illustrate the ontology authoring process, this section provides an example showing 

the way we authored the C++ ontology used in chapter 4. It used Protégé to build the 

global ontology space as shown in Figure 5.1. Figure 5.2 shows the class hierarchy of the 

global ontology space which consists of learner ontology, activity ontology, device 

ontology, environment ontology, and domain ontology. Finally, an example ontology 

describing the subject domain of C++ programming is formally defined in Figure 5.3 

using the various properties such Prerequisite, PartOf NecessaryPartOf, and Isa.
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Figure 5.3 Subject Domain Ontology: C++ Programming

SWRL Tab of Protégé (see Figure 5.4) is used to construct the SWRL rules which 

represent the core of our knowledge base. All SWRL rules have been introduced in 

chapter 4. These can be classified into system-centric rules (i.e. media rules, language rule) 

and learner-centric rules (i.e. learning sequence rules). The system-centric rules use the 

device and environment atomic context elements to infer metadata that can be used to 

filter out learning resources that are compatible with the system operating environment. 

The learner-centric rules are used to build a personalized learning path by removing 

already covered learning concepts, learning resources, and learning sub-path(s). Thus, the 

ultimate goal of the system is to optimize the learning path using both system-centric 

adaptations and learner-centric adaptations.
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5.2 Experimental Results

To illustrate the ontology reasoning mechanisms used in this study, this section 

provides a number of scenarios to demonstrate the various system-centric adaptations and 

learner-centric adaptations. For system-centric adaptations, system used the C+ + 

programming language ontology as described in Figure 5.3. The system asked few 

learners to make queries related to C++ programming language using devices with 

different software and hardware capabilities. Figure 5.5 shows the used mobile phones, 

while Table 5.1 shows their capabilities and surrounding environment. In particular, for 

the current bandwidth system used the predicted network bandwidth at the time we 

performed the experiment.
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Figure 5.5 Experimental Results with Different Mobile Phone

Basic Nokia phone 
emulator

Sony Ericsson 
W830C HTC S621

Operating system Symbian Sony Ericsson Java Windows Mobile 6 Standard
Available Memory 256.0kbytes 6-OMbytes 32.0Mbytes

Connection Speed 32.0kbps 48.0kbps 120.0kbps
Current Bandwidth 8.0kbps 16.0kbps 80.0kbps
Screen Resolution 128*96 pixels 320*240 pixels 320*240 pixels

Support Language(s) English English, French... English, French, Chinese...
Keyboard Type Virtual Virtual Real

Media Type Text, Image Text, Image, Video Text, Image, Video
Display Type Monochrome 256k Colors 65536 Colors

Network Adaptor GSM 1900 GPRS, EDGE Wifi, Bluetooth, EDGE

Browser WAP 2.0 WAP 2.0 Internet Browser (WWW)

Table 5.1 Software & Hardware Capabilities for Mobile Phone
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Below is a fragment of the OWL description for the mobile phone showing the 

capabilities of HTC S621.

<UsedDevice rdf:ID=”HTCS621">
<HasSupportLanguage rdf:resource=''#English"/>
<HasSupportLanguage rdf;resource="#Prench"/>
<HasSupportLanguage rdf;resource="#Chinese"/>
<HasDisplayType> <DisplayType rdf;ID="65536Colors"/> </HasDisplayType>
<HasOS rdf:resource="#WindowsMobile6Standard"/>
<AvailableMemory rdf;datatype="http://www.w3.org/2001/XMLSchema#int">

32.0
</AvailableMemory>
<RunApplication> <S_WApplication rdf:ID="Image"/> </RunApplication>
<RunApplication> <S_WApplication rdf:ID="Text"/> </RunApplication>
<RunApplication> <S_WApplication rdf;ID="Video"/> </RunApplication>
<HasKeyboardType> <KeyboardType rdf:ID="Real"/> </HasKeyboardType>
<HasNetworkAdaptor> <NetworkAdaptor rdf:ID="Wifi"/> </HasNetworkAdaptor> 
<HasNetworkAdaptor> <NetworkAdaptor rdf:ID="Bluetooth"/> </HasNetworkAdaptor> 
<HasNetworkAdaptor> <NetworkAdaptor rdf:ID="EDGE"/> </HasNetworkAdaptor> 
<MaxConnectionSpeed rdf:datatype="http://www.w3.org/2001/XMLSchema#float">

120.0
</MaxConnectionSpeed>
<HasB and width rdf:datatype="http://www.w3.org/2001/XMLSchema#float">

80.0
</HasB and width>
<HasScreenWidth rdf:datatype="http://www.w3.org/2001/XMLSchema#int">240</HasScreenWidth> 
<HasScreenLength rdf:datatype="http://www.w3.org/2001/XMLSchema#int">320</HasScreenLength> 

</UsedDevice>

5.2.1 System-centric adaptation

Section 4.2 described the method used to filter out learning resources using system- 

centric adaptations hased on device and environment context elements. This section 

presents some experimental results related to the system-centric adaptations obtained 

using the three mobile phones shown in Table 5.1. In particular, the following steps have 

been adopted to achieve these experimental results. The system is programmed to sense 

the actual network bandwidth from time to time, and whenever queries are made, the 

current bandwidth is predicted as shown in section 4.2, and then translated into 

meaningful symbolic values such as low, medium, and high bandwidth. For example, the
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bandwidth predicted by the system for the HTC S621 was “high bandwidth”. Based on 

this assumption, the system calculates the maximum data file size and selects the media 

type of retrieved learning resources to ensure that they can be played on the device. This 

step is achieved by applying Truth Value Rules, File Size Rule, Media type Rules, and 

Allowed File Size Rules respectively as shown in section 4.2. When these rules are applied, 

a number of facts are inferred resulting in the addition of many statements to the list of 

facts. The next processing step is to select the language of retrieved learning resources to 

make sure that this is similar to the learner’s preferred language, and that it can be 

supported by the mobile device. This is achieved by applying LanguageRule-1 as given in 

section 4.2. Once the language rule is applied, a new fact is inferred resulting in the 

addition of statement SearchLanguage(UserName, Language) to the list of facts. It 

should be noted here that there might be some resources that require software applications 

that are not supported by the used mobile device. So, the final step is to check whether the 

software applications required to play the retrieved learning resources are supported by 

the used mobile device. This is achieved by applying SystemCentricRule-1 given in 

section 4.2. Figure 5.6 describes the results of applying these mles on the three used 

mobile devices as shown in Figure 5.5. It can be seen that the Nokia phone emulator has 

low bandwidth. The Nokia emulator was used because it was not possible to experiment 

our system on a real old cell phone device. Therefore, system has tested the system- 

centric adaptations on the Nokia phone emulator which obviously has limited hardware 

and software features. Due to the limited resources, the learning resources retrieved for 

the Nokia phone have been reduced to text media type not exceeding 125Kbytes as shown 

in Figure 5.6.a. The same experimental results for the Sony Ericsson W830C are
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presented in Figure5.6.b. These include some learning resources of image media type in 

addition to text media type and were restricted to a maximum size of 250Kbytes. Figure 

5.6.C however, shows the retrieved learning resources for the HTC S621 smart phone. 

This device can support all types of media without any size restriction. This experiment 

assumes that English is the preferred language for the learners.
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Figure 5.6 System-Centric Adaptations for Various Devices

5.2.2 Learner-Centric Adaptation

Chapter 4 showed the method used to generate personalized learning paths tailored to 

the needs of the learners. This section presents some experimental results that illustrate 

the various learner-centric adaptations. Let’s assume Irene is working on an assignment 

for comparing some “object oriented programming languages”. Being a Java programmer 

with a little knowledge about C++, Irene is confused about the syntax of “C++ Loops”.
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So, she used her mobile device to query the system using “C++ Loops”. Let’s also assume 

that she has previously used our system to query other concepts. Once logged in, the 

system tracks her previous login sessions, covered concepts, consumed learning resources, 

and previously conducted learning interactions. The system will then proceed with the 

following steps which describes the whole learning scenario.

Stepl: the system uses the keywords in the learner’ query and accesses the related 

subject-domain ontology to infer those concepts that are part of similar knowledge, 

prerequisite knowledge, core-knowledge, and related knowledge using Is-a, 

HasPrerequisite, HasNecessaryPart, and HasPart properties respectively. Consequently, 

the concepts While, Do-While, and For are inferred and classified as “similar knowledge” 

to C++ Loops. Similarly, concept Looping is inferred and classified as “related 

knowledge” to C++ Loops. As shown in the C++ ontology no prerequisite or core sub­

concepts are allocated to concepts C++ Loops. So, in the next processing stage, the 

system searches for the learning resources associated with the previously inferred 

ontology concepts by using the following elimination order; similar knowledge, perquisite 

knowledge, core knowledge, and then related knowledge if any. For our case, learning 

resources L 0 4 ia and L 0 4 jb correspond to concept C4 i(C++Loops). The learning sequence 

of this scenario is C41 (C++ Loops) —> C4 2  (While) C4 3  (Do-While) C4 4 (For) Cg 

(Looping). In the third stage, the system builds a personalized learning path by removing 

already covered concept, learning resources, and learning sub-path(s). This step is 

achieved by applying the learning sequence rules as shown in the previous chapter. Once 

the learning sequence rules are applied, inferred facts are added to the knowledge base. 

Figure 5.7.a shows the learning path generated by applying the learning sequence mles
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without taking into consideration Irene’s previous knowledge. The corresponding 

experimental results using the WinWap emulator smart phone are presented in Figure 5.8. 

Figure 5.7.b shows the generated personalized learning path after removing the already 

covered concepts, learning resources, and learning sub-path(s). The experimental results 

for this learning path are presented in Figure 5.9.

6b

\ |4 3 a42a 6a144a

42 43

41b 44b

42a 6a41a

41: 42 44

41b 6c44b

(b)

Concept Learning Resource Concept or LRs ID

(^ 2^  Consumed Concept or LRs — ► Precedence Relation

Figure 5.7 Learning Path for Concept Cat

PXeaae youir Queir:--[c++ iTooi»s
Query. Is : CFlusXccps

LO: C— lUToriaX :
Looggren ta l : Tex%
L.02 : Underatand in g
Looca in C— ron ta i Xsiape Wasedla
R e la tiv e  Resouzrces
Similar Lor. t^Thlle 
C— — %TM1 le Lcogg rormai TeK“
Similar LoPlcrcr 
The Tor Locc. C—-Tutorial rormaT ; Te«% 
Similar Lor:Ter 
Loop Caamcle ~ Line

,ara — count dc.m 
rorma% Text

Menu

Similar Lorr'Whlle 
C— — Vhlle Looca
rcrmat Text 
Similar Lor:Tor 
The ror LOOP, c-
Tutoria.l 
rormat Text 
similar LcM: Tor 
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Figure 5.8 Example of Learning Path without Consider Learner’s Previous Activity
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Figure 5.9 Example of Learning Path Recommended to the Learner 

The figure below shows the interaction with the learner after presenting the previously 

recommended learning path. Figure 5.10.b shows the details of the learning resource after 

being chosen as highlighted in Figure 5.10.a. The system will then automatically add the 

newly explored learning resource to the list of consumed learning resources.
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Figure 5.10 Example o f Select Learning Resource

In general, when the learner selects a new concept or sends a new query, learner’s

expertise is automatically updated and the personalized learning path is re-adjusted by

resuming processing steps 4 to 9 as shown in the algorithm given in Figure 4.1.
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To show the various logical steps that can be adopted to personalize the learning path, 

this section provides another scenario. Now, let’s assume that Irene selects the concept 

“Looping” which is submitted as a new query to the system. Based on C++ programming 

ontology, the concepts Loop Execution, Loop Design, C++ Loops, Nested Loops, and 

C++Programming are inferred as “related knowledge” of the query Looping. The concept 

C++ Loops is inferred as “prerequisite knowledge” of the concept Nested Loops. 

Therefore, the system will suggest the following sequence in ordering the concepts to be 

provided to the learner (i.e. Cs (Looping) —>■ Css (Loop Execution) —>■ € 3 7  (Loop Design) 

—>■ C41 (C++ Loops) —>■ C4 5  (Nested Loops)), and their associated learning resources are 

searched for and retrieved as shown in Figure 5.1 La. Figure 5.1 Lb shows a personalized 

learning path based on already removed covered concepts, learning resources, and 

learning sub-path(s). For example, learning resource LR4ib Understanding Loops in C++ 

which has already been consumed is therefore removed from the learning path as shown 

in 5.1 Lb. Figure 5.12 shows some of the learning resources recommended to Irene as a 

result of her query about the concept “Looping”.
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3 7 4S-3 6 .
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Figure 5.11 Learning Path for Concept

- 7 1



P l e a a e  y e u a r  Q u e r y  :
fl.oo9lne
 Query is: -ceglng
j LoopCxecu-tlon  ̂j
L02: Locglnr
roraiai Texi 
L0 2 : wcogs Tu~crlal 
rgrsiai : Vldcc 
LOS : ~"en% locis 
rcrma'i Tex*r 
erased, la.
ReTaTTve Resouarces 
ReLa%edLgR : LccpZxecu*: Icn 
FrogramieiaT and Frc-fcles: 
âclvins V I C - — rcrmaz X3r.ase 
Relazed LsR:LccpDcsljn 
Hov zc Dealgn Lccs-a 
Rormaz Zzape 
Relazed LoR:CPluaLocps 
C— zuzcrlal: Lcccs 
Rar&az 7exz

Menu

(a)

Relazed LcR:LoopDesisn 
Here zc Pesien Locc a
rcrmaz : Iitare 
Relazed LcR:CFluaLcopa 
C—̂ zuzcrlal: L&cps
Rcx-maz Texz 
Re lazed LcR : >Tesz edLocps 
Veazed dcr Lce-ca dcr
C'—r-Roraaz izcare
Relazed LcRtXeszedLccpi
yeszed Lcc~p-s
Rc-ïzaaz" 1 Texz 
Relazed
LcR : CFlLisFrcpraisjr.tnp 
C"̂ — Frcg-raismln g
Language Tuzcrlal

Rcrznaz Texz

Rcx-3naz laade

i

(b)

Menu Ok

Figure 5.12 Example of Learning Path 

Recommended to the Learner

5.2.3 Experimental results with photography ontology

This section tries our system using another domain ontology. It uses the same global 

ontology space by substituting the C++ ontology with the photography ontology which is 

formally defined in Figure 5.13. The photography ontology is also described using 

properties necessary-part-of part-of, prerequisite, and is-a. This scenario assumes that 

Irene would like to purchase a camera for her friend as a gift. In order to have a 

background about this domain to be able to make the right purchase decision, she used her 

mobile device Sony Ericsson W830C to query the system using Camera as a keyword. 

Figure 5.14 illustrates Irene’?, profile while Figure 5.15 shows the Sony Ericsson 

WSSOC’s software and hardware capabilities.
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Figure 5.15 Software & Hardware Capabilities for Sony EricssonW830 

Let’s assume that Irene is using her device Sony Ericsson W830C with an actual 

network bandwidth of 40.0kbps. For system-centric adaptation, when Truth Value Rules 

are applied, new facts are inferred resulting in the addition of some statements to the list 

of facts. These new facts reveal the probabilities for the predicted current bandwidth 

which was found to be 0.084 for medium bandwidth and 0.916 for high bandwidth. Then, 

the system uses the obtained values to predict the maximum data file size and to select the 

appropriate media type for the used device. When Media Type Rules and Allowed File 

Size Rule are applied, facts HasMediaType(SonyEricssonW830C, Text/Image/Video) and 

AllowedSize(SonyEricsson W830C, 546.875) are inferred, resulting in the addition of 

other statements to the list of facts. The system infers that the learning resources to be 

retrieved for the Sony Ericsson W830C device should be of text, image, or video media
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types and should not exceed 546.875Kbytes. The system will finally perform few 

processing step for system-centric adaptation to check whether those retrieved learning 

resources can be played on the used device. For learner-centric adaptations however, the 

system retrieves the related ontology concepts and learning resources by using the 

following elimination order: similar knowledge, prerequisite knowledge, core knowledge, 

and related knowledge. In our experiment, the concept Digital Camera and Film Camera 

are inferred as “similar knowledge” of the concept Camera. The concept Equipment is 

inferred as “related knowledge” of concept Camera. The learning sequence for this 

scenario is C^{Camera)C^(^{Digi talCamera)C^j{Fi lmCamera)C.^{Equipment)  .

When Learning Resources Rules are applied, the system builds a personalized learning 

path by removing already covered concepts, learning resources, and learning sub-path(s). 

Figure 5.16 shows the experimental results for this scenario. All retrieved learning 

resources are of text, image, or video media type. The data file size is smaller than 

546.875KB. Figure 5.17 shows an instance of learning resource proposed to the learner.
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5.3 System Evaluation

This section compares the proposed mobile learning system with two similar systems -  

context-aware E-learning [31] and -  M-leaming [1]. Table 5.2 shows the various criteria 

we used to assess the performance of the three systems. As far as ontology is concerned, 

unlike the two other systems, our approach uses a global ontology space giving the system 

a reasoning power by referring to a unique domain space that is homogeneously used by 

the inference engine. As for the ontology reasoning criterion, our system makes use of the 

various context groups such as learner context, device context, environment context, and 

activity context. In particular, learner context is used to represent provisioning 

personalization. Device context is the main source for representing the software and 

hardware capabilities of used device. Environment context deals with temporal and spatial 

contextual information. Unlike the other two systems, our system is characterized by the 

use of activity context as the basis for personalizing the learning path by tracking and 

analyzing previous learner’s activities. Thus, our system uses activity context to help 

improve learning content adaptation. For the system-centric adaptations, unlike the other 

two systems, our system adopts a fuzzy logic approach in conjunction with SWRL rules 

to translate context that is perceived with uncertainty to meaningful symbolic values. In 

our case, this is used to predict the maximum data file size and the supported media type(s) 

based on current bandwidth, current memory size, and screen resolution of the used 

device. The inference about search language generates suitable information for retrieving 

learning resources suitable to the learner’s linguistic preference. In addition, our system 

avoids those learning resources that cannot be supported by the software applications on
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the used device. However, the similarity with the other two systems is that all systems 

provide some sort of learner-centric adaptations to generate personalized learning paths.

Proposed mobile 
learning system

Context-aware E- 
learning [31]

M-Learning[l]

Context Modeling Global ontology 
Space; Learner; 

Activity; Device; 
Environment; 

Domain

Learner; Learner 
Content; Domain

Learner; Device; 

Connectivity;

Ontology Reasoning System-Centric 
Adaptations and 
Learner-Centric 

Adaptations

Generate Learning 
Path : Prerequisite

Learning Path: Is-a; 
Part-Of; Necessary 

Part-Of

Time issue

Inference Technique SWRL and Fuzzy 
Logic

Rules

Table 5.2 Our System v.s. Other Two E-Learning Systems
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In this thesis, a personalized mobile learning system on the semantic web has been 

developed. In particular, an attempt has been made to solve some of the challenges related 

to context modeling and management; conceptual knowledge modeling for personalized 

learning; and context-aware service discovery and adaptation. Atomic context is acquired 

and classified into learner context, device context, environment context, and activity 

context. These types of context are either sensed or profiled. Sensed atomic context is 

dynamic in nature, while profiled atomic context is mostly static. The system used fuzzy 

logic to predict current network bandwidth, allowable file-size, and the appropriate 

media-type, in order to retrench the service’s and resource’s expenses. A global ontology 

space is used to aggregate the above-mentioned context groups which are defined at the 

semantic level. The role of the global ontology is to integrate a subject-domain ontology 

along with the learner ontology, activity ontology, device ontology, and environment 

ontology. Knowledge embedded in the global ontology space is used as the main source 

to enable a unified reasoning mechanism that operates on facts instantiated by the 

perceived heterogeneous context elements. In particular, the reasoning engine translates 

context changes into new adaptation constraints in the operating environment, thus 

enabling personalized learning. Both system-centric adaptations and learner-centric 

adaptations have been considered in this study for better personalization of the learning 

sequence. System-centric adaptations aim at filtering out those learning resources that can 

run efficiently on the used mobile device, taking into account the attributes characterizing 

the surrounding environment. The learner-centric adaptations however, aim at building a 

personalized learning path based on learner’s current activity and profile. A number of 

learning scenarios have been used to demonstrate the main functions of the proposed

80-



system. The experimental results have shown that the system successfully adapts the 

media-type, file size, and other system-centric features, based on the used technology and 

surrounding environment. The results have also shown successful use of the various 

learner-centric adaptations to accommodate learners’ background and needs. In particular, 

the system has been tested on two subject-domain ontologies using three different mobile 

devices. These experiments were conducted under various system environments.

This research work can be extended in many ways. One possible extension is the use of 

Mashup technology to make it possible to use multiple search agents in order to retrieve 

learning resources from multiple sources, thus enhancing learning-content provision. 

Other possible extension to our work is to improve the systems’ Quality-Of-Service 

(QoS). For example, it is important to provide secured services, especially, when moving 

from one wireless network to another. Trusted web-services are crucial for mobile 

learning applications such as those related to telemedicine or corporate learning. One 

further research direction is to use learning paths adopted by various users to build expert 

knowledge for navigating the subject domain.
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Abstract. Flexible and personalized instruction is one o f  the most important re­
quirements to next generation intelligent educational systems. The intelligence 
o f any e-leaming system is thus measured by its ability to sense, aggregate and 
use, the various contextual elements to characterize the learner, and to react ac­
cordingly by providing a set o f customized learning services. In this paper we 
propose a proactive context aware mobile learning system on the Semantic 
Web. The contribution o f this work is a combined model using both a probabil­
istic learning technique and an ontology-based approach to enable intelligent 
context processing and management. The system uses a Naive Bayesian classi­
fier to recognize high level contexts in terms o f their constituent atomic context 
elements. Recognized contexts are then interpreted as triggers o f  actions yield­
ing a Web service composition. This is achieved by reasoning on the ontologi­
cal description o f atomic context elements participating in the high level con­
text.

1 Introduction

Research work in the field of mobile learning [1][2][3][4][5] has shown that the edu­
cational potential of mobile technologies is driven by the continuing expansion of 
broadband wireless networks and the capacity of the new generation of cellular 
phones. However, the utilization of these technologies for educational purposes has 
been sparsely explored and many problems related to: context acquisition and man­
agement, conceptual knowledge modeling for personalized instruction, and adaptive 
information discovery remain unresolved. This paper contributes towards this direc­
tion, aiming at using the evolving semantic web and mobile computing to enable 
context-aware learning which delivers adaptive instructional resources on a learner’s 
schedule. Context-aware learning is a critical support mechanism for educational 
institutions and organizations to compete in the new economy. Today’s global market 
requires adaptive, fast, just-in time, and relevant learning processes that can be initi­
ated by user profiles and business demands [6].

In this paper we propose an integrated approach to context modeling and reasoning 
based on Naïve Bayesian classifiers and ontological structures. First, higher-level 
contexts are recognized using a Naïve Bayesian classifier. Then, ontology-based
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reasoning with the recognized contexts triggers actions yielding Web service compo­
sition that are customized to learner’s context, needs, and preferences. The contextual 
information used in the personalization process encompasses all elements that charac­
terize the learner’s interaction, task at hand, the resources on which the Web services 
are to be performed, and surrounding environment.

The remaining of the paper is organized as follows. Section 2 describes back­
ground knowledge and related work. Section 3 describes context representation and 
modeling schemes. In section 4, we describe the higher-level context recognition 
process. Section 5 presents the framework for ontology reasoning and Web services 
composition to generate adaptive learning services. Finally, conclusions are drawn 
and further research work is suggested.

2 Background and Related Work

A considerable amount of research in knowledge-based and intelligent e-leaming 
systems is now moving towards ontology-based context acquisition and management 
for personalized learning [7][8][9][10]. The main issues and challenges are however 
related to the ability of such systems to model and consistently reason with high level 
contexts at the semantic level. Although, some research attempts were made to solve 
some of these problems [9][10][11][12], the shortcoming of most of these efforts is 
their limitations to specific context elements and specific learning scenarios. General- 
purpose modeling and reasoning with context is a complex problem, and much re­
search work is needed before achieving any real progress in this field. Most devel­
oped learning systems restrict the use of ontology relations and rules to describing 
and adapting content and sequencing of learning material according to some sensed 
context. However, little contextual semantics has been embedded in the ontology 
itself.

Other approaches to context modeling have also been considered. McCalla [13] 
has introduced an approach to learning design where learners’ models are attached to 
Learning Objects (LOs) they interact with, and useful learning patterns are then de­
rived by mining those models. The problem with this approach is its limitation to 
context that can be inferred from the learner’s profile only, ignoring other type of 
context. Stojanovic et al. [6] however, have extended ontology usage to describe 
content, context, and sequence of learning material. Content-ontology was used for 
checking consistency as well as searching and navigating repositories of LOs. Con- 
text-ontology was used to present learning material in various learning contexts. 
However, learning style ontology was used to describe the way knowledge can be 
dynamically connected to adapt to learners’ cognitive needs and preferences. Sets of 
relations, rules and axioms have been separately defined for each type of adaptation. 
The shortcoming of this approach is that efficient modeling of mobile learning sce­
narios would require the definition of atomic context elements at the semantic level 
and the use of the various ontologies in an orthogonal way. This is due to the fact that 
context, content, and learning styles are semantically inter-related aspects of cognitive 
learning [14]. This paper explores such a new dimension. The emphasis is on context 
discovery and its semantic modeling and management. Mobile users equipped with



wireless devices go through several contextual changes as they move around in physi­
cal and social surroundings. These contextual changes could be used to drive ontol­
ogy navigation and reasoning for better modeling of mobile learning scenarios.

Another challenging aspect addressed in this paper is automation of metadata gen­
eration for mobile learning. Metadata provides a common set of tags for describing, 
indexing, searching, and reusing learning materials on the Web in an interoperable 
way [14]. However, it is really difficult to create and maintain metadata rich enough 
to meet the diverse and ever changing needs of potential mobile learners. Mobile 
learning requires additional metadata to capture context. In this study, an attempt is 
made to solve this problem by defining contextual information at three hierarchical 
levels -  atomic context -  composite context -  and higher-level context. Atomic con­
text elements are sensed from the learner’s interaction, task at hand, the used mobile- 
device, and the surrounding environment. These are then grouped into four composite 
context classes -  learner context -  activity context -  device context and environment 
context. Composite contexts are further aggregated to build meaningful time-stamped 
higher-level contexts which are matched against context classes describing typical 
learning scenarios. Context classes are simply built from previously sensed similar 
higher-level contexts that have exhibited high degree of confidence. Matching higher- 
level contexts against these context classes is performed using a Naïve Bayesian clas­
sifier. The Naïve Bayesian classifier technique is used to cope with the uncertainty 
embedded in most sensed atomic contextual elements. Recognized contexts are then 
interpreted as triggers of actions that are translated into Web service compositions. 
This is achieved through ontological descriptions and reasoning with higher-level 
context.

Fig. 1 describes the overall system architecture which consists of four main com­
ponents -  context acquisition and aggregation -  context recognizer -  ontology rea­
soning engine -  and Web-service composer. The context acquisition and aggregation 
component controls the user’s interaction with the system and senses atomic context 
information from different sources. These are then aggregated into domain related 
contexts. Mobile learners go through continuous contextual changes as they move in 
their environments. It is the context acquisition and aggregator’s job to communicate 
and update such changes yielding new contexts. The context recognizer identifies the 
aggregated contexts by matching them against well defined context classes stored in a 
context repository. The recognition process is performed using a Naïve Bayesian 
classifier. The context recognizer also allows for newly formed context classes to be 
added to the context repository.

The third component of the system is an ontology reasoning engine which uses the 
recognized higher-level contexts to customize learning services. Two ontologies are 
used to perform such a task -  device/environment ontology -  and domain ontology. 
The former is used to generate metadata that is used to discover Web-services that 
can run in the learner’s device/network environment. However, the later is used to 
customize the learning content and the learning sequence according to the learner’s 
current activity, background and preferences. This requires an ontological description 
and interpretation of higher-level contexts in terms of their constituent atomic context 
elements. Finally, the Web-service composer uses the generated device/environment 
metadata and the inferred learning concepts’ sequence to compose Web-services 
accordingly.
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3 Context Acquisition and Aggregation

Contextual information used in this study is defined at three hierarchical levels -  
atomic context -  composite context -  and higher-level context. At the lower level, 
atomic contextual elements consist of the basic information describing the learner’s 
profile, the current learner’s activity, the used mobile device, and the surrounding 
environment. These can be either direct or indirect atomic contextual elements. Direct 
atomic contextual elements are those that can be directly sensed from the user interac­
tion with the system and may originate from different sources such as the used device 
(i.e. device type, communication protocol), the task at hand (i.e. current learner’s 
activity), and the surrounding environment (i.e. location, time, wireless network, 
network security). Indirect atomic contextual elements are however those elements 
that can be indirectly inferred from the direct atomic context elements. Inference of 
indirect atomic context elements is performed by the context aggregator relying on 
the device/environment repository and the learner profile repository. For instance, 
information such as device’s operating system, device memory^ and screen resolution 
of a specific mobile device which is previously stored in a device repository can be 
inferred using the atomic context element device-type. Similarly, other information 
related to the learner’s pre-requisite knowledge, previously accessed services, and 
learner’s preferences can be inferred from the learner profile repository. The use of 
indirect contextual elements aims at reducing the amount of contextual information 
that has to be sensed from the learner’s interaction, device, and surrounding environ­
ment, which significantly speedup the context recognition process.



An atomic context element c, is defined by;

(1)

where c.^ is the context value, and c. is the probability of context c. of value

being part of a higher-level context. The context value , as shown below, can

be either a specific value (i.e. device type, learner identifier), a binary value (i.e. 
whether the used device is browser-enabled or not, secured/non-secured wireless 
network), or a value within a predefined range (i.e. network bandwidth, screen resolu­
tion).

specific value 2̂^
Cy =< binary_value 

value e [vl..v2]

Composite contextual elements are aggregates of atomic context elements describ­
ing a specific context type. There are four context types -  learner context -  de­

vice context -  environment context -  and activity context. Each of which is 
defined by:

a
composite ^  J -d irec t  U  ^  i-ind irec t 

i = l  j= \
(3)

Finally, higher-level contexts consist of four-tuples C, — which
are built out of configurations of composite context elements sensed at time t and 
which characterize typical learning scenarios in a specific domain. Classes of higher- 
level contexts are defined at the ontological level in that they can be interpreted di­
rectly as triggers of learning actions implemented as Web service compositions.

4 Context Recognition

While ontologies have the ability to communicate context information by naming 
different concepts in machine readable fashion and allowing for the use of everyday 
words and concepts when interacting with the technology, they are unable to effi­
ciently recognize learners’ context. This is because the mapping between the defined 
concepts and the sensed real world atomic context elements is not so straightforward 
due to the uncertainty embedded in some atomic context elements. The mapping fails 
because ontologies do not handle uncertainty. They rather rely on well defined logic 
which assumes all information required to make a logical decision is available and 
produces either true, false or undeterminable statements. Uncertainty on the other 
hand produces similar statements but with degrees of truth or falseness [15]. To cope 
with uncertainty, higher-level contexts are recognized using a Naïve Bayesian Classi­
fier. Bayesian Classification is a probabilistic learning technique where prior knowl-
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edge can be combined with observed data. The aim is to recognize a currently ob­
served context state against a set of learned context classes. The input to the classifier 
is thus a set of sensed/observed atomic context elements which describe the user’s 
context at a given instant of time, while the output is a learned context class. The 
classification process is thus performed with no user intervention or understanding 
required. The Bayesian classification also makes the implicit assumption that the data 
being handled is noisy and can tolerate any missing pieces of information. One differ­
ence between the Bayesian classification and the ontology approach is that once the 
ontology is defined then it can be available immediately whereas in the Bayesian 
classification approach each context has to be experienced at least once before being 
recognized again [15].

Let % be a current context whose class label is unknown, and let be a hypothesis 
that X  belongs to context class C, the classification problem consists of determining 
P(H/X) that is the probability that the hypothesis holds given the observed context X. 
This is defined by:

(4)

where :
P(H) is the prior probabilit)^ of hypothesis H  (i.e. the initial probability be­
fore we sense the current context and reflects the background knowledge). 
P(X) is the probability associated to the current context.
P(X\H) is the probability of observing the context X, given that the hypothe­
sis holds.

The above Bayesian model assumes that the observed context elements are re­
lated and depend on each other, and therefore, requires initial knowledge of many 
probabilities, as well as, significant computational cost. However, since most sensed 
atomic context elements are independent, the above model can be further simplified 
by applying the Naïve Bayesian classifier which is defined by:

n

k= \ ^
C . )

(5)

Where: C, is a context class, and the set of x*s are the atomic context elements 
forming the higher-level contextXas defined in section 3.1.

The Naïve Bayesian classifier greatly reduces the complexity of the model, as well 
as its computational requirements. The context recognition problem is solved by as­
signing the current context X  to the class Q  that satisfies the following condition:

A- £ C t  P(X\C ,) = M KlffA-jC,). P K  )}

where m is the number of recognized context classes.
Fig. 2 describes the context acquisition and recognition cycle. First, direct-atomic 

context elements are sensed, these are then used to infer related indirect-context ele­
ments. Next, the Naïve Bayesian classifier is applied to recognize the associated 
higher-level context-class, and finally, changes to the learner’s context are sensed and 
a new context recognition cycle is performed. It should be noted here that the context-



change detection process significantly speedup the recognition time of successive 
high level contexts. This is because we just infer the indirect-atomic contexts of those 
context elements that have undergone some changes. The subset of newly observed 
context elements designated by Ccha„ges is defined by;

^changes ~  E a )  1, 1̂ ^  E

where “\” means set subtraction.
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Fig. 2. Context Acquisition and Recognition Cycle.

5 Ontology Reasoning and Web Service Composition

(7)

Recognized higher-level contexts are fed to the ontology reasoning engine in order to 
customize learning services based on the learner’s context, preferences and back­
ground. Reasoning with recognized higher-level contexts is performed using the two 
ontologies -  device/environment ontology -  and domain ontology. A set of ontologi­
cal rules are applied to the device/environment ontology to infer the computing re­
sources and the operational environment features compatible with the used mobile 
device and its surrounding environment. We call this process, context-driven re­
sources adaptation. The output of this reasoning process is a set of metadata that will 
help discovering the Web services that can run into such an operational environment. 
The inference rules that are built around the domain ontology however are used to 
provide the learner with a learning sequence and content tailored to his/her current 
activity, previous background and preferences.

The two ontologies are coded in the Web Language Ontology -  OWL; and the in­
ference engine is implemented in Rule Markup Language -  RuleML. Metadata de­
r iv e d  from th e  o n to lo g y  re a so n in g  p ro cess  is c o m p lia n t w ith  the  lEEE-LTSC L e a rn ­
ing Object Metadata (LOM) specification which is coded in XML. In particular, the 
XML description of both the inferred learning concepts and the device-related opera­
tional environment are used for Web services discovery. However, the inferred learn­
ing sequence which we call in this paper domain-context (i.e. the order of learning 
concepts inferred using the properties and relations between the domain-ontology’s 
classes [16]) is used for Web service composition. This is described in OWL-S. A
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domain context represents a control structure that makes it possible to adapt the do­
main knowledge to a particular higher-level context. This adaptation is facilitated by 
the o n t o l o g y f o r  a given domainM. is defined h y 0^,-= { C o where
Co^ = {co^,...,coJ is a set of concepts and is an ordered set o f rules

defined as follows: p{co^...coJ) ,  where p  and q are predicates

reflecting respectively the factual information and the resulting one based on the 
inferential rule .

The semantic of the ontological links is obtained by the rules in These rules are 
prioritized to reflect their importance or abstraction levels in a given knowledge tax­
onomy. For example, if the sensed higher-level context reflects a time-constrained 
learning scenario, one would like to focus only on say “the necessary-part-of ’ rules of 
the ontology to get a quick abstraction on the general structure of the requested 
knowledge. In a less time-stringent learning scenario however, this abstraction could 
further include the “part-of’, and/or “case-study” rules, etc. These knowledge- 
supporting rules generate additional concepts of the ontology in multi-level clusters 
which are used to infer a progressive knowledge based on the learners’ context de­
noted by Ci and the activity context denoted by Ca as described in section 3.

A software agent as shown in Fig. 1 is spawned at the server side to supervise a 
learning session for each learner. The agent typically represents the learner on the 
Semantic Web. The agent successively invokes the inference engine to get the current 
learner’s focus, then discovers, composes, and invokes the chosen Web services ac­
cordingly.

To illustrate the main functions provided by our framework, we provide the fol­
lowing example ontologies describing a C++ programming course as a domain ontol­
ogy, and a device/environment ontology. These are shown in Fig. 3 and Fig. 4 respec­
tively.
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Fig. 3. Ontology for C++ Programming Course.
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Speed

-j SpcakcrT

Softw are 3

- |  Operating System ~  23

Palm OS 26

W indows M obile 27

RIM

GPE 29

OPIE 30

Sym bian OS 31

Linux 32

W indow s 133

M ultim edia 25

Video Player 34

A udio player 35

I Connectivity  I 4 I  Customization 5 D cviec-Type 6

-} Personal Inf. M anager |2 4 |

N etw orks 136

ij G SM  900 |3 8 ]

=1 G SM  1800 39

G SM  1900 40

:  GPRS 41

= W im ax 42

=1 WLAN 43

s j W iF i |4 4 |

=j EGSM  |4 6

- | A pplications |3 7

Bluetooth 147

^  Infrared j4 8 |

1=1 W AP 149

] SW  A pplications (50

:j Televison 53

 ̂ E-Book" 54

-| Programming

J3ME 55

BREW 56

Symbian 57

Devices 52

Memory Slot 58

USB 59

PDA 6C

Pocket PC 61

Laptop 62

Cell Phone 63

- ^  Prerequisite Relation 

" ►  P art-of Relation 

^  Necessary Part-of Relation

Is-a Relation 

Concept 

i: C oncept Id

Fig. 4. Device/Environment Ontology.

A fragment of the ontology shown in Fig. 3, desciibing concept 3 Program De­
velopment Process", is described in OWL in Fig. 5. The OWL definition of the se­
mantics of the different relationships used in the C++ programming ontology is also 
given in Fig. 5.

Details about the rules used by the ontology reasoning engine to customize the 
learning sequence can be found in our previous work [17].
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< o w l :ObjectProperty rdf :ID="NecessaryPartOf">
< r d f : type rdf :resource="&owl; TransitiveProperty"/>
< o w l :inverseOf rdf :resource="#hasNecessaryPart"/>

< / o w l : Ob]ectProperty)
< o w l ;ObjectProperty rdf :ID="isPartOf">

< r d f : type rdf :r6source="&owl;TransitiveProperty"/>
< o w l :inverseOf rdf :resource="#hasPart"/>

< / o w l : Obj ectProperty>
< o w l :ObjectProperty rdf ;ID="is-a " >

< r d f : type rdf ;resource="&owl;TransitiveProperty"/>
< o w l :inverseOf rdf :resource="#has“/>

</owl; ObjectProperty>
< o w l :ObjectProperty rdf :ID="isPrerequisiteOf">

< r d f : type rdf : resource^"&owl; Transit iveProperty"/>
< o w l :inverseOf rdf:resource="#hasPrerequisite"/>

< o w l : Class rdf :ID="Program Development Precess_3">
<rd f s :subClassOf rdf :resource="#C++ Programming !"/>
<owl;disjointWith rdf:resource="#Prog and PS_2"7>
< o w l : disjointwith rdf :resource="#Program I/0_4"/>
< o w l : disjointwith rdf :resource="#Selection_5"/>
< o w l : disjointwith rdf :resource="#Looping_6"/>
< o w l : disjointwith rdf : resource^"#Functions_7 " ! >

< / o w l :Class>

< o w l : Class rdf;ID="C++ Programs_18"/>
<rd f s :subClassOf rdf : resource-"#Program Development Process_3"/>
< r d f s :subClassOf>

< o w l : Restriction)
<owl:onProperty rdf : resource="#isNecessaryPartOf"/>
<owl:allValuesFrora rdf ;resource="#prograra Development Procèss_3"/> 

< / o w l : Restriction)
< /rd f s :subClassOf)
<rd f s :subClassOf)

< o w l : Restriction)
<owl:onProperty rdf :resource="#isPrerequisiteOf"/)
<owl:allValuesFrom rdf : resource^"#Testing and Debugging_21"/)

</owl;Restriction>
</rdfs;subClassOf)
< o w l : disjointwith rdf :resource="#Program Construction_19"/)
< o w l : disjointwith rdf :resource="#Program Execution_20"/)
< o w l : disjointwith rdf :resource="#Testing and Debugging_21"/)
< / o w l ; Class)

Fig. 5. Fragments o f OWL description o f the C++ Programming ontology.

6 Conclusions

In this paper, we proposed a proactive mobile-leaming system on the Semantic Web. 
We argued that a probabilistic learning model is more suitable that an ontology-based 
approach for context recognition. This is mainly due to uncertainty embedded in 
some atomic contextual information. Higher-level recognized contexts are however 
described at the semantic level using ontology rules and axioms. The ontology rea­
soning process allows the system to react to any observed contextual changes by 
interpreting the newly sensed contexts as triggers of actions yielding a Web service 
composition. We are currently implementing a prototype of our framework as part of 
our personalized-leaming provision project.
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Abstract

In this paper we present a knowledge-driven model 
fo r  mobile learning based on the semantic web. The 
knowledge model uses a global ontology space and a 
unified reasoning mechanism to integrate and 
aggregate knowledge describing both system-centric, 
and user-centric context information. The reasoning 
engine perceives, understands, and translates context 
changes into new adaptation constraints in the 
operating environment to achieve personalized 
learning. In particular, the system strives to adapt the 
learning sequence and the learning content based on 
the learner’s activity, profile, used technology, and 
surrounding environment. An initial system prototype 
is described and the obtained experimental results are 
very promising.

1. Introduction

The field o f mobile services is becoming a very 
active area of research and development [1-2], 
However, very little has been accomplished in the area 
of mobile learning. Several obstacles still hinder 
personalization of mobile learning services, such as: (i) 
current mobile web services act as passive components 
rather than active components that can be embedded 
with context awareness mechanisms, (ii) existing 
approaches for service composition typically facilitate 
choreography only, while neglecting contextual 
information on users and surrounding environment, 
and (iii) lack of context modeling techniques and 
reasoning strategies for integrating the various 
contextual features for better personalization. In this 
paper, an attempt is made to solve some of the above 
mentioned problems, aiming to build a mobile learning 
system with semantic-rich awareness information.

Semantic Web has the potential to revolutionize the 
way learning services available on the web are 
discovered, adapted, and delivered according to 
context [3-6]. In this paper, we demonstrate such

capabilities by proposing a knowledge driven model 
based on a unified reasoning mechanism and a global 
ontology space that encompasses all context aspects to 
achieve personalized mobile learning. In particular, 
whenever context change occurs, the Run-Time 
Environment (RTE) identifies the new contextual 
features and translates them into new adaptation 
constraints in the operational environment to achieve 
both user-centric and system-centric adaptations. A 
prototype system using the above mentioned 
configuration is being developed and initial results are 
very promising. The system combines Fuzzy Logic and 
Semantic Web Rule Language (SWRL) to infer context 
that is quantized with uncertainty, and that can be 
inferred firom ontology respectively. It also uses 
Mashup technology for service discovery and 
invocation from different distributed repositories.

The remainder of this paper is organized as follows. 
Section 2 describes the overall system design and 
architecture. Section 3 describes the approach used for 
context sensing and representation. Section 4 describes 
ontology context modeling and reasoning to achieve 
personalized leaming. We also show some 
experimental results. Finally, conclusions are drawn 
and further research is suggested.

2. System Design and Architecture

The core of the proposed system is based on a RTE 
designed to maintain consistent behavior across 
variations in the operating environment. The aim is to 
provide learning services adapted to the learner’s 
global context. Therefore, the main function o f the 
RTE is to coordinate and facilitate integration and 
fusion of the four main context components as they 
emerge through the learner’s interaction with the 
system. To achieve such complex task, we structured 
the RTE into three hierarchical levels. As shown in 
Figure 1, at the lower level of the hierarchy is the 
context sensing layer which is provided by a collection 
of hardware and software sensors that continuously



probe the wireless network features, temporal-spatial 
data, device features, user’s background, and 
preferences. The context sensing layer generates 
quantized and non-quantized raw data whose values 
are numeric. Boolean, and literals, and most of which 
are time-stamped. To transform this context data into 
meaningful context, the raw-data is translated into 
symbolic information. The mapping is achieved by the 
context perception layer through computation, 
inference and leaming techniques. The context 
perception layer is independent from the context 
sensing technology in the sense that it provides an 
abstract context representation through the use of 
ontologies.

At the higher level o f the RTE hierarchy is context 
identification and adaptation layer where leaming 
services are discovered and leaming content is adapted 
based on the interpreted context. The integrated 
ontology space describing knowledge about all context 
components is incremented with domain ontology 
knowledge, and used as a unified knowledge base for 
system reasoning. The result of the reasoning process 
is a set of extracted metadata used for service 
discovery and adaptation based on system-centric 
context (device and environment context) and user- 
centric context (leamer and activity context). In 
particular, the extracted metadata is used to personalize 
both the leaming path and leaming content in order to 
match the learner’s background, prerequisite 
requirements, previous tasks, leamer’s mobility, 
available network bandwidth, privacy and connectivity 
issues. Each of these adaptations is controlled by a 
Context-Adaptation Logic in the form of ontology 
reasoning steps.

3. Context Sensing and Representation

Context is any information that is relevant to the 
interactions between a user and an environment [5]. 
This information is about the circumstances, objects, 
and conditions by which the user is surrounded. 
Contextual information can be classified into atomic 
context and composite context. Atomic context 
elements are associated to raw data that is either sensed 
or profiled. Sensed atomic context is mainly dynamic 
in nature such as user location or network bandwidth. 
Profiled atomic context however is mainly static such 
as screen resolution of a specific handheld device.

H igh Level Context 
M anagement

C om posite Context 
Acquisition

Context Aggtcgatiofl and A daptation

1 1
Context Inference Context Com putation Context Learning

C

A tom ic Context I Atomic Context ( i Atomic Context 
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Atomic Context ! | Atomic Context 
S ensor j { Sensor

r: :]
Context Sources ; Raw-Context , , Raw-Contcxt 

Data , /  Data

[  “ I
/ '  Raw -C ontcxt /  Raw-Contcxt ' 

D ata Data

Figure 1. Run-time environment hierarchy

user’s date of birth, gender, or preferred language(s). 
Composite context on the other hand is derived fi"om 
atomic context elements through computation, 
inference, or leaming techniques.

In this study we divide context into four context 
groups -  User context -  Activity context -  Device 
context -  and Environment context. User context is the 
main source for provisioning personalization. It also 
extends activity context by providing information such 
as user’s background, preferred language(s), and user’s 
schedule. Activity context however deals with accessed 
services, consumed leaming resources, adopted 
leaming sequence, and domain-knowledge 
management and adaptations. It uses leaming domain 
ontology as the main backbone for service adaptation 
and content management. Device context on the other 
hand is the main source for determining the software 
and hardware capabilities of used devices and hence is 
used for setting the right execution profile for the 
accessed services. Information such as device 
operating system, screen resolution, available memory, 
and supported device applications are emeial to target 
metadata that allow discovery of services that can run 
on such devices. Finally, environment context deals 
with information such as temporal and spatial 
contextual information, network bandwidth, and other 
service quality features including security. 
Environment context extends device context by 
adjusting the execution profile o f accessed services. 
For example, while choosing the media type of the 
resources to be retrieved, we may not solely depend on 
the capabilities of the used device, but we should also 
take into consideration current network bandwidth.



Ideally, all context changes need to be fed to the 
system as they occur. However, the process of  
continuously sensing and updating the dynamic atomic 
context elements is time and resource consuming, 
especially in a mobile computing environment where 
system resources are very expensive. To solve this 
problem, we adopt an approach where precise values 
about some of these context elements, such as network 
bandwidth for instance, are sensed at some specific 
points in time, and approximate values are predicted 
with reasonable certainty outside these points. We use 
fuzzy logic to predict the value of such dynamic 
contextual elements.

Figure 1 shows the main components of the context 
sensing and perception layers. At the low level, 
software and hardware sensors are used to sense and 
collect atomic context raw-data from different sources. 
Some of these atomic contexts are sensed and others 
are rehieved from device and user profiles. Other 
atomic context such user identification and 
authentication information are input by the leamer. The 
sensed raw data is then translated into symbolic 
meaningful context information through inference, 
computation or leaming techniques.

4. Context Modeling and Reasoning

At the semantic level we define contextual 
information using a global ontology space that 
integrates the four context ontologies and the subject 
domain ontology. Context aggregation is enabled using 
a shared ontology space and a unified reasoning 
mechanism across these ontologies. In particular, 
whenever context change occurs, the run-time 
environment identifies the new contextual features and 
translates them into new adaptation constraints in the 
operational environment. Figure 3 shows the global 
ontology space which encompasses the four context 
ontologies and the domain ontology. Different types of 
core ontology classes describing basic ontology 
concepts (i.e. Device, Leaming Resource), role 
concepts (i.e. Leamer), and role holders (i.e. 
Leaming Activity), are used to interrelate concepts 
among the combined ontologies. As shown in Figure 2, 
the five ontologies are integrated and blended along the 
many properties that link various classes used by these 
ontologies. Figure 2 shows only the relationships 
among these ontologies. Below, we describe each of 
these ontologies as well as the relationship between 
them in more details.

L eam er Ontnlngj-

.Concept,

Learning Resource

Figure 2. Global ontology space

The domain ontology is a conceptualization of a 
knowledge organization of a specific subject domain. It 
is expressed in terms of a hierarchy of subject topics, 
each of which is described by a set o f concepts and 
their relationships. The power o f domain ontology is 
thus measured by its ability to model the semantical 
role of its concepts in terms of their importance to the 
described subject domain, as well as their temporal, 
logical, and semantical dependencies. The class 
concept is the ontology’s core class. Concepts are 
interrelated along the properties HasPrerequisite, 
F artO f Isa, and N ececassaryPartO f in order to 
describe the temporal, part of, is a, and part-whole 
dependencies between the various sub-concepts 
respectively. These properties can be employed to 
build authoring tools capable o f defining sub-concepts 
at any desirable granularity level. They are also cmcial 
to support temporal and logical navigation of the 
leaming by providing the leamer with the right 
leaming sequence and content. In addition to the above 
mentioned properties, we used the class property 
IsMappedTo to annotate leaming resources with 
ontology concepts. This property along with 
H asK eyw ord  property, w hich associates keywords 
input by the leamer to most related ontology concepts, 
are very useful for retrieving leaming resources by 
mapping their metadata to ontology concepts, thus 
allowing resources sharing.



Leamer Ontology is used to represent knowledge 
about the leamer to deliver personalized e-leaming 
services. This knowledge is organized into ontology 
concepts and relationships and used to map different 
contextual leamer attributes onto service invocations, 
thus, enabling the system to discover, adapt, and 
deliver the most relevant leaming resources in response 
to queries made by the leamer. The main properties 
used in this ontology are HasCovered which relates 
individuals of class Leaner to domain concepts that has 
been covered so far, and property 
ConsumedLearningResource which relates individuals 
of class Leaner to consumed leaming resources. These 
relationships are used to infer those concepts that have 
not been covered by the leamer, and thus help planning 
his leaming path. Path planning also involves the use 
of the domain ontology relations HasPrerequisite, 
NececassaryPartOf, Part O f and Isa. Finally, the 
property ConductedLeamingActivity relates the 
Leam er class to LeamingActivity class. This enables 
the system to infer and retrieve all previously 
conducted leaming interactions for a particular leamer. 
Thus knowledge embedded in activity ontology can 
capture all leaming activities (user interactions) 
conducted by a leamer over a period of time using a 
specific handheld device, as well as queries previously 
made by the leamer. It also allows the system to 
recover from wireless network disconnections, which 
could be frequent in a mobile environment, by 
identifying the most recent leaming activity and 
restoring most recent leaming context. All queries 
made by the leamer are time-stamped to infer the order 
in which ontology concepts were covered and their 
respective leaming resources were consumed. This 
feature is crucial to organize and adjust the leaming 
path every time a new query is made by the leamer.

The device ontology however is used to represent 
knowledge about used devices and their hardware and 
software capabilities and limitations. This knowledge 
is very useful for the discovery of leaming services 
whose execution profile matches the characteristics of 
the used device. For instance, knowledge such as 
maximum bandwidth that can be supported by a 
device; supported communication protocol; and 
running operating system, is needed to adapt the used 
device to the sensed wireless network. Other device 
knowledge such as enabled software applications, 
screen resolution, and available memory can also be 
used to filter out leaming resources with a media type 
matching the device capabilities. Finally, the

environment ontology formally describes the 
knowledge about a leamer's enviromnent which 
consists mainly of temporal and spatial contextual 
features, as well as networking, security, and 
connectivity issues. The main properties of this 
ontology are HasLocation which relates the class 
Environment to the current location, and the properties 
HasWirelessNetwork, IsSecured and Hasbandwith 
which describe the wireless network the leamer is 
connected through, its security status, and its current 
bandwidth respectively. These contextual elements are 
very cmcial to adjust leaming content that is 
compatible, in terms of size, media-type, and privacy, 
with the technological set-up that characterizes the 
surrounding environment of the learner.

The Semantic Web Rule Language (SWRL) is used 
in this study to reason with the perceived context in 
order to retrieve metadata that can be used for the 
various adaptation tasks. Several SWRL rules are used 
to infer new context based on the sensed atomic 
context elements. For instance, the media-type of 
leaming resources to be retrieved from the various 
distributed leaming objects’ repositories can be 
inferred from the atomic context elements describing 
network bandwidth, available memory and screen 
resolution of the used device. For example, we only 
search for leaming objects with text type if  a mobile 
device has a small available memory, or if  the network 
has low bandwidth. Figure 3 describes the logical steps 
to select the media type of retrieved leaming objects to 
make sure that they are browsable on the used device.

Figure 4 shows some of the experimental results for 
a user who want to leam about digital photography. 
We modeled a very simple ontology describing the 
digital photography subject area and asked few users to 
make queries related to that domain using devices with 
different software and hardware capabilities. The 
figures below show the results for a query using the 
concept Camera. The leamer is provided with a list of 
concepts related to Camera using knowledge 
embedded in the domain ontology, in addition to a set 
of leaming resources retrieved by various search agents 
such as Wikipedia and Youtube. Our search engine is 
based on mashup technology, which enables it to 
integrate leaming resources from various distributed 
repositories. The retrieved resources are filtered out 
based on the leamer, device, and environment context.
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5. Conclusion

This paper attempts to solve some o f the challenges 
related to context management and mobile learning 
design, making use o f  the progress made in ubiquitous 
computing and the Semantic Web respectively. In 
particular, our contribution is a method that integrates 
knowledge related to the leamer, leaming activity, used 
mobile technology, and surrounding environment, and 
defines it at the semantic level using a global 
interrelated ontology space. The proposed approach 
allows reasoning with the perceived heterogeneous 
context elements to translate context changes into new 
adaptation constraints in the operating environment, 
thus enabling personalized leaming. An early prototype 
is built and the experimental results are very 
promising. We are currently implementing the various 
reasoning mechanisms to deal with the leamer’s 
context, background, and preferences.
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