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Abstract

In this thesis, we will study the average symbol error rate of M-ary signals on
wireless Rician fading channels at high average signal-to-noise ratio (SNR) in both
single-carrier and multicarrier orthogonal frequency division multiplexing (OFDM)
systems. In the system discussed, diversity reception with maximal ratio combining
(MRC) and equal gain combining (EGC) is adopted. A general theorem relates the
asymptotic error rate to the multidimensional integral of the conditional error
probability is presented. Two other theorems are presented for the special cases where
the conditional error probability is function of the sum of received SNR’s and the sum
of received amplitudes corresponding to the cases using MRC diversity and EGC
diversity respectively. Then theorems are provided to analyze the asymptotic error
rate performance of M-ary signlas including M-ary phase-shift keying (MPSK),
M-ary pulse amplitude modulation (MPAM), and M-ary quadrature amplitude

modulation (MQAM) signals in both single-carrier and multicarrier OFDM systems.
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Chapter 1

Introduction

The elements of communication system are the transmitter, the channel, and the
receiver. Modulated information signals are transmitted through the channel to reach
the receiver, where the received signals are demodulated. The channels considered in
this thesis are wireless Rician fading channels. At the receiver, diversity technique is
used to mitigate the fading effects.

In mobile radio channels, Rayleigh distribution is widely used to represent the
statistical characteristics of the received signal envelope of a fading channel, or the
received envelope of an individual multipath component. When there is a dominant
stationary signal component present, such as a line-of-sight (LOS) propagation path,
the received signal envelope of a fading channel or an individual multipath
component follows Rician distribution.

It is observed that even when one radio path undergoes a deep fade, another
independent path may not and may have a strong signal power at the same instance of
time. By having multiple independent paths to choose from or to combine, both the
instantaneous and the average signal-to-noise ratios (SNRs) at the receiver may be
improved, by as much as 20 to 30 dB. Diversity technique is based on this observation

and is a useful receiver technique in wireless communication systems.
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Orthogonal frequency-division multiplexing (OFDM) is a promising technique to
combat ISI due to frequency selective multipath propagation of the channel. In
OFDM, the wideband channel is divided into a number of orthogonal subchannels
with equal bandwidth which is sufﬁciently narrow so that the frequency response
characteristics of each subchannel are nearly flat.

Symbol error rate is a measure of the performance of communication system. In
this thesis, the error rate performance of M-ary signals on Rician fading diversity
channels will be studied. However, the exact error rate expressions are too complex.
Therefore, asymptotic error rate at high average SNR will be considered. A general
theorem will be proved to relate the asymptotic error rate to the multidimensional
integral of the conditional error probability [1]. Two other theorems will be presented
for the special cases where the conditional error probability is function of the sum of
received SNR’s and the sum of received amplitudes, respectively [1]. Then theorems
are provided to analyze the asymptotic error rate of M-ary signals including M-ary
phase-shift keying (MPSK), M-ary pulse amplitude modulation (MPAM), M-ary
quadrature amplitude modulation (MQAM), M-ary frequency shift keying (MFSK) in
single-carrier systems. The discussion is also extended to OFDM systems. Results
obtained in this thesis could be used to assist the design and control of wireless
communication systems. Some examples may include transmission scheme selection,
transmission power control, receiver diversity control, etc.

The thesis derives some new results of asymptotic performance on MQAM and
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other signallings and extend them to OFDM systems.

The remaining parts of this thesis are organized as follows. In Chapter 2, basic
concepts used in the thesis will be introduced, which include M-ary digital
modulation, symbol error rate (SER) performance of M-ary signaling, fading channel,
diversity, and OFDM. The asymptotic performance of single-carrier and OFDM
M-ary signals on multipath Rician fading diversity channels will be discussed in

Chapters 3 and 4, respectively. Chapter 5 presents conclusions and some topics for

future study.
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Chapter 2

Some Fundamentals

In this chapter, we will give some basic concepts used in the thesis. They are
M-ary digital modulation, multipath fading channel, diversity technique and OFDM.
First, we introduce the basic concept of M-ary digital modulation, which includes
MPAM, MFSK, MPSK, and MQAM. Then, we introduce fading channel, including
flat fading channel and frequency selective fading channel. Diversity technique is then

discussed. Finally, some fundamentals about OFDM are discussed.

2.1 M-ary Digital Modulation

In digital modulation, digital information is transmitted through a
communication channel by mapping it into analog waveforms of the form [2]

s(t) = A, cos(2f .t +¢,) 0<t<T 2.1)
where A, is the carrier amplitude, f, is the carrier frequency, ¢, is the carrier
phase, and 7' is the symbol interval.

In M-ary digital modulation, blocks of log, M binary digits from information
message are taken at a time and mapped into one of the M waveforms

{sm (t),m =12,...M } for transmission over the channel. These M waveforms may

differ in amplitude, or frequency, or phase, or some combination of the parameters,

which correspond to MPAM, MFSK, MPSK, and MQAM, respectively. In the

10
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following, more detailed discussion will be included on each of the modulation

schemes.

M-ary Phase-Shift Keying (MPSK) Signaling

o1

0 1 i1 00
. l -
M=2 10 101
(@) e
M=8
®) ©
Figure 2.1 Signal space diagrams for PSK signal
In MPSK, the transmitted signal can be represented as
5,0 =4, cosnf.t+4,,) m=1..,M0<t<T 2.2)

where {¢c,m ()= —%A—}(m ~)m=12,.,M } denote the M possible carrier phases

representing the information.

Assume Gray coding, the corresponding signal space diagrams for

M=2, M=4 and M =8 are given in Figure 2.1 [3]. For example, for the case of
M =2, the zero degree phase represents the transmitted information ‘1°, while the

180 degree phase represents the transmitted information ‘0’. It is noted that all

constellations are equally spaced on a circle for MPSK signaling.

11
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M-ary Pulse Amplitude Modulation (MPAM) Signaling

° . 00 o1 1M 10 000 001 011 010 110 111 101 100

Figure 2.2 Signal space diagrams for PAM signal
In MPAM, the transmitted signal can be represented as
s,()=A4,, cosQnft+4.) m=1.,M0<t<T (2.3)

where {A Lom=12, M } denote the M possible amplitudes representing the M

different possible log, M -bit information blocks.

Assume QGray coding, the corresponding signal space diagrams
forM =2, M =4 and M =8 are given in Figure 2.2 [3]. It is noted from Figure
2.1 and 2.2 that the dimensionality of the signal space for MPAM signals is only one,
while that for MPSK signal is two.

M-ary Frequency-Shift Keying (MFSK) Signaling

In MFSK, the transmitted signal can be represented as

5.(0)= A4, cos27f,t+8,) m=1,.,M;0<t<T (2.4)
where {fam (t)= fo+mAf,m=12,...M } denote the M  possible carrier
frequencies representing the information. It is noted that in order to keep the

orthogonality of the M signals, the minimal frequency separation between adjacent

signals is Af=%[2].

12
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M-ary Quadrature Amplitude Modulation (MQAM) Signaling

»
0010 0011} 0001 0000
® [ ] [ ] ®
010 o11 001 000
0110 01111 0101 0100
[ ] [ ] [ ] [ ] [ ] ® [ J [ ]
> 1010 1011 1001 1000 o
[ ] ® ® [ ] ® ® ® ®
110 111 101 100
210 1.111 11.01 11%)
M=8
®) M =16
©

Figure 2.3 Signal space diagrams for rectangular QAM signals
In MQAM, the transmitted signal can be represented as
5,() = A4, cos2nf.e +4,,,) m=1,.,M0<t<T. 2.5)
From (2.5), it can be seen that MQAM may be considered as a combination of

amplitude and phase modulations. MQAM signals can be constructed by impressing

separate information bits onto two quadrature carriers, cos2zf ¢ and
sin27f,t using PAM. Assume Gray coding, examples of signal space diagrams for

M=4, M =8 and M =16 are given in Figure 2.3.

2.2 Symbol Error Rate (SER) Performance of M-ary Signaling
in AWGN Channels

Assuming that the M-ary signal is transmitted through an additive white Gaussian
noise (AWGN) channel, the received signal can be expressed as
r@@)=s,(t)+n(t) 0<t<T m=1,.M (2.6)
where n(f) denotes the AWGN process. Based on r(f), a decision is made
regarding which of the M possible waveforms was transmitted. In the following, we

will discuss the probability of making a symbol decision error for different M-ary
13
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signaling schemes [3] .

MPSK Signaling

The SER of MPSK with coherent receiver is given as [3]

p.(EM) = 2Q(ﬁ5 sin I’}j = erfc([ sin X’;—j Q2.7)

1 _
’2/2dt ,

[

where £ denotes the SNR of the decision variable,

y20  erfe(y)= \/_2; fe"‘zdt ,y20 and it is noticed that Q(y)= %erfc[%) .

In “A new simple and exact result for calculating the probability of error for
two-dimensional signal constellations”, the SER of MPSK is also proved to be [4]

pe(g;M)ﬁf/Mdeexp[—:il—“—M} @)

sin” @

MPAM Signaling

The SER of MPAM with coherent receiver is given as [3]

pe(f;M)=2(M_DQ( 6 )]

M M?* -1
_M-1 3¢
== erfc( (MZ_D]. (2.9)

MFSK Signaling

The SER of MFSK with noncoherent receiver is given as [1]

p.(&M) = z( 1)m+1 (M lJexp[nmé::l. (2.10)

m m+1

Whereas the SER of MFSK with coherent receiver is given as [1]

M)=—Jér1£|:l—(—;-eifc(—y)) — }exp[—(y—\/g)z}dy. (2.11)
MQAM Signaling

14
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The SER of MQAM is given as [3]

A 1 3¢ T2 )., 3¢
pe(f,M)—4(1—ij( (M—1)J_4(1+H_TH—JQ( mj (2.12)

It is noted that, the SER performance of 4-QAM and 4-PSK is approximated identical.

Using (2.7), the SER of 4-PSK is p,(£4) ~20(JZ) . On the other hand, Using

(2.12), the SER of 4-QAM is p, (&:4) = 20(Z )- 0*(yZ )~ 20(J€). These results

show the correctness of (2.7) and (2.12).

2.3 Fading Channel

n(?)
x(2) »(t) r(2)

— h(t,T)

Figure 2.4 Equivalent complex baseband channel model

An equivalent model for a complex time varying communication channel is

given in Figure 2.4 [1]. It is shown that the received signal 7(¢) can be expressed as
r(t) = x(£)® h(t,7)+ n(z) (2.13)

where ® represents convolution, x(¢) denotes the transmitted signal, A(t,7)
represents the impulse response of the channel, and n(t) is the noise. The impulse
response A(t,z) completely characterizes the channel and is a function of both ¢
and 7. The variable ¢ represents the time variations due to motion, whereas 7

represents the channel multipath delay for a fixed value of ¢ [5].

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



»

h(z,7) & e t .
‘ T T 7(t,)
L T T Igd T > (L)
tl T T T T )()Q T T > T(tl )
ty T T T //){ T T > 7(y)
o T 31 7 73 Ty Ty

Figure 2.5 An example of discrete-time impulse response model for a time varying

multipath radio channel

In wireless communication systems, especially wireless mobile communication

systems, the receiver may receive multiple versions of the same transmitted signal at

slightly different times due to the slightly different distances thus different excess

delays of different paths. Those paths may include the shortest line-of-sight (LOS)

path, the reflection paths which are produced from surfaces much larger than the

signal wavelength, the diffraction paths which are produced at the sharp edge of an

impenetrable body with dimension larger than the signal wavelength, and the

scattering paths which are produced when the transmitted

signal hits on large number

of rough objects with small size compared to the signal wavelength. Therefore the

complex impulse response for a general time varying multipath radio channel can be

given as [6]

He.e)= 3 (ple =, (0]

(2.14)

where K represents the number of possible multipath components, «,(¢) and 7, (¢)

are the complex gain and excess delay of the & th multipath component at time ¢.

16
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Figure 2.5 [5] shows an example of discrete-time impulse response model for a time
varying multipath radio channel.

Based on the multipath delay spread, we define a channel parameter of channel

coherence bandwidth (BC) , which is given as [5]

B, ~ 1
el

T

(2.15)

where 0, is the rms delay spread defined as [5]

5, = -[c] . 2.16)

With 7 being the mean excess delay and = being the second moment of the
excess delay. ¢ is a constant that depends on the frequency correlation function
requirement in the definition of B,. For instance, if the frequency correlation
function is at least 0.9, ¢ =50, whereas if the frequency correlation function is at
least 0.5, ¢=5. Accordingly, radio channels can be classified into flat fading or

frequency selective fading channels.

Flat Fading Channel

s5(8) r(?)
h(t,7) ——

s(t) h(t,7) r(t)

0 7 0z 0 T, +7 T << T,

S() H(f) - R()

m ﬂf Ls
Se Se Se

Figure 2.6 Flat fading channel characteristics
17
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If the transmitted signal has a bandwidth W < B,, the channel is called flat
fading channel. In flat fading channels, all frequency components in the transmitted
signal undergo the same gain and linear phase response. The characteristics of a flat
fading channel are illustrated in Figure 2.6 [5]. Therefore, flat fading channels are also
referred to as narrowband channels. It can be seen that in flat fading channels,
although the received signal may undergo amplitude fluctuations due to the variation
in the channel gain over time, the spectral characteristics of the transmitted signal is
kept in the received signal.

Frequency Selective Fading Channel

s(2) r()
e h(t,7) e
s(®) h(t,7) ()
0 . 0 T 0 TS TS +7
MNES) H(f) R(L)
| | |
/. ¥ P

Figure 2.7 Frequency selective fading channel characteristics

If the transmitted signal has a bandwidth W > B,, the channel is called
frequency selective. Frequency selective fading channels are also known as wideband
channels. Frequency selective fading is caused by multipath delays which approach or
exceed the symbol period of the transmitted symbol. The characteristics of a

frequency selective fading channel are illustrated in Figure 2.7 [5]. It can be seen that

18
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in frequency selective fading channels, channel gains and phase responses vary over
the spectrum of the transmitted signal and the received signal is distorted and
time-dispersed. Due to the time dispersion, transmitted symbols may overlap with
each other and thus inter-symbol interference (ISI) is induced.
Rayleigh and Rician Fading

The envelope of the sum of two independent quadrature Gaussian random
signals with zero mean and common variance obeys a Rayleigh distribution. That is,
let

R=yX +X, (2.17)

where X, and X, are statistically independent Gaussian random variables with
mean m =m,=0 and varance o, =0, =c?, then R follows Rayleigh

distribution with a probability density function (PDF) given by [3]

v }’2
palr)=—5exp| -— | r20. (2.18)
o 20

In mobile radio channels, the Rayleigh distribution is widely used to represent
the statistical characteristics of the received signal envelope of a flat fading channel,
or the received envelope of an individual multipath component.

When there is a dominant stationary signal component present, such as a LOS
propagation path, the received signal envelope of a flat fading channel or an
individual multipath component follows Rician distribution, whose PDF is given by

(3]

19
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palr)=L et (—’%),s >0,r >0 (2.19)
g o

where s denotes the peak amplitude of the dominant signal, I, () is the modified
Bessel function of the first kind and zero-order. It can be seen that if s =0, i.e., if the

dominant path diminishes, a Rician fading reduces to a Rayleigh fading.

2.4 Diversity Technique

It is observed that even when one radio path undergoes a deep fade, another
independent path may not and may have a strong signal power at the same instance of
time. By having multiple independent paths to choose or to combine, both the
instantaneous and the average signal-to-noise ratios (SNRs) at the receiver may be
improved, by as much as 20 to 30 dB [5]. Diversity technique is based on this
observation and is a useful receiver technique in wireless communication systems.

The most widely used form of diversity in wireless communication systems is to
use multiple receiving antennas, also called an antenna array, where the elements of
the array are separated enough in distance, often on the order of several tens of
wavelengths. This type of diversity is referred to as space diversity. With space
diversity, independent fading paths are realized without an increase in transmitted
signal power or transmission bandwidth.

Other methods of achieving diversity include polarization diversity, frequency
diversity, and time diversity. In polarization diversity, multiple versions of the
information signal are transmitted via antennas using orthogonal polarizations, like

circular and linear polarizations. In frequency diversity, multiple versions of the
20
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information signal are transmitted on multiple carrier frequencies, which are separated
by at least the channel coherence bandwidth. In time diversity, information signals are
transmitted repeatedly at enough time spacings.

A generalized block diagram for diversity with M independent branches is
given in Figure 2.8 [5]. Based on the reception method, diversity techniques can be
classified into selection diversity, maximum ratio combining (MRC) diversity, and
equal gain combining (EGC) diversity.

> G

2

[> Gz g Switching logic Qutput
or demodulator

A\

\

v

> G

Variable Gain

Figure 2.8 Generalized block diagram for diversity

Selection Diversity

In selection diversity, the receiver branch with the highest instantaneous SNR is

connected to the demodulator and provides the output. Selection diversity is easy to
implement because all that is needed is a monitoring station and a switch at receiver.
However, it is not an optimal diversity technique because it does not use all possible

branches simultaneously.

21
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Maximal Ratio Combining (MRC)

Detector

Output
e

Z d
> 1 ,/a,l‘ .
2 -l d,
l> >, > Cophase
and sum
"]
M Z d, |
[> M -
l

Variable Gain

Figure 2.9 Maximum radio combining

In MRC, the signals from all of the M available branches are weighted

according to their individual SNRs and then co-phased and summed. MRC uses all of

the M available branches in a co-phased and weighted manner such that the output

SNR is the sum of the SNRs of all branches, which is the highest achievable SNR at

the receiver. A block diagram of MRC is shown in Figure 2.9 [5], in which «,

equals to the conjugate of «, [7][8].

Equal Gain Combining (EGC)

In EGC, the branch weights are all set to unity, but the signals from each branch

are co-phased to exploit the signal received from all branches simultaneously. EGC

has a much easier implementation than MRC, but its performance is only marginally

inferior to that of MRC and much better than that of selection diversity.
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2.5 Orthogonal Frequency-Division Multiplexing (OFDM)

N

IHER N~

v

af

Figure 2.10 Principle of OFDM

As a technique to combat ISI due to frequency selective multipath propagation of
channel, OFDM is now widely used in our life. Example applications include
wideband data communications over mobile radio FM channel, high-bit-rate digital
subscriber lines (HDSL), asymmetric digital subscriber lines (ADSL),
very-high-speed digital subscriber lines (VDSL), digital audio broadcasting (DBA)
and high-definition television (HDTV) terrestrial broadcasting [9].

OFDM is a promising technique to combat ISI due to frequency selective
multipath propagation of the channel. As shown in Figure 2.10 [2] , in OFDM, the
wideband channel with bandwidth W is divided into a number of orthogonal
subchannels with equal-bandwidth Af which is sufficiently narrow so that the
frequency response characteristics of each subchannel are nearly flat.

In Figure 2.11 [10], an OFDM multicarrier transmitter and receiver is given .
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. Converter
R/N bps
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54(2) +ny (2)
]"‘_‘_‘L QAM/PSK R/N bps
> L #» demodulator
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R/N bps
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_[:]_ QAM/PSK R/N bps
» demodulator =
Sra
cos( 27 4 8)

Figure 2.11 OFDM multicarrier transmitter and receiver

Parallel to Serial
Converter

R bps

Receiver

We can improve the spectral efficiency of OFDM by overlapping the

subchannels. The subcarriers must still be orthogonal so that they can be separated by

the receiver. Note that the baseband subcarriers {cos(27g't/ T +¢j), Jj= 1,2...} form a

set of orthogonal basis functions on the interval [0, T ] for any set of subcarrier phase

offsets {qﬁ j}. This implies that the minimum frequency separation required for

sub-carriers to remain orthogonal over the symbol interval [0,T] is 1/T for

arbitrary subcarrier phase offsets. So if we use raised cosine pulses

T

(t)= sinm/T COSﬂﬂt/

m/T 1-48%%/T?

it can be shown that we have
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With B =1, we would have T =1/B, and a carrier separation of B. Since the
passband bandwidth of each subchannel is 2B, the passband subchannels in this

system would overlap. OFDM signal with overlapping subcarriers is shown in Figure

2.12[10].

B, 8 2By

-—— -
SO XN SN
o S A ) Srna f

Figure 2.12 OFDM signal with overlapping subcarrier

X, *o
X 153l Add cyeiic
i Prefix, and
QamPSK | x| STenie Daratlel IFFT Parallel to Serial x(2) s(@)
modulator Converter D/A
Xy Xn-1 oos( 27f,2)
L

Transmitter

ri
( ) Prefix and Parallel to Serial R bps
QAM P

s(2), x(1) Serial to Parallel FFT Converter X
A@—.{ LPF AD Converter — Demoduiation |~
cos( 27f 1) 2.

Receiver

Figure 2.13 OFDM with IFFT/FFT Implementation
An equivalent IFFT/FFT implementation of OFDM is given in Figure 2.13 [10].
At the transmitter, a serial-to-parallel converter divides the input information stream
into N substreams, each of which is transmitted over a different subcarrier,
implemented using an inverse fast Fourier transform (IFFT). The signal samples

X, (n =0,.,N —l) generated by computing the IFFT of the input symbols
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X, (k =0,.,N -1) and parallel-to-serial converted, are passed through a
digital-to-analog (D/A) converter whose output is the OFDM signal waveform x{t).
In order to eliminate the residual IS], a cyclic prefix is added to each block of the N
signal samples.

The received signal is first passed through an analog-to-digital (A/D) converter
and becomes a digital signal. Then, the prefix is removed and the remaining part of
the digital signal is passed through a serial-to-parallel converter and becomes N
parallel digital signals. The signal X . (n =0,..,N —l) generated by computing the
FFT of the N parallel digital signals is then passed through a parallel-to-serial

converter and demodulated to provide a recovered version of the information stream.

26
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Chapter 3

Asymptotic Performance of
Single-Carrier M-ary Signals on
Multipath Rician Fading Diversity
Channels

In this chapter, we consider the performance of digital communication systems
with single-carrier M-ary signals on multipath Rician fading diversity channels. The
exact error rate is so complex that we consider the asymptotic error rate at high
average SNRs. A general theorem is provided to reveal the asymptotic error
probability of single-carrier signals over multipath Rician fading channels. Another
two theorems are also studied for the special cases in which the conditional error
probability is a function of the sum of the received signal SNRs in multipaths or a
function of the sum of the received signal amplitudes in multipaths. We derive
closed-form asymptotic error expressions for single-carrier digital communication

systems with MPSK, MPAM, MQAM, and MFSK signalings.
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3.1 System Model

X0

. n "G
X,(0) P n(t) g~/ ) ‘—’ )
X 0) r(t) G :

; >
d > Diversity

channel N Combining

h(t,7) ; |
X M (t 4_7 dM
. : ; Gy,
Baseband Equivalent Baseband } Baseband
Transmitter Channel Receiver

h{t,7)

Figure 3.1 Communication system

The system considered in this chapter is given in Figure 3.1. The transmitter
sends one of the M possible signals. We assume that E is the average transmitted
energy per symbol. As given in (2.14), the complex impulse response for a multipath

channel is given as

>

-1

he7)= ak(tb[f“fk(t)] ‘ (3.1)

0

=
]

It is assumed that the fading is slow, i.e., over the period of a symbol duration 7T,

the channel keeps constant. Therefore, (3.1) can be simplified as

h(t,r)z‘Kiakd[r—rk] 32

where o, canbegivenas o, =a.e’*.
We assume that the amplitudes of the received kthpath a, for k=1,.,K are

independent and each follows a Rician distribution, that is, the PDF of q, is given as
[1]

28
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22
f(ak)=—ak—zexp[— vk2+f" :;Io(akvz") (3.3)

Oy O Oy
where v, is the nonfading signal component or dominant (specular) component,
2 . .
20," is average power in the random component.

It can be shown that the PDF of p, =a,’E/N, is given by [1]

2\ PP
f(Pk)zi‘eXP[—B(-{-pk]Io[ i J (3.4)

3 k Vi

where N, /2 is additive white Gaussian noise power spectral density. P, =v,”E/N,

is the SNR of the dominant component, y, =25, E/N, is the average SNR of the

2
P, Vi

random component. The parameters J, = — =—— also known as Rician K factor
Ve 20,
£-1
and A, = Zé‘k are of importance in evaluating the performance in Rician fading
k=0

channels. Therefore, f (pk) can also be given as [1]

1 . 5
flo)= y—e"5*6 z 1{2 L2 ] : (3.5)
k

We denote the symbol error rate conditioned on the value of p , which is called
conditional SER.
p.p:M)=p,(pyss Pris M) - (3.6)
where M stand for M-ary.
Due to the independency of multiple paths, which is a reasonable and widely used
assumption, the elements of p are independent. Therefore, the joint PDF f (p) is

given as

)= 1(o)f (p)--foxr)- (3.7)
29
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The average SER over the Rician channel can therefore be obtained by averaging

the conditional SER over the PDF of f(p) , that is [1]

X K-1 P 5
rgM)==—[..[ H{e g 10(2 ;” : ﬂpe(po,--., Pra:MMpy..dpy, (3.8)
M k=0

l—1K k

K-1
where Iy, = H 7, - Note that the SER discussed in chapter 2 is conditional SER.
k=0

The asymptotic value of PE(K M ) with y, >>1,Vk is[1]

P, (K;M)= < e 3.9
“ 1—‘K,M
where Ay, is a symbol asymptotic parameter defined as [1]
Agpe =lim, [Ty, e*P(K;M)]. (3.10)
We also define 4, ,, as[1]
Ay = @%AM?)T' (3.11)

Ay, 18 the symbol asymptotic parameter relative to the average bit SNR.

3.2 A General Asymptotic Theorem

Theorem 1[1]: If p, (p;M ) is integrable in the K-dimensional space of p and
if the integral fpk“pe (po,...,pK_I;M)dpk,O <k<K-1 results in a singularity of
order less than @,Va >0 ,then A,, is equal to the volume enclosed by
2. (p;M ) in the K-dimensional space, that is

Agar = [ o[ 2(Pysres Prys M)dpy..dpy (3.12)

Proof:

We start the proof of Theorem 1 by considering the single path channel. For K =1
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-8,

Ao
PasM) =[] 2 |22 |y (o MYdp,.
Yo Yo
By using the trigonometric form of 1 fd@ cosBe* ™’ , P (M) canbe
given as

-8, P 2 Mcos@
}Z(I;M)zi———fdpoe 7°pe(p0;M)—l-fdecosl9e J7—° .
Yo 7

Therefore,

1 2 28, cost
7ue®PM) =~ ['d0 [ dpye e fpe(po,M)

By expanding the two exponents using Taylor series expansion, we obtain

[2\/%0059 f—'qo—]
s Yo

70e™ P (M) = fdefdpope(po,M)Z( }/OJ Z

0

o m!
I SEARS R YA
=;fd9fdpope(po;M)§(‘%j ! _O(Iy)(,} (_%35_7_”_
© 3 (1)" o cosd
=—fd0fdpope(po>M)”z;’;)(p0) (,:v) (252;38 )"

defineo = n+—
2

= [[dowp. o)+~ [ 40 [ dpyp. (M) Z_; Z
nzm#0

(pOJ D" (ZECOS Hyn
n! m!

= fdpope(po,M)+ [0 Z Z( Ok (2‘/—(:03” yl [ 2" p.(oy; M)dp,

n=0 m=0
nxEm=0

S fde S Z( D’ (2‘/_(:089)"

n=0 m=0
n=m=0

1 a
where 4,,, = fdpope(po;M) and g, = f Po P.(po;M)dp, .
0
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If the integral in gq,,, has a singularity of order less than « , then

Y@ P (M) < Ay, fde 3 Z< b’ (2‘/_C°SQ)C “a. (3.13)
n=0 m=0
nzm=0

By taking the limit of (3.13) as y, — o, the second term in (.) become zero.

Aoy =lim, [ P.(00)]= [ dpyp, (00 M)

Forany K,
g 2
P(K;M)= fde 1He 0{ ];/pk ]Pe(por"apk-l;M)’
k
so we have

2
Tee™ P(K;M) = [ dp,.. fde,ﬁe 0( %‘i]
k

2y
—T 5
'fdpoe ’ 10[2 020 ]pe(pO""’pK—l;M)'

7o

Again, by using the trigonometric form of 7,(.), we have

K-1 L
Tce™ P (K;M) = farp1 fdeIHe 0[ 5’;’)"]
k

202 o5
fdpo yo__['deez‘[‘ epe(pO""’pK—l;M)-

Similar to the derivation for the case of K =1, we expand the two exponents using

Taylor series expansion and obtain

P
T e P (K, M)—fdpl fdp,“ﬁe 0( 5,;pk]
k

no—() ! my=0 my, !

D.(Pysees P13 M)
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= fdp1 fdpl( 11167: o[ ‘/ P ]fdpope(por"’pK—l;M)

b
+_€vdp1 fa’p“ﬁe “I[ /’}‘/’0"]
k

_fdefdpope(po M) Y Z( j (=1 (2\/—5;;?9)"

ny=0 my=0 no !
ng#Emy =0

Liao 3 50 (choser fpo

pe(pOa apK 17M)dp0

= fdpo f.dpl...fde_,ﬁe_;:lo[Z /5;‘/'0" Jpe(poﬁ“"pK—l;M)
k
+fdP1 fdeﬁe_y_t[[ \ kpkj fdg Z Z( D (ZJ—COSH)(" Tnmo

ny=0 my=0 nO
ny#my#0

1 a
where ¢, = '7‘/_,; fpo P(Po--PrysM)dp, .
0

If the integral in g¢,,, has a singularity of order less than « , then

Tee™ P(K;M) = [ dp, [ dp,...[ dp“ﬁe_; ( ,/5’;” . Jpe(po,...,px-l;m
+ [dp,.. fdelﬁe—%I[ /'f”k] [a0 I (2‘/—‘:03‘9) 2 (3.14)

7m0 mpm0 Mol Yo
ng#my#0
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By taking the limit of (3.14) as y, — o, the second term become zero and therefore

we have

Pr
K-1 ‘7}; S Yo,
[xe™ P, (K;M) = fdpo fdpl...fde_IHe ]0[2\’ 1;/ : ]pe(pm'"?pK—l;M)
k=1 k

We perform the above steps K —1 times, then we obtain

ot [I’KeAKPe(K;M)]= f...fpe (Dgser P13 M )ADy..dpy, B

Ag y =lim
3.3 Two Theorems for Special Cases

K-1
Theorem 2[1]: If p,(p;M)=p,(o;M) with p=Zpk ie, p,(p;M) is a

k=0

function of the sum of the received SNRs in multiple paths as in MRC, then 4, ,, is

given by
1
Ag oy = 7——c M) p*d 3.15
KoM (K_l)!fpe(p,M)p 0 (3.15)

Proof:

According to Theorem1, we have
Agy = f-nfpe(po ees Pr-;M AP, dpy
Since p,(p;M)= p.(0; M), we have

D(Pyses P13 M) = p,(p; M)

Therefore,

Ag s = f fpe (o:M)dp,...dpy_,
We introduce the new variables:

P=pPy+ P+t Py
X1 =0

Xg = Pga
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So we have

Po=P—X ——Xp, >0
pr=x>0
Pxa = %gq >0
and p,,..., P, areindependent

The Jacobian of the transformation is;

%0 O 9Pk
op op op 1 0 .. 0
9 9P Pl |-1 1 0 ...
J=1 ox, x  ox |T =1
op, ap, 3Pk -1 0 .. 1
g, Oxg,  Oxg
Therefore

Agpr = f...fpe(p;M)|J|dpdx1...de_1
= ["dpp, (M), (p) (3.16)

where

Vialp)= fdxl fql dx, ~--f—’§Xk dxg

= fdxl f-x‘ dx, ... f—*z;‘Xk (P - Kizxk ]de-z
k=1

K-3

= fdxl fﬂtl dxz...f_kZ;Xk (P‘ ;xk —Xgoo deK-Z

K-3
Assuming y. , =p-— z X, —Xg_,, We obtain:
k=1

Via(p) = fdxl fﬂl dx, ---Jj_’i’xk Vi-24(=yx_;)
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= f dx, f Ty =y, 12) iz

k=1

Xk

= fdxl K—XI dxz'--f_lg)Ck ('D - ixk)z /2dx

k=

—

B

-4

= fdxl f_Xl dxz...f_gxk (p = 2. %k T Xk JZ [2dxy_s

=
LR

K-4

Assuming y,_ , = p— Z X, =Xy, ,weobtain:
k=1

Vea(p) = fdxl f—Xl dxz---J:_’i‘xk Vs /2d(=yx3)

k=1

=[x [ dx,.{-y3, /6 o ixk

1

0
k=

- Pan [ fz( p_ixkj3/3!de_4

k=1

il

[ax, [ (p—x - %) (K ~3)tdx,

= J'farxI (p-x)5? (K -2)
=p" (K -1
Therefore, (3.15) can be transformed as
A =VK =D " p (psM)dp =

K-

—

Theorem 3[1]: If p,(p;M)=p,(p,;M) with p, =[

2
\/1—51:] ,ie, p, (M)

is a function of the received amplitudes in multipaths as in EGC, then 4, ,, is given

k=0

by
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K1
A = (ZK 1), fpe(pt M)p,” dp, . (3.17)

Proof:

According to Theorem 1, we have
= f...lzl’fr)e(,z)(),...,p,f_1 M)dp,...dpg_; -
Assuming p, = A, , we obtain
=[.I P (A" ooy Ay MYAA Ay
Since p, (p;M)=p,(p; M),
Pe(Posss PrisM) = p (M) = p (p; M) .
Therefore, Ay = [ -..[ 2 P (4" M)Ay Ay ddy. dAy.,.

We introduce the new variables

A=A4+4+..+ 4,

x =4
Xgy = Ag
So we have
Ay =4 —x —...— x4, >0
A =x>0

Ag =%, >0

The Jacobian of the transformation is:

04, o4, A,

o4, o4, T a4 | |1 0 .. 0
o4, o4 Odga| -1 1 0 .
J=lax, o  ox |T =1.
od, od,  od.,| |F1 0 .. 1

Oxp  Oxg 5;1;—1_

We obtain: Ay, = [ .. [ 25 p (47 M) A%, ,|J|d4,d,..dx
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= [ p (4> MU (4) (3.18)

x % t —K‘szk &
whereU,_ (4,)=2 r x,dx, f xydx,..| = xK_l(A, - Zxk jde_l
k=1

K-2
K=2
_ Ak P =X —Zxk
=2 .Fxldxl-f1 xzdxz...f = (A,—Zxk-—x,(_ljx,(_ldx,(_].
k=1

K-2
Assuming y,_, =4, — z X, —Xg_, ,weobtain
k=1

0~ 2 Xk
*=1

-4 k-2
Ug(4,)=2" f x,dx; f X,dx;...| K yK—l(At - Zxk ~ Yk )d(—yK—l)
k=1
f A, — X K2
=2% f x,dx, i xzdxz...[y;{_1 /3—yK_12(At - xk)/Z} ¢

, - 43 2 Y
=2" ["xdx, [y, | Z xK_Z(A,—— xk] /6dx,_,
—% I_K‘3Xk £3 ?
=2 f x, dx, f x,dx, .. 2 xK_z(A, - x, —xK_z) /3Vdx,_, .

K-3
Assuming y, , =4, - Z X, =Xy, ,weobtain
k=1

K t r % 3 3
Uga(4,)=2 f x,dx, _[4 xzdxz---J:u’ka yK—Z(At - Zxk —yK—Z)/6d(_yK—2)
k=1

-x -3
=2% f’ x,dx, F’ )cza’xz...liyli_2 /30—y,4<_2(/1, - Zxk)/24} *
o

k=1

k-4

% = 2%k = ’
=2¥ f‘xldxl f' xzdxz...f 2 xK_3(A,— x,c) /5Vdx,

A, p X
=2% ["xde, [ xpdn (4, = x, —%,)°F (2K - 5)!
= oK f ' x,dx, (4, — x,)%57 /(2K - 3)!
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=284 j2K -1).
Therefore, (3.18) can be transformed as

A = [ dA,p (47 M)25 4757 12K - 1)!

=2 /K -1t [ dd’ p, (47 M) 4.

=21 /2K - 0! ["dp,p. (M), =
3.4 Asymptotic Performance of M-ary Signaling

Before the discussion of asymptotic performance of M-ary signaling, two lemmas

which will be used in the following discussion, will be proved first.

1 ; 1
Lemma 1: 0 pr Lexp(— pCHp = =F
1
Proof: ———o k- -
roof: 1) fdpp exp(- pC)

- e [ el

= (_T)(II—C—_—&[DK‘I exp(- pC #Og - fexp(— pCdp*"!
= TKI:T)—' fexp(— pC)dp~
- 5y [P el p0)

=:F(-k——_

- &) Kl_ D) [ #* 7 exp(- pCHp
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L Bakpn x| QO K (2K \(sin26,!-sin26,])
Lemma 2: J:sm 6d6 =2 [;{—!—Ia(@z 491)+2; Kol 5

I=1

2K £ (2K
Proof: Using Euler’s expression sin’* 8 =27% H © j+ 2y [ K J(—l)l cos 291:} ;

we obtain

fsm” ado =27 f HZKJ 2?[ J(—l)l cos29]}49
_ 2_ZK[(M) EK:( J s1n2921—sin24911)} =

K'K! 2]

It has been shown that the SNR of the decision variable & isequalto p for
coherent MRC, and is equal to p,/K for coherent EGC [8], where as

discussed in hapter 2.

K1
p=0 (3.19)
k=0
K-l 2
p, =Y. 4,] (3.20)
k=0

MPSK signaling

The asymptotic performance of MRC-MPSK is given as[1]

2K .
4, = 2 : _ [[2K](M—1j_f( 2K ](_1)1 s1n(27zz’/M)}(3.20)
* {log, M sin” (7 / M)] K M T \K -1 7l

Proof:

Based on the definition of 4, , in (3.11) and the result of (3.15) in Theorem 2, we

have
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j’K,M
(Ing M)K

by M T

1
~ (log, M)X (K -1)!

[ dep.or)p*

Based on the expression of p,(£;M) for MPSK signaling in (2.7), we have:

1 L1 [ sin’(n/M)]

A = dop* = [ dBexp| - pS /M)
b M (logzM)K(K—l)!f -] T e |
1 [ sin®(z/M)
= [ as d _pSm M)
(1og2M)Kﬂf/M (K - 1)'f 2 p_ s |

Using Lemma 1, we have

sin’ (7 / M) sin** @
f dpp* ™ expl — p—— =
sin® @

(K 1) ~sin?® (z/ M)’

and therefore

be M T

1 f 9 sin** @
(log, M)* 7 sin** (z/M)’

Using Lemma 2 with 6, =x/M , 6, = 7, we obtain:

272k 2K k(2K )
Ayor = (log, M)* 7sin® (27 M) .['/M d&[( X J+2;£K_lj(-—l) cos(ZHI)}

_ 2K 2K (M—l) i 1 ),sin(Zm'/M) -
[log, Msin’(z/ M) |\ k \ M K-l A

The asymptotic performance of EGC-MPSK is given as [1]

P 2 ¥Rk 2K (M—l]__i 2K (_1),sin(27n’/M)
M [(og, M)sin®(x/ MK KN\ K N M ) SlKk-1 P

(3.21).

Proof:
Based on the definition of 4, ,, in (3.11) and the result of (3.17) in Theorem 3, we

have
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A
/1 = K.M
"M (log, M)*

2K—1
" (log, M)* (2K -1)!

[ (oMo dp,

Based on the expression of p,(£;M) for MPSK signaling in (2.7) and (3.19), we

obtain:

2Kt sin (7r/M)
A = —| dfex
M (1og2M)K(21r<—1)'f ZZ f o [ Ksin’ 6

251K -1)! K-t sin® (7 / M)
= do d _, sin (@M
(logzM)Kn'(2K—1)!f/M X - 1)1f PP O TP T in?

Using Lemma 1, we have

1 fdpp“ex _sin’(z/M)|_ K®sin* ¢
(K -1y b P ST TG sin** (7 / M)

and therefore

b M

251 (K -1t f KKsinZKﬁde
(log, M) 72K = 1)! #/M sin** (z / M)

Using Lemma 2 with 6, =72/M, 6, =7, we obtain:

B 27 (R —IKE 2K k(2K .
Foert = g, M) rsin™ (2 M@K ) L H K ) *22, [K - J("D cosel )}'9

_ 27 X¥KIkX ZKJ( j i ,sm(27d/M) -
[(log, M)sin® (z / M)]* (2K)! = nl

MPAM signaling

The asymptotic error rate performance of MRC-MPAM is given [1]

2 K
- - 2K
Ay oy = M-1) M- (3.22)
- M |12log, M K

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof*

-1
Since the conditional SER of MPAM signalingis p, (f M ) = MM erfc( —(—A%g——l)—]

as given in (2.9), according to Theorem 2, we have

1 aM-1 3p
A . = dpp* ——e ,
(K—uaogzM)Kf S ”f{ MH]
2
From erfc fd@ exp( J j we have
sin’ @

1 M -3p
Ay oy = dpp*™ do
M (K =1)(log, M)F [ der f eXp[iMz —1)sin’ 9}

[ dpe™ exr{ p

_ M -1 fé’ 3
(log, M)Y* aM (K ! M?*-Dsin’ 0|

Using Lemma 1, we obtain

M-1 J:rdesinzK oM* -1
(log, M)* nMt 3%

M- M- lfdesin“a
M |3log,M | =

b M

Using Lemma 2, we obtain:

M1 M?-1 7" 2%z 2K)!
MM | 3(log,M)| 7z KIK!

M1 MP-1 (2K
M |12log,M | | K )’

The asymptotic performance of EGC-MPAM is given as [1]

M-1] M?-1 1" k%
by M T (3.23)

6(log, M) | K!°

Proof:

Since the conditional SER of MPAM signaling is p,(£;M)=

M-1 3¢
M erfc( (Mz—l)j
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as given in (2.9) and (3.19), according to Theorem 3, we have

2% k-1 M ~1 3p
Ay oy = d e ! .
"MK 1) (log, M) f PP Ty rfc(\/ k(M2 1)

2

From erfc(y) = 1 fd@ exp[ —) } , we have
T 6

sin?

oK1 e M-11 “3p
Ay = dp,p S L2 T ae :
M " (2K ~1)(log, M)F o™ =210 eXp[K(MZ —l)sinzﬁ}

2P (K 1)) 1 e ]
—(logzM)KzM(ZK—l)!f (K—l)!fdp'p' GXP[ p'K(Mz—l)sinzé’}

Using Lemma 1, we obtain

b M

S ZZMDU D) psin KD,
(log, M) MK -1)1 4~ 3F

_ 2K"(M-—l)(K—1)![K(M2 —1)}"‘ 1
w

— fsin” 6deo .
MQ2K -1)! 3(log, M)

Using Lemma 2, we obtain:

L 27k -y MP-1 ) 27 k)
bt MQK -1} |3(og,M)| 7z KIK!
M- M?-1 1 k* =
M |6(log,M)| K!
MQAM signaling

The asymptotic performance of MRC-MQAM is given by

A
L[ M K(ZK)!(I__l_j_ (M-1) K—g—l——Lsz 2k \SIn T
M 6(log, M) | KIKI M) |6Qlog,M)| x\\ M) G\K-1) 2

(3.24).

Proof:

According to Theorem 2,
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w =VE -1 [ p,(pM)p"dp

From (2.12) we have

a1 o 32 ) (1 L) | [ 30
”mM)4lﬁﬂm{2W4J(lﬁﬁeﬁ(%M4ﬂ’
therefore

( ——]erfc(,/3p/2(M—1))
1 ca] U M
Aot = [ ) dp

(K -D(log, M)*

1 -y
dlex
T '[' pLin2

From erfc(y)

and ZQ(w/E y)= erfe(y) we have

1
(K =D!(log, M)"

ﬂ’b,( M T

1
(K -1)!(log, M)*

K”(l_
1

(I"m

Using Lemma 1, we obtain

_ 2
(log, M)

1

N

N 4
(log, M)* 7

2 1 m/4 -y
, 0*()=—=| dOe
9] O 7[‘[' xP 2si

f dpp*
f dppK'l(l -
)fde

erfe?(\3p 7204 -1) )

=

2

~n2

2

9} [11] [12],

/4

2o G oo s

-3p

|

1Y 4 s
—\/—I—J:J ;f dHexp|:

2(M -1)sin* @

|

= l),fdpp p{—pz(M

3
-1sin’ 8

: /4 3
) de(K 1)vfdpp pli—pZ(M—l)sinzé’}

_ 2 1 (sin** 9)2% (M -D*
e S
4 1\ e (sin®® 9)25 (M —1)*
- 1—
(log, M)Kﬂ'( \[j\—J—J f 3% i
K K 2
:_2_‘@;12_ __L_E i 2K _ 2(M_1) ____1__ i 4 . ok
[:3(10g2 M)} (1 mjﬂfsm ae [“3(10g2M)] (1 \/—1\7) ﬂf sin“" &d6

Using Lemma 2, we obtain:
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_{ 2M —1) T D24 (2K)!(1_ 1 )_[ 2(M -1) T 9242 5 (2K)![1_ 1 ]2

M | 3(log, M) r KK M) |30og,M)| 4z KK\ JM

"
Jem-p ] 2 (1 Zi 2K \S 7
3log, M) | 2%z JM ) G\K-1) 2

.
[ M-l K(ZK)!(I__L)_ (M -1) K'g‘(l——l—jzf ZKT“‘EI
| 6(log, M)| KK M) |6(og,M)| n\' JM)SG\K-1) 2

The asymptotic performance of EGC-MQAM is given as

.l
5, =| KOL-Y Ki[l_L)_ KM-DT] 4&-D! (1 jzi 2K \SINT
"M 7| 3(log, M) | KI\ M) |3(log, M) | nQK-D) JM) G\Kk-1) 2

(3.25).

Proof:

According to Theorem 3, we have

g =2 IQK -1 [ p, (oM p dp,

since

Pe(P,;M)=2(1——J—1__A7]eifc( /ﬁ%}_—ﬂj—@——jﬁf”fcz( E{%\%—T)} and

(3.19), therefore

r A
1 3p
21~ 2P
7K1 o ( M )erfc[ 2K(M——1))
ﬂ“bK,M = | K fpt 2 dpt
(2K -D!(log, M) 1 ) 3p
- erfc’| | ——~—
M 2K(M -1)
From  erfe( )—lfdeex ~ 0%( )—lf”deex ~y
= P in’ 0 ’ =7 P Dsin’ @

2Q(«/§y)=erfc(y) we have e;fcz(y)=—;—1-_['/4d6?exp[ _}2,2 ] .So

sin“ @
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2K K-1 1 1 —3p
A = d, - = |—| d6 J
TR R ( JMjﬂf exp[zK(M—l)sinW

L [(do.p | 1-—= Zif”deex mEl
(2K -1)!(log, M)* Pib JM ) = p2K(M—1)sin29

O 2Fx - B 1 e [ 3
_(1og2M)K7:(2K—1)!( m]fdg(K—mfdp’p’ eXp{ '0'2K(M—1)sin2¢9}

2K+1(K ! [ 1 J /4 -1 3
- 1- deé d exp| —

(log, MY 72K DI\ a1 I (K - 1)vf il SR TP e M~ D)sin’ 0
Using Lemma 1, we obtain

25K -1 (
(log, M)* z(2K -1)!

s1n2K 9(2K)K (M - 1)

by M

rasin® OQ2K)* (M - 1)"

K

. 2Mk-y ( )
(log, MY* 7(2K - 1)!

& D2k -], 1L\l
) (2K—1>!{3<log2M>M m)ﬂfsm e

K+ 1 ¥ 2
2T (K -D)Y 2KM -1 - 1 —1—_[:/4sin2K ado
(K -1)! | 3(log, M) M) #
Using Lemma 2, we obtain:

. [2K(M —1)}" 2K (K ~1)1 27 7r(2K)!( 1 )
b M T 1-
M | 3log, M) | 7QK-1)! KK JM

kM -1) ] 25K 1)1 27 7(2K)! LY
| 3(log, M) | 7(2K-1)! 4K!K M

—t

| 3(log, M) | 2%%zK-DI\ M K-1) 2

2k(M -] 252 (K —1)! (1— 1 )2 K ( 2K )Sm;
=0
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km-)Y (1—ij— KM-D | 4K-D(_ 1 ZZK: 2K S0y
" | 3(log, M)| KI\' M) |3log,M)| zQK-DI M) G\K-1) 2
[
MFSK signaling
In the quadratic noncoherent receiver, the asymptotic parameter for MFSK with

K=1 is[l]

le (3.26)

log2 —m

b,,M

Proof:

From Theorem 2, A, = _(El——l)'— fpe (o:M)p*"'dp. When K =1

= fpe (osM)dp

M-1 m+1 M -1 -
since p, (043 M Z ( N jGXP{mLfI‘J},

m=1

4
log, M

_ 1 fl‘f(_l)mﬂ(M_lJexp[;”_’!ﬂdp

A
hM log, M 9 o= m+1k m m+

1 M—l(_l)m+1 M_lJ{m_*_lJ

—logsz=1 m+l\ m m

we obtain:

Z’b,,M =

B 1 M-1 (_1)m+1 M _1
T log,M % m m )

no_1\kH n
Since Z( 1}3 (nj = 1 [13], we obtain
_m
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In the matched filter coherent receiver, for K =1 M-ary orthogonal signaling

the asymptotical parameter for MFSK with K =1 is [1]

M-l 2 erfe(=y) (erfe(=p)Y"
)“”“M“MlogzMJ“logszwy[ 2 ( 2 j}y (3:27)

Proof:

From Theorem 2, A, , = 1 fpe (p:M)p*'dp .When K =1, we have

(K -1)

b = [ PP M)dp

M-1
Since p,(p,M) = 71;[__ ,[1 e 0Py {1 - (%erfc(— y)] }dy , we have

Ao 1 1 o-fr (1 )M"
A, =— = d dye OV 1 | —erfe(-
5M = log, M log, M f P N fm ye zerfC( »)

=___1___ - l _ - ~(y-Vp)
J;logzMr”dy[l (o) }f et

Assumingt =y - J; , we have

1 1 M- Py
Aprt = m [1 dylil - (5 erfc(—y)) :| J: e” (2tdt -2ydt)

= \/___i;g:—— dY_l “(’é‘e’fc(—y)j — }-[e"yz +ryerfe(-y)]

2 2 ]_
= | dyle” —e” (—erc—- )
x/;r_logzM | 2 Fe=3)

M

_ +J?r'ye:fc(—y)—ﬁy[~;—emfc<—y)) }

Since erfe(y) = —j: f e dt , we have d(% erfc(— y)) e/ \/;r_dy . Therefore,
7

1 1 1 1 M erfe(-y) (1 .
Aot = log, M - log, M Eod('z“e’fc(—y)j(gerfc(“y)j +m Eoy[_“z——('z‘e”fc(—y)) }

2
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Assuming x=%el’fc(—J’) )

1 1 ) 2 erfe(-y) (1 .
A = - MA e+ —=— — =t = - d
b M log, M log, M £x ’ log, M _[:y[ 2 2erﬁ:( ») Y
1 Lot 2 erfe(-y) (1 )
= - x7) o+ f y —| zerfe(=y)| |dy
log, M Mlog,M [0 log,M >~ 2 2

M-l 2 erfe(-y) (erfe(=»)\"
—Mlog2M+1og2ME°y{ 2 ( 2 ] }dy

The results we have obtained in this chapter are summarized in Table 1.
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Table I Asymptotic Parameters for M-ary Signaling on Rician fading channels

Signaling and Asymptotic Parameter 4, ,,
Receiver
Schemes
MRC-MPSK 22K 2K (M_1] i 2K - sin(27d/ M)
[log, Msin*(z/ M |\ K \ M ~\K -1 7l
EGC-MPSK (K /2)K K (2K (M—lj_i 2K\ e sin(27 / M) |
2K)[log, Msin*(z/ M|\ K \ M | S\K-1 l
MRC-MPAM | a1 m2-1 T¥(2k
M |12log, M K
M |6log, M| K!
MRC-MQAM i _ M1 K (ZK)! (1—_1—)
M 6(log, M) | KIKI M
K 2 sinﬂ
_|_(M-D) |8 1___1_j f 2K 177
6(log, M) | =\ M) SG\k-1) 21
EGC-MQAM R
GC-MQ B K(M—l) l_(l_L
M 3(log, M) | KU M
K 2 sinﬂ
KM= | 4K-D! (1- 1 i 2K )
3(log, M) | #QK-DI\' M) G\K-1) 2
NonCoh-MFSK 1 1‘4211
log, M Sin (K=1)
ME-MESK M-1 2 erfe(-y) _(erfe(=y))"
[Law - (K =1)
Mlog, M log, M *= 2 2 -
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3.5 Asymptotic Performance on Multipath Rayleigh Fading

Channels

For the Rayleigh fading channel, the asymptotic SER is given by [1]

A
PK.M)= 5L (3.28)

KM

Proof’

e M Ak )
Basedon (3.9) P, (K ;M ) = - For the Rayleigh channel A, =0 we have

KM

Pe(K;M)= e M iK,M =¢° ﬂK,M - /IK,M . . n

FK M FK M I_‘K M

3.6 Numerical Results

In the following simulations, for multipath Rician fading channel, it is assumed
that v; =10 and 20} =30, with v} and 20 defined in (3.4). It is also assumed
that the average SNR E/N,, which is also defined in (3.4), is equal to 1. For
multipath Rayleigh fading channel, it is assumed that 207 =40, so that the total
energy in multipaths of the Rayleigh fading channel and the Rician fading channel is
the same and we can provide a fair comparison between these two channels. All the
other settings are kept the same as in the multipath Rician fading channel case.

Figure 3.2 shows the asymptotic SER of MPSK, MPAM and MQAM signaling
with coherent MRC receiver in the multipath Rician fading channel under different
diversity order K. We notice that as K increases, the asymptotic SER decreases,

1.e., the performance becomes better as diversity order increases. In addition, from the
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curves, it can be shown that MQAM is better than MPSK, and MPSK is better than
MPAM in terms of the asymptotic SER performance. As expected, as the modulation
constellation size M increases, the performance degrades.

The asymptotical SER of MPSK, MPAM and MQAM signaling with coherent
EGC receiver in the multipath Rician fading channel under different diversity order is
given in Figure 3.3. From this figure, similar conclusions as discussed above in Figure
3.2 can be drawn. That is, the asymptotic SER of MQAM is superior to that of MPSK,
and the asymptotic SER of MPSK is better than that of MPAM.

We also compare the asymptotical SER of MPSK, MPAM and MQAM signaling
with MRC and EGC receivers in the multipath Rician fading channel in Figure 3.4.
The results in Figure 3.4 confirm the well-known conclusion that MRC provides a
better performance than EGC.

For the multipath Rayleigh fading channel, the asymptotical SERs of MPSK,
MPAM and MQAM signaling with coherent MRC receiver and coherent EGC
receiver under different diversity order are given in Figures 3.5 and 3.6, respectively.
From these figures, similar conclusions as discussed above in Figures 3.2 and 3.3 can
be drawn. That is, the asymptotic SER of MQAM is superior to that of MPSK, and
the asymptotic SER of MPSK is better than that of MPAM.

In Figure 3.7, we compare the asymptotical SER of MPSK, MPAM and MQAM
signaling with MRC receivers in the multipath Rayleigh and the multipath Rician

fading channels, and in Figure 3.8 we compare that with EGC receivers. The results in
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Figures 3.7 and 3.8 show that Rician fading channels provide a little bit better
performance than Rayleigh fading channels.

The asymptotical SER of MFSK with single received branch and with coherent
and non-coherent receivers under different values of modulation constellation size
M 1is given in Figure 3.9. The performance increases as M improves. However, as

M becomes large, the impact of the increase in M on the performance becomes

less.
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o Persus K for MPSK, MPAM and MQAM Rician fading (MRC receiver)

10 T T T T T T T T
© )
0.
B .
L] 4
g
10 - x E
«  4PAMRicianfading AN
O 16PAM Rician fadirg
A4 x  4PSK Rician fadng M
107 4 16PSKRdanfadng 4 .
£ 4QAM Rician fading
18| | — 16-QAMRician fading A
10 .
A
1()"‘B L t L 1 L | I j
1 2 3 4 5 6 7 8 9 10

Dhversity Oder K

Figure 3.2 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rician fading with MRC receiver
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Persis K for MPSK, MPAM and MQAM Rician fading (EGC receiver)

T ¥ T T T T T

0 o

Asynptotical SERP

4PAM Rician fading
16-PAM Rician fading
4+SK Rician fading
16-PSK Rician fading
4QAM Rician fading

ael | —— 16-QAMRician fading
10 - S

Dx

0"

Dd x O o
Dox

1 0-1 8

— )3 1
1 2 3 4 5 6 7 8 9 10
Diversity Order K

Figure 3.3 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rician fading with EGC receiver
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Persus K for MPSK, MPAM and MOAM

1o$ T T T T T T T T

10’ L { ! i 1 [ 1 1
1 2 3 4 5 6 7 8 9 10
Diversity Order K

Figure 3.4 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rician fading with MRC and EGC receiver
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o Persus K for MPSK, MPAM and MOQAM Rayleigh fading (MRC receiver)

o
A=

Asynptctical SERP

4-PAM Rayieich fadng
16-PAM Rayleigh fading :
4PSK Rayleigh fading A
16-PSK Rayleigh fading
A 4QAM Rayleigh fading
| | — 16QAM Rayleich fading

* x QO

Px

1 i
1 2 3 4 5 6 7 8 9 10
Civersity Order K

=2
=)

Figure 3.5 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rayleigh fading with MRC receiver
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& Persus K for MPSK, MPAM and MOAM Rayleigh fading (EGC receiver)
T T T T T

T T

-2 © @]

Asymptctical SERP

4PAM Rayleigh fading
16-PAM Rayleigh fading
4PSK Rayleigh fadng
16-PSK Rayleigh fading
. 4QAM Rayleigh fadirg
10" | — 16:QAM Rayleigh fadrg

>x

D* x O
>x

Dx

18 1 | L |

1 2 3 4 5 6 7 8 9 10
Diversity Order K

+

10

Figure 3.6 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rayleigh fading with EGC receiver
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o P ersus K for MPSK, MPAM and MQAM Rayleigh and Rician fading (MRC receiver)

10 T T T T T T T T
2 V]
V]

*x
i

Asynmptatical SER P

10"t 16-PAM Rayleigh fading
16-PAM Rician fading
16PSK Rayleigh fading
16-PSK Rician fading
1572l | & 16QAMRayteigh fadng
— 16QAM Ridian fading

D4 xO e

10"

! 1
1 2 3 4 5 6 7 8 g 10
’ Diversity Order K

Figure 3.7 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rayleigh and Rician fading with MRC receiver
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Persus K for MPSK, MPAM and MQAM Rayleigh and Rician fading(EGC receiver)

1OF T 1 ¥ T T T T T

Hex

Asyrptatical SERP

~10

1oL 16-PAM Rayleigh fading

16-PAM Rician fading
16-PSK Rayleigh fading
16-PSK Ricianfading
16-QAM Rayleigh fading
—— 16-QAM Rician fadirg

D% x O e

10—‘\2_

14

L ) | 1
1 2 3 4 5 6 7 8 9 10
Diversity Oder K

10

Figure 3.8 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rayleigh and Rician fading with EGC receiver
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Y(<=1) versus M for MFSK
0.25 T T T

T

002k e

0 ! L L ] I 1
Alphabet Size M

Figure 3.9 Asymptotical SER of MFSK with coherent and non-coherent receivers
under different M values
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Chapter 4

Asymptotic Performance of OFDM
M-ary Signals on Multipath Rician
Fading Diversity Channels

In this chapter, based on the results obtained in Chapter 3, asymptotic
performance of OFDM M-ary signals on multipath Rician fading diversity channels

will be discussed.

4.1 System Model

We consider an OFDM system with N subcarriers. Denoting the modulated data
sequence in one OFDM symbol as D(0), D(1), ..., D(N —1), after the inverse
discrete Fourier transform (IDFT), the time-domain OFDM signal can be expressed as

[14]

N-1
S(n)=—;-]—ZD(m)e””'""’N,n=0,1,...,N—1. (4.1)

m=0
The channel impulse response of the multipath fading channel is modeled as a

finite impulse response (FIR) filter with taps A(n),n=0,1,...,L -1, where L is the

number of multipaths and L << N. A(n),n=0,1,...,L -1 are mutually independent
and can be written as
h(n) = lh(n]e”’" =re . (4.2)
The joint PDF of 7, and ¢, for a multipath Rician fading channel is given by
[15]
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fR,,,(D,, (r,.9,) =

2 2
-2
¥, ro+r rr cos¢,,j| @3)

exp — n RY/] n sn
2no? 202

where 7, is the dominant component of the nth channel tap, and o’ is the

variance.

Therefore, the frequency-domain channel impulse response is [14]

H(m)= Ni h(n)e >N = fh(n)e-f“""“V : | (4.4)
n=0

n=0
It is assumed that the maximum delay is less than the length of the cyclic prefix, and
perfect timing and synchronization are achieved at the receiver. Therefore,
intersymbol interference (ISI) and inter-carrier interference (ICI) are not considered in

the following analysis.

The received signal r(n),n=0,1,..,N-1, is first analog-to-digital (A/D)
processed and removed of the cyclic prefix. After the discrete Fourier transform
(DFT), the output signal is given as

R(m)= —lefr(n)e‘jz’”’mw = H(m)D(m)+ N(m),m =0,1,..,N -1 (4.5)

n=0
where N (m) are independent identically distributed (i.i.d.) comple); Gaussian noise
with zero mean and unit variance. That is, each OFDM subcarrier undergoes a
frequency flat fading channel characterized by H(m).

It is noted that

L-1 L-1 L-1

L (4 -2 .

H(m)=§ :rne+1¢,,e j2mm/ N - E :rne+j(¢,, mm/N) - 2 :rneje,,
n=0 =0 n=0

=YX + Y =X+ Y (4.6)

ie, 6, =¢, —2mm/N(mod2rx). So the joint PDF of 7, and8, is

4.7)

rier i _2ry cos(@n +27znm/N)
20

r
fR o (r”’en)= n - exp| — n sn n' sn .
O 270
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sn nosn nsn

. .2
=L = €Xp| — 12 (rnz +r,’ —2r,r, cos, coszﬂnm+2rr sind, sin nnm)
2ro 20 N N

Define X, +jY, =R’ ,sowehave X, =R cos®, , Y, =R sin®, .
2mm x . 2mm y .
Also define r,, cos =r, , F,sin =r, ,then it can be show that the
joint PDF of X, andY, is
1 xn2 + yn2 + rS}l2 + 2ynrsny - 2xnrsnx
Xy V) = exp| —
fX,,,Y,,( ns Yy ) 27[0_2 p 20,2
2 2
1 (x —r") +(y +ry)
— ex — n Si n sn 4.8
20t 20 (48)

By integrating over y, (or x, ), the PDF of X, (or Y, ) can be obtained. It
can be shown that X andY, are independent Gaussian random variables. and

X, ~N(rsnx,0'2), Y, ~N(—r g 0'2) , with N() representing Gaussian

sn 3

distribution.
L-1 L-1
From (4.6), we have X =ZX - Y=ZY,, . Since the channel tap
n=0 n=0

coefficients are independent, X,,..., X, | are mutually independent, Y,...,Y, , are

mutually independent, and X, and Y, (n=0],.,L—1) are also mutually
independent. So we have
X~ Nl +r +tr, 5 Lo (4.9)
Y ~ N(— (rsoy +r,” +...+rS,L_1y),LO'2) (4.10)

and X and Y are also mutually independent.

Let
P Fent T =Ty (4.11)
ro Hetr, . =r, (4.12)
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N P (4.13)

then

\F ()| ~ Rice(,/rsxz ) ,Lorz) = Ricelr,,Lo?) (4.14)

with Rice(.) denoting Rician distribution. That is, we have

r 1"2 +rs2 rrs
Sy =3 exp(_ 2ot [\ To? (*4.15)

4.2 Asymptotic Performance of OFDM Signaling

Suppose that there are K diversity branches at OFDM receiver. Based on the

discussion in 4.1 and in Chapter 3, we have
P, =r, E/N, (4.16)
¥, =2La,’E/ N, (4.17)

where r,, is obtained according to (4.13).

2

P rs, K-1 K-l
Then 6, =—%= 2Lk > A=26, , ad T, =[x Therefore
Vi g k=0 k=0

according to the discussion in Chapter 3, we have
_ e Ag ut
r K.M
Therefore, the asymptotic SER of OFDM signals with diversity receiver can be
calculated following the procedures listed below:

Step 1. For the £ th diversity branch, calculate

27mm
s \ke,m)=r, (k
rullm)=r,, (eog 22

27mmm
Y \k,m)=r, (k)si
7 llm) =, (i 22

. (k, m) =70 (k, m) SR (k, m)
Yy (k, m) =r) (k, m) +o+r) (k, m)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r.(k,m)= \/rsi (k,m)+ rsi (k,m)
with 7, (k,m) being the dominant component of the nth path on the  th diversity

branch and m th subcarrier.

Step 2. Calculate

w B _rlem)

S
k Vi 2Lc*
K-1
Ay =67
k=0
K-l
Te. =17 =Lo?)
k=0

Step 3. Calculate A, ,, according to Table I in Chapter 3.

—AT
e Ay i

Step4. P, (K;M;m)=

KM

Step 5. Find the average asymptotic SER over N subcarriers by

N-1
P, (KsM)= 3 P, (K;M;m)
m=0

4.3 Numerical Results

In the following simulations, it is assumed that L=2 and E/N,=1/L. For
multipath Rician fading channel, it is assumed that 7}, (k)=10 and
202(k)=30 (n=0,.,L-1), with r2 (k) defined in (4.16) and 202(k) defined in
(4.17). For multipath Rayleigh fading channel, it is assumed that 20'2(k)= 40 so
that the total energy in multipaths of the Rayleigh fading channel and the Rician
fading channel is the same and we can provide a fair comparison between these two

channels. All the other settings are kept the same as in the multipath Rician fading
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channel case.

Figure 4.1 shows the asymptotic SER of MPSK.MPAM and MQAM OFDM
signals with coherent MRC receiver in the multipath Rician fading channel under
different diversity order K. We notice that as K increases, the asymptotic SER
decreases, i.e., the performance becomes better as diversity order increases. In
addition, from the curves, it can be shown that MQAM is better than MPSK, and
MPSK is better than MPAM in terms of the asymptotic SER performance. As
expected, as the modulation constellation size M increases, the performance
degrades.

The asymptotical SER of MPSK, MPAM and MQAM OFDM signals with
coherent EGC receiver in the multipath Rician fading channel under different
diversity order is given in Figure 4.2. From this figure, similar conclusions as
discussed above in Figure 4.1 can be drawn. That is, the asymptotic SER of MQAM is
superior to that of MPSK, and the asymptotic SER of MPSK is better than that of
MPAM.

We also compare the asymptotical SER of MPSK, MPAM and MQAM OFDM
signals with MRC and EGC receivers in the multipath Rician fading channel in Figure
4.3. The results in Figure 4.3 confirm the well-known conclusion that MRC provides
a better performance than EGC.

For the multipath Rayleigh fading channel, the asymptotical SERs of MPSK,

MPAM and MQAM OFDM signals with coherent MRC receiver and coherent EGC
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receiver under different diversity order are given in Figures 4.4 and 4.5, respectively.
From these figures, similar conclusions as discussed above in Figures 4.1 and 4.2 can
be drawn. That is, the asymptotic SER of MQAM is superior to that of MPSK, and
the asymptotic SER of MPSK is better than that of MPAM.

In Figure 4.6, we compare the asymptotical SER of MPSK, MPAM and MQAM
OFDM signals with MRC receivers in the multipath Rayleigh and the multipath
Rician fading channels, and in Figure 4.7 we compare that with EGC receivers. The
results in Figures 4.6 and 4.7 show that Rician fading channels provide better
performance than Rayleigh fading channels.

Asymptotical SERs vs diversity order for MPSK, MPAM and MQAM single
carrier and OFDM signals with MRC receiver and EGC receiver are given in Figure
4.8 and 4.9, respectively. It can be shown that OFDM systems outperform single

carrier systems.
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Persus K for MPSK, MPAM and MOAM (MRC receiver)
10 T T T T T T T T

Asyrptotical SERP

@]
x
15" | * 16PSKCOFDM N
S ACAMcEIM A
— 16QAM OFDM
10"
A
10‘23 1 1 | ! 1 1 ! L
1 2 3 4 5 6 7 8 9 10

Dhversity Order K

Figure 4.1 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rician fading with MRC receiver
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Persus K for MPSK, MPAM and MQAM (EGC receiver)
10 T T T T T T T 7

Asynptctical SERP

— 16:QAM OFDCM

10"k

Dx
1

A
18 L L

1 2 3 4 5 6 7 8 9 10
Civersity Qder K

-

10

Figure 4.2 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rician fading with EGC receiver
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P versus Kfor MPSK, MPAM and MOAM

(L T T T T T T T T
E

Asynrpidtical SERP

i
174

I 1
1 2 3 4 5 6 7 8 9 10
Civersity Qrder K

10

Figure 4.3 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rician fading with MRC and EGC receiver
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Pversus K for MPSK, MPAM and MQAM of OFDIM Rayleigh fading (MRC receiver)
10 T T T T T T T T

1074

Asynptotical SERP

4PAM OFDM Rayleigh fading
16-PAM OFDM Rayleigh fading
4-PSK COFDM Rayleigh fading A
16-PSK OFDM Rayleigh fading
4-QAM OFDM Rayleigh fading
8| | — 16QAM OFDM Rayleigh fading

Dd x O

x

1 H

1 2 3 4 5 6 7 8 9 10
Dhversity Order K

-
=)
b

Figure 4.4 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rayleigh fading with MRC receiver
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o Persus K for MPSK, MPAM and MQAM of OFDIM Rayleigh fading (EGC receiver)
10 T T T T T T T T

- Q 1)

Asynptatical SERP

>x

4PAM OFDM Rayleigh fading
16-PAM OFDM Rayleigh fading
4PSK OFDM Rayleigh fading
16-PSK OFDM Rayleigh fading
» 4-QAM OFDM Rayleigh fading
107 — 16QAM OFDM Rayleigh fading

10 “H

D* x O =
Dx

P

10"°

1 2 3 4 5 6 7 8 9 10
Diversity Order K

Figure 4.5 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rayleigh fading with EGC receiver
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Persus K for MPSK, MPAM and MQAM of OFDIM Rayleigh and Rician fading ((MRC receiver)
10 T T T T T T

T T

10 B
10° . 4
o © .
o
@ 10° 1
3
16"k . ]
*
10" * g

16-PAM OFDM Rayteigh fadirg
16-PAM OFDM Rician fading *
16-PSK OFDM Rayleigh fading
16-PSK OFDM Rician fading
16-QAM OFCM Rayleigh fading
10"} | — 16CAM OFDM Ridian fading

10

D* x O

10"

I ]
1 2 3 4 5 6 7 8 9 10
Diversity Order K

Figure 4.6 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rayleigh and Rician fading with MRC receiver
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P versus K for MPSK, MPAM arnd MQAM of OFDIM Rayleigh and Rician fadng(EGC receiver)

10 T T T T T T T T
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6L | ¢+ 16PAMOFDMRayleigh fading
O 16PAM OFDCM Rician fading
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* 16-PSK OFCM Rician fading
16" A 16-QAM OFDM Rayleigh fading
" | ~— 16-GAM OFDM Rician fadirg N
10‘14 1 ! ! | 1 1 1 !
1 2 3 4 5 6 7 8 9 10
Diversity Order K

Figure 4.7 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
OFDM Rayleigh and Rician fading with EGC receiver
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Persus K for MPSK, MPAM and MOAM (MRC receiver)
10 T T T T T T T T

Asyrmptatical SER P
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Diversity Order K

10

Figure 4.8 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
single carrier and OFDM with MRC receiver
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o Persus K for MPSK, MPAM and MOAM (EGC receiver)
10 T T T T T T

Asyrmrptatical SERP

-14

10 1 1 ] | 1

1 2 3 4 5 6 7 8 9 10
Diversity Order K

Figure 4.9 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of
single carrier and OFDM with EGC receiver
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Chapter §

Conclusion and Future Study

The error rate performance of M-ary signals on multipath Rician fading
diversity channels has been discussed. The exact error rate expressions are too
complex. Therefore the asymptotic error rate at high average SNR’s is considered.
First we consider the asymptotic performance of single-carrier M-ary signals on
multipath Rician fading diversity channels. A general theorem for the asymptotic
error rate of general diversity receivers over multipath Rician fading has been
derived, and two other theorems have been derived for the special cases where
the conditional error probability is a function of the sum of the received SNR’s or
the sum of normalized received amplitudes, which correspond to the cases using
MRC and EGC receivers, respectively. Then we consider the asymptotic
performance of OFDM M-ary signals on multipath Rician fading diversity
channels.

In the current study of OFDM error rate, we consider each subcarrier
separately and do not take the cross-correlation between different subcarriers into
consideration. In addition, no interference is included in the discussion. In the
future study, the effect of the subcarrier cross-correlation and interference on

OFDM M-ary signal error rate performance will be studied.
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