LAKEHEAD UNIVERSITY

Building a Semantic Blog Support System for Gene

Learning Objects on Web 2.0 Environment

Wei Yuan

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
THUNDER BAY, ONTARIO, CANADA

SEPTEMBER 2008

© Wei Yuan 2008



Bibliothéque et
Archives Canada

l*l Library and
Archives Canada

Direction du

Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-43440-6
Qur file  Notre référence
ISBN: 978-0-494-43440-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

Blogging has become a popular practice on Internet in recent years, and it has been used
as information publishing and participate platforms. In recent years, a style of blog called
‘semantic blogs’ have been introduced into the field. Semantic blogs are blogs enriched
with machine-understandable metadata (Mo6ller, Breslin, & Decker, 2005). They are an
extension of regular blogs.

Recently, a new web technology theory was proposed called Web 2.0. Unlike traditional
web technology which only allows web users to accept information passively, Web 2.0
provides web users the option to actively modify web information.

Learning Objects are digital entities deliverable over the Internet. Any number of people
can access and use them simultaneously. Moreover, users can collaborate on leaming
objects and benefit immediately from adding their information or appending others’ work
to Learning Objects and share with other users over the Internet.

This thesis is dedicated to the development of a semantic blog prototype for Gene
Ontology annotation and navigation as a Web 2.0 support system. We are developing this
semantic blog specifically because we did not find an effective system already in place
that can provide support for biomedical researchers.

The existing Gene Ontology systems can be classified into various categories: offline
applications, client-server applications, web search engines, portals, and FTP servers.
Researchers face a number of bottlenecks within the current system; all of them are based
on traditional web technology with no collaboration among individual gene ontology
researchers, and annotation can only be published by certain organizations.

This thesis seeks the possibility to use Learning Object with Gene Ontology along with
the semantic of how researchers collaborate as represented by FOAF. We have therefore
introduced a new Gene ontology Annotation and navigation System. Colloquially
referred to as GAS, it is based on Web 2.0 technologies with extended semantic
capabilities that include Gene Ontology semantics, SCORM semantics, FOAF semantics,
RSS syndication, aggregation semantics, as well as a useful and important gene ontology
and annotation navigation system — Gene Ontology Navigation (GON). Our evaluation of
the GAS prototype has proven to be extremely effective.

il



Acknowledgements

First of all, I would like to express my deep and sincere gratitude to my supervisor,
Professor Jinan Fiaidhi, Ph.D., Department of Computer Science, Lakehead University.
Her understanding, patience, encouragement and personal guidance have provided a good
basis for this thesis. The financial support from her NSERC grant and the GA support of
Lakehead University are also greatly appreciated.

I am deeply indebted to my co-supervisor, Professor Sabah Mohammed, Ph.D.,
Department of Computer Science, Lakehead University, for his detailed and constructive
suggestions, as well as for his continued support throughout this thesis.

My sincere thanks are also due to Professor Ruizhong Wei, Ph.D., for his support as the
Computer Science graduate coordinator.

Finally, I owe my loving thanks to my parents. Without their encouragement and faith in
my abilities, it would have been impossible for me to finish my thesis.

i1



Table of Contents

ADSITACE ..c..evteeiieeicriiie e seeetie et s e s e sbe e st e e b e suae st e s st e e s s e e be e bt e st e st e s baeeseeenaenssaesensnens ii

AckNOWIEAZEMENLS ....cvuiieiiirieiitce ettt ettt ee e e e s e e et i

Table Of COMLENLS .....oeueeriieeeeieriieeteet ettt ettt e e et e st et e ssbeessbasssanessnsenas v

LiSt Of TabIES.c..ecuiiieirieteeieeeeet ettt ettt ettt ettt e s e e st e nane s e neas vii

List of Figures and ITUSLrations .......cccceerveeiioiinieieiniree st sesevr e e e e e e e viii

List of Symbols, Abbreviations and Nomenclature ..............ccoccuvveviiiieeiieieiiieeeeeeeeeee, xi

CHAPTER ONE INTRODUCTION ....cccttiitiriiriteerirerniienieeseesieesereesnrae e vassaensnes 1

1.1 OVEIVIEW ..eiireiiiescrtteeiint e seeie e st e s taessee e s bae e e s sttt e sesstsenssesennssseseeasssnaeesesansens 1

1.2 WED 2.0 SEIVICES ..uvivvierrieanreiiirettesiiesieeteseesseesaessseesssesssessensesssesssseesesensesssssseessen 1

12,1 BIOES cuveiiiiiienieeeiteeertee sttt esite ettt st e e sttt e e e e bt esa e bba e e nr e e ernaaensaareeaaenns 2

L. 2.2 WIKIS cnteeieceeiie ettt st sre et sttt e st s st a e s b e e v aaanases 3

L2 3 TaES  uiiiiirieeeeretereiireeeeeeserrtrteeassbeeeessbreeeesaessnssbaasserssaesessnssrnsaaeseasenssnnsnnsrns 3

1.2.4 Multimedia Sharing ..........cceeieeiivieiieiriereeririineeeesenireeeeerssereeseseeeesssssssssnneses 4

1.2.5 SYNAICAtION ..eeeeveeeeeiereriiiieieiiteeceteeeetesrtete s eeieeeesrneeenneeesabeasasssnsessssnnsasnseeenn 4

1.2.6 Podcasting / VODCASEING ..cccueveermriieiieieiiieinitiee st eenireesitte e e tres e s smsnee s 5

1.3 Web 2.0 Technology Standards..........cceecveeeieeriiiiiiieinieeiesieseeesee e e e snseae e 5

1301 XMLttt ettt ettt e e et a e s st e e s ae e e s e nn e e e s e nnreean 5

1.3.2 KPath. ..ottt ettt e e e s e srnreaenens 6

1.3.3 XPOIET .uuvvvvrieeeiiiiiiiiiiiitieiiteeee e e e e seriteseetr e st eeaeeeeeessssatnrareeasensaasaassanassnsnnanns 6

1.3.4 REST VS. SOAP.....ciirteirieeitreeetteeienireestteeireeeaesssseesaesnsseeseneessssnessanessassnen 6

L3055 ATJAX ettt b e st e ba e et e st e et e e e beeeennaaens 7

L300 RSS ettt ettt s et s b e e s en e e e e 7

1.4 Features of Learning Object for Web 2.0........coocvviiriiiieieiiieceiersieeeeiiee e 8

1.4.1 Collaborative Learning .........cccoevveeerueernueenniiirreeenieerniieseieeeeeensesesesnsssnneees 8

1.4.2 Social Blogs as Learning ODBject .......ccccvveerierrviieniininninierieeireseesveeeeseneenee 8

1.4.3 Folksonomies for Free Tagging......ccoceevvreeeiiiirieerniieriieeeieeesssnreesseniaeesvanees 8

1.4.4 ANNOTALION ...eiiereiiiieiiiriireerriieeettesreererreeeeereseteeaeeeeasesssianttsaseeassesesessesaeessnsnssne 8

1.5 SumMmAry Of THESIS ..coevreeiiiiiiiiiiiieeeree ettt ee e e s s e sraerereeeeenreeeeaaseseseaesssenes 9
CHAPTER TWO GENE ANNOTATION SUPPORT SYSTEM FOR THE WEB

2.0 E-LEARNING .....oortiiiiiiititeeneenreeiteesiteesetesaetesseveassessiaesiaeessaeessseesssssenanens 10

2.1 Traditional Gene Ontology ANNOtation ..........eeeeieeeeiuirerierieciieeesiriireeeeeeenere e 10

2.1.1 Offline APPlICAtION ...ccovrumiiiiiiiiiiciiieiicnie ettt et e e e snas 11

2.1.2 Client-Server APPlICAtION ......ccocoeiieuiiiiiiieiiiiiiirirtceete st ceeiete e sassaeees 11

2.1.3 Web Search ENGINE........cvveeririirriieiiieeieee st veseiaeesireeeeeitessassivnnessasnasnanes 11

20 R ) (¥ | SO OO O U U RO U PP OURP PP 12

2L FTP SOIVET ... ettt e ee et eena s be s aasena s st s e s aneanns 12

2.2 Existing Gene Ontology Annotation SYStemS ......cccevriiiiiiieerriiieereereaersireeeeeenneees 12

221 COBIA ettt ettt st e st s et e et e st e e e bbe e s e s sanns 12

222DYNGO ..ottt ettt st b e e re 13

2.2.3 AMUGO ...ttt e et e et bt e et a e e et e e e e e e e e sane 14

2.2 4 BBOP POItal ...c..cooverieiiiieiiieeieeiieeie ettt ettt et erse e s 15

2.2.5 Summary of Existing Gene Ontology Annotation System Comparison ........ 16

2.3 Towards Gene Ontology Annotation Support System for a learning Blog ............ 17

v



2.3.1 GAS Blog Overal ArchiteCture ..........ccocvevierrvvreereereriessireenssiesssseesisessesnnnnns 19

CHAPTER THREE THE SEMANTIC BLOG SUPPORT SYSTEM

ARCHITECTURE ...ttt ssneeeesaessaeesebeaesereeseseesmbanaaeesas 22
Collaborative Infrastructure for Sharing & Annotating Gene Learning Objects.............. 22
3.1 GAS Support System Design Criteria.......coccvemiervevrrsrieerereessnrnseessnesseisesisseesssenns 22
3.2 GAS Support System Requirements & Design Policies.......cccoecvieviiiieiiveniieicnenn. 23
3.3 Selecting a Programming Framework for GAS Blog......coceevvveeivereiieniieeninieneeeens 24
BT ASP et s st e e e s stae e e s b baaeaeeaaeeas 24

B 3.2 TSP ettt st e s te e s s aa e s rate e s s sane 24
B3B3 PHP ..ottt st s e re g e s s e b e e e e e e e aeens 25
3.3.4 Comparison of Programming Framework .........cccocveeevereviericeerienienninensennnne 25
3.4 Selecting a Weblog Platform for GAS BIog ..c..vcovvuviiiieicieciiieeinee et 25
3.4.1 Blogger & MSN SPACES.....ucirrireeerierieiireiirreeresnreeesineessssseesesisseessersessesesseons 26
3.4.2 MOVADIE TYPE....ccctiecieeiieerireiieeieestresesetesevae s e e eaeseseaesnsesesasesnsseanesnnnns 26
3.4.3 ExpressionEngine / pMachine.........cccovcveeeivreirniiieerriiiienninicennnineenonieeeenseenens 27
34,4 WOTAPTESS .eccnniieiiiiiiiitecttee ettt ettt st ettt e st essaebeeeaesaeean 27
3.4.5 Comparison of Popular Weblog Platforms ..........cccceevemvieneiiinviiencecninenienennane 27
3.5 Selecting Learning Object Metadata Standard...........coeecvveeeviieenniineeninicenerinnnns 28
3.6 Adding Semantics into GAS BlOZ......ccceiiirniiiiiiiriicecieceeetee e 29
3.6.1 Where to Publish Semantics.......c..cccevcviriiirviiiiiiiiciie e 29
3.6.2 Selecting a Format to Publish Semantics.........ccecveeeeiieiririeeeeniieeceenieieneeenen. 29
3.6.2.1 Comparison of Syndication Feeds’ Format..........ccccoevvevrvvveveeennnenne. 30

3.6.3 Adding Gene Ontology Semantics to GAS Blog .......vvevveiiiiviiiiieniiineieennanens 30
3.6.3.1 Gene Ontology Term . ...c..cciiviiirrviiiniieecrecee et erreeesire e e e eeeeens 31

3.6.3.2 Gene Ontology Format ........ccoccveeiieiiiiiieicieeiccccrierreeee e e 31

3.6.4 Adding Gene Annotation Semantics to GAS Blog.....cccooovvviiiieiireviveeeinirinnnn, 32
3.6.5 Adding SCORM Semantics t0 GAS BlOg ......ccoeeveiivriiiiiciiiieieicecieeeeeeenen, 34
3.6.6 Adding FOAF Semantics to0 GAS BlOg ..ot 37
3.6.7 Syndication & Aggregation Semantics 0f GAS Blog......cccoverviiiiiviieiannnnee. 38
3.7 Overall ATCRILECLUTE......cccoviiiecieeieriieeette ettt cibce s e sreeesesirr e s s sbenes 39
3.8 Overall GAS Architecture Class/Module UML .........cccoooviiiiniiiiiiiiiiiiee e 42
3.9 GAS Blog USaZE SCENATIO ..cevuuvriireeriirieieeniteeeeeeeneeraeeesenressieeeessseeeeessmeneessnesaens 42
3.9.1 Displaying Gene Ontology Term ......ccccovveivveirrcieerrieeiieiceenieeseesieeeeeeenns 43
3.9.2 Adding New Gene Ontology Term.......ccccceviiieiiiiernrieeenierinreeeesseseeeseenevnnens 43
3.9.3 Annotating Gene ONtOlOZY ....covvveeerireeriniiieiireee et reeeesieeeseeeees e reeananee 44
3.9.4 Creating USET GIOUD .......cevrereeiriereriiietiiiereiieresesietessteesesseeessessssessssassassen 45
3.9.5 JOINING USET GIOUP ..ccouureereiiiieireriiieieitereinereeretstesseeeesnstecesssesssessesasenens 45
3.9.6 Adding Friends .....cccvvieiiriiiiii ettt ee et e s e e s e 46
3.9.7 Viewing Graphical FOAF NetWorK........cccoeovmmmiiiiiiiiniiiiiiiinii, 46
3.9.8 GAS Blog Syndication & Aggregation.........c.cccevviiiirneriniiiieniiceiceen 47
3.10 GAS Blog Detailed Architecture ..........coceieviereerrireeniieiiireteeeceeeceeeeeee e e 48
3.10.1 Browsing Gene Ontology .......ccceeeevierriiiinieereeriitie et seiveeaenene 48
3.10.2 Adding New Gene Ontology Term........cococeeereeeriiiiiieciiiiiieiecrniiniiieen. 48
3.10.3 Annotating Gene Ontology Term .......cocceeervuirieeiiiiiiennree et 49
3.10.4 Syndication of Newly Added Gene Ontology Term ......cccccccevveeevvicnnnnnnnne. 50



3.10.5 Syndication 0f ANNOtation ........cccceevuevreereerreriierieerrerieneneeeneesereseesseeesenees 51

3.11 GAS Blog Module Implementation............cccceevveererreereeereenreierereeiieassneeessenans 52
3.11.1 GO CrEator ..cueeeeiieeeeeiieieieee et se et se et e et es e are e e s e ssassese s e s 52
3.11.2 Annotation PTOCESSOT .....cciiiiiiiiiiiieiiitet e cireeeeccceeen e eteeeee e e e e e e e s 53
3.11.3 GO & Annotation CONNECLOT......cccvirruiirierriieriirrireeeserererieesssessesessereseenns 55
3.11.4 User Data CollECtOr....ccoouureiiriieiiieeieiieeeerieeeceerrtteeeee s senrrraesesvaensannens 56
3.11.5 Graphical FOAF Generator...........ccccooveiiniiinicniiiniininiicniccncinecse 57
3.11.6 Syndication PrOCESSOT .......cutieeieiieiieereiieteeritreeeeesinnnreeeeessessresseesesernseneens 63
3.11.7 GO Data Output PTOCESSOT .......cuvviiiiiiriiiiiinieiiiiiiiieeee et irreee e eenbeananene 66

CHAPTER FOUR NAVIGATION GENE ONTOLOGY USING GAS ........cccceeenen. 68
4.1 Navigation based on Web 2.0 & Semantic Web .......cc.ccceviviieininiieiiiniiennieeeen. 68
4.2 Gene Ontology NaVIZAtION. . .uueirierrreeerreiiieeeiieiteeeeeeteeeeseeinrereeeeeeasssreessaessasnns 69

4.2.1.1 Common User Interface.........c.cccceevveereiciiieiiecieecie e 69
4.2.1.2 Gene Ontology Navigation Dictionary..........ccccceeeuvuurrerimienuereeeeeseeenenns 71
4.2.1.3 Gene Ontology Navigation Implementation.........c..ccccccceeevnrrrrerennennen. 72
4.2.2 Collaborative NaVIZAtiON .........cceierreiiirireeiereerreiiieeeeseniesinrneeseesesereneesesesenas 75
4.2.2.1 Collaborative Navigation Usage Scenario ...........ccoceeeeeveeerecnreereeeeeerenes 76
4.2.3 GeneriC NAVIGALION ..ccc.eeerviiiiiiieriiiee et setteeeetteeeeeeetes s rreaesesaeeassnaeesasnsees 78
4.2.3.1 Generic Navigation Usage SCENATIO........cccvveererrerersrrnrenserareesiveeeneeens 79

4.3 Gene Ontology Navigation Performance Evaluation .........cc..cccoveeeeniinnniinnneeenn. 80
4.3.1 Number 0f COMPATISOM.....cierivuireeeiererriieiirirreeeseriereeeeeriireneeeesssssssaseessesaens 80
4.3.2 Number of Result Returned.............cooocvveieieeiiiieieiieee et 83
4.3.3 Effect of Annotation on Navigation..........ccececviiiiiieeiiiieeeeieiine e 86

4.4 SUITIYIETY ...veeieiirrieeeeaennetee et ceeeaateeeeseesaarereesnreees s anrteeeeeeamesasbenenesaeasnseeeeeesaneas 88

CHAPTER FIVE CONCLUSIONS & FUTURE RESEARCH .......cccoovvvviieciiirneneennn. 90
5.1 CONCIUSION.c.ueeiitriereeiireersiteesteersiarstreeeesateeeeseeesreesessaeesssssenessssnssnessssaesnssssssanens 90
5.2 FULUre RESEArCh ....cooevvriiiiiiiieeiitite e st s eeiret e sttt ee s e s ssaasre s e e s s s saraesesessesnenas 91

REFERENCES ........ootiiiitteeeiteertte sttt resreee sttt esstaessseeeesateaessreeeasssabaeesssnssessnssnesssssernnas 94

APPENDIX A GAS SYSTEM REQUIREMENT & INSTALLATION.......c.cceeevuuenee 98

A.1l. GAS System ReqUirement...........ccccccouiiiiiiieiniiiiiieeniiecn e cesieessenenene 98

A.2. GAS System Installation INStUCtION.......c.ovvuveeiiiiriiiiieciece et 98
A.2.1. Installation 0f Web SerVeT........ccooiiiiiiiiiieiiiitee e e 98
A.2.2. Installation OF PHP ....ceviiiiiiiiieitte et ee e e e 103
A.2.3. Configuration of PHP and Web Server.........cccoovevieeierieiereeeeieeveeeeeneenenes 105
A.2.4. Test PHP on Web Server IIS ......o.oviiviiiiiiiiiiieirenen e 107
A.2.5. Installation Of MYSQL ... 107
A.2.6. Importing GAS Configuration Data to MySQL ..., 109
A.2.7. Installation 0f GAS ...ttt e 109
A28 RUNGAS ..ottt e s et ree e e e s bbe e e e e e e s raeeeeenaens 109
A.2.9. TroubIESHOOINE ....eevieeiiireeeiiiieeeeeicireeeeee e e e e e e e e e e neseeeeee e s e esnaaeeneaeae 110

APPENDIX B MAIN PROGRAMMING MODULES OF GAS .......coeccireecnieeennnn. 112

vi



List of Tables

Table 2.1 Existing GO Annotation Systems Comparison Table...........ccocevievervennennncns 17
Table 3.1 Programming Framework Comparison Table .........ccccviniininnicniininneinnenns 25
Table 3.2 Weblog Platforms Comparison Table...........ccocoeiiniiniiniiiniinciiniiniiieneeenns 28
Table 4.1 Gene Ontology Search Engine Comparison Table ...........cccccoeevivviiniinnccnnnens 69
Table 4.2 Gene Ontology Navigation Command Table.......c.cccoeeviiiiiiiniiiiniincneennns 71
Table 4.3 Gene Ontology Dataset .........cocceviiiiiiiniiniceiniiciiiiis e s 80

vil



List of Figures and Illustrations

Figure 2.1 Interface 0Of COBIA ........cooviiiiiiiiiiiiiiitctestccrest ettt re s sve e s 13
Figure 2.2 Interface Of DYNGO ...cooiiiiiiiiiiiiee ettt seee e aree s e sasae s e s sees 14
Figure 2.3 Interface of AMiGO ......ccooooiiiiiiiiiiiiiecteeeeieee et eere e ssreee e s ear e e e eeeees 15
Figure 2.4 Interface of BBOP Portal ........ccociiriiiiinieciinieeeenreeenenieces e s e see e 16
Figure 2.5 GAS Blog Overall Architecture ..........cocceeeveevruererrereieniieenieertresieeesiaeneeens 19
Figure 3.1 GAS Blog Overall Architecture ...........c.cccooveiiiiiiiniiiiniiiieeeeece e 40
Figure 3.2 Overall GAS Architecture Class/Module UML. .........coovvvvicvviiiiiiiniiieen s 42
Figure 3.3 Gene Ontology Term Displaying & Browsing Page ........cccocevvvvreeeneeenneeenne. 43
Figure 3.4 Add New Gene Ontology FOIT .....cccccoevuieoiiiniiniiienecieneeceieeeeeeee e 44
Figure 3.5 Annotation FOTTI..........oooiiiiiiiiii e e 45
Figure 3.6 Group Operation GUI - Adding New Group.....c.ccccceeeveeenecievincecrnnneeeneen. 45
Figure 3.7 Group Operation GUI .........ccooiiiiiiiiiiiiiiiiiin e 46
Figure 3.8 Friendship Management GUI.............ccccociiiiiiniiiinniiniiniccciec e 46
Figure 3.9 Graphical FOAF NetWorK........ccccciviiiniiiiiiiiiiiciiecinceceec e 47
Figure 3.10 Syndication Feeds in AgZregator .......coceeueeririeeniieninieieneenenecneveeeeee e 47
Figure 3.11 Sequential Diagram of Parsing GO Terms.........cccccevvuerrerrcreveeereeeervvennn. 48
Figure 3.12 Sequential Diagram of Adding New GO Term.........ccccecviviiiiiiiiiniinnnne. 49
Figure 3.13 Sequential Diagram of Annotation ............ccceeeceviiiiiiiiniiiniinnccceeeceeneeene 50
Figure 3.14 Sequential Diagram of Syndicating Newly Added GO Terms ...........cccucceu. 51
Figure 3.15 Sequential Diagram of Syndicating Annotations ............ccccovveveiiicnnnneennne, 52
Figure 3.16 Sequential Diagram of Graphical FOAF Generator .............ccccoovviiiviinnnnnn, 57
Figure 4.1 Navigation FOTM.....c.c.cooiiiiiiiniiiiiini i, 70
Figure 4.2 Gene Ontology Navigation Architecture .........c.coeceeviiiieniinicinieiniennnecennans 72
Figure 4.3 Spinal Cord Grey Matter Term & Annotation ............coccvviiniiniiniiiinencnne 76

viii



Figure 4.4 Category Redirection Page......cc.cccceviiriiiiieniinniiiiiinircrcecrenec e e 77

Figure 4.5 No. of Comparison (None Condition) .......c.cccevvveeervciveeernnriecnieeeenneeesesvenenees 81
Figure 4.6 No. of Comparison (One Condition) .........ccccceveueereerioveerrrreersinreesncveeesonevenens 82
Figure 4.7 No. of Comparison (Two Conditions) ........cccecoeevreemrvreersrennieeecieenseerereesenenes 83
Figure 4.8 No. of Result Returned (One Condition) ........cccovveveericernienniieenneeeneenseeeennns 84
Figure 4.9 No. of Result Returned (Two Conditions) ........cceevveererverrcersreesscerineessveerennns 85
Figure 4.10 No. of Result Returned (Three Conditions) ........coovevveeeveciiniciiiiinreeeneecne 86
Figure 4.11 No. of Annotation Found (One Condition) .........cceeeeeervereeiiereciiieniecceeeeens 87
Figure 4.12 No. of Annotation Found (Two Condition) .........cccoevcveererieinnievensieecereennnne 88
Figure A.1 Programs and Features on Control Panel.........ccooeeieiiinieiniinnnieineninineenenns 98
Figure A.2 Programs and Features WindoW .......ccccccceeviiiiiieeiiiiirinireeseneeccsneeesveeeeseeeens 99
Figure A.3 Windows Features..........ccccoviiiiiiiiiiiiiiiniiiiii ittt 99
Figure A.4 Internet Information SEIVICES ........cuciiiiiririieiiiiniiiiiireeee e 100
Figure A.5 Administrative Tools in Control panel............cccooociiviiiniiininininiieceeen, 101
Figure A.6 Administrative TOOIS.......covieeiriiiiiiiiiieerceerte et e 101
Figure A.7 Internet Information Services (IIS) Manager ..........cccceveviiiirieniicniceeneennnns 102
Figure A.8 Internet Information Services (IIS) Manager ........cccceeeeeviveeeieveieenneenereenns 103
Figure A.9 Internet Information ServiCes ........c.ccoeviiiimmiiiiiiiiiiiiiniiiiccetecneece e 104
Figure A.10 Handler Mapping Window ........ccccccciiiiiiiiniiiiiiiiccrccccecene e 105
Figure A.11 Edit Script Map.....c.ccoociiiriiireiiieiiceieeteeee et e e beseneee s 106
Figure A.12 Edit Script Map .....ccccccvveinmmiriinniiiiiiiiiiin et csnrrrenreee s 107
Figure A.13 phpinfo Page .....cccoeiiiiiiiiiiiiiiiiiii e 107
Figure A.14 MySQL Download Web Page ........cccccccoviieiiiiciiiciiiiic et 108
Figure A.15 GAS INLErface .....cooeveeriiiiiiiiiiiiciiiiecctcee ettt e 110
Figure A.16 Error Page...ccocumiiiiiiiciiiiiiiiiiec ettt 110

1X



Figure A.17 Windows Task Manager

...........................................................................



List of Symbols, Abbreviations and Nomenclature

Symbol Definition

ASP Active Server Pages

CMS Content Management System
FOAF Friend of a friend

GAS Gene Annotation System

GO Gene Ontology

IIS Internet Information Services
JSP Java Server Pages

LMS Learning Management System
LO Learning Object

LOM Learning Object Metadata
PHP Personal Home Page

REST Representational State Transfer
RPC Remote Procedure Call

RSS Really Simple Syndication
SOAP Simple Object Access Protocol

XML Extensible Markup Language

Xi



Chapter One
Introduction

Learning Objects have been developing for years on traditional internet. Recently, a new
web technology theory was proposed called Web 2.0. Unlike traditional web technology
which only allows web users to accept information passively, Web 2.0 provides web
users the option to actively modify web information. Different from Web 1.0, Web 2.0
provides web users an option of getting information actively. Instead of only reading web
pages, web users can donate their own opinion or knowledge without modifying the
resource itself. In other words, the resource itself is not changed, but other users still can
see the modification made by web users. All the users subscribed to the web resource
would be notified with the latest changes. To paraphrase, the difference between Web 1.0
and Web 2.0 1s that the former is read-only while the latter is writable.

The advantage of Web 2.0 is important for learning objects to make individual learning
and collaborative learning more interactive. Unfortunately, learning objects have not been
transplanted on Web 2.0 so far.

This chapter introduces the concept of Learning Objects, as well as a list of popular Web
2.0 services and their explanations. The chapter also introduces the technology standard
for Web 2.0 and clarifies Web 2.0 features as they pertain to Learning Objects.

1.1 Overview

Learning Objects are generally understood to be digital entities which are deliverable
over the Internet, so that a number of people can access and use them simultaneously (as
opposed to traditional instructional media, such as an overhead or a video tape, which can
only exist in one place at a time). Moreover, those who incorporate Learning Objects can
collaborate on and benefit immediately from new versions. This is a significant
difference between learning objects and other types of instructional media existed
previously (Wiley, 2000).

Learning objects brought new methods of study and research to the world of academics.
With Learning Objects, courses are given to students according to their background,
demands, and interest. The size of learning objects is not fixed. They can be merged into
bigger Learning Objects or divided into several smaller Learning Objects easily to fit
individual student’s learning habit. Unlike traditional courses, which are available at a
specific time, learning objects are accessible at any time when learners feel like they want
to study as long as they can connect to internet.

1.2 Web 2.0 Services

Web 2.0 is a business revolution in the computer industry caused by the move to the
internet as platform, and an attempt to understand the rules for success on that new
platform. The most important of those rules is this: Build applications that harness
network effects to get better when more people use them (O'Reilly, 2006).



2

If Web 1.0 connects people to web servers, Web 2.0 connects people to other people
through the internet and allows people to collaborate with each other by exchanging
knowledge and resources.

1.2.1 Blogs

A blog is a multi-purpose personal web page with low technique threshold. Blogs are
customizable; users can change the blog’s physical appearance by choosing a template
from the service provider, or by creating their own custom template. Additionally, users
can post various other applications to their blogs, such as flash videos, hit counters, and
so on. Service providers usually include common word processing features, such as bold
and italicized text, in their publishing interfaces. Blogs can be used to publish any type of
content, ranging from personal entries to.research progress.

Blog entries can also be commented on, if the blog’s owner has enabled that option. After
the owner finishes adding or editing a post, it becomes public and is displayed in a web
page. This data is normally displayed in chronological order with earlier entries
appearing below or on a separate page from the latest entry. If the option is enabled, other
readers can post comments to any entry on the blog. Comments can be public to both the
owner and other readers, or only viewable by the owner. The owner can also post his own
comments and reply to others’ comments. This interaction between writer and readers
makes blogs popular on internet.

In addition, there are some other features most blog providers offer such as archiving,
RSS feeds, and links. The blog’s archive is a list of all the articles in the blog. By clicking
the title, readers can view the article easily. The list can be sorted alphabetically,
chronologically, or by keyword. RSS feed is a protocol can be used with RSS readers to
notify all blog subscribers about the latest update. It will be discussed in-depth later in
this chapter. Links can be considered to be the blog owner’s bookmarks. Sometimes, blog
hosts add a hyper link to others’ blogs or web pages. A popular blogging feature that
involves linking is called “trackback” (Anderson, 2007) — Trackback (or pingback)
allows a blogger (A) to notify another blogger (B) that they have referenced or
commented on one of blogger B’s posts. When blog B receives notification from blog A
that a trackback has been created, blog B’s system automatically creates a record of the
permalink of the referring post. Trackback only works when it is enabled on both the
referring and the referred blogs. Some bloggers deliberately disable trackback as it can be
a route in for spammers (Anderson, 2007).

As blogs become more popular and technology develops, new styles of blogging appears.
A new feature that is growing more popular among bloggers is called “group blogging”.
Instead of blogs being held by a single person, these blogs are owned by a group of
people. For example, all the students in a class of a university can use the same blog as an
alumni; each member of this group maintains it as blogs being hosted by a single person.
Another new style of blogging is blogging coterie. Different from group blogging, which
is one blog owned by a group of people, blogging coterie is a group of single-owned
blogs that are affiliated by a similar aspect of their blogs. This aspect can range from



3

physical location (we all attended the same high school or university) to common
interests (we all like to listen to the same kind of music) to business or research (we are
all a part of the same research project). Anybody owning a blog can ask the group’s
leaders if they can join the coterie. It can also be regarded as an index of several other
blogs. Similar to the publishing process of single user blogs, each article is listed in
coterie blog groups in chronological order. Coterie blogs will direct readers to the
individual blog where each article is from. Take Canadian Idol as an example: people can
create a coterie for this TV show; Idol fans can get their information quickly by surfing a
single group of Idol blogs rather than browsing them one by one.

1.2.2 Wikis

A wiki is a web page that can be viewed and modified by anybody with a Web browser
and access to the Internet. The name’s origin is from Wikipedia, the online encyclopaedia
that works towards cataloguing all possible information in existence. Since Wikipedia’s
introduction, other imitators have appeared to focus on more specific branches of
information. Any visitor to a wiki can change its content if they desire. While the
potential for mischief exists, wikis can be surprisingly robust, open-ended, collaborative
group sites (Keller, 2005).

Different than blogs, all wiki users can both contribute and benefit from it. They are able
to create new wikis, read existing wikis, and modify existing wikis whenever they want.
However, wikis generally have a history function, which allows previous versions to be
examined, and a rollback function, which restores previous versions (Anderson, 2007).

Simply speaking, a wiki is an effective asynchronous web-based collaborative system,
which grows with its users’ knowledge and contribution.

1.2.3 Tags

As the as the amount of information increases on the internet, it becomes more and more
difficult to accurately search for information. In the Internet’s early public days, people
would use keywords to search for pieces of information they desired. A keyword search
simply searches the Internet for that word. For example, searching for the word
“basketball” would bring up every page on the Internet that has the word “basketball” in
it somewhere. This has proven to be inefficient, as a page may not be about basketball at
all, but simply have the word on the page for reasons other than content, such as links or
advertisements. Tags were created to help remedy this problem.

A tag is a keyword that is added to a digital object (e.g. a website, picture or video clip)
to describe it, but not as part of a formal classification system (Anderson, 2007).
Although “keyword” is used to define “tag”, there is difference between them.

Keywords can be extracted from text documents by machine searches, but tags can only
be set manually by users. In this way keywords are more convenient to use, but machines
cannot extract keywords from non-text content such as images or video clips. On the



4

other hand, tags allow users to label content with words that would easily and obviously
describe it without the words being present.

In conclusion, keywords are objective while tags are subjective; keywords are accurate
and tags are semantic; keywords are machine-oriented and tags are user-oriented;
searching by keyword is more accurate and searching by tag is more human-intelligent.

Another usual way to classify information is its category. The difference between
categories and tags is that the former can have levels, and the latter cannot. The word
used as a category is fixed; authors have to choose a category from an available selection
of common words instead of setting them as anything they choose.

Since tagging has become popular among internet users, the idea of tag clouds have
appeared. A tag cloud is a group of related tags. Each tag within the group is set by
different authors. They are listed together in different font, size and color according to
their popularity, so people can easily tell which tag is more welcomed by users.

Keywords, categories, and tags all have advantages and disadvantages. Rarely do they
conflict with each other, and no one can take the place of the other two completely. It is
both possible and necessary for them to work together.

1.2.4 Multimedia Sharing

Multimedia sharing websites such as YouTube or Flickr provide a web platform for their
users to upload / view multimedia resources like video or pictures. These popular services
take the idea of the ‘writeable’ Web (where users are not just consumers but contribute
actively to the production of Web content) and enable it on a massive scale (Anderson,
2007).

1.2.5 Syndication

Syndication is a process that allows subscribers to receive updates from web service
providers through an XML-based data format, which is usually RSS or Atom.
Syndication feeds can be read by aggregators and after adding feeds from their providers
into aggregators which check the update automatically on a regular frequency,
subscribers can read the summary of new content updated into that web page in the
aggregators when the updates are available without opening the web page in browsers.
Syndication feeds can bring the user text, audio and video content which will be
discussed in-depth in the Podcasting and VODcasting section.

As mentioned in an earlier section of this chapter, most blog systems provide the feature
of generating syndication feeds automatically when a new article is published.

RSS and Atom does a similar job concerning syndication, however they are different in
their structure and grammar. Now, there is a trend of RSS and Atom aggregation, and
some feed readers already support both RSS and Atom feeds.



1.2.6 Podcasting / VODcasting

Podcasting or VODcasting can be considered as an extension of the processes of
traditional RSS process. Instead of receiving text feed from RSS providers (websites or
blogs) they allow RSS feed bring audio or video content respectively.

Podcasting is the process of capturing an audio event, song, speech, or mix of sounds and
then posting that digital sound object to a Web site or “blog” in a data structure called an
RSS 2.0 envelope (or “feed”). Using specialized news readers like iPodder or iPodderX,
users can subscribe to a Web page containing RSS 2.0 tagged audio files on designated
web pages and automatically download these files directly into an audio management
program on their personal computer like iTunes, Windows Media Player or MusicMatch.
When a user synchronizes their portable audio device with their personal computer the
podcasts are automatically transferred to that device to be listened to at the time and
location most convenient for the user (Meng, 2005).

VODcasting (also called “vlogging”) — the “VOD” stands for “video-on-demand” — is
almost identical to podcasting. The difference is that the content is video instead of audio,
and the content is more likely to be played on a laptop than a PMA (personal media
assistant) due to their newness and relative expense (Meng, 2005).

1.3 Web 2.0 Technology Standards

This section introduces some technology standards which are used in implementation of
this thesis.

1.3.1 XML

The Extensible Markup Language (XML) is a general-purpose specification for creating
custom markup languages. It is classified as an extensible language because it allows its
users to define their own elements. Its primary purpose is to facilitate the sharing of
structured data across different information systems, particularly via the Internet and it is
used both to encode documents and to serialize data.'

There are many advantages of the XML format. First of all, XML is based on text
supported by unicode which allows almost any information in any written human
language to be communicated through it. Secondly, XML’s self-documenting format
describes structure and field names as well as specific values, and the strict syntax and
parsing requirements make the necessary parsing algorithms extremely simple, efficient,
and consistent. Thirdly, XML is heavily used as a format for data storage, processing and
transfering, on the other hand, it can be updated incrementally. At last, it is platform-
independent, therefore, it can be used cross different systems. z

! hitp://en.wikipedia.org/wiki/XML
2 http://en. wikipedia.org/wiki/XML



http://en.wikipedia.org//viki/XML
http://en.wikipedia.org///ik.i/XMI

1.3.2 XPath

The primary purpose of XPath is to address the nodes of XML 1.0 or XML 1.1 trees.
XPath gets its name from its use of a path notation for navigating through the hierarchical
structure of an XML document. XPath uses a compact, non-XML syntax to facilitate use
of XPath within URIs and XML attribute values. (Berglund, et al., 2007)

XPath is usually used to query through XML files with specific conditions. This turns
XML into the usage of database and gets useful information from it when necessary. It is
used to implement searches through a blog system with search conditions selected by the
user.

1.3.3 XPointer

The XPointer is intended to be used to provide a high level of functionality for addressing
portions of XML documents. It is based on XPath and adds the ability to address strings,
points, and ranges. It supports addressing into the internal structures of XML documents
and external parsed entities and allows for examination of a document's hierarchical
structure and choice of portions based on various properties, such as element types,
attribute values, character content, and relative position. In particular, it provides for
specific reference to elements, character strings, and other XML information, whether or
not they bear an explicit ID attribute. (DeRose, Maler, & Daniel, 2002)

Since XPointer can connect XML elements together, it is useful when appending
annotation to original resources without modifying them for more convenient
mainteinance. Details will be introduced in Chapter 3.

1.3.4 REST vs. SOAP

REST is an architectural style which treats all web content as resources. It provides a
unified set of interface to access resources — POST, GET, PUT and DELETE and use
resource URI to identify resources. Therefore, “REST is considered the simpler of the
two techniques. It exploits the World Wide Web (HTTP) protocol to communicate
between computers, and initiating requests are usually in the form of URL's. From the
library world, the most popular Web Service fitting this description is the Open Archives
Initiative - Protocol for Metadata Harvesting. Another very good library example is
called Search and Retrieve via URL (Morgan, 2005).

SOAP (Simple Object Access Protocol), a successor of RPC (Remote Procedure Call), is
protocol for exchanging XML-based message through web site. It is not dependent on the
World Wide Web as a transport mechanism. Requests can be made directly from one
computer program to another, via telnet or SSH, via HTTP, or even through email.
Unlike REST, SOAP requests as well as responses are encoded within a specific XML
syntax called a SOAP envelope. For all these reasons, SOAP is seen as being more
complicated and at the same time more flexible when compared to REST. SOAP, unlike
REST, is formally supported by the World Wide Web Consortium (Morgan, 2005).



1.3.5 AJAX

AJAX is not a new programming language, but a technique for creating better, faster, and
more interactive web applications. With AJAX, JavaScript can communicate directly
with the server, using the JavaScript XMLHttpRequest object. With this object,
JavaScript can trade data with a web server, without reloading the page.’

AJAX uses asynchronous data transfer (HTTP requests) between the browser and the
web server, allowing web pages to request small bits of information from the server
instead of whole pages. *

The AJAX technique makes Internet applications smaller, faster and more user-friendly.
It is a browser technology independent of web server software. ’

1.3.6 RSS

RSS is a format for syndicating news and the content of news-like sites, including major
news sites like Wired, news-oriented community sites like Slashdot, and personal
weblogs. But it's not just for news. Pretty much anything that can be broken down into
discrete items can be syndicated via RSS. Once information about each item is in RSS
format, an RSS-aware program can check the feed for changes and react to the changes in
an appropriate way. RSS-aware programs called aggregators are popular in weblog
systems. Most weblogs provide content available in RSS. An aggregator can help users
keep up with all their favourite feed providers by checking their RSS feeds and
displaying new items from each of them. (Pilgrim, 2002)

A RSS feed from the e-learning blog implemented for this project is given blow.

| <?xml version="1.0" encoding="UTF-8"?> '
1 <rss version="2.0"> 1
: <channel> '
! <title>LU Gene Annotation Semantic Blog</title> :
' <link>http://localhost/wordpress</link> |
! <description>Wei Yuan's Thesis</description> N
1 <pubDate>Tue, 18 Mar 2008 03:11:45 +0000</pubDate> !
' <generator>http://wordpress.org/?v=2.3.3</generator> '
: <language>en</language> :
i <item> I
! <title>Mouse Anatomy by admin at Mon May 19 14:50:36 EDT '
1 2008</title> !
i <link>http://localhost/wordpress/wp- i
: includes/single.php?category=/anatony/adult mouse anatomy&#38;ID=MA:0 :
i+ 000001&#35;annotation-1211223036</1link> '
: <description>mouse anatomy is usually found on mouse :
I </description> :

3 http://owl.english purdue.edu/owl/resource/560/10/
% htip://owl.english.purdue.eduw/owl/resource/560/10/
3 http://owl.english.purdue.edu/owl/resource/ 560/ 10/



http://localhost/wordpress%3c/link
http://wordpress.org/?v=2.3.3%3c/generator
http://localhost/wordpress/wp-
http://owl%e2%96%a0
http://owl

: </item>

1 </channel>
'
i

1.4 Features of Learning Object for Web 2.0
1.4.1 Collaborative Learning

Collaborative learning is an emerging educational method. It is a student-centered
environment, in which students are responsible for their studying progress by
constructing knowledge with other students or teachers. Similarly to other Web 2.0
services, users of collaborative learning can contribute and benefit from the system.

1.4.2 Social Blogs as Learning Object

The concept of social blogs is derived from social networks. Social blogs treat each
member as a node and connect members through ties (relationship) as social network.
However, there are a few points that fundamentally distinguish it from a social network.
First of all, within a social network, each node represents a real human; but within a
social blog, each node stands for a blog, which can be hosted by any blog service
anywhere on the Internet. Social blog systems are not necessary to provide blog services.
In addition, a social network connects nodes by hobby, political opinions, or other topics;
social blogs connects nodes by blog category or blog tags.

As a Learning Object platform, social blogs meet all feature requirements — tags,
syndication feeds, PODcasting, resource sharing, etc. These features will be discussed in
depth in later chapters.

1.4.3 Folksonomies for Free Tagging

In collaborative web, people contribute their knowledge, research, and opinions by
publishing the data over the Internet. To save other users’ time when searching for
information they need, authors also add tags to their resources. Other users can modify
previously published resources to make them more accurate. However, this is not
completely collaborative. If the original author of a resource set an inaccurate, misleading,
or incorrectly spelled tag, it will be impossible to find with regular searches and nobody
will be able to correct it. Under this situation, folksonomy is introduced.

Folksonomy is an extension of tagging. Folksonomies allows other users to modify the
resource’s tags. In this way, the tags are more accurate via the corrections of others
should errors arise.

1.4.4 Annotation

Annotation is a process through which people contribute their own knowledge to others
resources. It’s also a method to achieve learning collaboration through network. Original
resources can be annotated without modification; therefore, it is easy to restore the
resource before its annotation.



9

Annotation theory, and its relation to Gene Ontology Annotation, will be discussed in-
depth in later chapters.

1.5 Summary of Thesis

Due to Web 2.0’s propagation, weblogs, collaborative e-learning systems, and FOAF
networks are popular and useful applications by themselves. Is it possible to integrate
these applications into one system?

This question will be explored in regards to a specific field of biology. Throughout the
course of this project, the Gene Annotation Semantic Blog system (GAS Blog system)
was developed to make gene annotation easier. It is an extension of regular weblog
systems by adding the support of several semantics such as Gene Ontology semantics,
SCORM semantics, syndication & aggregation semantics, and FOAF semantics.

Chapter 1 introduces Web 2.0 and its popular applications, as well as technologies related
to them. Chapter 2 describes the GAS Blog from a general point of view, compares it
with existing gene ontology annotation systems, and discusses their advantages as well as
disadvantages. Chapter 3 explains the usage scenario, as well as detailed architecture and
implementation of the GAS Blog. In Chapter 4, gene ontology navigation will be
introduced. Chapter 5 describes future work to be done on this project.



10

Chapter Two
Gene Annotation Support System for the Web 2.0 e-Learning

Annotation is useful to people’s learning experience. It can be used in person or groups.
For personal use, it works as reading notes to make readers themselves understand
documents better or remind themselves with some important information for the future.
For example, a lot students like writing notes on blank area of textbooks according to
teachers’ lecture; therefore, they can be reminded that some certain section should be
paid more attention to when they read textbook next time. As among groups, it allows
group members collaborative on same documents by letting each person add notes to
documents. Still take students and textbook as the example, sometimes students share the
notes by borrowing textbook from each other which is a process of collaborative
annotation.

Annotation has been introduced to computer for a long time both personally and
collaboratively. For personal use, there are lots of documents organization tools such as
Personal Document Organizer which allows users to add description to both text and
multimedia files on their computers. For collaborative use, the most popular example is
Microsoft Word comment feature. It provides an easy and efficient way to collaborate
people’s comment in team-working environment. Annotation appears on the margin of
pages with the comment author’s name and it becomes visible to other team members
with full access to it including reading or modification.

After Internet becoming popular, web annotation is used to add annotation to web
resources. Over years’ development, many annotation websites appear over Internet, they
provide web annotation services to allow registered users add annotation on resources
(text, images, multimedia, etc.) from other websites, and share annotation with other
registered users.

This chapter introduces web annotation in details, discusses about existing web
annotation systems, and describes web 2.0 annotations as well as how it differs from
existing annotation systems. In later sections, this chapter talks about gene ontology and
explains why use a learning blog as a platform to implement gene ontology annotation
system.

2.1 Traditional Gene Ontology Annotation

Gene Ontology Annotation is the process of assigning GO terms to gene products (Nature,
2000). This process is usually achieved by manual annotation and electronic annotation.

e Manual Annotation: Manual assignment of GO terms by annotators using
published literature. Associations that are made manually are given one of ten
evidence codes that describe what evidence supports the annotation.®

$ http://www.ebi.ac.uk/GOA/newto.html



http://www.ebi.ac.uk/GOAne/v1o.htini

11

e Electronic Annotation: electronic annotation systems use existing information
within database entries, including Swiss-Prot keywords (SPKW2GO), Enzyme
Commission numbers (EC2GO) and cross-references to InterPro (InterPro2GO)
and HAMAP (HAMAP2GO), which are manually mapped before. Electronically
combining these mappings with a table of matching UniProt entries generates a
table of associations. For each GOA association, they provide an evidence code,
which summarizes how the association is made. Associations that are made
electronically are labelled as 'inferred from electronic annotation' (IEA).”

Manual annotation is the basis of electronic annotation, and electronic annotation can
also be considered as a procesure of reducing redundant gene ontology annotation. This
thesis is focus on developing a system (GAS Blog) to assist manual annotation procesure.

Currently, the manual annotation systems can be divided into three categories: offline
application, Client-Server application, web search engine, portal, and FTP server.

2.1.1 Offline Application

Offline gene ontology application let users view and modify gene ontology files. The
advantage of applications in this categoty is that they provide users a frendly interface to
work on, however, the disadvantages is that users have to download ontology files from
GO portal or FTP server before viewing or doing modification, and after annotators finish
modifying the file, they have to go back to the GO portal or FTP server to upload their
work. An example applications in this categories are: COBrA.

2.1.2 Client-Server Application

Client-Server gene ontology application goes a step further than offline gene ontology
applications. It connects to a server to retrieve gene ontology for users to view instead of
letting users download the ontology files beforehand. However, the disadvantage of it is
that users still can only view the ontology data and can not add annotation to it. Moreover,
users are still isolated from each other and have no collaboration in this process. An
example application in this category is DYNGO.

2.1.3 Web Search Engine

Web search engines are web application. To use this kind of GO application, users have
to fill a search form to indicate several query condition, and results under the condition
will be displayed in web pages. Users can view them by clicking the link of each result.

GO search engine is useful for users who only want to view specific gene ontology
annotations. It does not allow annotators to add or modify annotation to gene ontology
and does not have enough information for users who want to know the latest annotation,
and users have to search if there is any update to specific annotation of their interest on a
regular basis.

7 httpy//www.ebi.ac.uk/GOA/newto.html




12

On the other hand, current gene ontology search engines are inefficient because of the
top-down search mechanism they are using. Users have to go through level by level to
reach the information they are looking for, and this top-down process may take some
time. An example application in this categories are: AmiGO.

2.1.4 Portal

Gene ontology portals are web pages that provide users to download the latest modified
ontology files or upload the one users worked on. After downloading ontology files from
gene ontology portals, users can view or modify the files using offline gene ontology
applications.

There are several disadvantages for portal annotation system:

First of all, regular users can only receive the information published by gene ontology
annotation organizations, and are not able to donate their knowledge and collaborate with
other users. There is no connection between users, and they are isolated with each other.

Secondly, bioinformatics database resource groups publish the information on webpage
of portal. Portal is an inefficient way to publish information. Users have to check the
portal on regular basis to make sure that they can get the latest update.

At last, the annotation information is in text format, and newly added information is
mixed with the old one. Users have to download the annotation file and go through all the
information and find out the updates by themselves.

An example application in this category is BBOP (Berkeley Bioinformatics and Ontology
Project).

2.1.5 FTP Server

Similarly to portal, FTP server is another method allows users to download gene ontology
files. Instead of downloading from web pages like portals, it let users access ontology
files from FTP servers. Therefore, FTP server share the similar disadvantage with portals
that users can not find the latest change inside a ontology file easily.

2.2 Existing Gene Ontology Annotation Systems

Although there are many Gene Ontology annotation systems available on market, they
can be divided into the categories mentioned in earlier section of this chapter. This thesis
selects a representative application in each category to compare the advantages and
disadvantages of them.

2.2.1 COBrA

COBrA is an ontology browser and editor for GO and OBO ontologies. It has been
specifically designed to be usable by biologists to create links between ontologies, and
has the following features. (Stuart, 2005)



13

e allows drag-and-drop editing of GO ontologies (Stuart, 2005)
e supports mapping between two ontologies (Stuart, 2005)

® supports translation to OWL and other Semantic Web languages (Stuart, 2005)

% anatomical descriptive qualifier
4 anatomical descriptive term
¥ candition quaiifier
i developmental stage
i whole arganism
w €} developing embryonic structure
v & anfage
W & ectoderm antage
¥ &) endoderm aniage
¥ (B anterior endoderm anlage
L 4 @ anterior endoderm primordiom
¥ ) anteriar midgut cudiment primardium
> 8
» B} posterior endoderm antage
w ) germ layer anlage
w ) germ layer
¥ &) ectoderm

Figure 2.1 Interface of COBrA®

As other offline gene ontology applications, the advantage is that they provide users a
frendly interface, however, the disadvantages is that users have to download ontology
files from GO portal or FTP server by themselves, and after annotators finishing
modifying the file, they have to go back to the GO portal or FTP server to upload their
work.

2.2.2 DYNGO

DYNGO is a standalone package that provides browsing functionality of gene ontology.
DYNGO also allows users to load a list of entities and retrieve the corresponding GO
annotations. It enables users to retrieve gene or gene products that hold similar
annotations. The retrieved result is shown in a tree organized according to GO hierarchies,
and the tree can be manipulated dynamically by sorting and changing orientation.

¥ Image retrieved from http:/www.xspan.org/cobra/index.htmi



http://www.xsDan.org,'cobra/mdex.htm

14

DYNGO can also be used for Microarray data analysis using GO annotations and for
other applications. (Liu, Hu, & Wu, 2005)

B shaestn e ations, shssebontalm macharise (20 N0

Figure 2.2 Interface of DYNGO’

Client-Server gene ontology application such as DYNGO has the advantage of friendly
user interface, retrieve gene ontology data directly from network instead of letting users
to download from portals or FTP server as offline gene ontology application such as
COBrA. However, the disadvantage of it is that users still can only view the ontology
data and can not add annotation to it. Moreover, users are still isolated from each other
and have no collaboration in this process.

2.2.3 AmiGO

AmiGO provides an interface to search and browse the ontology and annotation data
provided by the GO consortium. Users can search for gene products and view the terms
with which they are associated; alternatively, users can search or browse the ontology for
GO terms of interest and see term details and gene product annotations. AmiGO also
provides a BLAST search engine, which searches the sequences of genes and gene
products that have been annotated to a GO term and submitted to the GO Consortium.
(Nature, 2000)

® Image retrieved from http://gauss.dbb.georgetown.edw/liblab/dyngo.html



http://gauss.dbb.georgetown.edu/'liblab/dvngo.html

15

" Sedireh the: Gene Dhigigy diabase

i }

BB ¢ genesorproles T exact maten

Figure 2.3 Interface of AmiGO"®

GO search engine like AmiGO is useful for users who only want to view specific gene
ontology annotations. It does not allow annotators to add or modify annotation to gene
ontology and does not have enough information for users who want to know the latest
annotation, and users have to search if there is update to specific annotation of their
interest on a regular basis.

On the other hand, current gene ontology search engines are inefficient because of the
top-down search mechanism they are using. Users have to go through level by level to
reach the information they are looking for, and this top-down process may take some
time to complete.

2.2.4 BBOP Portal

BBOP Portal is a page is for downloading OBO ontologies in a variety of formats as well
as the reports of ontologies. The data is derived automatically from the primary sources,
available from the main OBO website."!

'9 Image retrieved from http://amigo.gencontology.org/cei-binfamigo/go.cgi
" hitp://www.berkeleybop.org/ontologies/



http://amigo.geneontologv.org/cgi-bin/ainigo/go.cgi

16

Figure 2.4 Interface of BBOP Portal'

There are several disadvantages for portal annotation system such as BBOP Portal:

First of all, regular users can only receive the information published by those groups, and
are not able to donate their knowledge and collaborate with other users. There is no
connection between users, and they are isolated with each other.

Secondly, bioinformatics database resource groups publish the information on webpage
of portal. Portal is an inefficient way to publish information. Users have to check the
portal on regular basis to make sure that they can get the latest update.

At last, the annotation information is in text format, and newly added information is
mixed with the old one. Users have to download the annotation file and go through all the
information and find out the updates by themselves.

2.2.5 Summary of Existing Gene Ontology Annotation System Comparison

These five categories of current gene ontology annotation system are compared in four
criteria:

1. Check latest change inside GO file: to see if the GO annotation system indicate
users which term in a gene ontology file is updated recently;

"2 Image retrieved from http://gauss.dbb.georgetown.edu/liblab/dvngo.html



http://gauss.dbb.georgctowii.edii/liblab/dvngo.html

17

2. Automatic data retrieve: to check if the GO annotation system can retrieve GO
data automatically for users instead of letting them download from portals or FTP
servers;

3. Notification for latest update: to see if the GO annotation system can notify users
whenever the update is available instead of letting users check manually on a
regular basis;

4. User collaboration: to see if the GO annotation system allows users to share their
knowledge or experience and collaborate with each other.

With Web 2.0 technology, these criteria can be achieved, and they are the most popular
usage for Web 2.0.

Offline Client-Server Web FTP
Application Application Search Portal Server
PP PP Engine

Automatic Data Retrieve No Yes Yes No No

User Collaboration No No No No No

Table 2.1 Existing GO Annotation Systems Comparison Table

For all the reasons discussed above, a new generation of gene ontology annotation system
is very necessary to help biologists and make their work more efficient.

2.3 Towards Gene Ontology Annotation Support System for a learning Blog

There are many advantages of weblogs being a Web-based Support System. Weblogs
provide an excellent new channel for research discussion, communication, and
collaboration. A Web-based research support system may gain from the diary feature in
blogs to support researchers’ daily activities. Blogs also provide a new dissemination
channel for research results. Blog data management include organizing, classifying,
backup, and retrieving blog contents (Yao J. , Supporting Research with Weblogs: A
Study on Web-based Research Support Systems, 2006).

Learning blogs are blogs used for collaborative learning either in public or among groups
such as the Learning Blog by Alex Ragone (2005): Exploring Learning through
Blogging13. It is a learning blog specialized in web technologies. From the example, the
difference between learning blogs and other blogs is the content. A learning blog has all
the features a blog should have.

B hitp//www.learning-blog.org/



http:////ww

18

One of the most innovative features of the system developed in this thesis is taking the
advantage from the new web technology to benefit Gene Ontology annotation. The idea
is building the system on top of a social blog. As mentioned in Chapter 1, social blog is a
system that connects distributed nodes through their relationship. With this connection,
separated users can be associated to collaborate with their work of annotation. Gene
Ontologies can be annotated collaboratively by people who registered to the blog instead
of by a certain organization only.

To solve the disadvantages of portal style annotation system mentioned in earlier section,
a collaborative learning system based on Web 2.0 needs to be designed for Gene
Ontology annotation. Since it is aimed to be a collaborative e-learning system, users can
share their resources and collaborate with each other for Gene Ontology annotation in
real time without waiting for bioinformatics database resource groups to publish. It is
unnecessary for users to check the system on a regular basis any more. Semantic features
of the system can record users’ interest over gene ontology categories and notify them
whenever a new annotation or new gene is available in any of their interested categories
after subscribing to feeds. The annotation is no longer saved in format of text, and it is in
XML format with timestamp, in this way, users can easily find the latest change without
browsing through the entire annotation file. Moreover, the system also provides an
efficient navigation to help users find out the gene ontology or annotation which match
the navigation command inputted by them.

As for the disadvantages of annotation systems with top-down search mechanism, gene
ontology e-learning annotation blog (GAS) introduced in the thesis provides a more
efficient and advanced navigation engine with bottom-up mechanism. Therefore, users do
not have to go through level by level from top to reach the data at the bottom to save the
time spend on obtaining useful information.

To solve these disadvantages of current gene ontology annotation systems, a semantic
collaborative blog system for gene learning objects called “Gene Annotation Semantic
Blog” (GAS Blog) is developed in the thesis.

The features of GAS Blog are as followed:
e Adding new gene ontology;
e Annotating to existing gene ontology;

e Easily displaying gene ontology term annotation which are added or modified
recently;

e Automatically displaying the information from gene ontology file on web pages;
o Notifying users the recent update of their interest through RSS;
e User collaboration;

e Create learning object for each gene ontology term;



19

e User FOAF network in order to make collaboration more efficient;

e Bottom-up navigation mechanism for faster and more accurate and relevant
search result.

2.3.1 GAS Blog Overal Architecture

GAS Blog is consisted by modules of Learning Object Wrapper, Syndication Processor,
GO Data Output processor, User Data Collector, GO Creator, Annotation Processor,
FOAF Information Collector, and Graphical FOAF Generator.

GAS Blog

New GO Data

Antiotation information ¢ bt ™
{ Web Browser s Annotation | '
{Processor | _
' GO Storage
User information

_ Wed Broveser :

\ Annoiation
Stoeage

, RSS Apgretation M-

L. Syndication
Processor

GO &
Annotation
Conmctor

Usar Data
Storage

Figure 2.5 GAS Blog Overall Architecture



20

® GO Creator: GO Creator creates a new gene ontology according to data retrieved
from users’ web browser;

e Annotation Processor: Annotation Processor annotates to gene ontology according
to data retrieved from users’ web browser;

e User Data Collector: User Data Collector collects user information from users
such as user name, email, interested gene ontology categories, groups willing to
join, etc.;

e Graphical FOAF Generator: Graphical FOAF Generator generates graphical
FOAF network information;

e GO & Annotation Connector: GO & Annotation Connector prepares data for
Bottom-up search Processor by combining the information of gene ontology,
annotation, and FOAF network;

e Syndication Processor: Syndication Processor gets the well-wrapped data from
Learning Object Wrapper and generates syndication for RSS aggregation;

e GO Data Output Processor: GO Data Output Processor gets the data from gene
ontology and annotation, and displays them on web page;

e Learning Object Wrapper: Learning Object Wrapper gets the gene ontology and
annotation data and wraps them as learning objects;

e Bottom-up Search Processor: Bottom-up Search Processor searches through gene
ontology, annotation, and FOAF network using bottom-up search mechanism
basing on data prepared by Data Combination Module.

As shown in Figure 2.5, all the data in GAS Blog are stored in GO storage, annotation
storage, and user data storage. Among them, GO storage and annotation is XML-based
file format, and user data storage is in MySQL database. They are the core of GAS Blog
and as a media for different modules to exchange data, communicate and interact with
each other.

GO Creator, Annotation Processor, User Data Collector, and FOAF Information
Collector are inputting modules of GAS Blog. They collect data inputted by users and
store them into related storage for other modules to use.

GO & Annotation Connector is a media module between data storage and output modules;
it prepares the data from storage for output purpose. Graphical FOAF Generator,
Syndication Processor, GO Data Output Processor, and Learning Object Wrapper are
output modules of GAS Blog. They make use of data prepared by GO & Annotation
Connector and deliver them to users.



21

Detailed architecture, usage scenario, and development of most modules will be
introduced in next chapter. Bottom-up Search Processor and Learning Object Wrapper
will be discussed in Chapter 4.



22

Chapter Three
The Semantic Blog Support System Architecture

Collaborative Infrastructure for Sharing & Annotating Gene Learning Objects

Semantics Blogs are blogs enriched with semantic, machine-understandable metadata
(Moller, Breslin, & Decker, 2005). It is an extension of regular blogs. As described in
Chapter 2, current Gene annotation systems have the following disadvantages: they do
not allow users to collaborate with each other; users can not communicate with each other;
it is inefficient to publish information on them,; it is difficult for users to find the latest
annotations to existing genes; search mechanism is inefficient as well. To solve these
disadvantages, a semantic collaborative blog system for gene learning objects called
“Gene Annotation Semantic Blog” (GAS Blog) is developed alone with this thesis.

GAS Blog is built on a regular open source blog system — WordPress and added with
some semantic features such as describing regular Gene Ontologies as SCORM Learning
Objects for collaboration, FOAF semantics, Syndication & Aggregation semantics, and
bottom-up searching mechanism.

This chapter will focus on GAS Blog architecture and introduce its semantic features
mentioned above in details. System requirements and installation instruction of GAS will
be explained in Appendix A.

3.1 GAS Support System Design Criteria

Design criteria are one of the important issues for a support system as Yao (2005) put
it. Design criteria of GAS can be summarized as follows:

e System Users: GAS Support System is designed for gene ontology annotators and
the people who wish to browse gene ontologies and their annotation as well as
cooperate with others in a collaborative gene ontology support system.

e Searching Information in Support System: GAS Support System includes a gene
navigation service to allow users navigate gene ontology and annotation
information through navigation command.

e System User Management: users can be divided into three categories: friends,
users in the same group / research field, users from different group / research field.
Users can view their friends’ information through a graphical FOAF network,
collaborate with users in the same user group, and view other users’ work in GAS
Support System.

e Capability of Giving Feedback in Support System: GAS Support System allows
registered users to annotate or comment on existing gene ontologies and each
gene ontology can have unlimited annotations or comments as research feedback
in Support System.



23

3.2 GAS Support System Requirements & Design Policies

According to features GAS Blog is planning to achieve, GAS Blog system requirements
can be summarized as below.

e Data should be accompanied with machine-understandable metadata.

e Users should be able to publish new blog entries and the content should be stored
in the same schema structure.

e Users should be able to annotate to existing blog resources or entries.
e Users should be able to add others users as their friends.

e Users should be able to create new user groups or join existing groups created by
others for group-wise collaboration.

e Other than group-wise collaboration, cross-groups collaboration should be
enabled.

e Aggregation should be customized to users personal interest, instead of broadcast
everything to everybody.

To meet those requirements, design policies are:

Integration of metadata and blog data. GAS Blog data should be stored along with
metadata, which is in XML-based format files instead of in database as regular blog
systems.

Annotations and XML sequencing. Annotation facility should be developed for
collaboration through GAS Blog. For maintenance reason, annotation should also be
stored separately with original blog resources / learning objects, and XML sequencing
connects annotations with the blog resources which they were annotated to.

Combination of blog system and FOAF network. FOAF network metadata should be
added to annotation schema to indicate annotator information and group-wise
collaboration.

Extended syndication feed. Syndication feed has become a popular way to deliver web
contents with metadata to subscribers. Standard syndication schema only contains the
information for general purpose, and some important professional information might be
missing during process of delivery. However, XML-based syndication feed is extendible.
Extended syndication feeds brings more professional information than regular blog
systems provide after embedding semantic metadata of that research field into them, such
as embedding Gene Ontology annotation metadata in this thesis.

Narrowcast — customized aggregation. For a blog system, not all subscribers are
interested in every piece of information published on it. Broadcast may force users to
receive the “junk” information and waste time on them. Narrowcast can be achieved by



24

allowing subscribers customize categories of information on GAS Blog, and only deliver
the information of their interests.

3.3 Selecting a Programming Framework for GAS Blog

After identifying system requirements of GAS Blog, a programming framework should
be selected for implementation. Since GAS Blog is aimed to be a web application, only
server side scripting languages programming framework are considerable. Currently,
dominant languages in this field are ASP, JSP, and PHP.

3.3.1 ASP

Active Server Pages (ASP) is Microsoft's first server-side script engine for dynamically-
generated web pages. It was initially marketed as an add-on to Internet Information
Services (IIS) via the Windows NT 4.0 Option Pack, but has been included as a free
component of Windows Server since the initial release of Windows 2000 Server.
Programming ASP websites is made easier by various built-in objects. Each object
corresponds to a group of frequently-used functions useful for creating dynamic web
pages. Mixing traditional ASP and Microsoft's .NET technology, ASP NET allows web
application to be more intelligent and complicated.'*

Most ASP pages are written in VBScript, but any other Active Scripting engine can be
selected such as Jscript (Microsoft's implementation of ECMAScript) and PerlScript (a
derivative of Perl), and other third-party installable Active Scripting."

Although other Active Scripting engines strengthen ASP, the limitations of ASP are:

Cross system compatibility: ASP can be only run on server (IIS) with Windows
operation systems, which build a barrier for Linux or UNIX servers.

Server ownership issues: ASP can be extended with many Active Scripting engines;
however, this is only helpful to organizations that have their own servers. Most server
hosting service providers only provide basic ASP with VBScript, and do not permit users
to install Active Scripting engines for security concerns. Therefore, organizations that do
not have their own servers can not benefit from the extension of active scripting engines.

3.3.2 JSP

JavaServer Pages (JSP) is a technology for developing web pages that include dynamic
content. Unlike a plain HTML page, which contains static content that always remains
the same, a JSP page can change its content based on any number of variable items,
including the identity of the user, the user's browser type, information provided by the
user, and selections made by the user (Bergsten, 2003).

1 http://en. wikipedia.org/wiki/Active_Server Pages
5 http://en. wikipedia.org/wiki/Active Scrver Pages



http://cn.wikipedia.org/wikj/Active
http://cn.wikipedia.org/wiki/Active_Scrver

25

Unlike ASP introduced above, JSP can run on server with various operation systems.
However, the disadvantage of JSP is that it is a heavy weight framework, and costly on
hosting. A detractor of the juggernaut might describe it as being for people with more
money than sense.'®

3.3.3 PHP

PHP is a widely-used general-purpose scripting language that is especially suited for web
development and can be embedded into HTML. It generally runs on a web server, taking
PHP code as its input and creating web pages as output. It can be deployed on most web
servers and on almost every operating system and platform free of charge. '’

Like JSP, PHP is system independent as well; it runs on servers of different operations
systems. The big difference between JSP and PHP is that PHP is a light weight open
source framework. Implementation of PHP is more direct-forward than JSP and there are
a lot free or low cost hosting service available for organisations who do not have their
own server and do not want to spend a fortune on it.

3.3.4 Comparison of Programming Framework

According to the brief description of each framework, cross system compatibility and
especially server ownership issues make ASP not a good choice for GAS Blog. On the
first thought, JSP meets the requirements for developing GAS Blog; however, the hosting
service cost should also be concerned and heavy weight framework may cost more
development effort than light weight framework — PHP. After all the consideration, PHP
is the best choice for GAS Blog. Comparison of these programming frameworks is
summarized into the following table.

ASP JSP PSP

Framework Size Heavy-weight Heavy-weight Light-weight

License Freeware Freeware Open Source

Table 3.1 Programming Framework Comparison Table
3.4 Selecting a Weblog Platform for GAS Blog

There are two ways to build a weblog system: developed from scratch or modify from an
existing open source blog system. The latter is a wiser option since the former takes more
time and efforts on development.

http://training. gbdirect.co.uk/courses/php/comparison_php_versus _perl_vs_asp jsp_vs_vbscript_web_scr

ipting.html
" http://en.wikipedia.org/wiki/PHP



http://training.gbdirect.co.iik/courses/php/comparison
http://en.wikipedia.org,/wiki/PHP

26

There are hundreds of blog platform on markets now. However, blog systems that can be
used to build GAS Blog MUST meet the following requirements:

® Open source. GAS Blog is not a regular blog, although it is built on one. There

are many features to be added, and only open source projects are allowed to be
modified.

e Written in PHP. As introduced in earlier section of this chapter, GAS Blog should
be developed in PHP, which means the weblog platform needs to be written in the
same web scripting language or programming framework.

e Lightweight blogging system. A lightweight blogging system requires less
development efforts. As mentioned earlier in this thesis, GAS Blog is a blog
system for gene annotation with semantic features. Therefore, the blogging
system it build on does not have to be the most powerful system or a complete
website solution, but serves GAS Blog development requirements and design
policies well.

Currently, there are hundreds of weblogs or blogging systems on market. Among them,
the most famous and popular ones are: Blogger, MSN Space, Movable Type, Expression
Engine, WordPress, etc.

3.4.1 Blogger & MSN Spaces

Blogger and MSN Spaces are both free blog service through the Internet. Blogger and
MSN Spaces can be discussed together here because they have the same reason for not
being able to be used to build GAS Blog. Although they are provided by different
organizations, they are similar in essence. They are both free blogs but only free for users
to use. People can register to them and publish information through them conveniently.
The fatal limitation of them is that there is no way to access the source code of them
legally and modify the code to meet the requirements of building GAS Blog.

3.4.2 Movable Type

Movable Type is a free weblog publishing system'®. It is mostly written in Perl with some
PHP. As a weblog platform, it has all the features as other regular blog systems, blogging,
entries management, weblog theme template, archiving, commenting, plug-in support, etc.
On the other hand, it is system-independent that can be installed on servers with various
operation systems installed.

Since Movable Type is written in both Perl and PHP, communication between two
languages may cause some problems, and standard PHP does not support the interaction
with Perl code, under this situation, additional libraries need to be installed. As discussed
in the section of ASP, web hosting service providers, especially free or low cost providers,

'8 hitp://en. wikipedia.org/wiki/Movable Tvpe




27

not always have additional libraries installed. For organizations without their own servers,
this may cause other problems when they looking for a web hosting service in the future.

3.4.3 ExpressionEngine / pMachine

ExpressionEngine is a Content Management System (CMS). It is available in a free
“Core Version”, and in both “Personal” and “Commercial” versions after paying a one-
time fee."” As a CMS, ExpressionEngine is an excellent and powerful entire website
solution including blog, forum, and wiki, however, forum and wiki is only provided to
personal and commercial users with purchasing,.

ExpressionEngine is great, but this does not mean it is the best choice for building GAS
Blog. As discussed in earlier section, GAS Blog is intended to be a blog system, not a
complete website, and powerful platform ExpressionEngine may be too heavy and too
complicate for GAS Blog, which require more development efforts during the
implementation.

3.4.4 WordPress

WordPress, written in PHP and supported by MySQL database, is a state-of-the-art
semantic personal publishing platform with a focus on web standards, and usability®®. As
a weblog platform, it also has all the features as other regular blog systems, blogging,
entries management, weblog theme template, archiving, commenting, plug-in support, etc.

From the view of users, it is very similar to Movable Type. Actually they are comparably
similar in most fields except Movable is partially written in PHP and WordPress is built
on pure PHP. Different from ExpressionEngine, WordPress is a blog-only lightweight
system, which would save some development efforts comparing to ExpressionEngine.

So far, WordPress meets all the requirements for selecting a blog platform for GAS Blog:
open source, written in PHP, and a lightweight system. It is easy to install and configure.
Other than that, WordPress is popular with detailed development documentations and
free supports from many other developers all over the world. These two advantages are
especially important for modifying open source during the implementation of GAS Blog.
Therefore, it is the best choice to be the weblog platform for building GAS Blog.

3.4.5 Comparison of Popular Weblog Platforms

According to the description of each weblog platforms, no legal access to source code
makes Blogger and MSN Space not good choices for GAS Blog. As for Moveable Type,
it is a similar platform to WordPress in most fields, however, being coded in Perl makes
it not a good choice for system owners who do not have their own servers due to its
requirement for installing additional libraries and standard PHP does not support Perl.
ExpressionEngine is an excellent platform as itself; however, it is not lightweight enough

19 hitp://en. wikipedia,org/wiki/ExpressionEngine
2 ]
0 hitp://wordpress.org/


http://en.wikipedia.ora'wiki/Expres.sionEngine

28

since it is a content management system rather than a blog-only platform. To build GAS
Blog on ExpressionEngine, efforts on implementation would cost more than on a blog
purpose only system such as WordPress. Comparison of these weblog platforms is
summarized into the following table.

Web Scripting Language License Comments

MSN Space N.A. Free Free to use

No access to source code

ExpressionEngine PHP Open Source Free with core features

/ pMachine & Partially Free More features for purchasing

Table 3.2 Weblog Platforms Comparison Table

3.5 Selecting Learning Object Metadata Standard

GAS Blog is mainly designed to be a web application for Gene Ontology annotation. In
GAS Blog system, each blog post/entry is considered as a learning object for web
collaboration. Learning Objects Model is essential for treating blog entries as learning
objects. Currently, the popular Learning Object Metadata standards available are
SCORM and CanCore.

SCORM references a number of specifications and guidelines to create a multi-
dimensional reference model. Significantly, this reference model includes a "content
aggregation model", and has been developed in the context of military and training
applications. The CanCore metadata profile addresses only one of the many
specifications referenced by SCORM — namely, the IMS metadata specification. CanCore,
moreover, has been developed in the context of public and continuing education needs
and requirements. (Friesen, 2004)

Currently, CanCore metadata is being used to describe and classify content that would be
identified in the SCORM content aggregation model as "Raw Media." In compliance with
SCORM, the CanCore element set includes all 11 elements that SCORM identifies as
mandatory for Raw Media materials. (Friesen, 2004)

In summary, SCORM is more flexiable and has a wider range of usage than CanCore,
which is helpful for describing various type of resources as Learning Object and future
upgrade. Moreover, SCORM is widely used all over the world, and CanCore is mostly
used in Canada. Due to these consideration, SCORM will be used to wrape/describe gene



29

ontologies as Learning Objects in GAS Blog. SCORM will be introduced in later section
of this chapter.

3.6 Adding Semantics into GAS Blog

There are some levels of semantics added on top of blog platform — WordPress which
was selected from earlier section in this chapter, to make GAS Blog intelligent and
semantic: Gene Ontology semantics, SCORM semantics, FOAF semantics and
syndication and aggregation semantics.

Before adding these semantics into GAS Blog system to make it semantical, there are two
more questions need to be answered:

1. Where to publish semantics.
2. What format they should be published in.
3.6.1 Where to Publish Semantics

Before adding semantics into GAS Blog, the first question is not how to add but where to
add. Let’s start from the reason why semantics should be added to GAS Blog.

Semantics should be added to GAS Blog for increasing the machine readability of
information transferred over network. For this reason, information carrier should be in a
format which is convenient to exchange through Internet, be easy to extend for specific
data about genes and annotations, and be a widely accepted standard on Internet, so there
is no additional software to install on clients/computers for the data delivery.
Requirements of semantics carrier can be summarized as follows.

e A convenient format to exchange data on Internet.
e A format which is easy to extend.
e A format with widely accepted standard on Internet.

Currently, syndication feeds are the major method to deliver the latest blog posts or
comments to subscribers. XML-based feeds such as RSS and Atom meet all the
semantics carrier requirements. They are originally designed for exchanging data on
Internet, free to extend to deliver any information with related schemas, and they are
primary standards in this field.

3.6.2 Selecting a Format to Publish Semantics

After deciding where to publish semantics in GAS Blog, a format should also be selected.
Syndication feeds can be divided into three popular formats with their own schema: RSS
1.0, RSS 2.0, and Atom. Although these three formats all meet the requirements of
semantics carrier described in former section, there are still some differences among them.



30

RSS 1.0, standing for Rich Site Summary, is a RDF format®'. It is a lightweight
multipurpose extensible metadata description and syndication format (Dornfest, 2000).

RSS 2.0, standing for Really Simple Syndication, is based on XML format. It is a
simplified syndication feed format comparing to RSS 1.0%*. Building upon previous
versions of RSS, RSS 2.0 is backward compatible with previous versions (Lewin, 2003).
The greatest change from RSS 1.0 to RSS 2.0 is the ability to extend the format using
namespaces. RSS 2.0 supports namespaces, a standardized approach to add elements.
Feeds can contain new elements if they are defined in a namespace (Lewin, 2003).

Atom is an XML language used for web feeds, while the Atom Publishing Protocol
(short AtomPub or APP) is a simple HTTP-based protocol for creating and updatmg web

resources. 2

3.6.2.1 Comparison of Syndication Feeds’ Format

Among these three feed formats, RSS 1.0 and Atom is RDF-XML style, and RSS 2.0 is
pure XML, which is much simpler on syntax than the other two. However, RSS 2.0 is not
RDF-XML style, RDF metadata still can be embedded into it and deliver through
network, which makes RSS 2.0 more flexible than RSS 1.0 and Atom.

Another reason for choosing RSS 2.0 is that there is an existing learning objects metadata
in RSS 2.0 formats but not a schema in the other two formats available on market yet.
GAS Blog will wrap genes and their annotation information into Learning Objects,
embed Learning Object Metadata into syndication feed, and deliver them through Internet.
Therefore, Learning Object Metadata is crucial in consideration of which formats should
be used in GAS Blog.

Because of the reasons discussed above, GAS Blog embeds semantical information into
RSS 2.0, and deliver them during process of syndication. After deciding where to publish
semantics and which format to publish semantics, the next question is how to add them to
GAS Blog.

3.6.3 Adding Gene Ontology Semantics to GAS Blog

The primary purpose of GAS Blog is for gene annotation. Gene Ontology semantics is
the first semantical features being added to the system.

Gene Ontology (GO) is a controlled vocabulary which is used to describe the biology ofa
gene product in any organism®*. It is built up by blocks of information, and the blocks are
called terms. Each term is an entry to Gene Ontology. In GAS Blog, Gene Ontology is
displayed on term basis, and each term is treated as a blog entry.

! hitp://en wikipedia.org/wiki/RSS_(file_format)
2 hitp:/fen. wikipedia.org/wiki/RSS (file format)
2 hittp://en.wikipedia.org/wiki/Atom (standard)

24 hitp://www. veastgenome.org/help/gotutorial.htm)



http://en.wikiDedia.org/wiki/RSS
http://en.wikiDedia.org./wiki/Atom

31

3.6.3.1 Gene Ontology Term

Gene Ontology term is consisted by the following information: id: a unique numerical
identifier of the form. For example: “MA: 0000001~ is the id for a GO in category of
Adult Mouse Anatomy; name: GO term name; synonym: other names of the GO term;
and relationship. GO terms are linked together by relationship. There are five different
kind of relationship among GO terms:

e is a: The is_a relationship is a simple class-subclass relationship, where Ais a B
means that A is a subclass of B; for example, nuclear chromosome is_a
chromosome.**

® part oft The part_of relationship is slightly more complex; C part_of D means
that whenever C is present, it is always a part of D, but C does not always have to
be pregent An example would be periplasmic flagellum part of periplasmic
space.

e regulates, positively regulates and negatively regulates: The regulates,
positively regulates and negatively regulates relationships describe interactions
between biological processes and other biological processes, molecular functions
or biological qualities. When a biological process E regulates a function or a
process F, it modulates the occurrence of F. If F is a biological quality, then E
modulates the value of F. An example of the regulation of a biological process
would be the term regulation of transcription. When regulation of transcription
occurs, it always alters the rate, extent or frequency at which a gene is
transcribed.”’

3.6.3.2 Gene Ontology Format
There are two major types of Gene Ontology format:
1. OBO, a plain text format.

2. XML based formats such as GO RDF-XML format, OBO_XML format and
OWL format.

Between the formats above, plain text format obo is deprecated. It is difficult to query
through, troublesome to find out the latest change to the file, and it is not a standard
format for storing or displaying data on web pages. Based on these reasons, GAS Blog
uses a XML based format Gene Ontology called OBO XML which is generated by Perl
script from obo format.

5 hitp/, ’Www geneontology.org/GO.doc.shtml

7 http://www.geneontology.org/GO.doc.shtml



http://www.geneontologv.org/GO.doc.shtml

32

In OBO_XML file, GO terms are defined as a XML node <term> with following children:
id — a unique identity for the term; name — name of term; def — term definition;
relationship — term relationship with other terms; namespace — a namespace refers to the
file in which the term should be stored. A sample term is described as follow:

<term>
<id>CARO:0000014</id>
<name>cell component</name>
<def>
<defstr>Anatomical structure that is a direct part of the
cell.</defstr>
<dbxref>
<acc>MAH< /acc>
<dbname>CARO< /dbname>
</dbxref>
</def>
<is_a>CARO:0000003</is_a>
<relationship>
<type>part of</type>
<to>CARO:0000013</to>
</relationship>
<namespace>caro</namespace>

e o e m e eE - . e e = R e e TR m e mm e e A e M Em e = = am e Em e v e e mm e T W Em = e Em e e e e e e e e e me m w we

3.6.4 Adding Gene Annotation Semantics to GAS Blog

Annotation is the process of assigning GO terms to gene products (GeneOntology.org,
2007). Each annotation of Gene Ontology must include an evidence code to indicate how
the annotation to a particular term is supported. The available evidence codes are: (Guide
to GO Evidence Codes)

1. Experimental Evidence Codes:
EXP: Inferred from Experiment
IDA: Inferred from Direct Assay
IPI: Inferred from Physical Interaction
IMP: Inferred from Mutant Phenotype
IGI: Inferred from Genetic Interaction
IEP: Inferred from Expression Pattern
2. Computational Analysis Evidence Codes
ISS: Inferred from Sequence or Structural Similarity

ISO: Inferred from Sequence Orthology



33

ISA: Inferred from Sequence Alignment
ISM: Inferred from Sequence Model
IGC: Inferred from Genomic Context
RCA: inferred from Reviewed Computational Analysis
3. Author Statement Evidence Codes
TAS: Traceable Author Statement
NAS: Non-traceable Author Statement
4. Curator Statement Evidence Codes
IC: Inferred by Curator
ND: No biological Data available
5. Automatically-assigned Evidence Codes
IEA: Inferred from Electronic Annotation
6. Obsolete Evidence Codes
NR: Not Recorded

For easy maintenance of original GO files, annotation information is stored in separated
XML files with same file base name and different extension. This is also called
sequential XML. To connect a GO annotation with GO term assigned to it, GAS Blog
system uses XPointer to identify the original GO file location and id of GO term that
annotation is assigned to.

An annotation node contains attributes XPointer type and href to point to a GO term, and
the following children: evidence code: evidence code of annotation; content: annotation
content; foaf: FOAF network information of annotator; timestamp: time of annotation. A
sample GO annotation is given below.

content/owl/caro.obo_xml#CARO:0000000">
<evidence code>TAS</evidence code>
<content>a sample annotation</content>
<foaf>
<author id="1"radmin</author>
<groups>
<group id="6">Group 1l</group>
</groups>
</foaf>
<timestamp time="1210639289">Mon May 12 20:41:29 EDT
2008</timestamp>


http://localhost/wordpress/wp-

3.6.5 Adding SCORM Semantics to GAS Blog

SCORM, or Shareable Content Object Reference Model, is a compilation of technical
specifications for web-based e-learning®®. One of the primary purposes of the SCORM
standards is to define interoperability between learning content and learning management
systems. Through SCORM conformance, content packages and learning managements
systems together achieve such interoperability.29

GAS Blog uses SCORM standard to syndicate Gene Ontology terms which are wrapped
as Learning Objects. In SCORM, Learning Objects are described by manifest file.
Manifest file is a XML based file that describes the learning objects’ package and its
contents. It includes the information about identifier, version, schema, resources and
organization. Manifest node contains the following children to carry Learning Objects
information: metadata — manifest schema and its version; organizations — activities of the
Learning Object; Resources — Learning Object resources.

SCORM manifest standard is used in Gene Ontology Navigation for displaying search
results. A sample metadata of SCORM manifest is listed as below.

I <?xml version="1.0" encoding="UTF-8" 72> X
| <manifest identifier="MANIFEST IDENTIFIER" version="1.0" :
zmlns="http://www.imsglobal.org/xsd/imscp vipl" i
xmlns:adlep="http://www.adlnet.org/xsd/adlep vip3" X
"http://www.adlnet.org/xsd/adlnav_vip3" 1
"http://www.adlnet.org/xsd/adlseq vip3" \
="http://www.imsglobal.org/xsd/imsss" :
="http://ltsc.ieee.org/xsd/LOM" I
zmlns;xsi="http://www.w3.0rg/2001/XMLSchena~instance"” :
xsi:schemalocation="http://www.imsglobal.org/xsd/imscp_vipl '
imscp_vlpl.xsd http://www.adlnet.org/xsd/adlcp vilp3 !
adlcp vip3.xsd http://www.adlnet.org/xsd/adlnav_vip3 :
adlnav_vlp3.xsd http://www.adlnet.org/xsd/adlseq vlip3 |
-~ '

]

i

]

]

I

'

1

|

]

]

'

]

1

]

i

]

'

1

1

imsss_;lpo.xsd http://ltsc.iece.org/xsd/LOM lom.xsd"
xalns:zlink="http://www.w3.0rg/1999/xlink">
<metadata>
<schema>ADL SCORM</schema>
<schemaversion>CAM 1. 3</schemaversion>
</metadata>
<organizations default="ORG~CARO">
<organization identifier="ORG-CARO" structure="hierarchical>
<title>Activity Tree</title>
<item identifier="ACT-CARO:0000000" identifierref="RES-
CARO: 0000000">

t
I
!
1
'
1
1
1
]
!
1
]
I
[
I
I
]
I
1
: adlseq v1p3.xsd http://www.imsglobal.org/xsd/imsss
'
]
1
1
]
t
]
)
1
t
]
1
1
'
I
1
'

28 , ; .
http//www.scormsoft. com/scorm/overview

2 P -
® http://www.scormsoft.com/scorm/conformance



http://www.imsglobal.org/xsd/imscp_vlpl
http://www.adlnet.org/xsd/adlcp_vlp3
http://www.adlnet.org/xsd/adlnav_vlp3
http://www.w3.org/2GDI/XMLSchema-instance
http://www.imsglobal.org/xsd/imscp_vlpl
http://www.adlnet.org/xsd/adlcp_vlp3
http://www.adlnet.org/xsd/adlnav_vlp3
http://www.adlnet.org/xsd/adlseq_vlp3
http://www.imsglobal.org/xsd/imsss
http://Itsc.ieee.org/xsd/LOM
http://www.w3.org/1999/xlink
http:///vw'w.scormsoft.com/scorm/cQnformance

<title>Anatomical Entity</title>
</item>
</organization>
</organizations>
<resources>
<resource identifier="RES-CARO:0000000" type="webcontent"
adlcp:scormType="sco" href="http://localhost/wordpress/wp-
includes/single.php?category=/caro&ID=CARO:0000000">
<metadata>
<lom:lom>
<lom:general>
<lom:title>

t

1

1

1

]

1

1

i

1

1

i

]

'

1

1

]

]

1

'

1

I

: Entity</lom:string>

1 </lom:title>

: <lom:languageren</lom:language>

: <lom:description>

1 <lom:string language="en">Biological entity that is
: either an individual member of a bioclogical species or constitutes
: the structural organization of an individual member of a biological
1 Species.</lom:string>

: </lom:description>

1 <lom:keyword>

X <lom:string>TAS</lom:string>

! </lom:keyword:>

1 <lom:structure>

: <lom: source>LOMvl.0</lom: source>

: <lom:valuerhierarchical</lom:value>
' </lom:structure>

: <lom:annotation>sample annotation</lom:annotation>
1 </lom:general>

' </lom:lom>

: </metadata>

1 <file href="http://localhost/wordpress/wp-
| content/upload/1211166773.gif" />

1 </resource>

: </resources>

: </manifest:

In GAS Blog, each entry is a Learning Object. However, syndication feed standard does
not carry any information specifically for Learning Objects since standard RSS only
contains metadata of channels and does not carry Learning Object Metadata (LOM)
which is necessary for other Learning Management Systems (LMS) to read Learning
Objects.

To make RSS carry LOM, it should be extended with LOM schema. A RSS format for
Learning Object Metadata (RSS-LOM) is defined by Stephen Downes (Downes, 2003).
This format enables RSS to exchange LOM on network. This format (RSS-LOM) makes
it possible to distribute learning objects to courses without having to depend on the
content libraries provided by a learning management system; it also will allow authors to


http://localhost/wordpress/wp-
http://localhost/wordpress/wp-

36

distribute learning objects without having to work through an intermediary such as a
publisher (Harrsch, 2003).

RSS-LOM includes metadata in following categories:

:identifier>MA:0000001</dc:identifier><!~- post id-->
:title>Mouse Anatomy</dc:title><!-- post title-->»
:language>en</dc: language>

:description>mouse anatomy is usually found on

<dc

General Metadata: LO identifier, language, title, description, keyword, coverage,
structure, and aggregation level (Harrsch, 2003);

Lifecycle Metadata: RSS version, status, and contribute; Metadata such as
Metadata identifier, schema, contribute, and language (Harrsch, 2003);

Technical Metadata: RSS format, size, location, operation system and browser
requirement, installation remarks, other platform requirement, and duration
(Harrsch, 2003);

LO educational Metadata: interactivity type, learning resource type, interactivity
level, semantic density, intended end user role, context, typical age range,
difficulty, typical learning time, description, language (Harrsch, 2003);

LO Rights: cost, copyright and other restrictions, and description (Harrsch, 2003);
Relation Metadata: relation (Harrsch, 2003);
Annotation Metadata: annotation (Harrsch, 2003);

Classification Metadata: LO classification, prerequisite, educational objective,
accessibility restrictions, educational level, skill level, security level, and
competency (Harrsch, 2003).

mouse</dc:description>
<dc:subject>/anatomy/adult_mouse_anatomy</dc:subject>
<dc:evidence_ code></dc:evidence_ code>
<lom-gen:structure>Atomic</lom-gen:structure>
<lom-gen:aggregationLevel>13</lom—-gen:aggregationLevel>
<lom-life:version>beta</lom-life:version>
<lom-life:status>final</lom-life:status>

<dc:editor>admin</dc:editor>

<lom-meta:metadataScheme resource="lom-meta;LOMv1l.0"/>
<dc:format>text/html</dc: format>
<lom-tech:operatingSystemn>Multi-08S</lom-tech:operatingSystem>
<lom-edu:interactivityType>Active</lom~edu:interactivityType>
<lom-edu: type>Exercise</lom~edu: type>

<lom-edu: interactivitylLevel>Low</lom—-edu:interactivitylevel>
<lom-edu: semanticDensity>High</lom—~edu:semanticDensity>
<lom-edu:intendedEndUserRole>Manager</lom-edu: intendedEndUserRole>
<lom-edu:context>»School</lom~edu:context>

i
)
1
[}
L}
]
]
]
]
]
]
]
t
|
i
|
'
i

<dc:publisher>Lakehead University</dc:publisher> :
1
1
1
!
1
]
]
'
1
'
1
'
'
1
1
I



: <lom-edu:difficulty>Easy</lom~edu:difficulty>

t <lom-edu:typicalLearningTime>PT1H20M</lom~edu: typicallearningTime>
: <lom-edu:language>en</lom-edu: language>

: <lom-rights:copyrightAndOtherRestrictions>Lakehead University</lom-
1 rights:copyrightAndOtherRestrictions>

: <de:rights>RightsBroker:RightsModel</de:rights>

- v . G e h wh S N Me e M e WA M G m MR e G M M e e e L R e e A Em A e e e M A MW e b s e e A MM e e e mm Em e Em e mm mm e e

3.6.6 Adding FOAF Semantics to GAS Blog

Friend of a Friend (FOAF) is a machine-readable ontology describing persons, their
activities and their relations to other people and objects. Anyone can use FOAF to
describe him or herself. FOAF allows groups of people to describe social networks
without the need for a centralised database.*°

In GAS Blog, FOAF is embedded into annotation XML fragment as a child to carry
annotators’ information. Each FOAF node contains the information of annotator/author id
annotator/author name, and group(s) the annotator/author joined. A sample FOAF
fragment used to describe annotator of a certain GO term is given as below.

K

<foaf>
<author id="1">admin</author>
<groups>
<group id="6">Group 1l</group>
</groups>
</foaf>

With similar idea on integrating Learning Object metadata to RSS, RSS-FOAF is
introduced by Johannes Emst to allow RSS carry FOAF metadata (Ernst, 2005). The
following tags are extended by RSS-FOAF:

e rss-foafitype — this tag indicates that an RSS item should be treated as
representing a Person or other entity with whom the individual exporting the
extended RSS feed has a relationship with (Ermnst, n.d.);

e rss-foafigroup — this tag indicates that an RSS item should be treated as
representing a social group, as seen from the perspective of the individual
exporting the extended RSS feed (Ernst, n.d.);

e rss-foafirel — this tag may be contained by RSS items that represent a Person or
other entity with whom the individual has a relationship with (Ernst, n.d.).

| <rss-foaf:type name="admin"/> v !
1 <rss-foaf:group name="/anatomy/adult mouse anatomy"/> )
' , ] -

y <rss-foaf:rel to="userl"/> '

- e e e me Em e e e v Em e M A 4 e b M Mt Mt G e e e e Em mm mm m R e e e e e e E e e e M M R e m mm e e em e e e ee

30 http://en.wikipedia.ore/wiki/FOAF (software)




38

3.6.7 Syndication & Aggregation Semantics of GAS Blog

As mentioned in Chapter 1, RSS is widely used to syndicate blog information through
Internet. Users can subscribe to RSS feed and receive notice of news. In GAS Blog,
syndication can be considered as the output of the system. It integrates metadata of Gene
Ontologies, SCORM Learning Object, and FOAF together, and delivers them to end
clients to aggregate in format of RSS 2.0.

Most regular blog systems use broadcast as the way of syndication. They send everything
to everybody who subscribed, without considering whether the subscribers like it or not.
Instead of broadcasting, GAS Blog uses a more semantical way to do the job —
narrowcasting. GAS Blog allows subscribers to customize their interested categories of
gene. After saving their interests to the system, GAS Blog would narrowcast information
about new annotation or newly found Gene Ontologies to subscribers who show their
interests to the gene categories with the integrated metadata mentioned in earlier section
of this chapter.

Narrowcasting is a better way for syndication comparing to broadcasting for the
following reasons. First of all, it decreases the unnecessary information transferring over
network and saves subscribers’ time and effort to classify and delete them. On the other
hand, it is more intelligent and semantical than broadcasting.

A sample RSS generated by GAS Blog is given below.

<?xml version="1.0" enceding="UTF-8"72>
<rss version="2.0"
zmlngrcontent="http://purl.org/rss/1.0/modules/content/"
="http://wellfornedweb.org/CommentAPL/"
"http://purl.org/dc/elements/L1.1/"
foaf="http://rss~extensions.org/wiki/Res-foaf"
"http://rss-extensions.org/wiki/Rss-foaf"
"http://kmr.nada.kth.se/el/ims/schemas/lom-

xmlins:lom-life="http://knr.nada.kth.se/el/ins/schemas/lom~-
lifecycle”
wmlins: Lom—mes

metadata”

="http://kmr.nada.kth.se/el/ins/schemas/lom~

technical”
xmlns:lom-edu="http: //knr.nada.kth.se/el/ims/schemas/lom~
educational”
zmlns: lom~-rights="http://knr.nada.kth.se/el/ims/schemas/lom~
rights">
<channel>
<title>LU Gene Annotation Semantic Blog</title>
<link>http://localhost/wordpress</link>
<description>Wei Yuan's Thesis</description>
<pubDate>Tue, 18 Mar 2008 03:11:45 +0000</pubDate>
<generator>http://wordpress.org/?v=2.3.3</generator>
<languageren</language>
<item>



http://purl.org/rss/1.0/modules/content/
http://purl.org/dc/elements/I.1/
http://kmr.nada.kth.se/el/ims/schemas/lorn-
http://kmr.nada.kth.se/el/ims/schemas/lorn-
http://kmr.nada.kth.se/el/ims/schemas/lom-
http://localhos
http://wordpress.org/?v=2.3.3%3c/generator

39

<title>Mouse Anatomy by admin at Wed Jun 11 15:43:41 EDT
2008</title>

<link>http://localhost/wordpress/wp-
includes/single.php?category=/anatomy/adult _mouse_anatomy&#38;ID=MA:0
000001&#35;annotation-1213213421</1ink>

<annotations>http://localhost/wordpress/wp-
includes/single.php?category=/anatomy/adult mouse_anatomy&#38;ID=MA:0
000001&#35;annotation-1213213421</annotations>

<dec:annotator>admin</dc:annotator>

<!-- FOAF section-->

<rss-foaf:type name="admin"/>

<rss-foaf:group name="/anatomy/adult mouse anatomy"/>

<!-~ learning object section -->
<dc:identifier>MA:0000001</dc:identifier><!-- post id-->
<dec:title>Mouse Anatomy</dc:title><!~-- post title-->

<dec:language>ren</dc:language>
<dc:description>annotation from group 1</dc:description>
<dc:subject>/anatomy/adult_mouse_anatomy</dc:subject>
<dc:evidence code>TAS</dc:evidence_code>
<lom-gen:structure>Atomic</lom-gen:structure>
<lom-gen:aggregationlLevel>13</lom~gen:aggregationlLevel>
<lom-life:version>beta</lom-life:version>
<lom-life:status>final</lom~life:status>
<de:publisher>Lakehead University</dc:publisher>
<dc:editor>admin</dc:editor>
<lom-meta:metadataScheme rescurce="lom-meta;LOMv1.0"/>
<dc:format>text/html</dc:format>
<lom~tech:operatingSystem>Multi-08S</lom-tech:operatingSysten>
<lom—edu:interactivityTyperActive</lom-edu:interactivityType>
<lom-edu: type>Exercise</lom-edu: type>
<lom-edu:interactivityLevel>Low</lomn~edu:interactivitylevel>
<lom~edu:semanticDensity>High</lom~edu: semanticDensity>
<lom—~edu:intendedEndUserRole>Manager</lom-

edu: intendedEndUserRole>
<lom—-edu:context>School</lom-edu:context>
<lom-edu:difficulty>Easy</lom-edu:difficulty>
<lom-edu:typicallLearningTime>PT1H20M</lon~-

edu: typicalLearningTine>
<lom-edu: language>en</lom—edu: language>
<lom-rights:copyrightAndOtherRestrictions>Lakehead

University</lom-rights:copyrightAndOtherRestrictions>
<dc:rights>RightsBroker:RightsModel</dc:rights>

</item>
</channel>
</rss>

3.7 Overall Architecture

Fmmm e e e e e e e e e e e e e m e e e s e
S T

As mentioned at the beginning of this chapter, current gene annotation systems do not
allow users to collaborate with each other; it is inefficient to publish information on them;
it is difficult for users to find the latest annotations to existing genes; and search
mechanism is inefficient as well.


http://localhost/wordpress/wp-
http://localhost/wordpress/wp-

40

Under this situation, GAS Blog is developed to solve the disadvantages of existing gene

annotation systems. The purpose of GAS Blog system is to help biologist to share their
research or finding.

As mentioned by the end of Chapter 2 and displayed in Figure 3.1, GAS Blog is
composed of the following modules.

GAS Blog

_ mbismsar .

I
| Processor

Ty User Data |
' ‘;:f;bll'ﬁéigw N

FOAF: N N A e
OAF 1IN 2N /T4 Annotation
Generator 7 N\ 7 N\ | ‘storage

™1 Output.
‘Processor

User Data
“Storage

53(“%”“"‘“ - ﬁg&
ﬁﬂﬁmﬁétd{

Query Condiion

Figure 3.1 GAS Blog Overall Architecture

e GO Creator: GO Creator creates a new gene ontology according to data retrieved
from users’ web browser;



41

e Annotation Processor: Annotation Processor annotates to gene ontology according
to data retrieved from users’ web browser;

e User Data Collector: User Data Collector collects user information from users
such as user name, email, interested gene ontology categories, groups willing to
join, etc.;

e Graphical FOAF Generator: Graphical FOAF Generator generates graphical
FOAF network information;

e GO & Annotation Connector: GO & Annotation Connector prepares data for
Bottom-up search Processor by combining the information of Gene Ontology,
annotation, and FOAF network;

e Syndication Processor: Syndication Processor gets the well-wrapped data from
Learning Object Wrapper and generate syndication for RSS aggregation,;

e GO Data Output Processor: GO Data Output Processor gets the data from Gene
Ontology and annotation, and display them on web page;

e [Learning Object Wrapper: Learning Object Wrapper gets the Gene Ontology and
annotation data and wrap them as Learning Objects;

e Bottom-up Search Processor: Bottom-up Search Processor searches through Gene
Ontology, annotation, and FOAF network using bottom-up search mechanism
basing on data prepared by Data Combination Module.

As shown in Figure 3.1, all the data in GAS Blog are stored in GO storage, annotation
storage, and user data storage. Among them, GO storage and annotation is XML-based
file format, and user data storage is in MySQL database. They are the core of GAS Blog
and the media for different modules to exchange data, communicate and interact with
each other.

GO Creator, Annotation Processor, User Data Collector, and FOAF Information
Collector are inputting modules of GAS Blog. They collect data inputted by users and
store them into related storage for other modules to use.

GO & Annotation Connector is a media module between data storage and output modules;
it prepares the data from storage for output purpose. Graphical FOAF Generator,
Syndication Processor, GO Data Output Processor, and Learning Object Wrapper are
output modules of GAS Blog. They make use of data prepared by GO & Annotation
Connector and deliver them to users.

Among these modules, Learning Object Wrapper and Bottom-up Search Processor will
be explained stand-alone in next chapter.



42

3.8 Overall GAS Architecture Class/Module UML

Figure 3.2 shows an overall GAS architecture in class/module UML diagram. It
illustrates the major classes with their methods for implementing every module
introduced in last section.

Implementation details of each class/module in Figure 3.2 will be explained in later
sections of this chapter.

Annotation Processor User Data Collector
+wp_annotation post phpl} interestedCateparySection.php()
eatepotyCheckboxOnClick()
60 Creator
vadd_new.phitl —1 _
Annotation User Data ToohtipText
[- G0 Storage Storage Storage
G0 Data Qutpt Pracessor Graghlwlimefoﬂxk ' Sesnion
EROD ‘HaserAnmy
et Entry DIV +rendshi
L printSinglePiece() < v %7 pArray
HoriniSingleWithAnnotation()
fprintAnnoiationSection]) v GraphicalFOAF |
GQ & Annotation Connector
query.php oG anaRTAIon) | SEReT ‘%7
- Ty 3 ! rantractMetadata() « object v Ralationship
Bk i FriendNode CREAIK | int
Syndication Processor X 2 int ::‘fi;g“i:?l‘
by 2 int e
Learming Object Weappor {0 - it endY et
Hoad-rasd-annotabon Fhpl | description : string ":&"]‘g‘”; : :Of:?
: Haod-ts52-new php Lrvamme & strd i naf) :
Hoed-rss2-sc0rm.phpl) et ‘md,w,,,?dmn? int paetDescription() : sting
lrode_height : int
HgetX() © int
+getY{) Lint
HisFriend(} | bool
HsCooninaesinBotnd() | boct
HosiDeseriptiont) © string
pgatMNamal} - string

Figure 3.2 Overall GAS Architecture Class/Module UML
3.9 GAS Blog Usage Scenario

For better description of GAS Blog architecture, this chapter starts with introducing GAS
Blog usage scenario to deliver a clear image on what GAS Blog can do and how to
operate it. The implementation and develop information of will be discussed in following
sections of this chapter on module basis.



43

3.9.1 Displaying Gene Ontology Term

GAS Blog loads Gene Ontology from OBO_XML file into web pages for blog users to
view in their browsers. Gene Ontology is categorised on a list, and users can choose a
category to view by clicking the link of the category.

Mouse Anatomy
1D; MA 0000001
Mame; mouse anatony

NameSpace: aduit_meuse_anatomy.gxd

Posted in anatompiadult_mouse_anatomy | Annotats

Spinal Cord Grey Matter
1D MA00G0002

Name: spinal cord grey matter
NameSpace: adult_mouse_anatomy.gxd
Subclass of. grey matter

Raelationship: part of spinal cord

Posted In asatompiadell_mouse_analomy | Annstate

Figure 3.3 Gene Ontology Term Displaying & Browsing Page
3.9.2 Adding New Gene Ontology Term

Other than browsing existing GO terms, GAS Blog also allows registered users to add
new found Gene Ontology terms. After filling the form for adding new GO term, blog
system construct a new obo_xml node for the term, append it to the original GO file, and
also have a backup in a separated obo_xml file. The reason to have a backup is for
syndication of new GO terms through RSS. In regular GO term, there is no information
about when terms are created, and RSS syndication relies on time to notice subscribed
users. Backup of newly added GO terms recorded this information for easier syndication.



44

On the following form being used to add new GO term, ID is not editable and generated
automatically by blog system to make sure that the ID is unique.

p|CARD:0000080 ;

Mame |

Synenymg Related -

Mamespace % i

Same Ontology 10 | z

Part of Ontology O

Descripfion

Figure 3.4 Add New Gene Ontology Form
3.9.3 Annotating Gene Ontology

GAS Blog allows registered users to annotate on Gene Ontology terms. After login the
blog system successfully, user has to choose a GO term to annotate, fill an annotation
form and submit annotation. Users can also upload an image with annotation.

In the text field of “Evidence Code”, GAS Blog pops out the possible evidence code
dynamically according to the first few letters users typed in, and users can choose any
one of them by clicking the popped-out evidence code, or users can also use an evidence
code that is not in the list by keeping typing in the text field and ignoring the tips
provided by GAS Blog.



45

Add a Annotation

Loggedin as admin. Logout »

| £vidence Code

+ | upload an image

Figure 3.5 Annotation Form
3.9.4 Creating User Group

In GAS Blog, users can create groups so other users can join, share knowledge and
collaborate with each other. To create a new group, users need to go to page “Site
Admin” and select tab “Users” to edit user, under section “group”, input a group name
and click the link “Add a new group”. If the group name is not used by other groups, a
new group with inputted name can be created successfully.

dd a new group

Figure 3.6 Group Operation GUI — Adding New Group
3.9.5 Joining User Group

In GAS Blog, users can also join the existing groups. On the same section of “Creating
User Group”, all available groups over GAS Blog will be listed as checkboxes, and
checked groups indicate that the user is already in that group. Users can join the groups
they like by checking the group name, or quit the groups they already joined by un-
checking the group name. ‘ :



46

| Add a new Group

Figure 3.7 Group Operation GUI
3.9.6 Adding Friends

In GAS Blog, users can add other users as their friend in a FOAF network. To do this,
users need to go to page “Site Admin” and choose tab “Users” to edit user, and there is a
section for users to add friends as Figure 3.8. After inputting the friend’s user name on
GAS Blog, friendship between them will be created in the FOAF network.

Add Friend: Input the user name of user, and become friend.

Add Friend

Figure 3.8 Friendship Management GUI
3.9.7 Viewing Graphical FOAF Network

GAS Blog treats registered users as a member of its FOAF network, in this way users can
collaborate with each other more convenient than usual weblogs. The blog allows users to
create groups or join existing ones.

Blog users can also view FOAF network graphically. Graphical FOAF Network displays
all the friendship inside the blog, which makes the blog a FOAF Network. Registered
users to the blog can make friends with other users by inputting the user name as Figure
3.8 shows.

A sample Graphical FOAF network is given below in Figure 3.9. Each person icon
represents a registered user of the blog with their user name displayed beside the icon.
Users in the same group are drawn in the same colour of frame around person icon. A
tooltip will popup on the picture with information of name, group, and interested
categories when mouse hover on a user icon. The straight line is used to indicate the
friendships between two users. A tooltip will also popup to display the information of
friendship when mouse is hovered on a line.



47

Figure 3.9 Graphical FOAF Network

3.9.8 GAS Blog Syndication & Aggregation

There are two syndication feeds in GAS Blog, “New Proteins RSS” and “Annotation
RSS”. The former is for syndicating newly added gene ontology and the latter is for gene
ontology annotation. These two syndication feeds are the same to subscribe to. To
subscribe to any one of them, users have to login first. On the right side bar of main page
of GAS Blog, click the link of “New Proteins RSS” or “Annotation RSS”. Another way
to subscribe to a feed is copying the link address and adding it to users’ aggregator.

File Edit View History Favorites

feeds

You are previewing this feed. Cick the Subscribe button to
automatically receive new content and notffications when avafable.

Il Mouse Anatomy by admin at Wed Jun 11 15:43:41 EDT 2008
i S8, E5 17, 2008 2t 1311 PM
i
3

? annotation from group 1

@ Bog patmal % sien

Figure 3.10 Syndication Feeds in Aggregator



48

3.10 GAS Blog Detailed Architecture

After introducing GAS Blog usage scenario, this section discusses development and
implementation of each module. In GAS Blog, users can browse gene ontology terms,
add new gene ontology terms, annotate to existing gene ontology terms, syndicate new
gene ontology terms or annotation of existing ones, view FOAF user network graphically,
and navigate through gene ontology terms which will be introduced separately in next
chapter.

3.10.1 Browsing Gene Ontology

In GAS Blog, all the Gene Ontology data is stored in XML based “obo_xml” file. GAS
Blog system parses data from GO file and displays them as blog entry.

As the diagram below, the GAS system categorizes all Gene Ontology and lists the
categories for users to choose. After selecting a category to view, GAS Blog parse GO
terms saved in obo_xml file of the selected category and display terms on web as blog
entries so that users can browse GO terms in web browsers.

Weablog System %E

; Elug;User

!
|
(List GO camgcxr'ies] ;

i

| Select a category |
o view

Parse GO terms |
of selacted categoty | ;

Display GO terms |
on web

Figure 3.11 Sequential Diagram of Parsing GO Terms
3.10.2 Adding New Gene Ontology Term

Information of newly added GO terms is appended to GO file with other terms and
backup in a separated obo_xml file with timestamp for future use of syndicating newly
terms.

As Figure 3.12, registered users have to select a category to add the new GO term. Blog
generates a unique ID for the new GO term according to the ID naming rule. After filling



49

the form of adding new GO term, GAS Blog constructs the new GO term in obo_xml
format, appends it into the GO file of selected category, and creates a backup for the term
as described in earlier section in this chapter.

Weblog System ) i » %

1 Ller! Us%!rﬂ

| ( Select category “CARQ” J

new term |

' To adil new GO term 1

[G&n@r‘aw A unique 1D }— : E ;
I 7 i

| { Filt add GO term form and |

o kk Submit new term »

Append GO term 1o ]
Category *CARD™ 1

i

Backup

Lcategay “CARD"™
| Parse GO e

1

|
: (wewanc«ommin \
! Category “CARQ™
' imchuding theeoha
added by Usert

i

i

|

|
. ‘ .

i View GO term in
e i )

|

i

;

Figure 3.12 Sequential Diagram of Adding New GO Term
3.10.3 Annotating Gene Ontology Term

As Figure 3.13, registered users have to select the category and term before annotating.
After filling the form for annotating term, GAS Blog system writes annotation
information in the format described earlier in this chapter. Annotation can be viewed by
other users if they browse the same term.



50

Weblog Systen i i

usi;rl Us'sz
i
E
t
|
l
!

|
Select term with
| 4
0 “CARC:DCOOD3I”
! In Category  “CARO™
E \_ i annotate
|

}

i (Fial annotation foom and
P L Submit aneotastion

Welte annotation to 1
annatation {ile

. i View tha term with
l $ 2 1D “CARO:GQ0002™
X i In Category “CARQ™

Figure 3.13 Sequential Diagram of Annotation
3.10.4 Syndication of Newly Added Gene Ontology Term

As described in earlier section of this chapter, narrowcasting is used to syndicate newly
added GO terms to registered users who shows interest to their categories. Although
registered users are from various groups, syndication of newly added GO term is based
on users’ interest rather than groups.

For example, U1G1, U2G1, and U3G1 are GAS users from “Group 1” and U1G2 is from
“Group 2”. Among them, U1Gl, U2Gl, and U1G2 showed interest in the same
categories Adult Mouse Anatomy. At one time, Ul1G1 adds a new GO term to category
Adult Mouse Anatomy. After U1G1 adding the new term, U3G1 adds interest to category
Adult Mouse Anatomy. However, GAS Blog only notices U1G1, U2G1, and U1G2 about
the new term through RSS because U3G1 adds interest after U1G1 adding the new GO
term. At another time, U2G1 cancelled the interest in category Adult Mouse Anatomy,
and U1G1 adds another new term to category Adult Mouse Anatomy. At this time, U1G1,
U3Gl1, and U1G2 get the notice from GAS Blog, since U2G1 cancelled the interest in
this category. Figure 3.14 shows the example in a sequential diagram.



51

X 7S S

lﬂlgi 02}31 U3g1 mkz

|
Add Interest 1o catagory } ( Ad interast to category ] | Add smeresa to catagory
|
!
!

*Adult Mouse Anatomy” “ Aduit Mouse Anstomy ™ *Aduit Mouse Anatomy”

1

Natlos U1G1 |

by RSS category “Adult

Maouse Anatomy”

3
( Add 2 rew term l l
in category

k " Adult Mouse Anatony ™ J |

1
[ I Add interest io category t
l | “Mui‘l Mouse Anatooy” !
| B N |
| | | !

Notice U1G1 U361 add
WRSS | | inerston the | |
o category  “Adult
Nogwagém [ Mousa Anatormy” § E
l -fl after annotation i l
Notice 1G2 ' | bappened,
| byRSS | 1 )
| Cancel the interest i i
On catagory
I “Adut Mouss Anatomy™ 1 l
Add anothex rew term I, i o |
in category 1 Mo noice for U1GY
o i v » E l Rss

l\ Adult Mousa Anatomy } . Siee U261 qanceled ! |
! |
| |
| |
| !
| >
i J

T T

|
T " limarest on the
' |
| l
l Neties U152 I
} |
| |

Figure 3.14 Sequential Diagram of Syndicating Newly Added GO Terms
3.10.5 Syndication of Annotation

The process of syndicating annotation is similar to the syndication of newly added GO
term. It narrow-casts to registered users who showed interest in category the annotation
belongs to, no matter what groups users joined.

Figure 3.15 indicates the process of annotating to terms. U1G1, U2Gl, and U3G1 are
GAS users from “Group 1” and U1G2 is from “Group 2”. Among them, U1G1, U2Gl,
and U1G2 showed interest in the same categories Adult Mouse Anatomy. At one time,
U1GI1 annotates to one of terms in category Adult Mouse Anatomy. After U1Gl
annotating to the term, U3G1 adds interest to category Adult Mouse Anatomy. However,
GAS system only notices U1G1, U2G1, and U1G2 through RSS because U3G1 adds
interest after U1G1 annotating the GO term. At another time, U2G1 cancelled the interest
in category Adult Mouse Anatomy, and UlGl annotates to category Adult Mouse
Anatomy again. At this time, U1G1, U3G1, and U1G2 get the notice from GAS system,
since U2G1 cancelled the interest in this category.



52

— Ah A A

vtk vabs ks wibz
| | I |
i
|
!
|

Add inisrest (o catagory Add interest 1 category
*Adult Mouse Aralomy™ *Aduit Mouse Anatomy”™

I i

Add intares! o calegory |
*adull Mouse Anatomy” |

L
( Anncate in category

f
|
[
I
|
le ‘ |
E {_ “/Adult Mouse Anatomy” | |
l l l Add interest ia category '
[ | | “Adult Mouse Aralomy” [
g
| | | |
] AN
Notics U1G1 l l 1 since U3G1 add i l
E by s S - | [sionpes ] |
" 1 categary  * Adult
i NogwagZSGi ’ 1 Mousa Anatermy™ i '
b l I r annotation ; !
Nefice U1G2 A
‘ | s _| ! X
E | Can(;:l the interest | |
cat
f | { “adutt Muus:?\onzimy" | l
[ r Anroats in category No notics for Ut 1 .
o L “Adult Mouse Andtomy ™ l agno(%mn by Rss‘ ; l
- E 2G1 ¢ ot
: Notcn U161 | T“'; Ttareston e | |
o U | category  *“Adult
f by R3S . | | Mouse Aratory” | |
[ | Mot l ! !
¥
} .
! I Notics U1G2 I ,i I
; | yess | ! =
' | | i !

Figure 3.15 Sequential Diagram of Syndicating Annotations
3.11 GAS Blog Module Implementation

This section talks about the implementation of each module which was mentioned in
section of overall architecture, earlier of this chapter.

3.11.1 GO Creator

Gene Ontology Creator is a module that creates newly found Gene Ontology term
according to Gene Ontology data inputted by users. It implements the usage scenario of
“adding new Gene Ontology term” discussed in earlier section of this chapter.

This module provides users a graphical user interface of a form as Figure 3.4 to collect
the data from users’ input. Since all Gene Ontology terms is stored in XML-based format
files, GO Creator composes the data getting from user interface into XML fragment
following the same schema structure described in section 3.5.3 and save to the end of
related Gene Ontology file.

Meanwhile, GO Creator also saves the newly added term separately as backup in separate
directory with similar schema structure. The only difference between regular ontology



53

schema and the backup schema is that the backup has one more namespace for time that
the term is added. In this way, GAS Blog can easily tell existing gene ontology terms and
newly added ones apart, and track in time sequence.

The pseudo code is as followed to reflect the logic description described above.

- e e e v e e o e v e e em e e e Am e S e M e e e e e e e e e e e e e e e e M T G e e e e e = e e = e e e e e e e W

1
' !
Lo !
: Ssameas=$_ POST['sameas']; i
I $partof=$ POST['partof']; '
: Sdescription=$ POST['description']:; 1
: Sfile=S_POST['file']; :
1 Sxml=simplexml load file (ABSPATH.'"/wp-content/owl$file"); '
' S$new_path=ABSPATH."/wp-content/new protein/s$file"; 1
1 if(file_exists(Snew_path))$new_xml=simplexml_ load_file(Snew_path); |
: else( !
: Snew xml=new SimpleXMLElement ("<obo :
t xmlns:xlink=\"http://www.w3.0rg/1999/xlink\"></cbo>"); '
: $directory=dirname ($new_path); '
: if (!is_dir(Sdirectory))mkdir($directory); :
) } !
X Sterm=$xml->addChild ('term'); :
! $new_term=Snew_ xml->addChild('term'); :
. Sid=S POST['id']; I
| $term->addChild('id',$id); :
1 Snew term->addChild('id’,$id); '
}

! |
! I
! I
! I
! 1
! '
! I
! ]
! )
! i
! !
! 1
! |
! )
! i

global Suser ID, Suserdata;

Snew xml->asXML($new path);

if (Sxml->asXML (ABSPATH."/wp-content/owl$file™) )echo "Add Item
Successfully!”;

else echo "Add Item Failed!";

$category=str replace(GO_EXTENSION,"",6 $file);

wp_redirect (get_option('home')."/wp-
includes/single.php?category=Scategory&ID=5id");
?>

3.11.2 Annotation Processor

Annotation Processor provides a friendly form interface as Figure 3.5. As mentioned in
section 3.7.3, text field of “Evidence Code” can provide users with possible evidence
codes according to the first few letters inputted in it. This is implemented by AJAX. GAS
Blog compare the text in filed of “Evidence Code” with all the possible evidence codes
described in section 3.5.4, and only lists out the one that begin with the text in the field of
“Evidence Code” to help users choose the proper evidence code and, on the other hand,
decrease the opportunity of typo.

Similar to GO Creator, Annotation Processor also composes XML fragment for newly
added annotation according to the schema described in section 3.5.4. As mentioned
earlier of this chapter, annotation data is not a part of Gene Ontology term schema, and
they are saved in separate directory for convenient maintenance. Therefore, there should



54

be a way to connect the annotation with its owner gene ontology term. XPointer is used
in GAS Blog to do this task.

XML Pointer Language (XPointer) allows hyperlinks in a XML to point to specific parts
of the same or another XML document®'. In this way, referencing a Gene Ontology
term’s address in its annotation’s namespace allows the annotation points to its owner
Gene Ontology term. This referencing address in annotation namespace will be used by
GO & Annotation Connector to link Gene Ontology term and annotation together. Details
about connecting them will be addressed in later section of this chapter.

1
)
...... I
$category =$ POST['category']; :
$evidence code =$_POST['ec input']; '
Suser = wp_get_current_user (); :
//deal with uploadad image I
$path info = pathinfo($ FILES['image']['name']); :
$save_path="wp-content/upload/".time().”.".$path info['extension']; !
Sis_attachment=($ FILES['image']['name']!=""); :
if($is_attachment) :
if (!lmove_uploaded file($ FILES['image’']['tmp name'], 1
$save path)) { '
print "Upload failed!"; :

exit; 1

} !
Spath=ABSPATH. "/wp-content/annotationScategory"”. !
ANNOTATION_ EXTENSION; ]
if (file exists(Spath))Sxml=simplexml load file($path); :
else{ 1
$xml=new SimpleXMLElement ("<annotations '
#mlns:xlink=\"http://www.w3.0rg/1999/x1ink\"></annotations>"); :
$directory=dirname ($path) ; '

if (!is dir($directory))mkdir($directory); :

} ]
Sannotation=$xml->addChild ("annotation") ; :
Sannotation->addAttribute ("xlink:type", "simple"); :
$annotation—>addAttribute("xlink:href",get_option(‘home')."/wp— '
content/owl$category"”.GO EXTENSION."#Scomment post ID"); '
Sannotation->addChild('evidence code', Sevidence code); '
...... N
if ($is_attachment) :
$annotation->addChild('attachment’,basename ($save path)); )
$doc = new DOMDocument ('1.0"); '
$doc~->formatOutput = true; !
$domnode = dom import simplexml ($xml); ]
Sdomnode Sdoc~->importNode ($domnode, true); :
Sdomnode = $doc->appendChild(Sdomnode) ; }
Sdoc->save (S$Spath) ; :
wp_redirect(get option{('home')."/wp-includes/single.php?category= :

I

3 http://www.w3schools.com/xlink/xlink intro.asp



http://www.w3.org/T999/xlink/%22%3e%3c/annotations

: Scategory&ID=Scomment post ID");
I?>
L

3.11.3 GO & Annotation Connector

GO & Annotation Connector is a module to connect Gene Ontology terms with their
annotations since they are stored separately in GAS Blog system. This process can also
be called XML sequencing. This module relies on XPointer, with the reference address
from annotation namespace; it finds out the owner Gene Ontology for each annotation,
appends the annotation to its owner Gene Ontology terms, and stores the data in memory
as a virtual XML file for other modules to use, for example, Syndication processor, GO
Data Output processor, etc.

As mentioned before, XPointer enables XML node reference to another XML node with
given address. Since annotation is stored separately with original GO terms, XPointer
connects them together. In this way, annotation can be added to Gene Ontology without
modifying the original Gene Ontology file.

Currently, PHP does not support XPointer while parsing XML. Under this circumstance,
this thesis developed a module — GO & Annotation Connector to do so. While parsing a
Gene Ontology file as XML, GAS Blog checks if its annotation file exists since
annotation is stored in a separate file with same base name. If annotation file exists, the
module will append annotation node as children to the GO term node according to the
XPointer address; otherwise, the module will parse GO file as a single XML file. A
virtual XML file will be generated in memory as the result of integration process in order
to let other module use it.

| <?php

1 function integrateOWLandAnnotation($owl path) {

: Sannotation path=str replace (ABSPATH."\wp-

: contentl\eowl"”,ABSPATH."\wp-content\annctation”, Sowl path);

! Sannotation path=str replace(basename($Sowl path,GO_EXTENSION) .
: GO_EXTENSION, basename ($owl__path, GO_EXTENSION) .ANNOTATION EXTENSION,
I Sannotation_ path);

: if (file exists($annotation path)){

: Sresult xml=new SimpleXMLElement ($Sowl path, NULL, TRUE);

] Sannotation xml=simplexml load file(Sannotation_ path):;

: Sannotations=Sannotation xml->xpath("//annotation”);

: foreach (Sannotations as $annotation) {

| Shref=Sannotation->attributes()->href;

: Sid=substr ($href, strpos (Shref, "#')+1);

[ $gos=Sresult xml->xpath("//term[id='$id']");

\ $go=3gos[0];

' Sgo_annotation=Sgo->addChild("annoctation");

1

| >evidence_ code); )

: Sgo_annotation->addChild("content", Sannotation->content) ;
] S$foaf=$go annotation->addChild{("foaf");

: $foaf->addChild ("author", Sannotation->foaf->author) ;



Sgroups=$foaf->addChild("groups"); :

foreach ($Sannotation->foaf->groups as Sgroup) Sgroups- '
>addChild("group”, Sgroup—->group) ; :
Sgo_annotation->addChild("attachment", Sannotation- |
>attachment) ; :
Scategory=str replace (GO EXTENSION,"", 1
str_replace (ABSPATH. "\wp-content\owl”,"", $Sowl_path)); :
$go->addChild("category"”, Scategory); '

} )
return $result xml; :

}else return simplexml load file(Sowl path):; !

|

1

1

3.11.4 User Data Collector

User Data Collector is a module that collects users’ information such as user name, email
address, user interested gene ontology categories, user groups joined, friendship with
other users, etc., through a form interface and save in MySQL database for other module
to use such as Graphical FOAF Generator.

This section takes adding friend information as an example for pseudo code, and adding
the other user information to MySQL database is similar to this one.

<?php
Suser ID=$ GET['user'];
S$friend name=$ GET{'friend'}:

$friends=Swpdb->get results("select * from Swpdb->users where
user leogin='$friend name’");
if(sizeof ($friends)==0) {
echo "user name does not exist!";
exit;
}
$friend ID=S$friends{[0]->ID;
if ($friend_ID==Suser ID) {
echo "you can not add yourself as a friend!";
exit;
}
Swpdb->query ("SELECT wp foaf.* FROM wp foaf WHERE

AND friendl ID=S$friend ID");
if ($wpdb->num rows==0) {
Swpdb->query ("INSERT INTO wp foaf (friendl ID, friendZ ID) VALUES
(Suser ID,S$friend ID)");
echo "Friend added successfully!";
exit;
}

1
1
]
!
]
]
1
]
]
1
1
1
1
i
'
1
]
!
]
t
1
H
1
1
|
)
1
|
]
1
i
t
1
'
1
1
1
]
]
: echo "Sfriend name is already your friend!";
'



57

3.11.5 Graphical FOAF Generator

Graphical FOAF Generator is a module providing users a visual image of the FOAF
network all over GAS Blog as Figure 3.9. The module generates a dynamical image with
the data from user data storage (MySQL database), and display it in a web page.

There are three classes in Graphical FAOF Generator: FriendNode, Relationship, and
GraphicalFOAF. Their relationship is as below.

Session

HuserArray
+HriendshipArray

\VZ v,

FriendNode Reiationzhip
Ex 2 b Lstart) | int
Ly 2 int Lstarty : int
LD 1 int hendX @ int
Ldescription | sting HandY ! int
-narme | string Hdascription © string
-node_width : int HigOnLine() | bool
prode_height : int FgetDeseription() | string
getX() | int
HoalY() :int
HisFriend{) : book
sisCoondinatesinBoundl) : bool
getDescription() ; string
geiilams() : slring

Figure 3.16 Sequential Diagram of Graphical FOAF Generator

GraphicalFOAFNetwork is the output web page which displays the dynamically
generated image. It calls class of GraphicalFOAF to generate the image, and call class of
TooltipText to display tooltip when it receives the event of users’ mouse hovering on the
image.

'
<body> :
<script type="text/javascript" src="js/wz tooltip.js"></script> :
<script> 1
function showTooltip () { :

var xmlHttp; :
try{xmlHttp=new XMLHttpRequest();} 1

catch (e){ '
try{xmlHttp=new ActiveXObject ("Mgxml2.XMLHTTP");} !

catch (e){ :
try{xmlHttp=new ActiveXObject ("Microsoft.XMLHTTE");} '

catch (e){ ]

alert ("Your browser does not support AJAX!"); :



return false;

}

xmlHttp.onreadystatechange=function () {
if (xmlHttp.readyState==4)Tip(xmlHttp.responseText, SHADOW,
true) ;
}
xmlHttp.open ("GET", "TooltipText.php?x="+ window.event.clientX
+"&y="+window.event.clientY, true);
xmlHttp.send(null) ;
}
</script>
<img src="GraphicalFOAF.php" onmousemove="gshowTcoltip ()"
onmouseclick="UnTip (}"/>
</body>
</html>

GraphicalFOAF is the core of generating Graphical FOAF image. It composes object
for users and their relationship in GAS Blog system. All the user and relationship objects
are stored in an array. These arrays will be stored in browser session after drawing the
user nodes and their relationship onto image in order to let TooltipText to access the data.

<?php

$image width=1200;

$image height=630;

$image = imagecreatetruecolor($image width, $image height);
imagefilledrectangle ($image, 0, 0, $image width, Simage height,
imagecolorallocate(Simage, 245, 245, 245));

require once('FriendNode.php');

$author array=array();

$authors = $wpdb->get_results("SELECT 1D, user nicename from $wpdb-
>users");

Jlallocate color for groups

$group_colors=array();

Sgroups=$wpdb->get results("select ID,name from wp group"};

/ldraw image explanation rectangle
imagefilledrectangle ($image, 0,0, 90, sizeof(Sgroups) *14+10, imagecoloral
locate ($image,220,220,220));

Sy=8;

foreach (Sgroups as Sgroup) {

Sgroup colors[$group-
>ID]=imagecolorallocate($image, rand(0,255),rand (0, 255), rand (0, 255));
imagerectangle ($image, 10, Sy, 30, $y+10, S$group colors[Sgroup-

>ID]);
imagestring($image, 3,33, $y-1, $group->name, $group _colors|[Sgroup-
>ID]);
Sy+=14;
}
imagesetthickness ($image ,2);
SSdraw user node


http://Http.responseText

- - — = m e A = e St e Em e e e e hm G e W e e ma e m e e S v Me e MR S e mm WM MR W e e M M W e M MR e e w e e Mm e e v e o e e

foreach ( (array) Sauthors as $author) {
$x=rand (90, $image width-90);
Sy=rand (90, $image height-90);

Sdescription="<div><h6>User Name: $author->user nicename</hé>";
$user groups=$wpdb->get results("SELECT wp_group.name,wp group.ID
from wp group left join user group on wp _group.ID=user group.group ID

where user_group.user_iD=Sauthor->ID");
$color;
if (sizeof (Suser groups)==0)$description.="No groups joined."”;
else $description.="Groups:";
foreach($user groups as S$group) {
Sdescription.="<br>&nbsp; &nbsp; &nbsp; &nbsp; " .$group->name;
$color=$group colors[Sgroup->ID];
}
Suser_categories=Swpdb->get results("select distinct category,time
from user_interested category where user_ ID=Sauthor->ID");

if (sizeof (Suser categories)==0)S$description.="<br>No interested in
any categories”;
else 3description.="<br>Interested Categories:";

foreach(Suser categories as $category) {
Sdescription.="<br>&nbsp; &nbsp; &nbsp; &nbsp; ".Scategory->category;
}
$author array[$author->ID]=new FriendNode ($author-
>user_ nicename, $image, $x, 35y, Sauthor-
>ID, $description."</div>",$color);
}
S$relationships=$wpdb->get results("select * from wp_foaf");
require once('Relationship.php');
Srelaticnship array=array();
foreach($relationships as $relationship) {
$relationship array[$relationship->ID]=new
Relationship($image, Sauthor array([Srelationship->friendl ID]-
>getX (), $author array($relationship->friendl ID]-
>getY (), Sauthor array([$relationship->friend2 ID]-
>getX(),$author array[$relationship->friend2 ID]-
>getY(),imagecolorallocate ($image,0,0,0), "Friendship between
".$author array[$relationship->friendl ID]->getName()."
and”.$author_array{$relationship->friend2 ID]->getName());
}
header ("Content-type: image/png");
imagepng($image) ;
imagedestroy ($image) ;
session_start();
$_SESSION['authors'] = Sauthor_ array;
$ SESSION['relationship']=$relationship array;
>

FriendNode is an object for GAS Blog users. It contains the following information
(attributes) of users.

e X: X coordinator of node position;

® Y:Y coordinator of node position;



60

e ID: user ID in GAS Blog;

e Description: the text displayed in node tooltip such as user group joined,
interested gene ontology categories;

o Name: user name;
e Node width: the width of user node on image;
e Node height: the height of user node on image.

To ensure this information can be accessed outside of this class, it provides the some
functions:

o getX: get the X coordinator of a user node on imagel
e getY: get the Y coordinator of a user node on image;

e isFriend (friend ID): return a boolean type value to indicate whether the
friend ID parsed in is a friend with the current user object or not;

e isCoordinatesinBound (mouse X, mouse Y): this is a function to check if the
coordinates of mouse is in range of user node so GraphicalFOAF module can
decide whether display tooltip or not. User node tooltip will only be displayed
when coordinator of mouse in bound of user node object on image;

e getDescription: get the description of user node in order to display in tooltip;

e getName; get the user name.

I <?php '
class FriendNode({ !
var $x; :
var Sy; :
var $ID; !
var Sdescription; '
var S$name; :
var $node width; 1
var $node height; '
function FriendNode ($name, $image, $x, Sy, $ID, $description, $node color 1
) ;
if (Simage!=""){ :
Snode image = RBimagecreatefromjpeg("images/node.jpeg"); 1
$this:>node“width=imagesx(Snode*image); ;
$this->node_height=imagesy($node_image); !
Sthis->x=$x+$this->node width/2; :
$this->y=$y+$this->node height/2; '
Sthis->description=$description; 1
imagecopy ($image, $node_ image, $x, 5y, 0,0, $this->node width, $this- X
>node_ height); :

e et EE R



}

}

}

>node_height-4, $name, $node color);

>node_height, Snode_color);

function getX () {return $this->x;}
function getY () {return S$this->y;}
function isFriend($friend ID){

friendl ID=SID and friend2 ID=$friend ID or friend2 ID=$ID and
friendl ID=Sfriend ID");

function isCoordinatesInBound(SmouseX, SmouseY) {

>node_width&&SmouseY>=$this->y&&SmouseY¥<=$this->y+Sthis—
>node_height) return 1;

function getDescription () {return $this->description;}

function getName () {return $this->name;}

imagestring($image, 7,$x+3this->node width-2,$y+Sthis-

$this->name=Sname;
imagerectangle ($image, $x, $y, $x+Sthis->node width, Sy+S$this-

}
$this->$ID=$1ID;

$count=mysql_query ("SELECT COUNT(*) as 'count' from wp foaf where

return Scount->count!=0;

if (SmouseX>=Sthis->x&&SmouseX<=$this->x+S$this-

return 0;

Relationship is an object of friendship among GAS Blog users. It contains the following
information (attributes):

startX: the start X-coordinator of relationship line on image;
startY: the start Y-coordinator of relationship line on image;
endX: the end X-coordinator of relationship line on image;
endX: the end Y-coordinator of relationship line on image;

description: the text displayed on tooltip;

As FriendNode object, it also provides some functions for accessing these data externally.

isOnLine (mouse X, mouse Y): to check whether the mouse coordinator is on
relationship line. GraphicalFOAF module only displays tooltip when the mouse
hover on relationship line in the image;



62

e getDescription: get the relationship description for tooltip.

class Relationship({
var $startX;
var $starty;
var SendX;
var S$endyY;
var Sdescription;

function
Relationship ($image, $startX, $start¥, SendX, $SendyY, $color, Sdescription) {
if ($image!=""){
Sthis->startX=S$startX;
Sthis->starty=SstartyY;
$this->endX=$endX;
Sthis->endY=$endY;
imageline ($image, $this->startX, $this->start¥Y, $this->endX, $this-
>endY, $color);
$this->description=$description;
}
}

{
| :
! I
! ]
! I
! 1
! 1
! ]
! ]
! )
! 1
! 1
! 1
! 1

1
i
: .
1
! 1
! ]
! 1
! I
! '
! 1
! I
! !
! 1

)
' |
! I
! 1
! 1
! 1
! 1
! 1
: function isOnLine ($x,3y) { 1
! if ($this->startX!=$this->endXx) { X
! Sxl=S$this->startX; :
X $yl=$this->startY; 1
' $x2=$this->endX; .
: $y2=$this->endY; !
' Sa=(Syl-$y2)/($x1-5x2); i
] Sh=($x1*sy2-5$x2*Syl) / ($x1-5x2); :
' $standardy=sSa*S$x+$b; |
! if (Sy>=SstandardY- X
: 4088Sy<=Sstandard¥+40&&$x>=min ($x1l, $x2) &&S$x<=max ($xl, $x2) &&Sy>=min (Sy :
| 1, 5y2) &&Sy<=max ($yl,Sy2))return 1; '
] return 0; :
: }else{ H
! if ($x<=Sthis->startX+40&s$x>=Sthis->startX- :
v 40868x>=min (Sx1, $x2) &&Sx<=max ($x1, $x2) &&Sy>=min (Syl, $y2) &&Sy<=max ($yl :
| /$y2))return 1; 1
: return 0; :
f } :
: } |
t
i t
! '
! t
! ]
! 1
v 1

function getDescription() {return $this->description;}

Tooltiptext is a class to display tooltip on Graphical FOAF Network image. It retrieves
array of FriendNode and Relationship object from session, and check what kind of tooltip
should be displayed according to the mouse coordinator receiving from class
GraphicalFOAFNetwork.



T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T i
1 <?php '
: require once('FriendNode.php'); :
: require once('Relaticnship.php'); '
' session_start(); '
: $authors=$ SESSION{'authors'}]; ;
1 $x=$_GET['x']; '
\ Sy=S_GET['y'l; :
: foreach ($Sauthors as S$author) { [
' if (Sauthor->isCoordinatesInBound ($x,S5y)) { :
: echo Sauthor->getDescription(); :
1 exit; i
1

I } '
L) :
| Srelationships=$ SESSION['relationship’'] )
: foreach (Srelationships as $relationship) :
: if (Srelationship->isOnLine ($x,$y)) { '
1 echo Srelationship->getDescription(); :
i exit; )
1 1
1 I
t '
1 1
! )
] I

{

3.11.6 Syndication Processor

Syndication Processor is the module to generate dynamic syndication feeds of newly
added Gene Ontology or existing Gene Ontology annotation according to users’ interest
on Gene Ontology categories. The schema of syndication feeds is introduced in section
3.5.7.

GAS Blog uses templates of syndication to build up main structure of syndication feeds,
and fill the content according to the data prepared by module GO & Annotation
Connector using script language PHP.

GAS Blog uses SimpleXMLElement, a class for XML operation, to load real or virtual
XML files, and uses XPath to query useful information to fill in syndication feeds
templates.

This section takes annotation syndication code as pseudo code as example; the
syndication processor code for new found gene ontology is similar to this one.

<?php

header ('Content-Type: text/xml; charset=UTF-8' , true);
Smore = 1;

global Srss_user ID;

?>

<?php echo '<?xml version="1.0"

encoding=""'.get option('blog_charset').’'"2'.'>"; 2>
<?php

header ('Content-Type: text/xml; charset=UTF-8' , true);
Smore = 1;



o - - - - m =t e mm e e = = v T v = R R M Em M e M e e A e e e e w e am = e e = G e A R e e e = A T M e e v e e e em e M em R M e e e e M M S e v mm wm e mm e mm e e

global Srss user ID;

?>
<?php echo '<?xml version="1.0"
encoding=""'.get_option('klog charset').'"?2'.'>"; 2>

<rss version="2.0"
xmlns:content="http://purl.org/rss/1.0/modules/content/"
xmlns:wfw="http://wellformedweb.org/CommentAPI/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rss—foaf="http://rss—-extensions.org/wiki/Rss—-foaf”
xmlns:rss-pm="http://rss-extensions.org/wiki/Rss-foaf"
xmlns:lom~gen="http://kr.nada.kth.se/el/ins/schemas/lom-

general”
xmlns:lom-1life="http://kmr.nada.kth.se/el/ims/schemas/lom-

lifecycle"
xmlns:lom-meta="htip://kmr.nada.kth.se/el/ims/schemas/lom~

metadata”
xmlns:lom-tech="http://kmr.nada.kth.se/el/ims/schemas/lom~

technical™
xmlns:lom~edu="http://kmr.nada.kth.se/el/ims/schemas/lom~

educational”
xmlns:lom-rights="http://kmr.nada.kth.se/el/ims/schemas/lom~

rights"”

<?php do_action('rss2 ns'); 2>
>

<channel>
<title><?php bloginfo rss('name'); wp title rss(}): ?></title>
<link><?php bloginfo rss('url’') ?></link>
<description><?php bloginfo rss("description") ?></description>
<pubDate><?php echo mysgl2date('D, d M Y H:i:35 +0000°',
get lastpostmodified('GMT'), false); ?></pubDate>
<generator>http://word ;
bloginfo rssf'version’); ?></generator>
<I§nguage><?php echo get option('rss language'); ?></language>
<?php
do _action('rss2 head'):
Sinterested categories=Swpdb->get results("select distinct
category,time from user interested category where
user ID=$rss_user ID");
foreach ($interested categories as $category):
Spath=ABSPATH."/wp-content/annotation$category~-
>category” .ANNOTATION EXTENSION;
if(!file~existsT$path))continue;
Sannctation xml=simplexml load_ file(Spath);
$annotations=Sannotation xml-
>xpath ("//annotation{//@time>$category->timel");
foreach (Sannotations as S$Sannotation) :

7>
<item>
<title><7?php
Sxml = simplexml load file (ABSPATH."/wp-
content/owl$category->category”.GO EXTENSION) ;
Shref=Sannotation->attributes()->href;


http://purl.org/rss/l.0/modules/content/
http://rss-extensions.org/wiki/Rss-foaf
http://rss-extensions.org/wiki/Rss-foaf
http://kmr.nada.kth.se/el/ims/schemas/lom-
http://kmr.nada.kth.se/el/ims/schemas/lom-
http://kmr.nada.kth.se/el/ims/schemas/lom-
http://wordpress.org/?v=%3c?php

$id=substr (Shref, strpos (Shref, "#')+1);
Sterms = $xml->xpath("//term[id=\"S$id\"]");
Stitle=ucwords ($terms[0]->name) ;
Sannotator=Sannotation->foaf->author;

echo $title." by ".$annotator."” at ".S$annotation->timestamp;
?></title>
<link><?php
Stime=$Sannotation->timestamp->attributes()->time;
echo get option('home')."/wp-

1

1

1

1

i

]

1

1

t

1

1

1

}

I

i
includes/single. Pcategory=Scategory-

' ludes/ le.php?cat Scat

I >category&#38;ID=81d&#35;annotation-$time”;

: ?></link>

: <annotations><?php echo get option('home')."/wp-

i includes/single.php?category=$category—-

: >category&#38;ID=$ids&#35;annotation-$time"”; ?></annotations>

: <dc:annotator><?php

i echo $annotator;

: ?></dc:annotator>

1 <!-- FOAF section-->

: <rss-foaf:type name="<?php //full name here, if user does

: not have full name registered, use user name instead

1 echo $annotator;

' 2> />

: <rss~foaf:group name="<?php //category name here right now

1 echo $category->category;

[} a1

i 2> />

' <?php

]

]

'

!

I

I

t

]

1

1

]

1

1

i

!

]

1

1

!

I

]

1

1

1

]

1

I

1

1

J

|

i

1

)

]

]

]

I

|

1

]

]

|

wp foaf.friendl ID=Srss user_ID");
foreach(Srelationships as Srelationship):
2>
<rss-foaf:rel to="<?php echo Srelationship->user nicename;
>"/>
<?php
endforeach;
$relationships=3wpdb->get results("select user nicename from
wp_users left join wp_foeoaf on wp foaf.friendi ID=wp_users.ID where
wp foaf.friend2 ID=Srss user ID");
N foreach($relationships as $relationship):
2>
<rss-foaf:rel to="<?php echo S$relationship->user nicename;

25" />
<?php endforeach;?>
<!-- learning object section -->
<dc:identifier><?php echo $id ?></dc:identifier><!-- post id-->
<dc:title><?php echo $title; ?></dc:title><!-- post title-->

<dc:language>en</dc:language>
<dc:description><?php echo Sannotation->content;
?></dc:description>
<dc:subject><?php //cated
echo Scategory->category;
?></dc:subject>

1y frame he &
Pyoname nere




LA LN

echo Sannotation- >ev1dence code,
?></dc:evidence code>
<lom-gen:structure>Atomic</lom~gen:structure>
<lom-gen:aggregationlLevel>13</lom-gen:aggregationLevel>
<lom-life:version>beta</lom-life:version>
<lom-life:status>final</lom-life:status>
<dc: publlsher>Lakehead Unlver51ty</dc publisher>

<dc:editor><?php .

name registered, use )
echo $annotator;

?></dc:editor>

<lom-meta:metadataScheme resource="lom-meta;LOMv1l.0"/>

<dc:format>text/html</dc: format> ~

<lom-tech:operatingSystem>Multi-0S</lom-tech:operatingSystem>
<lom-edu:interactivityType>Active</lom-edu:interactivityType>

I
1
]
]
}
]
}
1
)
}
}
1
1
1f user does not have full :
]
!
}
I
!
i
I
]
1
|
I
<lom-edu:type>Exercise</lom-edu:type> :
!
]
I
i
]
}
!
I
|
1
1
}
]
1
L}
)
1
L]
1
]
]
!
1
1
)
)

<lom-edu:interactivitylLevel>Low</lom-edu:interactivityLevel>
<lom-edu:semanticDensity>High</lom-edu:semanticDensity>
<lom-edu:intendedEndUserRole>Manager</lom-
edu:intendedEndUserRole>
<lom-edu:context>School</lom-edu:context>
<lom-edu:difficulty>Easy</lom-edu:difficulty>
<lom-edu:typicallearningTime>PT1H20M</lom-
edu:typicallearningTime>
<lom-edu:language>en</lom-edu:language>
<lom-rights:copyrightAndOtherRestrictions>Lakehead
University</lom-rights:copyrightAndOtherRestrictions>
<dc:rights>RightsBroker:RightsModel</dc:rights>
</item>
<?php endforeach;endforeach; ?>
</channel>

3.11.7 GO Data Qutput Processor

GO Data Output Processor is another output module as Syndication Processor. Difference
between GO Data Output Processor and Syndication Processor is that the former is for
machine clients and the latter is for human users. GO Data Output Processor translates
virtual XML data prepared by GO & Annotation Connector into web page text and
display them in a well-formatted way; therefore human users can read it from their
browser easily.

Similar to Syndication Processor, GO Data Output Processor uses SimpleXMILElement
to load XML files and query with XPath to get the information needs to be displayed on
web pages.



- it - = e - - e e = M e e = e e S el S M e e M AR s T e M m wm Wm e mw We we e me A e e M e M A e me e

<?php
function printEntryDIV(Sterm, $xml, Scategory) {
7>
<div class="entry">
<p>ID: <?php echo S$term->id;?></p>
<p>Name: <?php echo S$term->name;?></p>
<?php if($term~>synonym):?>
<p><?php echo ucfirst(S$term->synonym->attributes()->scope);?>
Synonym: <?php echo S$term->synonym->synonym_ text;?></p>
<?php endif;?>
<p>NameSpace: <?php echo $term->namespace;?></p>
<?php if($term->is a):?>
<p>Subclass of: <a href="<?php
$synonym_terms=$xml->xpath ("//term[id=\"5tam
Ssynonym term=$synonym terms[0];
echo get:option(‘home'y."\wp—
includes\single.php?category=Scategory&ID=Sterm->is_a";
?>"><?php echo $synonym term->name;?></a></p>
<?php endif;?>
<?php if($term->relationship}:?>
<p>Relationship: <7?php
Srelationship=S$term->relationship;

Ly
L
=
53

~q PR N
->ig a\"}]";

Sto_terms=$xml->xpath("//term/id=\"$relationship->to\"j");
$to_term=$to_terms[0];
if (substr count (Srelationship->type,":")>0)echo
str replace("_"," ",substr(Srelationship->type,strpos($relationship-
>type,":")+l))." n;
else echo str replace(" "," ",Srelationship->type)." ";

?><a href="<7php echo get opticn{'home’')."\wp-
includes\single.php?category=$category&ID=Srelationship-
>to";?>"><?php echo $to_ term->name;?></a></p>

<?php endif;?>
<?php if(Sterm->def):?>
<p>Definition: <?php echo $term->def->defstr;?></p>
<?php endif;?>
</div>
<?php



68

Chapter Four
Navigation Gene Ontology Using GAS

Other than the features introduced in last chapter, there is another useful and important
feature of GAS Blog — Gene Ontology Navigation (GON). Gene Ontology Navigation is
a new generation of Gene Ontology querying service based on Web 2.0 and semantic
web technology. Unlike the traditional Gene Ontology search engines such as AmiGO,
GON is guided with FOAF and metadata for more accurate search result. In GAS Blog,
GON can be divided into two sub-navigation modules, one is Collaborative Navigation,
and the other is Generic Navigation.

This chapter starts from introducing what Web 2.0 navigation and semantic web
navigation is and describing Collaborative Navigation and Generic Navigation
respectively.

4.1 Navigation based on Web 2.0 & Semantic Web

Traditionally, Gene Ontology query like AmiGO is completely based on database
searching primitives. After users fill a search form, search engine goes through database
and return all the matched results. Among these returned results, users can also go
through category step by step to narrow down the amount of results and get what they are
looking for. This search process can be considered as a blind search that is guided by a
top-down search mechanism.

Unlike usual methods of searching, new generation Gene Ontology Navigation engine is
based on Web 2.0 technologies and semantic web. Instead of querying through database
tables, it relies on metadata extracted dynamically from Gene Ontologies and their
annotations (Fiaidhi, Mohammed, JAAM, & HASNAH, 2003). Other than that, GON
uses some tag magnet and spelling correction to improve search result accuracy and
relevance.

There are several key differences between the traditional Gene Ontology search engine
and GON.

Query Method: Traditional GO search engines do the query database by SQL statement
and GON perform query by metadata which is more flexible and accurate on query.

Dictionary Support: Dictionary is another important part in Gene Ontology Navigation
engine. It allows GON engine extracts metadata of meaningful word, find semantically
matched information as navigation result instead of information matched on spelling only.

Flexible Metadata Matching: Since traditional GO search engines are based on database
the title in each database table is fixed and can not be modified after the creation;
however, metadata does not have this limitation, it is dynamic and semantic. With
support of dictionary, navigation command does not have to use fixed keyword as
traditional GO search engine, all synonyms of background keyword is acceptable to GON
engine.

b



69

Typo Handling: When users annotate to a Gene Ontology term, GAS Blog provides
possible evidence code to users to decrease the chance of typo. Traditional GO search
engines do not have this feature.

Metadata Extraction: Metadata is important for people and computer to understand
annotation resource and perform query. GON extracts metadata dynamically as keyword
to each annotation according to an algorithm and support of a dictionary. The reason of
extracting metadata is to accommodate the new annotations and tag made by users. This
is even more reliable than using a global ontology for searching. Traditional GO search
engine does not have metadata along with annotation at all.

The following table shows the comparison mentioned above.

Query Method Database Metadata

Typo Handling No Yes

Dictionary Suppert  No Yes

Table 4.1 Gene Ontology Search Engine Comparison Table
4.2 Gene Ontology Navigation

Gene Ontology Navigation in GAS Blog system is consisted by two sub-navigation
services: Collaborative Navigation and Generic Navigation. The former is to search Gene
Ontology and annotation information inside a group and the latter is for search Gene
Ontology and annotation information cross all GAS Blog user groups.

However, these two sub-navigation services have user interface in common. This section
will introduce the common part first and explain the difference on each one later.

4.2.1.1 Common User Interface

The user interface for both collaborative and generic Gene Ontology Navigation is the
same, and they follow the same query grammar and rules. Figure 4.1 below is the user
interface form for navigation.



70

XPath Command:

Figure 4.1 Navigation Form

There is a simple XPath grammar of navigation command for users to fill in the form
shown in Figure 4.1. Using this grammar, navigation services can search according to
specific conditions, fuzzy conditions, or combined conditions. Table 4.2 lists some
sample navigation command below.

select GO term with id

/term[id="MA:0000001"] "MA:0000001"

select GO term with namespace
caro

//term[namespace="caro"

” "

select GO term with annotation

//term[annotation/foaf/author="admin"] A
from user "admin

select GO term with annotation

//term[annotation/evidence _code="TAS"] evidence code "TAS"

select GO term with name
contains "ana"

//term[contains(name,"ana")}




71

Table 4.2 Gene Ontology Navigation Command Table

Moreover, XPath search command conditions can be combined in format of:
//term[namespace="caro"][id="MA:0000001"] or use "and" or "or" to combine several
conditions together like //term[namespace="caro" or id="MA:0000001"] for more
complicated navigation requirement.

4.2.1.2 Gene Ontology Navigation Dictionary

Gene Ontology Navigation relies on a dictionary for the features of flexible metadata
matching, semantic query, and dynamical metadata extraction. The internal dictionary
used by Gene Ontology Navigation engine is WordNet. WordNet is a large lexical
database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of
cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical relations. WordNet's structure makes it a
useful tool for computational linguistics and natural language processing. (Miller,
Fellbaum, Tengi, Wakefield, Langone, & Haskell)

Flexible metadata matching allows users use synonym word of standard background
keyword as query range. Unlike SQL database query statement, keyword/title of each
table is fixed and users can not use other word with similar meaning to perform the query;
however, flexible metadata matching ensures that (Fiaidhi, Passi, & Mohammed, 2004).
For example, navigation command “//term[annotation/foaf/author="admin"]” is a
standard command for searching GO term annotated by author “admin”. However,
instead of calling annotator “author”, some people might want to use the word “writer”
which is a synonym of “author”. With flexible metadata matching technology, GON
engine matches the word “writer” to “author” in background and perform the command

properly.

Semantic query is similar to flexible metadata. Unlike flexible metadata is to match
synonym metadata, semantic query match the result with synonyms. For example,
navigation command ‘‘//term[contains(annotation/description,"home")]” is used to query
the GO terms whose annotation description contains word “home”; however, there might
be some annotators prefer using the word “family”” and they are similar on meaning. At
this time, traditional GO search engines which based on SQL database query are not able
to find out the annotation whose description used the word “family” because they are
different on spelling. GON engines can recognize them after checking the dictionary to
make sure that they are synonyms and return it as matched result.

Dynamical metadata extraction is used to extract metadata dynamically from given
annotation description after looking up the dictionary and extract the meaningful word as
metadata.



4.2.1.3 Gene Ontology Navigation Implementation

72

Gene Ontology Navigation is consisted of three modules: Category Redirection,
Collaborative Navigation, and Generic Navigation. Among them, Category Redirection is
the module shared by Collaborative and Generic Navigation module.

e Category Redirection: Category Redirection is a module to narrow down the
query result into a certain gene ontology category in order to decrease the amount

of un-useful information.

e Navigation Processor: Navigation Processor is used to fill the matched navigation
query result redirected from Category Redirection module into SCORM manifest
format based on navigation types — Collaborative or Generic.

® Metadata Extractor:

Metadata Extractor is a module to extract metadata

dynamically from Gene Ontology annotation description with support of

dictionary.

GAS Blog

Gene Ontology
Navigation

Y‘Na igation Cormmend ‘
l Navigation Command j
[

/(Coﬂabcm’tlve Navigation Rmuﬂ)

Generic Navigation Resull | ~

Figure 4.2 Gene Ontology Navigation Architecture

4.2.1.3.1 Category Redirection Implementation

Category Redirection module accepts navigation command from users’ input and perform
a pre-search for matched Gene Ontology information based on integrated Gene Ontology
and annotation data transferred from GO & Annotation Connector. The pre-search just
count and display the number of Gene Ontology terms matched the query command, and
lead users go through the search output module — Navigation Processor.

The following pseudo code reflects the logic of Category Redirection described above.



o me s e m e e e = G e e AU G e e iy e T M e mm Em e e T m e M e e A e e e M e e e e e e e e R e e e e e

function queryCategory($path, $query command) {
if (is_dir(Spath)){
$dir handle = @opendir($path) or die("Unable to open
Spath<br>");
while($file = readdir($dir handle)) {
if(s$file == "." || $file == "..")continue;
if(is_file($path."/".$file)){
$category=str replace (ABSPATH. "\wp-
content\owl","”, $path).”/" .basename ($5file, GO_EXTENSION) ;
$xml = integrateOWLandAnnotation("$path/$file");
Sterms =$xml->xpath (Squery command);
if (sizeof{Sterms)>0) {
$display_category=basename($Sfile, GO _EXTENSION) ;
7>
<li><a href="query result.php?category=<?php echo
Scategory; ?>&type=<?php echo $ POST['type'l; ?>" name="<?php echo
$category;?>" value="<?php echo $display category;?>"><?php echo
ucwords (str replace("_"," ",$display_category));?> (<?php echo
sizeof (Sterms);?>)</a></1i>
<div id="<?php echo Sdisplay category:?>" name="<?php
echo $display category;?>"></div>
<?php
}
}else if(is dir(Spath."/".sfile))
gqueryCategory (S$path."/".$file, Squery command);
}

closedir ($dir_handle);

4.2.1.3.2 Navigation Processor Implementation

Navigation Processor Implementation for Collaborative and Generic Navigation is
similar. A condition statement is used in Navigation Processor to handle the different
output SCORM manifest in code. For Collaborative Navigation, GON appends some
XPath command by the end of query command collected from users’ input to limit the
range of query in the users’ group. As for Generic Navigation, GON perform query
command from users’ input.

Following pseudo code reflects the logic mentioned above.



<?php
require once("../wp-blog-header.php™);
header ('Content-Type: text/xml; charset=UTF-8' , true);
echo '<?xml version="1.0"
encoding="'.get_option('blog charset').'"2?'.'>";
$query_type=$ GET['type'];
global Suser ID;
session_start();
$command=$ SESSION['command'];
Suser groups=array/();
if (Squery type=="groupwise") {
$groups=Swpdb->get results("select wp group.name from wp_ group
left join user_group on user_ group.group ID=wp_ group.ID where
user_group.user ID=Suser 1D");
if (sizeof (Sgroups)>0) {
$group command="[";
foreach ($groups as $group) {
$group command.="annotation/fecaf/groups/group=\"$group-
>name\" or";
array push($user groups, Sgroup->name) ;
}
Sgroup command=substr ($group command, 0, -3);
Sgroup command.="]";
$command.=Sgroup command;
}
}
Scategory=$ GET{'category'];
require_oncE(ABSPATH."wp~
content\piugins\SemanticFeatures\IntegrationFunction.php");
$xml=integrateOWLandAnnotation (ABSPATH. " \wp-
content\owl"”.Scategory.GO_EXTENSION) ;
Sterms=$xml->xpath (Scommand) ;
2>

4.2.1.3.3 Metadata Extractor Implementation

Metadata Extractor dynamically extracts metadata from annotation descriptions of Gene
Ontology terms with support of dictionary WordNet.

After receiving annotation description from Navigation Processor, Metadata Extractor
checks each single word of the desciption in dictionary and if it is a noun, Metadata
Extractor will consider it as a valid metadata. After extracting all the metadata from
annotation description, Metadata Extractor send all the metadata back to Navigation
Processor to continue the navigation task.

The following pseudo code reflects the logic mentioned above.



e o v e e e o Em A e e e e Mm e A e G e MR e m e R e R mm e AR e e S e e SR e e A me S e e e e m me e e e Ee e e e

function extractMetadata(S$string array){
Smetadatas=array();
foreach($string array as $string){
$words=explode (" ", $string);
foreach (Swords as $word) {
Sword array=str split(Sword);
if(ord($word_array[0])<65|lord($word_array[0])>122)
$word array([0]="";
if (ord{($word arraylsizeof($word array)-1])<65]|
ord($word_array[sizeof ($word array)-1])>122)
Sword arrayl[sizeof ($word array)-1]="";
Sword=implode ("", Sword array);
$result=mysql_query("select distinct wordnet30.synset.pos
from wordnet30.synset left join wordnet3(.sense on
wordnet30. sense.synsetid=wordnet30.synset.synsetid left Jjoin
wordnet30.word cn wordnet30.sense.wordid=wordnet30.word.wordid where
wordnet30.word.lemma like 'Sword' and wordnet30.synset.pos='n'");
$num_rows = mysql num_rows (Sresult);
if ($num_rows!=0&&!in_array(Sword, $Smetadatas))
array_push($metadatas,$word);
}
}
for ($i=0;%i<sizeof (Smetadatas) ;$i++) {
Smetal=%metadatas{$i]:
for($j=$i+1;S$j<sizeof (Smetadatas);Sj++){
Sresult=mysql query(”select wZ.lemma from wordnet30.sense,
(select wordnet3(.sense.synsetid from wordnet30.word as wl left join
wordnet30.sense on wl.wordid=sense.wordid where wl.lemma='Smetal')as

tmp, wordnet30.word as w2 where wordnet30.sense.synsetid=tmp.synsetid
and w2.wordid=wordnet30.sense.wordid and w2.lemma='S$metadatas([$3]'");

$num_rows = mysql num_rows ($result);

1if (Snum_rows!=0) {
Smetadatas([$i]=%$metadatas{$i]." / ".Smetadatas{$]jl;
if ($debug=="debug")echo "<br>----metadata \"Smetall\” is

synonym to metadata \"$metadatas([$j]1\"<br>";

if ($j==sizeof ($metadatas)-1)array pop($metadatas);
else $metadatas[$jl=array pop(Smetadatas):;

}

}
}

return Smetadatas;

4.2.2 Collaborative Navigation

- — — = N m e M R W E Em Em e e e e e e e e e e e e e e AN SR M e mm M M e e e T M e e Wm e mm am mm e mm e e e s G W G e e e

Collaborative Navigation is a group-wise navigation. It allows users to search Gene
Ontologies or their annotation based on a specific navigation condition only in the groups
they joined under the guide and assistance of FOAF feature of GAS Blog.



76

4.2.2.1 Collaborative Navigation Usage Scenario

Collaborative Navigation is only available to registered GAS Blog users, and users have
to login before using this feature. To use Collaborative Navigation for browsing Gene
Ontology, users can find the link of “Group-wise Metadata Search” on the first page of
GAS Blog system. This link is only visible to users logged in GAS Blog and it will lead
users to a simple form to Collaborative Navigation as Figure 4.2.

Here is a realistic example of Collaborative Navigation usage scenario. As Figure 4.3
displays, Gene Ontology for Spinal Cord Grey Matter with ID “MA: 0000002” has two
annotations, one from Group 1, and the other from Group 2.

Spinal Cord Grey Matter

10: MA:3000002

Name: spinal cord grey matter
MameSpace: adult_mouse_anatomy.gxd
Subclass of grey matter

Relationship: part of spinal cord

2 annotations to “MA:0000002"

admin annotate {(Evidence Code RCA)
annofation letter seguence should be here 5
Annotation Bescription: This is an annotation from groop 1

admin annotate {(Evidence Code RCAR
the second annotation letier sequence
Annotation Description: Another message from user group:

Figure 4.3 Spinal Cord Grey Matter Term & Annotation

In this example, navigation query command is “//term{annotation]” since there is only
one annotated Gene Ontology in GAS Blog by now. In the future, users can use more
specific and complicated navigation command to narrow down the result.



77

After clicking search button in Figure 4.2, a redirection web page shows and displays all
categories with matched Gene Ontology term or annotation information and users can
click one to get navigation result in that category to make the result more accurate and
relevant as well as decrease un-useful results amount. On the other hand, beside the
category name, it also indicates the number of results in that category. This redirection
web page is displayed in Figure 4.4 below.

Matched term in category:
& Adult Mouse Anatomy (13

Figure 4.4 Category Redirection Page

If users are willing to view the navigation result in category “Adult Mouse Anatomy”,
link “Adult Mouse Anatomy” will bring the result to users in format of SCORM Learning
Objects manifest as mentioned in Chapter 3.

<?xml version="1,0" encoding="UTF-8"?2>
<manifest identifier="MANIFEST_IDENTIFIER" version="1.0"
' s="http://www.imsglobal.org/xsd/imscp vipl”

'>v*~"http //www adlnet. org/xsd/adlseq vip3"
"http://www.imsglobal. org/xsd/lmsss"
sm="http://ltsc. ieee.org/xsd/LOM"
i="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:scqemaLocqfloP—"http.//www.1msglobal.org/xsd/lmscp_ylpl
imscp _vipl.xsd
http://www.adlnet.org/xsd/adlcp vlp3 adlcp vip3.xsd
http://www.adlnet.org/xsd/adlnav_vlp3 adlnav_vlp3.xsd
http://www.adlnet.org/xsd/adlseq vip3 adlseq vip3.xsd
http://www.imsglobal.org/xsd/imsss imsss vlpO.xsd
http: //ltsc ieee.org/xsd/LOM lom.xsd"
wmlns ink="http://www.w3.0rg/199%/x1link">
\metadata>
<schena>ADL SCORM</schema>
<schemaversion>CAM 1.3</schenaversion>
</metadata>
<organizations default="ORG-ANATOMY-ADULT MOUSE ANATOMY">

U I U e T o |


http://www.adlnet.org/xsd/adlnav_vlp3
http://www.adlnet.org/xsd/adlseq_vlp3
http://www.imsglobal.org/xsd/imsss
http://www.w3.org/2001/XMLSchema-instance
http://www.adlnet.org/xsd/adlcp_vlp3
http://www.adlnet.org/xsd/adlnav_vlp3
http://www.adlnet.org/xsd/adlseg_vlp3
http://www.imsglobal.org/xsd/imsss
http://www.w3.org/1999/xlink

<organization identifier="ORG-ANATOMY-ADULT MOUSE ANATOMY"
structure="hierarchical">
<title>Activity Tree</title>
<item identifier="ACT-MA:0000002" identifierref="RES-
MA:0000002">
<title>»Spinal Cord Grey Matter</title>
</item>
</organization>
</organizations>
<resources>
<resource identifier="RES-MA:0000002" type="webcontent”
adlcp:scormType="sco" href="http://localhost/wordpress/wp-

includes/single.php?category=/anatomy/adult_mouse_anatomy&#38;ID=MA:

000002"> -
<metadata>
<lom:lom>
<lom:general>

<lom:title>

<lom:string language="en">Spinal Cord Grey
Matter</lom:string>

</lom:title>

<lom:language>en</lom:language>

<lom:description>
<lom:string language="en"></lom:string>

</lom:description>

<lom:keyword>
<lom:string>an</lom:string>
<lom:string>annotation</lom:string>
<lom:string>group</lom:string>

</lom:keyword>

<lom:structure:>
<lom:source>LOMvl.0</lom: source>
<lom:value>hierarchical</lom:value>

</lom:structure>

<lom:annotation>annotation letter sequence should be

here</lom:annotation>
</lom:general>
</lom:lom>
</metadata>
</resource>
</resources>
</manifest>

4.2.3 Generic Navigation

By contrast to Collaborative Navigation, Generic Navigation is a cross-group search. It
allows users to search Gene Ontologies and their annotation based on a specific
navigation condition all over GAS Blog under the guide and assistance of FOAF feature
of GAS Blog.



79

4.2.3.1 Generic Navigation Usage Scenario

To use Generic Navigation, users do not have to login as Collaborative Navigation. There
is a link on the front page of GAS Blog, and it will lead users to the navigation form as
Figure 4.1 after clicking on it.

Here is a realistic Generic Navigation usage scenario. To show the difference between
Collaborative Navigation and Generic Navigation, this example is based on same Gene
Ontology and its annotation as the example in section 4.2.2.1.

As Figure 4.3 displays, gene ontology for Spinal Cord Grey Matter with ID “MA:
0000002” has two annotations, one from Group 1, and the other from Group 2. And the
navigation command is the same as the example of Collaborative Navigation —
“//term[annotation]”.

After clicking search button in Figure 4.2, the same redirection page shows and displays
all categories with matched Gene Ontology term or annotation information and the result
amount under each category as Figure 4.4.

The following result only show the different part of output SCORM manifest navigation
result and the other part is the same with example usage scenario in section of
Collaborative Navigation.

1

...... |
<lom:general> '
<lom:title> '
<lom:string language="en" :
</lom:title> ]
<lom:language>en</lom:language:> :
<lom:description> 1
<lom:string language="en"></lom:string> :
</lom:description> :
<lom: keyword> t
<lom:string>an</lom:string> :
<lom:stringrannotation</lom:string> :
<lom:string>group</lom:string> N
<lom:string>message</lom:string> :
}

1

i

I

!

}

1

1

}

!

t

1

1

1

1

]

1

1

t

1

}

>Spinal Cord Grey Matter</lom:string>

<lom:string>user</lom:string>
<lom:string>two</lom:string>
</lom:keyword>
<lom:structure>
<lom: source>LOMv1l.0</lom: source>
<lom:value>hierarchical</lom:value>
</lom:structure>
<lom:annotation>annotation letter sequence should be
here</lom:annotation>
<lom:annotation>the second annotation letter
sequence</lom:annotation’>
</lom:general>



80

4.3 Gene Ontology Navigation Performance Evaluation

Gene Ontology Navigation is based on XPath query mechanism. To identify the
advantages of adding semantics in the querying process, Generic Navigation and
Collaborative Navigation is evaluated by comparing it to traditional XPath querying that
is based on non-semantics. Generic Navigation and Collaborative Navigation are
evaluated from following aspects:

e Number of Comparison: the amount of gene ontologies utilized using a given
query command in order to find the matched results;

e Number of Result Returned: the number of returned navigation results;

e Effect of Annotations on Navigation: number of entries that are knéwn to relate to
annotated ontologies.

In our evaluation, the dataset for the Gene Ontology used include 28316 entries for all
classification categories. In addition, there are two groups who attempted to annotate
these entries where these are ten annotation made by each group. Table 4.3 lists the status
of our initial dataset.

Gene Ontologies with Annotation from User Group 1 in Category Adult 5
Mouse Anatomy

Gene Ontologies with Annotation from User Group 2 in Category Fly 5
Anatomy

Table 4.3 Gene Ontology Dataset
4.3.1 Number of Comparison
Navigate Available Gene Ontologies (No Condition)

For XPath without semantics, it goes through all available Gene Ontologies to match the
navigation condition. Generic Navigation is aided by Gene Ontologies categories,
therefore, it only goes through certain categories of Gene Ontologies and match the
navigation condition. Collaborative Navigation only searches Gene Ontologies inside a
certain group and also directed by Gene Ontology categories, therefore, Collaborative
Navigation is expected to have the least number of comparison.



81

In this evaluation case, Generic Navigation and Collaborative Navigation is directed into
category of Adult Mouse Anatomy, and user group of Collaborative Navigation is
“Group 1”. Navigation command used in this evaluation case is “//term”.

As displayed in Figure 4.5, XPath goes through all 28316 gene ontologies while the
Generic Navigation walks through only 2748 entries of Gene Ontologies in the category
of “Adult Mouse Anatomy” and the Collaborative goes directly to 5 Gene Ontologies that
are found to be annotated by users in same group.

No. of Comparison

B No. of Comparison

28318

2748

5
Xpath Generic Mavigation Collaborative
fwith semantics) Navigation (with
semantics)

Figure 4.5 No. of Comparison (None Condition)

Moreover, we repeated the evaluation experiment with more complicated queries where

we introduce more components or conditions at the query parts. Figures illustrate our
findings.

Navigate Gene Ontologies whose name contains “neck” (One Condition)

In this evaluation case, Generic Navigation and Collaborative Navigation is directed into
category of Fly Anatomy, and user group of Collaborative Navigation is “Group 1”.
Navigation command used in this evaluation case is “//term[contains(name,"neck™)]”.

As displayed in Figure 4.6, XPath goes through all 28316 Gene Ontologies while the
Generic Navigation walks through only 6222 entries of Gene Ontologies in the category
of “Fly Anatomy” and the Collaborative goes directly to 5 Gene Ontologies that are
found to be annotated by users in same group.



82

No. of Comparison
8 No. of Comparison
28316
6222
5
Xpath Generic Navigation Collaborative
{(with semantics) Mavigation (with
semantics)

Figure 4.6 No. of Comparison (One Condition)

Comparing this evaluation case to last one, number of comparison for traditional XPath is
fixed, it does not change according to navigation command. On the other hand, for Gene
Ontology Navigation, number of comparison is dynamical, it changes according to
guidance of metadata (Gene Ontology category).

Navigate Gene Ontologies whose name contains “neck” and id contains “MA” (Two
Condition)

In this evaluation case, Generic Navigation and Collaborative Navigation is directed into
category of Adult Mouse Anatomy, and user group of Collaborative Navigation is
“Group 1”. Navigation command wused in this evaluation case is
“//term[contains(name,"neck")][contains(id,"MA")]”.

As displayed in Figure 4.7, XPath goes through all 28316 Gene Ontologies while the
Generic Navigation walks through only 2748 entries of Gene Ontologies in the category
of “Adult Mouse Anatomy” and the Collaborative goes directly to 5 Gene Ontologies that
are found to be annotated by users in same group.



83

No. of Comparison
® No. of Comparison
28316
2748
4 5
Xpath Generic Navigation Collaborative
{with semantics) Navigation (with
semantics)

Figure 4.7 No. of Comparison (Two Conditions)

This evaluation case further illustrates the relationship between Gene Ontology category
and number of comparison for Gene Ontology Navigation. Number of comparison for
Gene Ontology Navigation is decided by Gene Ontology categories. The number of
comparison for Gene Ontology Navigation is the number of entries in that category; it
will not change by modifying the navigation command when Gene Ontology is the same.
For traditional XPath, number of comparison is fixed all the time, and always the number
of available entries of Gene Ontology from all categories.

From these figures, we found that by adding semantics we can reduce the number of
comparison and save much of the navigation time even with the availability of annotation.

4.3.2 Number of Result Returned
Navigate Gene Ontologies whose name contains “neck” (One Condition)

We set our initial evaluation by navigating Gene Ontologies with an entry containing
“neck”. Same as last evaluation, Generic Navigation is guided by category of “Adult
Mouse Anatomy”, and user group of Collaborative Navigation is “Group 17. The
navigation command used in this case is *“//term[contains(name,"neck")]”.

The result of this evaluation case is displayed in Figure 4.8. Traditional XPath found 30
results among Gene Ontologies from all categories while Generic Navigation returned 20
results after guided by category “Adult Mouse Anatomy”, and Collaborative Navigation
returned 2 results under guidance of category “Adult Mouse Anatomy” and user group
“Group 17



84

No. of Result Returned

& No. of Result Returned

30

2
— L ONORORE . S, RENEOERMGRIN ........ccone
Xpath Generic Navigation Collaborative
{with semantics) Navigation (with
semantics)

Figure 4.8 No. of Result Returned (One Condition)

This evaluation case is built on an assumption that the users who start the navigation are
interested in Gene Ontology category “Adult Mouse Anatomy” and are from user group
“Group 1”. From the result of this evaluation case, XPath contains most un-useful
information for users who only have interest in Gene Ontology of category “Adult Mouse
Anatomy”; Generic Navigation narrows down the result to the specific category;
Collaborative Navigation directly returns Gene Ontology which annotated by all user
group members from “Group 1”. Therefore, for users who collaborate with others in a
single Gene Ontology field, Collaborative Navigation is most relevant and Generic
Navigation helps users to browse Gene Ontology information from all user groups.

Navigate Gene Ontologies whose name contains “neck” and id contains “MA” (Two
Conditions)

This evaluation case is to navigate Gene Ontologies whose name contains “neck” and id
contains “MA”. In this evaluation case, Generic Navigation is guided with category
“Adult Mouse Anatomy” and Collaborative Navigation is directed by the same category
and user group “Group 1”. Navigation command used in this evaluation case is
“//term[contains(name,"neck"})][contains(id,"MA™)]”.

The result of this evaluation case is displayed in Figure 4.9. Navigation with XPath found
23 results in all categories, Generic Navigation directed by gene ontology category
returned 20 results, and Collaborative Navigation guided by Gene Ontology category and
user group returned 2 results.



85

No. of Result Returned

& No. of Result Returned

23
20
Xpath Generic Navigation Collaborative
(with semantics) Navigation (with
semantics)

Figure 4.9 No. of Result Returned (Two Conditions)

Similarly as last evaluation case, more conditions in navigation command can decrease
the amount of redundant information; however, there are still some unnecessary pieces of
Gene Ontologies returned by XPath. This problem of XPath might not seem to be huge in
the evaluation cases due to limited Gene Ontologies available at this time. However,
there are millions of Gene Ontologies available in real life, and irrelevant information
returned by XPath can take a lot time of users to filter them manually.

Navigate Gene Ontologies whose name contains “neck” and id contains “MA” and is
part of another Gene Ontology (Three Conditions)

This evaluation case is to navigate Gene Ontologies whose name contains “neck” and id
contains “MA” and is part of another Gene Ontology. In this evaluation case, Generic
Navigation is guided with category “Adult Mouse Anatomy” and Collaborative
Navigation is directed by the same category and user group “Group 17. Navigation
command used in this evaluation case is ‘//term[contains(name,"neck")]
[contains(id,"MA")][contains(relationship/type,"part")]”.

The result of this evaluation case is displayed in Figure 4.10. Navigation with XPath
found 20 results in all categories, Generic Navigation directed by Gene Ontology
category returned 17 results, and Collaborative Navigation guided by Gene Ontology
category and user group returned one result.



86

No. of Result Returned

B No. of Result Returned

17

1
Generic Navigation Collaborative
{with semantics) Navigation (with
semantics)

Figure 4.10 No. of Result Returned (Three Conditions)

From these figures, we found that by adding semantics we can reduce the number of
result returned and save much of the navigation time for users to navigate to the Gene
Ontologies that they are looking for.

4.3.3 Effect of Annotation on Navigation
Navigate Annotated Gene Ontologies

To analyse the effect on navigation when annotation is concerned, we dedicate this
section for this purpose. As described in Chapter 3, Gene Ontology annotation
information is stored separately from the original Gene Ontology data. Hence we expect
that the traditional XPath does not find them as there is no support for the XPointer to
reference external XML fragment and query through them. Under this circumstance,
XPath returned nothing in this evaluation case. However, Generic Navigation and
Collaborative Navigation are designed to support XPointer and connect annotation with
Gene Ontologies. Thus, based on these semantics we can find entries even if they were as
annotations.

We stated one evaluation case where the Generic Navigation is guided with category
“Adult Mouse Anatomy” and Collaborative Navigation is directed by the same category
and user group “Group 1”. Navigation command used in this evaluation case is
“//term[annotation]”.

There are 10 entries of annotation from user group “Group 1” and “Group 2” in current
GAS Blog system. Generic Navigation returns all of them as navigation result and
Collaborative Navigation returns 5 results since they are annotated by users from user
group “Group 1”. Evaluation result is displayed in the chart below.



87

No. of AnhnotationFound

& No. of Annotation Found

10

0
Xpath Generic Navigation Collaborative
{with semantics) Navigation (with
semantics)

Figure 4.11 No. of Annotation Found (One Condition)

According to the result of this evaluation case, XPath is not able to query Gene Ontology
annotation if they are not stored in the same file with Gene Ontologies in data
management system. On the other hand, Generic Navigation and Collaborative
Navigation can connect them together as they are stored in the location and complete the
navigation task with relevant navigation results.

Navigate Gene Ontology Annotation with Content Contains “annotation”

This evaluation case is to navigate Gene Ontology whose annotation content contains
“annotation”. Similar to the former evaluation case, the Generic Navigation is guided
with category “Adult Mouse Anatomy” and Collaborative Navigation is directed by the
same category and user group “Group 1”. Navigation command used in this evaluation
case is “//term{annotation][contains(annotation/description,"annotation")]”.

The result of this evaluation case is in Figure 4.12. Same reason as last evaluation case,
traditional XPath can not return any result about annotation, and adding more conditions
concerning to annotation does not do much help to that. As for Gene Ontology
Navigation, more conditions about annotation in navigation command narrows down the
annotation returned as expected. In this evaluation case, there are 4 annotation entries
containing “annotation” in their content in both user group “Group 1” and “Group 2, and
Generic Navigation returned them. Collaborative Navigation is directed by user group
“Group 17, and Collaborative Navigation finds 2 annotation entries containing
“annotation” in content in this group.



88

No. of AnhnotationFound

2 No. of Annotation Found

4

0
B Xpath Generic Navigation Collaborative
{with semantics) Navigation (with
semantics)

Figure 4.12 No. of Annotation Found (Two Condition)

From these figures above, we can conclude that traditional XPath can not query
information concerning annotation, and the incapability of querying annotation for
traditional XPath is not caused by navigation command. Generic Navigation and
Collaborative Navigation is able to query annotation information as expected. The
number of annotation found by Generic Navigation and Collaborative Navigation can be
reduced and more accurate by adding conditions to navigation command.

It is unnecessary to keep evaluating Gene Ontology Navigation repeatedly by adding
more conditions to navigation command because no matter how many conditions in
navigation command, traditional XPath always return nothing and the number of
annotation entries found by Gene Ontology Navigation would keep reducing as the
navigation command become more complicated. The current evaluation cases already
show the trend of that.

4.4 Summery

The core theory of Gene Ontology Navigation in GAS Blog is the use of metadata and
they can accommodate annotations. Our metadata utilize a dictionary. Dictionary makes
Gene Ontology Navigation engine more semantical during the process of extracting
metadata and looking for synonyms for metadata. In this way, even users input different
word in navigation command; GAS still can find semantical relevant information instead
of spelling relevant one.

From the evaluation of Gene Ontology Navigation, Generic Navigation and Collaborative
Navigation shows better overall performance comparing to traditional XPath query. After
comparing to traditional XPath querying, Gene Ontology Navigation match the
navigation command with less comparison objects to increase the speed and efficiency of



89
querying process; smaller amount but more relevant navigation results returned; and
better ability on navigating gene ontology annotations.

However, GAS is not a complete solution yet; the future work related to this feature will
be addressed in next chapter.



90

Chapter Five
Conclusions & Future Research

This thesis intends to introduce a new gene ontology annotation system (GAS) based on
Web 2.0 technologies with extended semantics capabilities that includes Gene Ontology
semantics, SCORM semantics, FOAF semantics and RSS syndication and aggregation
semantics.

Chapter 1 introduced Web 2.0 with popular applications over Internet and the essential
technologies for Web 2.0. On the other hand, it also talked about e-learning objects on
Web 2.0 as well as the features of e-learning objects on Web 2.0.

Chapter 2 described gene ontology annotation and analysed existing gene ontology
annotation systems powered by traditional technologies. Also, Chapter 2 addressed the
disadvantages for current gene ontology annotation systems, and the necessity of creating
a new gene ontology annotation system as well as navigation system based on the new
generation of web technology — Web 2.0.

Chapter 3 addressed the development requirements and design policies of our new GAS
Blog based on the features GAS system that overcomes the shortcomings of the
traditional annotation and navigation systems. Based on these requirements, our proposed
design is based on the new Web 2.0 programming environment and tools such as
WordPress and PHP. After deciding development language, platform and learning object
metadata standard, semantic features of GAS Blog is introduced in details in this chapter
including what semantic features GAS Blog have, where and how they are published,
GAS Blog usage scenario, and implementation of each modules with pseudo code and
UML graphs.

Chapter 4 described GAS usage in navigation using generic and collaborative semantics.
This chapter provide some proof on the GAS affectivity. Gene ontology navigation is a
new generation of gene ontology querying service based on web 2.0 and semantic web
technology. Chapter 4 starts from introducing what web 2.0 and semantic web navigation
is and describing Collaborative Navigation and Generic Navigation respectively. After
introducing Collaborative Navigation and Generic Navigation, they are evaluated with
some scenarios by comparing to traditional XPath querying. Current evaluation result
shows that Gene Ontology Navigation is an improvement to traditional XPath querying
service.

5.1 Conclusion

This thesis builds Gene Ontology annotation and navigation system (GAS). The
following are the achievements and findings of this thests.

1. GAS provides a user friendly interface to allow users to publish newly found gene
ontologies or annotating to existing gene ontologies on web pages;



91

2. GAS creates a online collaborative system for users to cooperate with each other
on their work as a social network with capabilities to add other users as friend,
creating user groups, join existing user groups, viewing graphical FOAF network
information, etc.

3. GAS allows users to syndicate gene ontologies and their annotation information
from the gene ontology categories they interested in through RSS to their
aggregators.

4. GAS includes a navigation system for allowing users navigate through gene
ontologies and annotation efficiently and accurately.

5. Gene Ontology and annotation connector is invented for GAS system to reference
external XPoiter XML fragment during navigation process.

6. Automatic metadata extractor is created with support of dictionary WordNet to
add metadata to gene ontology annotations to decrease the chances that metadata
added manually by users might not match the real content.

7. Gene ontology navigation result is wrapped in SCORM manifest or easier
delivery over network and convenient to import into e-learning system based on
SCORM.

8. Evaluation of semantic-directed Gene Ontology Navigation is provided in this
thesis, and shows that it is an improvement to traditional XPath querying service
from the aspects of number of comparison, number of records returned, and the
effects of annotations on navigation.

5.2 Future Research
Due to the limited time, some work is left over for the future research.

e Syndication and aggregation of GAS Support System is in RSS standard. Atom
feed standard can be supported by GAS Support System for users who prefer
Atom feed standard on feed syndication.

e Metadata Integration is not a fully function module yet. GAS Support System
should recognize the keyword in navigation command and not only match it with
gene ontology and annotation data but also match its synonyms and return the
navigation result.

e Navigation result is only wrapped in SCORM manifest standard in GAS Support
System at this time. However, it should be extended to wrap the navigation result
in some other popular e-learning standard such as CanCore.

e Security issue is not considered yet in current GAS Support System, and it should
be concerned in the future research.



92

e Error handling is only applied to annotation evidence code in current GAS

Support System; however, it should be extended to correct the typo word in
annotation description automatically with support of dictionary.

Metadata Extraction can be improved by improving the algorithm to ensure that
metadata extracted dynamically can be more meaningful to both machine and
human.

For a long-term development of GAS Support System, there are some suggestions might
also improve the system in the future at a lower priority as future work mentioned above.

Extending our GAS to include a reasoned that takes into account various type of
semantics introduced as well as some rules that can be helpful in Gene navigation
(Mohammed & Fiaidhi, 2008).

GAS Support System may enrich the FOAF on grouping by generating a group-
wise sub-system automatically when group members donate any knowledge to the
main system. The user interface can looks like the main GAS Support System,
however, this sub-system only publish the Gene Ontologies or annotation
published by group members. This could help users with more convenient group
collaboration.

GAS Support System can also have the feature of aggregating information from
users’ blog on other system and reference the information on GAS. Currently,
GAS Support System allows users to aggregate information; however, GAS
Support System can also be a user to other support systems by aggregating
information from other systems through syndication feed and reference them on
GAS Support System automatically. It collects information from other systems
and saves users time to visit several systems.

GAS Support System can have a collaboration log for each user group to show the
research / collaboration action each group members did with timestamp. So that a
group member will be able to trace the idea evolution and history, which in turn
benefits the future research (Yao J. , Supporting Research with Weblogs: A Study
on Web-based Research Support Systems, 2006).

GAS Support System may have accessing authority on each annotation. So that
users can grant viewing permits to everybody or only users from the same group
as annotators (Yao J. , Supporting Research with Weblogs: A Study on Web-
based Research Support Systems, 2000).

GAS Support System should allow users to report un-useful comments to spam or
set up a black list for every registered user. Annotation or comments from users
on back list can be hidden for them (Yao J. , Supporting Research with Weblogs:
A Study on Web-based Research Support Systems, 2006).



93

GAS Support System can have reference retrieve feature in the future. Sometime,
users add comments by reference a hyperlink, and GAS system should retrieve a
preview of referenced hyperlink so that other users can decide whether browse the
hyperlink or not after reading the preview (Yao J. , Supporting Research with
Weblogs: A Study on Web-based Research Support Systems, 2006).

GAS Support System may develop a desktop application for users to publish gene
ontologies or annotation without using browser and operate on web pages. The
desktop application can also deal with semantics on users’ local computer before
transferring data to server. It reduces the task of GAS system server and release
more server resource other users. (Méller, Breslin, & Decker, 2005)

GAS Suport System can become more powerful by using multiple gene.ontology
engines for different formats of gene ontology and annotation file (Shakya, 2006).

GAS Support System can be extended to share gene ontology and annotation and
allow users to collaborate in a decentralized or peer to peer network (Fiaidhi &
Mohammed, 2005)



94

References

Anderson, P. (2007). What is Web 2.0? Ideas, Technologies and Implications for
Education. JISC Technology and Standards Watch.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie, J., et al.
(2007, January 23). XML Path Language (XPath) 2.0. Retrieved June 9, 2008,
from W3C: http://www.w3.org/TR/xpath20/

Bergsten, H. (2003). JavaServer Pages (3rd Edition ed.).

Brust, M. R., & Rothkugel, S. (n.d.) On Anomalies in Annotation Systems. Luxembourg:
Faculty of Science, Technology and Communication (FSTC), University of
Luxembourg.

Collin, J., & Wang, H. J. (2007). Subspace: Secure CrossDomain Communication for
Web mashups. International World Wide Web Conference Committee (IW3C2).

Davis, J. R., & Huttenlocher, D. P. (n.d.) Shared Annotation for Cooperative Learning,.
Xerox Corporation, Design Research Institute; Computer Science Department,
Cornell University.

DeRose, S., Maler, E., & Daniel, R. J. (2002, December 19). XPointer xpointer()
Scheme. Retrieved June 9, 2008, from W3C: http:/www.w3.org/TR/xptr-

xpointer/

Dornfest, R. (2000, August 25). Writing RSS 1.0. Retrieved June 23, 2008, from O'Reilly
Network:
http://www.oreillynet.com/pub/a/network/2000/08/25/magazine/rss_tut.html

Downes, S. (2003, May 10). RDF Site Summary 1.0 Modules: Learning Object Metadata.
Retrieved January 22, 2008, from Stephen's Web:
http:/www.downes.ca/xml/RSS_TOM.htm

Ernst, J. (2005, September 27). Embedding FOAF information in RSS. Retrieved January
22,2008, from Johannes Ernst's Blog: http://netmesh.info/jernst/Big_Picture/foaf-

Ermnst, J. (n.d.). RSS-FOAF. Retrieved January 22, 2008, from rss-extensions.org:
http://rss-extensions.org/wiki/RSS-FOAF

Fiaidhi, J., & Mohammed, S. (2005). Developing a Collaborative Virtual Learning Model
for Peer to Peer Grid Environment. IEEE Learning Technology Journal , 7 (1),
49-53.

Fiaidhi, J., Passi, K., & Mohammed, S. (2004). Developing a Framework for Learning
Objects Search Engine. The 2004 International Conference on Internet Computing
(IC04), (pp. 610-616). Las Vegas.


http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xptr-
http://www.oreillynet.eom/pub/a/network/2000/Q8/25/magazine/rss_tut.html
http://WWW.downes.ca/xmVRSS
http://netmesh.info/iei'nst/Big_Picture/foaf-
http://rss-extensions.org/wiki/RSS-FOAF

95

Fiaidhi, J., Mohammed, S., JAAM, J., & HASNAH, A. (2003). A Standard Framework
for Search Hosting via Ontology Based Query Expansion. Pakistan Journal of
Information and Technology , 66-70.

Friesen, N. (2004, October 22). Frequently asked Questions. Retrieved June 19, 2008,
from CanCore: http:/www.cancore.ca/en/faq.htm!

GeneOntology.org. (2007, December 4). GO Annotation Guide. Retrieved June 21, 2008,
from the Gene Ontology: http://www.geneontology.org/GO.annotation.shtml

Glass, G. (n.d.). Marginalia Web Annotation. Retrieved october 26, 2007, from Geof:
http:/www.geof.net/code/annotation

Guide to GO Evidence Codes. (n.d.). Retrieved June 1, 2008, from the Gene Ontology :
http:/www.geneontology.org/GO.evidence.shtml

Harrsch, M. (2003). RSS: The Next Killer App For Education. Illinois Computing
Educators Computer Update Bulletin for Educators , 2003 (4), 10.

Heck, R. M., Luebk, S. M., & Obermark, C. H. (1999). Retrieved October 25, 2007, from
http://www.math. grin.edu/~rebelsky/Blazers/Annotations/Summer1999/Papers/su
rvey_paper.html

Keller, C. (2005). 7 Things You Should Know About Wikis.

Koivunen, M.-R. (2005, October 31). Annotea project. Retrieved October 28, 2007, from
World Wide Web Consortium: http://www.w3.0rg/2001/Annotea/

Lewin, J. (2003, December 23). Content feeds with RSS 2.0. Retrieved June 23, 2008,
from IBM: http://www.ibm.com/developerworks/xml/library/x-rss20/

Liu, H., Hy, Z., & Wu, C. (2005). A tool for navigation and visualization of Gene
Ontology resources. Retrieved July 16, 2008, from BMC Bioinformatics, BioMed
Central Ltd: http://gauss.dbb.georgetown.edw/liblab/dyngo.html

Meng, P. (2005). Podcasting & Vodcasting. University of Missouri.

Miller, G. A., Fellbaum, C., Tengi, R., Wakefield, P., Langone, H., & Haskell, B. R.
(n.d.). About WordNet. Retrieved August 4, 2008, from WordNet:
http://wordnet.princeton.edu/

Méller, K., Breslin, J., & Decker, S. (2005). semiBlog — Semantic Publishing of Desktop
Data. National University of Ireland, DERI, Galway, Republic of Ireland.

Mohammed, S., & Fiaidhi, J. (2008). Developing an Ontology Extraction Agent for
Biomedical Learning Social Network. NASTEC 2008 Conference. Montreal.

Morgan, E. L. (2005). Presentation from pre-conference workshop during the ALA
Annual Meeting. Chicago.


http://www.cancore
http://www.geneontology.org/GO.annotation.shtml
http://www.geof.net/code/annotation
http://www.math.grin.edu/~rebelskv/Blazers/Annotations/Summerl999/Papers/su
http://www
http://www.ibm.com/developerworks/xml/library/x-rss20/
http://eauss.dbb.georgetown.edu/liblab/dvngo.html

96

Nature, G. (2000). AmiGO Help. Retrieved July 16, 2008, from the Gene Ontology:
http://www.geneontology.org/amigo/help-front.shtml

Nature, G. (2000). Gene Ontology: tool for the unification of biology. Retrieved June 10,
2008, from The Gene Ontology Consortium:
http://www.geneontology.org/GO.annotation.shtml

O'Reilly, T. (2006). Web 2.0 Compact Definition: Trying Again. Retrieved October 4,
2007

Othman, R. M., Deris, S., & Illias, R. M. (2006). Computational Method for Annotation
of Protein Sequence According to Gene Ontology Terms. International Journal of
Biomedical Sciences Volumne 1 Number 1 ISSN 1306-1216, 186.

Pilgrim, M. (2002, December 18). What Is RSS. Retrieved June 9, 2008, from XML:
http://www.xml.com/pub/a/2002/12/18/d1ive-into-xml.htmi

Réscheisen, M., Christian, M., & Terry, W. (1994). Shared Web Annotations As A
Platform for Third-Party Value-Added Information Providers: Architecture,
Protocols, and Usage Examples. Technical Report CSDTR/DLTR, Stanford
University.

Shakya, A. (2006). A Semantic Blogging Framework for Better Utilization of
Information. Asian Institute of Technology, School of Engineering and
Technology.

Stuart, A. (2005, January 31). COBrA User Interface. Retrieved July 16, 2008, from
XSPAN: http://www.xspan.org/cobra/

Swick, R., Prudhommeaux, E., Koivunen, M.-R., & Kahan, J. (2002, December 20).
Annotea Protocols. Retrieved October 29, 2007, from World Wide Web
Consortium: http://www.w3.0rg/2002/12/AnnoteaProtocol-20021219

Vasudevan, V., & Palmer, M. On Web Annotations: Promises and Pitfalls of Current
Web Infrastructure. Object Services and Consulting Inc.

Wiley, D. A. (2000). Learning Object Design and Sequencing Theory. Brigham Young
University.

Willison, S. P. (2005). Building a decentralised collaborative annotation system for the
World-Wide Web. Department of Computer, University of Bath.

WuXian, ZhangLei, & YuYong. (2005). Exploring Social Annotations for the Semantic
Web. International World Web Conference Committee (IW3C2).

Yao, J. (2005). Design of Web-based Support System. University of Regina, Department
of Computer Science, Regina.


http://www.geneontologv.org/amigo/help-front.shtml
http://www.geneontologv.org/GO.annotation.shtml
http://www.xml.eom/pub/a/2002/12/18/dive-into-xml.html
http://www.xspan
http://www.w3.org/2002/12/AnnoteaProtocol-20021219

97

Yao, J. T., & Yao, Y. Y. (2003). Web-based Support Systems. University of Regina,
Department of Computer Science, Regina.

Yee, K.-P. (n.d.). CritLink: Public Web Annotation. Retrieved October 30, 2007, from
Ka-Ping Yee: http://zesty.ca/crit/

Yee, K.-P. (2002). CritLink: Advanced Hyperlinks Enable Public Annotation on the Web.
Berkeley: University of California.

Yee, K.-P. (2000, January 24). What's a mediator? Retrieved October 30, 2007, from Ka-
Ping Yee: http://zesty.ca/mediator.html



http://zesty.ca/crit/

98
APPENDIX A
GAS SYSTEM REQUIREMENT & INSTALLATION

A.1. GAS System Requirement

e Web Server such as Microsoft Internet Information Services (IIS)

e PHP script language (version 4.3 or greater)

e MySQL database (version 4.0 or greater)
A.2. GAS System Installation Instruction

GAS is a web-based annotation system written in PHP. Therefore, a web server and PHP
must be running prior to GAS installation.

A.2.1. Installation of Web Server

This section takes Microsoft IIS web server as an example of web server installation. IIS
is integrated with Windows operation system already. To activate it, go to “Control
Panel” and double click Programs and Features as Figure A.1.

Figure A.1 Programs and Features on Control Panel

On Programs and Features window, click Turn “Windows features on or off” on the left
sidebar as Figure A.2.



Uninstall or change a program

Teo uninstall 2 program, select it from the list and then click “Uninstall”, "Change”, or "Repaif”.

Figure A.2 Programs and Features Window

After clicking “Turn Windows features on or off” on Figure 1.2, “Windows Feature”
dialog comes out. In “Windows Features” dialog, expand the list of “Internet Information
Services” as highlighted in Figure A.3.

Figure A.3 Windows Features

After expanding the list as Figure 1.4, make sure that the following items under “Internet
Information Services” are checked:

“IIS Management Console” under “Web Management Tool”

o “CGI”, “ISAPI Extensions”, “ISAPI Filters” under “World Wide Web Services” -
> “Application Development Features”

e “Default Document”, “Directory Browsing”, “Http Errors”, “Static Content”
under “Common Http Features”

2?7 <<

e “Http Logging”, “Request Monitor” under “Health and Diagnostics”



100
e “Static Content Compression” under “Performance Features”
e “Request Filtering” under “Security”

After checking all the items above, click OK button.

HS5 & Management Compatibility
BS Management Console

5 Managernent Scripts and Tools
HS Management Service

World Wide Web Services
Application Development Features
Common Http Features
Health and Diagnostics
Performance Features
Security

HEEEHAEREB

Figure A.4 Internet Information Services

Double click “Administrative Tools” on Control Panel as Figure 1.5.




101

Figure A.5 Administrative Tools in Control panel

Double click “Internet Information Services (IIS) Manager” on “Administrative Tools”
window as Figure A.6.

Figure A.6 Administrative Tools

Click “Basic Settings” on right action side bar of “Internet Information Services (IIS)
Manager” as Figure A.7.



102

Dire
Brewsing

S Y

Respon...

i

ISAPTand  ISAPIFilters
Cl Restri...

Features Yiew

Figure A.7 Internet Information Services (IIS) Manager

“Edit Site” dialog (Figure 1.8) pops out after clicking “Basic Settings” on right action
side bar of “Internet Information Services (IIS) Manager” as Figure 1.7. In “Edit Site”
dialog, the “Physical path” can be changed to a folder you desired, or use the IIS defauit
web root folder C:\inetpub\wwwroot if windows operation system is installed on drive C.



103

Figure A.8 Internet Information Services (IIS) Manager

A.2.2. Installation of PHP

PHP installation package can be downloaded at web page
http://www.php.net/downloads.php . Take Windows operation system as an example;
download the latest “Windows Binary” zip file on the download web page as Figure A.9.

PHP; Downloads - BT (Maxthon} 2.14

i fir funauion Jim

| PHP 5,2.6

|
}
% Complele Source Code
|

& PHE 5.2 6 far hz2} 9,347Kb] - 01 May 2006
ST 7a80NecetiGa BB T R 122008

» PHP 52,8 (tar g2) [11,764Kb] - 01 May 2008
maS; 17201951266 G063 DA 005 Ld

Windows Binaries

» PHP 52/ 2ip package [9,516Kb] - 3 May 2008
0I5, £ 70101 131582828584 767 SeBEDDAC

Note: Update May 3rd: Added missing XSL and IMAP extension

@ PHP 5.2 .6 Inslalier [19,373Kb] - & May 2008
Mol ABEE 7€ KOTOSERG PO 10560

Note: Update May 6th: Added missing XSL and IMAP extension

2 {2.642KD) - 3 May 2008
s, 'l"e:r ‘:‘-1. 'J .e:! FenE1AZGeT

Nate: Uipdate May 3rd: Added missing XSL and IMAP extension

 PHP 5.2.6 Win32 Debyg Pack [8, 438Kn) 3 May 2008
mels. AeEeY ek § ’ ®d

Note: Update May 3rd. Added missing XSL and RAP extension



http://www.php.net/downloads.php

104

Figure A.9 Internet Information Services

Unzip the binary file downloaded from web page as Figure 2.1 to a folder which you
wish to install PHP in.

Rename php.ini-dist under <PHP installation directory> to php.ini and copy it into folder
c:\windows if windows operation system is installed in drive C. Open php.ini with
notepad and search for “extension_dir”. Set the extension directory to “<PHP installation
directory>\ext”.

Search for “; Windows Extensions” and set the extension section as follows.

, ;extension=php bz2.dll

, ;extension=php_curl.dll

\ ;extension=php dba.dll

\ sextension=php dbase.dll

| ;extension=php_exif.dll

\ ;extension=php_fdf.dll

, extension=php_ gd2.dll

| ;extension=php_gettext.dll

| ;extension=php_gmp.dll

! ;extension=php ifx.dll

! ;extension=php_imap.dll

! ;extension=php_interbase.dll

! ;extension=php_ldap.dll

! extension=php_mbstring.dll

! ;extension=php_mcrypt.dll

! ;extension=php_mhash.dll

' ;extension=php_mime_magic.dll
' ;extension=php_ming.dll

! jextension=php_msql.dll

' ;extension=php_mssql.dll

! extension=php_mysql.dll

! extension=php mysqli.dll

1 ;extension=php_oci8.dll

: ;extension=php_openssl.dll

E ;extension=php pdo.dll

! ;extension=php_pdo_firebird.dll
1 sextension=php pdo_mssql.dll
| ;extension=php_pdo_mysql.dll
\ ;extension=php_pdo_oci.dll

1 ;extension=php_pdo_oci8.dll
| ;extension=php pdo_odbc.dll
| ;extension=php pdo_pgsql.dll
| ;extension=php pdo_sqlite.dll

e et o e o o o v - e - - - = R . S v Ar ek Em e e e v e e e = s - = e e v M am e M e e e e e e e e em = e e e = am e e me e



;extension=php pgsql.dll
;extension=php_pspell.dll
;extension=php_shmop.dil

;extension=php snmp.dll

;extension=php _soap.dll
;extension=php_sockets.dil

;extension=php _sqlite.dll
;extension=php sybase ct.dll
;extension=php_tidy.dll

;extension=php xmlrpc.dil

extension=php xslL.dll

;extension=php_zip.dll

Search for “upload_tmp_dir”, and set a temporary folder uploading files, and search for
“session.save_path” and set a folder to save session.

A.2.3. Configuration of PHP and Web Server

After installing PHP, some configuration for PHP on web server IIS is very necessary.
Go to Control Panel and double click “Administrative Tools” as Figure 1.5. Double click
“Internet Information Services (IIS) Manager” as Figure 1.6. Double click “Handler
Mapping” on “Internet Information Services (IIS) Manager” window as Figure A.7.

Click “Add Script Map” in action side bar on the right of “Handler Mapping” window as
Figure A.10.

: % Handler Mappings

Use this feature to specify the resources, such as PELs and managed code, that handle
responses for specific request types.

Enabled
Enabled

Enabled
Enabled
Enabled
: Enabled

Unspecified

* File
; File or Folder

| Unspecified

Figure A.10 Handler Mapping Window




106

“Edit Script Map” dialog pops out after clicking “Add Script Map” on the right side bar
of “Handler Mapping” window as Figure A.10.

Fill in “Edit Script Map” dialog as Figure A.11.
e Type in “*.php” in textbox of “Request path”.

e Locate “phpSisapi.dll” file with the browse button to the left of “Executable”
textbox.

e Give a name to the script.

After filling the dialog, click OK button.

Figure A.11 Edit Script Map

After clicking OK button on “Edit Script Map” dialog as Figure A.11, a confirmation
dialog pops out as Figure A.12 and click “Yes” on it to register the script on IIS.



107

Do you want to allow this ISAPE extension? Click "Yes” to add the
extension with an "Allowed” entry to the ISAPE and CGI Restrictions list
or to updste an existing extension entry to "Allowed” in the ISAPI and

CGl Restrictions list.

Figure A.12 Edit Script Map
A.2.4. Test PHP on Web Server IIS

Create a file with content “<?php phpinfo();?>" and save as “test.php” under web root
directory which specified in Figure 1.8. Open a web browser (Internet Explorer, Firefox,
etc.), and type http://localhost/test.php in address bar. If a web page as Figure A.13 shows
up, it proves that PHP works find with Web Server IIS.

phpinfol) - B Masthon) 21,4

Figure A.13 phpinfo Page

A.2.5. Installation of MySQL


http://localhost/test.php

108

Download MySQL from http://dev.mysqgl.com/downloads/mysql/5.0.html . For Windows

operation system, choose “Windows Essentials” under “Windows downloads” on the
web page as Figure A.14.

Windows downloads (platiorm notes}

Windows 2IP/Setup EXE {x86)

Windows x64 downloads {plattorm notas}

m i

Windows 21P/Setup.EXE (AMDG4 / Intel EME4T) $§.0.67 52.8M Pick a minoe

w085 1EEB4EESTINSAE60aB4226 014 2c3ad | Sighaturn

b

Linux {non RPM packages) downloads (piatform nutes}

E : : e i :
Linux {x8€} 5067 99.1M Fack & miner

EocIBTL ] Signate
0

Figure A.14 MySQL Download Web Page

Double click the msi installation file download from the web page as Figure A.14 to start
the installation. Use the following setting during the installation.

e Typical Setup

e Skip Sign-Up

e make sure "Configure the MySQL Server now" is checked
e "Detailed Configuration”

e '"Developer Machine"

e "Multifunctional Database"”

e "InnoDB Tablespace Settings" - leave everything default
e "Decision Support (DSS)/OLAP"


http://dev.mysql.eom/downloads/mvsql/5.0.html

109

make sure "Enable TCP/IP Networking" is checked and leave the port number at
3306 (at this point, if you have a firewall, it will usually try to access itself on the
localhost)

"Standard Character Set"
check "Install As Windows Service"
enter your root password

press "execute" and it'll install and set it up.

By default, MySQL will run automatically when Windows operation system starts.

A.2.6. Importing GAS Configuration Data to MySQL

Unzip wordnet30.zip and wordpress.zip on CD to <MySQL Installation Directory>/data.

A.2.7. Installation of GAS

Unzip GAS.zip to web root directory specified in “Edit Site” dialog as Figure A.8.

A.2.8. Run GAS

Open a web browser (Internet Explorer, Firefox, etc) and type http:/localhost/GAS in
address bar as Figure A.15.



http://localhost/GAS

110

Figure A.15 GAS Interface
A.2.9. Troubleshoofing

There are two frequent problems if URL http://localhost/GAS leads to an error page as

Figure A.16 instead of GAS interface as Figure A.15.

Figure A.16 Error Page

First thing to do is to go to Windows Task Manager as Figure A.17, and make sure that
status of service MySQL is “Running”.


http://localhost/GAS

indows Installer
Msnetsves Network Provisining Service
Flonin i

MR ; S 0L i
napagent Network Access Protection Agent

Metlogon Netiogon

Netman Network Connections

netprofm Metwork Ust Service

NetTcpPortsharing Met.Tep Port Sharing Service

MlaSve Metwork Location Awareness

i Network Store Interface Service

odsery Microsoft Office Diagnostics Service

Office Source Engine

Peer Metarorking Identity Manager

Peer Metworking Grouping

Figure A.17 Windows Task Manager

Then, go to Internet Information Services (IIS) Manager as Figure A.7 and make sure that
“Start” under “Manage Web Site” section on right side bar of Internet Information
Services (IIS) Manager Window as Figure A.7 is grey, which means it is running.



112

APPENDIX B
MAIN PROGRAMMING MODULES OF GAS

The following is a list of tools and technologies used in GAS system.

AJAX: AJAX is a technique that allows web browsers exchange data with server without
reloading the web page. It was used in GAS system to prompt users with possible
evidence code when they annotating.

Flock: Flock is a web browser based on Firefox. However, it integrates the feed
aggregator with it. Flock was used as a feed aggregator (Figure 3.10) to syndicate Gene
Ontology and annotation feeds in this thesis.

Internet Information Services (IIS): Internet Information Services (IIS) is web server
made by Microsoft. It is the second most popular web server in the world. In this thesis,
Internet Information Services (IIS) version 7 was used as a web server on Windows Vista
platform to develop GAS system.

MySQL: MySQL is a rational database management system. MySQL community server
version 6.02 was used in GAS system to store system configuring information.

PHP: PHP is a server-side HTML embedded scripting language. PHP version 5.2.5 is the
programming language for developing GAS system.

PSPad: PSPad is a programming editor on Windows platform. It was used as an editor to
code PHP files.

RSS: RSS is a web feed format and it was used in GAS system as syndication format for
Gene Ontology and annotations.

SCORM: SCORM manifest standard was used to wrap Gene Ontology Navigation
results into Learning Objects.

WordNet: WordNet® is a large lexical database of English. It was used to look up
synonyms of metadata in Gene Ontology Navigation.

WordPress: WordPress was the open source used as system framework on which GAS
system was built.

XML-based Languages: In GAS system, Gene Ontology, annotation, and Gene
Ontology Navigation results are stored in XML-based languages.



