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ABSTRACT 
 

Laforest, Serge. 2012. A case study of the implementation and evaluation of on-board 
computers in forest operations in northern Ontario. 

 
Keywords: On-Board Computers (OBC), forest operations, supply chain, northern 

Ontario, forestry, heavy equipment 
 

In the Canadian forest industry, there are many challenges. One of these challenges is 
obtaining basic operational information from heavy forest equipment. Acquiring this 
information can lead to various opportunities including developing best practices, 
identifying operational issues and monitoring costs/operations. The development of Key 
Performance Indicators (KPI), a data collection/transmission system and customized 
reports are some of the challenges associated with collecting this information. One tool 
that may be used to collect this information is On-Board Computers (OBC).  

The main objective of this study is to implement and evaluate the use of a data 
collection system to monitor the performance of forest operations. An OBC system was 
planned and integrated into forest operations in northern Ontario, Canada. These OBCs 
were installed in feller-bunchers, skidders, roadside single-grip processors, excavators 
and dump trucks. Basic KPIs were developed in order to monitor forest operations. 
These KPIs were: Approximate Available Machine Hours (~AMH), Approximate 
Productive Machine Hours (~PMH), Efficiency ((~PMH/~AMH)*100%) and 
productivity count. In order to determine the effect of KPI information and report usage, 
two separate intensity reporting periods were created. The High Intensity Reporting 
Period presented weekly KPI reports to staff. The Low Intensity Reporting Period did 
not present weekly reports to staff. Parametric and nonparametric statistical tests were 
used to determine if there were significant differences in KPI values between the two 
intensity periods. ~AMH, ~PMH, Efficiency and Count KPIs all proved to have 
significant differences between reporting intensity periods. The significance of these 
differences varied between machine types and individual machines. Feller-bunchers 
proved to have the greatest significant differences in KPI values between intensity 
reporting periods. After identifying significant differences in the ~PMH KPI, an ROI 
was used to estimate the return on OBC investment. During a three year period, an ROI 
of 105% was estimated when considering the implementation of these OBCs in 10 
feller-bunchers.  

Recommendations and methods for the implementation of OBCs in forestry are 
also presented. This includes the development of KPIs, OBC system installation and 
report creation. 
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1. INTRODUCTION 

There are many challenges in the Canadian forest industry. These challenges have a 

considerable range of subjects and can be quite complex.  

 This introduction will begin by focusing on some of the challenges in the forest 

industry, specifically outlining how they can be rooted to a general lack of operational 

information. A discussion on Supply Chain Management and the important link to 

operational information will follow. Subsequently, an expression of importance to data 

collection systems and their applicability will be reviewed. On-Board Computers (OBC) 

and reference to past applications will introduce the opportunities and some potential 

uses. The introduction will conclude with a discussion of objectives and the scope of the 

study. 

1.1 CHALLENGES AND LACK OF INFORMATION 

One challenge put forth by D’Amours et al. (2007) and Chauhan et al. (2009) is the need 

to plan on short and long term bases (1second to 100+years). This can include deciding 

which trees to cut in a stand to the long-term decision making for silvicultural programs. 

These decisions require information. Obtaining this information can be difficult and 

costly due to the size and variability of the work. This variability stems from the 
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heterogeneous nature and variability of forests and its fibre.  This, in turn, provides 

considerable uncertainty and variability in decision making (Frayret et al. 2004). 

To make matters more challenging, Beaudoin et al. (2007) emphasize added 

complexity in planning within a multi-firm environment. This is due to the involvement 

of multiple businesses and product sources within supply chains. Acquiring, analysis and 

reporting of data can be difficult if a system is not automated and operating in a “cloud” 

type atmosphere. In addition, multiple stakeholders have many different goals and 

values which may clash when collecting, analysing and disseminating information. 

Roscher et al. (2004) suggest that although minimizing cost is still one of the 

primary goals of wood supply organisations, there are other objectives that are gaining 

importance. They suggest that the achievement of these new objectives requires greater 

attention to system control and adaptability. Consequently, this requires access to more 

information (IUFRO 2005).  

Product diversification also adds an element of complication to data collection 

(IUFRO 2005). The diversification of products leads to additional challenges due to 

changing needs and values. This may require the development and collection of alternate 

sources of information that were not previously required or wanted. An example of 

product diversification would be the harvest and transport of woody biomass for fuels on 

a large scale (Sikanen et al. 2005).  

Although there is a series of different Decision Support Tools (DST) that have 

been created or suggested (Karlsson et al. 2004, Beaudoin et al. 2007, Chauhan et al. 

2009), they are not used (if at all) to their full potential. In order to use DSTs in forestry, 

there is a constant need to collect and analyse basic information on rolling time horizons.  
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1.2 SUPPLY CHAIN MANAGEMENT AND INFORMATION 

Supply Chain Management (SCM) has become of significant interest in the Canadian 

forest industry. The main focus of SCM is on order fulfilment processes, financial and 

informational flows (Stadtler 2005). The quick and accurate collection, analysis and 

distribution of information will be one of the determining factors that will make or break 

the success of the system; the ability to collect real-time information is a core 

component of SCM. Real-time information keeps managers up-to-date and able to better 

react to events and make decisions (Frayret et al. 2004). Frayret et al. (2004) and 

Sikanen et al. (2005) suggest that the integration of an automated, open access web-

based system would provide grounds for the collaboration of all organisations. 

Therefore, matching production with customer requirements grows the need for 

improved integration among different actors in the supply chain (IUFRO 2005). It is 

clear that the quality of forest management and operations has a direct impact on the 

performance of wood fibre supply chains (D’Amours et al. 2007; D’Amours et al. 

2008). 

1.3 IMPORTANCE OF DATA COLLECTION SYSTEMS 

After reviewing challenges faced by the Canadian forest industry, it is apparent that a 

data collection system(s) is important. One section of the industry which can greatly 

profit from the use of a well-developed data collection system is forest operations. This 

is because data recording and analysis is a very basic component of any business 

strategy in forestry (Holzleitner et al. 2012). The collection of this basic information 
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could be used for refining Rate Determination Models, monitoring operations and 

developing best practices. 

When considering the implementation of a data collection system in forest 

operations, there are key requirements that must be considered. Johansson (1997) 

suggested a few major components to the creation and operation of such a system: 

- Road network database  

- Operations analysis with optimizing function 

- Providing follow-up/control in real-time 

- Internal and external computer network 

- Mobile data system consisting of hardware and software for mobile data 
communication, production control and navigation  
 
It is important that the data collection system contain mobile components. This is 

because mobile components suit decentralized organisations, which are often found in 

forest operations (IUFRO 2005). The 24/7 online access of information can also be 

valuable since it is easily used to share data amongst different parties (IUFRO 2005). 

One must also consider that with the collection and analysis of a large amount of data, 

there is a need to have a robust automated system which is capable of collecting, 

managing and storing all information (Cordero et al. 2006). Furthermore, it is of crucial 

importance to have a good data transmission network between the field and central 

database (Emeyriat and Bigot 2006). The ability for the data collection system to adapt 

to different and changing environments is the key to its successful implementation in 

forest operations (Davis and Kellogg 2005). 
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 With this being said, there is a clear need for an automated data collection system 

which is capable of collecting, analysing and disseminating information to all members 

of the supply chain in order to manage operations (IUFRO 2005).  

1.4 ON-BOARD COMPUTERS (OBC) 

Tools which can be used to collect information are OBCs specifically designed for the 

forest industry. The history of OBCs in forestry can be considered by their inclusion 

within International Precision Forestry (PF) Symposia papers. At the first PF symposium 

in 2001, there were approximately three studies which discussed the use of OBCs for 

data collection and analysis (Anonymous 2001). At the 2003 symposium, a new plenary 

session was added and dedicated to precision operations and equipment, of which OBCs 

were a large component (Anonymous 2003). In 2006, there was an even more 

specialized session which centred on equipment monitoring and management, followed 

by the Decision Support System, data and information requirements session which also 

contained studies with OBCs (Ackerman et al. 2006). At the last PF symposium in 2010, 

the second largest session was strictly dedicated to equipment monitoring and 

management. This session contained a series of projects which utilised OBCs and 

considered their current and future use (Ackerman et al. 2010).  

Considering this expansion in knowledge and use of OBCs, it is clear that 

equipment and monitoring tools found in PF are being increasingly implemented within 

the forest industry. OBCs are beginning to gain considerable value and importance 

throughout the industry, and their applicability is becoming proven internationally; an 
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example of this is found in the Irish forestry sector, where the technology has been 

introduced into timber haulage (Devlin and McDonnell 2009). 

Information and Communications Technology (ICT) found within PF can help 

both cost leaders and quality/value leaders (IUFRO 2005). There are opportunities for 

improvements and major changes in logistical systems that would lead to considerable 

gains. The implementation rate has been slow and additional research is needed to 

develop better methods and to utilise incoming information (IUFRO 2005). Since it is a 

relatively new tool, its implementation and use involves the development of change 

within an organisation. This change can be difficult to achieve if it is not undertaken 

properly. One way to implement these changes is for management to understand and 

value the impact of these changes and effectively communicate this to stakeholders 

(Grover et al. 1995). 

The progress in PF is strengthened by the growing capabilities and advancements 

in information and communication technology (hardware, software and sensors) 

experienced by the entire Information Technologies (IT) industry. The utilisation of 

these tools can lead to the development of major advantages in the forest industry. 

Roscher et al. (2004) cited a document by Svanberg (2000), which listed three main 

advantages to using mobile data systems in round wood transport: 1) better 

communication; 2) improved navigation; and 3) faster reporting. 

1.5 WHATS BEEN DONE? 

There are very few peer-reviewed journal articles which discuss or provide a case study 

on the implementation of OBCs in forest operations. Only two articles were found to 
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match these criteria; these were McDonald et al. (2002) and McDonald and Fulton 

(2005). The bulk of the information found on implementation and use of OBCs and even 

GPS systems in forest operations is mostly restricted to non-peer-reviewed publications 

(Johansson 1997, Thor et al. 1997, Carter 1999, Taylor et al. 2001, Thompson 2001, 

Davis and Kellog 2005, Cordero et al. 2006, Thompson and Klepac 2010, Strandgard 

2011). This lack of peer-reviewed publications on OBCs and data collection systems for 

forest operations is odd, since there are a large number of publications in forest planning 

and supply chain management that emphasize importance of developing a reliable, 

accurate and efficient data collection system. An article which has recently stressed this 

is Brown et al. (2012). They suggest that being able to effectively measure and 

understand machine performance is critical to having efficient mechanised forest 

operations. 

This lack of publication and data sharing are attributed to certain factors. One 

reason being the limited amount of literature and experience that looks at ICT in the 

forest sector. Studies regarding ICT solutions in procurement are still often regarded as 

immature (IUFRO 2005). Another reason for the deficiency in implementation and 

publication is the lack of development of a fast, easily implemented and utilised solution 

which is consistent over time. Time-constrained managers and contractors have 

difficulty implementing, troubleshooting and learning new systems. When a need arises 

for machine evaluation to support important management decisions, understanding and 

maintaining basic skills and a consistent approach is difficult (Brown et al. 2012). 

Additional reasoning for the lack of publications on successful implementation of OBC 

technologies is that attempting to track productivity in forestry operations can be 

frustrating and expensive (IUFRO 2005, Holzleitner et al. 2012). In addition, 
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determining the impact of a change in operations and its influence on productivity is 

difficult and thus has led to a limited number of reports describing productivity gains in 

forestry (IUFRO 2005).  

However, when these obstacles are overcome, international experience in forest 

harvesting and in related industries has shown significant savings can be made by using 

onboard computers to get expensive equipment working more effectively (Strandgard 

2011). MultiDATs can be used to identify machines with poor utilisation and, when 

combined with knowledge of the operation, can be used to make corrections to improve 

utilisation and to monitor the impact of the changes over time (Strandgard 2011). 

1.6 OBJECTIVES 

There are many challenges within the forest industry. One particular problem, which 

will be the focus of this case study, is the lack of detailed operational information which 

can lead to uncertainty in forest operations control. The collection and use of detailed 

performance information should create opportunities for operations improvement. Some 

of these improvements would include the development of best practices and the refining 

of economic calculations. 

The main objective of this study is to determine whether there are significant 

differences in KPIs between two different reporting intensity periods. Attaining this 

objective will rely on achieving the following secondary objectives: 

- The identification of needs and resources 

- System design and integration 

- Data analysis and reporting 
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- Evaluation of the Return On Investment 

This study will also contain an implementation guide, review errors in system 

implementation, discuss alternative methods to system implementation and discuss 

future research opportunities.  

 The Null Hypothesis (H0) of this study is that there is no significant difference in 

KPI values between periods when detailed data from the OBCs is not utilised by 

supervisors and when utilised (i.e., between data reporting intensity periods). The 

Alternative Hypothesis (HA) is that KPI values will be higher in periods where data from 

OBCs is consistently used by staff. 

1.7 SCOPE 

The field work for this study took place from May 2011 to January 2012. All field data 

collection took place during this period. This was due to time and budget restrictions. 

 The data system was installed in a contractor’s operations. One contractor owned 

all of the forestry equipment and this equipment was operated by unionized workers. 

Machine types studied were feller-bunchers, grapple skidders, dangle head processors 

operated at roadside (subsequently referred to as “processor”), excavators, gravel trucks 

and belly-dumps.  

 The study was designed to be a broad level study of forest operations. Data used 

for all calculations were based on shift level information. Some shifts were lost due to 

technical difficulties associated with the machine or the datalogging equipment. Because 

of this, some shift data were not collected and could therefore not be considered in data 

analysis.  
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 Site and stand conditions or specific shift details were not monitored for each 

shift. These conditions may have had some effect on logged machine information. In 

addition, the scheduling of operators on machines was not monitored. Operators were 

regularly scheduled according to the contractor’s scheduling method and were regularly 

cycled between shifts and some machines. Very few machines tended to retain the same 

operator throughout the study. In summary, this study is applied to an actual working 

forest harvesting operation in real-life operating conditions.  
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2.0 MATERIALS AND METHODS 

2.1 SITE SELECTION AND TIME PERIOD 

This study took place in a logging operation in Northern Ontario. All operations were 

located in the Boreal forest. The field data collection began May 2011 and was 

completed in January 2012. For the purpose of confidentiality, detailed information is 

limited to only the logging equipment and not given about the overall logging operation. 

2.2 MACHINES STUDIED 

In this study, multiple machine types were studied (Table 1). This included feller-

bunchers, grapple skidders, processors, excavators, gravel trucks and belly-dumps. Each 

machine type varied in number of units studied and each machine is an independent unit. 

There was some variability found in equipment such as make, model and year. The units 

listed in Table 1 were specified for this study since they were the most readily available 

for OBC equipment installation. 
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Table 1. List of machines. 

Machine type Make Model Year 
Feller-buncher Tigercat 870C 2007 
Feller-buncher Tigercat 845S 2009 
Feller-buncher Tigercat 845S 2010 
Feller-buncher Tigercat 845S 2010 
Feller-buncher Tigercat 845S 2011 

Skidder J.Deere 748H 2008 
Skidder J.Deere 748H 2009 
Skidder Tigercat E630D 2010 
Skidder J.Deere 848H 2010 

Processor Hitachi ZX250 2006 
Processor Hitachi ZX250 2006 
Excavator Hitachi EX270 2001 
Excavator Hitachi ZX250 N/A 
Excavator Hyundai 290LC 2007 
Excavator J.Deere 2554 2003 
Excavator J.Deere 2554 2005 

Gravel truck W.Star N/A 1996 
Gravel truck W.Star N/A 1995 
Gravel truck W.Star N/A 1995 
Gravel truck W.Star N/A 1999 
Gravel truck Intl N/A 2006 
Gravel truck J. Deere 250D N/A 
Belly-dump W.Star N/A 2006 
Belly-dump W.Star N/A 1996 
Belly-dump W.Star N/A 2002 

 

2.3 MULTIDAT  

MultiDAT is a data logging system designed to meet the needs of owners and managers 

of heavy equipment (FPInnovation 2010). Its main components are an OBC, software 

and a shuttle for data transfer. Davis and Kellogg (2005) reported that the multiDAT 

OBC and software provides a good analysis tool at the contract level for monitoring 

production efficiencies and can aid in determining limiting aspects of the operations. It 

is a comparably simple, well-established OBC which is purpose built as a third party 
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OBC for the forest industry. One major advantage of this system is its ability to identify 

long term trends by smoothing short term fluctuations (Strandgard 2011). 

2.3.1 OBC 

In its most basic form, the OBC has the ability to sense motion and four different 

“channels” (Figure 1). Each “channel” is one wire. These wires can be connected to an 

electronic impulse between 5 and 28V. Activities for each of these channels will be 

logged. 

 

 

Figure 1. MultiDAT and connections. 

 

As an example, channel 1 can be connected to the electronic impulse for the saw 

of a processor. Every time there is an electronic impulse on this wire, it is recorded in 

the multiDAT. The period length or count of this impulse can be logged. This can 

provide a total number of activations within a set amount of time, or provide the number 

of times a signal was sensed in the channel. Another example would be connecting a 

channel to the machine work lights switch. Whenever the lights are engaged, it can log 

the number of times and/or when the lights are activated.  
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There is a motion sensor built into the OBC. This motion sensor will constantly 

be tracking the velocity of motion. The user can set a certain threshold to determine 

when there is enough velocity to log this motion. This is done to eliminate unwanted 

noise in data.  An example of this would be setting the velocity of motion to be higher 

than that of the vibrations from machine idling. This would provide a better idea of 

when the machine is having more pronounced motion as opposed to just small 

vibrations.  

2.3.2 Data shuttle 

Since this system was developed in the late 1990s, data shuttles (also known as PDAs) 

were used to transfer information from the multiDAT to a database. In this study, a 

wireless download system was used to transfer data from the multiDAT to a database. 

Each multiDAT was connected to a Radio Frequency (RF) modem. This modem would 

transfer information from the multiDAT to a custom made computer in the supervisor’s 

pick-up truck. This computer would then transfer the information via cellular modem to 

a File Transfer Protocol (ftp) site. Data would then transfer from the ftp site to the 

multiDAT database for data reporting and analysis. Figure 2 illustrates this data transfer. 

 

 

Figure 2. MultiDAT dataflow. 
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2.3.3 Software 

Once data were accessible, the software would take the log files and add them to the 

database. Once transferred, this data can be reported and viewed graphically. In a 

graphical representation, the data are presented on a timeline. Figure 3 is a screenshot of 

actual data from the study graphically represented in the program. 

 

 

 

Figure 3. Screenshot of graphical dataview in the multiDAT software. 

 

 This view allows the user to graphically review and evaluate logged data. This 

can be used to look at specific windows in time to determine what actions happened and 

when. In this case, this is a graphical representation of two 10 h feller-buncher work 

shifts. The day began at approximately 6:00 a.m. and was completed at 2:00 a.m. the 

next day. The shift change took place at 4:00 p.m.. The first bar from the top (data 

recorded) indicates that there are available data for this time period. The second bar from 
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the top (Recorder) indicates when the ~AMH (master) switch was turned on. The third 

bar from the top (Motion Sensor) indicates when motion was sensed. The fourth bar 

from the top (Travel) indicates when the machine engaged its tracks. The small dots are 

15 min totals of grab arm counts. The remaining bars are not used in this particular 

study. With this information, the user can efficiently and graphically view work shifts.  

 The software was also used to create custom reports. Custom reports can be 

created by the user to show exactly what data he/she would like and how it should be 

displayed. Examples of this will be shown after KPIs have been discussed.  

2.4 KEY PERFORMANCE INDICATOR (KPI) DEVELOPMENT 

Study KPIs were developed by the staff and the researcher. Early discussions were based 

on the establishment of basic KPI requirements. It was agreed that KPIs have to be: 

- Easy to track, understand and report 

- Somewhat similar between all machine types 

- Provide an  indication of machine performance  

- KPI electronic signal easily connected to the OBC 

After some deliberation, the basic KPIs were decided to be Master switch on (h), 

Motion sensor (h), Efficiency (%) and a Count. 

2.4.1 Master switch for estimating Available Machine Hours (~AMH) 

This KPI is used as a proxy for machine availability. The master switch is a physical 

switch on the machine which activates machine power. Machine power is deactivated 

when it is not used. The multiDAT logs information on the activation of this power 

switch. When the power is engaged, it tracks its activation in hours. This gives an 
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estimation of when the machine is available for use within its scheduled time. Since it is 

not quite an accurate measure of Available Machine Hours (AMH) and only an estimate, 

this KPI will be referred to as ~AMH for the remainder of the text.  

2.4.2 Motion sensor for estimating Productive Machine Hours (~PMH) 

This KPI provides an estimate of how much the machine is moving and is used as a 

proxy for utilisation. It is assumed that the machine is moving when the accelerometer 

(or motion sensor) gets above a certain motion velocity threshold. This KPI has been 

used as a proxy for utilisation in other studies (e.g., Strandgard 2011). It is important to 

track utilisation since forest machinery utilisation rates are one of the most important 

factors influencing machine cost calculations (Holzleitner et al. 2012). Since this is only 

an estimate of machine utilisation or Productive Machine Hours (PMH), it will be 

referred to as ~PMH for the remainder of the text. 

2.4.3 Efficiency 

This KPI gives a measure of “presence” at the machine. It is a function of dividing 

~PMH by ~AMH and is reported as a percentage. This gives a measure of percent of the 

time the machine was moving (~PMH) while it was turned on (~AMH). This gives the 

supervisors an idea of how “efficient” the machine may be while it is active (i.e., time 

available actually utilised). 

2.4.4 Count 

This KPI is a count of specific machine actions. There are only two machine types 

which had this KPI: feller-bunchers and processors. For feller-bunchers, it was 

measuring a count of grab arm activations on the saw head. For processors, it counted 

the activation of the bottom saw. Both of these give a measure of machine direct 
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production activity (i.e., main work time (Rickards et al. 1995)). It is not intended to 

provide an accurate measure of tree count or log count. There are, however, some 

correlations which can be drawn that can help estimate this. 

2.4.5 Track monitoring 

This KPI was intended to monitor the amount of time machine tracks were engaged. It 

was to only be used for feller-bunchers and processors. After some deliberation and 

testing, this KPI was removed from the study. This KPI was determined to be 

unimportant since the Motion KPI was giving very similar results. Furthermore, the 

OBC’s memory was being challenged due to the frequency of the start and stop of the 

tracks.  

2.4.6 Skidder Count 

This was chosen to be the production Count KPI for skidders. It was thought that there 

would be a relatively common ratio between back-ups and bundles. After installation 

and initial study, it was determined that this KPI would not be a good proxy to represent 

skidder productivity. The engagement of the reverse gears had no relation to 

productivity. Therefore, it was removed from the study. 

2.5 INSTALLATION 

Once KPIs were determined, installations could take place. The installation of these 

OBCs took place when both machine and mechanic were available (May 17, 2011 to 

August 11, 2011). Table 2 indicates when each multiDAT was installed, when reports 
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were generated and the start dates for on-site trips. These trips varied in length from 4 to 

6 days. Trip 1 was a preliminary trip completed in March and is not listed in Table 2. 
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Table 2. MultiDAT installation, reporting and trip dates. 

Machine Machine 
# 

Data 
collection 

start 
Report # Report date Trip # Trip 

May 
Gravel truck 1002 17/05/2011 

  
Trip 2 15/05/2011 

Gravel truck 1004 17/05/2011 
    Hoe 1301 17/05/2011 
   

  
Rock truck 1401 18/05/2011 

   
  

Hoe 1304 24/05/2011 
   

  
Gravel truck 1003 30/05/2011 

   
  

Gravel truck 1001 30/05/2011 
   

  
June 

Buncher 1201 08/06/2011 Report 1 08/06/2011 Trip 3 06/06/2011 
Gravel truck 1005 08/06/2011 

   
  

Buncher 1202 10/06/2011 
   

  
Processor 1501 10/06/2011 

   
  

Belly-dump 1101 12/06/2011 
   

  
Hoe 1302 14/06/2011 

   
  

Belly-dump 1102 20/06/2011 
  

Trip 4 19/06/2011 
Belly-dump 1103 20/06/2011 Report 2 21/06/2011 

 
  

Buncher 1203 24/06/2011 
   

  
Hoe 1303 27/06/2011 Report 3 27/06/2011 Trip 5 26/06/2011 

Grapple skidder 1601 29/06/2011 Report 4 30/06/2011 
 

  
Grapple skidder 1602 29/06/2011 

   
  

July 
Processor 1502 04/07/2011 Report 5 04/07/2011 Trip 6 03/07/2011 
Buncher 1204 09/07/2011 Report 6 09/07/2011 

 
  

Grapple skidder 1604 19/07/2011 Report 7 18/07/2011 Trip 7 17/07/2011 
Hoe 1305 20/07/2011 Report 8 22/07/2011 Trip 8 23/07/2011 

Grapple skidder 1603 25/07/2011 Report 9 26/07/2011 
 

  
August 

Buncher 1205 11/08/2011 Report 10 08/08/2011 Trip 9 07/08/2011 
  

  
Report 11 11/08/2011 Trip 10 14/08/2011 

September 
  

  
Report 12 05/09/2011 Trip 11 03/09/2011 

  
  

Report 13 21/09/2011 Trip 12 19/09/2011 
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Table 2. MultiDAT installation, reporting and trip dates. 

Machine Machine 
# 

Data 
collection 

start 
Report # Report 

date Trip # Trip 

October 
  

  
Report 14 26/10/2011 Trip 13 11/10/2011 

  
    

Trip 14 24/10/2011 
November 

  
  

Report 15 02/11/2011 Trip 15 04/11/2011 
  

  
Report 16 08/11/2011 Trip 16 12/11/2011 

  
  

Report 17 14/11/2011 Trip 17 28/11/2011 
  

  
Report 18 29/11/2011 

 
  

December 
  

  
Report 19 06/12/2011 

 
  

  
  

Report 20 13/12/2011 Trip 18 11/12/2011 
  

  
Report 21 20/12/2011 

 
  

  
  

Report 22 26/12/2011 Trip 19 28/12/2011 
January 

  
  

Report 23 01/01/2011 
 

  
  

  
Report 24 01/10/2011 

 
  

      Report 25 24/01/2011     

 

2.6 DATA REPORTING 

Data would be collected throughout the week and reported every following Tuesday for 

a supervisor meeting. Data were presented in three different reports. These reports are 

referred to as the “glance”, “weekly” and “detailed” reports. Each report was reporting 

information in different styles and was intended for different audiences. 

2.6.1 Glance report 

This report was designed to provide weekly information for each machine at a quick 

glance. This report was most often used by higher level supervisors and managers to get 



22 
 

a weekly snapshot of each machine’s work. Table 3 illustrates a small piece of this 

report. 

 

Table 3. Glance report examples. 

 
~AMH ~PMH ~PMH/ 

 
    ~AMH 

 
      

 Bellydumps (h) (h) (%) 

Belly dump 1       

  49.35 19.07 38.64 

Belly dump 2       

  2.04     

Sub-total for Belly dumps       

  51.40 19.07 37.10 
        

 Feller-bunchers (h) (h) (%) 

Feller-buncher 1       

  0.04     

Feller-buncher 2       

  72.16 59.07 81.86 

Feller-buncher 3       

  95.55 78.70 82.36 

Feller-buncher 4       

  54.70 49.35 90.21 

Sub-total Feller-bunchers       

  222.45 187.11 84.11 
 

The first column indicates the machine name. The second column indicates the 

~AMH in hours. The third column indicates the ~PMH in hours. The third column is a 

percentage score of Efficiency [~PMH/~AMH]. 
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2.6.2 Weekly report 

This report was used by managers and supervisors to quickly identify subtotals between 

different shifts per machine. This was used to monitor activity for each individual shift. 

An example of this report is shown as Table 4. 

 

Table 4. Weekly report example. 

  

SMH ~AMH ~PMH 
~Availability 

[~AMH/ 
SMH] 

~Utilisation 
[~PMH/ 

SMH] 

Efficiency 
[~PMH/ 
~AMH] 

Feller-bunchers (h) (h) (h) (%) (%) (%) 

Feller-buncher 1             

        Day shift 40.00 34.18 26.93 85.44 67.33 78.80 

        Night shift 40.00 13.96 11.89 34.89 29.71 85.17 

        Split shift 40.00 24.02 20.25 60.06 50.62 84.29 

    Sub-total /  FB 1 120.00 72.16 59.07 60.13 49.22 81.86 

Feller-buncher 2             

        Day shift 40.00 34.78 27.42 86.95 68.55 78.84 

        Night shift 40.00 22.93 18.87 57.32 47.17 82.29 

        Split shift 40.00 37.85 32.41 94.61 81.02 85.63 

    Sub-total /  FB 2 120.00 95.55 78.70 79.63 65.58 82.36 

Feller-buncher 3             

        Day shift 40.00 35.66 33.03 89.15 82.57 92.62 

        Night shift 40.00 0.82 0.79 2.05 1.97 96.04 

        Split shift 40.00 18.22 15.53 45.56 38.83 85.22 

    Sub-total /  FB 3 120.00 54.70 49.35 45.59 41.12 90.21 

Sub-total FB             

      480.00 222.45 187.11 46.34 38.98 84.11 

  

The SMH column states the Scheduled Machine Hours for each shift. The 

~AMH column reports the master switch activation in hours. The ~PMH column reports 

the amount of motion sensed in hours. The ~Availability column is a percentage of the 

~AMH value divided by the SMH value. The ~Utilisation column is a percentage of the 
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~PMH value divided by the SMH value. The “efficiency” column is the ~PMH value 

divided by the ~AMH value.  

2.6.3 Detailed report 

This report was used in order to view specific results for each individual shift. Shifts are 

listed in chronological order for each shift type. The three shift types within a work 

week are Dayshifts, Splitshifts and Nightshifts. A typical shift rotation for a worker 

would be composed of 4 Nightshifts, followed by 4 Splitshifts and finished with four 

dayshifts. After these dayshifts, workers were given a five day rest before restarting the 

rotation.  

Nightshifts were 10 h shifts scheduled to be completed between 4:30 p.m. to 4:30 

a.m. This means that shifts could start as early as 4:30 p.m. and be completed at 2:30 

a.m., or could start as late as 6:30 p.m. and finish at 4:30 a.m. Nightshifts would occur 

on Wednesday, Thursday, Friday and Saturday nights. Splitshifts were the pivot point 

between nightshifts and dayshifts. Therefore, the first two shifts were at night and the 

following two were during the day. The first two splitshifts are comparable to nightshifts 

where 10 h shifts are scheduled to be completed between 4:30 p.m. to 4:30 a.m. These 

two took place on Monday and Tuesday nights. After a two day break, operators would 

work a 10 h shift between 4:30 a.m. to 4:30 p.m.. These shifts would take place on 

Friday and Saturday.  Dayshifts were 10 h shifts scheduled to take place between 4:30 

a.m. to 4:30 p.m. on Monday, Tuesday, Wednesday and Thursday.  

When considering a complete 6 day work week, this schedule provides 20 SMH daily 

from Monday to Saturday night. Table 5 is an example section of this report.  
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Table 5. Examples of a detailed report. 

  
SMH 
(h) 

~AMH 
(h) 

~PMH 
(h) 

Walking 
time 
(h) 

Production 
indicator 
shift total 
(count) 

Production 
indicator/~PMH 

(count/h) 

~Availability 
[~AMH 
/SMH] 

(%) 

~Utilisation 
[~PMH/SMH] 

(%) 
  
  
 Feller-buncher 1                 
       A - Monday Dayshift 10.00 9.73 7.64 6.82 1036 135.54 97.31 76.44 
       B - Tuesday Dayshift 10.00 9.62 8.16 7.31 1018 124.70 96.21 81.64 
       C - Wednesday Dayshift 10.00 8.52 7.87 7.08 1053 133.87 85.23 78.66 
       D - Thursday Dayshift 10.00 6.90 3.75 3.16 274 73.10 69.04 37.48 
       E - Monday Splitshift 10.00 9.75 8.41 8.21 2439 290.17 97.45 84.06 
       F - Tuesday Splitshift 10.00 9.37 8.31 7.91 2508 301.79 93.74 83.10 
       G- Friday Splitshift 10.00 9.18 7.57 7.04 1947 257.27 91.83 75.68 
       H - Saturday Splitshift 10.00 9.54 8.12 7.67 2478 305.02 95.43 81.24 
       I - Wednesday Nightshift 10.00 4.85 3.82 3.75 701 183.41 48.51 38.22 
       J - Thursday Nightshift 10.00 9.26 7.42 7.33 1853 249.79 92.59 74.18 
       K - Friday Nightshift 10.00 8.82 7.63 7.36 1746 228.92 88.19 76.27 
       L - Saturday Nightshift 10.00               
    Sub-total /  Feller-buncher 1 120.00 95.55 78.70 73.63 17053 216.69 79.63 65.58 
Feller-buncher 2                 
       A - Monday Dayshift 10.00 9.90 9.30 8.82 2871 308.77 98.99 92.98 
       B - Tuesday Dayshift 10.00 9.99 9.59 9.25 2913 303.80 99.94 95.89 
       C - Wednesday Dayshift 10.00 7.91 7.17 6.91 1711 238.76 79.11 71.66 
       D - Thursday Dayshift 10.00 7.86 6.97 5.08 2301 329.93 78.55 69.74 
       E - Monday Splitshift 10.00 10.01 8.31 8.11 2400 288.78 100.08 83.11 
       F - Tuesday Splitshift 10.00               
       G- Friday Splitshift 10.00 4.91 4.14 3.95 1155 279.14 49.14 41.38 
       H - Saturday Splitshift 10.00 3.30 3.08 2.94 818 265.42 33.01 30.82 
       I - Wednesday Nightshift 10.00 0.02         0.24   
       J - Thursday Nightshift 10.00 0.80 0.79 0.69 71 90.06 7.97 7.88 
       K - Friday Nightshift 10.00               
       L - Saturday Nightshift 10.00               
    Sub-total /  Feller-buncher 2 120.00 54.70 49.35 45.74 14240 288.58 45.59 41.12 

 

The SMH, ~AMH and ~PMH values are reported as stated for the Weekly 

report. The “walking time” column indicates how long the tracks were engaged in hours. 

Once again, “walking time” was reported but was not used in this case study. The 

“production indicator shift total” indicates how many times the “signal” (i.e., counter) 

was activated throughout the shift. The “production indicator/~PMH” column is the 

“production indicator shift total” divided by the “~PMH” value. It indicates how many 

times the “signal” was activated per ~PMH on average. The ~Availability and 

~Utilisation column are identical to those explained in the previous report.  
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Data from the detailed report were used as the experimental units for analysis. 

This gave KPI values for each individual shift by machine.  

2.7 DATABASES 

Data were separated into four different databases. Each database was created in order to 

best represent individual KPIs by reducing errors and categorizing data. Table 6 

illustrates these databases and associated rules. The number of rows can also be 

interpreted as the number of shifts in each database. 

 

Table 6. Database rules. 
Database Rule Number of rows 

~AMH 1 Remove belly-dumps 

3465  
Remove excavator and gravel truck nightshift 

 
Remove rows with 0 ~PMH hours 

 
Remove May 

 
Remove > 11 h ~AMH 

~PMH 1 Remove belly-dumps 

3768 
 

Remove excavator and gravel truck nightshift 

 
Remove rows with 0 ~PMH 

 
Remove May 

Efficiency ~AMH switch 1 
3191 

 
Remove < 1 hour ~AMH 

FB count Feller-buncher shifts only 
534 

 
Remove count < 100 

 
Remove count/~PMH > 1000 

RP count Processor shifts only 

232 
 

Remove count  < 100 

  
Remove bottom saw for Processor 1 before 
13/07 

Note: there are less shifts for ~AMH 1 than ~PMH 1 because there were a number of 
shifts when the master switch was accidentally left on and thus the ~AMH was >11 h. 
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2.7.1 ~AMH 1 

This dataset was used in order to statistically test the ~AMH KPI. To do so, some data 

had to be removed to reduce possible errors. All belly-dump data were removed from the 

dataset because these units did not have regular tasks. They were used as all-purpose 

tractor-trailers for floating other machines, and hauling chips and roundwood amongst 

other tasks. Nightshift data for excavators and gravel trucks were also removed since 

these machines were never scheduled to work at night. Any data collected during a 

nightshift would be attributed to a non-normal shift event. Items such as activating the 

machine for mechanical repair, floating, etc., could have recorded data as a work shift. 

Since these shifts were not truly for work, this would be an error. Shifts which had 0 h of 

~PMH were also removed. This would not be considered a work shift and should 

therefore not be recorded. Shifts recorded in the month of May were also removed since 

it was a troubleshooting period to test the OBCs and set motion sensor thresholds. Shifts 

which had a ~AMH value of greater than 11 h were removed since the master switch 

was occasionally accidentally left on between shifts. Since the master switch would have 

been turned on for a longer period of time than the operator was actually present, this 

would be a misrepresentation of machine availability. Eleven hours was decided as the 

threshold value since there were some occasions where the operator went over the 

scheduled time to finish a job. Anything over 11 h was determined too high. 

2.7.2 ~PMH 1 

This database was used to test the ~PMH KPI. Once again, some data were removed. 

Belly-dumps, excavator and gravel truck night shifts, and data from the month of May 

were removed. Shifts with ~AMH >11 h were not removed since the ~PMH would not 



28 
 

be greater than 11 h since the machine would not be active and/or moving.  This resulted 

in data for more ~PMH than ~AMH shifts. 

2.7.3 FB count 

This database was used to test the Feller-Buncher Count KPI. Only shifts with a feller-

buncher machine type were used. Shifts which had a total count of less than 100 were 

removed. This was done in an effort to eliminate shifts which were thought to have no 

trees harvested. This can be because the machine was being repaired, floated, etc. Shifts 

with a count/~PMH greater than 1000 were removed. This would be attributed to repairs 

where the grab arms would have been activated many times in a short period of time. 

2.7.4 RP count 

This database was used to test the Processor Count KPI. Only shifts with a Processor 

machine type were used. Shifts with a count of less than 100 were removed. Also, shifts 

before July 13, 2011 for machine number 9732 were removed. The cause of this was an 

improper connection of the voltage input for channel 2. 

2.8 DATA ANALYSIS 

The goal of the data analysis was to determine if the utilisation of KPI information being 

collected from OBCs would have a positive impact on forest operations. This impact 

would be determined by comparing KPI values between two user groups. These groups 

were based on the intensity at which reports and data were released to the staff. There 

were a series of months where KPI data were not released or poorly released to 

supervisors (Low intensity). There were other months where KPI data were released 

weekly to supervisors (High intensity). 
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2.8.1 High intensity 

This intensity was designed to reflect a higher intensity of data use by supervisors. The 

High intensity group was established in the fourth week of July. This was the first week 

in which the detailed reports were generated and reported to supervisors and staff. The 

same took place in August, November, December and January. 

2.8.2 Low intensity 

This intensity was designed to reflect poor or no use of data by supervisors. Reports 

were being generated in June, but were only used to help develop future report 

templates. They were not specifically generated for reporting KPIs to supervisors and 

staff. Data were also not released or poorly released to supervisors and staff in 

September and October. 

 If a difference in KPI values is found between these groups, it would indicate 

that the use of KPI information from OBCs would have an impact on forest operations. 

This would help determine if an investment in OBCs would prove to be beneficial.  

 Some of the strengths of this data analysis would be the use of actual operational 

information and the use of equipment in real-world applications. Some weaknesses 

associated with this analysis are seasonal operational effects, time constraints and the 

specific use and interpretation of KPI information by individuals. Additional strengths 

and weaknesses are further reviewed in the discussion section. 
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2.9 STATISTICAL TESTS 

Parametric and non-parametric tests were used in order to find significant differences 

between data release intensity periods. In some cases, non-parametric tests had to be 

used since the data did not meet parametric test assumptions.  

Histograms were generated for each database. These histograms gave an 

indication of data distribution for each KPI. In addition to this, tests of normality were 

generated to indicate if the data are distributed normally. This would indicate if non-

parametric or parametric tests were necessary.  

 

2.9.1 Parametric tests 

The Single-Factor Between-Subjects Analysis of Variance (or ANOVA) was used as the 

main parametric test. In this test, each sample mean is used to estimate the mean of the 

population it represents. A test statistic is generated for each sample. If the test statistic 

for this sample is found to be significant, there is a significant difference between at 

least two of the sample means in the population (Sheskin 1997). The acceptable level of 

significance is determined by the researcher. In order for this test to be run, the data 

must meet certain assumptions. According to Sheskin (1997), these assumptions must 

meet the following criteria: 

- Each sample is selected randomly from the population 

- The underlying population of the sample is normally distributed 

- Variance between the sample and the underlying population is equal 

A General Linear Model Univariate procedure was used as a test to determine the 

presence of significant differences between factors and their interactions. These tests 



31 
 

were used when comparing the effect of reporting intensity periods for different 

machines within the same machine type.  

2.9.2 Nonparametric tests 

Kruskal-Wallis One-Way Analysis of Variance by Ranks was used as the nonparametric 

test. This test ranks the ratio/interval data according to their values. It then uses these 

ranks in order to run a One-Way Analysis of Variance to determine if there is a 

significant difference between populations. This nonparametric test was run in databases 

which violated one of the parametric test assumptions (i.e., normal distribution). 

2.10 NORMAL SHIFTS  

The OBC was collecting data every time it was powered. Some shifts were subject to 

unforeseen events that prevented the machine from working (e.g., breakdowns, floating 

the machine, etc.) Shifts with unforeseen interruptions, are referred to as “non-normal 

shifts”. Shifts that are not part of this category are referred to as “normal shifts” The 

definition of normal shifts changed between databases. For the ~AMH 1 database, a 

normal shift was assumed to be a shift which had between 5 and 11 h of the ~AMH. For 

the ~PMH 1 database, a normal shift was assumed to be a shift which had greater than 5 

h of ~PMH. Data were categorised in this manner for two major reasons; the first reason 

being the additional interest in testing differences between normal shifts by the 

contractor. The second reason being that additional information was not available to 

accurately categorise shifts which recorded 0 h of activity. Shifts with 0 h of activity 

would fall within one of three categories: 

- 0 h because it is not scheduled (further explained below)  
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- 0 h because there was an unforeseen event that prohibited the machine to work 

(e.g., mechanical breakdown, operator missing). 

- 0 h because the multiDAT OBC was unplugged and could not collect shift 

information. 

Scheduling conflicts are the most difficult to identify when additional shift 

information is not being collected during a broad-scale time study. An example of this 

would be the scheduling of excavator shifts. Excavators are scheduled to work four days 

a week. The specific scheduling of these shifts (specific day) is weather dependent. If 

the weather is cooperative, machines would work four days that week. If it is 

uncooperative, they may only work two or three. The remaining scheduled days would 

then be completed the following week. When determining broad scale availability, it is 

impossible to know why machines did not complete all of their shifts during that specific 

week without additional information. For this reason, shifts which had 0 ~AMH were 

eliminated from the analysis. Because of this, it is important to note that results from this 

study may prove to be conservative since they do not consider the gain of reducing the 

number of non-normal shifts.  

2.11 OBSERVATIONS BY MACHINE 

There was interest in verifying significant differences between reporting intensity 

periods for individual machine types. The logic being that if there is more of a 

significant difference found in one specific machine type, it would be worth targeting 

these machines for further study or OBC implementation. Furthermore, there was 

additional interest in testing if there were significant differences between individual 
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2.13 COUNT KPI ACCURACY  

Field tests were conducted to verify the accuracy and validity of the Count KPI for 

feller-bunchers, processors and skidders. These field tests were restricted to the 

availability of the machine, the field observer, and the accurate connection and reporting 

of the count. 

 After initial observations, the Count KPI for skidders was removed due to its 

ineffectiveness and difficulty to connect. The original Count KPI for skidders was 

totalling of the number of times the machine would reverse. This was to give an estimate 

of how many bundles would be picked up. The machines were found to have no specific 

reverse patterns which varied depending on site and operator.  

 Two feller-bunchers and two processors were observed. Each individual machine 

was observed for one complete 10 h shift. During the observation period for one 

processor, it was found that an improper connection was made to the OBC. Therefore, 

data from only one of the two processors was utilised. This shift was restricted to day 

operations. The observer would arrive on site before the shift start. The multiDAT would 

be downloaded and its clock would be synchronized to the observer’s time keeping 

equipment. Throughout the shift, the observer would record three items:  

- The tree count (feller-bunchers) or log count (processors) 

- The visual activation count (grab arm activation for feller-bunchers and bottom 
saw activation for processor) 
 

- The OBC count 

These were recorded by a manual tally. The observer would mark each item 

occurrence through a dot tally. These were totalled every five minutes. 



35 
 

The “tree (or log) count” was the number of trees (or logs) processed by a machine 

every 15 min. The observer would be on site visually counting every tree (or log) that 

was produced. For the feller-bunchers, it was the number of trees cut. For the processor, 

it was the number of logs produced.  

The “visual activation count” is the observer’s visual count of the hydraulic 

activation of a machine component. For the feller-buncher, this was a visual count of 

grab arm activations. For the processor, this was a visual count of the bottom saw 

activation. These were also totalled every 15 min. 

The “OBC count” is the registered count of electronic pulses from a channel being 

monitored by the OBC. In the case of the processor, the channel being monitored is the 

activation of a certain pump on the processing head. This pump is normally engaged 

when the bottom saw is activated to produce a log. For the feller-buncher, this is the 

hydraulic cylinder which moves the grab-arm.  

 Each of these counts were monitored individually and compared in order to 

compare one another. One reason being that tree or log counts may differ from the visual 

activation count due to variations between sites and operators. In some cases, operators 

may grab multiple trees with one reach of the feller-buncher since tree density was 

found to be high. This would require the operator to only engage the grab arm once in 

order to cut multiple trees.  

The second reason for doing this would be to match the visual activation count to the 

OBC count. This is done to verify if the electronic impulse (or channel) monitored by 

the OBC equates to the visual activation count of component activations. In some cases, 

this may vary. An example of this would be the connection of the OBC to the bottom 

saw pump on the processor’s machine head. This pump may engage most of the time to 



36 
 

activate the bottom saw on the processor, however, it may occasionally not engage since 

there is already adequate pressure in the lines. This would lead to the activation of the 

bottom saw twice, while it is only registered once in the OBC’s memory. 

In order to compare these items, ratios were developed between different counts. 

These ratios are: 

- OBC count / visual activation count 

- OBC count / tree (or log) count 

The Pearson product-moment correlation coefficient was used to test and 

measure data correlation. It estimates the degree to which a linear relationship exists 

between the variables (Sheskin 1997). Predictor and criterion variables were compared 

in order to determine the presence and strength of data relationship. In this test, the 

strength of a relationship between variables is indicated by the significance value. The 

closer this value is to 1.0, the stronger the relationship between the variables. In order 

for this test to be valid, data must respect specific assumptions (Sheskin 1997): 

- Sample subjects are randomly selected from the population it represents 

- The variables are interval or ratio type data 

- Both variables have a bivariate normal distribution 

 

2.14 RETURN ON INVESTMENT 

A Rate Determination Model (RDM) was used to estimate possible gains from the use of 

OBC systems. In this case, the ~PMH value was used as the “utilisation” input in the 

model. ~PMH values found to be significantly different between data release intensity 
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periods were used in the RDM. Two different scenarios were generated with the RDM. 

One representing the values obtained during the High intensity reporting period, the 

other representing the values obtained during Low intensity reporting period. The 

resulting costs ($/m3) were compared. The difference between the two was established 

as profit. Figure 5 is a screenshot of the RDM and the highlighted red cell was the only 

item which was modified. The yellow cells found in Figure 5 are the input cells which 

can be modified by the user. These are only estimations and do not represent the actual 

costs of this operation.   
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EQUIPMENT COSTING MODEL 
 Machine/system name: Feller-buncher 

No. of working days/year: 280 
No. of scheduled hour/shift (SMH/shift): 10 
No. of shifts/day 2 
Machine utilisation (%): 76.6 
Productivity, m3/PMH 40 
Installed or purchase price (P) ($): 650000 
Future salvage value ($): 65000 
Expected economic life (years): 5.0 
Interest rate (%): 5.0 
Fuel consumption (litre/PMH): 20.0 
Fuel cost ($/litre): 1.00 
Oil, lubricants and hydraulic oil cost (% of fuel cost): 15.0 
Annual repair & maint. cost (% of P) 25.0 
Operator wage ($/SMH): 25.00 
Overtime wage rate (% of op. wage) 0 
Paid travelling time for operator (hours/day) 0.0 
Fringe benefits & employment expense (% of op. wage): 50 
Number of operators required per shift: 1 
Insurance cost per year (% of P): 3.20 
License cost ($/year): 0.00 
Contractor profit margin (% of annual cost) 5 

  EQUIPMENT COST SUMMARY   
SMH/year 5600.0 
PMH/year 4290.2 
Annual production (m3/year) 171606.4 
m3 produced per SMH: 30.64 
m3 produced per PMH: 40.00 

  PV of salvage value ($): 50929.20 
Annual capital cost (depeciation & interest) ($/year): 140916.72 
Capital cost ($/PMH): 32.85 

  Number of regular working hours per day 8.0 
Number of overtime working hours per day 2.0 
Number of travel hours per day 0.0 
Annual operator cost ($/year): 168000.0 
Operator cost ($/shift): 300.00 
Operator cost ($/PMH) 39.16 

  Fuel cost ($/PMH) 20.00 
Engine oil, lubes and hydraulic oil cost ($/PMH) 3.00 
Repair & maintenance cost ($/year): 162500.00 
Insurance cost ($/year): 20800.00 
License cost ($/year): 0.00 

  Total operating cost ($/year): 590890.40 
Contractor profit ($/year): 29544.52 
Total cost (operating + profit) ($/year): 620434.92 

  Operating cost ($/SMH): 110.79 
Operating cost ($/PMH): 144.62 
Production unit cost ($/m3) 3.62 

Figure 5. Screenshot of the Interface Express RDM. 
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The ROI was calculated using a standard ROI equation (Equation 1).  

 

     
                                          

                  
 [1] 

 

 This calculation is based on a three year period (assumed technical life of the 

equipment). The “cost of investment” includes installation and annual operation costs. 

Installation costs include equipment, installation, software and management costs. The 

annual operation cost includes maintenance, management and data transfer costs. The 

“gains from investment” are the annual savings from increased equipment utilisation for 

each of the three years of OBC use. The input values used to calculate the “gains from 

investment” are based on average estimates for the area. These include items such as 

operating time, worker salaries, etc. Evidently, these values will vary between 

contractors and can be modified for additional accuracy. 
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3.0 RESULTS 

3.1 NON-PARAMETRIC TEST RESULTS 

Tests of normality indicated that the distribution of the ~AMH, ~PMH and Efficiency 

KPIs were not normal. Shifts are scheduled to be 10 h in length. Since there were 

occasionally unintended interruptions throughout the shift, work activity may not last an 

entire scheduled shift. These interruptions caused a longer tail to form on the Left Hand 

Side (LHS) of the mean. This, in turn, created a non-normal distribution. Figures 6 to 8 

are histograms which illustrate the distribution of all KPI results per reporting intensity 

period for logged shifts in a database. A normality curve is drawn on the histogram to 

illustrate how a normal distribution would fit the data. Figure 6 is a histogram of the 

~AMH value for all shifts in the ~AMH 1 database. The x axis categorizes ~AMH 

values within intervals of 0.25 h. The Y axis demonstrates the frequency of these 

categories. It is clear that the bulk of the shifts (~70%) range from 8 to 10.5 h. These are 

considered as shifts which had very minimal or no interruptions. There is also a tail 

which is found between 0 and 5 h. These are considered shifts which have suffered some 

sort of interruption. The distributions of these shifts are demonstrated in Table 7. 
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Table 7. Distribution of shifts per database by High and Low reporting intensity periods. 

  ~AMH 1 ~PMH 1 

Treatment High  Low High Low 

<2 h 8.3% 12.0% 10.0% 14.0% 
2 h to 5 h 5.2% 4.7% 7.5% 6.3% 

5 h + 86.5% 83.3% 82.5% 79.7% 
N 2047 1417 2292 1476 

 

 

Another population of shifts can be found between 0 and 2 h in Figures 6 and 7. 

These are shifts in which a machine was most likely not expected to work, and was 

subject to repair or other activities which rendered it unavailable. Another cause may be 

an operator was not available to operate the machine. These shifts are most pronounced 

in Figure 7 which shows the data distribution of the ~PMH in the ~PMH 1 database.  

 

Figure 6. Histogram per reporting intensity period of the ~AMH KPI in the ~AMH 1 
database; black solid line indicates normally distributed data. 
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Figure 7. Histogram per reporting intensity period of the ~PMH KPI in the ~PMH 1 
database; black solid line indicates normally distributed data. 

 

For the Efficiency KPI, the Efficiency database was used. This helped eliminate 

shifts which may have recorded ~AMH activity, but no ~PMH on the extreme LHS of 

the mean. As shown in Figure 8, the efficiency KPI was also found to have a non-normal 

distribution. Since the ~PMH KPI value will always be lower than or equal to the 

~AMH KPI value, the Efficiency KPI cannot surpass 100%. The majority of shifts were 

found to operate without much interruption and were found in the range of 70% to 

100%. Like previous distributions, a tail was found on the LHS of the mean. These were 

shifts which were found to have a higher ~AMH KPI and lower ~PMH KPI value. Once 

again, this can most likely be attributed to events such as mechanical failures and 

servicing. 
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Figure 8. Histogram per reporting intensity period of the Effciency KPI in the Efficiency 
database; black solid line indicates normally distributed data. 

 

Due to this non-normality, Kruskal-Wallis rank-order ANOVA tests were run for 

each KPI to test for the presence of significant differences between reporting intensity 

periods. In the case of the ~AMH 1 database, a significant difference (p < 0.000) 

between reporting intensity periods was estimated (Table 8).  

 

Table 8. Kruskal-Wallis Rank-order test for the ~AMH KPI in ~AMH 1 database 

Test Statisticsa,b 
 ~AMH 

Chi-Square 21.273 
df 1 
Asymp. Sig. .000*** 
a. Kruskal Wallis Test 
b. Grouping Variable: 
intensity 
 

   0          20        40        60         80       100    0          20        40        60         80       100 
 

           High        Low 

% 
 

% 
 

Reporting intensity period 

~AMH 1 Database 



44 
 

Since this test indicates a significant difference between reporting intensity 

periods, one would conclude that the level at which OBC data are utilised will have an 

effect on the ~AMH KPI. This outcome would therefore reject H0. 

When interpreting descriptive statistics for this test, one should only consider 

mean ranks and not mean values (Sheskin 1997). This is because the K-W rank order 

test assigns ranks to the ratio level data in order to run the test. Therefore, the mean rank 

of each reporting intensity period would provide a more accurate statistic than the mean 

value of the data. Interpreting the mean rank, however, can be more challenging since 

the rank is not measured in units. Table 9 was generated in order to list mean ranks 

along with mean values for each database per Low and High reporting intensity periods. 

Mean values could be interpreted as a guideline for the value of the K-W rank, but it 

may not reflect the actual value of the mean rank. 

 

Table 9. Mean rank and values of nonparametric tests for ~AMH, ~PMH and Efficiency 
KPIs during High and Low intensity reporting periods. 

  Mean K-W Rank Mean values   

Database High Intensity Low intensity High Intensity Low intensity Sig. difference 

~AMH 1 1797.75 1638.36 8.07 (h) 7.66 (h) *** 
~PMH 1 1929.25 1813.77 6.72 (h) 6.42 (h) ** 

Efficiency 1710.19 1764.69 78.29 (%) 79 (%) Ns 
*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 
 

For the ~AMH 1 database, the mean rank and value for the High intensity 

reporting period was greater than for the Low intensity period. Therefore, a significant 

increase in the ~AMH KPI was observed for the High intensity reporting period overall.  
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For the ~PMH 1 database, nonparametric tests yielded a significant difference 

between reporting intensity periods for the ~PMH KPI. The asymptotic significance 

value was found to be 0.001 (Table 10). This indicates that H0 has been rejected for this 

database. When considering the Mean K-W rank and Mean values for the ~PMH 1 

database in Table 10, one would determine that the High intensity period has a higher 

~PMH KPI value than the Low intensity period. This would indicate that HA has failed 

to be rejected. Therefore, a higher intensity use of data from OBCs would have a 

significantly positive impact on the ~PMH KPI for all machines.  

 

Table 10. Kruskal-Wallis Rank-order test for the ~PMH KPI in ~PMH 1 database 

Test Statisticsa,b 

 ~PMH 
Chi-Square 10.121 
df 1 
Asymp. Sig. .001** 
a. Kruskal Wallis Test 
b. Grouping Variable: 
intensity 
 
 

 

For the Efficiency KPI, the Kruskal-Wallis Rank-order test resulted in an 

asymptotic significance value of 0.115 (Table 11). This indicates that a significant 

difference in efficiency was not observed between reporting intensity periods when 

considering all shifts for all machines at α = 0.05. Therefore, increasing the intensity of 

data use from OBCs has no significant impact on the Efficiency KPI. This indicates that 

even though the ~AMH or ~PMH KPI may increase, the Efficiency of a shift will 

remain comparable between reporting intensity periods. Therefore, the H0 has failed to 

be rejected for the Efficiency KPI.  
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Table 11. Kruskal-Wallis Rank-order test for the Efficiency KPI in the Efficiency 

database 

Test Statisticsa,b 

 Efficiency 
Chi-Square 2.487 
df 1 
Asymp. Sig. .115ns 
a. Kruskal Wallis Test 
b. Grouping Variable: 
intensity 
 

3.2 PARAMETRIC TESTS RESULTS 

Parametric tests were run on data which were normally distributed.  

Feller-buncher and processor Count KPIs were the first to be tested with 

parametric tests. Values from this KPI were compared between reporting intensity 

periods for each machine. Figure 9 is a histogram which illustrates data distribution of 

the Count KPI for feller-bunchers between the two reporting intensity periods. The x 

axis lists the Count/~PMH. The y axis indicates frequencies. The x-axis is categorized in 

intervals of 20. The LHS panel illustrates Count KPI data for the High intensity 

reporting period. The Right Hand Side (RHS) panel illustrates Count KPI data for the 

Low intensity reporting period. A normality curve is set in black to illustrate how the 

data fits to a normal distribution.  
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Figure 9. FB count KPI in FB count database histogram per reporting intensity period; 
black solid line indicates normally distributed data. 
 

Table 12 is the associated ANOVA results for the feller-buncher Count KPI. 

Since p = 0.022, there is a significant difference between reporting intensity periods and 

thus the H0 is rejected.  

 

Table 12. ANOVA table for Count KPI for Feller-bunchers 

  Sum of Squares df Mean Square F Sig. 

Countper~PMH 

Between Groups 51181.104 1 51181.104 5.273 0.022* 

Within Groups 5154467.154 531 9707.094     
Total 5205648.259 532       

 
 

In order to determine HA, one must consider the mean FB Count KPI values for 

both reporting intensity periods. The mean FB Count KPI for the High intensity 

reporting period is 305.01, while the value for the Low intensity reporting period it is 

325.73. Since the FB Count KPI is found to be greater in the Low intensity reporting 
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period, HA can also be rejected. This is because HA stipulated that the FB Count KPI 

would be greater in the High intensity reporting period. This outcome indicates that the 

more intensive use of data may have a negative effect on the FB Count, however no 

explanation could be found for this.  

Figure 10 is a histogram of the Count KPI values for processors. Data are found 

to be normally distributed for both reporting intensity periods. There is a difference in 

“n” between reporting intensity periods. This is due to mechanical complications and 

scheduling difficulties experienced during the Low intensity reporting period, resulting 

in less normal shifts. Data are displayed in the same manner as Figure 9, except KPI 

values for processors are shown.  

 

 

 
Figure 10. RP count KPI in RP count data base histogram by reporting intensity period; 
black solid line indicates normally distributed data. 

 

Table 13 is the associated ANOVA results for the Processor Count KPI. No 

significant difference (p=0.526) was found between the High and Low intensity 
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reporting periods and H0 can be rejected. Therefore, more intensive use of OBC data are 

not found to have an effect on the RP Count KPI. 

 

Table 13. ANOVA table for Count KPI for processors 

 Sum of Squares df Mean Square F Sig. 
countper~PMH Between Groups 4605.686 1 4605.686 0.402 0.526ns 

Within Groups 2620973.969 229 11445.301 
  

Total 2625579.655 230       
 

3.3 NORMAL AND NON-NORMALWORK 

Figure 11 illustrates data distribution for the ~AMH KPI normal shifts for both 

reporting intensity periods. The top panel illustrates data distribution for the High 

intensity reporting period. The bottom panel illustrate data distribution for the Low 

intensity reporting period. A normal distribution curve is fitted as a black line to both 

panels in order to show how the data fits as compared to a normal distribution. Once 

again, data seems skewed to the right. This is due to the nature of time series data and 

work interruptions as previously explained.  
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Figure 11. ~AMH KPI (normal shifts) in the ~AMH 1 database histogram by reporting 
intensity periods; black solid line indicates normally distributed data. 

 

 

After testing data normality for both reporting intensity periods, ANOVA tests 

were run. This was to help indicate the presence of any significant differences observed 

for the ~AMH KPI between reporting intensity periods for normal shifts. A highly 

significant difference (p < 0.000) was found between the two reporting intensity periods 

and H0 is rejected. The mean ~AMH KPI value for the High intensity reporting period 

for normal shifts was 9.18 h, while the same value for the Low intensity reporting period 

was 9.04 h.  
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~PMH KPI data were also categorized between normal and non-normal shifts. 

Normality tests were performed on ~PMH KPI normal shifts. Figure 12 illustrates the 

data distribution of normal shifts for both reporting intensity periods. The figure 

illustrates this data in the same manner as Figure 11. It is interesting to note that the 

High intensity reporting period ~PMH KPI values are slightly more skewed to the right. 

This could indicate that shifts in this reporting intensity period would tend to be of 

longer duration and have less interruptions.  

 

Figure 12. ~PMH KPI (normal shifts) in the ~PMH 1 data base histogram by reporting 
intensity period; black solid line indicates normally distributed data. 
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ANOVA tests were completed to test whether there was a significant difference 

in ~PMH KPI values between reporting intensity periods. No significant difference 

(p=0.246) was found between reporting intensity periods for the ~PMH KPI. Therefore, 

the more intensive use of OBC data has no significant effect on the ~PMH KPI when 

considering normal shifts for all machines.  

For the Efficiency KPI, values were derived from the ~AMH normal shift 

database. This was done in order to eliminate data from the non-normal shifts, thus 

eliminating the tails on the LHS of the mean. Even though these shifts were eliminated, 

a tail is still visible for this KPI (Figure 13). Data were still found to be normally 

distributed. The bulk of data for this KPI is found between 75 and 100%. Once again, 

the High intensity reporting period seems to have a slight skew to the right.  
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Figure 13. Efficiency KPI (normal shifts) in the ~AMH 1 data base histogram by 
reporting intensity period; black solid line indicates normally distributed data. 
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Efficiency KPI. The High intensity reporting period had an Efficiency KPI value of 
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that a higher efficiency is found in the Low intensity reporting period. The reason for 
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3.3.1 Normal shifts by machine 

 After testing if there was a significant difference between reporting intensity periods for 

the ~AMH, ~PMH and Efficiency KPIs during normal shifts, ANOVA tests were 

conducted on normal shifts for individual machine types. This was done in order to 

identify if there would be more pronounced significant differences between reporting 

intensity periods for certain machine types. Each KPI was reviewed independently and 

thus reported in the three separate sections below. 

3.3.1.1 ANOVA 

~AMH ANOVA 

In Table 15, ~AMH KPI averages have been changed to percentages. This was done to 

ease interpretation when considering targets. It is also a more common way to display 

machine availability. When considering machine availability, the goal is to have 100%. 

This percentage is calculated by dividing the ~AMH KPI value by the scheduled time 

(SMH) for each shift. In this study, a scheduled shift was always 10 h. Furthermore, 

displaying this value in a percentage is also more intuitive when considering its possible 

use in the ROI section. Coded texts are used in the remainder of the results section 

(Table 14). 

 

Table 14. Coded values for machine types 
 

Code Machine Type 

FB Feller-buncher 
SK Skidder 
RP Processor 
BH Excavator 
GT Gravel truck 
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When categorizing different machine types, there were significant differences 

between reporting intensity periods for feller-bunchers (p < 0.000), skidders (p = 0.033) 

and gravel trucks (p=0.044). For this reason, H0 can be rejected for these machines. On 

average, feller-bunchers and skidders were found to have a higher ~AMH KPI. A 

percentage point difference of 2.2% for feller-bunchers and 1.7% for skidders were 

found between High and Low reporting intensity periods, respectively. For gravel 

trucks, a greater ~AMH KPI was found in the Low intensity reporting period (lower by 

1.4%) (Table 15). 

 

Table 15. Summarized ANOVA results and means between individual machines types 
for the ~AMH KPI. 

 

High intensity 
reporting period 

availability 

Low intensity 
reporting period 

availability 
sig 

FB normal shifts 90.1% 87.9% 0.000*** 
SK normal shifts 94.5% 92.8% 0.033* 
RP normal shifts 91.0% 88.2% 0.084ns 
BH normal shifts 91.8% 91.0% 0.360ns 
GT normal shifts 90.1% 91.5% 0.044* 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 
 
 

~PMH ANOVA 

After categorizing data to normal shifts and running ANOVA tests on individual 

machine types, Table 16 was generated to summarize findings. Feller-bunchers were the 

only machine type found to have a significant difference (p = 0.04) between reporting 

intensity periods for the ~PMH KPI; hence, H0 is rejected.  There is a greater ~PMH KPI 
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value found in the High intensity reporting period as compared to the Low intensity 

reporting period.  

 

Table 16. Summarized ANOVA results and means between individual machines per 
machine type for the ~PMH KPI. 

 

High intensity 
reporting  period 

utilisation 

Low intensity 
reporting period 

utilisation sig 
FB normal shifts 76.6% 74.5% 0.04* 
SK normal shifts 77.7% 77.0% 0.387ns 
RP normal shifts 76.4% 75.8% 0.74ns 
BH normal shifts 77.8% 79.3% 0.598ns 
GT normal shifts 78.3% 78.0% 0.67ns 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

Efficiency ANOVA 

In the ANOVA tests for individual machine types, there was a significant difference in 

Efficiency KPI values between reporting intensity periods for processors (p = 0.01), 

excavators (p < 0.000) and gravel trucks (p = 0.004). To that end, the H0 has been 

rejected. When considering Efficiency KPI means for each machine type, they were 

higher in the Low intensity reporting period for processors and excavators, and higher in 

the High intensity reporting period for gravel trucks.  
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Table 17. Summarized ANOVA results and means between individual machines per 
machine type for the Efficiency KPI 

 

High intensity 
reporting period 

efficiency 

Low intensity 
reporting period 

efficiency Sig 
FB normal shifts 84.4% 84.6% 0.746ns 
SK normal shifts 81.4% 81.7% 0.769ns 
RP normal shifts 83.4% 85.9% 0.010* 
BH normal shifts 84.7% 87.2% 0.000*** 
GT normal shifts 86.9% 85.3% 0.004** 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

3.3.1.2 Univariate 

Equation (2) was used for the GLM univariate procedure after data normality was 

confirmed: 

           [2] 

Where: 

a = Reporting intensity period effect 
b = Machine effect 
ab = Reporting intensity period * Machine interaction 
ε = Error 
 

~AMH univariate 

The GLM univariate procedure results for the ~AMH KPI are illustrated in Table 18. 

This model was run independently for each machine type. In this table, “High intensity 

availability” and “Low intensity availability” are mean percentage values for the ~AMH 

KPI for each reporting intensity period. The “sig intensity” column is the significance 

value which only considers the machine effect (a in Equation 2). The “sig machine” 

column is the significance value which states the difference between machines within 

the machine type (b in Equation 2). The “Sig interaction” column illustrates the 
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significance value which helps determine whether there were any significant differences 

in KPI values when considering machine-reporting intensity period interactions (ab in 

Equation 2). 

When considering the reporting intensity period effect, the only significant 

difference was found for feller-bunchers (p = 0.013) and H0 is rejected. When 

considering the machine-reporting intensity period interaction, significant differences for 

excavators (p = 0.008) and gravel trucks (p = 0.018) were observed and H0 is rejected. 

Hence, individual machines within the excavator and gravel truck machine types were 

found to react with significant difference to the two different reporting intensity periods. 

This machine-reporting intensity period interaction will be further discussed when 

viewing Tables 24 and 25 since individual machine results are presented individually. 

 

Table 18. Summarized Univariate results between individual machines per machine type 
for the ~AMH KPI. 

Machine type 
High 

intensity 
availability 

Low 
intensity 

availability 

sig 
intensity 

sig 
machine 

sig 
interaction 

FB normal shifts 90.1% 87.9% 0.013* 0.000*** 0.245ns 
SK normal shifts 94.5% 92.8% 0.095ns 0.407ns 0.055ns 
RP normal shifts 91.0% 88.2% 0.289ns 0.741ns 0.505ns 
BH normal shifts 91.8% 91.0% 0.851ns 0.000*** 0.008** 
GT normal shifts 90.1% 91.5% 0.055ns 0.000*** 0.018* 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

~PMH univariate 

When considering the ~PMH GLM univariate procedure results for each machine type, 

only feller-bunchers (p = 0.004) were found to have a significant difference between 
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reporting intensity periods and H0 is rejected (Table 19). So, even when considering the 

additional effect of individual machine interactions with reporting intensity periods, 

feller-bunchers are still found to have a significant difference between reporting 

intensity periods. Machines are found to have a higher ~PMH KPI value in the High 

intensity reporting period versus the Low intensity reporting period.  

The machine-reporting intensity period interaction yielded a significant 

difference only for excavators (p = 0.018); therefore H0 can be rejected. This indicates 

that even though excavators were found to have no significant difference between 

reporting intensity periods as a machine type, individual machine ~PMH KPI values 

were found to be significantly different between reporting intensity periods from one 

another. Therefore, when considering the use of data in different reporting intensity 

periods for excavators, the ~PMH KPI values were significantly different between 

machines. Individual machine results will be discussed with Table 24.  

 

Table 19. Summarized Univariate results between individual machines per machine type 
for the ~PMH KPI 

Machine type 
High 

intensity  
utilisation 

Low 
intensity  

utilisation 

sig 
intensity 

sig 
machine 

sig 
interaction 

FB normal shifts 76.6% 74.5% 0.004** 0.000*** 0.196ns 
SK normal shifts 77.7% 77.0% 0.501ns 0.002** 0.643ns 
RP normal shifts 76.3% 75.8% 0.719ns 0.897ns 0.866ns 
BH normal shifts 77.8% 79.3% 0.075ns 0.000*** 0.018* 
GT normal shifts 78.3% 78.0% 0.737ns 0.000*** 0.667ns 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 
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Efficiency univariate 

For the Efficiency KPI, the GLM univariate procedure estimated a highly significant 

difference for excavators (p < 0.000) and gravel trucks (p=0.006) and therefore H0 is 

rejected (Table 20).  Efficiencies were greater in the High intensity reporting period for 

gravel trucks and greater in the Low intensity reporting period for excavators. The 

machine-reporting intensity period interactions were found to be significant for the 

feller-bunchers (p = 0.013) and skidders (p = 0.021) and H0 is rejected (Table 21). This 

indicates that the effect of reporting intensity periods on Efficiency KPI values for 

individual feller-bunchers and skidders were significantly different between machines.  

Individual machine observations will be continued in Tables 21 and 22 since individual 

machine KPI results are discussed and displayed clearly. 

 

Table 20. Summarized Univariate results between individual machines per machine type 
for the Efficiency KPI. 

Machine type 
High 

intensity  
efficiency 

Low 
intensity  

efficiency 

sig 
intensity 

sig 
machine 

sig 
interaction 

FB normal shifts 84.4% 84.6% 0.100ns 0.000*** 0.013* 
SK normal shifts 81.4% 81.6% 0.477ns 0.000*** 0.021* 
RP normal shifts 83.4% 85.9% 0.168ns 0.444ns 0.166ns 
BH normal shifts 84.7% 87.1% 0.000*** 0.000*** 0.338ns 
GT normal shifts 86.9% 85.3% 0.006** 0.000*** 0.069ns 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

Feller-Buncher 

Feller-bunchers were the machine type with the most significant differences in KPI 

values between reporting intensity periods. This indicates that feller-buncher KPIs were 
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affected by varying reporting intensity periods. Both the ~PMH (p = 0.004) and ~AMH 

(p = 0.013) KPI were significantly different between reporting intensity periods. It was 

found that all but one machine had a higher average ~PMH KPI in the High intensity 

reporting period. For the ~AMH KPI, nearly all machines were found to have a higher 

~AMH KPI average in the High intensity reporting period. The only exception was 

feller-buncher 5, which had a slightly larger increase in the ~AMH KPI during the Low 

intensity reporting period. The Efficiency KPI was the only one which had a significant 

intensity-machine interaction for feller-bunchers (p = 0.013). The average Efficiency 

KPI value was greater in the High intensity reporting period for feller-bunchers 1, 2 and 

5, and greater in the Low intensity reporting period for feller-bunchers 3 and 4.  

 
Table 21. Summarized Univariate results for ~AMH, ~PMH and Efficiency KPI 
between individual machines for Feller-bunchers. 

  Univariate ~PMH Univariate ~AMH Univariate Efficiency 

Machine 
# 

High 
intensity 

utilisation 

Low 
intensity 

utilisation 

High 
intensity 

availability 

Low 
intensity 

availability 

High 
Intensity 
efficiency 

Low 
Intensity 
efficiency 

FB 1 75.6% 70.9% 84.3% 81.9% 89.7% 86.5% 
FB 2 76.5% 73.1% 88.5% 86.6% 86.4% 84.5% 
FB 3 74.7% 75.4% 91.5% 90.9% 81.6% 83.1% 
FB 4 76.4% 73.5% 91.3% 87.0% 83.5% 84.5% 
FB 5 79.5% 78.3% 90.9% 90.6% 87.3% 85.4% 

 

Skidder 

For skidders, H0 failed to be rejected for the ~AMH and ~PMH KPIs. However, H0 was 

rejected for the Efficiency KPI (p = 0.021). A higher average efficiency in the High 

intensity reporting period was observed for skidder 1, while a greater average efficiency 

in the Low intensity reporting period was found for skidders 2, 3 and 4 (Table 22). 
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Table 22. Summarized Univariate results for ~AMH, ~PMH and Efficiency KPI 
between individual machines for Skidders. 

  Univariate ~PMH Univariate ~AMH Univariate Efficiency 

Machine 
# 

High 
intensity 

utilisation 

Low 
intensity 

utilisation 

High 
intensity 

availability 

Low 
intensity 

availability 

High 
intensity 
efficiency 

Low 
intensity 
efficiency 

SK 1 78.9% 76.7% 93.7% 94.9% 82.5% 79.5% 
SK 2 75.2% 74.6% 95.7% 90.8% 75.7% 80.4% 
SK 3 77.9% 79.0% 94.9% 94.8% 81.6% 83.3% 
SK 4 78.6% 78.5% 94.2% 92.5% 83.8% 83.0% 

 

 Processor 

For the Univariate GLM procedure, processors were found to have no significant 

difference for any KPI. Therefore, H0 is not rejected for the processor machine type for 

all KPIs. This indicates that none of the processor’s KPI values are affected by varying 

intensities of data usage. Average values for each reporting intensity period of the 

~AMH, ~PMH and Efficiency KPI are displayed in Table 23.  

 

Table 23. Summarized Univariate results for ~AMH, ~PMH and Efficiency KPI 
between individual machines for  processors. 

  Univariate ~PMH Univariate ~AMH Univariate Efficiency 

Machine 
# 

High 
intensity 

utilisation 

Low 
intensity 

utilisation 

High 
intensity 

availability 

Low 
intensity 

availability 

High 
intensity 
efficiency 

Low 
intensity 
efficiency 

RP 1 76.3% 75.9% 91.4% 87.9% 83.0% 86.30% 

RP 2 76.4% 75.2% 90.8% 89.9% 83.7% 83.7% 

 

Excavator 

Excavators were found to have the most significant machine-reporting intensity period 

interaction for the ~AMH and ~PMH KPIs. For the ~AMH KPI, excavators 1, 2 and 3 

had a higher average value in the High intensity reporting period. Excavators 4 and 5 

had a higher average ~AMH KPI in the Low intensity reporting period. In terms of the 
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~PMH KPI, it was found that excavators 1 and 2 had a higher value in the High intensity 

reporting period. Excavators 3, 4 and 5 had a higher value in the Low intensity reporting 

period. Excavators were also found to have an overall higher efficiency in the Low 

intensity reporting period over the High intensity reporting period. In this case, the 

machine-reporting intensity period interaction indicates that the effect of varying 

reporting intensity periods on the Efficiency KPI varies per machine. They all, however, 

were found to have a higher average Efficiency in the Low intensity reporting period 

(Table 24). 

 

Table 24. Summarized Univariate results for ~AMH, ~PMH and Efficiency KPI 
between individual machines for Excavators. 

  Univariate ~PMH Univariate ~AMH Univariate Efficiency 

Machine 
# 

High 
intensity 

utilisation 

Low 
intensity 

utilisation 

High 
intensity 

availability 

Low 
intensity 

availability 

High 
intensity 
efficiency 

Low 
intensity 
efficiency 

BH 1 77.9% 77.8% 92.1% 89.5% 84.4% 86.9% 

BH 2 75.7% 73.4% 92.6% 88.4% 81.6% 83.5% 
BH 3 80.0% 80.1% 93.3% 93.1% 85.8% 85.9% 
BH 4 75.4% 79.6% 86.0% 87.6% 87.5% 90.9% 
BH 5 78.7% 84.6% 91.2% 95.6% 86.3% 88.4% 

 

Gravel trucks 

Gravel trucks were found to have a significant machine-reporting intensity period 

interaction for the ~AMH KPI (p = 0.018) and H0 was rejected. Gravel trucks 3 and 4 

had a higher ~AMH KPI in the High intensity reporting period while gravel trucks 1, 2, 

5 and 6 had a greater ~AMH KPI in the Low intensity reporting period. A significant 

difference was found between reporting intensity periods for the Efficiency KPI (p = 

0.006); 5 out of 6 gravel trucks were found to have a higher efficiency in the High 

intensity reporting period (Table 25). 
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Table 25. Summarized Univariate results for ~AMH, ~PMH and Efficiency KPI 
between individual machines for Gravel trucks. 

  Univariate ~PMH Univariate ~AMH Univariate Efficiency 

Machine 
# 

High 
intensity 

utilisation 

Low 
intensity 

utilisation 

High 
intensity 

availability 

Low 
intensity 

availability 

High 
intensity 
efficiency 

Low 
intensity 
efficiency 

GT 1 80.3% 79.7% 94.0% 95.1% 85.3% 83.8% 
GT 2 78.7% 78.0% 88.9% 91.6% 88.2% 85.0% 
GT 3 78.4% 77.2% 88.9% 85.3% 88.4% 90.6% 
GT 4 76.0% 73.9% 90.1% 90.1% 84.3% 81.7% 
GT 5 77.5% 78.9% 89.2% 92.2% 87.2% 85.8% 

GT 6 79.4% 81.1% 88.8% 93.5% 89.4% 86.8% 

 

3.4 COUNT KPI ACCURACY 

3.4.1 Feller-buncher Count 

In order to help determine the accuracy of the Count KPI, additional tests and 

correlations were generated. Table 26 summarizes descriptive statistics for the feller-

buncher count data. “N” lists the total number of samples.  “Mean” lists the average 

value for the sample. “Mean Std. Error” lists the standard error of the mean.  

 The mean value of 0.97 for the OBC/visual activation ratio is quite good. This 

indicates that overall, the number of grab arm activations counted by the observer 

corresponds closely to the electronic count found in the OBC’s memory. This suggests 

that the multiDAT is correctly connected to the proper electronic impulse to monitor 

grab arm activations. A mean ratio value of 0.99 of OBC count to tree count was found. 

This indicates that the OBC count of grab arm activations is closely related to the 

number of trees harvested.  
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Table 26. Feller-buncher summarized descriptive statistics for the count accuracy ratios. 

Ratio 
N Mean 

 Value Std. 
Error 

OBC /visual 
activation 46 0.97 0.02 

OBC/tree 46 0.99 0.02 
 

 Table 27 shows the Pearson Product-Moment Correlation Coefficient results. 

The first column lists the variables which were compared; in this case, OBC count and 

visual activation count. Each variable from the first column is tested against each 

variable in the first row. The “Pearson Correlation” value for each variable interaction is 

displayed, along with 2-tailed significance value “Sig. (2-tailed)” and the total sample 

population, “N”.  

 When testing two different variables, the closer the Pearson Correlation value is 

to 1.0, the better the relationship between the variables. When comparing the “OBC” to 

“visual activation” values for feller-bunchers, the Pearson Correlation is 0.912. This 

correlation is significantly high. This indicates that the number of grab arm activations 

counted by the observer is closely related to the OBC count of grab arm activations by 

the multiDAT OBC.  
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Table 27. Correlation results from OBC and visual activation data for feller-bunchers. 

  OBC Visual Activation 

OBC 1 0.912 *** 
Visual Activation 0.912 *** 1 

n 46 46 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

 A Pearson Product-Moment Correlation Coefficient was also generated for the 

OBC and tree count variables (Table 28). The Pearson Correlation between the OBC and 

tree count variables for feller-bunchers was found to be 0.923. This indicated a strong 

correlation between the number of grab arm activations counted by the OBC and the 

number of trees harvested. 

 

Table 28. Correlation results from OBC and Tree count data for feller-bunchers. 
  OBC Tree count 

OBC 1 0.923 ** 
Tree count 0.923 ** 1 

n 46 46 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

 ANOVA tests were generated in order to identify whether machines would have 

an effect on OBC/tree count ratios (Table 29). The tree count/OBC significance value 

was calculated as 0.000. This indicated a significant difference in tree count/OBC ratios 

between machines. Therefore, individual machines may have varying ratios between the 

number of tree counts and OBC counts. The null hypothesis of no changes in the ratios 

was rejected.   
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Table 29. ANOVA test for testing significant differences between OBC to tree count 
ratios between machines. 

 
Sum of 

Squares df Mean 
Square F Sig. 

Between Groups .172 1 .172 18.506 *** 
Within Groups .409 44 .009   

Total .581 45       
*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

3.4.2 Processor Count 

Descriptive statistics for the OBC/visual activation and OBC/log count ratios are 

illustrated in Table 30. With a total sample of 62, the mean value for OBC/visual 

activation and OBC/log count ratios are 1.08 and 0.91, respectively. This indicates a 

slight disconnect between the number of visual activations counted by the observer and 

by the OBC. This also indicates a small difference between the number of logs produced 

(log count) and the number of bottom saw activations (visual activation Count). 

 

Table 30.  Processor summarized descriptive statistics for the count accuracy ratios. 

 

N Mean 

 Value Std. 
Error 

OBC /Visual activation  62 1.08 0.02 
OBC/Log Count 62 0.91 0.02 

 

 Table 31 illustrates the Pearson Correlation value for processors. After 

completing this test, a correlation of 0.88 is calculated for the OBC and visual activation 

count variables. This indicates that the OBC counts are slightly different than the visual 



68 
 

activation counts. Even though there is a difference, a correlation of 0.88 is still quite 

close and could be considered a good value.  

 
Table 31. Correlation results from OBC and visual activation count data for processors. 

  OBC Visual Activation 

OBC 1 0.88 ** 
Visual Activation 0.88 ** 1 

n 62 62 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 

 

 Table 32 illustrates the Pearson Correlation results for the OBC and log count 

variables. In this case, OBC and log count variables are found to have a correlation of 

0.87. Even though there is a slightly lower correlation, it can still be considered quite 

accurate.  

 

Table 32. Correlation results from OBC and log count data for processors. 

  OBC Log count 

OBC 1 0.87 (0.00)** 
Log count 0.87 (0.00)** 1 

n 62 62 

*** = significant at α ≤ 0.001 
** = significant at α ≤ 0.01 
* = significant at α ≤ 0.05 
ns = not significant 
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3.5 ROI RESULTS 

In this case study, the only ~PMH KPI found to be significantly different between 

reporting intensity periods for normal shifts was for the feller-buncher machine type. 

Since this was the only machine type found to have these differences, it was the only one 

to have ROI estimates computed. As described in the methods, the total cost per cubic 

metre ($/m3) was calculated for two scenarios. The difference between scenarios was the 

utilisation value input to the RDM; one scenario had the ~PMH KPI value in the Low 

intensity reporting period and the other scenario had the ~PMH KPI value for the High 

intensity reporting period. All other inputs remained untouched. The following table 

illustrates the estimated cost in $/m3 when comparing the different ~PMH KPI rates in 

the RDM (Table 33). 

 
Table 33. Feller-buncher RDM results for the ~PMH KPI. 
 

Reporting 
intensity periods Utilisation rate used $/m3 

High intensity 76.61% 3.62 
Low intensity 74.48% 3.70 

 

 The High intensity reporting period was found to have a greater utilisation rate 

during normal shifts. This eventually led to a reduction of 0.08$/m3. If considering H0 as 

no change in the final cost/m3 between reporting intensity periods, this hypothesis can be 

rejected. When considering the alternative hypothesis as the High intensity reporting 

period having a greater cost savings (lower cost per m3) than the Low intensity reporting 

period, the HA has failed to be rejected.  
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 In order to calculate ROI, costs must be determined. In this case study, 

approximate costs were calculated for the implementation of OBCs in 10 feller-

bunchers. This would estimate the cost of retrofitting a large contracting firm with 

multiple OBCs. Table 34 is an estimated cost of initial implementation for an OBC 

system.  

 

Table 34. Initial cost estimates of OBC system installation 

Initial cost Initial cost per machine Total 

Download box  $  2,750  multiDAT  $    1,000  
 Software  $     400  Modem  $        275  
 System Installation  $  2,000  Installation  $        500  
 Management   $  2,000  Management  $    1,000  
 

     Subtotal  $  7,150  
 

 $    2,775  
 Number of machines 

  
10 

 
     Total initial cost  $  7,150     $  27,750   $  34,900  

 

 

“Initial costs” are items which are required for the initial installation of the 

system. This includes the purchase and installation of the download box in a pick-up, the 

initial software purchase and the management of these activities. “Initial cost per 

machine” includes initial costs per individual machine such as the purchase of the OBC 

and accessories, its installation and the management of these activities. Once initial costs 

have been estimated, annual costs of maintaining the system were also estimated. The 

subsequent table illustrates the annual cost of utilising this equipment (Table 35). 
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Table 35. Annual estimated cost of OBC system 

Annual cost per machine Annual cost Total 

Maintenance  $    1,000  
System 

maintenance  $  2,000  
 Management  $    1,000  Cell download  $     400  
 

  
Management   $  5,000  

 
     Subtotal  $    2,000  

 
 $  7,400  

 Number of machines 10.00 
   

     Total annual cost  $  20,000     $  7,400   $  27,400  
 

  

“Annual cost per machine” includes the annual cost of maintenance and 

management per machine. Maintenance issues may include the replacement of damaged 

equipment, re-connection of wiring and other maintenance issues. Management includes 

the additional cost of managing associated issues that may arise with the equipment. 

“Annual cost” includes maintenance of the entire system, cellular data collection fees, 

and overall management of the system as a whole.  

 Totalling the Initial and Annual costs gives an estimate of total system cost. 

Table 36 illustrates the average cost per year for year 1, 2 and beyond for retrofitting 10 

feller-bunchers with this equipment. 

 

Table 36. Estimated yearly costs of OBC system 

Year Initial cost 
Annual 

cost 
Total cost 

Year 1 $34,900 $27,400 $62,300 
Year 2  $                  -    $27,400 $27,400 
Year 3  $                  -    $27,400 $27,400 

Total $34,900 $82,200 $117,100 
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Additional maintenance costs could be applied in subsequent years due to aging 

equipment and additional maintenance. However, maintenance costs may decrease due 

to experience gained with equipment installation and maintenance. Management costs 

may also change through time due to evolving uses, implementation style, and data use, 

as examples of possible changes. Also, the user may intend to change the equipment 

after three years due to the possibility of newer and improved OBCs.  

Based on these values, an ROI over a 3-year period can be estimated (Table 37). 

The total cost is the initial and annual cost for outfitting 10 feller-bunchers for three 

years. In this case study, 10 feller-bunchers are assumed to cut 1 million m3 in one year. 

In reality, feller-bunchers may be more productive (10-15% more). However, for easy 

interpretation and calculations, 1 million m3 has been deemed appropriate. A total 

savings of 0.08$/m3 is assumed for 1 million m3 per year for three years. 

 

Table 37. ROI for 10 feller-bunchers over a 3-year period 

Year Total cost Total savings ROI Payback period (years) 

3 $117,100.00 $240,000.00 105% 1.46 
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4.0 DISCUSSION 

The discussion has been subdivided into two major sections. The first section discusses 

the implementation of an OBC system with experience gained in this study, while the 

second section discusses KPI results from this case study. The first section provides 

valuable background information on the installation of this system. It also discusses 

challenges associated with the implementation of these systems along with the value and 

limitations of individual KPIs. The second section delves into specific details of the 

results and their interpretation.   

4.1 SECTION I: IMPLEMENTATION OF ON-BOARD COMPUTERS 

After this study, one could suggest that there are seven major steps to the 

implementation of OBC systems in forest operations. They can be considered as: 

1) Identify problems and set goals 

2) Study local forest operations 

3) Identify KPIs  

4) Design and implement OBC system 

5) Collect information 

6) Analyse, report and identify opportunities 

7) Constantly re-evaluate 
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4.1.1 Identify problems and set goals 

The first step to implementing an OBC system is to identify problems and set goals. The 

identification and definition of these problems/goals will vary in each situation 

according to the need of individuals. Since each implementation situation is unique, it is 

obvious that external applications cannot be used without extra developments within a 

new environment (Emeyriat and Bigot 2006). This suggests that each system must be 

“custom fit” to individual companies; there is no definite solution for all of them.  

Defining goals will also help identify information timelines; which is the rate at 

which information must be available to reach those goals. An example of this is looking 

at the use of OBCs for incentive programs versus coordination improvements. The first 

can work with longer timelines, whereas the second usually requires shorter, more 

immediate access to data (Hubbard 2000). Therefore, the collection, communication, 

access, analysis and reporting will be determined by the end goal. 

In this case study, the goal was to develop and implement a simple system which 

would be applicable to all machine types and easy to use over the long term. The core 

problem was the lack of accurately determining machine utilisation, availability and 

productivity. More specifically, the items of interest were: 

- What basic data is most important and how do we track it? 

- Can there be a single data collection template across all machines? 
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4.1.2. Study local forest operations 

The first step is to take a holistic approach to problem solving by considering all 

components of the forest supply chain. These components will then be broken down to 

smaller elements or activities and be critically observed and analysed. Sundberg and 

Silversides (1988) suggest identifying and critically observing the components of a 

system by asking such questions as “what are the technical means for doing the job” and 

“which factors have influence on the performance”. The answers to these questions will 

help understand and outline the factors which can affect work. In addition to this, they 

suggest that one should consider both physical and human variables as different. This is 

because physical variables tend to have a much more linear and predictive effect than 

human variables, due to the stochastic behaviour and unpredictability of human activity. 

 In this case study, a forest harvest supply chain and some road building 

equipment were studied. Each machine type is a unique component of the supply chain. 

Therefore, each machine type has to be critically analysed and observed. Moreover, 

some of the road building equipment may have a greater variety of applications than 

forest harvesting equipment (i.e., an excavator may build road, dig a pit, load trucks, 

etc.) which would mean that additional machine observation and study would be 

necessary to understand all tasks. 

4.1.3 Identify KPIs 

Once the supply chain is understood, there is a need for developing key measurable 

metrics to report and evaluate performance. There are several ways to undertake this, 
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one of which is by working under the principles of governing the control function by 

Urwick (1947). These principles provide guidance to aid in the identification of data 

metrics that provide the best opportunity to enhance control and include the principles of 

uniformity, comparison, utility and exception. These principles outline the major 

considerations when collecting, analysing and reporting data to increase the user’s 

ability to control operations.   

According to Silversides and Sundberg (1989), the first principle states the 

importance of choosing data which can be directly affected or controlled. This will 

ensure that this metric can be improved. The second principle declares the importance of 

being able to compare past, present and future data. This allows for performance 

tracking and monitoring. The third principle simply stresses the importance that only 

data which are useful should be collected and used. The last principle suggests the 

importance of being able to identify outliers and exceptions to provide better control. 

The idea is to have an automated identification of special cases in order to improve or 

modify them. 

 The importance of an operator’s ability to affect KPIs is important; especially 

when considering any incentive payment system. Hubbard (2000) provides one example 

that when basing a driver’s performance on arrival time only, it does not account for 

items out of a driver’s control (i.e., mechanical breakdowns and traffic). This provides 

inaccuracies in the data and may render some values as skewed or invalid. Some 

examples of KPIs found in relevant literature are given below: 

- traffic intensity, degree of intensity (Carter et al.1999); 

- utilisation time, harvesting time, productivity (m3/day), fuel consumption 
based on topography, shift progress, location of wood piles, compliance with 
harvest prescription, GPS signal quality (Cordero et al. 2006); 
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- % area covered, operational delays, type of delay, skidder cycle time, cycle 

time elements (Davis and Kellogg 2005). 
 

In this case study, the development of KPIs followed Urwick’s principles. A total 

of four KPIs were used in this study. 

4.1.3.1 ~AMH 

In order for a machine to operate, the master switch must be engaged since this switch 

activates power for the machine. Without this power, the machine is unable to run. In 

order for this switch to be activated, it must be physically turned on and off by an 

operator. Operators are instructed to activate this switch when they arrive on site for 

their shift and deactivate it when they depart. Therefore, measuring the activation time 

of this switch can be interpreted as a measure of performance. If a machine is scheduled 

to work for 10 h, it should theoretically have the master switch activated for 10 h. 

Therefore, when considering Urwick’s first principle, the ~AMH KPI can be directly 

controlled.  

However, there are exceptions to this hypothesis. Within 10 h of scheduled time, 

the machine can be powered down to do preventive and regular maintenance. For some 

machines, this regular maintenance can take as little as 10 min. For others, it may be as 

much as 30 min. Other items which may be out of the operator’s control are when the 

machine must be moved to another location, or if the machine breaks down. A scheduled 

machine move or sporadic machine failures are not monitored or catalogued 

electronically. This can lead to misrepresentation when attempting to compare different 

work shifts over a short period of time. 

Another challenge to this KPI is that there are times where the master switch is 

left on by the operator. This phenomenon was only observed for some of the skidders. 
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This is because the master switch is a little less accessible as compared to other machine 

types. This would lead to the switch being left on between shifts. When considering and 

measuring performance, one must consider that some of the results for these skidders 

may be a misrepresentation of the ~AMH KPI.  

With these exceptions in mind, it is important to identify outliers and exceptions 

(Urwick’s fourth principle). When the Master switch is left on, it will record a shift time 

often greater than the scheduled time. On very rare occasions does the operator work 

over a designated 10 h shift. However, this overtime must be tracked. Therefore, one can 

make an assumption or rule that any shift which has over a certain number of the ~AMH 

KPI, the master switch was left on and this should therefore not be considered in data 

analysis. 

When a machine gets moved or breaks, a large portion of the shift is generally 

defunct. Generally, one can assume that shifts which have less than a certain number of 

~AMH were subject to one of these events. Once data have been generated, ~AMH 

values can be filtered to eliminate these exceptions if it is required. However, when an 

overall value for the ~AMH KPI is required, it is best to include these exceptions and 

outliers since it should remain as part of the machine history and data. 

Based on Urwick’s second principle, these data can be compared to past, present 

and future values, especially when considering broad timelines. However, considering 

the comparison of this KPI over short periods of time may be considered imperfect. 

Once again, the lack of knowledge pertaining to breaks and machine moves may 

misrepresent unfiltered data over the short term. If there was additional field knowledge 

of individual machine and shift events, these data can be used as a tool for comparison 

over the short term. 
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An example of using these data would be comparing the ~AMH KPI between 

newer machine models and older models. A difference in this KPI may indicate that the 

older model may not have as high of a KPI value due to its age. The machine may be 

prone to more mechanical breaks and additional maintenance.  

4.1.3.2 ~PMH 

The use of ~PMH as a KPI can be very valuable. In order for most machines to complete 

work tasks they will have some sort of movement. Feller-bunchers will be moving to 

trees, processors will be picking up logs, skidders will be transporting bundles, etc. 

These activities provide differing levels of ~PMH which are evaluated and logged by the 

OBC. Therefore, when tracking ~PMH, one can assume that any movement above a 

certain threshold can relate to the machine doing a work task. For the most part, this 

would respect Urwick’s first principle since this data can be directly affected or 

controlled. 

The only limitation of this assumption is that a machine could be recording 

~PMH activities but may not be doing any work. In most scenarios any case of false 

information would be related to the deliberate attempt by operators to falsify data by 

having the machine move without completing any work tasks. This, however, has not 

been observed or suspected in this study. Nevertheless, incidence of false information 

must be considered when analysing this information. It is important to pair the ~PMH 

KPI with other KPIs and on-site information to ensure that information being recorded 

matches the work which was done on site. Other weaknesses to these data are very 

similar to those of the ~AMH KPI. If a machine moves to a new site or breaks, ~PMH 

cannot be logged since it is unavailable and unable to complete its work tasks. This is 

because it is mostly out of the control of management or an operator. There are different 
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factors which can affect machine utilisation; these can include technical reliability of the 

machines, weather and road conditions, logistics, proportion of set-up time and workers. 

(Holzleitner et al. 2012)  

The ~PMH KPI also applies to Urwick’s second principle; comparisons can be 

made to past, present and future data with some restrictions similar to those for the 

~AMH KPI. That is, when considering short term comparisons, detailed field 

information can be applied to enhance data analysis and interpretation. 

With these exceptions in mind, outliers and exceptions can be identified through 

data filtering. However, some assumptions have to be made in order to best estimate 

KPIs.  

The ~PMH KPI can be used in many ways. An example of this would be to help 

determine the accuracy of machine rates. Having a better estimate of machine utilisation 

can help determine how machine costs and profits are determined. This can provide a 

firm with more accurate costs and help improve the achievement of financial targets. 

Thompson (2001) considered the use of OBCs as long term solutions to 

calculating utilisation rates for grapple skidders. MultiDATs were installed in four 

grapple skidders for approximately 44 working days. In this case, a motion sensor was 

tracking when the machine was moving, assuming that this movement was considered to 

be “work”.  

4.1.3.3 Efficiency  

The Efficiency KPI is a ratio of both the ~AMH and ~PMH KPI. It is a percentage of 

~AMH when the machine is utilised ((~PMH/~AMH)*100). This KPI is designed to 

give a sort of “efficiency” rating. It gives an estimate of how the machine is used within 

its “available” time.  
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 This is arguably the KPI with the most control. For a machine to move, it 

requires power. Since the ~AMH KPI tracks the activation of power, the number of 

~PMH will never surpass that of the ~AMH. The goal would be to achieve the highest 

Efficiency KPI; since it would indicate the machine is moving as long as it is powered. 

This would indicate a sort of “job dedication” or “efficiency” within a designated 

amount of time (i.e., 1 shift).  

 There would tend to be less error in the interpretation of this KPI. For one, it is 

less affected by machine breakdowns and moves, as compared to the others since the 

power is normally shut off when there is an issue. As an example, if a machine is 

available to work for 3 h in a shift because of a breakdown, the master switch may be on 

for 3 h and have 2.75 h of ~PMH. When the machine stops due to a predicted or 

unpredicted event, it still reflects the amount of “work” which was completed that day.  

 However, there may be exceptions to this “lack of error”. If a machine was set to 

move, it may only be activated when it is loaded and unloaded from a float trailer. 

Potentially, the machine would be quickly powered up and moving for a very small 

amount of time. This may give the Efficiency KPI a high value. When interpreting this 

data, it is important to pair this value with the total amount of ~AMH and ~PMH which 

took place. Thus, this helps one consider ~AMH and ~PMH in relation to SMH.  

 When considering Urwick’s second principle, it is simpler to compare past, 

present and future data for this KPI as compared to others. This would be because there 

is more direct control, less potential errors and less effect from external noise. For 

instance, the reason a ~AMH KPI for a particular shift would be lower may be because it 

took more time to start up a machine (possibly because of weather or road travel). The 

Efficiency KPI would provide an opportunity to show that the machine may still be 
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productive for the amount of time that was “available”. Therefore, it provides a unique 

KPI which can be very valuable and different from the two KPIs which are used to 

generate it.  

 In terms of Urwick’s fourth principle, it is a little more difficult to identify 

outliers and exceptions. In order to identify these, one would have to compare the 

Efficiency KPI to the ~AMH and ~PMH KPIs. Outliers from these two other KPIs 

would be the source of errors for the Efficiency KPI. An example of these errors would 

be leaving the master switch on after a shift was completed (as mentioned in the ~AMH 

KPI section). The amount of ~PMH that would have taken place during one of these 

shifts would be accurate, however, the Efficiency KPI would give a false ratio since the 

~AMH KPI is incorrect. The filtering of these outliers could take place when filtering 

outliers for the ~AMH and ~PMH KPI. 

4.1.3.4 Count  

Productivity can be very difficult to track in forest operations due to variability in site 

and stand conditions and stochastic events. Furthermore, the operating environment can 

be harsh for any type of production measuring equipment (e.g., weather, vibrations, dust, 

etc.) Therefore, there is not much automated productivity tracking hardware and 

equipment in use in Canada. Certain machine types (mainly harvesters) are equipped 

with some form of production monitoring equipment, but this equipment is often not 

used to its full potential in Canada. This is mostly due to the technical challenges of 

implementing, maintaining and operating this new equipment.  

The count KPI is designed to provide an alternate measure of productivity. It is 

not to be interpreted as a perfect measure, but instead a proxy that can give supplemental 
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information to staff as per how much production may have occurred. It can also be used 

as another metric for machine utilisation and monitoring. 

The interpretation of this KPI can be difficult. When evaluating this KPI’s value, 

one must consider the various factors which may have affected its outcome. Therefore, 

when referring to Urwick’s principle of uniformity, this KPI must be evaluated carefully 

and critically. This also applies to the principle of comparison. When attempting to 

compare KPI values between shifts, work factors must be considered. When comparing 

KPI values over longer periods (years), values may be more comparable, since 

variability would be considered more normalized.  

When considering the principle of utility, this KPI would be valuable for various 

reasons. For one, it can be used as a verification tool for other KPIs. If the integrity of 

the ~AMH and ~PMH KPI is questioned, the Count KPI can be compared to these 

values. A high ~PMH and ~AMH KPI coupled with a lower Count KPI may indicate 

poor practices, a lack of training, or the active intention to affect the ~AMH and ~PMH 

KPI. A higher Count compared to ~PMH and ~AMH KPI may indicate some technical 

or interpretive errors and should entice further evaluation and verification of the 

equipment. As previously mentioned, this KPI could be used as a loose proxy for 

measuring productivity. The OBC count can help estimate how many trees or logs have 

been modified over time.  

4.1.2 Design and implement OBC system 

Once goals and key metrics are identified, the design of an OBC system can take place. 

At this stage, the best-fit solution for the user is to be explored; this includes a series of 
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considerations including hardware, software and communications. Once again, the 

user’s problems, goals, limitations and needs are to be considered to make an educated 

decision to ensure the desired outcome. Once this has been completed, an 

implementation procedure should be developed to ensure its smooth integration within 

forest operations. This includes plans for hardware installation, IT integration and data 

collection, analysis and reporting. Involvement of all stakeholders would prove to be 

beneficial throughout the research and implementation process.  

 In this case study, this included the installation of a multiDAT and RF modem in 

each machine, and a receiving unit in two pick-up trucks. The idea was to have two 

pick-up trucks download each multiDAT while completing their regular day-to-day 

operations. Doing this would save time and money since the process is automated and 

requires little or no maintenance.  

 There were considerable challenges which arose that made the system difficult to 

maintain and not work as originally envisioned. This data collection system was based 

on the assumption that machines would tend to remain in the same groups and that a 

supervisor would visit each machine once a week. It also assumed that no real 

maintenance would be required since these units tend to have minimal manufacturing 

defects and would be monitored daily for any issues.  

 There were two download pick-ups. Each pick-up was designed to interface with 

specific machines. Since machines tend to stay in the same groups and areas, this 

arrangement was thought to be acceptable. However, after further study it was found that  

machines tend to move between groups more frequently than originally thought. This led 

to some machines being unable to get downloaded for long periods of time since they 

were now working in different areas and groups. If a machine changed groups, it would 
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have to come back to its original group to get downloaded by the associated pick-up. 

This led to gaps in data collection and reporting. 

 Another problem was that supervisors would not necessarily visit each machine 

once a week. Machines were being moved to different areas, put to different tasks, were 

at inaccessible parts of the harvest block, etc. Therefore, a pick-up might not have the 

opportunity to download each individual machine once per week. If this were to take 

place a few weeks in a row, there would be gaps in reporting and data. These gaps in 

data reporting and collection were seen as a nuisance since not all machines would be 

reported weekly.  

 The largest issue is that physical damage was recorded to some of the equipment. 

Some of the hardware components (datalogger, wiring, RF modem, antenna) were found 

to be damaged or disabled. This was partially due to the harsh work environment and the 

sabotaging of equipment. This damage can be attributed to a few items. Stadler (2005) 

stated that the culture of mistrust and “learn on the job” history requires that frontline 

forestry workers must be approached carefully when implementing new ideas.  

Furthermore, scepticism of IT and lack of information sharing has led to a greater need 

for care in implementation and application (Stadler 2005). In this case study, workers 

may not have been approached with enough care and involvement. One may speculate 

that fear of new technology and mistrust of management was the largest contributor to 

sabotage. The physical sabotaging of this equipment would mostly be minor instances 

limited to only a few machines and areas. For the most part, most OBCs were not 

damaged and this was not an issue in this case study. 

 In addition to this damage, some of the RF modems would occasionally be 

turned off. This could be a form of sabotage, but it would not affect data collection, only 
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data transfer. With the wireless transmitter powered off, machine data could not be 

transmitted to an awaiting receiver in the pick-up. Since data could not be transferred, it 

could not be reported on a timely basis. 

4.1.3 Collect information 

In order to make changes and improve operations, there is a need for benchmark 

information. This step is dedicated to the collection of base information for initial data 

analysis. It will provide a baseline for current operations that will subsequently be 

analysed for further improvement. This will also provide an opportunity for testing the 

equipment and ensure reliable/accurate data collection.  

 In this case study, data were collected from the last week of May 2011 to the end 

of January 2012. All KPIs were collected through this period. Data were reported in two 

different reporting intensity periods. Benchmark data were not developed and reported. 

This was because releasing benchmark information may have affected the outcome on 

different reporting intensity periods. However, once the field work was complete, 

benchmark information was released. 

4.1.4 Analyse, report and identify opportunities 

This step focuses on data collection, analysis and reporting following baseline data 

collection. At this stage, data are critically analysed in order to identify opportunities and 

develop improvement plans. The development of data reporting and information 

dissemination methods also takes place in this step. New data are analysed and reported 
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to be used and compared to past events. These data are also used to monitor the effect of 

changes in forest operations. Examples of this are new harvesting methods, systems, 

personnel or best practices. This is where data treatment and heavy analysis takes place 

in order to improve operations.  

 After initial data collection, report customization began. The development of 

these reports took place from late May to the third week of July. It took seven rounds of 

report building and customization to arrive at an agreeable and legible template. Each 

round of report building would answer the following questions: 

- Who will receive the results and how is it disseminated? 

- What is the data frame? 1 week? 2 weeks? 

- When will the report be released? Weekly? Specific days? 

- How will data be organised? By machine? By day? 

- What unit of time will form the rows? Daily, weekly or shift results? 

Furthermore, reports had to be easy to interpret and generate.  

Once these main questions were answered, reports were created and evaluated to 

determine whether they needed further refinement. The final result of the report 

customization period yielded three different reports released on a weekly basis to staff 

only.  

Once the reports were released to the staff, data were used at each staff member’s 

discretion. Since this was designed to be a broad scaled study between reporting 

intensity periods, specific tracking of data use was not logged.  

After completing the study, it was felt that there should have been a different 

data utilisation structure. The lack of experience in data analysis and reporting led to the 
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under-utilisation of information. The following are suggestions which could have been 

used during the high intensity data reporting period. 

 KPI targets could have been set and compared to incoming weekly data. 

The comparison and review of weekly results to target KPIs would have 

led to more reflection and use of data. This is because staff would have to 

respond to weak or strong KPI values. This would lead to more 

involvement by enticing the staff to further review and analyse what 

resulted in the past week’s values. This would lead to the identification of 

problems or strengths and subsequently develop better practices.  

 A template to log data use should have been developed and implemented. 

This additional information would have provided insight as to how each 

individual staff member utilised the data. This information could have 

been used to further refine reports, develop additional KPIs, report best 

practices and identify weak points amongst many other uses. The only 

issue with implementing this would be the lack of involvement by staff 

due to time constraints. It is felt that most staff are already overloaded 

with work and additional forms would further increase the workload.  

 Additional site information could have been used to further refine and 

analyse results. This additional information would have to be collected 

and reported in one of two ways: 1) Written daily logs of machine 

activities and location; and 2) Availability of daily GPS information and 

additional GIS accessibility with the use of mulitDAT stop codes. This 

would have provided additional information to track KPI values. Written 
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logs would provide shift specific detail which could be considered during 

data analysis and interpretation of KPIs. Unfortunately, the amount of 

additional data management, involvement of staff and operators, and the 

development of an activity log would be major hurdles that would have to 

be overcome. A simpler way to address this would be the use of stop 

codes. Operators would have to choose one of up to 10 categories to 

define why a machine was stopped for a prolonged period of time. This 

could help identify why a machine was stopped, and thus why some KPIs 

are lower. This, however, may prove to be challenging since operators 

would have to be trained on these functions and subsequently use them. It 

is felt that some operators would not participate in this due to the 

additional interaction with this equipment. This resistance would be due 

to general resistance to the use of this equipment, but also because of the 

additional noise which comes from the OBC when a stop code is not 

used. The use of GPS information is an alternative. However, this would 

require additional training and data management with third party software 

to generate valuable reports and maps. Furthermore, additional hardware 

requirements would be necessary, such as the addition of hardware 

components in the multiDAT itself and the addition of an antenna.  

 Further involvement of operators could have been valuable. Operator 

involvement during KPI creation and reporting may have led to more 

comprehensive reports, additional data analysis and more successful 

hardware implementation. However, this would have most likely made 

the KPI and report creation process much longer. This would be due to 
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the additional time required by stakeholders to review reports and KPIs. 

Furthermore, unrestricted report and data interpretation by operators 

could have led to new challenges which could include: 

- Operators scrutinizing other operators 

- Operators unwilling to accept the resulting KPIs 

- Operators speculating on the use of this information 

The additional success of hardware implementation is also debatable. On one 

hand, operators may feel that they are directly participating in a major program and want 

to succeed by improving KPIs and maintaining equipment. On the other hand, operators 

may feel they are being scrutinized and further damage equipment since they do not 

agree with the results. 

4.1.5 Re-evaluate  

Once all of these steps have been completed (and even over the course of 

implementation) constant re-evaluation is necessary for continual improvement. A 

system can always be improved and status quo will only lead to lagging behind 

competitors. Everything from the identification of new KPIs, data systems, measurement 

methods and improvement opportunities should be reviewed or introduced. This will 

lead to the improvement of the overall supply chain, and sustain or improve 

competitiveness.  

 Re-evaluation was taking place during this study. For one, data collection 

methods had to be re-evaluated for more consistency. Wireless equipment was 

occasionally being tampered and damaged intentionally and unintentionally. A few 
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operators would power off or damage equipment to restrict data transmission. Some 

cables were loosening through time by vibration and regular wear; this equipment had to 

be re-connected and fixed in order to transfer data. To resolve this challenge, a few 

options could have been discussed. One option would be to have operators more 

involved in the datalogging process. This additional involvement may have led to 

additional care of the equipment. Another option would be to have supervisors actively 

monitoring equipment health and ensuring their operation. A final option would be to 

dedicate specialized staff that would ensure the system is working as a whole and 

perform regular maintenance. In this case study, a specialized staff was assigned to 

download and monitor equipment on a weekly basis to ensure data retrieval, equipment 

monitoring and maintenance.  

 The accuracy of the “count” KPI was evaluated. This included field studies 

which matched the OBC count of machine component activations to a visual count 

(visual activation count) of component activations. This was done for feller-bunchers, 

processors and skidders. 

 The “count” KPI data was found to be unusable for skidders. The field 

evaluation showed no correlation between the number of back-ups to bunches delivered 

to a landing. This was because there was too much site and operator variability to 

achieve a comparable and accurate metric through time. A new metric to measure a form 

of productivity for skidders would be required. One of the metrics of interest would be 

loaded time. This would require a signal to activate when the skidder is loaded and 

skidding bunches. Unfortunately, a connection for this signal is not available. There are 

no signals which currently measure when the skidder is loaded and skidding. One option 
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would be to connect a weight sensor to the grapple which would sense when trees are in 

the grapple. This could in turn be logged and reported. 

 The feller-buncher Count KPI produced interesting results. The OBC/visual 

activation and OBC/tree count ratio means were both close to 1.0. This indicates that the 

use of the OBC count provides a good estimate of the number of trees cut. A bivariate 

correlation between OBC/visual activation and OBC/tree count was also completed. A 

correlation between OBC and visual activation count of 0.912 indicates no error found 

between the visual activation count and the OBC count of grab arm activations. This can 

be due to error from the observer’s visual count of the activations or from and incorrect 

connection to the machine signal for activation. In this case, the observer’s count would 

most likely be the sources of these errors. Counting grab arm activations can prove to be 

challenging due to safety concerns and visual obstructions. The observer had to be 

outside of the machine’s operating zone (which is approximately 150 m) while still 

maintaining visual contact with the head’s grab arms. Since the machine would be 

constantly turning, moving and occasionally facing away from the observer, some errors 

most likely occurred.  Even though small discrepancies are possible, the correlation is 

still quite high. The correlation between OBC and tree count is found to be even higher 

with a value of 0.923. This indicates that there is a strong correlation between the 

number of grab arm counts (OBC count) and the number of trees harvested (tree count).  

 There are also considerable limitations to these observations. For one, an 

ANOVA test was generated to test whether there were significant differences in 

accuracy ratios between machines. A significant result from this test indicates that 

machines would have a significant effect on these ratios. This effect can result from 

many sources. This can be related to the actual machine operation, the operator, weather, 
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site conditions (tree DBH, tree density, slope, obstacles, etc.) amongst other items. 

Additional tests and field observations would need to take place in order to test the 

accuracy of this KPI.  

 The processor Count KPI also produced interesting results. The OBC to visual 

activation count ratio mean was 0.878. A correlation between the OBC and log count 

was 0.871. This indicates a strong correlation between the two. Therefore, one can 

assume that the OBC count can be an estimate of log production. However, there are 

limitations to this.  

There were some discrepancies between the observer’s visual count of 

activations (visual activation Count) and the OBC count of activations. The OBC/visual 

activation count accuracy ratio mean was 1.08. In theory, this mean should be 

approximately 1.0. Also, a correlation of 0.878 was observed between the OBC and 

visual activation count. The source of this error would most likely be attributed to the 

OBC count. The signal for the saw comes from the activation of an electronic impulse 

which controls a pump on the machine head. This pump engages when the bottom saw is 

activated. Occasionally, there would be enough pressure left in the line to activate the 

saw without actually engaging the pump. This can often take place when the bottom saw 

is engaged in quick succession. 

An additional processor was studied to determine the accuracy of the Count KPI 

to the number of logs produced. After the collection of field data and its analysis, it was 

discovered that the signal for the OBC count was attached to a different pump which had 

a more sporadic operation, thus resulting in a lower log count to OBC count accuracy. 

Subsequently, this connection had to be modified and was connected to the same 

terminal as the other processor. Much like the feller-buncher limitations, additional 
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studies would have to take place to determine the effect of different machine, site and 

operator conditions.  

Re-evaluation of the Count KPIs proved to be valuable to verify its validity and 

accuracy. Additional Count KPIs would have to be developed for other machines such 

as skidders, excavators and gravel trucks. A Count KPI for gravel trucks could prove to 

be fairly simple. One option would be to count the number of dumps the truck would 

make in a shift. A Count KPI for excavators would prove to be much more challenging. 

This is due to the varied work that an excavator may perform and the different operating 

style for each operator. Furthermore, these styles will vary according to site conditions, 

available aggregates, type of road, and so forth.  

4.1.6 Examples of implementation 

There are studies which have implemented  multidats in order to track certain 

performance indicators. As previously mentioned in the introduction, there are a very 

limited number of peer reviewed studies published even though there are thousands of 

multiDATs and other OBC types used in the forest industry. 

The use of GPS tracking for monitoring forest operations has been successfully 

tested for the study of forest operations traffic (Carter et al. 1999) and soil disturbance 

(Taylor et al. 2001; Veal et al. 2001; MacDonald et al. 2002; Davis and Kellogg 2005; 

MacDonald and Fulton 2005). Taylor et al. (2001) and Husband (2010) suggest using a 

machine’s GPS information to report on treated areas for compliance.  

Davis and Kellogg (2005) also state the OBCs could be used to help determine 

limiting aspects of the operation, which if corrected, leads to gains in efficiency.  
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Strandgard (2011) installed multiDATs in a feller-buncher, a skidder and an 

excavator in a study in Australia. The goal was to identify machine utilisation rates and 

how they can be improved. Based on the results, work practices were modified in order 

to improve machine utilisation.  

4.2 SECTION II: RESULTS DISCUSSION 

The objective of the study was to determine whether there were significant differences in 

KPI values between different data reporting intensity periods. Significant differences 

between these reporting intensity periods may indicate that the reporting and use of data 

from OBCs can have a measurable effect on performance indicators. These indicators 

can in turn indicate an improvement in forest operations.  

4.2.1 ~AMH  

Overall, the ~AMH KPI seemed to be higher in the High intensity reporting period with 

some minor exceptions. When considering all machines within the ~AMH 1 database, 

there was an improvement of this KPI.  

In Nonparametric tests, the ~AMH KPI was found to be significantly different 

between reporting intensity periods for the ~AMH 1 databases. This indicates that when 

considering all data collected, the data have a positive influence on the ~AMH KPI. 

Therefore, the null hypothesis (H0) that there were no significant changes in KPIs 

between reporting intensity periods is rejected.  
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 In the normal shift ~AMH 1 database ANOVA tests resulted in a significant 

difference between High and Low intensity reporting periods and led to the rejection of 

H0. The means of High and Low intensity reporting periods are found to be 9.18 h and 

9.04 h, respectively. This indicates that the more intensive use of OBC data may have a 

positive influence on the ~AMH KPI since it has changed by approximately 1.6%.  

  The effect of reporting intensity periods for individual machine types was tested. 

Feller-bunchers, skidders and gravel trucks were found to have a significant difference 

between reporting intensity periods. Feller-bunchers and skidders were found to have a 

higher ~AMH KPI in the High intensity reporting period by 2.5% and 1.8%, 

respectively, while the gravel trucks had a 1.5% lower ~AMH KPI during the High 

intensity reporting period. A lower ~AMH KPI for gravel trucks is attributed to site and 

job variability and morning mustering point. 

 Throughout this study, gravel trucks were usually on longer-term jobs which had 

site specific challenges. An example of this would be differences in waiting time for 

loading and unloading. This difference in waiting could result in trucks shutting off their 

engines for short periods of time when the waiting is too long. Since the length of these 

jobs would vary over time, it is possible that jobs in High intensity reporting period were 

found to have more waiting time than the Low intensity reporting period. Better 

documentation of these jobs and associated wait times should have been completed in 

order to better track the effects of these wait times. 

 The morning mustering point for trucks may also have an effect on this KPI. For 

some jobs, trucks may be left on a site which required travel time in the morning. On 

other jobs, the trucks were parked at the workshop. When trucks are parked at the 

workshop, operators are more likely to start the machine at its scheduled time due to its 
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ease of accessibility. A lower KPI in the High intensity reporting period may be 

attributed to having the mustering site further away than for the Low intensity reporting 

period. Unfortunately, the morning mustering sites were not tracked through time and 

this hypothesis cannot be tested. As previously explained, a log of additional 

information would be required in order to track this effect. 

 Therefore, when considering individual machine types, H0 was rejected for 

feller-bunchers, skidders and gravel trucks but not rejected for excavators and 

processors. Also, HA has been rejected for feller-bunchers and skidders but not rejected 

for gravel trucks.  

 The Univariate GLM procedure only yielded significant differences between 

reporting intensity periods for feller-bunchers. The High intensity reporting period had a 

2.5% higher ~AMH KPI. When considering the previous test, this suggests that when 

considering the effect of individual machines within a machine type, skidders did not 

have enough of a significant difference overall. This indicates that individual machines 

react differently to the data reporting intensity period treatments when considered 

individually. This leads to the rejection of H0 only for Feller-bunchers.  

The machine-reporting intensity period interaction found a significant difference 

in excavators and gravel trucks. Excavators 1,2 and 3 had a higher ~AMH KPI in the 

High intensity reporting period while excavators 4 and 5 had a higher ~AMH KPI in the 

Low intensity reporting period. As for gravel trucks, the ~AMH is higher in the High 

intensity reporting period for only trucks 3 and 4, and higher in the Low intensity 

reporting period for trucks 1, 2, 5 and 6. The reasoning for this lack of consistency may 

be attributed to the more variable nature of road building. Gravel trucks and excavators 

may be assigned to very different jobs for more extensive periods of time (such as 
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working in a gravel pit for one month, then building road the next) However, when 

considering the machine-reporting intensity period interaction, there are significant 

differences between individual machines within the machine type. This indicates that 

individual machines KPIs within a machine type will be significantly different between 

reporting intensity periods from one another. This may be the result of less scheduling 

rotations for operators on those machines. Excavators and gravel trucks tended to be 

operated by the same operators, and only on day shift. This may affect the machine’s 

KPI’s between reporting intensity periods, since the same operator may react differently 

to the information being forwarded to him via the staff. 

 Excavator 4 was found to have a higher ~AMH KPI in the Low intensity 

reporting period. This may be due to its difference in job types between High and Low 

intensity reporting periods. During the Low intensity reporting period, it was mostly 

restricted to working in a pit instead of building roads. When working in the pit, the 

machine tended to break less and have better availability due to its accessibility. This 

would result in additional running time. When building road, the machine may be less 

accessible and may tend to have more mechanical breaks and complications due to the 

nature of the work. Excavator 5 was also found to have a higher ~AMH KPI in the Low 

intensity reporting period. This may be attributed to its difference in work locations. The 

mustering point in the Low intensity reporting period tended to be closer than that found 

in High intensity reporting period. For a considerable part of the Low intensity reporting 

period, this machine was working in a less accessible region which had longer travel 

times for operators. This may in turn result in less machine availability due to delays 

associated with travel and departures.  
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4.2.1.1 ~AMH summary 

With some minor exceptions, the ~AMH KPI was higher in the High intensity reporting 

period than the Low intensity reporting period. This can indicate that the use of these 

reports can improve this KPI. These improvements may be resulting from additional 

worker motivation, work modifications, technical modifications, additional maintenance 

and other items. This has led to the rejection of H0 and the failure to reject HA for a 

majority of the tests.  

4.2.2 ~PMH  

In nonparametric tests, significant differences between both reporting intensity periods 

were observed for the ~PMH 1 database. This indicates there is a significant difference 

in the ~PMH KPI. Therefore, a higher intensity of reporting may have a positive 

influence on the ~PMH KPI. To that end, H0 can be rejected.  

 In the ANOVA test for the normal data, there was no significant difference (p = 

0.246) in the ~PMH KPI between reporting intensity periods. This may indicate that 

overall, the use of OBC reports did not have an effect on the ~PMH KPI value. 

Therefore, H0 could not be rejected. However, it is interesting to note the distribution of 

data in Figure 12. The data distribution in the High intensity reporting period seems to 

be less normal than that of the Low intensity reporting period; there is more of a skew to 

the right. This could be attributed to the use of data from OBCs. More shifts would be 

bunched near the end of the scheduled time since additional monitoring would be taking 

place.  
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 When further categorizing the data into individual machine types, the ~PMH KPI 

was found to be significantly different between reporting intensity periods for feller-

bunchers. A difference of 2.8% was observed from the High intensity reporting period to 

the Low intensity reporting period. This indicates a more pronounced difference for the 

feller-buncher machine type as compared to other machine types. Therefore, H0 was 

rejected for the feller-buncher machine type. 

 This significant difference may be associated to additional attention given to the 

improvement of feller-buncher KPIs. During installations, there was particular attention 

and willingness to quickly implement OBCs in feller-bunchers. This was most likely 

done since it was believed that these OBCs had particular potential for operational 

improvement. The source of this additional interest may be from its high capital cost, 

high maintenance cost, lack of staff supervision due to solitary work and its ability to set 

the pace for subsequent operations. Because of this, the improvement of feller-buncher 

KPI’s was thought to have the greatest return as opposed to the improvement of other 

machine types.  

 With a GLM univariate procedure, a significant difference between reporting 

intensity periods was found for feller-bunchers. When considering the machine-

reporting intensity period interaction, only a significant difference was found for 

excavators. Excavators 1, 2 and 3 had a similar or higher ~PMH KPI in the High 

intensity reporting period while excavators 4 and 5 had a higher ~PMH KPI in the Low 

intensity reporting period. The difference in the ~PMH KPI for excavators 4 and 5 was 

much more pronounced than that of excavators 1, 2 and 3. As previously mentioned in 

the ~AMH KPI discussion, this may be the result of differences in job types and 

morning mustering points for these machines. These results have led to the rejection of 
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H0 and HA for the excavator machine type. H0 fails to be rejected for feller-bunchers, 

skidders, processors and gravel trucks.  

4.2.2.1 ~PMH summary 

Overall, there was very little or no significant difference for the ~PMH KPI between 

reporting intensity periods except for feller-bunchers and some excavators. This can 

indicate that using data from OBCs can improve the ~PMH KPI for Feller-bunchers and 

have a sporadic effect on some excavators. This KPI, however, was not found to be 

significantly different for other machine types. To this end, H0 count not be rejected for 

skidders, processors and gravel trucks. H0 is rejected for feller-bunchers and excavators.  

4.2.3 Efficiency 

A non-parametric test for efficiency yielded an insignificant difference between 

reporting intensity periods (p = 0.115). This indicates that an overall change in 

efficiency was not observed when considering all shifts for all machines. Therefore, H0 

could not be rejected.  

An ANOVA test for the ~AMH 1 normal database yielded a significant 

difference for the Efficiency KPI (p = 0.009) between reporting intensity periods. The 

efficiency KPI was found to be 0.8% higher in the Low intensity reporting period. This 

leads to the rejection of H0, since the Efficiency KPI is higher in the Low intensity 

reporting period. Since the efficiency KPI is the product of a division between the 

~PMH KPI and ~AMH KPI, a change in either would affect the outcome of the 

Efficiency KPI. In this case, efficiency is found to be significantly higher in the Low 
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intensity reporting period most likely due to the significant increase in the ~AMH KPI 

and the insignificant increase of the ~PMH KPI.  

 In the ANOVA tests for individual machine types, there was a significant 

difference between Efficiency KPIs for processors, excavators and gravel trucks.  This 

led to the rejection of H0 for these three machine types, but the failure to reject H0 for 

feller-bunchers and skidders. These differences were a higher efficiency in the Low 

intensity reporting period for processors and excavators, and a higher efficiency in the 

High intensity reporting period for gravel trucks. A lower efficiency for excavators and 

processors in the High intensity reporting period may be related to seasonal effects. The 

High intensity reporting period has a larger component of winter months. Machines may 

be idling for longer periods of time during these months to keep warm. Also, additional 

maintenance in these months may require longer and more frequent stops.  

 For the GLM univariate procedure, significant differences between reporting 

intensity periods were found for excavators and gravel trucks. Therefore, the null 

hypothesis of no significant difference has been rejected for these two machine types. 

Efficiencies were higher in the High intensity reporting period for gravel trucks and 

higher in the Low intensity reporting period for excavators. The machine-reporting 

intensity period interactions were found to be significant for the feller-bunchers and 

skidders.  Efficiencies were significantly higher in the High intensity reporting period 

for feller-bunchers 1, 2 and 5 and for skidder 1. Efficiencies were significantly lower in 

High intensity reporting period for skidder 2. Therefore, H0 has been rejected for these 

two machine types when considering the machine-reporting intensity period interaction. 

The rejection of HA varies between machines and reporting intensity periods. This 
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indicates that individual machine Efficiency KPI values within a machine type will react 

differently between reporting intensity periods. 

4.2.3.1 Efficiency summary 

The efficiency KPI is a percentage of the ~PMH KPI divided by the ~AMH KPI. This 

KPI indicates how long the machine was moving per how long the machine was 

powered. This KPI helps provide an approximate measure of “machine efficiency” and 

verification. In terms of “machine efficiency”, a shift may still be perceived as 

“efficient” if it was logging ~PMH for a large amount of time that it was powered. This 

leads to the collection of valuable information which can be used on its own or as 

verification for other KPIs. If you consider the ~AMH KPI individually, the machine 

may be powered up for the entire shift, but not have any movement. If you consider the 

~PMH KPI individually, there may be only 6 h ~PMH but the machine was powered for 

6.5 h. This KPI can provide validity to other KPIs while producing valuable information 

on its own. 

4.2.4 Count 

As previously discussed in the “re-evaluate” section, Count KPI values were tested for 

correlations between visual activation, OBC and tree (or log) count. This correlation was 

found to be relatively strong for both feller-bunchers and processors. This correlation 

helps indicate that the Count KPI could be used as an approximate measure of 

productivity in terms of tree or log count.  
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This KPI is only a log of electronic impulses. If it is meant to be a proxy of 

productivity, it will most likely be affected by the same factors that can impact 

productivity. 

For feller-bunchers, items which can affect productivity are slope, tree size, 

ground firmness, operators and weather, just to name a few (Gingras 1988). For 

processors, items such as sorting, tree size, tree form, branchiness and tree piling method 

amongst other items may affect productivity.  

Because of these effects, it is the most difficult KPI to track and compare through 

time. The comparison of Count KPI results would partly hinge on site and stand 

information from every shift. Shifts which have similar conditions could be compared.  

In this study, Count KPI data were collected for feller-bunchers and processors. 

ANOVA tests were run to test the presence of significant differences between the two 

reporting intensity periods. Significant differences between reporting intensity periods 

were found for feller-bunchers, but not for processors.  

Significant differences in reporting intensity periods for feller-bunchers, or lack 

thereof for processors, may be the result of differing site and stand conditions. 

Additional logging information for each shift would be necessary in order to compare 

Count KPI values over longer periods of time. 

Currently, this KPI may prove to have its best use over short periods of time by 

on-site supervisors. If information is promptly reviewed by on-site personnel, who have 

some site specific exposure and knowledge of what may have affected KPI values, this 

information may be interpreted and compared more effectively.  

Even though there are factors which can affect productivity, “soft” Count KPI 

targets could be established and monitored for each shift. This would provide additional 
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motivation to employees to be more productive. This, however, would have to be closely 

monitored to ensure that signals are not being activated for the specific purpose of 

improving the Count KPI. 

4.3  RETURN ON INVESTMENT (ROI) 

ROI is always considered when making an investment. In order to invest in OBCs, there 

must be confidence in its return. In this case study, a very simple ROI was estimated in 

order to determine ROI for the use of OBCs and its associated data.  

 A Rate Determination Model (RDM) was used as a vehicle to compare KPI 

results from the two different reporting intensity periods. Basic inputs were entered into 

the RDM; these inputs included items such as purchase price, fuel cost, fuel 

consumption and estimated productivity. Data from both reporting intensity periods 

were compared using the same RDM and inputs, with only one modification. Utilisation 

rates between the models were modified. In this case study, the ~PMH KPI was serving 

as a proxy to estimate utilisation. The difference in utilisation resulted in different cost 

outputs. The costs ($/m3) of both RDMs were compared. 

 The use of this RDM was only to provide an estimate of gains. It does not 

represent the actual costs or inputs of the operation. Productivity values are estimated 

based on information built-in to the model.  

 RDMs were only generated for machine types which were found to have 

significantly different ~PMH KPI values between reporting intensity periods during 

“normal” shifts. Normal shifts were used since they would provide the best estimate of a 

normal, minimally interrupted work shift. This would provide a more accurate estimate 
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of productive shifts. Feller-bunchers were the only machine type found to have 

significant differences between reporting intensity periods. 

 For feller-bunchers, outputs from RDMs estimated costs of 3.62$/m3 for High 

intensity reporting period and 3.70$/m3 for the Low intensity reporting period (Table 

33). This indicates a cost difference of 0.08$/m3. If one were to consider an annual 

harvest of 1 million m3, this would yield a cost difference of 80,000$/year.  

Evidently, there are major limitations to this output. For one, all inputs in the 

model are only estimates. Inputs, such as costs, will vary between machines and through 

time. Productivity will vary between different site and stand conditions, and per 

operator. The price of fuel will most likely fluctuate throughout the year.  

The use of ~PMH KPI values as utilisation inputs in the RDMs is only a proxy. 

~PMH may not adequately represent utilisation, and may in fact be an over estimation. 

One may still argue, however, that a change in the ~PMH KPI would most likely have a 

high correlation with the actual utilisation of the machine.  

 When estimating ROI, one must consider the costs. In this case study, costs were 

divided into Initial Costs and Annual Costs. These costs assume the purchase and use of 

OBCs for 10 feller-bunchers.  

When comparing estimated cost reductions of 80,000$/year for feller-bunchers 

with the use of OBCs, returns for 10 machines would prove to be a considerable return 

(105%) with a payback period of 1.46 years. This does not consider inflation rates or Net 

Present Value.  
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4.3.1 Other Possible Returns 

ROI was only estimated based on the change of the ~PMH KPI for “normal” shifts 

between two reporting intensity periods. Other sources of return which were not 

monitored or calculated are possible. An example of this would be utilising the 

information collected to accordingly test or modify machine rates.  

KPIs can also be used in tandem with financial values to further estimate 

operational costs.” Such information can support strategic and operational decision 

making processes within a company, especially accurate costing for new investments” 

(Holzleitner et al. 2012). KPI values can be used to review or monitor costs efficiently. 

Forecast model could also be developed with past information in order to help determine 

future costs more accurately.  

KPIs could also be used for additional tests. The effects of changes in operations 

can be monitored and evaluated. As an example, a change from 10 to 12 h shifts can be 

attempted. The value of KPIs can be collected and compared between the two different 

shift types. This can help determine the justification for changing shift lengths and any 

gains in certain KPIs.  

OBCs are capable of monitoring operator hours. The OBCs can be used as a 

“punch clock” to help track operator hours. If this function was used, it may reduce 

operational expenses for tracking operator work time. It may also increase the accuracy 

of these work times.  

OBCs are also capable of tracking and categorizing stops. If this function was 

used, one could determine why machines stop and help reduce these stops. An example 

of this would be discovering that not enough regular maintenance happens on a daily 
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basis which leads to longer shut downs. Improving the amount or frequency of regular 

maintenance may help this.  

 It is possible that there are KPI gains from simply installing the OBCs in the 

machine. These gains were not evaluated since KPIs could not be collected before the 

OBCs were installed. The estimation and evaluation of these gains is very difficult since 

it would mean OBCs would have to be installed as a blind test.   
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5.0 CONCLUSION 

The objective of the study was to determine whether there were significant differences in 

KPIs between two different reporting intensity periods. The Null Hypothesis (H0) stated 

that KPIs were to have no significant differences between reporting intensity periods. 

The Alternative Hypothesis (HA) stated that the High intensity reporting period was to 

have higher KPI values (on average) than Low intensity reporting period. Overall, 

significant differences between reporting intensity periods were found for the ~AMH 

and ~PMH KPIs. KPIs were usually found to be higher in the High intensity reporting 

period than the Low intensity reporting period. This indicates that data usage from 

OBCs may increase KPIs. 

Count KPIs were thought to have too much variability due to site and stand 

conditions. The OBC count, however, was found to be highly correlated to the tree (or 

log) count. This indicates that an approximate measure of productivity between the two 

can be established. This measure still requires additional field testing to determine the 

various work factors which may affect this correlation. 

ANOVA tests were generated to test whether significant differences were found 

between reporting intensity periods for “normal” shifts. These are shifts which have 

between 5 and 11 h of KPI activity. The ~AMH KPI was found to be significantly 

higher in the High intensity reporting period. This indicates that using data from OBC 

systems would improve the ~AMH KPI, a proxy for machine availability. The ~PMH 
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KPI was found to have no significant difference between reporting intensity periods. 

This would indicate that the use of data from OBC systems would have no significant 

effect on the ~PMH KPI. The Efficiency KPI was found to be significantly higher in the 

Low intensity reporting period. Since efficiency is a function of both the ~AMH and 

~PMH KPI, the higher value in the Low intensity reporting period would be the result of 

having a significantly higher ~AMH KPI and an insignificant change in the ~PMH KPI.  

 Reporting intensity periods were found to have less of an effect on KPIs than 

anticipated. This may be because there was not enough of an effort to improve KPIs as 

opposed to simply reporting them. The development and implementation of strategies to 

improve KPIs may have led to a more pronounced difference between reporting 

intensity periods. Additional data sharing and more widespread reporting may have also 

led to an overall improvement of KPIs.  

 Additional data collection of work factors, such as site and stand conditions, 

would have been valuable. This would have helped categorize data in order to compare 

shifts with similar characteristics between reporting intensity periods. Also, additional 

data regarding operator tracking would have been valuable to determine whether there 

were any additional effects from different operators.  

 KPIs may also be affected by seasonal effects. Additional data collection over 

multiple seasons would prove to be valuable in order to determine these effects (if any).  

 Return On Investment was done by comparing RDM results. Utilisation inputs 

were modified according to the values for the ~PMH KPI in normal shifts. Only feller-

bunchers were found to have a significant difference in ~PMH KPI values between 

reporting intensity periods. Because of this, only the ROI for feller-bunchers was 

calculated. According to the estimated cost savings ($/m3) of operating the machine at 
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the average ~PMH KPI for the High intensity reporting period, it would prove to be 

valuable for a medium to large sized contracting firm to implement this OBC system in 

feller-bunchers. ROI was found to be 105% after three years with a 1.46 year payback 

period. 

 Since there was no significant difference in ~PMH KPI values in normal shifts 

for other machine types, additional research is required to determine the ROI. This can 

be in the form of additional data collection or further data categorization. 

5.1 LIMITATIONS OF THE STUDY 

This study was designed to be a broad level evaluation of the installation and use of 

OBCs and associated data. Since this was a broad level study, individual work details 

and issues for each machine were not catalogued. The cataloguing and review of this 

information would have proven to be extremely valuable. This, however, was 

unattainable due to time, budget and personnel restrictions. To this end, it is possible that 

KPI improvements were not the result of KPI reporting. Other activities or sources of 

error may have positively influenced KPIs. Some possible error sources are discussed in 

the discussion such as morning muster point, site and stand conditions and operator 

cycling.  

 Some of the machinery may have been in a state of repair for extended periods 

of time. There is some equipment which was unavailable for multiple weeks due to 

mechanical failure and wait times for repairs. The collection of data during this time was 

not considered.  
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There are cases where OBCs were damaged or disconnected. During this time, 

data were not being collected. A lack of power to the OBC would have led it to cease 

operations. OBCs were being re-connected and fixed throughout the study. These 

damaged or disconnected OBCs normally happened on specific machines and were not 

found to occur in the greater majority of machines.  

Reports being generated in June up to the third week of July were intended for 

report design and interpretation purposes only. Information on these reports may have 

been used to make operational modifications. This may have affected KPIs in the Low 

intensity reporting period.  

The High intensity reporting period contained more winter months than the Low 

intensity reporting period. The Low intensity reporting period contained more Fall and 

Summer data than the High intensity reporting period. This may have caused some 

seasonal effects on KPIs. The staggering of these months through both reporting 

intensity periods would have helped reduce this, however unknown seasonal variances 

may be present.  

KPI results would have been interpreted and used differently by staff members. 

Since staff members were normally restricted to working with specific machines, this 

may have had an effect on KPI values through time.  

Count data were not connected in time for certain machines. This was due to the 

inability to connect these signals or the lack of availability of the machine or the 

mechanic. 

Operators were cycling through different shifts and machines. There were some 

machines, however, that were found to have the same operators quite frequently. These 

instances were mostly confined to excavators. Machines usually being used by the same 
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operator may lead to additional errors in data interpretations. Tracking operators would 

have proven valuable since data could have been categorised to test whether there were 

significant differences in KPIs between operators and through time. 

Site and stand conditions were not monitored throughout the study. For most 

equipment, its operations may be affected by changes in these conditions. Additional 

monitoring and categorization of KPI data according to work/site conditions would have 

proven to be valuable.  

Data were only collected for a period of eight months. These months were mid to 

end of summer, Fall and early Winter. Additional data collection through time would 

have been preferred to identify possible seasonal variation. This would have been further 

effective if there were repetitions of seasons. 

5.2 FUTURE RESEARCH 

In future research, there are a few specific items which should be considered: 

1) KPI baselines and targets should be developed to compare weekly results  

2) Additional KPIs could be developed (i.e. ignition time to determine idling) 

3) Stop codes with broad categories can identify and track stops/delays. This 

information can be used to help develop strategies which reduce the delays.  

4) Activity codes could be used to help identify site and stand conditions to 

further categorize data. 

5) Operator codes could be used in order to track operators and help rate their 

performance. 
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6) OBCs could also be upgraded to collect GPS data. This data could 

subsequently be used for additional monitoring and site reporting. 

Additional correlation studies could be done for the count KPI. Comparing the 

log count to the product count with different factors would help determine the accuracy 

of this KPI. Factors which could be tested would be machines, operators, and site and 

stand conditions (tree size, slope, and season). If the count KPI accuracy can be 

determined, it can be used as a more accurate measure of performance. Furthermore, it 

can be used to help determine more accurate rates when coupled with additional site 

information such as piece size.  

The implementation guide should be reviewed prior to the installation of an OBC 

system. It will provide examples of challenges encountered during system 

implementation as well as suggest steps for a smoother project execution. The greatest 

efforts should be made in employee inclusion, IT integration, data flow and KPI 

development.  

A double blind experimental design could be done in order to determine whether 

the visual exposure of OBC equipment would affect KPI results. OBCs could be 

installed out of site while collecting data. Once enough data are collected, OBCs can be 

installed so it is visible to staff and operators. KPIs from pre- and post-visual placement 

of the OBC could be compared and tested for significant differences.  

Reports should be developed before OBCs are installed. This can be difficult 

since every operation and staff will have different criteria by which performance is 

measured. This, however, can lead to greater efficiency.  

There should be equal involvement from managers, staff, operators and 

mechanics. This would provide the best input for preparing and implementing an OBC 
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system. Goals should be developed as a group and agreements should be determined to 

ensure data are not misused.  

An effective data sharing method should be established by this group. This 

would develop the most effective and acceptable way to distribute data between groups. 

This will provide a sense of inclusion and teamwork in the project which would 

ultimately lead to more success.  

Data reporting and release should be established in 2 month alternating periods. 

This would provide even exposure to both data reporting intensity period and OBC use 

periods. Absolute full retention of information during the “non data use” period should 

be in effect.  

The weekly posting and review of KPIs should take place for staff. Reasoning 

for KPI values in relation to targets should be discussed. The improvement of these KPIs 

should be established. This would help determine the value of this system more 

effectively.  Better operator tracking would be required in order to help determine any 

operator effect on KPIs. KPIs should be field tested before the study begins. This would 

ensure their successful installation and operation. 

 

 

   



116 
 

6.0 LITERATURE CITED 

Ackerman, P.A., H. Ham and C. Lu (eds.). 2010. Developments in Precision Forestry 
Since 2006; Proceedings of the International Precision Forestry Symposium; 
Stellenbosch, South Africa, March 1-3; 2010. Stellenbosch University. 85pp. 

 
Ackerman, P.A., D.W. Längin and M.C. Antonides (eds.). 2006. Precision Forestry in 

Plantations, Semi-natural and Natural Forests; Proceedings of the 3rd International 
Precision Forestry Symposium; Stellenbosch, South Africa, March 5-10; 2006. 
Stellenbosch University. 504 pp. 

 
Anonymous. 2001. Proceedings of the First International Precision Forestry Cooperative 

Symposium; Seattle, Washington, June 17-20; 2001. University of Washington. 
Institute of Forest Resources. 201 pp. 

 
Anonymous. 2003. Proceedings of the Second International Precision Forestry 

Symposium; Seattle, Washington, June 15-17; 2003. University of Washington. 
Institute of Forest Resources. 165 pp. 

 
Beaudoin, D., L. LeBel and J-M Frayet. 2007. Tactical supply chain planning in the 

forest products industry through optimization and scenario-based analysis. Can. J. 
Forest Res. 37(1):128-140. 

 
Brown, M., M.A. Strandgard, D. Walsh, and R. Mitchell. 2012. Improving forest 

operations management through applied research. Croat. J. For. Eng. 32(2):471-480. 
 
Carter, E.A., P.M. McDonald and J.L. Torbert. 1999. Application of GPS technology to 

monitor traffic intensity and soil impacts in a forest harvest operation pp. 609-613 in 
Haywood, J.D. (ed.) 10th Biennial Southern Silvicultural Research Conference: 
Proceedings of the meeting. Shreveport, LA, USA, February 16-18, 1999. 632 pp. 

Chauhan, S.S., J-M. Frayet and L. LeBel. 2009. Multi-commodity supply network 
planning in the forest supply chain. Eur. J. Oper. Res. 196(2):688-696. 

Cordero, R., O. Mardones and M. Marticorena. 2006. Evaluation of forestry machinery 
performance in harvesting operations using GPS technologies pp. 163-173 in 
Ackerman, P.A., D. W. Längin and M.C. Antonides (eds.) Precision Forestry in 
plantations, semi-natural and natural forests: Proceedings of the International 
Precision Forestry Symposium. Stellenbosch University, South Africa, March 2006. 
503 pp. 



117 
 

 
D’Amours, S., M. Rönnqvist and A.Weintraub. 2007. Supply chain planning of the 

forest product industry using operations research. CIRRELT publication. CIRRELT-
2007-52. 33 pp. 

D’Amours, S., M. Rönnqvist and A. Weintraub. 2008. Using operational research for 
supply chain planning in the forest products industry. INFOR. 46(4):265-281. 

Davis, C.T. and L.D. Kellogg. 2005. Measuring machine productivity with the 
MultiDAT datalogger: A demonstration on three forest machines. USDA Forest 
Service. Gen. Tech. Rep. PSW-GTR-194. 10 pp. 

Devlin, G.J. and K. McDonnell. 2009. Performance accuracy of real-time GPS asset 
tracking systems for timber haulage trucks travelling on both internal forest road and 
public road networks. IJFE. 20(1):45-49. 

 
Emeyriat, R. and M. Bigot. 2006. Management of wood haulage through GIS/GPS tools 

in maritime pine forests (France) pp. 331-340 in Ackerman, P.A., Längin, D.W. and 
M.C. Antonides (eds.) Precision Forestry in plantations, semi-natural and natural 
forests: Proceedings of the International Precision Forestry Symposium. Stellenbosch 
University, South Africa, March 2006. 503 pp. 

 
FPInnovations. 2010. On-line help and user’s guide.  
 
Frayet, J-M., K. Boston, S. D’Amours and L. LeBel. 2004. The E-nable Supply Chain – 

Opportunities and challenges for forest business. For@c/CENTOR. Université de 
Laval, Québec, Canada. Working Paper DT-2004-JMF-1. 36 pp. 

 
Gingras, J-F. 1988. The effect of site and stand factors on feller-buncher performance. 

Feric Technical Report. TR-84. 17 pp. 
 
Grover, V., S. R. Jeong, W. J. Kettinger, and J.T.C. Teng. 1995. The implementation of 

business process reengineering. J. Manage. Inform. Syst. 12(1):109-144. 
 
Holzleitner, F., K. Stampfer, M.R. Ghaffariyan, and R.Visser. 2010. Economic benefits 

of long term forestry machine data capture: Austrian federal forest case study 8 pp. in 
Anonymous. Proceeding of FORMEC 2010, Forest Engineering: Meeting the Needs 
of the Society and the Environment. Padova, Italy, July 11-14, 2010. 
http://www.tesaf.unipd.it/formec2010/Proceedings/Ab/ab026.pdf . Accessed 
November 21, 2011. 

 
Holzleitner, F., K. Stampfer, and R. Visser. 2012. Utilisation rates and cost factors in 

timber harvesting based on long-term machine data. Croat. J. For. Eng. 32(2): 501-
508 

 
Hubbard, T.N. 2000. The demand for monitoring technologies: The case of trucking. Q. 

J. Econ. 115(2):533-560. 



118 
 

Husband, S.C. 2010. GPS guidance of mechanized site preparation in forestry 
plantations: a precision forestry approach. 16 pp. Accessed 
http://core.icpaonline.org/finalpdf/abstract_392.pdf. Accessed November 18, 2011.  

IUFRO. 2005. Information technology and the forest sector. IUFRO World Series (18). 
235 pp. 

Johansson, S. 1997. Operativ styring av virkesflödet år 2000+, SkogForsk Resultat 12, 
Uppsala, 4 pp. 

Karlsson, J., M. Rönnqvist and J. Bergström. 2004. An optimization model for annual 
harvest planning. Can. J. Forest Res. 8:1747-1754. 

McDonald, T.P., E.A. Carter and S.E. Taylor. 2002. Using the global positioning system 
to map disturbance patterns of forest harvesting machinery. Can. J. Forest Res. 
32:310-319.  

McDonald, T.P. and J.P. Fulton. 2005. Automated time study of skidders using global 
positioning system data. Comput. Electron. Agr. 48(1):19-37. 

Mellgren, P.G. 1980. Terrain classification for Canadian forestry. Forest Engineering 
Research Inst. of Canada and the Canadian Pulp and Paper Association. Montréal, 
QC. 13 pp. 

Rickards, J., R. Skaar, S. Haberle, K. Apel, R. Bjorheden and M.J. Thompson. 1995. 
Forest work study nomenclature. Swedish University of Agricultural Science. 
Garpenberg, Sweden. 16pp. 

Roscher, M., D. Fjeld and T. Parklund. 2004. Spatial patterns of round wood transport 
associated with mobile data systems in Sweden. IJFE 15(1):7-13. 

Sikanen, L., A. Asikainen and M. Lehikoinen. 2005. Transport control of forest fuels by 
fleet manager, mobile terminals and GPS. Biomass Bioenerg. 28:183-191. 

Sheskin, D. J. 1997. Handbook of Parametric and Nonparametric Statistical Procedures. 
CRC Press, Boca Raton, Florida. 719 pp. 

Silversides, C.R. and U. Sundberg. 1989. Operational Efficiency in Forestry -- Vol. 2: 
Practice. Kluwer Academic Publishers. Dordrecht, The Netherlands. 169 pp. 

Stadtler, H. 2005. Supply chain management and advanced planning –basics, overview 
and challenges. Eur. J. Oper. Res. 163(3):575-588. 

Strandgard, M. 2011. Application of MultiDAT onboard computers for management of 
native forest harvest operations. CRC for forestry. Bulletin 20. 3 pp. 

Sundberg, U. and C.R. Silversides. 1988. Operational Efficiency in Forestry -- Vol. 1: 
Analysis. Kluwer Academic Publishers. Dordrecht, The Netherlands. 219 pp. 



119 
 

Svanberg, P. 2000. Nyttan av fordonsdatorer för kommunikation och navigering vid 
rundvirkestransporter (advantage of mobile PCs for roundwood transport). MSc 
thesis, Swedish University of Agricultural Sciences. Inst. F. Skogsskötsel, Umeå 
Studentuppsatser nr 33. 41 pp. 

Taylor, S.E., T.P. McDonald, M.W. Veal and T.E. Grift. 2001. Using GPS to evaluate 
productivity and performance of forest machine systems pp. 11-22 in Anonymous. 
Proceedings of the First International Precision Forestry Symposium. Seattle, WA, 
USA. June 17-19; 2001. 201 pp. 

Thompson, J.D. 2001. Calculating utilisation rates for rubber tired grapple skidders in 
the southern united states. Council On Forest Engineering (COFE). pp 29-31. 
http://frec.vt.edu/cofe/documents/2001/COFE_2001_Thompson.pdf. Accessed 
February 23, 2012.  

Thompson J.D. and J.Klepac. 2010. Evaluating a web based machine productivity and 
fuel consumption monitoring system 5 pp. in Anonymous. Proceedings of the 33rd 
annual meeting of the council on forest engineering: fuelling the future. Auburn, 
Alabama, USA, June 6-9, 2010. [cd] 

Thor, M., I. Eriksson and S. Mattson. 1997. Real-time monitoring of thinning 
performance using automatic data collection and GPS. No. 2. Skogforsk, Upssala, 
Sweden. 4 pp. 

Urwick, L. 1947. The Elements of Administration. Sir Isaac Pitman and Son Ltd., 
London. 132 pp. 

Veal, M.W., S.E. Taylor, T.P. McDonald, D.K. Tackett and M.R. Dunn. 2001. Accuracy 
of tracking forest machines with GPS. Transactions of the ASAE 44(6):1903-1911. 

 




