
A tissue culture system facilitates examination of gene expression during breakage of 

vegetative dormancy in the potato tuber shoot apical meristem 

A Thesis 

Presented to 

The Faculty of Graduate Studies 

Of 

Lakehead University 

By 

Christopher Edmunds 

In partial fulfillment of requirements 

For the degree of 

Master of Science 

November, 2008 

© Christopher Edmunds, 2008 



1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non-
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 978-0-494-47134-0 
Our file Notre reference 
ISBN: 978-0-494-47134-0 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I' Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
etlou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



Table of Contents 

Table of Contents ................................................................................................................ 2 
Abstract ............................................................................................................................... 4 
Acknowledgements ............................................................................................................. 6 
Statement of Work Ownership ............................................................................................ 7 
Table of Abbreviations ........................................................................................................ 8 
List of Figures ..................................................................................................................... 9 
List of Tables ...................................................................................................................... 11 
Chapter 1: Literature Review ............................................................................................ 12 

1.0.0 Vegetative Dormancy and Agriculture ......................................................... 12 
1.1.0 The Potato as a Major Food Crop ........................................................................ 13 

1.1.1 Postharvest Physiology andAgriculture .......................................................... 14 
1.2.0 Potato Physiology ................................................................................................. 15 

1.2.1 Tuber Physiology in Solanum tuberosum ......................................................... 17 
1.2.2 Tuber Dormancy and Sprouting ....................................................................... 19 
1.2.3 Plant Growth Regulators and Potato Dormancy ............................................. 21 
1.2.4 Molecular Control of Dormancy and Sprouting .............................................. 22 

1.3.0 Microtuber Model Systems .................................................................................. 24 
1.4.0 Shoot Apical Meristems ....................................................................................... 25 
1.5.0 Gene Expression Analysis .................................................................................... 30 

1.5.1 Predicting Metabolic Changes Using Gene Expression .................................. 30 
1.6.0 Quantitative Reverse Transcription Polymerase Chain ....................................... 31 
Reaction (qPCR) ........................................................................................................... 31 

1.6.1 Reverse Transcription ...................................................................................... 32 
1.6.2 qPCR ................................................................................................................ 33 
1.6.3 Primer Design .................................................................................................. 34 
1.6.4 Expressed Sequence Tags (ESTs) ..................................................................... 34 
1.6.5 Melt Curve Analysis During qPCR .................................................................. 35 
1.6.6 qPCR assay in Solanum tuberosum ................................................................. 36 

1.7 .0 Research Objective ................................................................................................ 38 
Chapter 2: Materials & Methods ....................................................................................... 39 

2.0.0 Microtuber & Potato Shoot Culture and Treatment.. ........................................... 39 
2.0.1 Plant Material .................................................................................................. 39 
2.0.2 Potato Shoot Media .......................................................................................... 39 
2.0.3 Microtuber Induction Media ............................................................................ 39 
2.0.4 Potato Shoot Subculture and Microtuber culture ............................................ 40 
2.0.5 Microtuber Growth, Harvest, and Treatment ................................................. 42 
2.0.6 Microtuber Measurements and Storage ........................................................... 43 

2.1.0 Gene Expression Analysis .................................................................................... 43 
2.1.1 Total RNA /solation ......................................................................................... 44 
2.1.2 Quantification ofTotal RNA ............................................................................ 45 
2.1.3 Reverse Transcription of messenger RNA to complementary DNA ................. 4 7 
2.1.4 Primer Design .................................................................................................. 47 
2.1.5 Primer Analysis by PCR and Gel Electrophoresis .......................................... 49 
2.1.6 Gene Expression Analysis using qPCR ............................................................ 50 

2 



Chapter 3: Results ............................................................................................................. 52 
3.0.0 Primer Validation and RT-PCR Optimization ..................................................... 52 

3.0.1 Endpoint PCR Primer Validation and Optimization ....................................... 52 
3.0.2 qPCR Validation and Optimization .................................................................. 61 

3.1.0 Microtuber Meristem Length Measurements ....................................................... 69 
3.1.1 Meristem Length Over Time Since Harvest ..................................................... 69 

3.2.0 qPCR Results ....................................................................................................... 71 
3.2.1 Housekeeping Gene Validation of L2 and ef1-a .............................................. 71 
3.2.2 Fold Induction of STM during meristem development ..................................... 74 

Chapter 4: Discussion ........................................................................................................ 76 
4.0.0 Results of Gene Expression Analysis ................................................................... 76 

4.0.1 Housekeeping Gene Analysis ........................................................................... 76 
4.0.2 STM Gene Expression During Development ................................................... 76 
4.0.3 WUS and aprt ................................................................................................... 79 

4.1.0 Objectives ............................................................................................................. 80 
4.2.0 Conclusions .......................................................................................................... 80 
4.3 .0 Future work .......................................................................................................... 81 

References ......................................................................................................................... 82 
Appendix 1: Calculation of Fold Induction ....................................................................... 88 
Appendix 2: Multiple Sequence Alignments of Primers With Known Gene Sequences of 
Homo logs .......................................................................................................................... 89 

o' 

3 



Abstract 

While the shoot apical meristem's role during dormancy emergence in 

seeds is relatively well-unde~rstood, molecular factors governing vegetative 

endodormancy and sprouting in tuberous plants have not been well studied. A 

microtuber culture system was developed in order to study dormancy emergence 

in the shoot apical meristem of the potato (Solanum tuberosum). Microtubers 

were induced from subcultured shoot internodes, grown for 9 weeks, then 

harvested. The microtubers were hardened at 20° for 2 weeks then stored in the 

dark at 4 ac. Subsequently, at 4-week intervals, microtubers were transferred to 

20°C in the dark for 7 days. Meristem length was measured prior to RNA 

extraction. Two genes, SHOOTMERISTEMLESS (STM) and WUSCHEL (WUS), 

are known to regulate the development of the shoot apical meristem in 

Arabidopsis thaliana. Primers for quantitative PCR (qPCR) were designed to 

amplifty putative potato STM and WUS homologs using expressed sequence tag 

(EST) sequences obtained during a basic local alignment search tool (BLAST) 

search of known petunia (Petunia hybrida) and tomato (S. Lycopersicum) STM 

and WUS sequences. Primer pairs for reference genes were obtained from the 

literature. Using qPCR we measured the expression level of STM normalized to 

two potato meristem reference genes, L2 and eft-a. L2 expression increased 

1.5 to 6 fold during the post harvest period while that of eft-a expression was 

between 1 and 1.4 fold the levels found in dormant meristems immediately after 

harvest. By contrast, STM expression increased from 0.17 to 0.75 fold of week 2 
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values 7 weeks after harvest from 17.4 to 42.5 fold 11 weeks after harvest and 

increased further thereafter. The meristem length showed a statistically 

significant increase from 0.23 (+/- 0.01) mm to 0.33 (+/- 0.07) mm (mean +/-

Standard Error) length between 7 and 11 weeks after harvest. Taken together, 

this data suggests dormancy break of shoot apical meristems in this microtuber 

culture system occurs between 7 and 11 weeks after harvest. This system will 

be used in the study of the molecular events occurring during dormancy break in 

the potato shoot apical meristem. 
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Chapter 1: Literature Review 

1.0.0 Vegetative Dormancy and Agriculture 

Agriculture is critical to growth, security, and economic development 

both in developed countries and in the poorest agriculture-based countries 

(http://www.potato2008.oq~/en/world/index.html). In agricultural crops, dormancy 

is an important life stage. Because of the economic importance of crop species, 

considerable effort has gone into the study of dormancy mechanisms that control 

plant growth (Anderson eta/. 2001 ). Dormancy is defined here as the 

physiological state when a plant and its organs are incapable of visible growth 

under conditions which would otherwise be favourable to growth (Korableva & 

Ladyshenskaya, 1995). Vegetative dormancy can occur in propagules of plants 

such as stems, rhizomes, tubers, bulbs, stolons, creeping roots, etc (Anderson et 

a!., 2001 ). While dormancy in seeds is similar, seeds are a product of sexual 

reproduction and may thus be regulated by distinct mechanisms (Finch-Savage 

& Leubner-Metzger, 2006). Vegetative dormancy has also been studied in the 

axillary buds of perennial woody crop species such as apples (Pyrus malus L.) 

(Anderson eta/., 2001 ). In addition, much work has focused on vegetative 

dormancy in woody, fruit producing species (Anderson eta!. 2001 ). Vegetative 

dormancy has been studied in the potato (Solanum tuberosum L.) because of its 

importance as a major food crop (Anderson eta!., 2001 ). 
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1.1.0 The Potato as a Major Food Crop 

As world food prices of whleat, rice, and maize increase, the potato is being 

increasingly relied upon for food security (FAO). Since it is not traded on 

international markets as much as other staples, its price is determined by local 

economies rather than by world markets (FAO). This is particularly important as 

demand for food will increase greatly in the developing world over the next fifty 

years (Coleman, 2000). It is already the leading non grain food produced in the 

world and is the highest yielding crop per hectare (FAO; Coleman 2000). The 

potato is readily grown in the developing world, where consumption has 

increased from 10 kg per capita in 1963 to 22 kg per capita in 2003 (FAO). 

Unlike many other food crops, potatoes can be grown under environmental 

conditions that inhibit the urowth of other crops including infertile or saline soils. 

Furthermore, 85% of the potato tuber total plant biomass (dry weight) is edible 

compared with cereals which are 50% edible (FAO). The aforementioned factors 

will force potato producers to optimize growth through differing genotype and 

management strategies, with a goal of optimizing yield when growing the crop in 

different geographical areas (Coleman, 2000). Sprouting of potato tubers 

diminishes the commercial and nutrional value of the organ. Increasing the 

understanding of the post-harvest physiology of the potato will become an 

important factor in maintaining local and global food security (Coleman, 2000). 

Despite these global concerns, study of the molecular mechanisms regulating the 

growth and development of this important crop is not as advanced in comparison 
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to other crop species such as corn and rice. There is a need to understand the 

physiology of potato tubers after harvest. 

1. 1. 1 Postharvest Physiology and Agriculture 

Maintenance of food shelf life is a major concern to all food producers as it 

impacts the commercial value of their product. The potato tubers remain 

physiologically dormant for a period of time after harvest (Suttle, 2004a). 

Depending on the cultivar, potatoes are dormant for one to fifteen weeks after 

harvest (Wiltshire & Cobb, 1996). As with other crop species, the nutritional and 

commercial value of potato tubers decreases over time (Suttle, 2004a). This is 

due to the hydrolysis of starch and the increase in reducing sugars which provide 

carbon and energy for the !;}rowing potato shoot (Trindade eta/. 2004). 

However, unlike crops such as Brassicaceae (broccoli, cauliflower), or the closely 

related tomato (Solanum lycopersicum), potato tubers are dormant after harvest. 

Climacteric fruits such as tomatoes immediately increase ethylene production 

and respiration rates once harvested, which in turn gives them a short shelf life 

(Wang et al. 2008). 

Potato shelf-life is maintained through temperature, chemical and light control 

(Wiltshire & Cobb, 1996). :Sprouting generally increases at higher temperatures 

(Wiltshire & Cobb, 1996). However, at temperatures below 3°C the reducing 

sugar content increases, which decreases the value of potatoes as they darken 

when made into french fries (Wiltshire & Cobb, 1996). The tubers are normally 

stored temperatures of 4 to 8°C, in a dark, well-ventilated environment with high 

relative humidity (85 to 90 '%) 
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(http://www. potato2008. org/en/potato/cu ltivation. htm I). Storage aims at 

preventing "greening" (the build up of chlorophyll beneath the peel, which is 

associated with solanine, a potentially toxic alkaloid) and losses in weight and 

quality (http://www.potato2008.org/en/potato/cultivation.html). Poor storage 

conditions results in a loss of quality and tuber size 

(http://www.potato2008.org/en/potato/cultivation.html). Further understanding of 

potato biology will aid in understanding tuber physiology. The difference in life 

strategies between tuber forming plants and crops such as tomatoes have 

implications to human food security in the future. 

1.2.0 Potato Physiology 

The potato is an annual, herbaceous, and dicotyledonous plant (Sarkar, 

2008; Figure 1 ). New plants are generally propagated vegetatively by planting a 

piece of tuber containing an apical meristem (Figure 1 ). The vast majority of 

commercial potato agriculture uses the vegetative propagation technique 

(Sarkar, 2008; Jefferies and Lawson, 1991 ). Potato plants undergo several 

stages in their life cycle, including seed germination and emergence, tuber 

dormancy, tuber sprouting, emergence and shoot expansion, flowering, tuber 

development, and senescence of the shoots, flowers and leaves (Jefferies and 

Lawson, 1991 ). New pota!to plants can arise via sexual reproduction in the floral 

organs (Jefferies and Lawson, 1991 ). The tuber is a modified stem structure 

which accumulates reservH material and arises from the stolon (Coleman, 1987; 

Figure 1 ). 
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Figure 1: An image showing major functional organs within a potato plant which has 
been propagated vegetatively. The mother tuber contains shoot apical meristems which 
give rise to the main stems after dormancy ceases. The main stem then can produce 
underground modified stems known as stolons which may produce additional tubers 
(http://www .potato2008.org/en/potatolindex.html). 

16 



1.2. 1 Tuber Phy'Sio/ogy in Solanum tuberosum 

The specialized nutrient sink organ known as the tuber evolved as distinct 

mechanism for survival through vegetative dormancy, as it is more resistant to 

biotic and abiotic stresses than other structures within the plant (Suttle, 2004b). 

The potato has become a model for studying underground sink organs 

(Kloosterman et at. 2005). Potato tubers are a storage organ formed from the 

induction, initiation and growth of underground shoots called stolons (Sarkar, 

2008). The stolon is a modified stem with a shortened broadened axis that 

grows from an internode beneath the soil, and elongates until tuber formation 

begins (Peterson eta/. 1985; Claassens & Vreugdenhil, 2000). Favorable 

conditions for tuber formation and development are a short photoperiod, low soil 

nitrogen availability, low temperature, high sucrose and high levels of cytokinins 

(Ciaassens & Vreugdenhil, 2000; Tanaka et at. 2005). The tip of the stolon 

begins to grow radially and! then cell expansion and division in the pith and the 

cortex begins (Wiltshire & Cobb 1996). A major biochemical change in the 

beginning of dormancy is the accumulation of starch (Ciaassens & Vreugdenhil, 

2000). The amyloplasts of potato parenchyma cells are the location of starch 

synthesis (Ciaassens & Vreugdenhil, 2000; Figure 2). 
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Figure 2: Parenchyma cells with amyloplasts (A) from a potato tuber (Commercial 
Slide). 
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Starch accumulates in the developing tuber and an increase in patatin, a storage 

glycoprotein, is also observed (Wiltshire & Cobb, 1996). The tuber is described 

as a stem with nodes, internodes, and axillary buds. During the growth of the 

tuber, the shoot apical meristems in the eyes of the swelling stolon become 

dormant (Ciaassens & Vreugdenhil, 2000). The meristems are totipotent and 

dormant for a variable period of time after harvest (Wiltshire & Cobb, 1996). 

The molecular events surrounding tuber formation have been the subject 

of some research. Gene expression, enzyme activity, carbohydrate transport 

and chemistry, as well as protein accumulation have all been extensively 

researched (Appeldoorn eta!. 1997; Sachem eta!. 1996). However, the 

molecular processes regulating meristem sprouting following dormancy 

emergence are poorly understood. 

1.2.2 Tuber Dormancy and Sprouting 

There are several definitions of tuber dormancy. Korableva and 

Ladyshenskaya (1995) define dormancy as the physiological state in which a 

plant and its organs are incapable of visible growth under apparently optimal 

conditions. Wiltshire and Cobb (1996) consider dormancy to begin at tuber 

initiation and end when the meristem is capable of extension growth. Dormancy 

is also considered the physiological state of the tuber in which autonomous 

sprout growth will not occur even placed under ideal conditions for sprouting e.g. 

(darkness, temperature 15-20°C, 90% relative humidity) (Reust, 1986). A more 

specific definition was proposed by Jefferies and Lawson (1991 ), who 
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differentiated innate dormancy (the postharvest period when meristem growth is 

suppressed from enforced dormancy). Furthermore, dormancy can be 

subdivided into three distinct definitions depending on its control (Campbell eta/. 

1996). Ecodormancy is defined as growth arrest in meristems due to external 

environmental factors such as photoperiod or temperature. Paradormancy is 

defined as growth arrest in meristems due to external physiological factors. For 

example a dominant bud can arrest the growth of other buds (Vreugdenhil, 

2007). Endodormancy is growth arrest in meristems due to internal physiological 

factors (Campbell eta/. 1996). The role of endodormancy can be thought of as 

inhibiting the growth of structures such as tubers, bulbs, and seeds if conditions 

are temporarily favourable yet likely will get worse, for example in late autumn 

(Vreugdenhil, 2007). 

The biochemical changes leading to sprouting at the end of 

endodormancy have begun to be investigated (Law & Suttle, 2004; Agrimonti et 

a/. 2000; Coleman & Coleman, 2000). A breakdown of starch in the tuber has 

been observed during sprouting (Davies & Viola, 1988; Davies & Ross 1987). 

Starch phosphorylase (STP) catalyzes a reversible reaction between starch n and 

starch n -1 plus glucose -1·-phosphate (Ciaassens & Vreugdenhil, 2000). 

However, its activity is more often observed during starch degradation at the end 

of dormancy (Ciaassens & Vreugdenhil, 2000). a-amylase activity is also 

increased at the end of dormancy (Ciaassens & Vreugdenhil, 2000). The 

function of the starch degradation is to provide substrates for glycolysis and thus 

C-skeletons for anabolism and ATP synthesis that power heterotrophic plant 
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growth. Several studies have investigated the role of plant growth regulators in 

these processes. 

1.2.3 Plant Growth Regulators and Potato Dormancy 

Much research has focused on the hormonal and environmental control of 

tuber dormancy (Suttle, 2004b; Wiltshire & Cobb, 1996; Coleman, 1987). 

Dormant tubers are still metabolically active, although at a lower rate than rapidly 

growing plant organs (Wiltshire & Cobb, 1996). Suttle (1998) showed that 

ethylene is produced during tuber development, and tubers exposed to ethylene 

production inhibitors such as silver nitrate or 2,5-norbornadiene resulted in 

premature sprouting. While abscisic acid (ABA) does not appear to play a role in 

tuber formation (Xu eta/. 1998), Suttle & Hultstrand (1994) showed that it is 

important in dormancy maintenance. While these results suggest that ABA is 

directly involved in the initiation and possible maintenance of dormancy, there 

appears to be no relationship between tuber ABA levels and dormancy break 

(Suttle & Hultstrand, 1994). The application of gibberellins in the very early 

stages of tuber development results in stolon formation at the apical meristem of 

the tuber and the reversion of tuber development to a stolon-like development 

(Ciaassens & Vreugdenhil, 2000). The addition of gibberellins at a later stage of 

development results in sprouting of the shoot apical meristem (Ciaassens & 

Vreugdenhil, 2000). During tuber development, the concentration of gibberellins 

needed to break dormancy increases and then decreases near the end of endo-

dormancy (Ciaassens & Vreugdenhil, 2000). Endogenous gibberellins decrease 

before tuber formation and the level remains low during tuber growth. These 
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findings have led Claassens & Vreugdenhil (2000) to suggest that endo-

dormancy breaking is the reverse of dormancy initiation. In summary, auxins 

have not been implicated in dormancy break, however are needed for shoot 

growth after dormancy break (Suttle, 2004b). Similarily, gibberellins are not 

thought to directly break dormancy, however, they are involved in shoot 

elongation afterwards. ABA is needed for tuber formation and dormancy, 

however has not been shown to regulate dormancy break (Suttle, 2004b). 

Ethylene has been shown to prevent dormancy break, however, its possible 

interaction with ABA has not been characterized in potato tubers (Suttle, 2004b). 

Cytokinins are likely candidates for being directly involved in dormancy break. 

As they stimulate cells in a G-1 cell cycle block, and bud meristems are in the G-

1 phase of the cell cycle, they are expected to break dormancy (Campbell eta/. 

1996) and have been shown to do so (Suttle, 2004b). The molecular control of 

sprouting has also been investigated but has not yet been definitively linked to 

the signal transduction chains controlled by plant growth regulators. 

1.2.4 Molecular Control of Dormancy and Sprouting 

Several studies have been conducted to determine the molecular events 

surrounding tuber induction, dormancy, and sprouting. A common theme of 

these studies is that a coordinated regulation of many metabolic pathways is 

required for all three processes (Kloosterman eta/. 2005). Synthesis of DNA, 

RNA and proteins continuously occurs, although these activities increase when 

dormancy break occurs (Law and Suttle, 2003; McDonald & Osbourne, 1988). 

Sprouting is likely to be controlled by interacting genes expressed throughout the 
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tuber in addition to genes that are expressed in the meristem (Trindade eta/., 

2004). It has also been shown that more genes are expressed during tuber 

formation and tuber sproulting than are expressed during dormancy (Trindade et 

a/. 2004; Bachem eta/. 2000). However, the biochemical and molecular events 

that control sprouting are largely unknown (Trindade eta/. 2004; Agrimonti et at. 

2000). 

Some of the work that has been done has characterized epigenetic 

changes in potato meristems during dormancy break (Law & Suttle, 2005). 

When cytosine is methylated to 5-methylcytosine in a promoter region, gene 

silencing can occur (Law & Suttle, 2005). Changes in 5-methylcytosine content 

in potato tuber meristem DNA have been shown to occur during dormancy break 

(Law & Suttle, 2003). Furthermore, histone acetylation has been shown to occur 

during natural or chemically induced dormancy break in the meristems of tubers 

(Law & Suttle, 2004). Promoter regions are hypothesized to require histone 

multiacetylation in order to allow transcriptional activators to bind to promoter 

regions (Struhl, 1998). In fact, Law and Suttle (2004) found that histone H3.1 

and H3.2 showed increased histone multi-acetylation during dormancy 

emergence in potato meristems. There is a definite difference between 

dormancy and sprouting in both meristems and tubers, which implies that 

transcription of a distinct set of genes is tightly regulated during this 

developmental transition (Agrimonti eta/. 2000). The identification of such genes 

would increase understanding of dormancy break (Agrimonti et at. 2000). 

Agrimonti et at. (2000) recently used differential display reverse transcriptase 
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polymerase chain reaction (DDRT-PCR) to analyze two cDNAs during dormancy 

break. These two cDNAs, putatively named G 1-1 and A2-1, were up-and down-

regulated, respectively. A2-1 in silica analysis showed this protein coded for a 

putative ATPase, however it is not known why this gene was down regulated 

(Agrimonti eta/. 2000). This study focused on whole tuber tissue samples. 

1.3.0 Microtuber Model Systems 

For molecular studies, using a microtuber culture system possesses 

several advantages over the study of field grown potatoes. Since it is impossible 

to predict when stolons begin to tuberize, field potatoes grown in an agricultural 

setting will be at disparate and unknown physiological states following harvest 

and in storage (Appeldoorn eta!. 1997). Furthermore, studies by Sung eta!. 

(1989) have shown that field tubers of the same size show considerable variation 

in their rates of growth and development. A more controlled in vitro system may 

be used in place of field tubers, as every potato internode has the capability of 

forming a tuber (Appeldoom, eta/. 1997). Microtubers are easily produced by 

transplanting single nodes of shoot tissue into sterile high sucrose, low nitrogen 

media and cultivating them in an environment with a short photoperiod and cool 

temperatures (Ciaassens ~~Vreugdenhil 2000; Coleman & Coleman, 2000). 

When using an in vitro system, sprouting has been shown to be far more 

synchronized (Ciaassens & Vreugdenhil, 2000). Microtuber formation is 

therefore more simultaneous than field tuber formation (Ciaassens & 

Vreugdenhil, 2000). In stored tubers, potato sprouting occurs over a long period 

(Ciaassens & Vreugdenhil, 2000). To shorten the sprouting period, either Rindite 
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(7:3: 1 anhydrous ethylene, chlorohydrin ; ethylene dichloride ; carbon 

tetrachloride) or carbon disulphide may be applied to tubers exiting endo-

dormancy, however these chemicals are highly toxic (Ciaassens & Vreugdenhil, 

2000). Gibberellic acid application in conjunction with wounding is a possible 

method to study coordinated tuber sprouting in the future (Ciaassens & 

Vreugdenhil, 2000). The simplest way to study dormancy break in tubers is a 

time course study conducted over a series of months while they naturally emerge 

from endodormancy. 

Microtubers appear reasonably analogous to field grown tubers. For 

example, Pathirana eta/. (2008) showed that the formation of hexose sugars 

during cold storage in microtubers is analogous to the process in field tubers. 

Addition of charcoal to nutrient media greatly enhances microtuber growth, as it 

may absorb inhibitory metabolites such as phenylacetic acid and p-OH-benzoic 

acid (Bizzari eta/., 1995). Microtubers have shown correlation with field grown 

potatoes in their development and behaviour (Leclerc eta/. 1995). Gopal eta/. 

(1998) showed that in addition to the length of the photoperiod, the amount of 

available sucrose, and temperature, genotype had an important influence on 

microtuber induction. All of these factors control tuber shoot apical meristem 

development and contribute to the timeframe of tuber sprouting. 

1.4.0 Shoot Apical Meristems 

The shoot apical meristem is a highly organized structure (Sussex, 1989). 

Cells derived from this meristem form all the above-ground portions of the plant 

(Bowman & Eshed, 2000). The meristem is represented by three distinct zones 
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each with its own cell division rate (Bowman & Eshed, 2000). The eventual fate 

of each cell depends on its position in the meristem. The peripheral zone 

produces the lateral organs of the plant (Bowman & Eshed, 2000). The rib zone, 

located basal to the central zone, produces the stem tissue (Bowman & Eshed, 

2000; figure 3). The apical central zone maintains a reservoir of self-renewing 

stem cells which continuously replenish the other two zones (Bowman & Eshed, 

2000; Williams & Fletcher, 2005). Stem cells are capable of generating 

differentiated daughter cells while they have unlimited self-renewing capacity. 

Despite this, they themselves divide only infrequently (Stahl & Simon, 2005). 

The development of plants, from potatoes to trees, is dependent on the fine 

maintenance of both the stem cell pool and the meristem (Bhalla & Singh, 2005). 

The stem cells produce daughter cells which have two types of fate (Williams & 

Fletcher, 2005). Daughter cells that remain in the center continue to function as 

stem cells and those that leave the central zone begin dividing more rapidly and 

become the tissues of the plant. The organization and timing of embryogenesis 

in A. thaliana is controlled by shoot apical meristem stem cells (Weigel & 

Jurgens, 2002). Many Arabidopsis mutants have been screened and the 

functions of several genes important in embryogenesis have been deduced. 
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Figure 3: The shoot apical meristern of A. thaliana. The central zone (CZ), rib zone 
(RZ) and peripheral zones (PZ) are shown in (A). Layers one (Ll), two (L2) and three 
(L3) are shown in (B). In the apex or central zone, there is a stern cell reservoir. The fine 
maintenance of the stern cell reservoir and the shoot apical rneristern is crucial to the 
development of plants. 
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Directly underneath the stem cells, a group of cells called the organizing 

center expresses a transcription factor encoded by the gene WUSCHEL (WUS) 

(Weigel & Jurgens, 2002). WUS is the earliest gene expressed during embryonic 

plant development (Bowman & Eshed, 2000). WUS was originally discovered as 

a mutation which specifically disturbed shoot and floral meristem development in 

Arabidopsis (Laux et at. 1996). Another gene, SHOOTMERtSTEMLESS (STM), 

prevents the differentiation of cells (Weigel & Jurgens, 2002). In Arabidopsis, 

STM expression begins in the late 16 cell globular embryo (Long and Barton, 

1998). In mutants lacking STM, the maintenance of the meristem fails, and it 

disappears because the stem cell pool is not maintained (Weigel & Jurgens, 

2002). In Arabidopsis, the earliest acting genes WUS and STM are required for 

establishment or maintenance of stem cell fate, whereas genes expressed later 

are involved in regulating the size of the central zone (Bowman & Eshed, 2000). 

After the initial globular stage, the embryo of Arabidopsis enters the heart stage, 

where the size of the meristem increases dramatically, and adjacent leaf 

primordia become visible (Bowman & Eshed, 2000). During the heart stage, the 

expression of STM spreads throughout most of the meristem but not into the 

emerging leaf primordia (vVeigel & Jurgens, 2002; Bowman & Eshed, 2000). 

During the heart stage, a transcription factor encoded by WUS stimulates the 

central zone cells to remain as stem cells and they in turn express CLAVATA3 

( CLV3). The mechanism by which WUS stimulates CL V3 is unclear (Weigel & 

Jurgens, 2002). CL V3 encodes a small secreted polypeptide (Rojo et at. 2002; 

Lenhard & Laux, 2003) that is hypothesized to interact with a CLA VATA 1 ( CL V1) 
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- CLAVATA2 (CLV2) receptor complex in the organizing center. Trotochaud et 

a/. (1999) proposed a model of CL V1-CL V3 interaction leading to the 

phosphorylation of downstream transcription factors which in turn inhibits 

transcription of WUS. CL \11 was originally cloned by Clark eta/. (1997), who 

hypothesized that its function was a signal transduction component acting in 

communication of cell division and/or differentiation. CL V1 was originally 

discovered in Arabidopsis as a mutation that caused extra floral organs and 

progressive enlargement of the shoot and floral meristems (Leyser & Furner, 

1992). Jeong et al. (1999) showed that CL V2 encodes a receptor like protein 

and demonstrated that it is required for CLV1 protein accumulation. A study by 

Lenhard & Laux (2003) caused the complete failure of the shoot apical meristem 

by using an A TML 1 promoter to express one copy of CL V3. When five copies of 

CL V3 were expressed using pCL V3::(CL V3)5 expressing plants, the meristem 

was merely reduced in size (Lenhard & Laux, 2003). Since the high level of 

CL V31ed to a downregulation of WUS expression, which in turn reduced 

transgene expression Ieveii, a new balance in the WUS-CL V3 feedback loop was 

established (Lenhard & Laux, 2003). This study indicated that a small amount of 

CL V3 transcript copies is needed to maintain the meristem. Many Solanaceous 

species have had their STM, WUS and CL V3 homo logs sequenced and 

characterized, however at this time S. tuberosum has not (Gerco eta/. 2005). 

The analysis of these genE~s would be beneficial to the understanding of potato 

tuber shoot apical meristem regulation and development. 
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1.5.0 Gene Expression Analysis 

Cells in a multicellular organism alter the expression of genes in response 

to certain extracellular cues or conditions. This expression can be regulated at 

the DNA, RNA and protein levels (Alberts eta!. 2002). More specifically, an 

organism can control the Hxpression of a given gene by altering (a) how often 

that gene is transcribed into RNA, (b) splicing or processing of the mRNA or (c) 

the transport of the mRNAs from the nucleus to the cytosol (Alberts eta!. 2002). 

Additionally, in the cytosol the mRNA can be turned over. Finally, protein 

products can be activated, deactivated, degraded or compartmentalized to 

increase or reduce their activity in the cell (Alberts eta/. 2002). As genomes are 

sequenced, the problem becomes analyzing expression of genes and their 

protein products and relating this information to changes in metabolism in the cell 

(Storey eta/. 2004). Since RNA is a relatively easily accessible molecule in the 

cell, it is a commonly assayed level of gene expression and is readily amplified 

using RT-PCR (Farrell, 2005). RT-PCR is therefore an extremely widely used 

technique to study RNA expression in an organism (Farrell, 2005). 

1.5.1 Predicting Metabolic Changes Using Gene Expression 

Expression analysis of genes and their products can be used to further 

understand metabolism and its control (Storey eta/. 2004). This is a significant 

challenge, because despite the large number of techniques available for 

analyzing gene expression, the properties of a functional protein or the kinetic or 

regulatory properties of an enzyme cannot be deduced solely from genetic 

analysis (Storey eta/. 2004). Many organisms that have had their genomes 
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sequenced have not had tlheir metabolism studied, although the prediction of 

metabolic phenotype can sometimes be made from gene sequences. The total 

amount of a given enzyme! is dependent upon the relative rates of synthesis and 

degradation of mRNA (Storey eta!. 2004). Since most genes encode enzymes, 

the level of expression of DNA, RNA and proteins can be seen as "coarse" 

metabolic control (Storey E?f a!. 2004). Consequently, the expression of any 

enzyme encoding gene elucidated by qPCR can be used to predict coarse 

metabolism. Since metabolic activity increases with dormancy break in potato 

tuber meristems, it is expected genes encoding metabolic enzymes will increase 

their expression during dormancy break. 

1.6.0 Quantitative Reverse Transcription Polymerase Chain 
Reaction (qPCR) 

The implementation of PCR in life science has fundamentally influenced 

all aspects of basic research. Since small quantities of template material can be 

amplified in a few hours, this technique's enormous potential for advancing 

research has become apparent over the past several decades (Farrell, 2005). 

qPCR has become the method of choice for the quantification of mRNA (Nolan et 

a!. 2006). A qPCR assay consists of a combination of three steps. These steps 

are the reverse transcriptase dependent conversion of RNA into complementary 

DNA (eDNA), the amplification of eDNA using PCR, and the detection and 

quantification of amplification products in real time (Nolan eta!. 2006). The 

reverse transcription (RT) of RNA into eDNA followed by PCR is presently the 

most sensitive method for the detection of specific RNA molecules and have 
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largely supplanted less sensitive and more cumbersome techniques such as 

northern blotting (Cikos eta/. 2007). 

1.6.1 Reverse Transcription 

Correct reverse transcription of RNA into eDNA is a crucial step in any 

qPCR assay. eDNA is the product of an enzymatic in vitro synthesis using RNA 

as template material (Fam'lll, 2005). The first requirement of successful reverse 

transcription is the presence of an intact mRNA molecule in the reaction mixture 

(Farrell, 2005). As polynucleotides are assembled in the 5'->3' direction, the 

primer molecule that provides the necessary 3'-0H group must be close to the 3' 

end of the mRNA template if the reaction is to be successful (Farrell, 2005). As 

mRNA cannot be amplified with PCR directly, it is reverse transcribed to double-

stranded eDNA using the Emzyme reverse transcriptase (Nagaraj eta/. 2007). 

Complementary DNA is synthesized stepwise, one strand at a time, from an 

aliquot of total RNA or poly (A)+ mRNA (Farrell, 2005). Heat denaturation to 

disrupt RNA secondary structures is followed by annealing of a short poly (T) 

primer to the poly (A) tail of the template mRNA (Farrell, 2005). The 3'0H group 

associated with the primer provides the means to support the 5'->3' synthesis of 

eDNA (Farrell, 2005). Alternatively, random hexamer primers or mixtures can be 

added to the reactions and result in internal priming of first strand eDNA rather 

than priming from the 3' end as with poly T primers (Farrell, 2005). 

Complementary DNA is synthesized from RNA templates and in total represents 

the RNA complexity present in the cells at the moment of total RNA isolation 
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(Farrell, 2005). The amount of eDNA produced in the reaction must accurately 

represent the amount of RNA template (Bustin, 2002). 

1.6.2 qPCR 

qPCA uses a fluorescent signal to measure PCA product accumulation 

(Cikos eta/. 2007). This fluorescent signal is generally a compound which is 

planar and fits itself (intercalates) between the bases within the DNA strand. 

qPCR's simplicity and eas13 of use have made it the most widely used in vitro 

mANA quantification assay (Bustin, 2002). With qPCA, it is not necessary to 

know the exact amount of mANA molecules present in a sample, as target 

mANA quantities can be compared to those of one or more internal control 

mANAs (Cikos eta/. 2007). There are a number of commercially available 

fluorescent molecules that can be used to measure amplification of a target 

sequence. SYBA green is among the least expensive and works by intercalating 

with double-stranded DNA molecules (Farrell, 2005). When bound to double-

stranded DNA this molecule absorbs blue light and fluoresces green light which 

is detected by the qPCA instrument. A certain threshold fluorescence value is 

set for every PCA reaction, which represents a point where the fluorescence of 

the PCA product is greater than the background fluorescence (Cikos eta/. 2007). 

Since the threshold fluorescence is the same for every reaction, the amount of 

PCR product at the threshold for any reaction is the same and the fluorescence 

generated above this threshold is proportional to the amount of DNA in the 

reaction (Cikos eta/. 2007; Nolan eta/. 2006). The number of PCA cycles 

needed to reach the threshold for a sample is known as the cycle threshold (Ct) 
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value. In general, the high1er the quantity of target mRNA template present at the 

beginning of PCR, the fewer PCR cycles are needed to reach the Ct (Cikos eta/. 

2007). The success of this assay is highly dependent on the quality and quantity 

of starting template and optimal assay design, as detailed below (Nolan eta/. 

2006). 

1.6.3 Primer Design 

A primer is defined as a short single stranded DNA sequence which is 

artificially synthesized in order to complement and anneal to the gene of interest. 

In order for PCR to function properly, the investigator must have some 

knowledge of primer sequHnces. The sequences, which flank the fragment of 

DNA to be amplified, must be known because site directed complementarity is 

necessary to anneal and amplify the correct region of DNA. The primers must be 

designed so that they will base-pair to opposite strands of the heat denatured 

template, such that their 3' ends face one another. The primers must be 

equimolar in the reaction mixture as each strand of template must be amplified 

symmetrically. Primers 20-25 base pairs long are generally specific enough to 

amplify the gene of interest. The primers must not have a mismatch at the 3'-0H 

terminus, as the 3'-0H base (or ultimate base) absolutely must be 

complementary to the sequence of interest (Farrell, 2005). 

1.6.4 Expressed Sequence Tags (ESTs) 

EST sequencing provides clues as to genes whose expression varies 

under different environmental or developmental conditions (Dembinsky et al, 

2007). ESTs are short 100-800 base pair sequences of complementary DNA 
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derived from mANA that is expressed in an organism. Messenger RNA in the 

cell is reverse transcribed to form a large number of eDNA molecules. eDNA 

molecules are then cloned to make libraries representing a set of transcribed 

genes of the original cell. The clones are sequenced randomly in both directions 

to obtain 5' and 3' ESTs (1\Jagaraj eta!. 2007). ESTs enable gene discovery, aid 

genome sequencing, and are used in proteome analysis (Nagaraj eta/. 2007; 

Rudd 2003). The eDNA libraries from which ESTs are derived are subject to 

sampling bias and may not represent low abundance transcripts. In addition, 

they may account for only 60% of an organism's genes (Bonaldo eta/. 1996). 

Despite these concerns, ESTs are an effective tool for organisms whose genome 

is not completely sequencE~d (Nagaraj eta/. 2007). They are used extensively 

when attempting to analyz~3 expression levels of developmentally important 

genes in non-model species such as the potato. 

1.6.5 Melt Curve~ Analysis During qPCR 

During qPCR, competitive side reactions can occur because Taq 

polymerase may amplify from double stranded primer-primer interactions (primer 

dimmers), single primer hairpins, or other small amplification artifacts (Bustin, 

2002). Melt curve analysis is a powerful way to distinguish the desired 

amplification products from other undesired small products and is used to 

optimize real time PCR conditions. DNA will loosen its double stranded helical 

structure at a certain temperature determined by the length and GC content of 

the amplified DNA. The melting temperature (Tm) of a PCR product is defined 

as the temperature at which half of the DNA structure has melted. Since the 
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desirable result of PCR is a large amount of a single DNA fragment, the melting 

of this product occurs at a given temperature. As the real time PCR instrument 

heats the products in the tube, the DNA steadily unwinds releasing fluorescent 

molecules (e.g. SYBR green) bound to the double stranded DNA. The declining 

fluorescence is continuously monitored as the two strands of DNA unwind and 

melt peaks are calculated by taking the first negative derivative (-dF/dT) of the 

curve. As the derivative curve shows peaks upon the melting of each PCR 

product, a single peak indicates a single PCR product while multiple peaks 

represent multiple products. Since the desired target PCR products are longer 

than the undesired products, the desired products produce a higher Tm than the 

undesired products (Nolan eta/. 2006). 

1.6.6 qPCR asscly in Solanum tuberosum 

Our objective in conducting gene expression assays in potato using qPCR 

is to determine which genes increase their expression during dormancy break 

and normalize these values to suitable internal controls. Nicot eta/. (2005) 

studied several genes in potato tubers under biotic and abiotic stress. A suitable 

internal control gene's mRNA transcript levels should remain reasonably 

consistent under different types of environmental and developmental conditions. 

Typically, the internal control is known as a housekeeping gene or reference 

gene and often encodes a protein that functions in routine cell processes, such 

as the enzymes involved in glycolysis (Nicot eta/. 2005). Quantifying reference 

gene expression in each sample provides a baseline for simple correction of the 

expression of genes of interest between experiments. Though the assay of a 
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housekeeping gene is essential in qPCR, there appears to be no reference 

transcript which will be suitable in all circumstances. For this reason, it is 

essential that the houseke1eping genes to be used as references are tested in the 

experimental system to ensure their expression changes are minimal (Farrell, 

2005). In potato tubers some work has been done to identify suitable reference 

genes. Nicot eta!. (2005) found that out of 9 genes whose transcript levels were 

measured under salt, cold, and late blight exposure, the genes L2, adenosine 

phosphoribosyl transferasE~ (aprt) and elongation factor 1-a (eft-a) were among 

those that varied the least under all conditions. L2 encodes a ribosomal protein 

which constantly functions to synthesize new protein (Nicot eta/. 2005). The aprt 

gene encodes an enzyme which converts adenosine to adenosine 

monophosphate in plants (ltai eta/. 2000). The protein synthesis factor 

elongation factor 1-a has been shown to bundle and sever microtubules (Durso 

and Cyr, 1994; Shiina eta/. 1994). Given that Trindade eta/. (2004) showed that 

more genes were expresse~d during sprouting than during dormancy, we 

anticipate therefore that gene expression analysis can be used to probe the 

expression of genes specific·to dormancy break. The expression levels of these 

genes are expected to change significantly during the transition of the meristem 

out of vegetative dormancy. 

1.6.7 Calculation of Fold Induction 

The calculation of fold induction of a gene using the "delta-delta-Ct" 

method is a relative quantification of the amount by which a target gene is 

expressed at a given experimental point while normalizing it to an endogenous 
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reference. The mathematical formula is 2-Mct (Applied Biosystems, 1997). The 

derivation of the equation comes from the formula which describes exponential 

amplification during PCR. The fold induction calculation of a target transcript 

normalizes its expression to a reference transcript for both control, and 

experimental points. It then compares these two values and gives a relative 

quantification of target expression while assigning the control a value of 1. 

1.7.0 Research Objective 

The first objective of this research was to develop a microtuber model 

system that provides microtubers that are analogous to field-grown tubers. The 

second objective was to dEwelop primers for WUS and STM homologues in 

potato meristems in order to successfully amplify and successfully quantify these 

genes. While the sequences of these genes is known for many other 

Solanaceous species, they have not yet been characterized in S. tuberosum. 

The third objective was to use meristem length data and qPCR to determine 

when dormancy break occurs microtubers generated under our laboratory 

conditions. Taken together, this initial characterization of potato meristem 

dormancy break will allow us to further investigate the molecular events that 

accompany this developmental shift. 
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Chapter 2: Materials & Methods 

2.0.0 Microtuber & Potato Shoot Culture and Treatment 

2.0. 1 Plant Mate,rial 

Locally-grown potato (Solanum tuberosum cv. "White") tubers were 

obtained commercially in late September, hardened at room temperature for 2 

weeks and subsequently stored in the dark in a cold room at 3-4°C. The following 

January, after the tubers had exited endodormancy, they were brought to room 

temperature and left in the dark for 4 weeks. After this period, the meristems had 

grown to -2 em long. They were excised, surface sterilized by a 1-min immersion 

in a 1% (w/v) sodium hypochlorite solution (e.g., 20% (v/v) commercial bleach 

diluted in deionized water), then rinsed in 5 changes sterile distilled water. The 

excised meristems were surface dried on sterile paper towels, then placed in 16 

x 100 mm tissue culture tubes (Fisher) that contained potato shoot medium (see 

below) and grown at 20°C using a 16-h photoperiod. The etiolated shoots rapidly 

greened (within 1 week) when grown under these conditions. 

2.0.2 Potato Shoot Media 

Potato shoot media was made as detailed in Suttle & Hultstrand (1994). 

The volume of the media was generally 500 ml per subculture to allow 100 tubes 

for single node explants at 5 ml per tube. 

2.0.3 Microtuber Induction Media 

The microtuber media recipe was obtained from Suttle & Hultstrand 

(1 994). Microtuber media (Suttle & Hultstrand, 1 994) was made for 20 magenta 
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boxes (Fisher), each containing 100 ml of media. The total volume of media was 

2000 mi. 

2.0.4 Potato Shoot Subculture and Microtuber culture 

Potato shoots, suitable for microtuber induction, were subcultured 

approximately every four weeks (Figure 4). 
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Figure 4: Subculturing of potato shoots and microtuber induction. (A) The shoots are 
removed and placed on a sterile Petri dish (Fisher). (B) A sterile scalpel is used to cut 
above each node on the the lower 1/3rd of shoot stems. (C) The explants from the lower 
l/3rd are placed in microtuber induction media. The upper 2/3rds of the shoot is cut 
above each node and placed into new shoot media. (D) 9 weeks after culturing the shoots, 
microtubers have grown and are ready for harvest. 
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Microtubers were also cultured at the same time, as they were made 

using shoot tissue. The maximum suitable time for subculture of shoot tissue 

was nine weeks as the explants begin to outgrow the culture tube and run out of 

available media. The shoots were removed from previous single shoot culture 

tubes under sterile conditions. The shoot tissue was cut with a scalpel above 

every node in a biological safety hood. Under sterile conditions, a single node 

explant (each explant contains a node, a leaf, and the internode below the node) 

from the bottom third of the shoot was placed into the microtuber induction 

media. The single node explants for microtubers were planted in a 5 x 5 grid in 

each magenta box for a total of 25 explants per box. Single node explants from 

the top 2/3rd of the shoot were individually placed into sterile culture tubes 

containing 5 ml media per tube. The shoots were cultured as for the initial shoot 

cultures in 2.0.1. 

2.0.5 Microtuber Growth, Harvest, and Treatment 

The microtubers were produced in a growth cabinet over 9 weeks at 20°C 

in continuous darkness. At the end of the 9 week period, the microtubers were 

harvested under sterile conditions. Residual stems and new stolon growth were 

trimmed off the tuber with a sterile scalpel and about 15 microtubers were placed 

in each of 6 sterile Petri dishes. The harvested tubers were placed for 2 weeks 

at 20oc in continuous darkness in order to let their periderm harden and to allow 

them to enter dormancy. At the end of 2 weeks, 1 petri dish of microtubers was 

removed from the growth cabinet. The remaining microtubers were placed at 

4 oc in continuous darkness and were removed every 4 weeks afterwards. 
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2.0.6 Microtuber Measurements and Storage 

At four-week intervals after harvest, the microtubers were brought to 20°C 

in darkness for one week, then observed under a dissecting microscope. Dead 

or shriveled microtubers were discarded. Shoot apical meristems were removed 

from healthy microtubers by thinly slicing them with a sterile scalpel on either 

side of a meristem such to create a disc containing an intact meristem. The disc 

was then cut on either sidEl to create a rectangle which again retains the 

meristem. The meristem was measured using a microruler (Carl Zeiss) mounted 

in a dissecting microscope and noting the length from the surface of the periderm 

to the tip of the meristem. The meristem proper was then removed and placed 

into a sterile 1.5 ml Eppendorf tube on dry ice. Pooled meristems were 

subsequently stored at -80°C. Each tube contained 5 to 15 meristems. The 

means and standard deviations of length measurements were calculated across 

all batches of microtubers. 

2.1.0 Gene Expression Analysis 

Before gene expression analysis could be conducted, primers for all four 

genes investigated (STM, WUS, L2, and eft-a) were tested using endpoint PCR. 

Gene expression analysis consisted of isolating RNA from pooled meristems for 

every time point, quantifying the RNA concentration, conducting expression 

assays using qPCR, and normalizing the results to the expression of a suitable 

reference gene. 
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2. 1. 1 Total RNA Isolation 

The isolation of total RNA was performed by following the TRizol™ 

manufacturer's protocol (Invitrogen) with some additional details and additional 

reagents. Prior to the isolation of total RNA, mortars and pestles were baked in 

aluminum foil at 200°C for at least 4 hours, then stored at -20°C. Meristem 

samples were removed from the -sooc freezer and immediately placed on dry 

ice. The mortars and pestles were chilled using liquid nitrogen and tissue 

samples added and ground to a fine powder. The starting fresh weight of tissue 

for extraction was approximately 30 mg. 500 !JI of TRizol™ reagent (Fisher) was 

added while grinding continued. This was pipetted into an RNAse free tube and 

the mortar was washed with another 500 !JI of TRizol™ reagent. The sample 

was incubated for 5 minutes at room temperature. 200 !JI of chloroform was 

added and the tubes were shaken vigorously by hand for 15 seconds. The 

sample was then incubated again at room temperature for 3 minutes followed by 

centrifugation at 12,000 x g for 15 minutes at 4°C. The upper aqueous phase 

containing the total RNA was collected and transferred to a fresh tube. 250 !JI of 

isopropanol and 250 !JI of high salt precipitation solution (0.8 M sodium citrate 

and 1.2 M NaCI) was added to the tubes and mixed by inversion in order to 

precipitate total RNA. The samples were incubated at room temperature for 10 

minutes. The samples were then centrifuged at 12,000 x gfor 10 minutes at 4°C. 

The supernatant was gently discarded and the RNA pellet was allowed to air dry 

for a few minutes. One ml of cold 75% (w/v) ethanol (stored at -20°C) was added 

to the tubes, which were then vortexed to release the pellet. The tubes were 
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then incubated at -2ooc for at least 1 hour. Following incubation, the tubes were 

centrifuged at 7,500 x g for 5 minutes. The ethanol was carefully decanted and 

the RNA pellet was allowed to air dry. Finally the RNA was dissolved in 20 !JI of 

DEPC ddH20 by pipetting the solution a few times. The dissolved RNA was 

aliquoted by placing 2 !JI into each tube in preparation for the next procedure. 

2.1.2 Quantification of Total RNA 

Total RNA quality and quantity were analyzed using the 810-RAD 

Experion Automated Electrophoresis Station. The analysis provides a 

chromatogram showing 288, 188 and 58 ribosomal RNA subunit fluorescence 

which is used to analyze RNA quality and concentration. The Experion system 

uses microfluidic technology to automate electrophoresis for protein and nucleic 

acid analysis. The system uses a microfluidic chip with a series of plastic wells 

bonded over a glass plate which is etched with microchannels (Figure 5). Once 

these channels are primed with gel matrix and samples are pipetted into the 

wells, the station directs the samples through the microchannels by controlling 

precise voltages and currents. The analysis was performed by the 

manufacturer's instructions (BIO-RAD). The station electrodes were cleaned 

with DEPC treated water after each analysis. 
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Figure 5: Image of an ExperionTM Stdsens LabChip used for total RNA quantification 
and quality analysis. Image was taken from the Experion ™ RNA Stdsens Analysis Kit 
instruction manual (BIO-RAD). 
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2. 1.3 Reverse Transcription of messenger RNA to 
complementary DNA 

The reverse transcriiption protocol was modified from Farrell (2005). First, 

the amount of starting RNA was normalized using the concentration determined 

in section 2.1.2. The volume of sample needed to provide 100 ng of RNA was 

determined. A priming mastermix was prepared containing 1 1-JI dNTPs (1 0 mM) 

(Fermentas), 1.2 1-JI Oligo diT primer (0.5 mg/ml) (Fermentas), and 2 1-JI of random 

hexamer primers (0.2 1-Jg/1-JI) (Fermentas) per sample. RNA and DEPC H20 were 

added to each tube which were then heated to 70°C for 5 minutes then cooled on 

ice for 2 minutes. This allowed the RNA to denature and the primers to anneal to 

complementary sequences. A second reverse transcription master mix was 

prepared containing 4 f.JI DEPC H20, 4 1-11 5x RT buffer (Fermentas), 1 1-11 RNAse 

inhibitor (20 U/1-JI), and 1 ·1-11 M-MLV reverse transcriptase (20 U/1-JI) per sample. 

RT Master mix (1 0 111) was added to each primed sample. The samples were 

incubated in a Techne TC-312 thermocycler at 25°C for 5 minutes, 3rC for one 

hour and then denatured at ggoc for 5 minutes to inactivate the reverse 

transcriptase. The eDNA samples were then stored at -20°C prior to PCR. 

2. 1.4 Primer Design 

When conducting a BLAST search, the S-Score and E-Value are given 

with the results. The S-score is a measure of the similarity of the query to the 

sequence shown. The E-value is the probability due to chance, that there is 

another alignment with a siimilarity greater than the given S-score. A typical 

threshold for an E-value is 1 0'15 or lower 

(http://mcdermott.chem.columbia.edu/biophys/evalue.shtml.pdf). 
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Primers were designed for several genes of interest and sequences were 

obtained from the literaturE~ for several housekeeping genes. Primer pairs for the 

housekeeping genes cytoplasmic ribosomal protein L2, elongation factor alpha 

(ett-a), and adenine phosphoribosyltransferase (aprt) were obtained from Nicot 

et al .. (2005). Primer pairs for a putative SHOOTMERISTEMLESS homolog and 

a putative WUSCHEL homolog were designed from EST sequences obtained 

during a basic alignment search tool (BLAST) search of known petunia (Petunia 

hybrida) and tomato (Solanum /ycopersicum) STM and WUS sequences 

(http://blast.ncbi.nlm.nih.gov/Biast.cgi; see appendix 2 for sequence alignments). 

When the tomato (AJ538329.1) WUS sequence was BLASTed against an 

unknown EST database, three S. tuberosum EST clones (gil53700754lgbiCV47, 

DR034003.2, CV475978.1) were found, each with an E value of 8 x 1 o-14
. When 

a BLAST search of the known P. hybrida STM sequence was performed, fourS. 

tuberosum EST clones (DV624511.1, DR037062.1, DR037061.1, DN587987.1) 

were found with E values of 0 for the first, and 9 x 10-109 for the next three. 

These WUS and STM sequences were aligned and primers designed and 

analyzed with DNAMAN (L.ynnon Biosoft) using standard primer design 

parameters. Minimizing the complementarity of each pair lessened self 

hybridization during PCR, and similar annealing temperatures for each primer 

pair were chosen. The primer sequences used are shown in Table 1. 
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Table 1: Primer sequences used for qPCR analysis of potato meristem gene expression. 
Primers for L2, efl-a, and aprt were all taken from Nicot et al., 2005. Primers for the 
genes STM and WUS were designed using DNAMAN™ from Solanum tuberosum EST 
sequences obtained from a BLAST search of known STM and WUS sequences from 

. d . 1 petuma an tomato respective. y. 
Melting 

Gene Primer Name Primer Sequence Temperature (Tm) 
(50mM NaCl) 

STM STMF1 5'-GCAAGCTTCTGGGATTCCG-3' 56.5°C 
STM STMR1 5'-CAGTTTCATCGACCCTCAGGC-3' 58.0°C 
wus WUSF 5'-TGCATCAATTCACACGTGG-3' 53.6°C 
wus WUSR1 5'-TCCTCCTGGGTGAGA TTCCAC-3' 56.0°C 
efl-o. efl alpha fwd 5'-ATTGGAAACGGATATGCTCCA-3' 54.2°C 
efl-o. efl alpha rev 5'-TCCTTACCTGAACGCCTGTCA-3' 58.1 oc 
aprt aprt fwd 5'-GAACCGGAGCAGGTGAAGAA-3' 57.2°C 
aprt aprt rev · 5'-GAAGCAATCCCAGCGATACG-3' 56.1 oc 
L2 L2 fwd 5'-GGCGAAATGGGTCGTGTTAT-3' 55.6°C 
L2 L2 rev 5'-·CATTTCTCTCGCCGAAATCG-3' 54.0°C 

2. 1.5 Primer Analysis by PCR and Gel Electrophoresis 

In order to test the suitability of the primers, endpoint PCR was performed, 

followed by gel electrophoresis. This allowed a comparison of expected 

fragment size to experimental fragment size, as well as optimization of reaction 

conditions. The PCR was performed using the AccessQuick™ RT PCR system 

and the manufacturer's instructions (Promega). The amount of eDNA and water 

varied depending on the primer pair being tested. The PCR was run in a Techne 

TC-512 gradient thermocycler. Reaction conditions were an initial 94 oc 
denaturation step for 5 minutes, followed by 30-60 cycles of an annealing step for 

30 seconds at variable temperature depending on primers, extension step for 30 

seconds at 72°C, and denaturation step for 30 seconds at 94°C. The final 

extension step was 5 minutes at 72°C. To avoid primer hairpin formation or 

dimerization, every test of primer pair specificity included a control reaction in 
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which no eDNA template was added in order to ensure that no bands were 

formed under this condition. Exact optimization details are provided in chapter 3. 

Products were analy:zed on a 1% (w/v) agarose gel in T AE buffer 

(Sam brook & Russell, 2001 ). Visualization of products used either a Chemi-

Genius Bio Imaging System (Fisher), or a Pharos FX Molecular Imager (BIO-

RAD). The observation of expected product sizes and the qualitative analysis of 

primer specificity by comparison of band brightness between samples were 

performed after imaging the PCR products. 

2.1.6 Gene Expression Analysis using qPCR 

Gene expression analysis was performed using a Cepheid Smartcycler 

(Fisher). A 2X master mix was prepared with 15.5 !JI DEPC H20, 2.5 j.JI 1 Ox Hot 

Start PCR buffer (Fermentas), 0.5 !JI dNTPs (1 OmM) (Fermentas), 0.375 j.JI 

forward primer, 0.375 j.JI reverse primer, 3 j.JI MgCb (25 mM) (Fermentas), 0.25 !JI 

hot start Taq DNA polymerase, and 1 j.JI SYBR Green (Sigma; diluted 1000 fold 

in DE PC-H20), per sample. One microliter of eDNA was then added. Reaction 

conditions were an initial 95°C denaturation step for 150 seconds, followed by 90 

cycles of an annealing step for 30 seconds at variable temperature depending on 

primers (see table 1 ), extension step for 30 seconds at 72°C, and denaturation 

step for 15 seconds at 95°C. The final extension step was 5 minutes at 72°C. 

The Cepheid Smartcycler was programmed to continue cycles until 7 cycles after 

the fluorescence in all samples was above that of the background. Melt curve 

analysis was then performed by increasing the temperature from 60-95°C at a 

rate of 0.2°C/second. The Cepheid Smartcycler software program took the first 

50 



derivative of this curve and samples that did not generate a melt curve of 

sufficient quality were not included. 

Each qPCR sample was run in triplicate. The mean and standard 

deviations were calculated for each set of triplicate samples. Individual sample 

sets with a standard deviation greater than 0.6 were not included in the 

calculations. When one of the three replicates in each sample showed a Ct 

value that was significantly (SD > 0.6) different from the other two, they were 

discarded as outliers. STM was normalized to both reference genes, and then to 

the original calibrator value of the expression of STM normalized to both 

reference genes at 2 weeks after harvest. This was given the value 1 (Applied 

Biosystems, 1997) 
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Chapter 3: Results 

3.0.0 Primer Validation and RT-PCR Optimization 

In order to ensure that gene expression may be reliably determined with 

our primers, endpoint PCR was first conducted using sets and products 

visualized using gel electrophoresis to ensure that they were of the correct size. 

3.0.1 Endpoint PCR Primer Validation and Optimization 

Endpoint PCR was conducted for each gene described in Chapter 2. 

Nicot eta/. (2005) used an annealing temperature of 58.0°C during PCR 

amplification of the gene aprt. The expected fragment length was 101 base pairs 

(bp) (Nicot eta/., 2005). When annealing temperatures of 57.6°C and 58.2°C 

were used in this procedure one band of this approximate size was observed at 

each annealing temperature (Figure 6). 
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Figure 6: A 1% (w/v) agarose gel showing PCR products of the aprt primer pair using 
annealing temperatures of 57.6oc and 58.2°C. The expected fragment size for aprt was 
101 base pairs. A control lane in which PCR was performed without a eDNA template 
and a DNA ladder standard was also included. The image was acquired with a Chemi 
Genius Bio Imaging System. 
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Similarily, PCR was performed on the genes L2 and eft-a. Although Nicot eta/. 

(2005) used 58°C as an annealing temperature for L2, it was found that only 

lower annealing temperatures of approximately 51 ac could yield visible bands on 

an agarose gel (Figure 7). Bands were observed using a ssac annealing 

temperature for eft-a which is the temperature specified in Nicot eta!. 2005 

(Figure 7). The non-template controls for L2 and ef1-a did not produce any 

bands (Figure 7). In each case, one band of 121 bp is expected. Figure 8 shows 

PCR products that lie between the 1 00 and 200 base pair standards. 
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Figure 7: 1% agarose gel showing PCR products of the L2 and efl-o. primer pairs, which 
were run at annealing temperatures of 51.0°C and 58.0°C. Two control lanes in which 
PCR was performed without a eDNA template as well as a DNA ladder standard were 
also included. Neither control lane showed bands. The expected DNA fragment size for 
both L2 and efl-a. is 121 base pairs. The difference in brightness between the bands for 
both primer pairs is due to the quality of input RNA (left band 28S/18S ratio = 1.19, right 
band 28S/18S ratio= 1.50). The image was acquired with a Chemi Genius Bio Imaging 
System. 
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The STM F1 and STM R1 primers were tested using 30 cycles of PCR at 

annealing temperatures of 50.2°C, 52.2°C, 53.3°C, and 54.2°C. STM F1 and 

STM R1 were expected to produce a fragment of 213 bp. As previous PCR 

attempts using these primE~rs with 1 111 of eDNA did not yield visible bands, input 

eDNA was increased to 2.!3 ~1. Bands on the gel were observed only when the 

exposure time was increased to the maximum of 5 seconds (Figure 8). With 

maximum exposure, a faint bands was observed from reactions with annealing 

temperatures of 52.2°C and 53.3°C. These bands were located between 200 

and 300 bp (Figure 8). No bands were observed in the control lane (Figure 8). 

As the bands were faint, the PCR was repeated with 60 cycles of amplification at 

annealing temperatures of 49.6°C, 50.2°C, 51.6°C, 52.2°C, and 53.3°C, with a 

non-template control. The amount of template eDNA was increased from 2.5 ~I 

to 5 ~I. Figure 9 shows strong bands under these conditions, with clear bands of 

just over 200 bp in size in all lanes. The cleanest and darkest band occurred 

using an annealing temperature of 51.6°C. Again, non-template controls did not 

yield EtBr-staining bands. 
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Figure 8: 1% (w/v) agarose gel showing PCR products observed when using the primer 
pair STM Fl and STM Rl using annealing temperatures of 50.2°C, 52.2°C, 53.3°C and 
54.2°C. The expected fragment length for STM Fl and STM Rl was 213 base pairs. Two 
faint PCR products were seen between 200 and 300 base pairs at annealing temperatures 
of 52.2°C and 53.3°C. A control lane in which PCR was performed without a eDNA 
template and a DNA ladder standard were also included. The control lane showed no 
distinct bands. The image was acquired with a Chemi Genius Bio Imaging System. 
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Figure 9: 1% agarose gel showing PCR products observed when using the primer pair 
STM Fl and STM Rl using annealing temperatures of 49.6°C, 50.2°C, 51.6°C, 52.2°C, 
and 53.3°C for 60 cycles of PCR. The expected fragment length for STM Fl and STM Rl 
was 213 base pairs. All bands appeared at just over 200 base pairs with the strongest at an 
annealing temperature of 51.6oC. A control lane in which PCR was performed without a 
eDNA template and a DNA ladder standard were also included. The control reaction 
showed no bands. The image was acquired with a Pharos FX Molecular Imager (BIO-
RAD) 
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The WUS F and WUS R1 primers were optimized using 60 cycles of PCR at 

annealing temperatures between 45.JCC and 52.4°C (Figure 10). Using WUS F 

and WUS R1 was expected to produce a fragment of 250 base pairs. As it is 

expected that WUS is expressed in low copy numbers, the PCR cycles were 

doubled and the amount of template eDNA was increased to 5 1-JI. The final 

optimization is shown in Figure 10, with the strongest band located between the 

200 and 300 bp ladder markers at an annealing temperature of 50.JCC. Unlike 

the previous primer pairs, WUS consistently showed an EtBr stained product at 

approximately 100 bp in all temperatures and gels run (Figure 1 0). No bands are 

present in the control lane except the 100 bp signal (Figure 1 0). 
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Figure 10: 1% (w/v) agarose gel showing PCR products observed when using the primer 
pair WUS F and WUS Rl and annealing temperatures between 45.7°C and 52.4°C. The 
expected fragment length for WUS F and WUS Rl was 250 base pairs. All bands 
appeared between 200 and 300 base pairs with the strongest at an annealing temperature 
of 50.7°C. A control lane in which PCR was performed without a eDNA template and a 
DNA ladder standard were also included. The image was acquired with a Pharos FX 
Molecular Imager (BIO-RAD) 
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3.0.2 qPCR Validation and Optimization 

All primers which showed successful endpoint PCR results were optimized 

for qPCR using the same concentrations of reagents and the Cepheid 

Smartcycler (Fisher) with tt1e addition of SYBR Green. The threshold of 30 

fluorescence units was set by the manufacturer. The aprt, L2 and eft-a 

reference genes all amplified consistently when triplicate PCR was performed for 

a single biological sample (Figures 11, 12, 13). The first derivative of the melt 

curve also showed a singlE! sharp peak for all optimization temperatures, which 

indicated that a single product was formed during each reaction (Figures 11, 12, 

13). 
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Figure 11: Amplification of PCR product using aprt forward and reverse primers was 
consistent within a biological sample. A single sample was run at annealing temperatures 
of 57.0°C, 57.5°C, 58.0°C, and 58.SOC. All 4 reactions using the same sample amplified 
at similar cycle threshold values and produced similar melt curve peaks. While 4 
annealing temperatures were used, it was determined that 58.0°C was the most suitable 
temperature for experimentation as the variation between results at this temperature was 
very low. 
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Figure 12: Amplification of PCR product using efl-a. forward and reverse primers was 
consistent within a biological sample. A single sample was run at annealing temperatures 
of 58.0°C, 56.0°C, 54.0°C, and 52.0°C. All 4 reactions using the same sample amplified 
at similar cycle threshold values and produced similar melt curve peaks. While 4 
annealing temperatures were used, it was determined that 58.0°C was the most suitable 
temperature for experimentation as the variation between results was very low. 
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Figure 13: Amplification of PCR product using L2 forward and reverse primers was 
consistent within a biological sample. A single sample was run at annealing temperatures 
of 50.5°C, 51.0°C, 51.5°C, and 52.0°C. All 4 reactions using the same sample amplified 
at a similar cycle threshold value and produced very similar melt curve peaks. While 4 
annealing temperatures were used, it was determined that 51.0°C was the most suitable 
temperature for experimentation as the variation between results was very low. 
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Optimization results for WUS primers were inconsistent. Figure 14 shows 

a typical WUS amplification and melt curve. Within a single sample, the Ct 

values varied widely. The melt curve analysis showed a broad parabolic curve 

(Figure 14), rather than a more desirable sharp peak (Figures 11, 12, 13). 

Furthermore, the melting temperature at the WUS amplicon was approximately 

7rC. Given that the melting temperatures of L2, eft-a and aprt were 

approximately 85°C, 88°C, and 86°C for products of 121 bp, 121 bp, and 101 bp 

respectively (Figures 11, 12, 13), unfavorable small side products caused by 

primer dimerization or hairpins were likely formed in the WUS qPCR reactions. 
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Figure 14: Amplification of PCR product using WUS F and WUS Rl primers was not 
consistent within a biological sample. A single sample was run at annealing temperatures 
of 53.4°C, 52.4°C, 51.6°C, and 50.7°C. All4 reactions using the same sample amplified 
at different cycle threshold values and produced similar melt curve peaks. The melt 
curve analysis shows a consistent unfavorable peak at 7rC. Low product melt curve 
values indicate a small product is formed during PCR. 
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In contrast to the WUS results, STM amplification was mostly consistent between 

the triplicates in any given biological sample. However, this was not always the 

case. Figure 15 shows a typical STM amplification, with a higher Ct value than 

the housekeeping genes analyzed, and a sharp melt curve peak at approximately 

86°C. The optimization of the annealing temperature for STMwas based on data 

shown in Figure 9. 
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• Figure 15: Amplification of PCR product using STM Fl and STM Rl primers 
was consistent within a biological sample. A single sample was run at an 
annealing temperature of 51.6°C. All 4 reactions using the same sample 
amplified at similar cycle threshold values and produced similar melt curve peaks. 
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3.1.0 Microtuber Meristem Length Measurements 

Meristem length measurements were recorded in order to correlate 

changes in meristem morphology and growth to changes in gene expression 

during dormancy break. 

3. 1. 1 Meristem l.ength Over Time Since Harvest 

Meristem length measurements were taken for each batch of microtubers. 

All lengths for all microtubers were averaged at a given timepoint. The mean and 

standard error was calculated across all measurements at each timepoint, and 

the results are summarized in Figure 16. A two-way ANOVA (p > 0.05) test was 

performed for each time point against each other time point. The p-values are 

found in Table 2. 

Table 2: p-values from a two-way ANOVA analysis of every time point in figure 12 
against every other time point. These values represent the value for all microtubers 
pooled within a given time point. (* significantly different at the p = 0.05 level) 
Time after 2 7 11 15 19 
Harvest 
(weeks) 
2 ------ ------ ------- ------ ------7 0.71 ------ ------ ------ ------11 0.04* 0.05* ------ ------ ------15 <0.001 * <0.001 * 0.15 ------ ------19 <0.001* <0.001* 0.06 0.25 -------
At 2 and 7 weeks after harvest, the meristem lengths were significantly lower 

than at 11, 15 and 19 weeks after harvest. However, there was no significant 

difference in length between 2 and 7 weeks after harvest. Therefore, a 

significant increase in meristem length occurred between 7 and 11 weeks after 

harvest (Figure 16). 
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Figure 16: Meristem length (mean +1- standard error, n >25) across all microtubers 
measured at every time point analyzed after harvest. Significant increases in length 
compared to dormant controls at t = 2 weeks are marked with an asterisk and first arose 
between 7 and 11 weeks after harvest. Several representative photographs of meristems 
at each corresponding time point are shown. 
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3.2.0 qPCR Results 

qPCR results are presented for STM as fold induction of the STM gene 

when compared to both L2 and eft-a. All data given are expressed as the fold 

induction of each gene compared to dormant meristem controls from 2 weeks 

after harvest. WUS could not be included in the results as its amplification was 

inconsistent, with poor melt curves in all samples. The housekeeping gene aprl 

did not amplify consistently when processing individual RNA samples and 

therefore could not be included. 

3.2.1 Housekeeping Gene Validation of L2 and eft-a 

Housekeeping gene validation was performed to show that the fold 

induction of L2 and eft-a did not vary significantly when compared to dormant 

expression levels in control meristems sampled from microtubers 2 weeks after 

harvest. While fold induction of the housekeeping genes was generally within the 

recommended +1- 0.4 fold of the control (Filby & Tyler, 2007), L2 was induced 

between 1.5 and 6 fold (figure 17). The fold differences between samples 

suggest that this variation is significant but more replicate samples need to be 

run in order give this conclusion statistical weight (figure 17). In contrast, eft-a 

showed much less variation than L2 as the fold induction compared to 

expression levels 2 weeks after harvest varied between 0.47 and 1.38 fold (figure 

18). 
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Figure 17: Housekeeping validation of L2 is given as fold induction (T~~ct) of L2 when 
compared to the expression of L2 at 2 weeks after harvest. (Mean, n = 2). 
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Figure 18: Housekeeping validation of efl-a is given as fold induction (2-Mct) of efl-a 
when compared to the expression of efl-a at 2 weeks after harvest. (Mean, n = 2). 
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3.2.2 Fold Induction of STM during meristem development 

The induction of STM was calculated using both L2 and eft-a as reference 

genes and the results are shown in Figure 19. The fold induction of STM 

expression is shown for both reference genes in figure 29. Similar to figure 16, 

there was a large increase in STM induction between 7 and 11 weeks after 

harvest. When corrected to ef1-a and L2, STM transcript levels increased 42.5-

fold and 17.4-fold, respectively. STM mRNA levels continued to increase 

thereafter until they reached 89-fold and 28-fold, respectively, 19 weeks after 

harvest. Given that ef1-a showed less variation in fold induction compared with 

L2 (Figures 17 & 18), it is likely to be a better choice as a housekeeping gene in 

potato meristems emergin~J from dormancy. However, the same trend was seen 

with both housekeeping genes (Figure 19). 
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Figure 19: The fold induction of STM when L2 (black bars) and efl-a (cross-hatched 
bars) are used as reference genes. (mean, n=2). 
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Chapter 4: Discussion 

4.0.0 Results of Gene Expression Analysis 

4.0.1 Housekeeping Gene Analysis 

The assay of the variation in expression of at least 2 reference genes is 

recommended for a reliable qPCR assay (Farrell, 2005). Fi·gures 17 and 18 

show the expression of L2 and ef1-a during dormancy emergence compared to 

the expression of these genes 2 weeks after harvest. The fold induction of both 

genes remains consistently moderate although that of ef1-a is less variable. In 

addition, the expression of these genes was found to vary little in whole potato 

tubers during biotic and abiotic stress by Nicot eta/. (2005). It is concluded that 

these two genes are suitable reference genes for the preliminary study of 

dormancy emergence in the microtuber model system. 

4.0.2 STM Gene Expression During Development 

In potato tubers, synthesis of DNA, RNA and proteins occurs continuously 

and these activities increase as the tubers progress through dormancy break 

(McDonald & Osbourne, 1988). Promoter regions in the genome are 

hypothesized to require histone multi-acetylation in order to allow transcriptional 

activators to bind correctly (Struhl, 1998). Histone acetylation has been shown to 

occur during natural and chemically induced dormancy break in the meristems of 

tubers, indicating a change in the chromatin architecture state that could underlie 

concomitant changes in gEme expression (Law & Suttle, 2004). In Arabidopsis, 

another Solanaceous species, the genes WUS and STM are expressed the 

earliest during seed germination and are required for establishment or 
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maintenance of stem cell fate, whereas genes expressed later are involved in 

regulating the size of the central zone (Bowman & Eshed, 2000). Figure 19 

shows the fold induction of STM in tuber meristems when normalized to both L2 

and ef1-a. As is seen, the fold induction of STM remains near 1 until the 11th 

week after harvest, when it then increases (Figure 19). It continues to increase 

for measurements taken with both reference genes after the 11th week until the 

19th week. This result SU£1gests that there is a significant and sustained increase 

in the expression of STM between the 7th and 11th weeks after harvest. 

Measurements of meristem size in Figure 16 correlate with this suggestion, as a 

statistically significant incmase in growth is seen between weeks 7 and 11. 

However, it must be noted that the sample size for both target and reference 

genes is small. In addition, the fold induction for week 15 could not be 

determined due to a lack of replicable data for ef1-a. It is possible, as STM is 

one of the first transcripts to be observed during Arabidopsis shoot apical 

meristem development, that STM could be expressed earlier than was observed 

in this experiment (Bowman & Eshed, 2000). The divergence between the 

meristems and tubers developmental stages implicate that sets of genes are 

being turned 'on' and 'off' during transition. More genes are expressed during 

tuber formation and sprouting than during dormancy (Trindad eta/. 2004; 

Bachem eta/. 2000). Sprouting is expected to be controlled through interacting 

genes throughout the plant including the genes which are directly involved 

(Trindade eta/. 2004). In addition, meristems are regulatory structures in plants, 

and therefore have the capacity to control changes in development (Sussex, 
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1989). The increase in STM transcript levels in the meristem during 

development is therefore an interesting result as it is known to encode a 

homeodomain protein in Arabidopsis (Francis, 2008). This may indicate that its 

expression causes a cascade of downstream effects. Therefore, an increase in 

STM expression during endodormancy break could reflect the increase in 

metabolism observed in other studies (Kloosterman eta/. 2005). Since STM is 

expressed in the shoot apical meristem of Arabidopsis during embryogenesis, it 

is possible that dormancy break in the potato meristem occurs in a similar 

fashion. It is of interest to continue to examine dormant meristems and 

understand how they develop in comparison to dormant Arabidopsis seeds. 

Coleman & Coleman (2000) have shown that dormancy emergence 

occurs between 6 and 12 weeks after harvest, depending on cultivar and sucrose 

concentration. Work by Suttle (1995) showed sprouting in two storage regimes 

of 20°C and 3°C beginnin~l at approximately 7 weeks postharvest. Given that the 

dormancy emergence shown in other published data agrees with these findings 

across cultivars and treatments, the period between 7 and 11 weeks post harvest 

will be examined more thoroughly to begin elucidating the molecular mechanisms 

which govern dormancy emergence in this system. The experimental data 

presented here agrees witlh these findings as the breaking of endodormancy in 

our microtubers appears to have occurred between the 71h and 11th week after 

harvest. 
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4.0.3 WUS and aprt 

As mentioned in chapter 3, WUS and aprt were not included in the gene 

expression analysis because of problematic qPCR analysis. Figure 10, when 

compared with Figures 6 through 9, showed a fuzzy band underneath the 

putative WUS target band. The other gene's PCR products did not possess such 

bands underneath the putative target bands (Figures 6, 7, 8, 9). This may 

indicate that an undesirable product was being formed during endpoint PCR. 

Given that qPCR requires sensitive fluorescent detection and SYBR green 

fluoresces when bound to double stranded DNA, any double stranded products 

in the reaction tube will fluoresce whether they are specific or non-specific 

(Farrell, 2005). In addition, the low abundance of the WUSCHEL gene transcript 

may have contributed to competitive reactions such as primer dimerization or 

hairpins initiating transcription during PCR (Bowman & Eshed, 2000). Also, poor 

quality mRNA, a consistent problem when isolating plant RNA, may have 

contributed to the failure o·f aquiring data on both WUS and aprt. Plant tissues 

may have secondary metabolites such as phenolics and high molecular weight 

polysaccharides which can co-precipitate during nucleic acid isolation (Camacho-

Villasana, 2002). The meristem samples used in this study included some tuber 

tissue. This tissue, which is high in starch, co-precipitates with RNA. This can 

interfere with the isolation of biologically active nucleic acids. This problem is 

currently being addressed in our lab by the use of a plant specific RNA isolation 

method (Lashbrook eta/. 2002; Wilkins & Smart, 1996). Finally, we have been 
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using a T7 RNA amplification kit (Ambion) to increase transcript levels and thus 

the sensitivity of the WUS qPCR reaction (results not shown). 

4.1.0 Objectives 

The first objective of this research was to develop a microtuber model 

system that provides tubers for research that are biochemically similar to field 

grown tubers. The second objective was to develop primers for WUS and STM 

homologues in Solanum tuberosum, in order to successfully amplify these genes 

using PCR. The present results suggest this has been successful for STM but 

not for WUS. Cloning and sequencing data for both amplified fragments would 

increase confidence. The third objective was the use of quantitative 

measurement data and a qPCR assay to determine when dormancy break 

occurs in our microtuber culture system such that we can further investigate the 

molecular events which accompany this developmental shift. This objective has 

been only partially met. 

4.2.0 Conclusions 

First, the microtuber culture and harvest system developed has the 

potential to model postharvest physiology in potato tubers at a cellular level. 

Second, gene expression analysis can be conducted using the genes L2 and 

eft-a as references. Third, meristem measurement data suggests dormancy 

emergence occurs between the 71h and 11th week after harvest in this system. 

Finally, gene expression analysis of the putative STM homolog conditionally 

indicates that meristem dormancy emergence occurs between the 7th and 11th 

week after harvest in microtubers. Validation of these findings could be 
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accomplished by the successful measurement of CLVand WUS expression 

levels. The expression pattern of novel genes such as HANABA TARANU (HAN) 

known to be required for the precise expression pattern of WUS in Arabidopsis, 

could be investigated in tuber meristems. The cloning and sequencing of PCR 

products could provide further confidence in the results of these experiments. 

4.3.0 Future work 

A number of directions have been made possible by the current research. 

First, the sample size of the current assay must be larger to increase confidence 

in the results. Second, T7 RNA amplification should be conducted in order to 

produce a consistently reliable WUS qPCR assay. RNA amplification could 

increase the sensitivity of the assay for WUS and decrease the possible non-

specific primer binding side reactions occurring. Third, the fragments amplified 

by PCR should be sequenced to ensure the assay is measuring the STM 

homolog. Fourth, since we have preliminary information from the meristem 

length measurements, a subtractive hybridization library of cDNAs comparing 

gene expression of the timeline of microtuber dormancy emergence before and 

after this period should be investigated. Finally, specific proteins can potentially 

be investigated in order to uncover new information about the process of 

vegetative dormancy emergence. 
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Appendix 1: Calculation of Fold Induction 

The equation Xn = Xo x (1 + Ex)n describes PCR amplification, Where Xn is 

the number of target molecules at cycle n, Xo is the initial number of target 

molecules, Ex is the efficiency of the reaction, and n is the number of cycles 

(Applied Biosystems, 1997). The threshold cycle (ct) in qPCR is the number at 

which the amplified target reaches the fixed threshold and replaces n in the 

equation (Applied Biosystems, 1997). Dividing this equation by one describing 

the reference amplification, RT = R0 x (1 + ER)ct. R, gives (XofR0 ) x (1 +E) ct. x- ct. R 

= K, assuming the efficiencies of both reactions are equal to 1, where K is a 

constant (Applied Biosystems, 1997). (XoiRo) can be described as XN, or the 

normalized amount of target, and Ct, X- Ct, R can be described as ~Ct, or the 

difference between the cycle threshold of the target and the reference transcript 

(Applied Biosystems, 1997). Rearranging the equation gives XN = K x (1 + Ef:"~ct, 

which, when divided by the same equation for the control point, gives (1 + ErMct 

(Applied Biosystems, 1997). For amplicons close to 150bp, the efficiency is 

close to 1, which gives the original equation (Applied Biosystems, 1997). 
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Appendix 2: Multiple Sequence Alignments of Primers With 
Known Gene Sequences of Homologs 

WUS primers aligned with the potato EST sequence gij53700754jgbjCV47 and 
the known sequences AF481951 and AY162209. 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

GCACGAGGCCAT l\ TTCTCTTCACTCT ATCCCTTAGTTTGTTCTCTTCTTGTTTTAGTACA 6 0 

GCTCTATACTTTATCATGGAAl\CAGCACAl\CACCAl\CAAAACAl\CCAl\CAl\CACTATCTT 120 

------------CAJ\GATTCTCAJ\GGGA------TTGGCAAAATCAJ\TA---ATGGGAGT 39 
CACCAl\CATTTATCAl\TTGGTCAl\GGGACAAl\CATTGAl\GATGGTAGCA---ACAAAl\AC 177 
------------CTAGTGGATCCCCGGC------CTGCAGGTATCCATGTACATGGGATC 42 

* * 

GGCGGTAGTAGTTTCTTGTGCAGACAAJ\GCAGTACGAGGTGGACACCAJ\CAJ\CTGACCAG 99 
Al\CAGCAGCAl\TTTTATGTGTAGACAAAATAGTACAl\GGTGGACACCAl\CAl\CTGACCAG 237 
ATCATCAl\GAl\GCTTAl\GCATG---Al\GGTTGCATCAl\TT---CACACGTGGATTCTTAG 96 

* * * * * ** * * * * *** * ** 

ATAl\GAl\TCTTGAl\GGATCTTTACTACAl\CAl\TGGTGTTAGGTCTCCAl\CTGCTGAGCAG 159 
ATAl\GAl\TATTAAl\GGATCTTTACTACAl\CAl\TGGAGTTAGGTCTCCAl\CTGCTGAl\CAl\ 297 
AGCATGAJ\GCTGCTTCTCCTTCACTTACACT-TGGTTGCAAACGTTTAJ\-----GACCAC 150 
* * *** *** * ** ** 

ATTCAGAGGATCTCTGCTAl\GCTGA-GACAl\TACGGGAl\GATTGAl\GGCAJ\AAJ\CGTGTT 218 
ATTCAGAGGATCTCTGCTAJ\GTTAJ\-GACAGTACGGAAAGATTGAJ\GGCAJ\GAJ\TGTGTT 356 
TTGCTCCTAJ\GCTCAJ\CACAJ\CCAJ\TAJ\TGATACCACAACCACCATTGTTACTCCTCCTT 210 
* * * *** * * * * *** ** * * * ** 

TTACTGGTTTCAGAJ\TCACAAJ\GCTCGTGAGAGGCAGAAAJ\AGCGCTTTACTGCTGAT-- 276 
TTATTGGTTTCAGAJ\CCATAAJ\GCCCGTGAAJ\GACAAAAGAAAAGGCTTATTGCTGCTGC 416 
TTGATCTTAJ\GAGTTTCATTAGGCCTGAAJ\GTAGCAJ\TA-----GCCCTCCTAAACTTGC 265 

* * 

CATCATC-ATCACATGAJ\TGTGCCAJ\C---------Al\TTCACAJ\TCATCATTATAJ\GCC 326 
TACCACTGATAACACTAJ\CCTCCCCATGCAAJ\TGCAJ\TTTCAGAGAGGTGTTTGGAGATC 476 
TTACAJ\TGAJ\GACAJ\GAAJ\GATTCCTCTCAGGTGGAJ\TCTCACCCAGG-----AGGAJ\CA 320 

** * *** ** * * *** 

CCCTCCTGTTTATAJ\CAJ\GTTCTCTAJ\CATGAATAGTGGGAGTTTTCCATCTTCGTCTAJ\ 386 
ATCTGCTGATGATCCCATTCACCACAJ\GTATACTAJ\TCCAGGCGTTCACTGTCCATCAGC 536 
AGATGGAJ\TCCAJ\CACAJ\GAJ\C--AGATAGGGATACTGGAAATGTTGTATAGAGGTGGGA 378 

* ** * 

TGGTTCACCAGGTTTTCTGACTACTCCAGGCTCTCATGTGGGAAJ\CTATGGTTATGGATC 446 
TTCTTCTCATGGTGTCCTAGCAGTTGGA------CAGAATGGAAJ\CCATGGTTATGGAGC 590 
TGCGCACACCCAACGCGCAJ\CAAJ\TAGA-------GCAAJ\TCACAGCACAJ\CTAGGGAAA 431 

* * * * * * ** *** 
AGTGGCAJ\TGGAGAJ\GAGTTTTAGGGAGTGTACCA-TATCATCAJ\CAJ\CAGATGCAAJ\TG 505 
TTTAGCTATGGAGAJ\GAGCTTTAGGGACTGTTCAJ\-TATCACCAGGATCATCAJ\TGAGTC 649 
TATGGGAAAATAGAJ\GGG---AAAJ\ATGTGTTCTACTGGTTTCAAAACCATAAA--GCCC 486 

* * * ***** * 

TTGGTGGATCAJ\TG-AGCCAAAACATTGCCTGGATTGGAJ\TCAJ\CAJ\TGAGTACCACAJ\C 564 
ATCATC-ATCATCA-AAACTTTGCATGGGCTGGAGTTGATCCCTACTCTTCTACTACAJ\C 707 
GTGAAAGACAJ\Al\GCAGAJ\GAGGAJ\TAGTCTTGGCCTTAGCCAAAGTCCAJ\GAJ\CACCAC 546 

* * * ** * ** * ** ** 

89 



Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

Antirrhinum 
Petunia 
Solanum 

CCCTACACTTTTATTGATACTAGAAAGTATATGAACGGTTATGATCAAACCCTAGAGATA 624 
T--TACCCTTTTCTTGA------AAAGACTAAACACTTTGAAAATGAAACCCTAGAAGCT 759 
C---ACCCAT--·------------AGTCACTAGTTCCTTTGTCATTTGACACTAGGGG-A 588 

** * * * * ** **** 

GAGGAGGAGGCAGAAGAAAATTACACGGCTGAGATTGAAACTCTTCCCTTATTTCCTATG 684 
GATGAGGAACAGCAAGAAGAAGATCAAG--AAAACTACTACTATCAAAGGACCACTTCTG 817 
GAAGTAGTGAGGGATGAAGATAGTCCATACAAGAGAAAGTGTAGAGGATGGACATTTGAA 648 
** * * *** * * * * 

CACGCAGATATAAAACAAGACACAGCAGATTATTTCAATGGGCGTTTGGAAAATGGGTGT 744 
CA-------ATAGAA----ACACTTCCACTTTTTCCAATGCATGAAGAGAACAT-----T 861 
TACCTGGAGGAAGAAC---AAACAACAACAAGGATGACGACGCAAATTATCAATTGGTAG 705 

* * ** * ** * 

CCTAGGGCTTCACTGGAACTCACCCTCAATTCCTGGTTTGGAAATTCTAAGTATAATTAA 804 
TCCAG----TTTCTGTAAT-----CTGAAAC----ATCAGGAGTCTTCAGGTGGATTTTA 908 
AGAAAATGGTGATAGGACTT----CTTCAACTCTTTCCCATTGCATCCAGAAGGCATGAC 761 

* * * * * * * 

CTAAGTGTG-TTTCTAATTAAGGATTACCCCATATAGGTTGGAGTTTAATTATTAATTAC 863 
CACAGAATGGTATCGTGCCGATGACAACTTGGCTGCTGCTAGAGCTTCTCT-TGAACT-- 965 
CATGATGCA--TTTTTACACAGAATAATCTTTTTCTTTTTA---CTT------------- 803 
* * * * * * ** 

TAGTGTATGCTTTGTACCTTGTAATTAGCTATTGACTATCTTATGTTAAGGGTGTTGGCA 923 
TAGTCTCAACTCTTTCATTGGAAATTCCTCTTAAAATGTTCTA-GTTATTAGTTCTCCTA 1024 

AGAGTAATCGGCCTTAATTTATTATATAATCATCATCTTGATTAAGCAGAAACTAAGATG 983 
GTATAATTTGCAGTTACTTTAATTTAGTCTAATTATGTTAGT---ACTAATTTGGCCATG 1081 

TAATCAAGCTGTTGAAGCTATACTATTGACTTGATTTAGTACTTAAAAAAAAAAAAAAA 1043 
TACTACGTATCTTTGGACCATGGTAATG--TTAATTATCAATCTAATTAAAAAAAAAA-- 1137 

AAAA 1047 

STM primers aligned with EST sequence DV624511 and Genbank sequences 
AF193813, AY112704 and LEU32247. Underlined portions are primer 
sequences. 
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Brassica 
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Petunia 
Brassica 
LycopersiconesculentumKnotted1 
SolanumcDNAclone 

--------------------·---------------------------GGC 

TAAATATGCACAAAATTTGTTTATTTTTAGCCAATAAGAAAGAGATCTCG 

ACGAGGTGTGAGAGAGAGAGAGAGAGAGACAAAAAAGGGTTTATGGTACA 
-AAAGCTTCCATGGAAAGTGGTTCCAACAGCACTTCTTGTCCGATGGCTT 
TTGAGTAGTTGAAAAAAAAACTTTAATTAGTAGTTGAGGAATAATAAGTT 

TAGGCAAAAACAAAAGGAACAAAATTAAGTAACAC-------TTAAGAGT 
TTGCCGGGGATAATAGTGATGGTCCGATGTGTCCT-------ATGATGAT 
TCCTTTTTTTTATAGGGTTTTTATTTAGTTATCATCATCATCTTGATTTA 
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AAGATTTGTAAGAAGAAACTCAGAGAAACTTTTGAATGGAGGGGGGTGGG 
GA---TGATGATGCCCGTCATAACATCACATCAACAACATCATGGTCATG 
GGGTTTTTTTTCCCCTTATTTAATGGAGAATAATAATTATAATAATCATG 

AATTCTAGTGGAAATAATACTAGTAGTTTGATGGCTTATGGAGATCATGA 
ATCAACAACATCAACATCAACAACAACATGATGG-TTATGCATATCA--G 
TGTCTGGAGAAAATTCAGGAGGTCAAAGAGGTCATTTCTTTTATGGAGGA 

AAACAACAATAATGCAATATGTCCTCCAATGATGATGATGATGATGCCTC 
TCACACCACCAACATAGTAG---CCTCCTTTTTCTTCAATCAC--TAACTC 
AATCAAGTTCTTGGTGGTGCTGCCCCTATTTATGGTAGAGGTGGAGATTG 
-----------------------TTTTATAAGAGATAACCATGATAATAG 

CTCCTCCTCTTTCTATAACTAATACTAGTAACAATGGAGAAAGCAGCAGC 
CTCCGTCTC-------AA--GAAGCGAAGAACAAAGTTAGATCTTCTTGT 
TTATGATCCGATG-ATAGTAAAAACAGAAGGTGGAGGAAGTACTTCTCAT 
AAACACCTCTAGCTATTACAAGCACTTATGGTCTAATAAAAAG-----GT 

* 

AACAACAACAA-CAATATCCTATTTCTTCCATTCATGGAGAACAAC-T--
TCTCCTTCCTC-TGGTGCTCCTGCTTATTCTTTCATGGAGATCAAT-CAC 
CATAACCATACATTTCATTATCCATCGATTATTCGTAATCATCATCATGA 
CACAATAACTTCTACTATTA---------CATGCATACAAAGTAATATG-

* * * * 

-----CAAATACTATTCATGAAGA-TGGAAACAGTTGTTCTTCAAAT---
CAAAACGAACTCCTCGCAGGAGGACTCCAATCCCCTGTTCTTTCCAGCCT 
CAGTACGGAAACTTCTGGTGGTGGTGCTGGT--GCTGGTGAAGTAATCGA 
CAAATTAAACATCCTTGATAATAATATTACA----GAATCTTAAAAATTC 

* 

----ATCAAGGCAAAGATTATGGCTCATCCACACTACCCTCGTCTCTTGG 
TCTGGTCAAGGCCAAAATCATGGCTCATCCTCACTACCACCGCCTCTTGC 
AGCTTTAAAAGCCAAAATTATAGCTCATCCTCAATGTTCTAACCTTTTGG 
ATTTTGAGAAGTTGAAATTGGGATAACTCCAGAATATAAATTCAGAGTAG 

* ** *** 

CTGCTTATATCAATTGTCAAAAGATAGGAGCTCCACCGGAAGTGGTGGCA 
TCGCCTATGTCAATTGCCAGAAGGTGGGAGCTCCACCGGAAGTGCAGGCG 
ATGCTTACATGGACTGTCAAAAGGTGGGTGCACCGCCGGAAGTGGCGGCG 
A-GACGGTGTCA--TATCCATTGGGAAATGGTTAGCAAGAA-CATTATCC 

AGGCTAGAGGAAGTTTGTGCCACGTCAGCACATATGGGCCGTAACGGAGG 
AGGCTGGAAGAAACATG---CTCGTCTGCGGCT----GCCGCCGCAGCGT 
AGGCTGTCGGCGGTACGGCAAGAGTTTGAGGC-----GAGGCAACGACGT 
ATATAGTAATGTGGATGAGCAGCATCCATCACAACAAATTGCATATCTTC 

* 

CGGCGGAGGTGGTGGAGGAAACAATGTTATTGGTGAAGATCCAGCACTAG 
CGATGGGACCCACAGG--------TTCTTTAGGTGAAGATCCAGGGCTTG 
TCGTTGA-CCGACAGA---------GATGTTTCCAAGGACCCAGAACTTG 
TGATGGTTTCCAATGCC----TCTTTCTTTGGTTGATAAACCAGTTGTTT 

* * * **** * 

ATCAGTTCATGGAAGCATATTGTGAAATGTTAACAAAATATGAACAAGAA 
ATCAGTTCATGGAAGCGTACTGTGAAATGCTCGTTAAGTACGAACAAGAA 
ATCAGTTCATGGAAGCATATTATGACATGCTAGTCAAGTATAGAGAAGAA 
ATTTGCTTCTGGTCCAATCCCGT-------TGATTCAGCTAGTGCAAGCT 
** * * *** * * * *** 

CTTTCAAAACCCTTTAAGGAAGCTATGGTTTTTCTCTCAAGAATTGAGTG 
CTCTCTAAACCTTTTAAAGAAGCTATGGTCTTCCTTCAACACGTCGAGTG 
TTAACAAGGCCTCTTCAAGAGGCAATGGAGTTCATGCAAAAGATTGAAGC 
TCTGGGATTCCGATGGATATGGCCATTTAATATGTCTAAGCCACCAGTCC 

** * * ** ** 
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TCAATTCAAAGCTTTAACTCTTGCTTCTACCTCTGAATCTGTTGCAGCTT 
TCAATTCAAATCCCTCTCTCTCTCCTCGCCGTCC---TCCCTTGGTTATG 
TCAGCTTAATATGCTTGGTAATGCTCC--CGTTCGGATCT-TCAATTCTG 
ACCAATTGTTGCCTTGCTTCCTTAGGCAGCTTGCC--TTTCTTCCTCTTC 

* * * * * * * 

TTGGCGAGGCTATGGATAGAAA------TGGATCATCTGAAGAGGAAGTT 
GAGAGGCAGCTATTGAGAGAAACAACAATGGGTCATCTGAGGAAGAAGTC 
AGGACAAGTGTGAGGGTGTTGGATCATCAGAAGAGGATCAAGACAACAGT 
TTCATGAACTCCTGCTTAAGGCTTCCCAAGTACCCACTGTACTTACGCAA 

* * 

GACGTGAATAACAGTTTA---··--GTCGACCCTCAGGCCGAAGATCGAGA 
GATATGAACAATGAATTT------GTAGATCCGCAGGCAGAAGATAGGGA 
GGTGGAGAAACTGAACTTCCTGAAATAGATCCAAGAGCAGAAGATAGAGA 
CAATTGACCTTTGAGCTCTCTATCCTCAGCCTGAGGGTCGATGAAACTGT 

* * * * ** ** 

ACTTAAAGGTCAACTTCTGCGAAAATATAGTGGTTACTTGGGTAGCCTTA 
GCTTAAAGGACAGCTCTTGCGCAAGTACAGTGGTTACTTAGGCAGTCTGA 
ACTTAAGAATCACTTGTTGAGAAAATATAGTGGCTATTTAAGTAGCCTCA 
TATTCACG-TCAACCTCTTCATCAATGATCCATTTCTATCCATTGCCTCG 

** * ** * * * * * * ** 

AGCAAGAGTTCATGAAGAAGAGGAAGAAAGGGAAGCTGCCTAAGGAAGCA 
AGCAAGAGTTCATGAAGAAGAGGAAGAAAGGAAAGCTTCCTAAAGAAGCT 
AACAAGAACTTTCAAAGAAGAAGAAAAAGGGGAAATTGCCCAAAGATGCT 
CCCA-GAGCAGATTCATGAGAAGAATTAGGTGCAAGTGTT----AAAGCT 

** ** *** *** * ** 

AGGCAACAGTTGCTGGACTGGTGGACTAGACATTATAAATGGCCATATCC 
CGCCAGCAACTACTTGACTGGTGGAGCCGACACTATAAATGGCCTTACCC 
AGGCAGAAATTGATCACTTGGTGGGAGTTGCACTACAAGTGGCCATACCC 
TTGAACTGAGCACTCAATTCTTGAAAGAAAAACCATGGGTTCCTTTAAGG 

* ** 

ATCGGAATCCCAGAAACTGGCACTTGCTGAATCTACAGGACTGGATCA-A 
TTCGGAGCAGCAAAAGCTAGCACTAGCGGAATCAACGGGCCTGGACCA-G 
TTCGGAGTCGGAGAAGGTTGCATTGGCAGAATCAACAGGATTGGATCA-G 
GTTTAGAGAGTCCTGTCATATTTTGTCAGCATCT-CACATAAGCTCCATG 

* * *** * * ** 

AAGCAAATAAACAACTGGTTTATCAACCAAAGGAAGAGGCATTGGAAACC 
AAACAGATAAACAACTGGTTCATAAATCAAAGGAAAAGGCATTGGAAGCC 
AAACAAATAAATAACTGGTTCATTAACCAAAGGAAAAGACACTGGAAGCC 
GAACTGATCTAGTGCCAGATCTTC--TCCAATGATTCCCCA---------

* * ** * * * * * * ** ** 

ATCCGAAGATATGCAGTTTGTGGTAATGGATGCTGCTCATCCAC---AT-
GTCGGAGGATATGCAGTTTGTAGTAATGGACGCAACACATCCTCTCCAT-
TTCAGAAGACATGCAATTTATGGTGATGGATGGTCTTCATCCACAAAGTG 

------TACTATATCGACAATGTTCTT--------GGTAACCCTTTTCCA 
------TACTTTATGGGCAATGTCCTG--------GGAAATCCTTTCCCC 
CTGCTGCTCTTTATATGGAAGGTCACTACATGGGTGAAGGCCCTTTTCGT 

ATGGATA--TGACACCAACTCTTCTCTGAAGTCTAGAGATGGCC------
ATTGAT------CACATATCCGGGACAATGCTTTGATATTGGAT------
TTGGGTCAGTAATATTTATGAATTTTAATAAATTAAACTTGCATGCTACA 

------CAATTTGTGAAAGTGAAATTACTGA--ACTTTTGAAGATGTGTA 
------CCTTTGGAAAAACTGTATTTCATAATATCTATCATTAAAAAGCT 
TTTTCTTAATTGGGAAAAAAGAAACATTTAATTTCCTTGTAAGGTGAGTA 

92 



Petunia 
Brassica 
LycopersiconesculentumKnottedl 
SolanumcDNAclone 

Petunia 
Bras sica 
LycopersiconesculentumKnottedl 
SolanumcDNAclone 

Petunia 
Brassica 
LycopersiconesculentumKnottedl 
SolanumcDNAclone 

Petunia 
Brassica 
LycopersiconesculentumKnottedl 
SolanumcDNAclone 

T---TATTGGGGATAT--AATTGAGGATGTTATTGCATTTACTTGTATGC 
T---TGCAATATGTAT--AATGTATGGTTTCTTGGAATACTTAGGAACGT 
TGAATAGTATGGATTTTTAATTAGTTGTAGTATGTATGTTTCTAGCAAGC 

AGTAG----TAGTTGTTATTGGAACTTCAATGCAAGACCATAAGTACTTG 
TGCACGTTCCGATTGATGAATAAATTTTAATGTATC-CTTTAATTATATA 
CTTATAGGCCTAAGCACAAGGATATTTTATTGCTTG--TTCAATTGTATA 

TAGTTAGAGCTATTT-ATATTATGGTTTACTTTATTAAAAAAAAAAAAAA 
TGGGTTGTGTTGTGT-GACCT·AF.~~vvvv~~~RR~~~~vv~ 

TGGTGAGAATCCTTTTGTATTTAATATTGTAATGTTATTATTAGTGTACC 

AAA---------------- 1375 
AAAAAAAAAAA-------- 1367 
AAAATCTAGTGTTAACTTA 1495 
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