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Abstract

A numerical procedure is presented for the study of end reflections in a
semi-infinitely long isotropic circular cylinder with attached piezoelectric patch. The
hybrid method which combines the finite element formulation in the piezoelectric
patch with a wave function expansion representation in the isotropic cylinder is
employed in the study. The global solution is obtained by imposing the continuity
conditions on the displacements and tractions at the interface between the

piezoelectric patch and the cylinder.

To obtain the wave functions in the cylinder, the goveming equations of the
cylinder are discretized by a semi-analytical finite element formulation where the
discretization occurs through the cylinder’s thickness. Solutions in the cylinder are
constructed with modal data from a spectral decomposition of the differential
equations governing its natural vibrations. These modal data consist of all propagating
modes and edge vibrations, constituting the basis for a wave function expansion of the
reflection of waves arriving at the end of the cylinder. On the other hand, the
piezoelectric patch is discretized by the axisymmetric finite element formulation.
Both least-square and virtual work methods are used for evaluating the amplitudes of

the reflected wave field.

A computer code is developed in the study. Numerical cases are presented to
demonstrate the effectiveness and accuracy of the code. The reflections due to
monochromatic incoming axisymmetric and flexural wave are studied. For an
oscillating end voltage that is out-of-phase with the incoming wave, it is possible to
extract electrical energy which is called as energy harvesting. By applying appropriate
voltage in the piezoelectric patch, the reflected propagating waves in the cylinder can

be eliminated efficiently which is called as passive-control. Cases of such an



oscillating voltage with a particular radial distribution are given. Results presented in
this study are for different thickness of piezoelectric patch, boundary condition and
distribution of applied voltage. The results illustrate the amount of extracted energy as
a function of the frequency of the incident monochromatic wave. The study has
potential to apply in NDE (nondestructive evaluation), energy harvest and USM

(ultrasonic motor).
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Chapter 1 Introduction 1

Chapter 1 Introduction

1.1 Background

Nondestructive evaluation (NDE) 1s a specialized technical inspection method. NDE
examines actual production pieces and reveals the presence of flaws without
impairing their future usefulness. Ultrasonic inspection uses instrumentation converts
electrical pluses into mechanical vibrations. The traveling wave reflects from flaws.
The reflected pulses can be reconverted to electrical energy that can be measured.
Their timing and size determine the position and size of the flaws.

There 1s a surge research in the energy harvesting in this decade. The use of
piezoelectric structure to capture ambient vibration and transform mechanical strain
energy into electrical charge is one important development.

End resonance generated by applying voltage in the piezoelectric patch can be
used to create new types of motor, namely ultrasonic motor (USM). Comparing with
traditional electro-magnetic motor, USM has many advantages to realize small size.

In this study, transmitted problem of a semi-infinitely long cylinder with the
piezoelectric patch is investigated and some performances are represented by

numerical cases. It has potential to apply in NDE, energy harvest and USM.
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1.2 Literature Review

1.2.1 Guided wave in cylinder

Pochhammer [1] found the axially symmetric, vibration solution for harmonic waves
in an infinitely long, homogeneous, isotropic cylinder. The dispersion equation
contained three vanables (Poisson’s ratio, the angular frequency, and propagation
constant) in dimensionless form. The dispersion relation are derived from the

equations of elastic motion and the boundary conditions for a traction-free surface.

Based on the linear theory of elasticity, the three-dimensional solution of a
guided wave in an infinitely long, homogeneous, isotropic hollow cylinder was
studied by Gazis [2] and Armenakas ef al. [3]. Their general solution did not need the

assumption of axial symmetry.

Using Frobenius’ method, Mirsky [4,5] obtained an exact, infinite power series
solution for axisymmetric waves traveling in an infinitely long, orthotropic, solid and
hollow cylinders. Based on the same method but somewhat a different solution
procedure, Nowinski [6] obtained an exact, infinite power series solution for a
longitudinal wave traveling in a homogeneous orthotropic solid cylinder of infinite
extent. Further results on this subject can be found in Chou and Achenbach [7] and

Ammenakas and Reitz [8].

1.2.2 Numerical method

A three-dimensional finite element formula based on the variational principles was
established by EerNisse [9]. And similar research for piezoelectric structure was

investigated by Allik and Hughes [10]. Nelson et al. [11] and Huang and Dong [12]
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presented a stiffness method to study wave propagation in laminated anisotropic
cylinders with an arbitrary number of lamina. In this method, the thickness of the
cylinder is discretized as sub layers. The displacements in each sub layer are
evaluated through the use of interpolation functions that involve displacements solely
at interfaces between the sub layers and the middle of each sub layer as the
generalized coordinate parameters. Following a similar numerical procedure,
Rattanawangcharoen and Shah [13,14] considered the dispersion relation of laminated
composite cylinders. George and John [15] used one-dimensional finite element
method to solve axisymmetric vibration of infinite piezoelectric cylinders. The
dependence upon &, z, and time was included by assuming appropriate trigonometric
functions and the 3-D problem was reduced to a one-dimensional (/-D) finite element
with four degrees of freedom per node. George and John [16] developed their work to
anisotropic cylinders. The finite element was used to model the cross-section of the
cylinder in r, & coordinates. Material constants that were functions of & were allowed
to vary in each circular sect;)r and were computed using standard tensor

transformations.

1.2.3 End resonance

End resonance is manifested by large (but bounded) amplitude displacements at the
end of the structure, and such a phenomenon takes place in a very narrow band-width.
End resonance in isotropic circular cylinders was first found experimentally by Oliver
[17] and determined by McNiven [18] analytically. This result was further improved
by Zemanek [19] within 0.5% with nine modes. Naillon, Coursant and Besnier [20]
examined the resonance phenomena of piezoelectric structures by using echo graphic
probes. They compared the electric charactenstics of parallel periodic rods observed
experimentally to those determined using the finite element method. The work done
by Ostergaard and Pawlak [21] explained the finite element model as implemented in

ANSYS engineering analysis system theoretical manual. This model allowed for the
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solution of the static and electro-elastic vibration of different piezoelectric devices.
The least square method was employed in Gregory and Gladwell [22] for studying the
axisymmetric waves in a semi-infinitely long, elastic rod. The rod was stimulated
either by tractions acting over its end face or by a propagating mode reflected at a free
end surface. Their work showed that the end resonance frequencies depend strongly
on the Poisson ratio. Kharouf and Heyliger [23] developed Ritz method with elements
of power series and Fourier series to solve frequency problem for piezoelectric
cylinders. Good agreement was obtained with results reported from the literature of
frequencies, displacements and electric potential. Taweel et al. [24] explored the
reflected wave field in a semi-infinitely long laminated composite cylinder with a
general cross-section. Using numerical computation, end resonances for semi-infinite

piezoelectric cylinders were determined carefully by Bai et al. [25].

1.2.4 Energy harvest

When appropriate voltage is applied to the end of piezoelectric patch, energy carried
by reflected waves can be optimized to a minimal value. Part of incoming wave
energy is extracted by electric field through the end of piezoelectric patch. This
phenomenon is called as energy harvest. There is a great mount of literature on energy
harvest in the last decade. Umeda et al. [26] made an investigation of the
fundamentals of a generator, which transformed mechanical energy to electrical
energy using a piezoelectric vibrator and a steel ball. The calculated output voltage is
close to results in experiments. Some suggestions for optimizing transform proportion
were given. Comwell and Goethal [27] used auxiliary structures, consisting of a
mechanical fixture and a piezoelectric element to tune the vibration system for higher
energy harvest. By adjusting various parameters of these structures, the strain induced
in the attached PZT element can be maximized and power output is improved. Bai ef
al. [25] discussed energy harvest in a semi-infinite piezoelectric cylinder for an

incoming chromatic wave. The optimizing method of adjusting boundary electrical
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condition was given by minimizing reflection energy.

1.3 Objectives

1. The frequency spectra of thick and thin isotropic cylinders were investigated by

using the semi-analytic finite element method.

2. End resonance and energy harvest for a semi-infinitely long cylinder with a
piezoelectric patch were investigated. The corresponding optimized applied voltage

distributions which minimized the outgoing energy were given.

3. Different circumferential wave numbers (m = 0 and m = 1) were considered and
‘backward waves’ were found in certain range of normalized circular frequency when

m=0.

4. Results with grounded and open circuit conditions at the end of the piezoelectric

patch were compared.

1.4 Organization of the Thesis

This thesis focuses on the investigation of the propagating and scattering of guided
wave in semi-infinite cylinders with piezoelectric patch. Introduction and literature
review are presented in Chapter 1. A semi-analytical formulation for wave
propagation in a cylinder is discussed in Chapter 2. Two kinds of eigenvalue problems
are studied, the dispersion relations are given and frequency spectra for the thick and
thin cylinders are plotted by solving the first kind eigenvalue problem. In Chapter 3, a
hybnid finite element method is employed to study wave scattering problem in a
semi-infinitely long cylinder attached piezoelectric patch. The piezoelectric patch is

discretized by the axisymmetric element and the semi-infinite cylinder is modeled by
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a wave function expansion. The continuity conditions at the interface are enforced to
form the global equations of motion of the system. Numerical results are presented.
End resonance is observed for circumferential wave m = 0O for both thick and thin
cylinders. Energy harvest is carefully studied. Finally, conclusions and

recommendation are given in the Chapter 4.
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Chapter 2 Guided wave in a Cylinder

The study of wave propagation in a cylindrical structure is important for the
non-destructive testing of flaws. In this chapter, the Hamilton principle is applied to
arrive at equations of motion for the piezoelectric cylinder and isotropic cylinder. By
using semi-analytical FEM method in the radial direction, wave form solutions of

wave forms and frequency spectra of the cylinder can be obtained.

2.1 [Equations of motion

For a circular cylinder, cylindrical coordinates and Cady’s notation (1964) are used to
represent the field variables. The primary dependent variables are: mechanical
displacement {u} = [u,, ug, uz]T; stress {T} = [T, Too Too Ton, Thsy T,g]T ; strain {S} =
[Sr, Sos, Sz, Sez, Srz S,g]T; electric displacement {D}=[D,, Dy, DZ]T; electric field {E}
= [E,, Es E;J"; electric potential ¢, and body force {f} = [f, fs £]. Properties of
isotropic elastic material can be represented by setting electric displacement {D} and

electric field {E} as zero.

2.1.1 Normalization

Because of larger difference between the materials quoted in their usual units,
non-dimensional method is applied to circumvent numerical anomalies. In equation
(2.1), below quantities on the right-hand and left-hand sides of the equations are
presented in their respective dimensional and dimensionless forms. Four key

parameters are needed: (1) cylinder thickness H, (2) an elastic modulus ¢°, (3) a

iezoelectric constant ¢°, and (4) mass densit ) , dielectric constant £° and electric
p ) y P
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field E° can be defined as: £° =(e°)2/ ¢® and E°=("/e". The other independent

and dependent variables and material properties are normalized as

z t Jc
z=—, t=-—

H H\p
(z-r,@,z), T, =%
E,

, E":—Ejo— (k*12

2.1.2 Equations of motion

V4 V4

, 2.1
p.

p == (p,g=12,.,6),
o )

In the cylindrical coordinate system, equations of motion for a piezoelectric cylinder

are given by

or, 10T, oT. T, -T,
+— + =+
"

e+ f = pii,

or r 060 0z

aTar +16T9€ +aT'9: +2Z’_‘9_+f0 :piiﬁ’

or r 06 oz r (2.2)

or, 10T, oT. T i |
L R, =L + == +_E‘+ﬁ :pu"

or r 06 Oz r i )

ap, 1aD, . oD,
+~ + i =

or r 06 0z
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2.1.3 Hooke’s law

The general Hooke’s law for piezoelectric properties is given as follows

{Q}=[C J{a} 2.3)

[)-[$ 7] @-f) m-f

and [C], [e] and [€] are matrices of elastic anisotropic moduli (6X6), piezoelectric

where

constants (6%3) and dielectric permittivities (3%3), respectively, with [C*] being a (9%

9) matrix representing their conglomeration.

2.14 Generalized strain-displacement relations

Generalized strain-displacement relations in cylindrical coordinate are given by

Srr=6ur , Sw:l_a_ui+i’
or roé r
s.=% s, =%+1%u_:,
Oz oz r o6 (2.4)
Ou_  Ou 10u, Ou, u,
S’_"——‘—"“ﬂ‘ z , ra:—-——r+___’
© Or 0Oz ro8 or r
g 08 o _ 106 .o
or r 06 : Oz

Above equation can be written in a compact form as
{Q}=[L]iv}, @.5)

where {v}z[ur U, U ¢]'T and the differential operator {L] is given in the

Appendix.
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2.2 Semi-analytical FEM

In this section, the equivalent expression for equations of motion is given by using the
Hamilton principle. Applying finite element method to discretize the cylinder in the
radial direction and substituting wave form solution into discretized equations of
motion, eigenvalue equations for the cylinder can be derived. Propagating and
non-propagating waves can be distinguished by setting the axial wave numbers to

different values.

2.2.1 Hamilton principle

Hamuilton principle can be expressed as

_[5(K—H) dt+_[ SW dt=0, 2.6)

where K, H and W are the kinetic energy, electric enthalpy and non-conservative

energy, respectively.

The kinetic energy is given as

== 'UJ; [p] v}dV 2.7)

where [p] _

0

Because of zero body and surface forces, the work done by non-conservative
force 1is not involved in the present analysis, or W= 0.
The electric enthalpy, H, which represents the internal strain energy of an elastic

medium, is given by

:_M( [ J{a}- (B} {(D})av . 2.8)
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Substituting equation (2.3) into the above equation, a compact form of H is found

to be

H= % [[[{a}" [ {a}av, (2.9)

where

[C,.]{c —efjf'

2.2.2 Quadratic element

The geometry, boundary force and material matrices of a semi-infinite cylinder are
axisymmetric. Isoparametric finite-element methodology and numerical integration

are used to discretize the cylinder in the radial direction.

A Finite Element
Lamina

Figure 1. Cross section of a cylinder

The explicit interpolation forms of a three-node quadratic element in a physical

element is given by
M(E) =2 EE D m(§) =1-8  m(&) = 2EE D), (2.10)
where & is local variable (—1< & < +1).

According to the interpolation functions, the interpolations of the geometry and
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any one of the field varniables, say x, over the isoparametric element are given by

x=n,(§)x,+n2(§)x2+n3(§)x3. (2.1

The field variables {v.} in a three-node quadratic element can be written as

{(v.(r.0,2,0)} =[N (OV.(6,2,1)}, (2.12)

where

n(g) m(¢) m(¢)

and (Vi=[v, v v'=lu, u, w u m w u ow w4 4 4],
here [NV,(£)] means the finite element interpolation form and {V.} denotes the vector
of the nodal displacement and electric potential in a three-node quadratic element.

By assembling variables {v.}, {V.} and matrices [N.(&)] of every three-node

quadratic element in the cylinder, global variables {v}, {V} can be denoted as
v(r.6,2,0)} =[NV (6,21)}, (2.13)

where [N(£)] means the finite element interpolation over the whole cylinder.
Substituting equation (2.12) into equation (2.5), the general strain-displacement

relations in the whole cylinder can be written as

{a}=[L]{v}=[L]([vDONVY)
=[LI[NORVD)+LI(VORVD)+[LI[VOKYY) . @19
:[BI]{V}+[32]{V,9}+[le{v,_—}

where {\{9}=—5[§’—~, {V}z 62’} Differential operators [L,], [Lg], [L;] and the

matrices {Bi], [B2], [ B3] are given in Appendix.

Substituting equation (2.14) into equation (2.9), the latter becomes
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ot [ omar=s [ ar [[2Q9) MV} (W TRV - (V) RV

VY KV (Vo) (K VIV (KoY } { o) [Ksl(V.) (2.15)
(VK )V =V Kl (Vo= VL) [K] (V. a0

where

[K,]= [[BY[CTB)rdr, [Ko]= (B [C7][B,]rdr,

[K,]= j[B,]’[C“][B Jrdr, [Ky]= j[B I'[cr]iB]rar,

[K,]= J[Bz] [C™][B,]r dr, [Ky]= j[B [cB]rar,

(k.= [[B][c"][B]r ar, [K.]=[[B) [ ][B,]r ar .

(K= [[BY [C][B]r dr, [M]= [[N.T [P][N.]r dr,
here note that all integrals have lower and upper limits of inner radius 7; and outer
radius r,, respectively.

Finally, equations of motion can be given by

KUV Vo + KV - [ Vo) = (K 1{ Vi | - [K Ve + [M] (V] = (FD,
(2.16)

where {F} is nodal force vector and

[K]=[Ku] s [K]=[Ke]-[Ka ],
[K)=[Kx] , [K:]=[K] -]
[Ks]=[K5s] 5 [Ks]= (K] +[K]-
Note that [Ki], [K4], [Ks] and [K¢] are symmetric while [K;] and [K3] are

skew-symmetric.

223 Wave form solution

The wave form solution for harmonic motion in a ¢ylinder can be given by

{V} - {VO } ei(k",:+m6’—tor) , (2. 1 7)
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where @ is the normalized circular frequency, (k,,, m) are the axial and circumferential
wave numbers, and {Vy} is the vector of the radial modal distribution of the
displacement and electric potential.

Substituting equation (2.17) into equation (2.16), the following algebraic

equation is obtained by

(K ]+ im[K,]+ik, [K]+m*[K, ]+ mkm [K ]+ KK D{Vo =0’ [M{V,} (2.18)

The algebraic equation can be transformed to two kinds of eigenproblem by

assigning @ or ky, as the eigenvalue.

2.2.4  Eigenproblem

Eigenvalue problem I:

With ,, assigned a certain value and &’ as eigenvalue, equation (2.18) becomes

[K]{Voj=o [M]{Vo} 2.19)
where [K]=[K,]+im[K,]+ik,[K,]+m®[K,]+mk, K]+ K [K(],

here the circumferential wave number m is assigned an integer to assure
circumferential periodicity. Axial wave number £, and circumferential wave number
m are regarded as constants in this equation. For non-trivial solution {V,}, the
determinant of [K] must be zero. Since [K] is a Hermitian matrix, only real @ is
admitted. Frequency spectra can be plotted by letting &, be x-axis and positive real @

be y-axis.
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Eigenvalue problem 11:

By assigning «°, the eigenproblem can be transformed as

[4 - kmB,]{kV‘Of } =0. (2.20)

m

where

0 I I 0
[4]= I:—(K, +m’K, -0’ M +imK ) —(mK, +iK )}[B‘]: {o K }

4 2 5 3 6
Now, normalized circular frequency @ and circumferential wave number m are
assigned as constants. For a non-trivial solution of the nodal displacements and
electric potentials {V,}, the determinant of {4;-k,B;] must vanish. On the other hand,
the eigenvector corresponding to the nth eigenvalue £, represents the nodal
displacements and el_ectn'c potentials of the nth mode. By using strain-displacement
relations, strain-stress relations and equivalent nodal force equations, the nodal forces

and electric displacements of the nth mode can be derived. Introducing notations {t,},

{pn}, {dn} and {u,} as follows:

T
trl } - [TZJ"]J' ’ ng,]‘l," ’ I.::l',l—l,n ’ T’-’,l-Z,H > T:,NE-B,n H ];B,NE—S,n b T:r,NE—B,n] ]
T

{
{pn } = [ﬂ—},n > ¢1—2,n > 4—3,71 > ¢l-1,n > T ¢NE—2,n 2 ¢NE-—3,n] b
{d" } = [D:,]—l,n’ D.,,. D D D

T
z1-3n7 z2-ns T L NE-2 g D:,NE—3,n] >

(2.21)

T
{“n } = [ur,l—l,n H uB,]—],n H u:,l—l,n’ ur,l—Z,n > 1T u",NE—3.n H uB,NE—ln’ uZ,NE"'J',ﬂ] :

The subscripts are: (1) the first group, say zr, zz or z8, the traction and electrical
displacement component, with the exception of ¢ which is a scalar, (2) the second
group consists of two integers separated by a dash. They are the element number and
the Guassian pointer within the element, respectively, NE stands for the total number

of elements.
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In a compact form, the nodal displacement and electric potential {V,}, the

equivalent nodal forces and electric displacements {Q,} of the nth mode are

{Vn}={3:}7 {Q,} ={;} (2.22)

The modal distribution of displacements and electric potentials [G], the modal

introduced as

distribution of forces and electric displacement [F] are given by

[G]:[V] v, VM]? [F]:[Fl F, - FM]’ (2.23)

where {F}= r {Q, }rdr , and M is the total number of reflected modes.

Propagating and non-propagating waves can be distinguished by different value
of the axial wave number k,. Real %, represents propagating waves, while the
complex conjugate pairs represent non-propagating waves which is described as
standing waves with spatially decai}ing amplitudes. Different signs of %, mean
different traveling direction of the wave. Herein the wave traveling from negative
z-axis to positive z-axis is defined as the reflected wave and the wave with opposite
traveling direction is defined as the incident wave. The relations of the wave

characteristics and the normalized axial number %, are surnmarized in Table 1.

Table 1. Wave with different values of k,,

km z>0 z<0
k>0 km<0
Real . .
Propagating wave Propagating wave

Complex

Imag(k,)>0
Non-propagating wave

Imag(k,.)<0
Non-propagating wave

2.3 Energy flux

Since only propagating waves carry energy, the time-average value of the energy flux

associated with the nth propagating mode is given by:
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E =l hn{<{f‘}{u'“}> +{fa}, {ff})} =lafJ (2.24)

where vectors {t,}, {u,},{d,} and {P,} have been defined in equation (2.21), and

7, =otm({i} o))+ (@) b))

The over bars denote complex conjugation, and

(a,ﬂ) = f’ a” Prdr.

2.4 Numerical Studies

Two cases are presented herein to illustrate frequency spectra for infinitely long
isotropic cylinders. In these cases, two different-sized cylinders (H/R = 1 and 0.135)
are considered. They are identified as a thick cylinder (H/R = 1) and a thin one (H/R =
0.135). Here H is the thickness of the cylinder and R = (r;+ r,,)/2 is the mean radius.

In the numerical studies, H is taken as unit 1m for both cylinders. The inner and
outer radii of the thick cylinder are r, = 0.5 m and r, = 1.5 m, respectively. The inner

and outer radii of the thin cylinder are r; = 6.9091 m and r, = 7.9091 m, respectively.

The cylinder is made by steel. The longitudinal wave and torsional wave

velocities are given, respectively, as
¢, =5.96x10°m/s, ¢, =3.26x10"m/s.

The Young’s modulus is 2.169x10'" Pa, the Poisson’s ratio v, mass density p,

are v=0287,p=7.8x10’kg/m’, respectively.
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The normalized materials constants are

33474 134742
1.34742 3.3474
1.34742 1.34742
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1.34742
1.34742
3.3474
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1

J6x6

Based on given physical values, the normalized circular frequency is given by

o 1 . . . .
w=—"% where @, =E\[c° 1 p°, c® is elastic constant and o’ is mass density. For
24

both cylinders, ay is 1811.64 rad/s.

Case A

In the thick hollow cylinder, frequency spectra is plotted over the frequency range of

interested O< w<8.0 for circumferential wave numbers m = 0 and m = 1, see Figure 2

through 4.

8.0 — —
7.5+ e -
704 /{/,/ ////
6.5 -‘_// ’/ /,
6.0 // /"
5.5 ‘ ' /" o
5.0 1 //" ////"
454 -
s a0 E /,/ //,/

" -
s P
3.0
25 /// —— Mode 1
20 ] S T Mode 2
1'5 " —— Mode 3

7] Mode 4
1.0 — Mode 5
0.5 4
0.0 YT T T T v T T T T T T T T

00 05 10 15 20 25 30 35 40 45 50 55 60

k

m

Figure 2. Frequency spectra for m = 0
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1.848 T

1. 846

Figure 3. Backward wave for m =0
For circumferential wave number m = 0, there are two cutoff frequencies @ =
1.859, @ = 3.271 when nommalized circular frequency @ = 0.0-4.5. As shown in

Figure 3, in the second branch there is a minimal value (@ = 1.847) when £, = 0.485.
Wave numbers £k, to the left of @ =1.847 are defined as “backward wave” , which
travels in a negative group velocity.

There is one propagating wave when 0< ©<1.847, when 1.859< @ <3.271, two
propagating waves exist, and three propagating waves exist when 3.271< @ <4.5.
Otherwise, three propagating waves exist when 1.847< @<1.859 because of

‘backward wave’.
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Figure 4. Frequency spectra form = 1

As shown in Figure 4, for circumferential wave number m = 1, there are three

cutoft frequencies @ = 1.027, @ = 1.956 and @ = 3.516 at normalized circular

frequency @=0.0-4.5. No ‘backward wave’ is found when 0.0 < @< 4.5.

Case B

For the thin cylinder, frequency spectra is plotted over the frequency range of

consideration O< @ <8.0 for circumferential wave numbers m =0 and m = 1.

As shown in Figure 5, for circumferential wave number m = 0, there are two

cutoff frequencies w = 0.226 and @ = 3.144 at normalized circular frequency @ =

0.0-4.5. By carefully searching no ‘backward wave’ is found at @w = 0.0-4.5. The

fourth branch has a ‘backward wave’. However, it is beyond the frequency range of

interest.
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Figure 5. Frequency spectra for m =0
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As shown in Figure 6, for circumferential wave number m = 1, there are four

cutoff frequencies @ = 0.135, @ = 0.319, ® =3.147 and @ = 3.162 when 0 < @ <

4.5. No backward wave exists in this frequency range. There is one propagating wave

when O0< @ < 0.135. Two propagating waves exist when 0.135 < @ < 0.319. Three

propagating waves exist when 0.319 < @ < 3.147, four and five propagating waves

exist respectively when 3.147 < @< 3.162 and 3.162 < w <4.5.
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Figure 6. Frequency spectra for m = 1
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Chapter 3 Wave Scattering in a Cylinder

3.1 Introduction

The model studied in this chapter, as shown in Figure 7, contains a semi-infinitely
long, homogeneous cylinder and a piezoelectric patch. When an incident wave
traveling from infinite along the negative z-direction strikes the interface of the
cylinder and the piezoelectric patch, a scattering wave field is generated. The applied
voltage or boundary force in the end of piezoelectric patch can affect the reflected and
transmitted wave fields. A hybrid finite element and modal representation technique is
applied herein to obtain the reflected wave field. In this method, the scattered wave
field in the semi-infinitely long cylinder can be represented by a wave function
expansion as studied in Chapter 2. On the other hand, the transmitted wave in the
piezoelectric patch is modeled by an axisymmetric element. An eight-node quadratic
quadrilateral element is employed to model the piezoelectric patch. By imposing the
continuity conditions for the displacement and the forces in the interface, the
governing equations of the structure can be derived. Reflection coefficients can be
obtained by using virtual work or least square method. By adjusting applied voltage at
the end of piezoelectric patch, outgoing enmergy of the reflected waves can be
mimimized. This phenomenon is the called energy harvesting. Also by setting
appropriate voltage in the patch, the vibration at the end of the patch can be absorbed,
which is called passive-control. An optimization method is mentioned to obtain
relatively high efficiency of energy harvesting. End resonance is also observed in the

numerical study.
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Transmitted
Interface
wave /—
D

Reflected wave Incident wave
_ a M o
A )L

Isotropic infinitely long cylinder

Applied voltage or force

Piezoelectric patch

Figure 7. A semi-infinite cylinder with piezoelectric patch

3.2 Model of the piezoelectric patch

Since the geometry, boundary force and material properties of piezoelectric
patch are axisymmetric, axisymmetric isoparametric finite-element methodology and
numerical integration are used to discretize the patch in the radial and axial directions.
The explicit interpolation forms of an eight-node quadratic element shown in Figure 8

in the physical element are given by

m (&)= (1= A=n)(E=n-1), m(Em)=7(+&)A-n)(£-n-1),

m (&)= () () (£ n=1), m(Em) =4 (1-2)(1+n) (- +7-1),

X . (3.1)
ns(&m)=5(1-¢")(1-n) . n(&m)=5(1-7)(1+2),
m(En)=30-8)0sn) . n(Em)=3(-7)0-9),

where & and 7 are local variables in an eight-node isoparametric element

(F1s&<+1,-1<p<+1).



Chapter 3 Wave scattering in a cylinder 25
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Figure 8. Parent element and slave element
According to the interpolation functions, the interpolations of the geometry and

any one of the field variables, say x, over the 1soparametric element are given by

x=Zni (&m)x, . (3.2)

The field variables {v.} in an eight-node quadratic element can be written as

Av.(r.0,z,0} =[N (&Y. (6,1)}, (3.3)
where
LACIE R ’
m g
{Ve}:[vl vV, - VS]T:[ulr Uy, Uy ot Ugg Uy, Uy, e ¢3]T’

and [N¢, n)] 1s the finite element interpolation matrix and {V.} denotes the nodal
displacement and electric potential in an eight-node quadratic element.
The general strain-displacement relations in the piezoelectric patch can be given

by

{a} =[L]{v}=[LI([NV(m{V})
=[LJ(INEDHVY) +[LJ(IVED V) +L(INE VY (3.4)
=[ B [{V}+[ B ]{V,}.

where differential operators [L,], [Lg], [L.] are discussed in Chapter 2 and [E]],[BZJ
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are given in Appendix.
By substitution of equation (3.4) into the Hamilton principle, the following

equation of motion can be derived

LR JV3+[Ra (Vo) =[ Ka J{Va} - [ R J{Var} + [ [{V}={F) . (39)

where

(%)= [[[B] [C)[B]rdrdz, [K.]=[[[B.] [C"][B,)rdrds,
()= BT [0 i, [£,)= 8T [€][B, e
[52]= [[[N (&) [pl[V (&) ]rdrez,

and matrices [C" 1, [p] are given m the previous chapter. Note that integrals in the
radial direction have lower and upper limits of inner radius r; and r,, and integrals in
the axial direction have lower and upper limits of 0 and z,.

Because of axisymmetric structure, the solutions {V} and {F} for the harmonic

motion have the forms of

(V) = (Vo) et

3.6
(F) = (R, .

where @ 1s the normalized circular frequency, m is the circumferential wave number,

{V,} the modal distribution of mechanical displacements and electric potential, and
{Fo} the modal distribution of force and electric displacement.
Substituting equation (3.6) into equation (3.5) gives rise to
[K]{Vo}={¥%,} (3.7)

where

[K]=([K,\ ]+ mi[ K, ]-mi[ K, |+ m’[ Ky, |-’ 1))

i

s fsa1]

[SBI ] [SBB ]

and {F,} and {FB} are nodal forces and electric displacements in interior areas of
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piezoelectric patch and in the interface, respectively. {V,} and {VB} are nodal

displacements and electric potential in interior areas of piezoelectric patch and in the

interface, respectively.

3.3 Wave function expansion

Propagating and non-propagating waves in a cylinder have been discussed in the
previous chapter. For a semi-infinitely long cylinder with piezoelectric patch, the
reflected and transmitted waves occur when an incident wave strikes the interface.
The reflected waves contain a finite number of propagating waves and an inﬁnite
number of non-propagating waves. The semi-analytical finite element method, as
discussed in Chapter 2, is employed here to study the reflected wave field in the

semi-infinite cylinder.

The nodal displacements and electric potential {V’} corresponding to the

reflected wave field of a semi-infinitely long cylinder can be represented by

M
{vii=20,{v;}, (3.8)
where
Dj — RjeikmL
Vi={v, v, « v, o« V.V,
{qu'}:{”rl.j Ugy Uy ¢kj}T
and {Vj} is the jth wave mode corresponding to the wave number k,, NP is the

number of nodes in the radial direction, L is the thickness of the patch, and R; is the
unknown reflection coefficient of the jth wave mode.

The compact form of equation (3.8) is given as

{v:}=[c]{p}, (3.9)
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where
[Gl=[v, Vv, -~ V)
{p}={D, D, -~ D,}.
The equivalent force and electric displacement of the reflected wave can be
obtained from the wave mode by using general stress-strain and strain-displacement

relations given in Chapter 2, and they can be written as follows
M

{(F} =R {F }e™*, (3.10)

j=0

where

T
(F}={F, ¥, . ¥, . F,]
T
F}={t, £, 1, d.}.
{Fj} is the jth wave mode containing forces and electric displacement corresponding

to the wave number k;.

The compact form of equation (3.10) has the expression

{¥°} =[F]{p}, (3.11)
where [F]=[F; F, ... Fyl.
The nodal displacements and electric potential, { V' } ,and the nodal equivalent

force and electric displacement, {F; }, corresponding to the incident wave traveling
from negative z-axis to origin can be written as

{V;"} - Ri" {\lin}eik,,,L,

oy

R, {F, }e"".

m

(3.12)
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The total wave field in the cylinder is then given by a summation of the incident
wave and reflected wave. As a result, the nodal displacements, forces, electric
potential and electric displacement at the interface between the cylinder and the patch

are then given by

(3.13)

where

{vi}=[c]{p},
{F;}=[F]{p},

here {V;} are the nodal displacements and electric potentials of the reflected waves

in interface, and {F ;} are the nodal forces and electric displacements of the reflected

waves in interface.

3.4 Hybrid method

Using the virtual work principle, equation (3.7) can be written as

{s97 5\3;}[::” 5’%{2}”}:{5?} ﬁ;}{g’}, (3.14)

BB B

where & represents the first variation and over bar denotes complex conjugate. Here

{VB} 18 the nodal displacements and electric potentials of the piezoelectric patch at
the interface, {FB} the equivalent nodal forces and electric displacements applying to
piezoelectric patch through the interface, {V,} the nodal displacements and electric

potentials of the semi-infinitely long cylinder at interface; and {F,} the equivalent

nodal forces and electric displacements applying to the semi-infinitely long cylinder

through the interface.
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The above equation can be written as
[ 1V} [Su iV, }={F}.
ANCA AR A ARE AR A (3.15)

The nodal displacement and electric potential in the interior area can be

represented by

V=[50 (- [S61{V:})- (3.16)
Substitution of equation (3.16) into equation (3.7), it’s found that {VB} must

satisfy

= 7 . - — \T /.. ~
5{VB} [SBB]{VB} = 5{VB} ({FB} - [SBI][SII] I {FI }) ; 3.17)

where [S;B] =[Su ]~ [Su S, T [Si]-
By imposing continuity condition for the displacements, electric potential,

forces and electric displacement at interface of piezoelectric patch and the

semi-infinitely long cylinder, following equation can be given by

{VB}:{VB}’
B} =—{E},
Substituting equation (3.18) into equation (3.17) yields
{V} =5{D}'[q]’,
5{B} ([GT ([ i1+ o)) =5(0)"([GT (-{E) [ St} Vs}-LSalls] " (B)))

The virtual work solution of {D} is given as

(6T ([52 (61 (F)0}-[6T (-{r [ i[5 )5, ) ). 620

The least-square solution of {D} is given as

(X7 (S +{F) b= G () [t Vel -Lsallsa] ()

(3.21)

(3.18)

(3.19)
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3.5 Energy balance

Since only propagating waves carry energy, the outgoing energy is shared by all the

participating reflected propagating waves,
N,

E,=YE, (3.22)
n=]

here E, is the energy carried by the nth propagating mode, and N, is the number of

propagating modes.
The distribution of energy carried by the nth reflected propagating wave can be
expressed by E/E;. The energy balance A defined as following form is used to

check measurement accuracy of solution

A:{laiE"}xloo. (3.23)

n=l *~in

3.6 Energy harvest

In this section, three issues are studied: passive end reflection, oscillating voltage

applied at the end of the piezoelectric patch, and energy harvesting.

3.6.1 Passive end reflection

Considering the passive reflection of an incoming harmonic wave traveling in the
negative z-direction. When the incident wave strikes on the interface between the

piezoelectric patch and the cylinder, a reflected wave field is generated.
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The mechanical and electric boundary conditions at the end of piezoelectric

patch are
T.=T,=7,=0, ¢=0 or D,=0, z=0. (3.24)
Reflection coefficients {R;} can be calculated by solving equations (3.20) or

(3.21) for a given incident wave.

Outgoing energy carried by the reflected propagating waves is given as

E, =(d") 7, (3.25)

where

Ny
=288
n=}
(ery={er & - e} =[(FIFD] (IFL{Q")).
and [F] is modal matrix that is given in equation (2.23) and {Q"} is defined in

equation (2.21) as distributions of forces and electric displacements stimulated by the

given incident wave.

3.6.2 Oscillating end voltage-forced vibration

An oscillating voltage applied at the end of piezoelectric patch will generate time
harmonic outgoing waves in a semi-infinitely long cylinder. The boundary condition

in the end of piezoelectric patch can be represented as

T.=T,=T,=0, ¢(r,t)=gy(r)e™, z=0, (3.26)
Where: ¢, is the normalized magnitude of applied voltage; @ is the normal circular

frequency of oscillating end voltage; and v(r) is the distribution of applied voltage.

The reflection coefficients {R;} can be calculated by using a similar process as
studied in the passive end reflection.

Outgoing energy carried by reflected propagating waves is given as

Ep = Xo> (3.27)
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where

N,
/1/0 = ngg:"]n’

{g“’}:{gf’ gt - ghf =[{F1F)] ([FL{e’}),

and {Q”} is defined in equation (2.21) as the distributions of forces and electric

displacements stimulated by oscillating end voltage.

3.6.3 Semi-active end reflection

Consider the presence of an incoming monochromatic wave whose reflection occurs
with an oscillating end voltage. The mechanical and electric boundary conditions at z

= 0 1n piezoelectric patch are

T.=T,=T,=0, ¢(r,t)=dy(r)e™, z=0 (3.28)

Since both passive end reflection and vibration generated by oscillating end
voltage are linear systems, reflection coefficients {R;} are the sum of reflection

coefficients {R;} and {R,}, 1.e,,

R;}={R}+{R,} (3.29)

The outgoing energy is given by

in 2 in 2
E,=(a") x,-a"dp,+ & 1, (3.30)
where

N

pr

n=2(ger+ gtz V.-

n=}
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3.6.4  Minimizing outgoing energy

For Action 3.6.3, it can be seen that the outgoing energy carried by each propagating
mode is strongly depended on the applied end voltage. Thus, the total outgoing energy
can be minimized by carefully selecting the end voltage, ¢. This method is called as
passive vibration control.

The second dernivative of E,, in equation (3.30) is found positive. This is

because

dZ
out 2 ,
ag,

(3.31)
and y, is positive. The minimal outgoing energy can then be found by setting the

first derivative of E, 1S zero.

By differentiating the equation (3.30), the minimal of E,,, can be written as

dE in in
out :2¢0/?-/0-—a l]:()—)(ﬁo_—:.——z—]a 5 (3.32)

dg, 2%

E,, =(a") lilz ~~Z‘—]- (3.33)
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3.7 Numerical study

3.71 Verification of the computer code

A FORTRAN computer code was developed in the study. First, convergence of the
numerical procedure is tested with different mesh sizes, and results are compared with
published data. For each case, a different number of axial modes is chosen in the wave
function expansion to ensure convergence of the numerical procedure. The need
meshes are listed in Table 2. Table 3 was the rate of convergence of the mesh sizes for

the reflection coefficients.

As noted in the previous section, the accuracy of the numerical procedure was

tested by calculating the energy balance:

Ein ut —Emu
A = D T Bou 1000, (3.34)

input

In the numerical case studied herein, energy balance coefficient A is less than

0.001%.

The test problem considered was investigated by Bai et al. [28]. They used the
one dimensional finite element method to analyze the problem. The geometry of the
cylinder is given by H/R = 1, H = 1, normalized thickness of the end area (L = 0.1),
and circumferential wave number is m = 0. The piezoelectric material constants are

given by
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[13.90 7.78 7.43 ]
13.90 7.43
5 i : 13.90 . . .
[C]=10" Pa,
. . . 256 . .
symmetric . . 256 .
i 3.06 |
. . . 12.70
e]=| . : 1270 . L lom?,
-520 =520 15.10
1306 )
[E]=107} . 1306 . |F/m.

1151

The normalized properties of piezoelectric material are

(542969  3.03906 2.90234 i
5.42969  2.90234
4.49219
[€]= ;
) . 1.0 .
symmetric . . 1.0 .

] 1.19531
. ) ) 0.84106
[e] = ) i . 0.84106 )

| -0.34437 -0.34437 1.0
[1.46632
[e] = ) 1.46632

1.29229

L

Table 2. Six different mesh sizes

Size Size 1 Size 2 Size 3 Size 4 Size 5 Size 6

N, 10 20 40 10 20 40

N, 1 1 1 2 2 2

N, is the number of elements in the radial direction, N, is the number of element in the axial direction.
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Table 3. Convergence check for different mesh sizes

Ref coe
Mesh type [Ry} [Ra IR
2D 10_1 0.03273647 0.08433736 1.18967382
2D 201 0.03271132 0.08462933 1.18155558
2D 401 0.03270966 0.08477917 1.17717375
2D 102 0.03271864 0.08433484 1.18967474
2D 202 0.03269511 0.08462702 1.18155644
2D 40 2 0.03269356 0.08477691 1.17717452
Published result 0.03269237 0.08477675 1.17717459

End reflection is examined first. Table 3 shows the first three reflection
coefficients of propagating waves (R, R; and R3). Here the incident wave is the first
longitudinal wave mode and the normalized circular frequency is @ = 5.0. It can be
seen from Table 3 that the results from the current method converged to the
semi-analytical results (the last row of Table 3). By comparing the amplitudes of
reflection coefficients of different mesh, it can be seen that the mesh N, =20, N,=11is
sufficient in the computation. The relative error between the current method and the
1-D model (the model used in [28]) is less than 0.4%.

Next, the motion of the cylinder due to an applied end voltage as well as an
incident wave is studied. The normalized frequency of the applied end voltage is
checked in a narrow ‘backward wave’ range (2.205 < @ <2.221).

Shown in Figure 9 and Figure 10 is the amplitude and energy carried by each
propagating mode derived from the current method and [28]. Type 1 is published 1-D
model and type 2 is our developed model. The results from the two methods are in
very good agreement. It may be worth mentioning that there is a backward wave in

the frequency range [28].
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2.205 2.21 2.215 2.22 2.225

Figure 9. Amplitudes of applied voltage
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Figure 10. Energy distribution of reflected waves

3.7.2 Numerical studies

This subsection presents numerical results from investigating energy harvest and end
resonance in a semi-infinite isotropic cylinder with attached piezoelectric patch.
Two cylinders are studied here. One is a thick cylinder having H/R = 1 and the

other a thin cylinder having H/R = 0.135, where H is the thickness and R is the mean
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radius of the cylinder. In each cylinder, two different circumferential wave numbers,
m, are considered, i.e., m = 0 and m = 1. Different boundary conditions (D, = 0 or ¢=
0) of the electric filed at the interface are considered. The variations of the thickness
(L =10.025, 0.05, 0.75 and 0.1) of the patch and the distribution of applied end voltage
are also studied.

The normalization constants are: (1) elastic modulus ® = 0.8427%10"" Pa, )
piezoelectric constant & =0.1151x10" F/m, and (3) mass density P =7.8x10 kg/m3.

The material constants of steel are given by

[2.8207 1.1354 1.1354

1.1354 2.8207 1.1354

[(‘:]:10“ 1.1354 1.1354 2.8207 Pa
0.8427

0.8427

0.8427

The normalized material constants of steel are given by
[3.3474 1.34742 1.34742
1.34742 3.3474 134742
1.34742 134742 3.3474

[€]=

L . . . . . loxe

The material constants of the piezoelectric patch are given by

1390  7.78 7.43 ]
13.90 7.43
. . 1390 . ) .
[C]=10" Pa,
. : . 256 . .
symmetric . . 256 .
i 3.06 |
. ) . 12.70
le]=] - : .o1270 . L|Cml

-520 -5.20 15.10
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0.13060 - .
[e]=107 . 0.13060 : F/m.
0.115102

The normalized material properties of the piezoelectric patch are shown in

below

[ 16495  0.92327 0.881735
002327 1.6495 2.90234
0.881735 2.90234 136473 . . .
lcl=] . . 0.303801 . Cr

0.303801

0363137

: : : 0.40779
[e]= : : : 0.40779 : s
| -0.166969 —0.166969 0.434853

[0.113462
[e] = : 0.113462

. S

Results of different thickness of piezoelectric patches are given to study the
effect of piezoelectric patches on the energy harvesting and end resonance. At the
same time, three distributions of applied voltage at the end of the piezoelectric patch

are presented to study their influence on energy harvesting and end resonance.

3.7.2.1 Energy harvest

Thick cylinder with piezoelectric patch for m =0

Case 1(A). End reflection and energy distribution for L= 0.1

In case 1 (A), energy distribution due to an incident wave is investigated. The incident

wave is taken as the first axisymmetric wave. The electric boundary conditions at the

end of piezoelectric patch (z = 0) and the interface (z = zy) are open circuits (D, = 0).
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Figure 11. Energy distributions for m = 0

As shown in Figure 11(a), it can be seen that the first mode is the dominant mode
in the frequency range of interested 0.5< w< 4.5. In the frequency range of interested
1.847 < w < 1.859, there is a ‘backward wave’ discussed in the previous chapter.
Outgoing energy distribution of the ‘backward wave’ is plotted in Figure 11(b). There
is one propagating wave when 0.5 < w< 1.847; three propagating waves exist when
1.847 < w < 1.859 because of backward wave; when 1.859 < w < 3.271, two

propagating waves exist.
Case 1(B). End reflection and energy harvest for L = 0.1 with applied voltage

In case 1(B), In Energy harvest is studied by applying appropriate voltage at the

end of the piezoelectric patch. The applied voltage distribution is given by

v(r)=

-1 0.5<r<10
(3.35)

1 1.0<r<15

Other conditions are same as case 1(A).

Different electric boundary conditions at the interface, namely open circuit D, =0
and grounded ¢ = 0, are studied.

Figures 12(a) and (b) show the reflection coefficients of the open and grounded
circuit boundary conditions, respectively. On the other hand, the energy distributions

carried by the outgoing wave for the two boundary conditions are shown in Figure 13.
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(a) Open circuit (b) Grounded circuit

Figure 12. Reflection coefficients for m =0

As shown in Figure 13(a), when normalized circular frequency of interested 0.5
< w < 1.847 only one propagating wave carries the outgoing energy. The outgoing
energy of reflection waves is equal to the incoming energy of the incident wave at 0.5

< @< 1.5. When normalized circular frequency @is 1.8, the outgoing energy slightly

decreases to 92.54%.

In the frequency range of interested 1.847 < @ <1.859, energy distribution of the
‘backward wave’ is investigated. Figures 13(c) and (d) show the energy carried by
reflected waves for the open and grounded circuit boundary conditions, respectively.
The outgoing energy decreases a little for open and grounded circuit boundary

conditions comparing with that for no applied voltage condition.

Relatively, low and almost constant outgoing energy occurs during the
frequency range of interested 2.2 < w< 3.2. The minimal outgoing energy is 14.59%
at o= 2.9. Two propagating reflected waves share the whole outgoing energy. Major
part of the outgoing energy is carried by the first propagating wave. When 3.0 <
w< 4.5, three propagating waves share the outgoing energy. Low outgoing energy
takes place in a narrow range around @ = 3.2 and outgoing energy is 59.75%. In this

frequency range, the third propagating mode is the dominant mode.

In the Figure 13(b), the behavior of the outgoing energy for the grounded circuit

condition is similar to that of the open circuit. At @ = 1.9, the second propagating
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wave shares 25.78% which is higher than that in the open circuit, a merely 3.21%. At

@ = 4.5, three propagating waves share 25.57%, 3.48% and 31.35% comparing with
those of 4.63%, 0.29% and 93.82% in the open circuit case.

However, the amplitudes of applied voltage, ¢, for the grounded and open

circuit are totally different. Detailed discussion will be given in the following case.
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Figure 13. Energy distribution form =0
Case 2. Effects of the thickness of the patch on the energy harvest
Four different normalized thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1,

are used to study their effects on energy harvest. The other conditions are the same as

those in Case 1.
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Figure 14. Outgoing energy for different thickness of the patch
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Figure 15. Magnitudes of applied voltage for different thickness of the patch

When normalized thickness of the piezoelectric patch varies from 0.025 to 0.1,
energy distribution of reflected waves and magnitude of applied voltage are shown in
Figure 14 and Figure 15. In Figure 15, the difference of the minimized outgoing
energy between the open and grounded circuit conditions is very limit except in the
range of 43 < @ < 4.5. The energy shared by the propagating modes in the
frequency range of 4.3 < @ < 4.5 is listed in Table 4 for illustrative purpose. It is
also shown that the minimized outgoing energy is less sensitive to the thickness of the

patch in the open circuit condition than that in the grounded circuit condition.

Table 4. Outgoing energy for m = 0 and grounded circuit condition

@ 5| L=0.025 | L=0.05 | L=0.075 | L=0.1
43 0.97311 | 0.99206 | 0.99439 | 0.55613
44 0.97981 | 0.99892 | 0.44022 | 0.59568
45 0.98972 | 0.91663 | 0.6065 | 0.60397

However, as shown in Figure 14(a) and (b), the applied voltage is sensitive to the
thickness of the piezoelectric patch. Amplitude of the applied voltage in the thicker

piezoelectric patch is much smaller than that in the thinner one. Furthermore, the
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magnitude of the applied voltage in open circuit condition is hundreds times larger

than that in the grounded circuit condition.
Case 3. Effects of the applied voltage on the energy harvest

In this case, the effects of three different distributions of the applied voltage are

investigated. The three distributions are given by

-1 05<r<10 -1 055r<1.0 05 055r<10
v<)={ ' 2<)—{ ' 3<>={ r<10 5 36

W05 10<r<15 VT 1 10<r215 1 10<r<15
The other conditions are the same as those in case 1.

As shown in Figure 16(a) and Figure 17(a), in the open circuit condition,
outgoing energies of the three voltage distributions are essentially the same when 0 <
@ < 4.5. The magnitudes of v,(r) and vi(r) are similar and the magnitude of vi(r) 1s
shightly smalier than the magnitudes of v,(r) and vs(r) when 0 < @ < 4.5.

As shown in Figure 16(b) and Figure 17(b), in the grounded circuit condition,
outgoing energies of vi(r) and v,(r) are similar at the frequency range of 0 < @ <4.5
except a little differences at = 2.2 and 3.2.

The magnitude and outgoing energy of vi(r) are totally different from those of
vi(r) and v(r) at 2.2 < @ < 4.5. In the range of 2.2 < w < 2.7, the outgoing energy of
v3(r) is higher than those of v|(r) and v,(r). In the range of 2.8 < w < 4.5, the outgoing
energy proportion of v3(r) is lower than those of vi(») and v,(r). On the other hand, the
magnitude of v3(r) is obviously larger than those of vi(r) and v,(r) in the range of 2.2

<@<4.5.
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Figure 16. Outgoing energy for different voltage distributions
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Figure 17. Magnitudes of applied voltage for different voltage distributions

Thick cylinder with piezoelectric patch for m = 1

Case 4(A). End reflection and energy distribution for L = 0.1

In case 4(A), energy distributions and wave reflection coefficients due to an incident
wave are investigated in Figure 18. The incident wave is taken as the first
axisymmetric wave. The circumferential wave number is considered as m = 1. The
electric boundary condition in the end of piezoelectric patch and the interface are open

circuits (D, = 0).
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Figure 18. Energy distribution and reflected coefficients

At the frequency range of interested 0.5< @ < 1.0, only one propagating wave
exists and occupies the whole outgoing energy. When 1.1< @ < 1.9 two propagating
waves occupy the whole outgoing energy; when 2.0 < @< 3.5 three propagating

waves exist; when 3.6 < @w< 4.5 four propagating waves share the outgoing energy

and the 4th mode is the dominant mode.
Case 4(B). End reflection and energy harvest for L = 0.1 with applied voltage

Energy harvest is investigated for and the applied voltage distribution is given by

-1 05<r<1.0
v<r>={ 4

. 3.37)
1 10<r<1s

Other parameters are same as case 4(A).

Different electric boundary conditions at the interface, namely the open circuit D,

= 0 and the grounded circuit ¢ = 0, are studied.
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Figure 20. Reflection coefficients for m = 1

Figure 20(a) and (b) show the reflection coefficients of the open and grounded
circuit boundary conditions, respectively. On the other hand, the outgoing energy
distributions for the two boundary conditions are shown in Figure 19(a) and (b).

It can be seen from Figure 19(a), at the frequency range of 0.5 < w< 1.0, only
one propagating wave carries outgoing energy. The propagating wave is minimized to
realize relatively low outgoing energy. The maximum and minimum of outgoing
energy distributions are 56.56% and 10.48%, respectively at @w= 0.7 and w= 1.0, in
the frequency range of 0.5 < w< 1.0. When 1.1< w<1.9 two propagating waves
occupy outgoing energy; when 1.1< @<1.6 the outgoing energy is above 80%; when

2.0< w<3.5 three propagating waves share the outgoing energy and the energy carried
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by the first propagating mode decreases largely; when 3.6< @ <4.5 four propagating
waves share the outgoing energy and the outgoing energy keeps relatively high and

almost constant value (above 94.5%).

In Figure 19(b), the behavior of the outgoing energy for the grounded circuit
condition as shown is similar to that of the open circuit. At @ = 2.0 the outgoing
energy in the grounded circuit is 87.42% compared with 73.02% in the open circuit.
At o= 3.3 and 3.4, the outgoing energy distributions in the grounded circuit are
55.67% and 98.96% compared with 91.76% and 45.97% in the open circuit. At o=
4.4, the outgoing energy in the grounded circuit is 70.65% compared with 99.40% in

the open circuit.

Case 5. Effects for different thickness of the patch on the energy harvest

Four different normalized thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1,
are used to study their effects on energy harvest. The other conditions are the same as
in Case 4.

When normalized thickness of the patch varies from 0.025 to 0.1, energy
distributions of reflected waves and magnitudes of applied voltage are shown in
Figure 21 and Figure 22.

In Figure 21, the difference of the minimized outgoing energy between the open
and grounded circuit conditions is very limit at the range of 0.5 < w <1.8. When 0.5<
@ < 4.5 the difference of the minimized outgoing energy for different thickness patch
is small in the open circuit condition. It also can be seen that the minimized outgoing
energy is less sensitive to the thickness of the patch in the open circuit condition than

that in the grounded circuit condition
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Figure 22. Magnitudes of applied voltage for different thickness of the patch
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As shown in Figure 21(b), in the grounded circuit condition the behaviors of the

outgoing energy distributions for the different thickness patch are similar when 0.5<

w <2.1 and 3.7<w<4.5. When 2.2< @ <3.2 the outgoing energy for the thicker patch

is lower than that of the thinner one; when 3.2< @ <3.7 there is a rimple of outgoing

energy for the different thickness patch.

However, as shown in Figure 14, Figure 22(a) and (b), the applied voltages are

sensitive to the thickness of the piezoelectric patch. Amplitude of the applied voltage

in the thicker piezoelectric patch is much smaller than that in the thinner one.

Furthermore, the magnitude of the applied voltage in the open circuit condition is

hundreds times larger than that in the grounded circuit condition.
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Case 6. Effects of the applied voltage on the energy harvest

In this case, effects of three different applied voltage distributions are investigated.

The voltage distributions are given by

-1 05<r<10

-1 05<r<1.0

_[-05 05<r<1.0

v (r)= , vy(r)= . v(r .(3.38)
( 05 1.0<r<1s ) 1 1.0<sr<1s () 1 1.0<r<1s
The other parameters are the same as those in case 4.
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As shown in Figure 23(a) and Figure 24(a), in the open circuit condition, the
outgoing energy of these three voltage distributions are similar at the frequency range
of 0 < < 1.0 and 3.6 < w <4.5. In the range of 1.1< @ <3.5, the outgoing energy for
v3(r) 1s lower than that for v(r) as the outgoing energy for v,(r) is lower than that for
vo(r). The magnitudes for vi(r) and v,(r) are similar and the magnitude for vi(r) is
larger than that for v(r) and v,(r).

As shown in Figure 23(b) and Figure 24(b), in the grounded circuit condition,
outgoing energy proportions of these three voltage distributions are the same at the
range of 0 < w < 1.0 and 3.6 < @ <4.5. The obvious difference of the outgoing energy
for vi(r), v2(r) and vs(r) takes place at the frequency range of 1.1 < @ <3.5. When 1.1
< w < 3.3 the outgoing energy for vs(r) is higher than that for v;(r) and v,(r); when 3.4
< w < 3.5 the outgoing energy for v3(r) is lower than that for vi(r) and v,(r).

However, the magnitude for v3(r) is higher than that for vi(r) and v;(r) in the

frequency range of 1.6 <w <3.5.

Thin cylinder with piezoelectric patch for m =0

Case 7(A). End reflection and energy distribution for L=0.1

In this case, as shown in Figure 25, energy distributions and wave reflection
coefficients due to an incident wave are studied. The incident wave is taken as the first
axisymmetric wave. The electric boundary conditions at the end of piezoelectric patch
and the interface are open circuits (D, = 0).

It can be seen that the second propagating wave occupies very low outgoing
energy (below 0.167%) in the frequency range of 0.5< w <4.5. When 0.5< @ <3.1 the
whole outgoing energy is carried by the first propagating wave; when 3.1< @ <3.4 the
outgoing energy carried by the first propagating wave descends to 5.22% and the
outgoing energy carried by the third propagating wave jumps to 94.78%; when 3.5<
® <4.5 the outgoing energy carried by the third propagating wave keeps high value

(beyond 84.05%) and the outgoing energy carried by the first propagating wave is
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Figure 25. Energy distribution and reflected coefficients

Case 7(B). End reflection and energy harvest for L.=0.1 with applied voltage

Energy harvest is studied by applying appropriate voltage at the end of the

piezoelectric patch. The applied voltage distribution is given by

-1 05<r<1.0
v(r)= (3.39)

11 10<r<15

Other parameters are same as case 7(A).

Different electric boundary conditions at the interface, namely the open circuit
(D, = 0) and the grounded circuit (¢ = 0), are studied.

Figure 25(a) and (b) show the reflection coefficients of the open and grounded
circuit boundary conditions, respectively. On the other hand, energy distributions for
two different boundary conditions are shown in Figure 26.

For the open circuit condition as shown in Figure 26(a), when 0.5 < w< 3.1, the
outgoing energy carried by the first propagating wave is minimized efficiently. At w=
3.1, the outgoing energy decreases to 6.89% and the outgoing energy of the first
propagating wave is 5.45%, and the outgoing energy of the second propagating wave
is 1.44%. In the frequency range of 3.2 < w< 4.5, the outgoing energy keeps a

relatively high value (beyond 87%).
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For the grounded circuit condition as shown in Figure 26(b), the behavior of the
outgoing energy is similar to that of the open circuit condition when 0.5< @ <3.1. In
the frequency range of 3.2< w <4.5, the outgoing energy is lower (about 91%) than
that (about 99%) of the open electric condition except at @= 4.0. The outgoing energy

is 97.78% compared with 99.39% in the open circuit condition at @= 4.0.
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Figure 27. Reflection coefficients for m =0

Case 8. Effects for different thickness of the patch on the energy harvest

Four normalized different thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1,

are used to study their effects on energy harvest. The other conditions are the same as

those in case 7.
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Figure 28. Outgoing energy for different thickness of the patch
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Figure 29. Magnitudes of applied voltage for different thickness of the patch

When the normalized thickness of the patch varies from 0.025 to 0.1, energy
distribution of reflected waves and magnitudes of applied voltage are shown in Figure
28 and Figure 29.

In Figure 28(a) and (b), the difference of the minimized outgoing energy
between the open and grounded circuit conditions is very limit-except in the range of
3.1 < w< 4.5. It can be seen that the minimized outgoing energy is less sensitive to
the thickness of the patch in the open circuit condition than that in the grounded
circuit condition.

For the grounded circuit condition, as shown in Figure 28(b), the outgoing

energy distributions of different thickness of the patches are similar at the range of 0.5
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< w< 3.1. At the range of 3.2 < @ < 4.5, the outgoing energy of the thicker patch is
lower than that of the thinner one except at @ = 4.0. At o = 4.0, the outgoing energy
of the four sizes of the patches are close to 99%. As shown in Figure 29 (b), the lower
magnitude corresponds to the thicker patch in the grounded circuit condition.
However, as shown in Figure 29 (a) and (b), the applied voltages are sensitive to
the thickness of piezoelectric patch. The amplitude of the applied voltage in the
thicker piezoelectric patch is much smaller than that in the thinner one. Furthermore,
the magnitude of the applied voltage in the open circuit condition is hundreds times

larger than that in the grounded circuit condition.
Case 9. Effects for different applied voltage distribution on the energy harvest

In this case, effects of three different distributions of the applied voltage are

investigated. The three distributions are given by

-1 05<r<10 -1 0.55r<1.0 -0.5 O.SSrS]:O
v]( )= v, (r)z (3.40)

05 1o<r<is 2711 Lo<rers 1 10<r<15
The other parameters are the same as those in case 7.

As shown in Figure 30(a) and Figure 31(a), in the open circuit condition, the
outgoing energy distributions of the three voltage distributions are similar when 0.5 <
@ < 4.5. The magnitudes for vi(r) and vi(r) are almost identical in this domain. The
magnitude of vi(r) is larger than that of v,(r) when 0.5 < @ < 4.5.

For the grounded circuit condition, as shown in Figure 31(b), the outgoing energy
of the three voltage distributions is similar at the range of 0.5 < 0w <0.6, 14 < w<2.8
and = 4.0. When 0.7 < @< 1.3 the outgoing energy of vi(r) has a rimple which is
higher than those of vi(r) and v,(r); when 2.9 < @ < 3.9 the outgoing energy for vi(r)
is the largest one which followed by that for v(r), and the outgoing energy for vi(r) is
followed by that for vs(r). When 4.1 < @ < 4.5, the outgoing energy of vi(r) is higher
than that of v(r), and the outgoing energy of vi(r) is followed by that for v;(r). As
shown in Figure 30 (b), the magnitude of vs3(r) is higher than those of vi(r) and v»(r) at

the range 0of 0.5 < w < 4.5.
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Figure 30. Magnitudes of applied voltage for different voltage distributions
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Figure 31. Outgoing energy of different voltage distributions

Thin cylinder with piezoelectric patch form =1
Case 10(A). End reflection and energy distribution for L=0.1

In this case, shown in Figure 32, energy distributions and wave reflection coefficients
due to an incident wave are studied. The incident wave is taken as the first
axisymmetric wave. The electric boundary conditions at the end of piezoelectric patch
and the interface are open circuits (D, = 0).

It can be seen that the first propagating wave occupies major part of the
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outgoing energy when 0.5< @< 3.1. In this frequency range, the outgoing energy
carried by the second and the third propagating waves are below 0.4%. When 3.2<
w< 3.7 the outgoing energy carried by the first propagating wave decreases to 0.49%
and the outgoing energy carried by the fifth propagating wave increases to 97.99%;
when 3.8 < @ < 4.5 the outgoing energy carried by the first propagating wave

increases to 15.95% slowly and the outgoing energy carried by the fifth propagating

wave descends to 83.60%.

1.4+ <+

1.0 4

® N P b b
Pl a4
5 . R
5 o8 ‘ 104n A\
5 ‘4
2 | “a
£ | ‘L “
7
3 56l —a— Mode 1 | _ o8 |
& & Mode 2 a o ~#-Mode 1 {
] 4- Mode 3 ‘ 05| ® Mode 2 I
; 0.4 % Mode 4 A ngei
e v L]
3 o« Modes 'L 04 < Mode5 i .
g 02 \ ¥ n”
i . 02 NCA T
¥R Tl \.‘_.,:'v'vv
00 bananga POPPPPPN nar? 154 00 1222220ee [y a Aaad
t * t 1 u ? * s ! g '
05 10 15 20 25 30 35 40 45 5 10

y Ul y y
1.5 20 28 30 35 4.0 45

Figure 32. Energy distribution and reflected coefficients
Case 10(B). End reflection and energy harvest for L.=0.1 with applied voltage

Energy harvest is studied by applying appropriate voltage at the end of the

piezoelectric patch. The applied voltage distribution is given by

()_{—lojerLO (3.41)

|1 10sr51S°

Different electric boundary conditions at the interface, namely the open circuit
(D, = 0) and the grounded circuit (¢ = 0), are studied.

Figure 34 (a) and (b) show the reflection coefficients of the open and grounded
circuit boundary conditions, respectively. On the other hand, the outgoing energy
carried by the outgoing wave for the two boundary conditions is shown in Figure 33(a)
and 34(a). When 0.5 < @ < 3.1 the outgoing energy carried by the first propagating

wave descends from 50% to 1.4%. The minimized outgoing energy is 1.44% at
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o =3.1. When 3.2 < w< 4.5, the outgoing energy proportion keeps a relatively high
value (beyond 88%) and increases up to 99.99% at the point w=4.5. The outgoing
energy carried by the fifth propagating wave occupies major part of the outgoing

energy when 3.2 < w< 4.5.

As shown in Figure 33(b), the behavior of the outgoing energy of the grounded
circuit condition is the same as that of the open circuit condition when 0.5< @w<3.1. At
the range of 3.2< w <4.5, the outgoing energy of the grounded circuit is lower (about
91%) than that (about 99%) in the open circuit condition except at @ = 4.0. The
outgoing energy in the grounded circuit is 98.38% compared with 99.39% in the open

circuit condition at @w= 4.0.
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Figure 34. Reflection coefficients for m = 1
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Case 11. Effects for different thickness of the patch on energy harvest

Four normalized different thicknesses of the patch, namely L = 0.025, 0.05, 0.075, 0.1,

are used to study their effects on energy harvest. The other parameters are the same as

those in case 10.
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Figure 35. Outgoing energy for different thickness of the patch
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Figure 36. Magnitudes of applied voltage for different thickness of the patch

When normalized thickness of the piezoelectric patch varies from 0.025 to 0.1,
the energy distributions of reflected waves and magnitudes of applied voltage are
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Figure 36.

In Figure 35, the difference of the minimized outgoing energy between the open
and grounded circuits is very limit except at the range of 0.5 < @ < 3.1. It also can be
seen that the minimized outgoing energy is less sensitive to the thickness of the patch
in the open circuit condition than that of the grounded circuit condition.

For the open circuit condition, as shown in Figure 35(a), differences of the
- outgoing energy for different thicknesses of the patches are very limit when 0.5< @
<4.5.

For the open circuit condition, as shown in Figure 35 (b), the outgoing energy
distributions of the different thicknesses of the patches are similar when 0.5< @ <3.1.
At @ = 3.4 the outgoing energy with L = 0.1 1s higher (19.85%) than others. When
3.3< w <4.5 the outgoing energy for the thicker patch is lower than that for the thinner
one except @ =4.0. At @ = 4.0, the outgoing energy distributions for four thicknesses
of the patches are close to 99%. As shown in Figure 36, the lower magnitude
corresponds to the thicker patch in the grounded circuit condizion.

However, as shown in

Figure 36 (a) and (b), the applied voltages are sensitive to the thickness of
piezoelectric patch. Amplitude of the applied voltage in the thicker piezoelectric patch
is much smaller than that in the thinner one. Furthermore, the magnitude of the
applied voltage in the open circuit condition is hundreds times larger than that in the

grounded circuit condition.
Case 12. Effects for the applied voltage distribution on energy harvest

In this case, effects of three distributions of the applied voltage are investigated. The

three distributions are given by

-1 0.55r<1.0 -1 05<r<10 0.5 0.5<r<10
,(r>={ { . >={ 6.2

vz(r)z v, (7
05 1.0=r<15 1 10=<r<15 1 1.0=r<l15

The other parameters are the same as those in case 10.

As shown in Figure 37(a) and Figure 38(a), in the open circuit condition, the
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As shown in Figure 37(a) and Figure 38(a), in the open circuit condition, the
outgoing energy for three voltage distributions are essentially the same when 0 <
w< 4.5 except w=3.1. At the point w= 3.1, the outgoing energy distributions of v(r),

va(r) and v3(r) are 1.44%, 13.29% and 4.69%, respectively.

For the grounded circuit condition as shown in Figure 37 (b), the outgoing
energy for v3(r) is higher than those for v;(r) and v,(r) when 0.5 < @< 1.7. At the
range of 1.8 < w< 2.8, the outgoing energy for v,(r) and vi(r) are contiguous and the
outgoing energy for vi(r) is lower than those for vo(r) and vi(r). At w=4.0, the

outgoing energy have rimples for three distributions.
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3.7.2.2 End resonance

End resonance is characterized by high (but finite) amplitudes of end displacements
vis-a-vis those of neighboring (i.e., slightly different) frequencies. This phenomenon

is studied in this subsection.

End resonances due to the first incident axisymmetric wave are observed for a
semi-infinite cylinder with/without piezoelectric patch. Both thick and thin cylinders

are studied.

Results of different thicknesses of piezoelectric patches are studied. Meanwhile,
the comparison of the patches with/without polarization is done to show the effect of
the electric field to the end resonance. Also the results of a semi-infinite isotropic

cylinder are presented for comparison purpose.

The geometry and material property of the cylinder and the patch are the same
as used in case 1. The end of the piezoelectric patch is the open circuit condition (D, =

0) and the interface of the patch and cylinder is the grounded circuit condition (¢ = 0).

Case 13. End resonance in the thick cylinder (H/R = 1)

As shown in Figure 39, Figure 40 and Figure 41, there are two end resonance
frequencies in the range of 0.5< @ <5.0. The first end resonance frequency takes place
at a narrow range of 1.55< @ < 1.60, and the second one occurs in the range of 4.0 <
@ <5.0. When 1.847< w < 1.859, the ‘backward wave’ exists and there is no end
resonance performance. Detail information for these two end resonances is presented

from Figure 42 to Figure 47.
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Figure 41. End resonance of electric potential for m =0

The first end resonance of the thick cylinder

For the thick cylinder, as shown in Figure 42 through Figure 44, the first end
resonance frequency @ decreases with the increasing thickness of the piezoelectric
patch. However, the amplitude of the response increases with the increasing of the

thickness of the patch.

As shown in Figure 42, the first radial end resonance frequencies are 1.6274,
1.6062, 1.5847 and 1.5626 for L = 0.025, 0.05, 0.075 and 0.1, respectively. There are
slightly changes in the end resonance frequency when exploring the axial

displacement and the electric potential. Table 5 summarized the results.
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Table 5. First end resonance frequency for a thick cylinder

Thickness 0.025 0.050 0.075 0.100

Patch P! NP? p! NP? p! NP? p! NP?

Radial 1.6274 | 1.6254 | 1.6062 | 1.6012 | 1.5847 | 1.5773 | 1.5626 | 1.5525

Axial 1.6303 | 1.6284 | 1.6075 | 1.6026 | 1.5847 | 1.5778 | 1.5634 | 1.5525

Electric 1.6274 | NA 1.6062 | NA | 1.5847 | NA | 1.5626| NA

1: P stands for polarized piezoelectric patch
2: NP stands for non-polarized piezoelectric patch

Comparing non-polarized piezoelectric patch with polarized piezoelectric patch
the first end resonance frequency shifts leftward, and the magnitude of the response

increases slightly.

It can be seen from Figure 42 through Figure 44, the amplitude of the response

increases monotonously with the increasing thickness of the patch.
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Figure 42. The first end resonance of radial displacement
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Figure 44. The first end resonance of electric potential



Chapter 3 Wave scattering in a cylinder 70

The second end resonance of the thick cylinder

The behavior of the second end resonance frequency is similar to that of the first end
resonance frequency, i.e., it decreases with the increasing thickness of the patch. It can
be seen from Figure 45 through Figure 47. However, the amplitudes of the mechanical
displacements show somewhat slight variations. They are smaller than those of the
first radial end resonance frequency. Table 6 summarizes the second end resonance

frequency of the different thicknesses of the patches.

Table 6. Second end resonance frequency for a thick cylinder

Thickness 0.025 0.050 0.075 0.100

| Patch P! NP? p! NP? p! NP? p! NP?

Radial 4.7318 | 4.7135 | 4.5892 | 4.5488 | 4.4529 | 4.3876 | 4.3286 | 4.2433

Axial 4.7245 | 4.7061 | 4.5802 | 4.5398 | 4.4488 | 4.3835 | 4.3241 | 4.2388

Electric 473181 NA 458921 NA 44610 NA |43821 | NA

1: P stands for polarized piezoelectric patch

2: NP stands for non-polarized piezoelectric patch
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Figure 46. The second end resonance of axial displacement
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Figure 47. The second end resonance of electric potential

Case 14. End resonance in the thin cylinder (H/R = 0.135)

72

There is one end resonance frequency in the frequency range of interest 0.5< @ <4.5.

As shown in Figure 48, Figure 49 and Figure 50, the end resonance frequency

wdecreases with the increasing of the thicknesses of piezoelectric patches. The end

resonance frequencies of radial, nodal displacements and electric potential are similar.

The amplitudes of radial and axial displacements of the end resonance show some

changes with different thicknesses of the patches. However, with the increasing

thicknesses of the patches the amplitudes of the electric potential increase

monotonously. Table 7 summarizes the results.
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Table 7. Second end resonance frequency for a thin cylinder

Thickness 0.025 { 0.050 | 0.075 | 0.100
Frequency 4.4673 | 4.3360 | 4.2100 | 4.0960
Radial amplitude | 209.34 | 166.64 | 167.69 | 199.19
Axial amplitude | 173.90 | 126.05 | 127.36 | 143.03
Electric amplitude | 0.478 | 1.564 | 3.430 | 6.566
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Figure 48. End resonance of radial displacement for the thin cylinder
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Figure 49. End resonance of radial displacement for the thin cylinder
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Chapter 4

Conclusions and Recommendations

4.1 Conclusions

The wave propagation and reflection in a semi-infinitely long cylinder attached with
piezoelectric patch were studied in this thesis.

First, the frequency spectra of thick and thin isotropic cylinders were investigated
by using the semi-analytic finite element method. Different circumferential wave
numbers (m = 0 and m = 1) were considered and ‘backward waves’ were found in
certain range of normalized circular frequency when m = 0. The wave modes were
then obtained by solving the second kind of eigenvalue problem. These modes were
investigated in the second part of the study.

Second, a hybrid method was introduced. In this method, the patch was modeled
by two dimensional axisymmtric finite elements, and the wave in the cylinder was
calculated by using a wave function expansion. The continuity conditions at the
interface between the patch and cylinder were enforced. The governing equations of
the system were derived by using the virtual work principle and the least square
method. Finally, the reflection coefficient of the reflected field in the cylinder as well
as the mechanical displacements and the electric potential in the patch were evaluated
by solving the equations of motion.

The effect of the piezoelectric patch and the applied end voltage on the energy
harvest and end resonance was investigated. Also studied was the electric boundary

condition of the patch, namely, open circuit (D, = 0) and grounded circuit (¢ = 0). In
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the frequency range studied, the harvested energy was insensitive to the thickness of
the piezoelectric patch and the form of the end voltage. However, the amplitude of the
applied end voltage was sensitive to the thickness, the form of the voltage, and the
electric boundary condition. Generally speaking, the open circuit required much more
effort to archive the similar amount of harvested energy than that of the grounded
circuit condition. The required end voltage decreased with the increasing thickness of
the patch. These observations were helpful for designing an experiment to test the
energy harvest.

For the end resonance, thick and thin cylinders had different behavior. There were
two end resonance frequencies existing in the thick cylinder. This was the first time
that was reported in the literature, to the author’s best knowledge. When the thickness
of the patch increased, the end resonance frequencies decreased. Comparing polarized
piezoelectric patch with non-polarized patch, it was seen that the end resonance
frequencies decreased when it was polarized. The piezoelectric patch softens the

structure.

4.2 Recommendations

The following recommendations are suggested for future work.

1.  The end reflection results given in Chapter 3 should be validated experimentally.

2. The current program works for the two dimensional axisymmetric element. An
extension to the three dimensional finite element is needed when using a
generalized piezoelectric patch.

3. A more thorough study should be conducted to maximize the harvested energy
or to eliminate the end resonance. Some work has been done toward this
direction and the results are promising.

4.  The thermal effect should be included in the future study where thermal effect

becomes significant.
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