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Abstract 

A numerical procedure is presented for the study of end reflections in a 

semi-infinitely long isotropic circular cylinder with attached piezoelectric patch. The 

hybrid method which combines the finite element formulation in the piezoelectric 

patch with a wave function expansion representation in the isotropic cylinder is 

employed in the study. The global solution is obtained by imposing the continuity 

conditions on the displacements and tractions at the interface between the 

piezoelectric patch and the cylinder. 

To obtain the wave functions in the cylinder, the governing equations of the 

cylinder are discretized by a semi-analytical finite element formulation where the 

discretization occurs through the cylinder's thickness. Solutions in the cylinder are 

constructed with modal data from a spectral decomposition of the differential 

equations governing its natural vibrations. These modal data consist of all propagating 

modes and edge vibrations, constituting the basis for a wave function expansion of the 

reflection of waves arriving at the end of the cylinder. On the other hand, the 

piezoelectric patch is discretized by the axisymmetric finite element formulation. 

Both least-square and virtual work methods are used for evaluating the amplitudes of 

the reflected wave field. 

A computer code is developed in the study. Numerical cases are presented to 

demonstrate the effectiveness and accuracy of the code. The reflections due to 

monochromatic incoming axisymmetric and flexural wave are studied. For an 

oscillating end voltage that is out-of-phase with the incoming wave, it is possible to 

extract electrical energy which is called as energy harvesting. By applying appropriate 

voltage in the piezoelectric patch, the reflected propagating waves in the cylinder can 

be eliminated efficiently which is called as passive-control. Cases of such an 



oscillating voltage with a particular radial distribution are given. Results presented in 

this study are for different thickness of piezoelectric patch, boundary condition and 

distribution of applied voltage. The results illustmte the amount of extracted energy as 

a function of the frequency of the incident monochromatic wave. The study has 

potential to apply in NDE (nondestructive evaluation), energy harvest and USM 

(ultrasonic motor). 
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Chapter 1 Introduction 

1.1 Background 

Nondestructive evaluation (NDE) is a specialized technical inspection method. NDE 

examines actual production pieces and reveals the presence of flaws without 

impairing their future usefulness. Ultrasonic inspection uses instrumentation converts 

electrical pluses into mechanical vibrations. The traveling wave reflects from flaws. 

The reflected pulses can be reconverted to electrical energy that can be measured. 

Their timing and size determine the position and size of the flaws. 

There is a surge research in the energy harvesting in this decade. The use of 

piezoelectric structure to capture ambient vibration and transform mechanical strain 

energy into electrical charge is one important development. 

End resonance generated by applying voltage in the piezoelectric patch can be 

used to create new types of motor, namely ultrasonic motor (USM). Comparing with 

traditional electro-magnetic motor, USM has many advantages to realize small size. 

In this study, transmitted problem of a semi-infinitely long cylinder with the 

piezoelectric patch is investigated and some performances are represented by 

numerical cases. It has potential to apply in NDE, energy harvest and USM. 
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1.2 Literature Review 

1.2.1 Guided wave in cylinder 

Pochhammer [ 1] found the axially symmetric, vibration solution for harmonic waves 

in an infinitely long, homogeneous, isotropic cylinder. The dispersion equation 

contained three variables (Poisson's ratio, the angular frequency, and propagation 

constant) in dimensionless form. The dispersion relation are derived from the 

equations of elastic motion and the boundary conditions for a traction-free surface. 

Based on the linear theory of elasticity, the three-dimensional solution of a 

guided wave in an infmitely long, homogeneous, isotropic hollow cylinder was 

studied by Gazis [2] and Armemikas et al. [3]. Their general solution did not need the 

assumption of axial symmetry. 

Using Frobenius' method, Mirsky [4,5] obtained an exact, infinite power series 

solution for axisymmetric waves traveling in an infmitely long, orthotropic, solid and 

hollow cylinders. Based on the same method but somewhat a different solution 

procedure, Nowinski [6] obtained an exact, infinite power series solution for a 

longitudinal wave traveling in a homogeneous orthotropic solid cylinder of infinite 

extent. Further results on this subject can be found in Chou and Achenbach [7] and 

Armenakas and Reitz [8]. 

1.2.2 Numerical method 

A three-dimensional finite element formula based on the variational principles was 

established by EerNisse [9]. And similar research for piezoelectric structure was 

investigated by Allik and Hughes [10]. Nelson et al. [11] and Huang and Dong [12] 
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presented a stiffness method to study wave propagation in laminated anisotropic 

cylinders with an arbitrary number of lamina. In this method, the thickness of the 

cylinder is discretized as sub layers. The displacements in each sub layer are 

evaluated through the use of interpolation functions that involve displacements solely 

at interfaces between the sub layers and the middle of each sub layer as the 

generalized coordinate parameters. Following a similar numerical procedure, 

Rattanawangcharoen and Shah [13,14) considered the dispersion relation of laminated 

composite cylinders. George and John [ 15] used one-dimensional finite element 

method to solve axisymmetric vibration of infinite piezoelectric cylinders. The 

dependence upon B, z, and time was included by assuming appropriate trigonometric 

functions and the 3-D problem was reduced to a one-dimensional (1-D) fmite element 

with four degrees of freedom per node. George and John [16] developed their work to 

anisotropic cylinders. The fmite element was used to model the cross-section of the 

cylinder in r, B coordinates. Material constants that were functions of B were allowed 

to vary in each circular sector and were computed using standard tensor 

transformations. 

1.2.3 End resonance 

End resonance is manifested by large (but bounded) amplitude displacements at the 

end of the structure, and such a phenomenon takes place in a very narrow band-width. 

End resonance in isotropic circular cylinders was first found experimentally by Oliver 

[17] and determined by McNiven [18] analytically. This result was further improved 

by Zemanek [19] within 0.5% with nine modes. Naillon, Coursant and Besnier [20] 

examined the resonance phenomena of piezoelectric structures by using echo graphic 

probes. They compared the electric characteristics of parallel periodic rods observed 

experimentally to those determined using the finite element method. The work done 

by Ostergaard and Pawlak [21] explained the finite element model as implemented in 

ANSYS engineering analysis system theoretical manual. This model allowed for the 
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solution of the static and electro-elastic vibration of different piezoelectric devices. 

The least square method was employed in Gregory and Gladwell [22] for studying the 

axisymmetric waves in a semi-infmitely long, elastic rod. The rod was stimulated 

either by tractions acting over its end face or by a propagating mode reflected at a free 

end surface. Their work showed that the end resonance frequencies depend strongly 

on the Poisson ratio. Kharouf and Heyliger [23] developed Ritz method with elements 

of power series and Fourier series to solve frequency problem for piezoelectric 

cylinders. Good agreement was obtained with results reported from the literature of 

frequencies, displacements and electric potential. Taweel et a!. [24] explored the 

reflected wave field in a semi-infmitely long laminated composite cylinder with a 

general cross-section. Using numerical computation, end resonances for semi-infinite 

piezoelectric cylinders were determined carefully by Bai et a!. [25]. 

1.2.4 Energy harvest 

When appropriate voltage is applied to the end of piezoelectric patch, energy carried 

by reflected waves can be optimized to a minimal value. Part of incoming wave 

energy is extracted by electric field through the end of piezoelectric patch. This 

phenomenon is called as energy harvest. There is a great mount of literature on energy 

harvest in the last decade. Umeda et a!. [ 26] made an investigation of the 

fundamentals of a generator, which transformed mechanical energy to electrical 

energy using a piezoelectric vibrator and a steel ball. The calculated output voltage is 

close to results in experiments. Some suggestions for optimizing transform proportion 

were given. Cornwell and Goethal [27] used auxiliary structures, consisting of a 

mechanical fixture and a piezoelectric element to tune the vibration system for higher 

energy harvest. By adjusting various parameters of these structures, the strain induced 

in the attached PZT element can be maximized and power output is improved. Bai et 

al. [25] discussed energy harvest in a semi-infinite piezoelectric cylinder for an 

incoming chromatic wave. The optimizing method of adjusting boundary electrical 
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condition was given by minimizing reflection energy. 

1.3 Objectives 

I. The frequency spectra of thick and thin isotropic cylinders were investigated by 

using the semi-analytic finite element method. 

2. End resonance and energy harvest for a semi-infmitely long cylinder with a 

piezoelectric patch were investigated. The corresponding optimized applied voltage 

distributions which minimized the outgoing energy were given. 

3. Different circumferential wave numbers (m = 0 and m = 1) were considered and 

'backward waves' were found in certain range of normalized circular frequency when 

m=O. 

4. Results with grounded and open circuit conditions at the end of the piezoelectric 

patch were compared. 

1.4 Organization of the Thesis 

This thesis focuses on the investigation of the propagating and scattering of guided 

wave in semi-infinite cylinders with piezoelectric patch. Introduction and literature 

review are presented in Chapter 1. A semi-analytical formulation for wave 

propagation in a cylinder is discussed in Chapter 2. Two kinds of eigenvalue problems 

are studied, the dispersion relations are given and frequency spectra for the thick and 

thin cylinders are plotted by solving the first kind eigenvalue problem. In Chapter 3, a 

hybrid finite element method is employed to study wave scattering problem in a 

semi-infinitely long cylinder attached piezoelectric patch. The piezoelectric patch is 

discretized by the axisymmetric element and the semi-infinite cylinder is modeled by 
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a wave function expansion. The continuity conditions at the interface are enforced to 

form the global equations of motion of the system. Numerical results are presented. 

End resonance is observed for circumferential wave m = 0 for both thick and thin 

cylinders. Energy harvest IS carefully studied. Finally, conclusions and 

recommendation are given in the Chapter 4. 
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Chapter 2 Guided wave in a Cylinder 

The study of wave propagation m a cylindrical structure is important for the 

non-destructive testing of flaws. In this chapter, the Hamilton principle is applied to 

arrive at equations of motion for the piezoelectric cylinder and isotropic cylinder. By 

using semi-analytical FEM method in the radial direction, wave form solutions of 

wave forms and frequency spectra of the cylinder can be obtained. 

2.1 Equations of motion 

For a circular cylinder, cylindrical coordinates and Cady's notation (1964) are used to 

represent the field variables. The primary dependent variables are: mechanical 

displacement {u} = [ur, U(), uzf; stress {T} = [Trr. T()(), Tzz, T&, T,.z, TrBf; strain {S} = 

[Srr. SBB, Szz, S&, Srz, SrBf; electric displacement {D}=(Dr, DB, Dzf; electric field {E} 

= [Er. Eo, Ezf; electric potential ¢, and body force {f} = [f,., fo, Jzf. Properties of 

isotropic elastic material can be represented by setting electric displacement {D} and 

electric field {E} as zero. 

2.1.1 Normalization 

Because of larger difference between the materials quoted in their usual units, 

non-dimensional method is applied to circumvent numerical anomalies. In equation 

(2.1), below quantities on the right-hand and left-hand sides of the equations are 

presented in their respective dimensional and dimensionless forms. Four key 

parameters are needed: (1) cylinder thickness H, (2) an elastic modulus c0
, (3) a 

piezoelectric constant e0
, and ( 4) mass density /, dielectric constant &

0 and electric 
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field IfJ can be defined as: & 0 = ( e0 t J c0 and £ 0 = c0 
/ e0

. The other independent 

and dependent variables and material properties are normalized as 

u;=~ (i=r,B,z), 
T 

T =_!!.... s -s 
p co' p- p 

D _Dk 
k --0' e 

c 
c = _!!!1._ 

pq co ' 

_Hpe Pe --0-, 
e 

(k=1,2,3), 

e. 
e = _!E_ 

;p eo' 

+ = Hf ( e ) Ji 0 i = r, ,z . 
I c 

2.1.2 Equations of motion 

(p = 1,2, ... ,6), 

(p,q = 1,2, ... ,6), 

(2.1) 

In the cylindrical coordinate system, equations of motion for a piezoelectric cylinder 

are given by 

aT,.,. 1 aT,.e aT,.= T,.,. - T()B + _ .. -+---+-+ +;,-pu ar r ae az r r r' 
aTer 1 aT ()8 aTe= 2 T,.e + _ .. --+---+--+ -+;e-PUe, ar r ae az r 
aT . 1 aT_e aT_ Tr.: f .. -2..+----+--=-+-- + =pu ar r ae az r = =' 

(2.2) 

an,.+.!.. aD8 +an= =O. 
ar r ae az 
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2.1.3 Hooke's law 

The general Hooke's law for piezoelectric properties is given as follows 

{Q} = [ c']{q} (2.3) 

where 

. [c -er] {T} {s} [ C J = e E ' {Q} = D ' {q} = E ' 
9x9 9xl 9xl 

and [C), [e) and [ E] are matrices of elastic anisotropic moduli (6x6), piezoelectric 

constants (6x3) and dielectric permittivities (3 x3), respectively, with [C'"] being a (9x 

9) matrix representing their conglomeration. 

2.1.4 Generalized strain-displacement relations 

Generalized strain-displacement relations in cylindrical coordinate are given by 

srr =our 
or 

s =au= == oz 
s = au= + au, s = .!_au, + DUe - Ue 

r:: or oz riJ r ae or r ' 
E =- 8¢ E = _.!_ 8¢ E =- 8¢ 

r or ' IJ r ae ' = oz . 

Above equation can be written in a compact form as 

{Q} = [L ]{v}, 

(2.4) 

(2.5) 

where { v} = [ u, u0 u= ¢f and the differential operator [L] IS giVen m the 

Appendix. 
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2.2 Semi-analytical FEM 

In this section, the equivalent expression for equations of motion is given by using the 

Hamilton principle. Applying finite element method to discretize the cylinder in the 

radial direction and substituting wave form solution into discretized equations of 

motion, eigenvalue equations for the cylinder can be derived. Propagating and 

non-propagating waves can be distinguished by setting the axial wave numbers to 

different values. 

2.2.1 Hamilton principle 

Hamilton principle can be expressed as 

f o(K-H) dt+ f 5W dt=O, 
~ ~ 

(2.6) 

where K, H and W are the kinetic energy, electric enthalpy and non-conservative 

energy, respectively. 

The kinetic energy is given as 

K = -i JH. {v( [p]{v}dv, (2.7) 

p 

p 
where [p]= p 

0 

Because of zero body and surface forces, the work done by non-conservative 

force is not involved in the present analysis, or W = 0. 

The electric enthalpy, H, which represents the internal strain energy of an elastic 

medium, is given by 

(2.8) 
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Substituting equation (2.3) into the above equation, a compact form of His found 

to be 

(2.9) 

where 

2.2.2 Quadratic element 

The geometry, boundary force and material matrices of a semi-infinite cylinder are 

axisymmetric. Isoparametric finite-element methodology and numerical integration 

are used to discretize the cylinder in the radial direction. 

z-axe 
~ 

A Finite Element 
Lamina 

Figure 1. Cross section of a cylinder 

-._fj 'i \'3 
• • • 
~' 

The explicit interpolation forms of a three-node quadratic element in a physical 

element is given by 

(2.10) 

where q is local variable ( -1 ::; q ::; +I) . 

According to the interpolation functions, the interpolations of the geometry and 
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any one of the field variables, say x, over the isoparametric element are given by 

(2.11) 

The field variables {ve} in a three-node quadratic element can be written as 

{v. (r,B,z,t)} = [N.(~)]{V. {B,z,t)}, 

where 

[N.(q)]= 

n1 (;) n2 (q) 

and {~}=[v1 v2 vX =[Uj, Ua U:J,. Uie ~B ~B Ui.: ~= ~= ~ ~ ¢J, 

(2.12) 

here [Ne(~] means the fmite element interpolation form and {Ve} denotes the vector 

of the nodal displacement and electric potential in a three-node quadratic element. 

By assembling variables {ve}, {Ve} and matrices [Ne(~] of every three-node 

quadratic element in the cylinder, global variables { v}, {V} can be denoted as 

{v{r,B,z,t)} = [N(~)] {v ( B,z,t)}, (2.13) 

where [N(~] means the fmite element interpolation over the whole cylinder. 

Substituting equation (2.12) into equation (2.5), the general strain-displacement 

relations in the whole cylinder can be written as 

{q} = (L ]{v} = (L ]([N(~) ]{V}) 
= (Lr ]([N(~) ]{V}) + (L0 ]{(N(~) ]{V}) + (LJ([N(~) ]{V}) , (2.14) 

= ( B1 ] { V} + ( B2 ] { V:e} + ( B3 ] { V:= } 

where {ve} = B{V}, {v -} = B{V}. Differential operators [Lr], [Lo], [Lz] and the 
' BB ·- Bz 

matrices [BJ], [B2], [B3] are given in Appendix. 

Substituting equation (2.14) into equation (2.9), the latter becomes 
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r SLdt+ r SWdt=S r dt Jf i<{vr(M]{v}-{vf(Kn){V}-{v}r(K;2]{V,e} 

-{vt(Kn){V,J -{V,e r (K2I){V} -{ \',e r [ Kn]{ \',e} -{V,e r [Kz3]{V,=} , (2.15) 

-{ \',= r ( K3I] {V} -{ \',= r [K32] { V,e} -{ \',= r [ K33] {V,= })dBdz=D 

where 

[Kll] = f[s~t[ c .. J[s~]r dr, [K12l = f[s~f[ c .. J[s2]r dr, 
[K13 ] = f[s~f[ c**][B3]r dr, [K21 ] = f[szf[ c .. ][B1]r dr, 
[K22] = f[s2t[ c .. ][B2]r dr, [K23 ] = f[szf[ c .. ][B3]r dr, 
[K31 ]= f[s3t[c**][B1]rdr, [K32 ]= f[B3 f[c**][B2 ]rdr, 
[K33 ]= f[B3t[c**][B3 ]rdr, [M]= f[Net[p][Ne]rdr, 

here note that all integrals have lower and upper limits of inner radius r; and outer 

radius r 0 , respectively. 

Finally, equations of motion can be given by 

where {F} is nodal force vector and 

(K1]=(K11 ], (K2 ]=(K12 ]-(K21 ], 

(K4 ]=(K2z), (K3 ]=(K13]-(K31 ], 
(K6]=[K33], [Ks]=[Kz3]+[K3z). 

(2.16) 

Note that [K1], [K4], [Ks] and [K6] are symmetric while [K2] and [K3] are 

skew-symmetric. 

2.2.3 Wave form solution 

The wave form solution for harmonic motion in a cylinder can be given by 

(2.17) 
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where OJ is the normalized circular frequency, (km, m) are the axial and circumferential 

wave numbers, and {Vo} is the vector of the radial modal distribution of the 

displacement and electric potential. 

Substituting equation (2.17) into equation (2.16), the following algebraic 

equation is obtained by 

The algebraic equation can be transformed to two kinds of eigenproblem by 

assigning OJ
2 or km as the eigenvalue. 

2.2.4 Eigenproblem 

Eigenvalue problem 1: 

With km assigned a certain value and rJ as eigenvalue, equation (2.18) becomes 

(2.19) 

here the circumferential wave number m is assigned an integer to assure 

circumferential periodicity. Axial wave number km and circumferential wave number 

m are regarded as constants in this equation. For non-trivial solution {V0}, the 

determinant of [K] must be zero. Since [K] is a Hermitian matrix, only real rJ is 

admitted. Frequency spectra can be plotted by letting km be x-axis and positive real OJ 

bey-axis. 
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Eigenvalue problem II: 

By assigning o}, the eigenproblem can be transformed as 

(2.20) 

where 

Now, normalized circular frequency (J) and circumferential wave number m are 

assigned as constants. For a non-trivial solution of the nodal displacements and 

electric potentials {Vo}, the determinant of [A 1-kmB1] must vanish. On the other hand, 

the eigenvector corresponding to the nth eigenvalue km represents the nodal 

displacements and electric potentials of the nth mode. By using strain-displacement 

relations, strain-stress relations and equivalent nodal force equations, the nodal forces 

and electric displacements of the nth mode can be derived. Introducing notations {tn}, 

{Pn}, {dn} and {un} as follows: 

{tn} =[ T=.l-l.n' ~8,1-l.n' ~-J-I.n' T=z,l-2,n' •·· T=,NE-3,n' ~8,NE-3,n> T::r,NE-3.n]T' 

{Pn} =[tA-l.n' tA-z,n' tA-3,n' rA-I.n' ... tPNE-2,n> tPNE-3,nJ' 

{dn} = [ D=,l-l,n' D=,l-2,n> D=,l-3.n' D=,2-l,n> • ·' D=,NE-2.n' D=,NE-3,n]T' 

(2.21) 

{un} = [ Ur,l-l,n' UB,l-l,n' U=,l-l,n> Ur,l-2.n' '.. Ur,NE-3,n> U8,NE-3.n' U=,NE-3,n]T • 

The subscripts are: (1) the first group, say zr, zz or zB, the traction and electrical 

displacement component, with the exception of ¢ which is a scalar, (2) the second 

group consists of two integers separated by a dash. They are the element number and 

the Guassian pointer within the element, respectively, NE stands for the total number 

of elements. 
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In a compact form, the nodal displacement and electric potential {Vn}, the 

equivalent nodal forces and electric displacements {Qn} of the nth mode are 

introduced as 

(2.22) 

The modal distribution of displacements and electric potentials [G], the modal 

distribution of forces and electric displacement [F] are given by 

(G}=(v; F ··· F } 2 M ' 
(2.23) 

where {F;} = J:" { Q; }rdr , and M is the total number of reflected modes. 

Propagating and non-propagating waves can be distinguished by different value 

of the axial wave number km. Real km represents propagating waves, while the 

complex conjugate pairs represent non-propagating waves which is described as 

standing waves with spatially decaying amplitudes. Different signs of km mean 

different traveling direction of the wave. Herein the wave traveling from negative 

z-axis to positive z-axis is defined as the reflected wave and the wave with opposite 

traveling direction is defmed as the incident wave. The relations of the wave 

characteristics and the normalized axial number km are summarized in Table 1. 

Table 1. Wave with different values of km 
km z>O z<O 

Real km>O km<O 
Propagating wave Propagating wave 

Complex Imag(km)>O Imag(km)<O 
Non-propagating wave Non-propagating wave 

2.3 Energy flux 

Since only propagating waves carry energy, the time-average value of the energy flux 

associated with the nth propagating mode is given by: 
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(2.24) 

where vectors {tn}, {un},{dn} and {Pn} have been defined in equation (2.21), and 

The over bars denote complex conjugation, and 

(a,/3) = r aH j3rdr. 

2.4 Numerical Studies 

Two cases are presented herein to illustrate frequency spectra for infmitely long 

isotropic cylinders. In these cases, two different-sized cylinders (H/R = 1 and 0.135) 

are considered. They are identified as a thick cylinder (H/R = 1) and a thin one (H/R = 

0.135). Here His the thickness of the cylinder and R =(ri+ r0 )/2 is the mean radius. 

In the numerical studies, His taken as unit 1m for both cylinders. The inner and 

outer radii of the thick cylinder are ri = 0.5 m and r0 = 1.5 m, respectively. The inner 

and outer radii of the thin cylinder are ri = 6.9091 m and ro = 7.9091 m, respectively. 

The cylinder is made by steel. The longitudinal wave and torsional wave 

velocities are given, respectively, as 

The Young's modulus is 2.169xl011 Pa, the Poisson's ratio v, mass density p, 

are v = 0.287,p = 7.8 x 103kg I m3
, respectively. 
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The normalized materials constants are 

3.3474 1.34742 1.34742 
1.34742 3.3474 1.34742 
1.34742 1.34742 [c] = 3.3474 

1 
1 

l 6x6 

Based on given physical values, the normalized circular frequency is given by 

18 

OJ= OJreat , where % = -1-Jc0 I p 0 , c0 is elastic constant and/ is mass density. For 
% H 

both cylinders, m> is 1811.64 radls. 

Case A 

In the thick hollow cylinder, frequency spectra is plotted over the frequency range of 

interested 0< OJ<8.0 for circumferential wave numbers m = 0 and m = 1, see Figure 2 

through 4. 

<l 
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3.5 
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-Mode1 
··-- Mode 2 
-Mode3 

Mode 4 
~·Mode5 

0.0 -¥--r-r-r--r--r-r-r--r-....-r-r--r-....-r~-.-....-..~-.-....-..~ 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

k m 

Figure 2. Frequency spectra for m = 0 
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Figure 3. Backward waveform= 0 

For circumferential wave number m = 0, there are two cutoff frequencies {J) = 

1.859, {J) = 3.271 when normalized circular frequency {J) = 0.0-4.5. As shown in 

Figure 3, in the second branch there is a minimal value ( {J) = 1.847) when km = 0.485. 

Wave numbers km to the left of {J) =1.847 are defmed as "backward wave" , which 

travels in a negative group velocity. 

There is one propagating wave when 0< {J) <1.847, when 1.859< {J) <3.271, two 

propagating waves exist, and three propagating waves exist when 3.271 < {J) <4.5. 

Otherwise, three propagating waves exist when 1.847< {J) <1.859 because of 

'backward wave'. 
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Figure 4. Frequency spectra for m = 1 
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As shown in Figure 4, for circumferential wave number m = 1, there are three 

cutoff frequencies OJ= 1.027, OJ= 1.956 and OJ= 3.516 at normalized circular 

frequency OJ= 0.0-4.5. No 'backward wave' is found when 0.0 < OJ< 4.5. 

CaseB 

For the thin cylinder, frequency spectra is plotted over the frequency range of 

consideration 0< OJ<8.0 for circumferential wave numbers m = 0 and m = 1. 

As shown in Figure 5, for circumferential wave number m = 0, there are two 

cutoff frequencies OJ = 0.226 and OJ = 3.144 at normalized circular frequency OJ = 
0.0-4.5. By carefully searching no 'backward wave' is found at OJ = 0.0-4.5. The 

fourth branch has a 'backward wave'. However, it is beyond the frequency range of 

interest. 
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Figure 5. Frequency spectra form= 0 
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As shown in Figure 6, for circumferential wave number m = 1, there are four 

cutoff frequencies OJ= 0.135, OJ= 0.319, OJ= 3.147 and OJ= 3.162 when 0 <OJ< 

4.5. No backward wave exists in this frequency range. There is one propagating wave 

when 0< OJ< 0.135. Two propagating waves exist when 0.135 < OJ< 0.319. Three 

propagating waves exist when 0.319 < OJ < 3.147, four and five propagating waves 

exist respectively when 3.147 < OJ< 3.162 and 3.162 < OJ < 4.5. 
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Chapter 3 Wave Scattering in a Cylinder 

3.1 Introduction 

The model studied in this chapter, as shown in Figure 7, contains a semi-infinitely 

long, homogeneous cylinder and a piezoelectric patch. When an incident wave 

traveling from infinite along the negative z-direction strikes the interface of the 

cylinder and the piezoelectric patch, a scattering wave field is generated. The applied 

voltage or boundary force in the end of piezoelectric patch can affect the reflected and 

transmitted wave fields. A hybrid finite element and modal representation technique is 

applied herein to obtain the reflected wave field. In this method, the scattered wave 

field in the semi-infinitely long cylinder can be represented by a wave function 

expansion as studied in Chapter 2. On the other hand, the transmitted wave in the 

piezoelectric patch is modeled by an axisymmetric element. An eight-node quadratic 

quadrilateral element is employed to model the piezoelectric patch. By imposing the 

continuity conditions for the displacement and the forces in the interface, the 

governing equations of the structure can be derived. Reflection coefficients can be 

obtained by using virtual work or least square method. By adjusting applied voltage at 

the end of piezoelectric patch, outgoing energy of the reflected waves can be 

minimized. This phenomenon is the called energy harvesting. Also by setting 

appropriate voltage in the patch, the vibration at the end of the patch can be absorbed, 

which is called passive-control. An optimization method is mentioned to obtain 

relatively high efficiency of energy harvesting. End resonance is also observed in the 

numerical study. 
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Figure 7. A semi-infinite cylinder with piezoelectric patch 

3.2 Model of the piezoelectric patch 

Since the geometry, boundary force and material properties of piezoelectric 

patch are axisymmetric, axisymmetric isoparametric finite-element methodology and 

numerical integration are used to discretize the patch in the radial and axial directions. 

The explicit interpolation forms of an eight-node quadratic element shown in Figure 8 

in the physical element are given by 

I 1 
n1 ( 4",17) = 4(1-4")(1-ry )( -4" -ry -1), n2 ( 4",17) = 4(1 + 4")(1-ry )( +4" -ry -1), 

1 
n3 ( 4",17) =-( 1 + 4") ( 1 + 1J) ( +4" + 1J -1), 

4 
n 4 ( 4", 1J) = .!_ ( 1 - 4") ( 1 + 1J) ( -4" + 1J - 1), 

4 (3.1) 
n5 ( 4", 1J) = .!_ (I - 4"2

) ( 1 -ry) 
2 

n7 ( 4", 1J) = .!_ ( 1- 4" 2
) ( 1 + 17) 

2 

, n6 (4",7J)=±(1-ry2 )(1+4"), 

, n8 (4",7J)=~(1-ry2 )(1-4"), 

where 4" and 17 are local variables in an eight-node isoparametric element 

( -1 ::;; 4" ::;; + 1, -1 ::;; 1J ::;; + 1). 
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Figure 8. Parent element and slave element 

According to the interpolation functions, the interpolations of the geometry and 

any one of the field variables, say x, over the isoparametric element are given by 

8 

x = 2>; (q,ry )x;. (3.2) 
i=l 

The field variables {ve} in an eight-node quadratic element can be written as 

(3.3) 

where 

and [Ne(q, ry)] is the finite element interpolation matrix and {Ve} denotes the nodal 

displacement and electric potential in an eight-node quadratic element. 

The general strain-displacement relations in the piezoelectric patch can be given 

by 

{q} = [L ]{v} = [L ]{[N(q,ry) ]{V}) 

= [Lr ]([N(q,7J)]{V}) + [L 0 ]([N(q,) ]{V}) + [LJ([N(q,ry)]{V}) (3.4) 

= [ B,]{V}+[ B2 ]{v,e }, 

where differential operators [Lr ], [Lo], [Lz] are discussed in Chapter 2 and [ B, J, [ B2 J 
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are given in Appendix. 

By substitution of equation (3.4) into the Hamilton principle, the following 

equation of motion can be derived 

where 

[k11 ]= Jf[E1J[c*•][B1}drdz, [K12 }= Jf[E1J[c .. J[E2}drdz, 

[k21]= Jf[E2J[c .. ][B1]rdrdz, [K22 ]= Jf[E2J[c .. J[B2 Jrdrdz, 

[M J = JJ[ N(~,ry)J [P}[ N(~,lJ )]rdrdz, 

and matrices [c"*], [p] are given in the previous chapter. Note that integrals in the 

radial direction have lower and upper limits of inner radius ri and r 0 , and integrals in 

the axial direction have lower and upper limits ofO and z0. 

Because of axisymmetric structure, the solutions {Y} and {F} for the harmonic 

motion have the forms of 

{Y} ={Yo} ei!mth"J 

{F} ={Fo}ei(mB-mt)' 
(3.6) 

where w is the normalized circular frequency, m is the circumferential wave number, 

{Y0 } the modal distribution of mechanical displacements and electric potential, and 

{Fo} the modal distribution of force and electric displacement. 

Substituting equation (3.6) into equation (3.5) gives rise to 

(3.7) 

where 

[ k] = ([ k,]+mi[ k.,J-mi[ k,.]+m' [ k,]-w'[ M ]) =U::l l::ll 

and {F1 } and {:F8 } are nodal forces and electric displacements in interior areas of 
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piezoelectric patch and in the interface, respectively. {V1 } and {v8 } are nodal 

displacements and electric potential in interior areas of piezoelectric patch and in the 

interface, respectively. 

3.3 Wave function expansion 

Propagating and non-propagating waves in a cylinder have been discussed in the 

previous chapter. For a semi-infinitely long cylinder with piezoelectric patch, the 

reflected and transmitted waves occur when an incident wave strikes the interface. 

The reflected waves contain a finite number of propagating waves and an infinite 

number of non-propagating waves. The semi-analytical fmite element method, as 

discussed in Chapter 2, is employed here to study the reflected wave field in the 

semi-infinite cylinder. 

The nodal displacements and electric potential { ys} corresponding to the 

reflected wave field of a semi-infinitely long cylinder can be represented by 

where 

D =R ikmL 
J Ie 

{vi}= {vi) v2j ... vkj ... VNPj r' 
{vkj} = {url.j ufJkj u=kj ¢kj r 

(3.8) 

and { Vj} is the jth wave mode corresponding to the wave number km, NP is the 

number of nodes in the radial direction, L is the thickness of the patch, and R1 is the 

unknown reflection coefficient of the jth wave mode. 

The compact form of equation (3.8) 1s giVen as 

{vs}=[G]{D}, (3.9) 
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where 

Wave scattering in a cylinder 

(G)= [V1 V2 

{D}={D1 D2 
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The equivalent force and electric displacement of the reflected wave can be 

obtained from the wave mode by using general stress-strain and strain-displacement 

relations given in Chapter 2, and they can be written as follows 

(3.10) 

where 

{Fj} = {Fij F2j Fkj ___ FNPj r 
{Fkj} = {f,.kj fekj f=kj d=kj r · 

{ Fj} is the jth wave mode containing forces and electric displacement corresponding 

to the wave number~--

The compact form of equation (3.1 0) has the expression 

(3.11) 

The nodal displacements and electric potential, { V ~n } ,and the nodal equivalent 

force and electric displacement, { F~n } , corresponding to the incident wave traveling 

from negative z-axis to origin can be written as 

{yin}= R. {V }/kmL 
B m m ' 

{ F;n} = R;n {F;n} eikmL. 
(3.12) 
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The total wave field in the cylinder is then given by a summation of the incident 

wave and reflected wave. As a result, the nodal displacements, forces, electric 

potential and electric displacement at the interface between the cylinder and the patch 

are then given by 

where 

{vB}={v~}+{V~"} 

{FB}={F~}+{F~"}' 

{v~} =(G]{D}, 
{F;} = (F]{D}, 

(3.13) 

here { v;} are the nodal displacements and electric potentials of the reflected waves 

in interface, and { F~} are the nodal forces and electric displacements of the reflected 

waves in interface. 

3.4 Hybrid method 

Using the virtual work principle, equation (3. 7) can be written as 

(3.14) 

where 5 represents the first variation and over bar denotes complex conjugate. Here 

{VB} is the nodal displacements and electric potentials of the piezoelectric patch at 

the interface, { F8 } the equivalent nodal forces and electric displacements applying to 

piezoelectric patch through the interface, {VB} the nodal displacements and electric 

potentials of the semi-infmitely long cylinder at interface; and {F8 } the equivalent 

nodal forces and electric displacements applying to the semi-infinitely long cylinder 

through the interface. 
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The above equation can be written as 

[ S11 ] {V1 } + [ s 81 ] {v1 } = {F1 }, 

8{vsr [sJB]{vs}+8{vsr sss{vs}=8{vsr {Fs}· (3.15) 

The nodal displacement and electric potential in the interior area can be 

represented by 

(3.16) 

Substitution of equation (3.16) into equation (3.7), it's found that {V8 } must 

satisfy 

(3.17) 

By imposing continuity condition for the displacements, electric potential, 

forces and electric displacement at interface of piezoelectric patch and the 

semi-infinitely long cylinder, following equation can be given by 

{vs} = {vs}, 
{Fs} = -{F8 }, 

Substituting equation (3 .18) into equation (3 .17) yields 

(3.18) 

8{v}:=8{or[cr, 
J{or ([cJ ([~s][c]+[F]){D}) =J{or ([cJ ( -{~}-[~s]{v:;}-[sm ][s11 r' {~ })).<3

.
19

) 

The virtual work solution of {D} is given as 

[GJ ([ s;8 ](G)+ [Fl){D} = [ GJ ( -{F~n} -[ s;8 ]{q~}- [S81 ](Sur' {F1 }). (3.20) 

The least-square solution of {D} is given as 

~~----~T T 
([ s*88][G)+(Fl) ([ ~8J[G)+[Fl){D} =([~s][G]+[Fl) ( -{~ }-[ ~s]{v: }-[Sm)[S11 r' {~}). 

(3.21) 
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3.5 Energy balance 

Since only propagating waves carry energy, the outgoing energy is shared by all the 

participating reflected propagating waves, 

Np,· 

£our= LEn' 
n=l 

(3.22) 

here E" is the energy carried by the nth propagating mode, and Npr is the number of 

propagating modes. 

The distribution of energy carried by the nth reflected propagating wave can be 

expressed by Er/E;11 • The energy balance ~ defmed as following form is used to 

check measurement accuracy of solution 

~=[1- IE"]xlOO. 
n=l Ein 

(3.23) 

3.6 Energy harvest 

In this section, three issues are studied: passive end reflection, oscillating voltage 

applied at the end of the piezoelectric patch, and energy harvesting. 

3.6.1 Passive end reflection 

Considering the passive reflection of an incoming harmonic wave traveling in the 

negative z-direction. When the incident wave strikes on the interface between the 

piezoelectric patch and the cylinder, a reflected wave field is generated. 
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The mechanical and electric boundary conditions at the end of piezoelectric 

patch are 

T_-= = ~B = T=r = 0, ¢ = 0 or Dz = 0, z = 0 . (3.24) 

Reflection coefficients {R1} can be calculated by solving equations (3.20) or 

(3.21) for a given incident wave. 

Outgoing energy carried by the reflected propagating waves is given as 

(3.25) 

where 

and [F] is modal matrix that is given in equation (2.23) and {Qin} is defined in 

equation (2.21) as distributions of forces and electric displacements stimulated by the 

given incident wave. 

3.6.2 Oscillating end voltage-forced vibration 

An oscillating voltage applied at the end of piezoelectric patch will generate time 

harmonic outgoing waves in a semi-infmitely long cylinder. The boundary condition 

in the end of piezoelectric patch can be represented as 

(3.26) 

Where: ¢0 is the normalized magnitude of applied voltage; {!) is the normal circular 

frequency of oscillating end voltage; and v(r) is the distribution of applied voltage. 

The reflection coefficients {R2 } can be calculated by using a similar process as 

studied in the passive end reflection. 

Outgoing energy carried by reflected propagating waves is given as 

(3.27) 
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where 

n=l 

and { Q~} is defined in equation (2.21) as the distributions of forces and electric 

displacements stimulated by oscillating end voltage. 

3.6.3 Semi-active end reflection 

Consider the presence of an incoming monochromatic wave whose reflection occurs 

with an oscillating end voltage. The mechanical and electric boundary conditions at z 

= 0 in piezoelectric patch are 

(3.28) 

Since both passive end reflection and vibration generated by oscillating end 

voltage are linear systems, reflection coefficients {R3} are the sum of reflection 

coefficients {Rt} and {R2}, i.e., 

(3.29) 

The outgoing energy is given by 

(3.30) 

where 
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3.6.4 Minimizing outgoing energy 

For Action 3.6.3, it can be seen that the outgoing energy carried by each propagating 

mode is strongly depended on the applied end voltage. Thus, the total outgoing energy 

can be minimized by carefully selecting the end voltage, ¢0. This method is called as 

passive vibration control. 

The second derivative of Eout m equation (3.30) IS found positive. This IS 

because 

(3.31) 

and Xo is positive. The minimal outgoing energy can then be found by setting the 

first derivative of Eout is zero. 

By differentiating the equation (3.30), the mininml of Eour can be written as 

(3.32) 

Therefore, the minimized outgoing energy flux of the reflected wave is 

(3.33) 



Chapter 3 Wave scattering in a cylinder 35 

3.7 Numerical study 

3.7.1 Verification of the computer code 

A FORTRAN computer code was developed in the study. First, convergence of the 

numerical procedure is tested with different mesh sizes, and results are compared with 

published data. For each case, a different number of axial modes is chosen in the wave 

function expansion to ensure convergence of the numerical procedure. The need 

meshes are listed in Table 2. Table 3 was the rate of convergence of the mesh sizes for 

the reflection coefficients. 

As noted in the previous section, the accuracy of the numerical procedure was 

tested by calculating the energy balance: 

E. -E 
~ = znput out X I OOo/o . 

£input 

(3.34) 

In the numerical case studied herein, energy balance coefficient ~ is less than 

O.OOI%. 

The test problem considered was investigated by Bai et a/. [28]. They used the 

one dimensional finite element method to analyze the problem. The geometry of the 

cylinder is given by HIR =I, H = 1, normalized thickness of the end area (L = O.I), 

and circumferential wave number is m = 0. The piezoelectric material constants are 

given by 
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13.90 7.78 7.43 
13.90 7.43 

[c]=1010 13.90 
2.56 

Pa, 

symmetric 2.56 
3.06 

[<] ~ [ • 
12.70 }/m2

, 12.70 
-5.20 -5.20 15.10 

r
.1306 

[e]=10-7 
• .1306 : JF/m. 

.1151 

The normalized properties of piezoelectric material are 

5.42969 

[CJ= 

[e]=r . 
-0.34437 

[&] = . 
r

1.46632 

Size 

Nr 

Nz 

3.03906 2.90234 
5.42969 2.90234 

4.49219 
1.0 

symmetric 1.0 

-0.34437 1.0 

1.19531 

O.S
4

ID
6 

0.84106 J 
1.46632 

Table 2. Six different mesh sizes 

Size 1 Size 2 Size 3 Size 4 

10 20 40 10 

1 1 1 2 

36 

Size 5 Size 6 

20 40 

2 2 

N, is the number of elements in the radial direction, N, is the number of element in the axial direction. 
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Table 3. Convergence check for different mesh sizes 

~ M IRd IRzl IR31 

2D 10 1 0.03273647 0.08433736 1.18967382 

2D 20 1 0.03271132 0.08462933 1.18155558 

2D 40 1 0.03270966 0.08477917 1.17717375 

2D 10 2 0.03271864 0.08433484 1.18967474 

2D 20 2 0.03269511 0.08462702 U8155644 

2D 40 2 0.03269356 0.08477691 1.17717452 

Published result 0.03269237 0.08477675 1.17717459 

End reflection is examined first. Table 3 shows the first three reflection 

coefficients of propagating waves (R~, R2 and R3). Here the incident wave is the first 

longitudinal wave mode and the normalized circular frequency is (J) = 5.0. It can be 

seen from Table 3 that the results from the current method converged to the 

semi-analytical results (the last row of Table 3). By comparing the amplitudes of 

reflection coefficients of different mesh, it can be seen that the mesh Nz = 20, Nr = 1 is 

sufficient in the computation. The relative error between the current method and the 

1-D model (the model used in [28]) is less than 0.4%. 

Next, the motion of the cylinder due to an applied end voltage as well as an 

incident wave is studied. The normalized frequency of the applied end voltage is 

checked in a narrow 'backward wave' range (2.205 < (J) < 2.221}. 

Shown in Figure 9 and Figure 10 is the amplitude and energy carried by each 

propagating mode derived from the current method and [28]. Type 1 is published 1-D 

model and type 2 is our developed modeL The results from the two methods are in 

very good agreement. It may be worth mentioning that there is a backward wave in 

the frequency range [28]. 
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Figure 9. Amplitudes of applied voltage 
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Figure 10. Energy distribution of reflected waves 

3. 7.2 Numerical studies 

38 

This subsection presents numerical results from investigating energy harvest and end 

resonance in a semi-infinite isotropic cylinder with attached piezoelectric patch. 

Two cylinders are studied here. One is a thick cylinder having HIR = 1 and the 

other a thin cylinder having HIR = 0.135, where His the thickness and R is the mean 
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radius of the cylinder. In each cylinder, two different circumferential wave numbers, 

m, are considered, i.e., m = 0 and m = 1. Different boundary conditions (Dz = 0 or rjJ = 

0) of the electric filed at the interface are considered. The variations of the thickness 

(L = 0.025, 0.05, 0.75 and 0.1) of the patch and the distribution of applied end voltage 

are also studied. 

The normalization constants are: (1) elastic modulus c0 = 0.8427x 1011 Pa, (2) 

piezoelectric constant tP = 0.1151 x 10-7 F/m, and (3) mass density l = 7.8x 103 kg/m3. 

The material constants of steel are given by 

2.8207 1.1354 1.1354 
1.1354 2.8207 1.1354 
1.1354 1.1354 2.8207 [ t J = 1011 

0.8427 
0.8427 

The normalized material constants of steel are given by 

3.3474 
1.34742 

1.34742 1.34742 
3.3474 1.34742 

1.34742 1.34742 
[C]= 

3.3474 
1 

1 

l 6x6 

0.8427 6x 6 

The material constants of the piezoelectric patch are given by 

13.90 7.78 7.43 
13.90 7.43 

[C]=l010 13.90 
2.56 

Pa, 

symmetric 2.56 
3.06 

[•]=l : 
12.70 }/m2

, 12.70 
-5.20 -5.20 15.10 

Pa. 
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l0.13060 . . l 
[~:] = 10-7 

• 0.13060 . Flm. 

. 0.115102 

The normalized material properties of the piezoelectric patch are shown m 

below 

1.6495 0.92327 0.881735 
0.92327 1.6495 2.90234 

[ c] = 0.881735 2.90234 1.36473 
0.303801 

0.303801 

[e] = r . 
l-0.166969 

0.40779 

0.363137 

0.40779 J 
-0.166969 0.484853 

10.113462 

[~:]=l . 0.11~462 :l . d 
Results of different thickness of piezoelectric patches are given to study the 

effect of piezoelectric patches on the energy harvesting and end resonance. At the 

same time, three distributions of applied voltage at the end of the piezoelectric patch 

are presented to study their influence on energy harvesting and end resonance. 

3.7.2.1 Energy harvest 

Thick cylinder with piezoelectric patch for m = 0 

Case l(A). End reflection and energy distribution for L = 0.1 

In case 1 (A), energy distribution due to an incident wave is investigated. The incident 

wave is taken as the first axisymmetric wave. The electric boundary conditions at the 

end of piezoelectric patch (z = 0) and the interface (z = zo) are open circuits (Dz = 0). 
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Figure 11. Energy distributions form = 0 
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As shown in Figure 11(a), it can be seen that the first mode is the dominant mode 

in the frequency range of interested 0.5< OJ< 4.5. In the frequency range of interested 

1.847 < OJ< 1.859, there is a 'backward wave' discussed in the previous chapter. 

Outgoing energy distribution of the 'backward wave' is plotted in Figure ll(b). There 

is one propagating wave when 0.5 < OJ< 1.847; three propagating waves exist when 

1.847 < OJ < 1.859 because of backward wave; when 1.859 < OJ < 3.271, two 

propagating waves exist. 

Case l(B). End reflection and energy harvest for L = 0.1 with applied voltage 

In case 1(B), In Energy harvest is studied by applying appropriate voltage at the 

end of the piezoelectric patch. The applied voltage distribution is given by 

v(r)={-1 0.5~r~1.0. 
1 1.0 ~ r ~ 1.5 

Other conditions are same as case 1(A). 

(3.35) 

Different electric boundary conditions at the interface, namely open circuit Dz = 0 

and grounded r/J = 0, are studied. 

Figures 12(a) and (b) show the reflection coefficients of the open and grounded 

circuit boundary conditions, respectively. On the other hand, the energy distributions 

carried by the outgoing wave for the two boundary conditions are shown in Figure 13. 



Chapter 3 Wave scattering in a cylinder 

~ 

1.6,-------------, 

14 

1.2 ·•~Mode1 

•· Mode 2 
1.0 ............. .._ • Mode3 

--~ o.a 1 . 
06 /\ 
0.4 

.......... .. 

•··········· 
·~ ill ,. . . . 

I •••••••••• .... .. 0.2 

0.0 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

(a) Open circuit 

;_~ 

1.6,--------------, 

1.4 

1.2 

0.6 

0.6 

0.4 

0.2 

0.0 

... . 
·---+-·-Mode 1 

• Mode 2 
A Mode 3 

............. /'~ . .. \. 
••••••••••• •• IIIII . . . . ····•····. 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

(b) Grounded circuit 

Figure 12. Reflection coefficients for m = 0 
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As shown in Figure 13(a), when normalized circular frequency of interested 0.5 

< m < 1.847 only one propagating wave carries the outgoing energy. The outgoing 

energy of reflection waves is equal to the incoming energy of the incident wave at 0.5 

< m< 1.5. When normalized circular frequency m is 1.8, the outgoing energy slightly 

decreases to 92.54%. 

In the frequency range of interested 1.847 < m <1.859, energy distribution of the 

'backward wave' is investigated. Figures 13(c) and (d) show the energy carried by 

reflected waves for the open and grounded circuit boundary conditions, respectively. 

The outgoing energy decreases a little for open and grounded circuit boundary 

conditions comparing with that for no applied voltage condition. 

Relatively, low and almost constant outgoing energy occurs during the 

frequency range of interested 2.2 < m< 3.2. The minimal outgoing energy is 14.59% 

at m = 2.9. Two propagating reflected waves share the whole outgoing energy. Major 

part of the outgoing energy is carried by the first propagating wave. When 3.0 < 

m< 4.5, three propagating waves share the outgoing energy. Low outgoing energy 

takes place in a narrow range around m = 3.2 and outgoing energy is 59.75%. In this 

frequency range, the third propagating mode is the dominant mode. 

In the Figure 13(b ), the behavior of the outgoing energy for the grounded circuit 

condition is similar to that of the open circuit. At m = 1.9, the second propagating 



Chapter 3 Wave scattering in a cylinder 43 

wave shares 25.78% which is higher than that in the open circuit, a merely 3.21 %. At 

OJ= 4.5, three propagating waves share 25.57%, 3.48% and 31.35% comparing with 

those of 4.63%, 0.29% and 93.82% in the open circuit case. 

However, the amplitudes of applied voltage, r/>J, for the grounded and open 

circuit are totally different. Detailed discussion will be given in the following case. 

1.2,------------------, 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4,0 4.5 

(a) Open circuit 

1.2,-----------------, 
1.1 

(c) Open circuit in 1.847 < OJ<1.859 

1.2,-----------------, 

-----Mode 1 
• Mode 2 
.... Mode 3 
..,. Total 

\.'"'!' 
lO \ . .. . .. 

0.5 1.0 1.5 2,0 2.5 3.0 3.5 4.0 4.5 

(b) Grounded circuit 

1.2-,-----------------, 
1.1 

1.848 1.850 1.852 1.854 1.856 1.858 

(d) Grounded circuit in 1.847 < OJ<1.859 

Figure 13. Energy distribution form = 0 

Case 2. Effects of the thickness of the patch on the energy harvest 

Four different normalized thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1, 

are used to study their effects on energy harvest. The other conditions are the same as 

those in Case 1. 
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(c) Open circuit in 1.847 < m<l.859 (d) Grounded circuit in 1.847 < m <1.859 

Figure 14. Outgoing energy for different thickness of the patch 

4000,------------------, 40,-------------------, 

3500 30 

·500 

1.0 1.5 '2.0 2.5 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

(a) Open circuit (b) Grounded circuit 
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(c) Open circuit in 1.847 < w<1.859 (d) Grounded circuit in 1.847 < m<1.859 

Figure 15. Magnitudes of applied voltage for different thickness of the patch 

When normalized thickness of the piezoelectric patch varies from 0.025 to 0.1, 

energy distribution of reflected waves and magnitude of applied voltage are shown in 

Figure 14 and Figure 15. In Figure 15, the difference of the minimized outgoing 

energy between the open and grounded circuit conditions is very limit except in the 

range of 4.3 < OJ < 4.5. The energy shared by the propagating modes in the 

frequency range of 4.3 < OJ < 4.5 is listed in Table 4 for illustrative purpose. It is 

also shown that the minimized outgoing energy is less sensitive to the thickness of the 

patch in the open circuit condition than that in the grounded circuit condition. 

Table 4. Outgoing energy form = 0 and grounded circuit condition 

~ L=0.025 L=0.05 L=0.075 L=0.1 

4.3 0.97311 0.99206 0.99439 0.55613 

4.4 0.97981 0.99892 0.44022 0.59568 

4.5 0.98972 0.91663 0.6065 0.60397 

However, as shown in Figure 14(a) and (b), the applied voltage is sensitive to the 

thickness of the piezoelectric patch. Amplitude of the applied voltage in the thicker 

piezoelectric patch is much smaller than that in the thinner one. Furthermore, the 
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magnitude of the applied voltage in open circuit condition is hundreds times larger 

than that in the grounded circuit condition. 

Case 3. Effects of the applied voltage on the energy harvest 

In this case, the effects of three different distributions of the applied voltage are 

investigated. The three distributions are given by 

v (r) = {-1 0.5::; r::; 1.0 v (r) = {-1 0.5 :S r :S 1.0 v
3 
(r) = {-D

1
.5 0.5 :S r :S 1.0 (3.36) 

1 0.5 1.0::; r::; 1.5 2 1 1.0 :S r :S 1.5 1.0 :S r :S 1.5 

The other conditions are the same as those in case 1. 

As shown in Figure 16(a) and Figure 17(a), m the open circuit condition, 

outgoing energies of the three voltage distributions are essentially the same when 0 < 

w < 4.5. The magnitudes of v2(r) and v3(r) are similar and the magnitude of v1(r) is 

slightly smaller than the magnitudes of v2(r) and v3(r) when 0 < w < 4.5. 

As shown in Figure 16(b) and Figure 17(b), in the grounded circuit condition, 

outgoing energies of v1(r) and vz(r) are similar at the frequency range of 0 < w < 4.5 

except a little differences at w = 2.2 and 3.2. 

The magnitude and outgoing energy of v3(r) are totally different from those of 

v1(r) and vz(r) at 2.2 < w < 4.5. In the range of 2.2 < w < 2.7, the outgoing energy of 

v3(r) is higher than those of v1 (r) and v2(r). In the range of 2.8 < w < 4.5, the outgoing 

energy proportion of v3(r) is lower than those of v 1 (r) and v2(r). On the other hand, the 

magnitude of v3(r) is obviously larger than those of v1(r) and v2(r) in the range of 2.2 

< w< 4.5. 
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(c) Open circuit in 1.847 < w<1.859 (d) Grounded circuit in 1.847 < w <1.859 

Figure 16. Outgoing energy for different voltage distributions 
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(c) Open circuit in 1.847 < m<1.859 (d) Grounded circuit in 1.847 < m<1.859 

Figure 17. Magnitudes of applied voltage for different voltage distributions 

Thick cylinder with piezoelectric patch form = 1 

Case 4(A). End reflection and energy distribution for L = 0.1 

In case 4(A), energy distributions and wave reflection coefficients due to an incident 

wave are investigated in Figure 18. The incident wave is taken as the first 

axisymmetric wave. The circumferential wave number is considered as m = 1. The 

electric boundary condition in the end of piezoelectric patch and the interface are open 

circuits (Dz = 0). 
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At the frequency range of interested 0.5< m < 1.0, only one propagating wave 

exists and occupies the whole outgoing energy. When 1.1< m < 1.9 two propagating 

waves occupy the whole outgoing energy; when 2.0 < m< 3.5 three propagating 

waves exist; when 3.6 < m< 4.5 four propagating waves share the outgoing energy 

and the 4th mode is the dominant mode. 

Case 4(B). End reflection and energy harvest for L = 0.1 with applied voltage 

Energy harvest is investigated for and the applied voltage distribution is given by 

v ( r) = {-1 0.5 ::;; r ::;; 1.0. 
1 1.0::;; r::;; 1.5 

Other parameters are same as case 4(A). 

(3.37) 

Different electric boundary conditions at the interface, namely the open circuit Dz 

= 0 and the grounded circuit ¢ = 0, are studied. 
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Figure 20(a) and (b) show the reflection coefficients of the open and grounded 

circuit boundary conditions, respectively. On the other hand, the outgoing energy 

distributions for the two boundary conditions are shown in Figure 19(a) and (b). 

It can be seen from Figure 19(a), at the frequency range of 0.5 < W< 1.0, only 

one propagating wave carries outgoing energy. The propagating wave is minimized to 

realize relatively low outgoing energy. The maximum and minimum of outgoing 

energy distributions are 56.56% and 10.48%, respectively at W= 0.7 and W= 1.0, in 

the frequency range of 0.5 < W< 1.0. When 1.1< w<1.9 two propagating waves 

occupy outgoing energy; when 1.1 < w<1.6 the outgoing energy is above 80%; when 

2.0< w<3.5 three propagating waves share the outgoing energy and the energy carried 



Chapter 3 Wave scattering in a cylinder 51 

by the first propagating mode decreases largely; when 3.6< OJ <4.5 four propagating 

waves share the outgoing energy and the outgoing energy keeps relatively high and 

almost constant value (above 94.5%). 

In Figure 19(b ), the behavior of the outgoing energy for the grounded circuit 

condition as shown is similar to that of the open circuit. At OJ = 2.0 the outgoing 

energy in the grounded circuit is 87.42% compared with 73.02% in the open circuit. 

At w = 3.3 and 3.4, the outgoing energy distributions in the grounded circuit are 

55.67% and 98.96% compared with 91.76% and 45.97% in the open circuit. At w= 

4.4, the outgoing energy in the grounded circuit is 70.65% compared with 99.40% in 

the open circuit. 

Case 5. Effects for different thickness of the patch on the energy harvest 

Four different normalized thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1, 

are used to study their effects on energy harvest. The other conditions are the same as 

in Case 4. 

When normalized thickness of the patch vanes from 0.025 to 0.1, energy 

distributions of reflected waves and magnitudes of applied voltage are shown in 

Figure 21 and Figure 22. 

In Figure 21, the difference of the minimized outgoing energy between the open 

and grounded circuit conditions is very limit at the range of 0.5 < OJ <1.8. When 0.5< 

w < 4.5 the difference of the minimized outgoing energy for different thickness patch 

is small in the open circuit condition. It also can be seen that the minimized outgoing 

energy is less sensitive to the thickness of the patch in the open circuit condition than 

that in the grounded circuit condition 
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Figure 21. Outgoing energy for different thickness of the patch 
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Figure 22. Magnitudes of applied voltage for different thickness of the patch 
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As shown in Figure 21(b), in the grounded circuit condition the behaviors of the 

outgoing energy distributions for the different thickness patch are similar when 0.5< 

m <2.1 and 3.7<m <4.5. When 2.2< m <3.2 the outgoing energy for the thicker patch 

is lower than that of the thinner one; when 3.2< m <3.7 there is a rimple of outgoing 

energy for the different thickness patch. 

However, as shown in Figure 14, Figure 22(a) and (b), the applied voltages are 

sensitive to the thickness of the piezoelectric patch. Amplitude of the applied voltage 

in the thicker piezoelectric patch is much smaller than that in the thinner one. 

Furthermore, the magnitude of the applied voltage in the open circuit condition IS 

hundreds times larger than that in the grounded circuit condition. 
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Case 6. Effects of the applied voltage on the energy harvest 

In this case, effects of three different applied voltage distributions are investigated. 

The voltage distributions are given by 

{
-1 0.5:5r:51.0 {-1 0.5:5r:51.0 () {--0.5 0.5:5r:51.0 

v1 (r)= 0.5 1.0:5r:51.5' v2 (r)= 1 1.0:5r:51.5' v3 r = 1 1.0:5r:51.5. (3.38) 

The other parameters are the same as those in case 4. 
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Figure 23. Outgoing energy for different voltage distributions 

1000 

"' 
500 

---v1(n 
• v2(1') 
• vs(r) 

0,5 1.0 1.5 2.0 2.5 3.0 3,5 4.0 4.5 

(a) Open circuit 

400 
350 t 300 
250 
200 .. .. 
150 .. 
100 
50 !: .............. ...., • 

1\ .u.•• ,-
~o o :\ •sumt ...... ..._....1., • ...__...., 

·50 ~ ::)' 
·100 • • 
·150 .. 
·200 • 
·250 
·300 
·350 

----e-·· v,(t) 

• v2(ry 
.a. v3(r) 

·400 +-.----,.---.--.--.---.-.----,.---.-..----! 
0.5 1.0 1.5 2.0 2.5 3.5 4.0 4.5 

(b) Grounded circuit 

Figure 24. Magnitudes of applied voltage for different voltage distributions 
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As shown in Figure 23(a) and Figure 24(a), in the open circuit condition, the 

outgoing energy of these three voltage distributions are similar at the frequency range 

of 0 < OJ< 1.0 and 3.6 < OJ< 4.5. In the range of 1.1 < OJ <3.5, the outgoing energy for 

v3(r) is lower than that for v1(r) as the outgoing energy for v1(r) is lower than that for 

v2(r). The magnitudes for v1(r) and v2(r) are similar and the magnitude for v3(r) is 

larger than that for v1(r) and vz(r). 

As shown in Figure 23(b) and Figure 24(b ), in the grounded circuit condition, 

outgoing energy proportions of these three voltage distributions are the same at the 

range of 0 < OJ< 1.0 and 3.6 < OJ< 4.5. The obvious difference of the outgoing energy 

for VJ(r), v2(r) and v3(r) takes place at the frequency range of 1.1 < OJ< 3.5. When 1.1 

<OJ< 3.3 the outgoing energy for v3(r) is higher than that for v1(r) and v2(r); when 3.4 

<OJ< 3.5 the outgoing energy for v3(r) is lower than that for v1(r) and v2(r). 

However, the magnitude for v3(r) is higher than that for VJ(r) and v2(r) in the 

frequency range of 1.6 <OJ< 3.5. 

Thin cylinder with piezoelectric patch form = 0 

Case 7(A). End reflection and energy distribution for L=O.l 

In this case, as shown in Figure 25, energy distributions and wave reflection 

coefficients due to an incident wave are studied. The incident wave is taken as the first 

axisymmetric wave. The electric boundary conditions at the end of piezoelectric patch 

and the interface are open circuits (Dz = 0). 

It can be seen that the second propagating wave occupies very low outgoing 

energy (below 0.167%) in the frequency range of 0.5< OJ <4.5. When 0.5< OJ <3.1 the 

whole outgoing energy is carried by the first propagating wave; when 3.1< OJ <3.4 the 

outgoing energy carried by the first propagating wave descends to 5.22% and the 

outgoing energy carried by the third propagating wave jumps to 94.78%; when 3.5< 

OJ <4.5 the outgoing energy carried by the third propagating wave keeps high value 

(beyond 84.05%) and the outgoing energy carried by the first propagating wave is 
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Figure 25. Energy distribution and reflected coefficients 

Case 7(B). End reflection and energy harvest for L=O.l with applied voltage 
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Energy harvest is studied by applying appropriate voltage at the end of the 

piezoelectric patch. The applied voltage distribution is given by 

v(r) = {-1 0.5 s; r s; 1.0. 
1 1.0 s; r s; 1.5 

Other parameters are same as case 7(A). 

(3.39) 

Different electric boundary conditions at the interface, namely the open circuit 

(Dz = 0) and the grounded circuit ( ¢ = 0), are studied. 

Figure 25(a) and (b) show the reflection coefficients of the open and grounded 

circuit boundary conditions, respectively. On the other hand, energy distributions for 

two different boundary conditions are shown in Figure 26. 

For the open circuit condition as shown in Figure 26(a), when 0.5 < OJ< 3.1, the 

outgoing energy carried by the first propagating wave is minimized efficiently. At OJ= 

3.1, the outgoing energy decreases to 6.89% and the outgoing energy of the first 

propagating wave is 5.45%, and the outgoing energy of the second propagating wave 

is 1.44%. In the frequency range of 3.2 < OJ< 4.5, the outgoing energy keeps a 

relatively high value (beyond 87% ). 
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For the grounded circuit condition as shown in Figure 26(b), the behavior of the 

outgoing energy is similar to that of the open circuit condition when 0.5< m <3.1. In 

the frequency range of 3.2< m <4.5, the outgoing energy is lower (about 91 %) than 

that (about 99%) of the open electric condition except at m = 4.0. The outgoing energy 

is 97.78% compared with 99.39% in the open circuit condition at m= 4.0. 
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Figure 27. Reflection coefficients for m = 0 

Case 8. Effects for different thickness of the patch on the energy harvest 

Four normalized different thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1, 

are used to study their effects on energy harvest. The other conditions are the same as 

those in case 7. 
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Figure 29. Magnitudes of applied voltage for different thickness of the patch 
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When the normalized thickness of the patch varies from 0.025 to 0.1, energy 

distribution of reflected waves and magnitudes of applied voltage are shown in Figure 

28 and Figure 29. 

In Figure 28(a) and (b), the difference of the minimized outgoing energy 

between the open and grounded circuit conditions is very limit except in the range of 

3.1 < m < 4.5. It can be seen that the minimized outgoing energy is less sensitive to 

the thickness of the patch in the open circuit condition than that in the grounded 

circuit condition. 

For the grounded circuit condition, as shown in Figure 28(b), the outgoing 

energy distributions of different thickness of the patches are similar at the range of 0.5 
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< (!) < 3.1. At the range of 3.2 < (!) < 4.5, the outgoing energy of the thicker patch is 

lower than that of the thinner one except at (!) = 4.0. At (!) = 4.0, the outgoing energy 

of the four sizes of the patches are close to 99%. As shown in Figure 29 (b), the lower 

magnitude corresponds to the thicker patch in the grounded circuit condition. 

However, as shown in Figure 29 (a) and (b), the applied voltages are sensitive to 

the thickness of piezoelectric patch. The amplitude of the applied voltage in the 

thicker piezoelectric patch is much smaller than that in the thinner one. Furthermore, 

the magnitude of the applied voltage in the open circuit condition is hundreds times 

larger than that in the grounded circuit condition. 

Case 9. Effects for different applied voltage distribution on the energy harvest 

In this case, effects of three different distributions of the applied voltage are 

investigated. The three distributions are given by 

The other parameters are the same as those in case 7. 

As shown in Figure 30(a) and Figure 3l(a), in the open circuit condition, the 

outgoing energy distributions of the three voltage distributions are similar when 0.5 < 

(!) < 4.5. The magnitudes for v1(r) and v3(r) are almost identical in this domain. The 

magnitude ofv1(r) is larger than that ofv2(r) when 0.5 < (!) < 4.5. 

Forthe grounded circuit condition, as shown in Figure 3l(b), the outgoing energy 

of the three voltage distributions is similar at the range of 0.5 < (!) < 0.6, 1.4 < (!) < 2.8 

and (!) = 4.0. When 0.7 < (!) < 1.3 the outgoing energy of v3(r) has a rimple which is 

higher than those of v1(r) and v2(r); when 2.9 < (!) < 3.9 the outgoing energy for v2(r) 

is the largest one which followed by that for v1(r), and the outgoing energy for v1(r) is 

followed by that for v3(r). When 4.1 < (!) < 4.5, the outgoing energy of v3(r) is higher 

than that of v1(r), and the outgoing energy of v1(r) is followed by that for vz(r). As 

shown in Figure 30 (b), the magnitude ofv3(r) is higher than those ofv1(r) and vz(r) at 

the range of0.5 < (!) < 4.5. 
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Figure 30. Magnitudes of applied voltage for different voltage distributions 
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Thin cylinder with piezoelectric patch form = 1 

Case lO(A). End reflection and energy distribution for L=O.l 

59 

In this case, shown in Figure 32, energy distributions and wave reflection coefficients 

due to an incident wave are studied. The incident wave is taken as the first 

axisymmetric wave. The electric boundary conditions at the end of piezoelectric patch 

and the interface are open circuits (Dz = 0). 

It can be seen that the first propagating wave occupies major part of the 
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outgoing energy when 0.5< m< 3.1. In this frequency range, the outgoing energy 

carried by the second and the third propagating waves are below 0.4%. When 3.2< 

m< 3.7 the outgoing energy carried by the first propagating wave decreases to 0.49% 

and the outgoing energy carried by the fifth propagating wave increases to 97.99%; 

when 3.8 < m < 4.5 the outgoing energy carried by the first propagating wave 

increases to 15.95% slowly and the outgoing energy carried by the fifth propagating 

wave descends to 83.60%. 
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Figure 32. Energy distribution and reflected coefficients 

Case lO(B). End reflection and energy harvest for L=O.l with applied voltage 

Energy harvest is studied by applying appropriate voltage at the end of the 

piezoelectric patch. The applied voltage distribution is given by 

v ( r) = {-1 0.5 :::; r :::; 1.0 . 
1 1.0:::; r:::; 1.5 

(3.41) 

Different electric boundary conditions at the interface, namely the open circuit 

(Dz = 0) and the grounded circuit ( ¢ = 0), are studied. 

Figure 34 (a) and (b) show the reflection coefficients of the open and grounded 

circuit boundary conditions, respectively. On the other hand, the outgoing energy 

carried by the outgoing wave for the two boundary conditions is shown in Figure 33(a) 

and 34(a). When 0.5 < m < 3.1 the outgoing energy carried by the first propagating 

wave descends from 50% to 1.4%. The minimized outgoing energy is 1.44% at 
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m = 3.1. When 3.2 < m< 4.5, the outgoing energy proportion keeps a relatively high 

value (beyond 88%) and increases up to 99.99% at the point m= 4.5. The outgoing 

energy carried by the fifth propagating wave occupies major part of the outgoing 

energy when 3.2 < m< 4.5. 

As shown in Figure 33(b), the behavior of the outgoing energy of the grounded 

circuit condition is the same as that of the open circuit condition when 0.5< m <3.1. At 

the range of 3.2< m <4.5, the outgoing energy of the grounded circuit is lower (about 

91%) than that (about 99%) in the open circuit condition except at m = 4.0. The 

outgoing energy in the grounded circuit is 98.38% compared with 99.39% in the open 

circuit condition at m= 4.0. 
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Figure 34. Reflection coefficients for m = 1 



Chapter 3 Wave scattering in a cylinder 62 

Case 11. Effects for different thickness of the patch on energy harvest 

Four normalized different thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1, 

are used to study their effects on energy harvest. The other parameters are the same as 

those in case 10. 

1.2,-----------------, 

0.5 1.0 1.5 '2.0 '2.5 3.0 35 4.0 4.5 

(a) Open circuit 

1.2,-----------------, 

1.0 

l 0.9 
c 
-~ O.B 

~ 0.7 
;; :e 0.6 

~0.5 
c 
~0.4 

·& 0.3 

8 0.2 

0.1 

"lJUIIMQd 
f .,-.wT '"""''V 

___.____ L::0.025 I ..,..,-
• L::0.05 ; v 
"" L:0.075 it. ........ ::::.~.~ I 

.... i . ' 
~ I \I 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

(b) Grounded circuit 

Figure 35. Outgoing energy for different thickness of the patch 
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Figure 36. Magnitudes of applied voltage for different thickness of the patch 

When normalized thickness of the piezoelectric patch varies from 0.025 to 0.1, 
the energy distributions of reflected waves and magnitudes of applied voltage are 
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Figure 36. 

In Figure 35, the difference of the minimized outgoing energy between the open 

and grounded circuits is very limit except at the range of 0.5 < {!) < 3.1. It also can be 

seen that the minimized outgoing energy is less sensitive to the thickness of the patch 

in the open circuit condition than that of the grounded circuit condition. 

For the open circuit condition, as shown in Figure 35(a), differences of the 

outgoing energy for different thicknesses of the patches are very limit when 0.5< {!) 

<4.5. 

For the open circuit condition, as shown in Figure 35 (b), the outgoing energy 

distributions of the different thicknesses of the patches are similar when 0.5< {!) <3.1. 

At {!) = 3.4 the outgoing energy with L = 0.1 is higher (19.85%) than others. When 

3.3< {!) <4.5 the outgoing energy for the thicker patch is lower than that for the thinner 

one except {!) = 4.0. At {!) = 4.0, the outgoing energy distributions for four thicknesses 

of the patches are close to 99%. As shown in Figure 36, the lower magnitude 

corresponds to the thicker patch in the grounded circuit condition. 

However, as shown in 

Figure 36 (a) and (b), the applied voltages are sensitive to the thickness of 

piezoelectric patch. Amplitude of the applied voltage in the thicker piezoelectric patch 

is much smaller than that in the thinner one. Furthermore, the magnitude of the 

applied voltage in the open circuit condition is hundreds times larger than that in the 

grounded circuit condition. 

Case 12. Effects for the applied voltage distribution on energy harvest 

In this case, effects of three distributions of the applied voltage are investigated. The 

three distributions are given by 

v (r)={-1 0.5~r~l.O v (r)={-1 0.5~r~l.O v (r)={-D.5 0.5~r~l.O (3.42) 
1 0.5 1.0 ~ r ~ 1.5 2 1 1.0 ~ r ~ 1.5 3 1 1.0 ~ r ~ 1.5 

The other parameters are the same as those in case 10. 

As shown in Figure 37(a) and Figure 38(a), in the open circuit condition, the 



Chapter 3 Wave scattering in a cylinder 64 

As shown in Figure 37(a) and Figure 38(a), in the open circuit condition, the 

outgoing energy for three voltage distributions are essentially the same when 0 < 

co< 4.5 except OJ= 3.1. At the point CO= 3.1, the outgoing energy distributions of v1 (r), 

v2(r) and v3(r) are 1.44%, 13.29% and 4.69%, respectively. 

For the grounded circuit condition as shown in Figure 37 (b), the outgoing 

energy for v3(r) is higher than those for v1(r) and v2(r) when 0.5 < OJ< 1.7. At the 

range of 1.8 < CO< 2.8, the outgoing energy for v2(r) and v3(r) are contiguous and the 

outgoing energy for v1(r) is lower than those for v2(r) and v3(r). At OJ= 4.0, the 

outgoing energy have rimples for three distributions. 
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3. 7 .2.2 End resonance 

End resonance is characterized by high (but finite) amplitudes of end displacements 

vis-a-vis those of neighboring (i.e., slightly different) frequencies. This phenomenon 

is studied in this subsection. 

End resonances due to the first incident axisymmetric wave are observed for a 

semi-infinite cylinder with/without piezoelectric patch. Both thick and thin cylinders 

are studied. 

Results of different thicknesses of piezoelectric patches are studied. Meanwhile, 

the comparison of the patches with/without polarization is done to show the effect of 

the electric field to the end resonance. Also the results of a semi-infinite isotropic 

cylinder are presented for comparison purpose. 

The geometry and material property of the cylinder and the patch are the same 

as used in case 1. The end of the piezoelectric patch is the open circuit condition (Dz = 
0) and the interface of the patch and cylinder is the grounded circuit condition ( rjJ = 0). 

Case 13. End resonance in the thick cylinder (WR = 1) 

As shown in Figure 39, Figure 40 and Figure 41, there are two end resonance 

frequencies in the range of 0.5< m<5.0. The first end resonance frequency takes place 

at a narrow range of 1.55< m < 1.60, and the second one occurs in the range of 4.0 < 

m <5.0. When 1.847< m < 1.859, the 'backward wave' exists and there is no end 

resonance performance. Detail information for these two end resonances is presented 

from Figure 42 to Figure 47. 
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Figure 41. End resonance of electric potential form= 0 

The first end resonance of the thick cylinder 

For the thick cylinder, as shown in Figure 42 through Figure 44, the first end 

resonance frequency OJ decreases with the increasing thickness of the piezoelectric 

patch. However, the amplitude of the response increases with the increasing of the 

thickness of the patch. 

As shown in Figure 42, the first radial end resonance frequencies are 1.6274, 

1.6062, 1.5847 and 1.5626 for L = 0.025, 0.05, 0.075 and 0.1, respectively. There are 

slightly changes in the end resonance frequency when exploring the axial 

displacement and the electric potential. Table 5 summarized the results. 
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Table 5. First end resonance frequency for a thick cylinder 

Thickness 0.025 0.050 0.075 0.100 

Patch pi NP2 pi NP2 pi NP2 pi NP2 

Radial 1.6274 1.6254 1.6062 1.6012 1.5847 1.5773 1.5626 1.5525 

Axial 1.6303 1.6284 1.6075 1.6026 1.5847 1.5778 1.5634 1.5525 

Electric 1.6274 NA 1.6062 NA 1.5847 NA 1.5626 NA 

l: P stands for polarized piezoelectric patch 

2: NP stands for non-polarized piezoelectric patch 

Comparing non-polarized piezoelectric patch with polarized piezoelectric patch 

the first end resonance frequency shifts leftward, and the magnitude of the response 

increases slightly. 

It can be seen from Figure 42 through Figure 44, the amplitude of the response 

increases monotonously with the increasing thickness of the patch. 
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The second end resonance of the thick cylinder 

The behavior of the second end resonance frequency is similar to that of the first end 

resonance frequency, i.e., it decreases with the increasing thickness of the patch. It can 

be seen from Figure 45 through Figure 47. However, the amplitudes of the mechanical 

displacements show somewhat slight variations. They are sma11er than those of the 

first radial end resonance frequency. Table 6 summarizes the second end resonance 

frequency of the different thicknesses of the patches. 

Table 6. Second end resonance frequency for a thick cylinder 

Thickness 0.025 0.050 0.075 0.100 

Patch pi NP2 pi NP2 pi NP2 pi NP2 

Radial 4.7318 4.7135 4.5892 4.5488 4.4529 4.3876 4.3286 4.2433 

Axial 4.7245 4.7061 4.5802 4.5398 4.4488 4.3835 4.3241 4.2388 

Electric 4.7318 NA 4.5892 NA 4.4610 NA 4.3821 NA 

I: P stands for polarized piezoelectric patch 

2: NP stands for non-polarized piezoelectric patch 
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Case 14. End resonance in the thin cylinder (HIR = 0.135) 

There is one end resonance frequency in the frequency range of interest 0.5< w<4.5. 

As shown in Figure 48, Figure 49 and Figure 50, the end resonance frequency 

w decreases with the increasing of the thicknesses of piezoelectric patches. The end 

resonance frequencies of radial, nodal displacements and electric potential are similar. 

The amplitudes of radial and axial displacements of the end resonance show some 

changes with different thicknesses of the patches. However, with the increasing 

thicknesses of the patches the amplitudes of the electric potential increase 

monotonously. Table 7 summarizes the results. 
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Table 7. Second end resonance frequency for a thin cylinder 

Thickness 0.025 0.050 0.075 0.100 

Frequency 4.4673 4.3360 4.2100 4.0960 

Radial amplitude 209.34 166.64 167.69 199.19 

Axial amplitude 173.90 126.05 127.36 143.03 

Electric amplitude 0.478 1.564 3.430 6.566 
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Figure 48. End resonance of radial displacement for the thin cylinder 
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Chapter 4 

Conclusions and Recommendations 

4.1 Conclusions 

The wave propagation and reflection in a semi-infinitely long cylinder attached with 

piezoelectric patch were studied in this thesis. 

First, the frequency spectra of thick and thin isotropic cylinders were investigated 

by using the semi-analytic fmite element method. Different circumf~rential wave 

numbers (m = 0 and m = 1) were considered and 'backward waves' were found in 

certain range of normalized circular frequency when m = 0. The wave modes were 

then obtained by solving the second kind of eigenvalue problem. These modes were 

investigated in the second part of the study. 

Second, a hybrid method was introduced. In this method, the patch was modeled 

by two dimensional axisymmtric finite elements, and the wave in the cylinder was 

calculated by using a wave function expansion. The continuity conditions at the 

interface between the patch and cylinder were enforced. The governing equations of 

the system were derived by using the virtual work principle and the least square 

method. Finally, the reflection coefficient of the reflected field in the cylinder as well 

as the mechanical displacements and the electric potential in the patch were evaluated 

by solving the equations of motion. 

The effect of the piezoelectric patch and the applied end voltage on the energy 

harvest and end resonance was investigated. Also studied was the electric boundary 

condition of the patch, namely, open circuit (Dz = 0) and grounded circuit(¢= 0). In 
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the frequency range studied, the harvested energy was insensitive to the thickness of 

the piezoelectric patch and the form of the end voltage. However, the amplitude of the 

applied end voltage was sensitive to the thickness, the form of the voltage, and the 

electric boundary condition. Generally speaking, the open circuit required much more 

effort to archive the similar amount of harvested energy than that of the grounded 

circuit condition. The required end voltage decreased with the increasing thickness of 

the patch. These observations were helpful for designing an experiment to test the 

energy harvest. 

For the end resonance, thick and thin cylinders had different behavior. There were 

two end resonance frequencies existing in the thick cylinder. This was the first time 

that was reported in the literature, to the author's best knowledge. When the thickness 

of the patch increased, the end resonance frequencies decreased. Comparing polarized 

piezoelectric patch with non-polarized patch, it was seen that the end resonance 

frequencies decreased when it was polarized. The piezoelectric patch softens the 

structure. 

4.2 Recommendations 

The following recommendations are suggested for future work. 

1. The end reflection results given in Chapter 3 should be validated experimentally. 

2. The current program works for the two dimensional axisymmetric element. An 

extension to the three dimensional fmite element is needed when using a 

generalized piezoelectric patch. 

3. A more thorough study should be conducted to maximize the harvested energy 

or to eliminate the end resonance. Some work has been done toward this 

direction and the results are promising. 

4. The thermal effect should be included in the future study where thermal effect 

becomes significant. 
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