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Abstract

In this thesis, we will study the average symbol error rate of M-ary signals on 

wireless Rician fading channels at high average signal-to-noise ratio (SNR) in both 

single-carrier and multicarrier orthogonal frequency division multiplexing (OFDM) 

systems. In the system discussed, diversity reception with maximal ratio combining 

(MRC) and equal gain combining (EGC) is adopted. A general theorem relates the 

asymptotic error rate to the multidimensional integral of the conditional error 

probability is presented. Two other theorems are presented for the special cases where 

the conditional error probability is function of the sum of received SNR’s and the sum 

of received amplitudes corresponding to the cases using MRC diversity and EGC 

diversity respectively. Then theorems are provided to analyze the asymptotic error 

rate performance of M-ary signlas including M-ary phase-shift keying (MPSK), 

M-ary pulse amplitude modulation (MPAM), and M-ary quadrature amplitude 

modulation (MQAM) signals in both single-carrier and multicarrier OFDM systems.
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Chapter 1 

Introduction

The elements of communication system are the transmitter, the channel, and the 

receiver. Modulated information signals are transmitted through the channel to reach 

the receiver, where the received signals are demodulated. The channels considered in 

this thesis are wireless Rician fading channels. At the receiver, diversity technique is 

used to mitigate the fading effects.

In mobile radio channels, Rayleigh distribution is widely used to represent the 

statistical characteristics of the received signal envelope of a fading channel, or the 

received envelope of an individual multipath component. When there is a dominant 

stationary signal component present, such as a line-of-sight (LOS) propagation path, 

the received signal envelope of a fading channel or an individual multipath 

component follows Rician distribution.

It is observed that even when one radio path undergoes a deep fade, another 

independent path may not and may have a strong signal power at the same instance of 

time. By having multiple independent paths to choose from or to combine, both the 

instantaneous and the average signal-to-noise ratios (SNRs) at the receiver may be 

improved, by as much as 20 to 30 dB. Diversity technique is based on this observation 

and is a useful receiver technique in wireless communication systems.
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Orthogonal ffequency-division multiplexing (OFDM) is a promising technique to 

combat ISI due to frequency selective multipath propagation of the channel. In 

OFDM, the wideband channel is divided into a number of orthogonal subchannels 

with equal bandwidth which is sufficiently narrow so that the frequency response 

characteristics of each subchannel are nearly flat.

Symbol error rate is a measure of the performance of communication system. In 

this thesis, the error rate performance of M-ary signals on Rician fading diversity 

channels will be studied. However, the exact error rate expressions are too complex. 

Therefore, asymptotic error rate at high average SNR will be considered. A general 

theorem will be proved to relate the asymptotic error rate to the multidimensional 

integral of the conditional error probability [1]. Two other theorems will be presented 

for the special cases where the conditional error probability is function of the sum of 

received SNR’s and the sum of received amplitudes, respectively [1]. Then theorems 

are provided to analyze the asymptotic error rate of M-ary signals including M-ary 

phase-shift keying (MPSK), M-ary pulse amplitude modulation (MPAM), M-ary 

quadrature amplitude modulation (MQAM), M-ary frequency shift keying (MFSK) in 

single-carrier systems. The discussion is also extended to OFDM systems. Results 

obtained in this thesis could be used to assist the design and control of wireless 

communication systems. Some examples may include transmission scheme selection, 

transmission power control, receiver diversity control, etc.

The thesis derives some new results of asymptotic performance on MQAM and
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other signallings and extend them to OFDM systems.

The remaining parts of this thesis are organized as follows. In Chapter 2, basic 

concepts used in the thesis will be introduced, which include M-ary digital 

modulation, symbol error rate (SER) performance of M-ary signaling, fading channel, 

diversity, and OFDM. The asymptotic performance of single-carrier and OFDM 

M-ary signals on multipath Rician fading diversity channels will be discussed in 

Chapters 3 and 4, respectively. Chapter 5 presents conclusions and some topics for 

future study.
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Chapter 2 

Some Fundamentals

In this chapter, we will give some basic concepts used in the thesis. They are 

M-ary digital modulation, multipath fading channel, diversity technique and OFDM. 

First, we introduce the basic concept of M-ary digital modulation, which includes 

MPAM, MFSK, MPSK, and MQAM. Then, we introduce fading channel, including 

flat fading channel and frequency selective fading channel. Diversity technique is then 

discussed. Finally, some fundamentals about OFDM are discussed.

2.1 M-ary Digital Modulation

In digital modulation, digital information is transmitted through a 

communication channel by mapping it into analog waveforms of the form [2]

a(f) = cosilTfj  + ) 0 < t < T  (2.1)

where is the carrier amplitude, is the carrier frequency, is the carrier

phase, and T is the symbol interval.

In M-ary digital modulation, blocks of log, M  binary digits from information 

message are taken at a time and mapped into one of the M  waveforms 

{s^{t),m = \,2,...,M] for transmission over the channel. These M  waveforms may 

differ in amplitude, or frequency, or phase, or some combination of the parameters, 

which correspond to MPAM, MFSK, MPSK, and MQAM, respectively. In the

10
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following, more detailed discussion will be included on each of the modulation

schemes.

M-ary Phase-Shift Keying (MPSK) Signaling

01

00

10 
M  ~  4

( b )

010

110

111

oil
001

coo

1»

101

M  =  •&
w

Figure 2.1 Signal space diagrams for PSK signal 

In MPSK, the transmitted signal can be represented as

(0 = 4  cos(2;^t + ) m = 1,...,M;0 < t < T

I n

(2 2)

where = —  (w -l),m  = 1,2,...,M I denote the M  possible carrier phases

representing the information.

Assume Gray coding, the corresponding signal space diagrams for 

M  = 2, M  = 4 and M  = S are given in Figure 2.1 [3]. For example, for the case of 

M = 2 , the zero degree phase represents the transmitted information ‘1’, while the 

180 degree phase represents the transmitted information ‘O’. It is noted that all 

constellations are equally spaced on a circle for MPSK signaling.

11
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M-ary Pulse Amplitude Modulation (MPAM) Signaling

00 01 11 10 000 001 o il 010 110 111 101 100

A/ = 4 M  —Z
(a) (6) (c)

Figure 2.2 Signal space diagrams for PAM signal 

In MPAM, the transmitted signal can be represented as

(0  = 4.», cos(2;^t + ) m = l , . . . ,M ;0 < t< r  (2.3)

where = 1,2,...,m} denote the M  possible amplitudes representing the M

different possible log^ M  -bit information blocks.

Assume Gray coding, the corresponding signal space diagrams 

forM = 2, M  -  A and M = 8 are given in Figure 2.2 [3]. It is noted from Figure 

2.1 and 2.2 that the dimensionality of the signal space for MPAM signals is only one, 

while that for MPSK signal is two.

M-ary Frequency-Shift Keying (MFSK) Signaling 

In MFSK, the transmitted signal can be represented as

= + m = l , . . . ,M ;0 < t< r  (2.4)

where = = denote the M  possible carrier

frequencies representing the information. It is noted that in order to keep the 

orthogonality of the M  signals, the minimal frequency separation between adjacent 

signals is A /= ^ [ 2 ] ,

12
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M-ary Quadrature Amplitude Modulation (MQAM) Signaling
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Figure 2.3 Signal space diagrams for rectangular QAM signals 

In MQAM, the transmitted signal can be represented as

= + 7M = l,. .. ,M ;0 < t< T . (2.5)

From (2.5), it can be seen that MQAM may be considered as a combination of 

amplitude and phase modulations. MQAM signals can be constructed by impressing 

separate information bits onto two quadrature carriers, c o s l r f j  and

sin 2 ;^ i  using PAM. Assume Gray coding, examples of signal space diagrams for 

M = 4, M  = 8 and M  = 16 are given in Figure 2.3.

2.2 Symbol Error Rate (SER) Performance of M-ary Signaling 

in AWGN Channels

Assuming that the M-ary signal is transmitted through an additive white Gaussian

noise (AWGN) channel, the received signal can be expressed as

r{t) = s^(t) + n(t) Q < t< T  m = (2.6)

where n{t) denotes the AWGN process. Based on r ( t ) , a decision is made

regarding which of the M possible waveforms was transmitted. In the following, we

will discuss the probability of making a symbol decision error for different M-ary
13
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signaling schemes [3].

MPSK Signaling

The SER of MPSK with coherent receiver is given as [3]

p M \ M )  w i d s i n ^ l  = erfciV f s i n ^ l  (2.7)
M M

where ^  denotes the SNR of the decision variable, Qiy) = f  ‘
^  V2;r

2 1  ̂ V
_y > 0 erfc{y) = ^ e ~ ‘ d t , y > 0  and it is noticed that Qiy) = —

In “A new simple and exact result for calculating the probability of error for 
two-dimensional signal eonstellations”, the SER of MPSK is also proved to be [4]

sin^(^/M )I W1/ ^ ---------------
7t sin 6

(2.8)

MPAM Signaling

The SER of MPAM with coherent receiver is given as [3]

M

M  — 1 
M

I _ 1 L _
(M ^-1)

(2.9)

MFSK Signaling

The SER of MFSK with noncoherent receiver is given as [1]

M - \ (  ^ \ m + \  f  _ Ÿ \(-1)”
m=\ m  +  \

exp
- m ^  
m  -h 1

(2.10)

Whereas the SER of MFSK with coherent receiver is given as [1]

1
4 n

MQAM Signaling

f l  ^-e r /c ( -y )
M-1*

1 — exp
l2  J

(2 .11)

14
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The SER of MQAM is given as [3]

1
1

- 4 u i - - .  :
{m —l)

. (2 .12)
M  4 m  ^

It is noted that, the SER performance of 4-QAM and 4-PSK is approximated identical. 

Using (2.7), the SER of 4-PSK is /»g('^;4) « 2g(V f ) . On the other hand. Using 

(2.12), the SER of 4-QAM is /7,(^;4) = 2 6 (V f)-g " (V f)« 2 6 (V f) . These results 

show the correctness of (2.7) and (2.12).

2.3 Fading Channel

n(0

Figure 2.4 Equivalent complex baseband channel model 

An equivalent model for a eomplex time varying communication channel is 

given in Figure 2.4 [1]. It is shown that the received signal r{t) can be expressed as

r (0  = x(t)<8>/i(t,T) + n(t) (2.13)

where <8> represents convolution, x(i) denotes the transmitted signal, h{t,r) 

represents the impulse response of the channel, and n(i) is the noise. The impulse 

response h{t, v) completely characterizes the channel and is a function of both t 

and r . The variable t represents the time variations due to motion, whereas t 

represents the channel multipath delay for a fixed value of t [5].

15
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N ~ 2

Figure 2.5 An example of discrete-time impulse response model for a time varying
multipath radio channel

In wireless communication systems, especially wireless mobile communication 

systems, the receiver may receive multiple versions of the same transmitted signal at 

slightly different times due to the slightly different distances thus different excess 

delays of different paths. Those paths may include the shortest line-of-sight (LOS) 

path, the reflection paths which are produced from surfaces much larger than the 

signal wavelength, the diffraction paths which are produced at the sharp edge of an 

impenetrable body with dimension larger than the signal wavelength, and the 

scattering paths which are produced when the transmitted signal hits on large number 

of rough objects with small size compared to the signal wavelength. Therefore the 

complex impulse response for a general time varying multipath radio channel can be 

given as [6]

h{t^'^) = Ÿ.^k i f )S[r-r ,{ t) \  (2.14)
k=0

where K  represents the number of possible multipath components, ( )̂ and (t)

are the complex gain and excess delay of the k th multipath component at time t .

16
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Figure 2.5 [5] shows an example of discrete-time impulse response model for a time 

varying multipath radio channel.

Based on the multipath delay spread, we define a channel parameter of channel 

coherence bandwidth (5^ ), which is given as [5]

1
cS,

(2.15)

where is the rms delay spread defined as [5]

^ -(^)^ • (2.16) 

With T being the mean excess delay and being the second moment o f the 

excess delay, c is a constant that depends on the frequency correlation function 

requirement in the definition of . For instance, if the frequency correlation 

function is at least 0.9, c = 50, whereas if the frequency correlation function is at 

least 0.5, c = 5. Accordingly, radio channels can be classified into flat fading or 

frequency selective fading channels.

Flat Fading Channel

s{t)

.y(f) r (0

t t /
0

r (0

^ ( / )

f c

^ ( / )

f c

2 ((/)

/ I u r
f c

Figure 2.6 Flat fading channel characteristics 
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If the transmitted signal has a bandwidth W < the channel is called flat 

fading channel. In flat fading charmels, all frequency components in the transmitted 

signal undergo the same gain and linear phase response. The characteristics of a flat 

fading channel are illustrated in Figure 2.6 [5]. Therefore, flat fading channels are also 

referred to as narrowband channels. It can be seen that in flat fading channels, 

although the received signal may undergo amplitude fluctuations due to the variation 

in the channel gain over time, the spectral characteristics of the transmitted signal is 

kept in the received signal.

Frequency Selective Fading Channel

s{ t )

0 T

^ ( / )

h( t , r )

0 T

f c

r( t )

07: 7:4-T

Figure 2.7 Frequency selective fading channel characteristics 

If the transmitted signal has a bandwidth W >B^, the channel is called 

frequency selective. Frequency selective fading channels are also known as wideband 

channels. Frequency selective fading is caused by multipath delays which approach or 

exceed the symbol period of the transmitted symbol. The characteristics of a 

frequency selective fading channel are illustrated in Figure 2.7 [5]. It can be seen that

18
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in frequency selective fading channels, channel gains and phase responses vary over 

the spectrum of the transmitted signal and the received signal is distorted and 

time-dispersed. Due to the time dispersion, transmitted symbols may overlap with 

each other and thus inter-symbol interference (ISI) is induced.

Rayleigh and Rician Fading 

The envelope of the sum of two independent quadrature Gaussian random 

signals with zero mean and common variance obeys a Rayleigh distribution. That is, 

let

R = (2.17)

where X^ and are statistically independent Gaussian random variables with 

mean m, = mj = 0 and variance = cr  ̂ , then R follows Rayleigh

distribution with a probability density function (PDF) given by [3]

\

, r > 0 .  (2.18)= — Gxp 
<T

In mobile radio channels, the Rayleigh distribution is widely used to represent 

the statistical characteristics of the received signal envelope of a flat fading channel, 

or the received envelope of an individual multipath component.

When there is a dominant stationary signal component present, such as a LOS 

propagation path, the received signal envelope of a flat fading channel or an 

individual multipath component follows Rician distribution, whose PDF is given by 

[3]

19
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p ,( r )=  > 0 ,r > 0 (2.19)

where s denotes the peak amplitude of the dominant signal, /qQ  is the modified 

Bessel function of the first kind and zero-order. It can be seen that if  5 = 0 , i.e., if the 

dominant path diminishes, a Rician fading reduces to a Rayleigh fading.

2.4 Diversity Technique

It is observed that even when one radio path undergoes a deep fade, another 

independent path may not and may have a strong signal power at the same instance of 

time. By having multiple independent paths to choose or to combine, both the 

instantaneous and the average signal-to-noise ratios (SNRs) at the receiver may be 

improved, by as much as 20 to 30 dB [5]. Diversity technique is based on this 

observation and is a useful receiver technique in wireless communication systems.

The most widely used form of diversity in wireless communication systems is to 

use multiple receiving anteimas, also called an antenna array, where the elements of 

the array are separated enough in distance, often on the order of several tens of 

wavelengths. This type of diversity is referred to as space diversity. With space 

diversity, independent fading paths are realized without an increase in transmitted 

signal power or transmission bandwidth.

Other methods of achieving diversity include polarization diversity, frequency

diversity, and time diversity. In polarization diversity, multiple versions o f the

information signal are transmitted via antennas using orthogonal polarizations, like

circular and linear polarizations. In frequency diversity, multiple versions of the
20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information signal are transmitted on multiple carrier frequencies, which are separated 

by at least the channel coherence bandwidth. In time diversity, information signals are 

transmitted repeatedly at enough time spacings.

A generalized block diagram for diversity with M  independent branches is 

given in Figure 2.8 [5]. Based on the reception method, diversity techniques can be 

classified into selection diversity, maximum ratio combining (MRC) diversity, and 

equal gain combining (EGC) diversity.

O u tp u t

M
M

S w itch in g  iogic 
o r  d e m o d u la to r

V ariab ie  G a in

Figure 2.8 Generalized block diagram for diversity 

Selection Diversity

In selection diversity, the receiver branch with the highest instantaneous SNR is 

connected to the demodulator and provides the output. Selection diversity is easy to 

implement because all that is needed is a monitoring station and a switch at receiver. 

However, it is not an optimal diversity technique because it does not use all possible 

branches simultaneously.

21
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Maximal Ratio Combining (MRC)

Output

M

a,

Detector
Cophase 
and sum

Variable Gain

Figure 2.9 Maximum radio combining

In MRC, the signals from all of the M  available branches are weighted 

according to their individual SNRs and then co-phased and summed. MRC uses all of 

the M  available branches in a co-phased and weighted manner such that the output 

SNR is the sum of the SNRs of all branches, which is the highest achievable SNR at 

the receiver. A block diagram of MRC is shown in Figure 2.9 [5], in which a j  

equals to the conjugate of [7] [8].

Equal Gain Combining (EGC)

In EGC, the branch weights are all set to unity, but the signals from each branch 

are co-phased to exploit the signal received from all branches simultaneously. EGC 

has a much easier implementation than MRC, but its performance is only marginally 

inferior to that of MRC and much better than that of selection diversity.

22
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2.5 Orthogonal Frequency-Division Multiplexing (OFDM)

Figure 2.10 Principle of OFDM

As a technique to combat ISI due to frequency selective multipath propagation of 

channel, OFDM is now widely used in our life. Example applications include 

wideband data communications over mobile radio FM channel, high-bit-rate digital 

subscriber lines (HDSL), asymmetric digital subscriber lines (ADSL), 

very-high-speed digital subscriber lines (VDSL), digital audio broadcasting (DBA) 

and high-definition television (HDTV) terrestrial broadcasting [9].

OFDM is a promising technique to combat ISI due to frequency selective 

multipath propagation of the channel. As shown in Figure 2.10 [2] , in OFDM, the 

wideband channel with bandwidth W is divided into a number of orthogonal 

subchannels with equal-bandwidth A/ which is sufficiently narrow so that the 

frequency response characteristics of each subchannel are nearly flat.

In Figure 2.11 [10], an OFDM multicarrier transmitter and receiver is given .
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R/N b p s

R bps
Serial to Parallel 

Converter

QAM/PSK
modulator 9(t)

So(0/

R/N bps cos( 2 ;^ o O

QAM/PSK
modulator g(t)

cos( 2 ^ ,0
R/N bps

QAM/PSK
^  N ~ \modulator g(t)

(0_

COS( Transm itter

■So ( f ) + «0 ( d -

/o

QAM /PSK
dem odulato r

R/N bps

S ( 0  +  n ( t )

f

QAM /PSK
dem odulato r

cos( 2;7f(,/)
R/N bps Parallel to Serial 

C onverter
R bps

v - i  ( ^ )  ^ N - \  ( ^ )

1 , .1
QAM/PSK R/N bps

ĉos(

Figure 2.11 OFDM multicarrier transmitter and receiver 

We can improve the spectral efficiency of OFDM by overlapping the 

subchannels. The subcarriers must still be orthogonal so that they can be separated by 

the receiver. Note that the baseband subcarriers {cos(2;^Y/r + ̂ j \ j  = 1,2...j form a 

set of orthogonal basis functions on the interval [O, T ] for any set of subcarrier phase 

offsets This implies that the minimum frequency separation required for

sub-carriers to remain orthogonal over the symbol interval [0,r] is \ / T  for 

arbitrary sub carrier phase offsets. So if we use raised cosine pulses

it can be shown that we have

&in 7Ü IT  cos /3m / T 
M i l  l -4 /)Y/T^

T = 0.5(1 + /?)/.8

(2.20)

(2 .21)
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With = 1, we would have T = \ ! B , and a carrier separation of B . Since the 

passband bandwidth of each subchannel is 2 5 , the passband subchannels in this 

system would overlap. OFDM signal with overlapping subcarriers is shown in Figure 

2.12 [10].

a.

/ o /.

S(f>

A f N - \

Figure 2.12 OFDM signal with overlapping subcarrier

X

,x{t) R bps

cos(

A d d  C y c lic

Figure 2.13 OFDM with IFFT/FFT Implementation

An equivalent IFFT/FFT implementation of OFDM is given in Figure 2.13 [10].

At the transmitter, a serial-to-parallel converter divides the input information stream

into N  substreams, each of which is transmitted over a different subcarrier,

implemented using an inverse fast Fourier transform (IFFT). The signal samples

x„(n = 0 ,...,iV -l) generated by computing the IFFT of the input symbols
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and parallel-to-serial converted, are passed through a 

digital-to-analog (D/A) converter whose output is the OFDM signal waveform x(/). 

In order to eliminate the residual ISI, a cyclic prefix is added to each block of the N  

signal samples.

The received signal is first passed through an analog-to-digital (A/D) converter 

and becomes a digital signal. Then, the prefix is removed and the remaining part of 

the digital signal is passed through a serial-to-parallel converter and becomes N 

parallel digital signals. The signal = 0 ,...,A -l)  generated by computing the 

FFT of the N parallel digital signals is then passed through a parallel-to-serial 

converter and demodulated to provide a recovered version of the information stream.

26
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Chapter 3

Asymptotic Performance of 
Single-Carrier M-ary Signals on 
Multipath Rician Fading Diversity 
Channels

In this chapter, we consider the performance of digital communication systems 

with single-carrier M-ary signals on multipath Rician fading diversity channels. The 

exact error rate is so complex that we consider the asymptotic error rate at high 

average SNRs. A general theorem is provided to reveal the asymptotic error 

probability of single-carrier signals over multipath Rician fading channels. Another 

two theorems are also studied for the special cases in which the conditional error 

probability is a function of the sum of the received signal SNRs in multipaths or a 

function of the sum of the received signal amplitudes in multipaths. We derive 

closed-form asymptotic error expressions for single-carrier digital communication 

systems with MPSK, MPAM, MQAM, and MFSK signalings.
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3.1 System Model

n(t)
r(t)

x(t) r(t)

Baseband
Transmitter

Equivalent Baseband 
Channel
h{t , r )

Baseband
Receiver

channel
h(t,T)

Figure 3.1 Communication system

The system considered in this chapter is given in Figure 3.1. The transmitter 

sends one of the M  possible signals. We assume that E is the average transmitted 

energy per symbol. As given in (2.14), the complex impulse response for a multipath 

channel is given as

= . (3.1)
)t=0

It is assumed that the fading is slow, i.e., over the period of a symbol duration T , 

the channel keeps constant. Therefore, (3.1) can be simplified as

h{( ,T )=Ÿja ,ô[ t -T^]  (3.2)
k=0

where can be given as .

We assume that the amplitudes of the received k th path for k = \,...,K are 

independent and each follows a Rician distribution, that is, the PDF of is given as 

[1]
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2 2
a * J

2 G X p _  2 •‘ 0 2
_ _ V ;

(3.3)

where is the nonfading signal component or dominant (specular) component, 

2 (7  ̂ is average power in the random component.

It can be shown that the PDF of p̂ . = is given by [1 ]

/ ( p j  = — exp Pk + A
h

U p 7 ,  ]

Yk L Yk J Yk J
(3A)

where N q 12 is additive white Gaussian noise power spectral density. E I N q

is the SNR of the dominant component, = 2aj^^E / vVg is the average SNR of the

P V  ^
random component. The parameters S, = —  = — also known as Rician K factor

K-\
and of importance in evaluating the performance in Rician fading

i=0

channels. Therefore, f {p^  ) can also be given as [1]

 ̂ (3 5)
Yk V r Yk

We denote the symbol error rate conditioned on the value of p , which is called 

conditional SER.

= . (3.6)

where M  stand for M-ary.

Due to the independency of multiple paths, which is a reasonable and widely used 

assumption, the elements of p are independent. Therefore, the joint PDF / (p )  is 

given as

/ (p )  = f{Po ) / ( a  )  • -f{pK-i ) • (3.7)
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The average SER over the Rician channel can therefore be obtained by averaging 

the conditional SER over the PDF of / (p )  , that is [1]

■ K M  

K - \

Pk
g

' Yk
R,(Po (3.8)

where Tkm ~ \ \ Y k  • Note that the SER discussed in chapter 2 is conditional SER.
k=0

The asymptotic value of PXK',M) with »1 ,V A  is [1]

pA k -,m P KM (3.9)
K M

where is a symbol asymptotic parameter defined as [1] 

We also define ^  as [1]

(3.10)

/I. ''KM

is the symbol asymptotic parameter relative to the average bit SNR.

(3.11)

3.2 A General Asymptotic Theorem

Theorem 1[1] : If is integrable in the K-dimensional space of p and

if the integral ^ p “pXPo^-;PK-\'>^)^Pk->^-^-P^~^ results in a singularity of 

order less than or, V a > 0 , then is equal to the volume enclosed by

y»g(p;M) in the K-dimensional space, that is

(3.12)

Proof:

We start the proof of Theorem 1 by considering the single path channel. For K  = \

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-E si 

g ''V,
Xo

r^oPo
Yo

By using the trigonometric form of I q (x) = — f  cos (1; M )  can be
7T ""

given as

P^(1;M) = - — [dp^e p ^ P o lM )— [ dûcosûe
/o -0 ;r *

2 |f°acos6
ro

Therefore,

1 pr -  2̂ co ,e jÿ
yog'"/^(1;M ) = -  [ (fPog

By expanding the two exponents using Taylor series expansion, we obtain

_ A
\  J[o V 

n\

A
Yo

m=0 m\

C \
Po

v/o V

« « r  _

" (-1)" y (  (2 7 ^  COS o f
M! mW)l Xo j /»!

n - 0  m=0

A
\ Y 0 y/

( - 1 ) "  (27^  COS o f

nl m\

define a  = n + — 
2

= ^ d p , p , ( w M ) k ^ - ^ d 0 [ d p , p . ( w M )  t
-0 -0 tTo toiv/o j  ri\ m\

= \ ^ + l [ d e f  ÿ ( - i ) '
^  * 60 n! m!

n̂ m̂O

where = [ (^PoPe(Po'M) and q„„o = ~  [ Po“Pe(Po'^)dPo
Yo
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If the integral in has a singularity o f order less than a  , then

a
M=0 /tt=0 m! Xo

(3.13)

By taking the limit of (3.13) as /g -> oo, the second term in (.) become zero.

K m [ dpç ,pXpp,M)

For any K ,

P^{K-,M) = ^— [  d p ^ . . . [  d p i ,_ ,Y \e  l i l W ^ Ÿ ^ p ^ i p ^ , . . . ,  Pfy_^\M),
 ̂ to  , V A j

so we have 

r^g"'F^(% ;M ) = [ (/A . [
x-i r

' Yk
po f  r j ~  \

A  A
Yo

Again, by using the trigonometric form of Jg (.), we have

X-] —

Yk

r  —  1 pr z
- f ' ' *  ■

Similar to the derivation for the case of K = 1, we expand the two exponents using 

Taylor series expansion and obtain

f - i  —

T ,e ‘- : p , ( K M ) = l d p , . . . l d p ^ . , Y \ e  I
k=\

A A
Yk

/■ \ 'H  (
Po COS 9 I—  

V Yo

y

Wg! - A (A ,
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^  [ d p , . . d p
k=l

Pk

Yk

‘0
V ' Yk

#
. . . -u M , ±  ^ U Ï H Ç f e E î ^

^  m^oUoj Mg! Mlg!
Mo#mQ9^0

î -l

X-1 -PJl 
Yk ,

I Yk

A A
I Yk

+ [ ^ P l - [ ^ P K - l f l ^
k~l

if*’ S .
x-1 -— /

" f  f  .^A-l[ ̂ Px-iFl^
—̂1

x - i  - E l

Yk+ [ d p ^ . . . [ d p ,_ ,Y [ e
k=\

A A
' Yk J

z z
^ «0=0 rao=0 Mq

Mo#mQ#0

2 j ^ p -  |a ( p o v ,a - i ;3 V )

( - 1)"° (2 7 Â^cos^}"°
mg! InmO

where g.,.0 = - ^  f  A '^.P,(A  -A -, .
/o

If the integral in has a singularity of order less than a  , then

X 1 —
=  f  d p ,  f . r f A . . . f  d p , , , Y l ^  '• I, iKPk

Yk

+
x-i -£i

Yky dp\--ydpf.-^Y \ e
k=\

KPk
I Yk

1 _  CO 00

S I
( - 1) ^  (2 7 Â  cos6»)”‘ a

«0=0 mo=0 A '
«ômoüO

mg! Yo
(3.14)
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By taking the limit of (3.14) as -> oo, the second term become zero and therefore 

we have

T,e^‘ P,(K-,M) = f  rfA f  d P y . . [ d p , . , f \ e
k=\

-El /
Yk

Yk

We perform the above steps K  -1  times, then we obtain

3.3 Two Theorems for Special Cases

K - \

Theorem 2[1]: If p X p ',M) = p ^ P l M )  with = i.e., p ^ p ; M )  is a
t=o

function of the sum of the received SNRs in multiple paths as in MRC, then ^  is

given by

y  [  p , (p 'M )p ' ' ' 'dp

Proof:

According to Theorem 1, we have

K,M ~ y  y  P  ̂ (Pof-’P k-1’̂ ) ^ P o"-^Pk-1

Since p^(p;M) = p^(p;M),  we have

A ( A ,  --, A -,;3 ^ ) =

Therefore,

K . m = [  ■■■[ P ^ P ’̂ ^^^Po- ^ P k-i 

We introduce the new variables:

P - P o ^ P \  +••• + A -i
X\  = p,

^K-\ ~  P k -\

34
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So we have

Po -  P ~ ^ \  - Xf._̂  > 0
Pj = Xi > 0

P k - \  ~  % - i  ^  ^  

and pg,...,pj^_, are independent

The Jacobian of the transformation is:

a p i

6 p 6 p
a p ,

a p 1 0  ... 0  

- 1  1 0  ...
J  = ÔX, 5 x i axj =  1

0 p , — 1 0  ... 1

^ X - 1

Therefore

K , m = [ . . . y p  {p-M)\j\dpdx^..xIXf._, 

where

K - 2

Vk-\{p)= ^ d x ^ l  ' dx^...^ S *

V k=\ J
K - 1

p - ^ ^ k - -  
V k=\

f  f  ' ^ 2 - f

K -2

Assuming y _̂2 = p  -  x  ̂ -  x^_2 , we obtain:

'K - 2 dxK - 2

k=l

(3.16)
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0
V
k=\

K̂-3
V k=\

=  f  J X i  I "  J X j . . .  I "  & '  p - ^ % t  -  X jc -3
V k=l J

I 2 dxK - 2

X-4
Assuming _ŷ _g = p  -  ^  x̂  ̂ -  x^_j , we obtain:

X:=I

=  f  ' ^ 'd x 2 . . { - y l_ 2 / 6 ^

0
X-4

p - Z ;Ar=l

/  X-4

^  " f  ‘ ° ’ "* P ' Z ^ H  / 3 ! ( ù r'■X-4

— ^c?X] (p ~ Xj —  ̂ /(K — 3)!dx2

= ^ ^ , ( p - x , ) ^ - : / ( ; i r - 2)!

= p"'-V (Æ -l)!.

Therefore, (3.15) can be transformed as 

= l/(j^ - 1)! [ p":-'pXp;M)(fp

Theorem 3[1]: If p^{p;M)= p X p , \M )  with p, =
,k=0

, i.e., p X p 'M )

is a function of the received amplitudes in multipaths as in EGC, then/i^^ is given

by
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2^"' r  K 1
j, P , ( A A  (̂ A -

Proof:

According to Theorem 1, we have

^K ,M  ~  ^  P  JkPo^----) P k - I ^ ^ ^ ^ P q - ' - ^ P k -X ■

Assuming p^ = Ajy^, we obtain

^K.M ~ (A  )'") -^x-l ...dAfy_̂

Since p ,(p ;M ) = p ,(p p M ),

p , ( P o , . . . , P j f _ , ; M )  =  p , ( p ; M )  =  p / p p M ) .

T h e r e f o r e , = | ”... |°2 ^ p  { A K M ) K —̂ k-\^A--^-^k-\ 

We introduce the new variables

Af = Af̂  + Â  +... + Ajy_i

4  = A

%-l — ^K-X

So we have

Aq -  A^—x̂  -  ...-x^_] > 0 

^, = X , > 0

^K-X ~ ^K-X ^ ^

The Jacobian of the transformation is:

d A f r _ x

J  =

ô A j

B A , B A ,

B A i

5 x i 5 x i

BA^

&4,
^Ajy_x

dx.

x-i

1 0 .. .  0
- 1  1 0 ...

- 1  0 ... 1

= 1

We o b t a i n : = |° . . . |”2 ^ p  {AKM)A^x---^K-x\A^K<^x---dxK~x
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= [ M , p , ( A y M ) U , . M , )  (3.18)

w h e r s t / ^ _ ] j  — 2 ^  x^dx,...^!^ <■. x,,_i A, ~ 'V,
V i= l  J

«4-JC -Yx (  X-2 \

V t = l  J

K - 1

Assuming = A, -  - Xĵ _, , we obtain

t/;ç-_i(ri,) = 2^ l̂ 'xiCfXi 1 '̂ 'x^dk^ - j" A -
' '  K - 2  ^

4  -  -  A -1 d{-y^-x)
V *=i y

= 2^ 1 ’̂XidXj I  ” ' x^dx;...
r ( K - 2  \

-,

y  K - x  y ~  y  K- x 4 -Z^A n 0

- V k=X
-

p V'- I ; : .
*=1

f  K - 2

16dxK - 2
\  k=X y

i,-Zv
i-1  X K - 2

f  X-3

4 - I
V k=X

\ 3

X* A -2 /3!dk^_; .

Assuming = A ~ ' ^ ^ k ~ ^ k-i , we obtain
4=1

^ x - i(A )~ 7  J* XjdXj X2dx2...^^^3^  ̂>'̂ _2 A  ~ ' ^ ^ k  ~ y  K-2 | / 6d(—
t= l

3̂2 dx^ • • •
- ( AT-3 \ -,
y  K-1 /30 — ŷ ;-2 4  “ Z-̂ A /24 0

-  ̂ A=1 - p *=i

= 2 ^  ^ 4 (^ 1  ' 'x 2 ( ù :2 . . .p  A
V k=x J

15\dxK - 2

= 2^ X.dki X;dk2 ( 4  -  4  -  JC; /(2K -  5)!

= 2 "̂  x,dk, ( 4  -  X ; / ( 2^  -3)!

3 8
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Therefore, (3.18) can be transformed as 

4 .«  = f  d A , p M r M ) 2 ‘' A ^ - ' K I K - X ) \  

= 2 “-' !(2K - 1)11"dA,'‘p , {aE M )A ,

= 2“- ' l ( l K - l ) \ l d p , p , i p , - M ) p ,

l K - 2

K - \

3.4 Asymptotic Performance of M-ary Signaling

Before the discussion of asymptotic performance of M-ary signaling, two lemmas 

which will be used in the following discussion, will be proved first.

Lemma 1 : [  p""'* exp(- pC)dp = ^

Proof: r  ' exp(- pC)

=  ( - c x 'e - i )  f

p ^ ‘‘ exp(- pC)
(-CXAT-l)

^ ^ f e x p ( - p c y p «

- ^ , ^ f Z - V e x p ( - ^ )

-  f  exp(-pcVp^''

a

3 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma2: =
4 K \ K V ^  Kf

^ f  2^  y s m 2^2/ - 8in 2^,/)
21

Proof: Using Euler’s expression sin^^ 6  = 2"^^ 

we obtain

^2K^

v ^ y

//%

v ^ y
(-1)' C O S 2(9/

(-l)'cos26H

- I K (2^ )!
K\K\

(02 - ( 9 i ) + 2 ^
^ (  2K M sm2e2l-sm20, l )

V 1
1=1 21

It has been shown that the SNR of the decision variable is equal to p  for 

coherent MRC, and is equal to P, / K  for coherent EGC [8], where as

discussed in hapter 2.

K - l

p  = YuPk
t=o

K -1  2
A = Œ A ]

(3.19)

(3.20)
k=0

MPSK signaling

The asymptotic performance of MRC-MPSK is given as[l]

, - 2 K

A,'hxM [log2 M sin (tt/M)] " Z  ^  , ( - 1)'
sm(27d/M)

7Ü
(3.20)

M  J 

Proof:

Based on the definition of K i,,m in (3.11) and the result of (3.15) in Theorem 2, we 

have
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4
À■K,M

1
(log^M)^ (%-!)!

Based on the expression of (^;M ) for MPSK signaling in (2.7), we have:

A

Using Lemma 1, we have

s\n^(jcl M)

- P

■P

s\rA {n IM )  
sin^ 0

s\xK{n IM )  
sin^ 6

^ f r f p p " - ' e x p
sin 6 sin^^(;r/M )

and therefore

\ A \  rr i i lM  o-iT

sin^^ 6

( l o g ;  M )  7Ï

Using Lemma 2 with 0̂  = ^ I M  , 0^=71 ,w e  obtain:

2 -2X

(log; M) 7T sin { tt /M)
r

J r / M
+ 2 2 ^

.V
K i=\

, - 2 K

[log; M sin (;t /M )]

^2;irv

y K j
M - \  

M  . /=!

2K

v ^ -Z y
( - 1)

( - 1)' cos(2ar)

, sin{27d / M )
7Ü

The asymptotic performance of EGC-MPSK is given as [ 1 ]

2 -^.KlA:^
&.M [(log; M )sin X ;r/M )f (2K)1 V yv M - I

/= i

^ 2A:  ̂

\ ^ - Z y
( - 1)'

sin(2;d / M )  
nl

(3.21).

Proof:

Based on the definition of ^  in (3.11) and the result of (3.17) in Theorem 3, we 

have
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4
1K , M

(10g;M)'

sK-\

(log;M )"'(2; [ - l ) !

Based on the expression of for MPSK signaling in (2.7) and (3.19), we

obtain:

A,’>>kM (log; M)"^(2;K-1)!

(log; M)"^;r(2A:-l)!

Using Lemma 1, we have

r  d e  '
Jr/M

-P t
s\rA{nl M )  

Ksin" e

(Æ-1)!
' / exp - A

s\xA{n !M)  
Ksm^ G

W M ^ d p . p P o ^ V ■Pt
sin^(;r/M )

K sin"^
sin^^ e  

sin^^(;r/M )

and therefore

2^ - '(Z - l) !
r  -Jr /M cl

sin^^ ^
(log; M)^;r(2A:-l)! sin^^(;r/M)

Using Lemma 2 with 6  ̂ = n l M  , 6 2 = 71, we obtain:

2 -2X2^-: ( ^ _ 1)!^A
A

(log; M)"" sin"'' (;r/M )(2^ -1)1_ n i  T/m v ^ y /=! v ^ -Z y
( - 1) ' cos(26y)

[(log; M ) sin "(yr / M)]^ (2^) !
^2A :Y M -l" i ^ T 2Æ ^

M l - z
/=1 ,A - Z , ( - 1)

I sm{l7dl M )
7Ü

MPAM signaling

The asymptotic error rate performance of MRC-MPAM is given [1]

■buM
M - 1 '  - I  '

K

M 12l0g; M
(3.22)

4 2
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Proof:

M - 1
Since the conditional SER of MPAM signaling is = --------erfc

M

as given in (2.9), according to Theorem 2, we have

(M" - 1)

A
1 M -1

(Æ -l)(log;M )

From erfciy) -  — ^  d^expj — ^

3p

1

sin^ 0

M

, we have

'M ' -1

'bxM (A :-l)(log;M )

M - 1

M n

I

(log;M )^;zM * (K -1)!'

Using Lemma 1, we obtain

M -1  r _ s W ^ ^ (M ^ - l)^

- P

- 3 p  
(m  ̂ -l)sin^ <9

3
(M" -l)s in "  0

(log; M Y  tcM

M -1
M

M "  - 1  

3 log; M
-  f d ^ s in '^ ^ .  
;r

Using Lemma 2, we obtain:

M - 1

M -1
M

M '  - 1  

3(log; M )

M ^ -1  
12 log; M

2 -^^;r(2K)! 
;r K!K!

The asymptotic performance of EGC-MPAM is given as [1]

A,
M -1

M
M "  - 1  

6(log; M) K!
(3.23)

Proof:

M -1
Since the conditional SER of MPAM signaling is p^ (^;M ) =  erfc

M

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as given in (2.9) and (3.19), according to Theorem 3, we have

> x - i

A•b̂ ,M
(2K - l) ( lo g ;M y

From erfc(y) = — ^  dOexp

, K - \

■y
sin 6

A,

M  

, we have

i ( - i  M  — 11

3a  
k̂ [m  ̂ - l )

'bx ,M
(2K - l) ( lo g ;M y

2""-'(M -l)(K -l)!

-  3 A
_ K (M '-l)s in '^ _

(log;M )^;zM (2K -l)! (K -1)! - A
3

K (A A -l) s in '^

Using Lemma 1, we obtain

_  2"'-4 M -l) (K  - 1)! pr (sin""" ^)K^ (M" - 1)"̂A.
(log; M )^;A f(2K -l)!

M (2K -1)!

Using Lemma 2, we obtain:

; 2^-‘( M - 1X K - 1)
M (2 K -l)

M -1
M

M "  - 1  

6(log; M)

K(M^ - 1) 
3(log; M )

M ^ -1  
3(log; M)

K '

-  r sin̂  ̂Ode .
-rr J)

2-^^n(2K)\  
yr K!K!

K !

MQAM signaling

The asymptotic performance of MRC-MQAM is given by

A. M -1  
6(lOg; M )

(2K )A  1 ^
K!K!

1--
\  dV±M

(M -1 ) 
6(log; M) yr \  VMy 1=0 ,K - Z ;

. yrf 

2
21

(3.24).

Proof:

According to Theorem 2,
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4 .»  = V ( K - \ ) \ l p , ( p M ) p ' ' - ' d p  

From (2.12) we have

P e i p - , M )  =  2  

therefore

3p
Km  )  IV 2(m  - 1) j  V Km

\2 3p
' 2 ( M - 1 )

1
(K -l)!(log;M )' P

K - \

- ^ M V 3 p / 2 ( A f - l ) )

er/c^(V 3p/2(M -l))

d p

From erfc{y) = ^  f  exp , g Y t)  = ^  f  exp
2 sin 6 [11] [12],

and 2g(V2y) = erfciy) we have

A,
1

•b̂ ,M (K -l) !( lo g ;M ) ''

 1
(K -l)!(log;M )^

^ d p p K - \  2 ,

n Km )
I" J^exp

•3p
2 iM- \ ) s ix fe _

- 2 p

(log ;M )'';rL  V M j*  (Zi:-!)! 

4
(log; M ) 71

\  > V
V 4 m  ,

2 { M - \ ) s i r fe _

3
' 2(M - l)s in " ^

3
- P

2 { M -V )s \ y  6

Using Lemma 1, we obtain

A
(log; M Y  7t

4

, 1 " |f'(sin""'^)2^ ( M - l )
‘ ‘ t f J I --------- ^ —

2K n\2^,

3̂

(log; M ) 7TV VM .

2(M -1)
3(log;M)

Using Lemma 2, we obtain:

1— ^ 1-  [sin"^ 6 d 0 -  
KM J7t *

3^

2(M -1)~
3(log;M)_

1 I 4 pr/4
Km  j 71

i r
TT *0 sin"''
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A,
2 j M - l )  

3(log; M )

2(M -1)
3(log;M )

- 2 X + 1 yr (2K)!
yr K!K!

1-
VM.

2 ( M - 1 )  

3(log; M)_
'™ y r  (2^ f ___1_ Y

4yr K\K\

2"''yr Km , 1=0 ,K - / y

yd
Y

M -1  
6(log; M )

K

(2K )A  1 ^
K\K\

1- -
V  dviM

(M -1 ) 
6(log; M)

11

n
1-

Km . 1=0 ,K -Z y 21

The asymptotic performance of EGC-MQAM is given as

AbxM 3(log, M ) MK! V  AVJ. y

K (M -l)  
3(log; M)

4(K -1)!
1--

yr(2K - l) ! l  T M j t

. yd
sin —

21

(3.25).
Proof:

According to Theorem 3, we have

= 2 ‘ -' H 2 K (A -MXpP'dp,

since

1- 1

VM.
I 3 a

] 2 K ( M - 1 )

\2

Km

3a

'2 K (M -l)
and

(3.19), therefore

>x-i
AK M (2K -l)!(log ; M )' A

K - l

1 ^ \ r f c
V M j " M 2 K (M -1 )

\2

VÂ7
erfc 3a

(ZA

From ëJfAy) = — exp ■A
sin 0

2K (M -1)

o 1 rr/4
Q (a) = - r  (Z^expW *0

■y
2 sin 0

2Q{K2y]= erfc{y) we have erfc^ (y) = — T d<9exp
yr

■y
sin 0

.So
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A. 3 A

> X - 1

f  d p . p y
\2

Km .

4 p/4 
n f ! 4

da exp 3 A
2 K ( M - \ ) s i r f9 _

2 ' ' ( K - 1)!
(log;M )^yr(2K - l) ! - A 2K (M -l)s in " ^

.%;Yn,r-YI exp

A,

(log ; M )^^yr(2K -l)!(^  Km

Using Lemma 1, we obtain

2"̂  (K -1)! f, 1 V s in '" '^ ( 2 K f  (M -1 ) 
. m  U 3^

A 2 K (M - l) s in '^

(log; M )''y r(2K -l)!

2 "+ '(K -l)!
(log;M )^yr(2K -l)!

1-

TMy!"^ 3

1 Y |'/4  8m""'^(2K )^ (M -l)^
17 i)V M j

2‘̂ {K - \ ) \
(2K -1)! 

2^+'(K -1)!
(2K -1)!

2K (M -1) 
3(log; M)

2K (M -1)
3 ( l0 g ;M )

1 U

VM . 7t
sin"^ 6d9

\2

Km  .

J _  p r /4

n

Using Lemma 2, we obtain:

A%jç,M

2K (M -1)
3(l0g;M )

~2K(M -1)
_3(log;M)

2K (M -1)
3 ( l0 g ;M )

2 "(K -l)!2 -"";r(2 K )!
;r(2 K -l)! K!K!

1
Vm ,

2" + X ^ - l ) ! 2 -'''yr(2K )!r, 11 —
yr(2K -l)! 4K!K! Vm .

t K + i f i r  1M /   ̂ y  K  f  2 K  ^2 ''+"(K -l)!
2"^yr(2K-l)! VM /=o V

. 7d_ 
2

21
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k (m - \ ) '
3(lOg;M)

1
K\

1 - -

V  dviM
K (M -l)  
3(log2 M) ;r(2K -l)!

1 -

4 m  , z
1=0 21

MFSK signaling

In the quadratic noncoherent receiver, the asymptotic parameter for MFSK with 

K = l is [ l]

1
K m  -  \  TLfd-,log; Z - (3.26)

Proof:

From Theorem 2, {p 'M)p^ ^dp. When K  = 1

^  m + \
since

M-x f M

V Ml y

~^Po  
m + l

\ m =-,— K~; we obtain: log; M

1

" l o g ; M i  &  m + l V Ml y

exp
- m p  
m + l

dp

1 i ^ (_l)'"n

m + l
|" M - 1̂ m + l
I Ml J mlog; M

M-1/ - C

log; M  „,=i m V Ml y

Since
k=x k

n 1

= V — [13], we obtain
m=X m

2 M-1 2

log; M  §  m
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In the matched filter coherent receiver, for K = 1 M-ary orthogonal signaling 

the asymptotical parameter for MFSK with K - 1  is [1]

A,
M -1

M  log; M  log; M £A
gr/c(-y) £ gy/c(-y)l

2 I 2 J
dy. (3.27)

Proof:

From Theorem 2, A  ̂̂  ̂ = ’dp . When K = 1, we have

Ajv = ^  A (A M )d p

d y , we haveSince p  (p ,M ) = T e
An

1- -^e/yc(-y)
V2

K m -
K M

log; M  log; 

1

-(y-xfpf
| e r / c ( - y )

M -1  ■

1 -

u

-  r~ r  dy
Vyr log; M  

Assumingt = y - K p  , we have

K m = n . - -  w  [ j y

Kerfc{-y)
M-1

1 -
l 2 J

dpe -(y-ppŸ

-x/YlOg; M  

1

V^lOg; M  

1

Kn  log; M

-gy/c(-A)
M - l "

1 -
l 2  J

fA /"
1 ,M-1

Y e ‘ (2tdt -2yd t)  

[e~^" + Knyerfc{-y)]

1 / -  / -  (1  
-er fc{-y)  + y 7 ty e r fc { -y ) -y n y  —erfc{-y))

J

2 2 1 \  ^
Since erfc(y) = \ e~‘ dt , we have d -er fc{-y )  -e~^K Kndy  .Therefore,

Vyr £2  ;

A,
1

\M log; M  log; M

nM-1
+  -

10g;M
A

1
e/yc(-y)
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Assuming x = ^ e r f c { - y )  ,

1 1
logj M  log, M  

1 1

logjM

M
logg M  M lo g jM

1
+ ■

0 log; M

£

£y \e r f c i - y )
2 U  ;

M - 1 £y
M ~

2 I  2 J
(/y

M  log; M  log; M  

The results we have obtained in this chapter are summarized in Table I.
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Table I Asymptotic Parameters for M-ary Signaling on Rician fading channels

Signaling and
Receiver
Schemes

Asymptotic Parameter

MRC-MPSK - I K

[log; M  sin {nIM)]
M -1

. M  .
2^

K - l ( - 1)'
sm{l7d / M)

7tl

EGC-MPSK

(2Æ )![log;M sinX ;r/M )]'
MRC-MPAM M -1 ' M " - l  '

K

M 121og;M^

M - n
( - 1)

/ sin(27d IM)  
ni

EGC-MPAM M -1
M

M "  - 1  

6 log; M Kl
MRC-MQAM

bg,M
M -1  

6(log; M )
(27[)

(M -1 ) 
6(log; M)

K

n
1 -

K\K\  

1
Vm ,

M

K  f  2 K  ^

/= o K - l

7Ü

T
21

EGC-MQAM
k {m - \ ) '
3(log; M)

K

K\ M

K { M - \ )  
3(log; M )

4(Æ-1)!
;r(2Æ-l ) !

\2 . 7Ü

1 -

Vm 1=0

2K
K - l

\  sm-

21

NonCoh-MFSK _ J _ y l
log; M  ..1 M ( ̂  = 1 )

MF-MFSK M -1  2■ + ■
M  log; M  log; M

fe/yc(-y)l m"

2 I 2 J (ii: = i)
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3.5 Asymptotic Performance on Multipath Rayleigh Fading 

Channels

For the Rayleigh fading channel, the asymptotic SER is given by [1]

= (3.28)
1 fK M

Proof:

Based on (3.9) {K',M} = --------- —̂ • For the Rayleigh channel = 0 we have
^K,M

3.6 Numerical Results

In the following simulations, for multipath Rician fading channel, it is assumed 

that =10 and 2cr  ̂ = 30, with v\ and 2cr  ̂ defined in (3.4). It is also assumed 

that the average SNR E / N ^ ,  which is also defined in (3.4), is equal to 1. For 

multipath Rayleigh fading channel, it is assumed that 2al  = 40 ,  so that the total 

energy in multipaths of the Rayleigh fading channel and the Rician fading chaimel is 

the same and we can provide a fair comparison between these two channels. All the 

other settings are kept the same as in the multipath Rician fading channel case.

Figure 3.2 shows the asymptotic SER of MPSK, MPAM and MQAM signaling 

with coherent MRC receiver in the multipath Rician fading channel under different 

diversity order K . We notice that as K  increases, the asymptotic SER decreases, 

i.e., the performance becomes better as diversity order increases. In addition, fi-om the
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curves, it can be shown that MQAM is better than MPSK, and MPSK is better than 

MPAM in terms of the asymptotic SER performance. As expected, as the modulation 

constellation size M  increases, the performance degrades.

The asymptotical SER of MPSK, MPAM and MQAM signaling with coherent 

EGC receiver in the multipath Rician fading channel under different diversity order is 

given in Figure 3.3. From this figure, similar conclusions as discussed above in Figure 

3.2 can be drawn. That is, the asymptotic SER of MQAM is superior to that of MPSK, 

and the asymptotic SER of MPSK is better than that of MPAM.

We also compare the asymptotical SER of MPSK, MPAM and MQAM signaling 

with MRC and EGC receivers in the multipath Rician fading channel in Figure 3.4. 

The results in Figure 3.4 confirm the well-known conclusion that MRC provides a 

better performance than EGC.

For the multipath Rayleigh fading channel, the asymptotical SERs of MPSK, 

MPAM and MQAM signaling with coherent MRC receiver and coherent EGC 

receiver under different diversity order are given in Figures 3.5 and 3.6, respectively. 

From these figures, similar conclusions as discussed above in Figures 3.2 and 3.3 can 

be drawn. That is, the asymptotic SER of MQAM is superior to that of MPSK, and 

the asymptotic SER of MPSK is better than that of MPAM.

In Figure 3.7, we compare the asymptotical SER of MPSK, MPAM and MQAM 

signaling with MRC receivers in the multipath Rayleigh and the multipath Rician 

fading channels, and in Figure 3.8 we compare that with EGC receivers. The results in
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Figures 3.7 and 3.8 show that Rician fading channels provide a little bit better 

performance than Rayleigh fading channels.

The asymptotical SER of MFSK with single received branch and with coherent 

and non-coherent receivers under different values of modulation constellation size 

M  is given in Figure 3.9. The performance increases as M  improves. However, as 

M  becomes large, the impact of the increase in M  on the performance becomes 

less.
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• 4-PAM R d a n  l ^ n g  
O 16-PAM R d a if e d n g  
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—  1604IVI R d a n  fedng
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,-18

10
Dversity O d e r K

Figure 3.2 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rician fading with MRC receiver
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P  versus K ftx IVPSK N/PAM and MCVMVI R d a n  fedng (EGC receiver)
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Dversity O d e r K

Figure 3.3 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rician fading with EGC receiver
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p  versus K ibr f^/PSK, h/PAM and MCV\M
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Figure 3.4 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM 
Rician fading with MRC and EGC receiver
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Figure 3.5 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM 
Rayleigh fading with MRC receiver
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Figure 3.6 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM
Rayleigh fading with EGC receiver
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Figure 3.7 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM 
Rayleigh and Rician fading with MRC receiver
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Figure 3.8 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM 
Rayleigh and Rician fading with EGC receiver
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Figure 3.9 Asymptotical SER of MFSK with coherent and non-coherent receivers
under different M values
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Chapter 4 

Asymptotic Performance of OFDM 
M-ary Signals on Multipath Rician 
Fading Diversity Channels

In this chapter, based on the results obtained in Chapter 3, asymptotic 

performance of OFDM M-ary signals on multipath Rician fading diversity channels 

will be discussed.

4.1 System Model

We consider an OFDM system with N subcarriers. Denoting the modulated data 

sequence in one OFDM symbol as D(0), D ( l ) , ..., D( A  -1 ), after the inverse

discrete Fourier transform (IDFT), the time-domain OFDM signal can be expressed as 

[14]

4 » )  = — . (4.1)

The channel impulse response of the multipath fading channel is modeled as a 

finite impulse response (FIR) filter with taps /i(n),u = 0 ,I ,...,Z -I , where L is the

number of multipaths and L « N . h { n ) , n - 0 , \ , - ; L - \  are mutually independent 

and can be written as

h(n) = \h{rt)̂ ê *" = . (4.2)

The joint PDF of and (j)̂  for a multipath Rician fading channel is given by 

[15]
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(4.3)
20-'

where r,„ is the dominant component of the nth channel tap, and cr' is the 

variance.

Therefore, the frequency-domain channel impulse response is [14] 

W  = ^  = g  . (4.4)
M=0 M=0

It is assumed that the maximum delay is less than the length of the cyclic prefix, and 

perfect timing and synchronization are achieved at the receiver. Therefore, 

intersymbol interference (ISI) and inter-carrier interference (ICI) are not considered in 

the following analysis.

The received signal r(»),M = 0,1,...,A - I  , is first analog-to-digital (A/D)

processed and removed of the cyclic prefix. After the discrete Fourier transform 

(DFT), the output signal is given as

^ W  = — = H{m)D{m) + = - \  (4.5)
A  ,;=0

where A(m) are independent identically distributed (i.i.d.) complex Gaussian noise 

with zero mean and unit variance. That is, each OFDM subcarrier undergoes a 

frequency flat fading chaimel characterized by H{m).

It is noted that

/i=0 «=0 «=0

= ^ X , + j Y , = X * j Y  (4.6)
M=0

i.e., d n ~ K ~  2 ^ w /A (m o d 2 ;r) . So the joint PDF of and^„ is

+ r , /  -  cos(^, + 2WI7M/A)
2(7^

(4.7)
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ln(7‘
-exp

2(7 V

2 2 / I  I m m  -  • ^  • 2 .m m- 2 f ; , f ; . c o s ^ , c o s - ^  + 2 ry ,,sm ^„sm —^
/

Define X^ + jY^ = R^e^'" , so we have X„=R„cos© „ , Y,,=i?„ sin©„ .

Also define ^ cos^^ ^  = r j  , r s i n = r /  , then it can be show that thei l l  HI J 3/f

joint PDF of X„and7„ is

1
A . . i ^ K ,7 j  = ^ ^ e x p

20-'

l7 ia ‘
exp

2(7^
(4.8)

By integrating over (or x„ ), the PDF of (or 7„ ) can be obtained. It

can be shown that and are independent Gaussian random variables, and

X ~  n {tJ , ( 7 ^ \  ~ n i ç - r j ,<y^] , with A(.) representing Gaussian

distribution.

£ - 1 £ -1

From (4.6), we have A  = , 7  = ^7^, . Since the channel tap
n=0 «=0

coefficients are independent, are mutually independent, 7(,,...,7^_j are

mutually independent, and X„ and Ŷ  (» = 0,1, . . . ,7 - l )  are also mutually 

independent. So we have

+ -  + r,,£_/,Z,cr^) (4.9)

r  ~ 7V(- ( r , /  + r /  +... + r. ,.,qL <r* ) (4.10)

and X and Y are also mutually independent.

Let

^0 + -  + .̂.£-1

+ -  + '^.£-/

(4.11)

(4.12)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



= v / >

then

|A(â:)| ~ R ic ^ y j r J  + r ^ \ L a ^ j  = Rice(r^,La^) 

with RiceQ  denoting Rician distribution. That is, we have

(4.13)

(4.14)

L a '
-exp f  + L ' 

ILcr^

2 A
-ZZL (4.15)

4.2 Asymptotic Performance of OFDM Signaling

Suppose that there are K diversity branches at OFDM receiver. Based on the 

discussion in 4.1 and in Chapter 3, we have

7 k  ~  2TCTyfc A g  

where r,  ̂ is obtained according to (4.13).

P.

(4.16)

(4.17)

Then ô. ' s , k
K - l

„ or 2 ’ ^ k ^ T j ^ k  1 and 7 ^ 3 ,= ] ^ /^  . Therefore
7  k k=0

according to the discussion in Chapter 3, we have

-*■ KM

Therefore, the asymptotic SER of OFDM signals with diversity receiver can be 

calculated following the procedures listed below:

Step 1. For the k  th diversity branch, calculate

2mm
A

2mm
A

C (A:, m ) = (A:, m ) + ... +  (A:, m)

K  'M) = k  /") + ... + (A:, m)
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L {k, m)  = ^r l{k ,m)+rl{k ,m)

with r^^^{k,m) being the dominant component of the nth path on the Ath diversity

branch and m th subcarrier.

Step 2. Calculate

A i = S ^ :
t=o

^K,M = =(2Lcr^)

Step 3. Calculate according to Table I in Chapter 3.

^K,M

Step 5. Find the average asymptotic SER over N subcarriers by

m-0

4.3 Numerical Results

In the following simulations, it is assumed that L = 2 and E/Nf^ -  ML .  For 

multipath Rician fading channel, it is assumed that = 10 and

2ct,̂ (A:) = 30 (n = 0 ,...,Z -1), with rl^{k) defined in (4.16) and 2(jl{k) defined in

(4.17). For multipath Rayleigh fading channel, it is assumed that 2ct'(A:)=40 s o  

that the total energy in multipaths of the Rayleigh fading channel and the Rician 

fading channel is the same and we can provide a fair comparison between these two 

channels. All the other settings are kept the same as in the multipath Rician fading
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channel case.

Figure 4.1 shows the asymptotic SER of MPSK,MPAM and MQAM OFDM 

signals with coherent MRC receiver in the multipath Rician fading channel under 

different diversity order K .  We notice that as K  increases, the asymptotic SER 

decreases, i.e., the performance becomes better as diversity order increases. In 

addition, from the curves, it can be shown that MQAM is better than MPSK, and 

MPSK is better than MPAM in terms of the asymptotic SER performance. As 

expected, as the modulation constellation size M  increases, the performance 

degrades.

The asymptotical SER of MPSK, MPAM and MQAM OFDM signals with 

coherent EGC receiver in the multipath Rician fading channel under different 

diversity order is given in Figure 4.2. From this figure, similar conclusions as 

discussed above in Figure 4.1 can be drawn. That is, the asymptotic SER of MQAM is 

superior to that of MPSK, and the asymptotic SER of MPSK is better than that of 

MPAM.

We also compare the asymptotical SER of MPSK, MPAM and MQAM OFDM 

signals with MRC and EGC receivers in the multipath Rician fading channel in Figure 

4.3. The results in Figure 4.3 confirm the well-known conclusion that MRC provides 

a better performance than EGC.

For the multipath Rayleigh fading channel, the asymptotical SERs of MPSK, 

MPAM and MQAM OFDM signals with coherent MRC receiver and coherent EGC
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receiver under different diversity order are given in Figures 4.4 and 4.5, respectively. 

From these figures, similar conclusions as discussed above in Figures 4.1 and 4.2 can 

be drawn. That is, the asymptotic SER of MQAM is superior to that of MPSK, and 

the asymptotic SER of MPSK is better than that of MPAM.

In Figure 4.6, we compare the asymptotical SER of MPSK, MPAM and MQAM 

OFDM signals with MRC receivers in the multipath Rayleigh and the multipath 

Rician fading channels, and in Figure 4.7 we compare that with EGC receivers. The 

results in Figures 4.6 and 4.7 show that Rician fading channels provide better 

performance than Rayleigh fading channels.

Asymptotical SERs vs diversity order for MPSK, MPAM and MQAM single 

carrier and OFDM signals with MRC receiver and EGC receiver are given in Figure 

4.8 and 4.9, respectively. It can be shown that OFDM systems outperform single 

carrier systems.
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p  versus K ibr MPSK, N/RAM and MQftM(tv/RC receiver)

4-PAM CFCM 
O 1&PAM OFDM 
X 4-PSKOFCM 
+  16PSK CFD M  
A 4K34MOFDM 

ISO ^M C FC M

5  6  7
Diversity O d er K

Figure 4.1 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
OFDM Rician fading with MRC receiver
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p \e s iB  Kfor IVPSK M ^AM and MCAM(EGCnsoeiver)

4-PAM CFCM 
O 16-PAM OFCM 

4 fS K C F C M  
+  16PSK C FD M  
A 4 0 4 M C F C M  

16Cy\M CFCM

5  6
□vensity O d er K

Figure 4.2 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
OFDM Rician fading with EGC receiver
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p  vensLS K fcr N/PSK N/PAM and MOAM
10"

Q.

1
,-1010'

16PAMOFDMIVRC 
16-PAM OFDM EGC 
16PSK C FD M (^FC  
16-PSK OFCM EGC 
16<yM C FC M IV FC  
1 6 0 4 M  CFCM EGC

,-1510'

□vetBity O d e r K

Figure 4.3 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
OFDM Rician fading with MRC and EGC receiver
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p  versus K ftylV PSK  IVPAM and MCVWIcif OFCM F ^ a ÿ i  fe d rg  (N/RC receiver)

10

CL

10'

,-12

• 4-PAM OFCM Ffeyleic^ fedng 
O 16PAM  CFCM f% ylei^  fe d rg  
X 4-PSK OFCM Ffeylaç^ fedng 
+  1 6 fS K  OFCM F ^eiE #! fedng 
A 4-Q4M CFCM F^deiçji fedng 
—  16CAM CFCM Ffeyleisfi fe d rg,-16

,-18

10
dversity  Order K

Figure 4.4 Asymptotical SER vs diversity order for MFSK, MPAM and MQAM of 
OFDM Rayleigh fading with MRC receiver
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P v a s isK fa rlV P S K , IVPAM a rd  M Q 'V M cjfO FU aviF^aÿi facing (EGC necaver)

Û.

I

-̂10

• 4-PAM OFDM F ^ e i ^  fe d rg  
O 16-PAM CFCM fedng
X 4-PSK OFDM R sy le i^  fedng 
+  1&PSK OFDM F fe y la ^  fedng 
A 4-OVM OFDM F ^ e i ÿ i  fe d rg  

  1&Q4M OFDM R ^ a g h  fe d rg
-̂14

,-16

Figure 4.5 Asymptotical SER vs diversity order for MFSK, MPAM and MQAM of 
OFDM Rayleigh fading with EGC receiver
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P \« su s K fc r lV P S K  k/RAIVt and IV04IVI of CFCM R sy te i^  and R d a n  W r g  (IVR3 reoeixer)

10

10

CL

I
S

10’

,-10

,-12

• 1&PAM CFDM R sy le i^  & dng 
O l& P A M O F C M R danfedng  
X l& PSK O FD M FfeylaçJifedng 
+  IG fS K  CFOVI R d a n  W n g  
A 160JVIOFCM F ^ e i^  W ng 

  1&Q“M O FI3V IR cian1^ng

,-14

,-16

Dversity O d e r K

Figure 4.6 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
OFDM Rayleigh and Rician fading with MRC receiver
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PversuE K fo rN P S K  IVPAMand ofC FO vlR sylagfiand R d a n W rg (E G C reo ek e r)

10

Û.

I 10

16-PAM CFCM R aylac^fedng  
1&PAM OFCM R d a n  fa d rg  
16-PSK CDFCM F^vlagji Isdng  
16-PSK OFCM R d a n  I s fn g  
lO O 'M  CFDM F^ylagh fedng 
1&Q0M CFDM R d a n  fe d rg

,-10

,-12

,-14

10
□ v asity  Q d a r K

Figure 4.7 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
OFDM Rayleigh and Rician fading with EGC receiver
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PversLE K forM =SK  N/PAMarriN/CVWICN/FCreceixer)

1&IVPAM 
O 1&PAMCFCM 

1&PSK 
*  1&PSKOFDM 
A 1 6 0 \M

16QMVICFCM

5  6
D vasity  Q d e rK

Figure 4.8 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
single carrier and OFDM with MRC receiver
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P x a s u s K fa r tv P S K  N/PAMandMCVVM(EGCrecei\er)

1&PAM 
O IfrRAMCFCM 

1&PSK 
+  1&PSKCFCM 
A lecywi

16OVM 0FDM

5  6
Q vasity  Q d e rK

Figure 4.9 Asymptotical SER vs diversity order for MPSK, MPAM and MQAM of 
single carrier and OFDM with EGC receiver
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Chapter 5 

Conclusion and Future Study

The error rate performance of M-ary signals on multipath Rician fading 

diversity channels has been discussed. The exact error rate expressions are too 

complex. Therefore the asymptotic error rate at high average SNR’s is considered. 

First we consider the asymptotic performance of single-carrier M-ary signals on 

multipath Rician fading diversity channels. A general theorem for the asymptotic 

error rate of general diversity receivers over multipath Rician fading has been 

derived, and two other theorems have been derived for the special cases where 

the conditional error probability is a function of the sum of the received SNR’s or 

the sum of normalized received amplitudes, which correspond to the cases using 

MRC and EGC receivers, respectively. Then we consider the asymptotic 

performance of OFDM M-ary signals on multipath Rician fading diversity 

channels.

In the current study of OFDM error rate, we consider each subcarrier 

separately and do not take the cross-correlation between different subcarriers into 

consideration. In addition, no interference is included in the discussion. In the 

future study, the effect of the subcarrier cross-correlation and interference on 

OFDM M-ary signal error rate performance will be studied.
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