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Abstract

Among various ac motors, induction motor (IM) occupies almost 90% of the 

industrial drives due to its simple, robust construction and generally satisfactory 

efficiency as compared to dc motor. However, the control o f IM is complex due to its 

nonlinear nature and the parameters change with operating conditions. Since 1980s, 

field orientation principle (FOP) has been used for high performance control of IM. 

Due to the well-known drawbacks of the fixed-gain proportional-integral (PI), 

proportional-integral-derivative (PID) and various adaptive controllers, over the last 

two decades researchers have been working to apply artificial intelligent controller 

(AIC) for IM drives due to its advantages as compared to the conventional PI, PID 

and adaptive controllers. The main advantages are that these controllers can handle 

any nonlinearity of arbitrary complexity, and their performances are robust. Also 

fuzzy rules and neural network (NN) can be used to model a process for model 

reference or model predictive control. Meanwhile, the designs o f these controllers do 

not depend on accurate system mathematical model. Neuro-fuzzy controller (NFC), as 

a kind o f artificial intelligent controller (AIC), has attracted much attention by 

researchers as it takes advantages from both fuzzy logic controller (FTC) and NN by 

combining the expert human knowledge and the learning ability o f the NN.

Despite lots o f research on AIC application for motor drives, industries are 

still reluctant to use AIC for real-life industrial drives. The main reason is that most of 

AIC require complex calculation and hence suffer from high computational burden. 

Therefore, attention needs to be paid to develop AIC which is suitable for practical
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applications. In order to achieve that, in this thesis, first, a novel, low computational 

and simplified self-tuned NFC is developed for the speed control o f IM drive. For the 

proposed NFC only the speed error is used as the input, unlike conventional NFCs, 

which utilize both speed error and its derivative as inputs. Obviously, this 

simplification lowers down computational burden and makes the NFC easier to be 

implemented in practical applications. Next, a faulty IM with broken rotor bars 

(IMBRB) is considered and a NFC is developed to minimize the speed ripple of that 

motor. The speed error and rotor electrical angle are used as two inputs o f the NFC.

A supervised self-tuning method is also developed for the developed NFCs. 

The system error, instead o f controller error, has been utilized to tune the membership 

functions and weights because the desired controller output is not readily available. 

Also the convergences/divergences of the weights are analyzed and investigated.

Simulation models for indirect field oriented control of IM incorporating both 

of the developed NFCs are developed in Matlab/Simulink. IM drives based on both of 

the developed NFCs are successfully implemented in real-time using DSP board 

DS1I04. For the first NFC, comparisons with conventional NFC and PI are done both 

in simulation and experiment at different operating conditions for a laboratory 1/3 hp 

IM. Also the effectiveness o f the second NFC is tested for a laboratory 0.5 hp IMBRB 

both in simulation and experiment, compared to a well-tuned PI controller. It is found 

from the experimental results that the proposed NFC reduces the fundamental and 

second harmonic components o f speed ripple which are significant components as 

compared to high frequency components.
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Chapter 1

Introduction

This chapter provides an introduction about induction motor (IM) and a review 

of the state-of-the-art-work on the control of the IM drivers. At the end the motivation 

and organization o f this work are also provided.

1.1 Structure of Induction Motors

The IM have been used as a workhorse in the industry due to its simple and 

robust construction. The squirrel-cage motor is a type of widely used IM, as 

compared to the wound-rotor IM. The squirrel-cage motor has unwired and 

inaccessible rotor and owns the additional degree of ruggedness. Therefore, only 

squirrel-cage induction motors are considered in this thesis.

In general, an IM consists of three basic components as shown in Fig. l.I .

1) Stator: Houses the stator core and windings. The stator core consists of many 

layers of laminated steel, which is used as a medium for developing magnetic 

fields.
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Fig. 1.1 Structure of squirrel-cage induction motor: (a) stator, (b) rotor.
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2) Rotor. Also constructed o f many layers of laminated steel. The rotor windings 

consist o f bars of copper or aluminium alloy shorted, at either end, with shorting 

rings.

3) End shields'. Support the bearings which center the rotor within the stator.

The basic principle o f operation o f IMs is that the rotating magnetic field acts 

upon a rotor to develop mechanical torque. The stator winding of the IMs are evenly 

distributed by 120 electrical degrees. As the three-phase current enters the stator 

windings, it creates a rotating magnetic field within the air gap (the space between the 

stator and rotor). The speed that the fields rotate around the stator is known as the 

synchronous speed {N^). As the magnetic field revolves, it cuts the conductors o f the 

rotor and generates a current flowing in the rotor conductors. This creates another 

magnetic field which interacts with the air gap field producing a torque. Consequently, 

the motor rotates at a speed N  <Ng in the direction of the rotating field. The actual 

output speed o f the rotor is related to the synchronous speed and the slip, S, as:

( 1 . 1 )

1.2 Literature Review

Nowadays IMs have been widely utilized in various industrial variable-speed 

drive applications because o f the maintenance advantages and less expensive over dc 

motor drivers. However the control o f IMs is still a challenging problem due to the 

following reasons:

1) The dynamical system is nonlinear.

2) Two o f the state variables (rotor fluxes/currents) are not usually measurable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3) Due to heating, the rotor resistance varies considerably with a significant impact 

on the system dynamics [1].

The development o f high-performance control theory for ac drives, driven by 

industry requirements, has followed a rapid evolution during the last two decades. 

One comprehensive process o f IM control system design involves two levels: first to 

choose a control strategy : and then to design a controller.

As shown in Fig. 1.2 [1], IMs control strategies can be broadly classified into 

two categories such as scalar control and vector control.

Although simple to be implemented. Scalar control has only been used in 

low-performance, cost-effective industry drives. In scalar control, only magnitude and 

frequency (angular speed) o f voltage, current, and flux linkage space vectors are 

controlled. The most common scalar technique is that of constant volts/frequency (v/f). 

In v/f method magnitude o f stator voltage is adjusted in proportion to the frequency in 

order to maintain an approximately constant stator flux in the IM. The v /f method 

consists o f controlling the speed of the rotating magnetic field of the stator by 

changing the supply frequency. However, as the scalar control strategy is based on 

steady-state principles, the transient performance is not optimized. For example, when 

starting an IM directly on line, many times full load torque is developed with inrush 

currents of perhaps six times than rated one.

On the contrary, in vector control, which is based on relations valid for 

dynamic states, not only magnitude and frequency (angular speed), but also 

instantaneous positions o f voltage, current, and flux space vectors are controlled. Thus, 

the vector control acts on the positions o f the space vectors and provides their correct 

orientation both in steady state and during transients. The most popular two
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vector methods are known as field-oriented control (FOC) [2]-[4] and direct torque 

control (DTC) [5]-[9]. They have been invented respectively, in 70’s and 80’s. These 

control strategies are different on the operation principle but their objectives are the 

same. They both aim to control effectively the motor torque and flux in order to force 

the motor to accurately track the command trajectory regardless of the machine and 

load parameter variation or any extraneous disturbances. Both control strategies have 

been successfully implemented in industrial products.

There also exist other vector control methods implemented in different ways. 

Marino et al. [10] has proposed a nonlinear transformation of the motor state variables 

so that, in the new coordinates, the speed and rotor flux amplitude are decoupled by 

feedback. The method is called feedback linearization control (FLC) or input-output 

decoupling [5], [11]-[13]. A similar approach, derived from a multi-scalar model of 

the induction motor, has been proposed by Krzeminski [15]. A method based on the 

variation theory and energy shaping called passivity-based control (PBC) [14] has 

been investigated. In this case, an IM is described in terms of the Euler-Lagrange 

equations expressed in generalized coordinates.

Numerous controllers have been utilized in IM control based on control 

strategies mentioned before. The general classification o f the controllers is presented 

in Fig. 1.3.

Over a long time, conventional linear controllers such as PI, PID have been 

widely applied to IM drives. But these controllers are sensitive to parameter variations 

and load disturbance. The performance depends on operating conditions and PI gains 

and it is also difficult to tune PI gains to solve the overshoot and load disturbance 

rejection problems simultaneously. Overshoot elimination setting will cause a poor 

load disturbance rejection, and rapid load disturbance rejection setting will cause
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overshoot or even instability in the system. To overcome this problem, PI/PID 

controllers with tuning gains have been proposed [18]-[23]. However, the complicated 

calculation makes the tuning either be done off-line [18]-[21] or on-line with a very 

long sampling time such as 10ms [22] and 50ms [23] which are not acceptable in 

some applications.

NF

SMC ANNVGPI Fuzzy

Motor

MRAC InverterSensor

H 2& H lnf
Backstepping

Controllers

Intelligent
Controller

Fault-tolerant
Controller

Conventional
Controller

Adaptive& Robust 
Controller

Fig. 1.3 Classification of controllers for IM.

In order to avoid the shortcomings of PI/PID controllers, researchers applied 

adaptive control techniques for IM drives to achieve parameter insensitivity and fast 

response [24]-[30]. Lorenz and Lawson [24] proposed the model reference adaptive 

control (MRAC). This adaptation functions by creating an error signal between a 

reference motor model and an estimated quantity based on motor outputs. This error 

will modify a gain in the system until the error is driven to zero. However, the 

utilization of the motor voltage terminal quantities increases the system complexity. 

Also these signals can be noisy and degrade the system performance. Rowan and 

Kerkman [25] presented some other models and found that none o f them will provide
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a total solution to the detuning problem. Applications of sliding mode control (SMC) 

in ac drives, mostly in position control systems, have been reported in [26]-[28]. The 

structure and design o f SMA is relatively simple. However, the SMC is facing the 

chattering problem which puts unacceptable vibration stress on the load [28] due to 

the finite sample times of microprocessor implementation. The authors o f [30] 

combined field orientation and adaptive backstepping approach for the control o f IM. 

The design of the control law and the estimation rotor resistance and load torque were 

based on the nonlinear model of IM. However, it is often difficult and sometimes 

almost impossible to develop an accurate mathematical model o f an IM.

H 2  & H<x control theory is also used to design robust controllers for IM 

systems [31]-[36] . Field orientation or feed back linearization has to combine with 

H 2& H co  theory in order to eliminate IM intrinsic nonlinearity. The 

H 2& H co  controllers demonstrated robustness to parameters variations and 

exogenous disturbances, but are highly dependent on accurate system model and 

parameters. In addition complex calculation makes its applieation limited.

In order to overcome the disadvantages o f conventional PI, PID and adaptive 

controllers, recently researcher applied intelligent controllers for motor driver 

applications. The main advantages o f intelligent controllers are; the design of 

intelligent controllers is independent of the system parameters and it can handle 

system nonlinearity.

The artificial neural network (ANN) is well known for its learning ability and 

approximation to any arbitrary eontinuous function. The ANN also possesses the 

ability to perform in noisy environments and is tolerant to faults and missing data. 

Some work has been reported on the use of ANN controllers for IM drives [37]-[41]. 

However, due to the iterative nature of the neural network, training o f the ANN is too
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slow for certain applications. For example, the authors in [38] presented a FOC 

control scheme for IM incorporating an ANN controller with two input nodes, eight 

hidden log-sigmoid neurons and three pure linear output neurons. The ANN was 

trained with 750 samples with a 1% sum-squared error goal. The proposed ANN 

converged after 80,000 iterations. In [39], the authors proposed a simple network 

structure with 4 input nodes, 2 output nodes and no hidden layers for the vector 

control of IM. The error tolerant was set to be 0.1% of the command speed. The ANN 

was trained by an unsupervised algorithm and took “at least a few seconds” to reach 

the goal. Because o f this reason, most o f ANN controllers are trained off-line. 

However, for off-line training, the ANN controllers need a large amount o f data in 

order to cover all the operating conditions. The ANN controller exhibits unacceptably 

poor performance outside o f the operating conditions over which they have been 

trained [37]. Also it is difficult for an off-line-trained ANN controller to cope with the 

dramatically changed environment or system parameters. On the other hand the on­

line training algorithms generally take too much computational overhead and limit the 

sample frequency o f the overall system [40]. In order to reduce the execution time of 

the ANN controller, authors in [41] proposed a network structure with partial fixed- 

weights. But the values of these fixed-weights depended on accurate mathematical 

models which were not always available.

The theory o f fuzzy-logic controller (FLC) is based on the linguistic rules with 

an IF-THEN general structure, which is the basis of human logic. The FLC could also 

handle the nonlinearity of arbitrary complexity. These advantages make FLC 

attractive to IM drives [43]-[48]. However, the design of FLC depends on the 

expertise and trial and error procedure. The values of the constants, membership 

functions, fuzzy sets for the input/output variables, and the rules are all need to be
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adjusted by trial and error if  optimized performance is wanted [43]. To make the 

things worse, a fuzzy controller implemented in the motor drive speed control usually 

has asymmetric membership functions [43], [44]. It is a time-consuming job to find 

proper parameters for these membership functions even by an expert.

Neuro-Fuzzy Controller (NFC) has attracted much attention due to its 

combined ideas FLC and ANN. A NFC offers the control system designer the 

opportunity to make use o f the advantages from both FLC and NN by combining 

transparent and linguistic control rules o f FLC and the learning ability o f the NN. The 

NFC has been utilized by researehers for motor drive applications [49]-[59] and fault 

tolerant control of motor [60], [61]. A typical NFC has a four layer structure: input, 

fuzzfication, rules, and defuzzfication. This leads to the higher complexity compared 

to the FLC and ANN controller. The high complexity causes high computational 

overhead. Despite many advantages of NFCs, the industry has been still reluctant to 

apply these controllers for commercial drives due to high computational burden 

caused by large number o f membership functions, weights and rules, especially on 

self-tuning condition [56], [57]. High computation burden leads to low sampling 

frequency, which is not sufficient for real-time implementation. In [50] the authors 

presented a four-layer NFC with 2 inputs, 3 membership functions each, 9 rules. Only 

rules (weights) were tuned to lower the computational burden, but the cost is that the 

parameters o f membership functions have to be chosen by trial and error procedure. In 

[58] the authors proposed a five-layer NFC: input, fuzzfication, rules, normalization, 

and defuzzfication, in the discrete direct torque control of IM scheme. The authors 

found relatively high torque ripple caused by low sample rate.

10
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1.3 Thesis Motivation

In this work the indirect field-oriented control (IFOC) is selected as a control 

strategy because of its simple structure and low implementation complexity.

As discussed in literature review, the high complexity and computational 

burden have prevented the practical utilization o f the NFCs. Thus in this thesis a low 

computational self-tuned NFC is developed for the speed control o f IM drive. The 

objective o f this work is to simplify the complicated structure o f the conventional 

NFCs and at the same time maintain the system performance to the most extent.

Next, the work has been extended for a faulty IMBRB which suffers from high 

frequency speed ripple and hence mechanical vibration. Conventionally, first, the 

fault is diagnosed and then a fault tolerant controller (FTC) is developed to minimize 

the speed ripple. However, the development of a model for the fault and hence a FTC 

is difficult and time consuming. Therefore, in this thesis, first, the speed ripple of 

IMBRB is investigated through an open loop experiment. And then a NFC is 

developed to minimize the speed ripple o f IMBRB. Thus, the developed NFC works 

as a type o f FTC.

1.4 Thesis Organization

The remaining chapters of the thesis are organized as follows. In Chapter 2 the 

basic concept o f field oriented control (FOC) and neuro-fuzzy controller (NFC) with 

fuzzy singleton rules are explained. The parameters tuning of NFC in a control system 

is also discussed in this chapter. Next, Chapter 3 shows the design procedure o f the 

low computational neuro-fuzzy speed controller for an IM drive. Experimental setup 

and detail implementation procedure are described in this chapter. Simulation and

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



experimental results are shown. A supervised self-tuning method is also developed for 

the NFC. The system error, instead of controller error, has been utilized to tune the 

weights because the desired controller output is not readily available. Chapter 4 

describes research work on the utilization of NFC for IMBRB and analyzes the 

convergences/divergence o f the weights o f the developed NFC. Finally, Chapter 5 

presents a summary o f the contributions of this work, future work and the conclusions. 

After that all pertinent references and appendices are listed.

12
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Chapter 2

Field Orientation & Nenro-Fuzzy 

Control Techniques

This chapter introduces the theory of field orientation eontrol (FOC) and the 

Neuro-fuzzy eontroller (NFC) with fuzzy singleton rules. The training methods of 

NFC are outlined in this chapter. The difference between the Mamdani's fuzzy and 

Sugeno-type fuzzy interferences is also explained. Also the problem related to 

application o f NFC in the control systems is illustrated.

2.1 IM Model for FOC

FOC provides a method of decoupling the two components o f stator currents: 

one producing the air gap flux and the other producing the torque. Therefore, 

independent control o f torque and flux, which is similar to a separately excited dc 

motor, can be achieved. The magnitude and phase of the stator currents are controlled 

in such a way that flux and torque components o f current remain decoupled during

13
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transient and steady-state conditions. The FOC consists of three steps as follows, 

Stepl: Clarke’s Transformation {abc-dq),

Step2: Park’s Transformation(<3?,g-Z)0,

Step3: Rotor Flux Alignment.

2.1.1 Clarke’s Transformation

Krause and Thomas [16] introduced a two phase equivalent machine 

representation o f 3-phase IM. The changes of variables, so-called Clarke’s 

transformation or abc -  a p , which transform the motor equations in the original three 

phase system to the equivalent two phase reference frame, for example, stator coils 

three phase voltages Vas, Vbs, Vcs into corresponding vectors in the stator reference 

frame, are given by.

(11)

- i
2

r
2 x :

V,.
VP s 0 ^. 2

S
2 _ .  CS

The inverse Clarke’s transformation, a b c -a f3 , can be performed as

0

bs

2
3

_ l

3

3 3

u A
(2 2)

Analogous transformations may apply to the other vector quantities of the IM. Thus 

the IM dynamic equations can be described in a  -  coordinates as.

(2.3)
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(2 /0  

(2 5) 

(26)

where R ,i,X ,u  denote resistance, current, flux linkage, and stator voltage input to the 

machine; subscripts “s ” and “r"  stand for stator and rotor, (a ,/?) denote the 

equivalent two phase axis, superscript “s ” denotes the components of a vector with 

respect to a fixed stator reference frame, “r ” denotes the components of a vector with 

respect to frame rotating at speed a>̂ .

It is noted that the stator vector and w'are revolving in the fixed stator

reference frame with speed and that the rotor vector and À' are revolving with 

speed 6)̂ , in the rotor reference frame which is rotating at speed . And we have

<9; =<0, (2.7)

Figure 2.1 illustrates the relationship between stator and rotor reference frames.

ar: Rotor Reference Frame

aj'iStator Reference Frame

Fig. 2.1 Illustration of rotor reference frame and stator reference frame.

15
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2.1.2 Park’s Transformation

From Fig. 2.1, it is easy to see that the vector quantities m a - P  reference 

frame have sinusoidal ac waveforms. AC quantities are somewhat inconvenient as 

they change with rotor position. Therefore, another transformation, named Park’s 

transformation, is introduced which allows conversion of the stationary a - P  

components o f the motor vectors into synchronously rotating a - p frame where the 

quantities become fixed. The Park’s transformation involves the excitation reference 

frame (d,q) which rotates with the speed cô  as shown in Fig. 2.2.

ds; Excitation Reference Frame

*-<%5^:Stator Reference Frame

Fig. 2.2 Illustration o f the excitation reference frame.

This {a ,P ) -> {d,q) transformation is expressed as.

^ds cos(6^) sin%) 
- s in % )  cos(6 >J X A.

(2 8)

where the superscript denotes the new rotating reference frame. While the inverse 

{d, q) -> (or, P) transformation is given by,

cos(6 >̂) -s in ( 6 »J 

sin(i9) cos(<9J
(2.9)

The magnetic equations in rotating frame are given by.

16
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-^ds ~ A ^dr ’ (2 . 1 0 )

^qs -  A  ̂qs (2 • 1 1 )

A/f ~ L + ̂ d d r  Î (2 .1 2 )

jtr=J^w/p + (2.13)

And the torque equation in (d ,q) frame can be written as [3]

(2.14)
JJV^ T̂ .

where is the rotor time constant

r , = ^ .  (2.15)

and Hp is the number o f pole pairs of the IM.

2.1.3 Rotor Flux Alignment

Since the (d ,q) frame has been defined as rotating with the same angular 

velocity as the vector quantities of the motor, any one of these vectors can be used as

a reference with which the {d, q) frame is to be aligned in order to further simplify

the torque (2.14). In classical approach the (d,q) frame is aligned with rotor flux 

vector A '. This leads to

= 0 .  (2T6)

Then the torque equation becomes

2 : = ,  (2 .1 ?)

where

17
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K r ^ ^  —  . (2.18)

Hence, when

= Constant,

There is a linear relationship between current an(J torque.

The FOC schemes can be classified into two groups: the direct fie ld  

orientation (DFO) and indirect fie ld  orientation (IFO). The DFO is based upon 

estimation o f the rotor flux from the terminal voltage and current, while the IFO 

avoids the requirement o f flux estimation by computing the appropriate motor slip 

frequency cô , to obtain the desired flux position 6 '̂  :

= (2.19)

where

(2.20)
I command ^

Both the DFO and IFO, particularly IFO, are parameter sensitive. For example, 

inductance parameters vary about +2 0 %, whereas rotor resistance changes 

dramatically (± 1 0 0 %) with temperature.

A typical closed loop IFO control scheme o f IM is shown in Fig. 2.3. The

objective o f block “Controller” is to generate reference torque . The block “ Ç

Calculation” calculates the reference Ç  according to (2.17) as

C = ^  (2 .2 1 )

where the reference rotor flux vector is given by block “Phir*”. The block “ 4  

Calculation” calculates the reference 4  by [3],

18
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o

O  CO

Fig. 2.3 A typical closed loop IFO control scheme o f IM.
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C = ^ -  (221)
Lm

The function of the block “Rotor Position Estimator” is to estimate the rotor flux 

position 6̂  according to (2.19) and (2.20). The block “dq-ABC” does the inverse 

Park’s and Clarke’s transformation according to (2.9) and (2.2), and then outputs the 

reference 3-phase current. These reference 3-phase current is compared to the 

measured 3-phase current in the block “Current Regulator” which outputs switch 

signals for the inverter block “Universal Bridge”.

2.2 Neuro-fuzzy Controller (NFC)

2.2.1 Basic Structure of Fuzzy Logic Controller

Fig. 2.4 shows the basic structure of a traditional fuzzy logic controller based 

system. Fuzzy logic controllers produce their command outputs from inputs based on 

the fuzzy rules. The fuzzy rule base contains a set o f IF-THEN statements R. For a 

MISO (multi input single output) system,

R = {R^,R^,...,R„],

where the rth fuzzy logic rule is

: IF X, is AND x̂  is Afi AND ... AND x„ is Al" , THEN y  is . (2.23)

In expression (2.23) x„ is a crisp input variable, y  is the command output variable, A f  

m d M ^  are fuzzy sets which affect the way how a human being describes the input x„ 

and output y. The input membership functions are formulas used to map the inputs to 

fuzzy sets with degree o f membership in that set. So for a specific value x,(t) at time t.
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it is mapped to the fuzzy set 4 ' with degree //,' (x, (t)) and to the fuzzy set with

degree , and so on.

Fuzzy Logic Controller

in p u t  M e m b e r s h ip  F , ,7 7 v  R u ip q  O u tp u t  M e m b e r s h ip  
F u n c t io n s  K u ie s  F u n c t io n s

r x ,

NH ZE PH

NH ZE PH

D e f u z z m e r

System

In f e r e n c e  E n g in e

IF . . . TH EN *
IF . . . TH EN »

IF . . . TH EN . S t a t e s  o r  
O u tp u ts

Fig. 2.4 The basic structure of a traditional fuzzy logic controller based system.

The inference engine in Fig 2.4 is to perform implication. For example, if 

there are two rules:

4  : IF X; is 4  AND x% is 4 ,  THEN y \ s M \

R, : IF X, is 4 ' AND X, is 4 ,  THEN y i s M '.

Then the firing strengths of rules 4  and 4  are defined as a, and , respectively.

Herecr, is defined as

^  A , (2.24)

where A is the fuzzy AND  operation. The algebraic product is utilized as the fuzzy

AND  operation in the thesis. Hence,a., ( = 1,2, becomes

a, = (225)

The above two rules, i?, and 4  , lead to the corresponding decision with the

membership function, M, (y ) , / = 1, 2 , which is defined as
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^ ,{ y )  = oc,AM^{y) = a ,» M ,{y ), (2.26)

where y  is the variable that represents the support values of the membership function. 

Combining the above decisions, we obtain the output decision

M {y) = M ^ { y ) w M f y ) , (2.27)

where V  is the is the fuzzy OR operation. The max (maximum) is utilized for fuzzy OR 

operation. Hence the output decision becomes

M {y) = M ,(y) v M ^ y )  = m ax{M ^{y),M fy)) . (2.28)

Notice that the last result is the membership function curve. Before feeding the signal 

to the system, we need a defuzzification process to get a crisp decision, and the 

defuzzifier in Fig. 2.4 serves this purpose. Among the commonly used defuzzification 

strategies, the centroid, which returns the centre of area under the curve, yields a

superior result. Let y  ̂be the support value at which the membership function, M, (y ) , 

reaches the maximum value M, (y) , then the defuzzification output is

2.2.2 Fuzzy Singleton Rule Based NFC

The section 2.2.1 describes the standard function operations, the so-called 

Mamdani's fuzzy inference method, in a traditional fuzzy logic control system. In 

spite of several well known advantages of fuzzy logic controller, the systematic 

procedure for the design o f fuzzy logic controller is still lacking at present. The most 

straightforward approach is to define membership functions and rules subjectively by 

studying a human-operated system or an existing controller and then testing the
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design for the proper output. The membership functions and/or rules should be 

adjusted if  the design fails the test, or types of system are changed, or the control 

objectives are altered.

The progress made in Neural Network theory has made available self-learning 

procedures. One of the important characteristics o f neural network is that neural 

network can adapt itself to changing control environment and ean learn by the type of 

input and output. In fact as any fuzzy system can be viewed as a highly structured 

neural network, typical neural network learning techniques can be used to optimize 

the design of fuzzy logic controller. The combination of fuzzy logic with neural 

network leads to Neuro-Fuzzy controller.

However this combination brings heavy computational burden. The tuning of 

the parameters o f membership functions and rules involves large amount of multi­

plications and divisions. This fact has prevented the utilization of the neuro-fuzzy 

network into some industrial cost-sensitive field.

In this thesis, we adopt the Sugeno-Type Fuzzy Interference to speed up the 

computational process. The Sugeno-Type Fuzzy Interference, introduced in 1985, is 

similar to the Mamdani method in many respects. The first two parts of the fuzzy 

inference process, fuzzifying the inputs and applying the fuzzy operator, are exactly 

the same. The main difference between Mamdani and Sugeno is that the Sugeno 

output membership functions are either linear or constant.

A typical rule in a Sugeno fuzzy model has the form

jRpIF X, is 4  AND is 4 ,  THEN y = ax, + 6 x2 + c .

For a zero-order Sugeno model, or fuzzy singleton rules, the output level y is a 

constant ( a  = = 0). Such fuzzy singleton rules are in the following form:

4  : IF X, is 4  AND x̂  is 4 .  THEN y = w,.
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The output level y o f each rule is weighted by the firing strength a. o f the rule. For 

example, for an AND rule with x, is 4  AND x̂  is 4 ,  the firing strength is

«1 = 4 ( ^ i)*A2(^2)> (2.30)

where 4 ( - ) a n d 4 ( - )  are the membership functions for inputs x, and x^. The final 

output of the system is the weighte<J average of all rule outputs, computed as

N

Final Output =------- --- (2.31)

/=!

Because it is a more compact and computationally efficient representation than 

a Mamdani system, the Sugeno system lends itself to the use of adaptive techniques 

for constructing fuzzy models. These adaptive techniques can be used to customize 

the membership functions so that the fuzzy system best models the data. Also because 

of the linear dependence of each rule on the input variables, the Sugeno method is 

ideal for acting as an interpolating supervisor o f multiple linear controllers that are to

be applied, respectively, to different operating conditions o f a dynamic nonlinear

system.

Figure 2.6 shows network structure of the fuzzy singleton rules based NFC 

[74]. X, is an input variable, y„ is the output variable, A/ are linguistic terms of the 

precondition part with membership functions w^is a real number o f the rule

part, y = l , 2 ,...,M and( = l , 2 ,...,n .

Next we describe the functions of the nodes in each of the four layers. In the 

following, is the out put of the Nth node in the Mth layer. From the network 

structure, it is note that the inputs of the O f  are coming from O f " ' . In the following 

equations, superscript is used to indicate the layer number.
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Layer 1: The nodes in this layer just transmit input values to the next layer. 
That is,

(2.32)
From the above equation, the link weight at layer one ( w,') is unity.
Layer 2: The output function of the node in this layer is membership function. 
For example, for a isosceles triangular function as shown in Fig. 2.5

\o!
(2.33)

where cj and bj are, respectively, the center and the half o f width of the 
isosceles triangular function of the yth term o f the /th input linguistic 
variable x ,.

Fig. 2.5 The triangular function.

Layer 3: The links in this layer are used to perform precondition matching of 
fuzzy logic rules. Hence the rule nodes should perform the fuzzy AND 
operation.

i

Then the link weight in layer three ( wf ) is unity.
Layer 4: The node in this layer performs defuzzification.

M
I . 0 - '

(2.34)

w,
JV  _  ,=1

M (2.35)

From equation (2.32) - (2.35), the final output o f the NFC can be found
M M

)Wj
(2.36)
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Layer 4 
[Defuzzifier Layer]

Layer 3 
[Rule Layer]

Layer 2 (
[Fuzzifier Layer]

Layer 1 
[Input layer]

X,X

Fig. 2.6 Fuzzy singleton rules based NFC.

2.2.3 Parameters Tuning Methods

Parameter tuning o f NFC with fuzzy singleton rules is the tuning of input 
membership function . and the weights .

2.2.3.1 Back Propagation (BP)

Back propagation was created to train the parameters o f both nonlinear and 

linear, differentiable transfer functions and rules in a multiple-layer network. Standard 

backpropagation is a gradient descent algorithm. The training process requires a set of 

examples o f proper network behavior - network inputs and corresponding target 

outputs. During training the weights (or rules in our fuzzy singleton rules based NFC)
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and parameters o f membership functions of the network are iteratively adjusted to 

minimize the network performance function, which is usually defined as

^  = (2.37)

where is the desired output for input vector X  = (x,,X2 ,...,x„)^.

As an example, the tuning rules based on BP algorithm for the membership 

functions and weights can be written as,

c/(M + l) = c / ( » ) - t 7 . ^ ,  (2.38)dq

6/(M + l) = 6 / ( » ) - % ^ ,  (2.39)
oq

(« +1) = w . ( » ) - V , ^ .  (2.40)
dWj

The derivatives can be found by the chain rule

9c/ &?/

96/ 96/

9Æ _ 9Æ

(2.41)

(2.42)

(2.43)
dWj dy^ dWj

The hypothesis behind BP algorithm is that properly trained BP networks tend 

to give reasonable answers when presented with inputs that they have never seen. 

Typically, a new input leads to an output similar to the correct output for input vectors 

used in training that are similar to the new input being presented. This generalization 

property makes it possible to train a network on a representative set of input/target
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pairs and get good results without training the network on all possible input/output 

pairs.

2.2.3.2 Recursive Least-Squares (RLS)

From equation(2.36), it is observed that for fuzzy singleton rules, the final 

inferred output is a linear function of the consequent parameters Wj. Hence, given

the values o f the membership parameters and p  training data ( ),

k  = we can form p  linear equations in terms of the consequent parameters as

follows:

r / ' " i

/ y
■

t ( p )  rr(,p ) j r i p )M _L M

W,

(2.44)

Where the ^    and P J // (%,) value are calculated, for example.
/=!

M  /=!

from equation (2.33) when the input isX^'^^.

Introducing vectors

/ ( ; )  =  [« (')  »(') ...

9> = [(0 '^(1) <p'\2) ... (p ''(p)J

9 = [w, W;
-,r

^ m ] >

... y y ]

equation (2.44) can be expressed in a matrix-vector form

(2.45)

(2.46)

(2.47)

(2.48)
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y  = $ 6 *. (2.49)

According to linear equation (2.49) the tuning of Wj can be viewed as a problem of

parameters estimation. The least squares method is a useful technique for parameter 

estimation. And this method is particularly simple if the model has the property of 

being linear in the parameters such as (2.49). If 0 ^ 0  is non-singular, the parameter 

should be

^  = (0 '̂ 0 ) - '0 ''y  (2.50)

So as to minimize the least-squares loss function

(2.51)

In many cases, the row vectors o f matrix 0  and the corresponding elements in Y  are 

obtained sequentially in real time. Therefore it is desirable to compute the least 

squares estimation o f 6  recursively by using the following formula:

^(») = ^(» - I )  + /i:(M)(/C) -  / (M )^ (n -1 ) ) , (2.52)

K{n) = P(n)(p(n) -  P(n-l)<p{n){I + <p^(n)P{n-l)(p{n)y', (2.53)

P(n) = P{n -1 ) -  P{n -  \)(p{n){I + (p̂  {n)P{n -  I)(p(M))"' (p' {n)P{n -1 ) ^

= ( / - / i : ( » ) / ( » ) ) f ( » - i )

2.2.3.3 Kaczmarz’s Projection Algorithm

The RLS algorithm given by equation (2.52) - (2.54) has two sets o f state variables, 9 

and P, which must be updated at each step. For large n the updating o f the matrix P 

dominates the computing effort. There are several simplified algorithms that avoid 

updating the P matrix at the cost o f slower convergence. Kaczmarz’s projection 

algorithm [91] is one simple solution. It gives
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+ , (2.55)
^  (M)fK»)

where 0 < y  <2 is a factor used to change the step length of the parameter adjustment.

2.2.4 NFC in Control Systems

A major property of NFC for control systems is their ability to generate input- 

output maps that can approximate any function with desired accuracy. The 

performance o f a NFC in control systems is to large extent dependent on how the 

NFC is trained. However an important issue related to the training of NFC has raised 

much concern. This issue is that the desired output of the network (the appropriate 

controller-generated control input to the plant) is not readily available but has to be 

induced from the known desired output. Some solutions are

■ Inverse dynamics o f the plant;

■ Differentiating a model;

■ Reinforcement learning [56], [74].

2.2.4.1 Inverse Dynamics of the Plant

Fig. 2.7 (a) shows how a neural network can be used to identify the inverse of 

a plant, where the input to the network is the output o f the plant and the target output 

of the network is the plant input. Once one has such an inverse, it can be used for 

control purpose as shown in Fig. 2.7 (b). The desired plant output is provided as input 

to the network, and the resulting network output is then used as input to the plant. 

Since the network is a plant inverse, this plant input causes the desired plant
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X P la n t

P la n t

NN
(P la n t  li iv e rs e  

M odel),

NN
(P la n t In v e rs e  

M odel)

(b)
Fig. 2.7 (a) Training of the plant inverse model, (b) Application of the plant inverse model.

output. A major problem with inverse identification is that the plant’s inverse is not 

always well-defined. That is, more than one plant input produces the same output. In 

this case, the network attempts to map the same network input to many different target 

responses. As a result, it tends to average over the various targets, thereby producing a 

mapping that is not necessarily an inverse.

2.2.4.2 Differentiating a Model

Fig. 2.8 shows the basic control scheme. Since the error at the output o f the 

NFC (controller error g J  is not directly available and only the system error g can be

measured at the output of plant, the objective function to be minimized by the NFC is 

defined as.

(2.56)
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Thus the equation (2.41) - (2.43) become

ac/ ^  a ;/^  ac/
(2.57)

a 6 /  ^  a//^^ a6 /  '

dE _ dE dy dy,,
dWj dy ay„ dŵ

ay

(2.58)

(2.59)

The term , known as Jacobian matrix, corresponds to the forward gain of the

plant. To find the derivatives of the equation (2.57) - (2.59) we need to know the 

Jacobian matrix of the plant. This usually implies that we need a model for the plant

X

- A

o

B P
E rror

P lan t 
O u tp u t E rro r

P lan t

P lan t

N FC

(P la n t M odel)

NN
(P lan t M odel)

(b)

Fig. 2.8 (a) Training o f the plant model, (b) Application o f the plant model.
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and the Jacobian matrix obtained from the model, which could be a neural network 

[42], neural fuzzy network (NFN) [59], or another appropriate mathematical 

description o f the plant [49], [50].

As shown in Fig. 2.8 (a) a multilayer network is first trained to identify the 

plant’s forward model, then this network and another NFN used as the controller are 

configured as in Fig. 2.8 (b). The advantage of a forward model having this form is 

that one can efficiently compute the derivative of the model’s output with respect to 

its input by means of the BP process, which evaluates the transpose of the network 

Jacobian matrix at the network’s current input vector. As a result, propagating errors 

between actual and desired plant outputs back through the forward model produces 

error in the control signal, which can be used to train another NFN to be a controller. 

This error back-propagation path is illustrated by the dash line in Fig. 2.8 (b). This 

method has advantages over the direct identification of a plant inverse when the 

inverse is not well-defined.

2.2.4 3 Reinforcement Learning

The reinforcement learning is proposed to overcome the difficulty encountered 

by supervised learning. The supervised learning schemes require precise training data 

to indicate the exact desired output, and then use the precise training data to compute 

the output errors for training the whole network. Unfortunately, such detailed and 

precise training data may be very expensive or even impossible to obtain in some real 

word applications because the controlled systems may only be able to provide the 

learning algorithm with an “evaluative” reinforcement feedback such as a binary 

direction o f right/wrong o f the current controller output.
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Fig. 2.9 The reinforcement control scheme.

The reinforcement control scheme is more complicated than the conventional 

NFC as illustrated in Fig. 2.9 [74]. The Predictor is a NN or NFN function as an 

internal evaluator capable o f evaluating the plant performance. Another NFN 

functions as an action network. These two networks share the same input vector and 

membership functions. The action network output >> does not directly act on the plant. 

Instead, it is treated as mean (expected) action. The actual action, y , is chosen by 

exploring a range around this mean point. This range o f exploring corresponds to the 

variance o f a probability function which is the normal distribution in our design. This 

amount o f exploration, a {t) , can be chosen as

k
a{t) = (2.60)
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where k is a search-range scaling constant which can be simply set to 1 , and p(t) is the 

predicted (expected) reinforcement signal used to predict r(t). Equation (2.60) is a 

monotonie decreasing function between k  and 0 , and cr(/) can be interpreted as the 

extent to which the output node searches for a better action. Since p(t) is the expected 

reward signal, if p(t) is small, the exploratory range, a{t) , will be large according to 

(2.60). On the contrary, if p(t) is large, cr(/) will be small. This amounts to narrowing 

the search about the mean, y(t), if the expected reinforcement signal is large. This can 

provide a higher probability to choose an actual action, y , which is very close to y(t), 

since it is expected that the mean action y(t) is very close to the best action possible 

for the current given input vector. On the other hand, the search range about the mean 

y(t) is broadened if the expected reinforcement signal is small such that the actual 

action can have a higher probability of being quite different from the mean action y(ï). 

Once the variance has been decided, the actual output can be set as:

y(t) = .^*ArCy(0,(T(t)). (2.61)

AT is a scaling factor to fit the specifications of the controlled plant. That is, y{t) is a 

normal or Gaussian random variable with the density function:

/ ( y )  = - ^ g  2,: _ (2.62)

The gradient information is estimated as [74]:

y { t - \ ) - y { t ~ l )
( t ( / - 1)

(2.63)

ÿ — VIn(2.63), the term - — — is the normalized difference between the actual and expected
cr

actions, r(t) is the real reinforcement feedback for the actual action y { t- \ ) , andp(t) is 

the predicted reinforcement signal the expected action y(t-l). Equation (2.63) was

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



derived based on the following intuitive concept. If r{t) > p{t) , then y{t -1 ) is a 

better action than the expected one, y(t-l) and y(t-l) should be moved closer to 

y { t - l ) .  If r(t) < p (t) , then y (t-V )  is a worse action than the expected one, and y(t- 

1) should be moved farther away from y{t - 1). This idea also comes from the 

observation o f a discrete gradient descent method. The concept behind (2.63) is 

frequently adopted in the stochastic exploration technique.

After the gradient information is available, the reinforcement learning has 

been transformed to the supervised learning.
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Chapter 3

Development & Implementation of a 

Low Computational Neuro-Fuzzy Speed

Controller for IM Drive

In this chapter a novel and low computational self-tuned NFC is developed for 

speed control o f an IM drive. The proposed NFC combines fuzzy logic and a four- 

layer artificial neural network (ANN) scheme. The proposed NFC lower down the 

computational burden by using only speed error as the input instead of using both 

speed error and its derivative which are widely employed as inputs by the 

conventional NFCs. The simple structure of the proposed NFC makes it easier to be 

implemented in practical applications. Based on the knowledge of vector control and 

Back Propagation (BP) algorithm a supervised self-tuning method is developed to 

adjust membership functions and weights of the proposed NFC. The complete drive 

incorporating the proposed self tuned NFC is experimentally implemented using a
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digital signal processor board DS-1104 for a laboratory 1/3 hp motor. The 

effectiveness o f the proposed NFC based IM drive is tested both in simulation and 

experiment at different operating conditions. Performance comparisons between the 

developed NFC, conventional NFC and PI controller are also provided. Comparison 

of results in simulation and experiment proves that the simplification of the proposed 

NFC does not decrease the system performance.

3.1 Control Structure

The schematic diagram of the proposed NFC-based indirect field oriented 

control of induction motor is shown in Fig. 3.1. The basic configuration o f the drive 

system consists o f an induction motor fed by a current controlled voltage source 

inverter. The normalized speed error Ao% is processed by the NFC to generate the 

reference torque r / (n ) .  The command current f^(M)is calculated from equation (2.17) 

as following.

2 " ,  I .
(3.1)

Currents and are transformed into/*, il and /* according to inverse Clarke’s 

and Park’s transformation as.

(n)

:  0  
3

_i _L
" 3  V3

_i _i
3 3

cos(^) - s in (^ )  
sin (^ ) cos(^J

•e*
hs

(") (")

The 9^{n) is calculated indirectly based on (1.20) and (1.21) as,

de («) = ^ ,(M - i)+ K  (« )+ (n)] t ;  ,

(3.2)

(3.3)
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□

Fig. 3.1 Block diagram of the proposed NFC based IM drive.
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where r, is sampling time and

. a .
(W,, = ' (3 4)

I command f

The phase command currents /*, il and z* are then compared with the corresponding 

actual currents ẑ , 4  and z'̂ . Current error signals A4 , A4  and A4  are then applied to 

the hysteretic current controllers to generate PWM logic signals, which are used to 

fire the power semiconductor switches of the 3-phase inverter. Thus the inverter 

produces the actual voltages to run the induction motor. This PWM control technique 

is called Current-Controlled Voltage Source Inverters which is illustrated in Fig. 3.2. 

The input-output characteristics of the phase-A hysteretic current controller is shown 

in Fig. 3.3. The width of the hysteresis loop, denoted by /z, represents the tolerance 

bandwidth for the controlled current. If the current error, A4 , is greater than h/2, i.e.,

current z„ is unacceptably lower than the reference current, 4 , the within the tolerance 

band. The other two controllers operate in a similar manner. Thus the switches of the 

3-phase inverter are controlled on the following logic,

h
if  Az„ > — , then Sa = 1, T1 is ON, ẑ  increase; 

h
if A 4  < , then Sa'= 1, T4 is ON, 4  decrease;

h
if Azj > —, then Sb =1, T3 is ON, z'̂  increase; 

h
if A4  < —- ,  then Sb'=l, T6  is ON, z'̂  decrease; 

h
if  A4  > —, then Sc = 1, T5 is ON, ẑ  increase; 

h
if AZg < -  —, then Sc'= 1, T2 is ON, 4  decrease.
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Fig. 3.2 Block diagram of current-controlled VSI.

Sa

1

0 A /

Fig. 3.3 The input-output characteristics of hysteretic current controller.

The width, h, o f the tolerance band affects the switching frequency of the 

inverter. The narrower is the band, the higher frequency in the switching and hence
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the better quality of the current. However, due to the limitation of the switching 

frequency o f the semiconductor devices, the hysteretic band is chosen as 0.05 for real­

time experiment in this thesis.

3.2 Design of the Neuro-Fuzzy Controller

The proposed NFC incorporates fuzzy logic and a learning algorithm with a 

four-layer artificial neural network (ANN) structure as depicted in Fig. 3.4. The 

learning algorithm modifies the NFC to closely match the desired system performance. 

The detailed discussions on different layers of the NFC are given below.

Fuzzification Rules

Defuzzification
Normalization

Output

T u n in g T u n in g

Self-tuning

Fig. 3.4 Structure of the NFC.

Input Layer:

The input o f the proposed NFC is the normalized speed error, which is given

as,

O '
0)

(3.5)

where a> is the measured speed, o) is the command speed, /  denotes the f  layer.
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Fuzzification Layer:

A three membership function-based fuzzy set is utilized to obtain the fuzzy 

number for the input. In order to keep the computational burden low, in the proposed 

NFC, triangular and trapezoidal functions are chosen as the membership functions as 

shown in Fig. 3.5.

The node equations in this layer are given as,

1 ^ 3 6 ,

(3.6)

0

è; < X; <a,
x f  > a,

Of =

Uf < 6 -,

(3.7)

Of =
x f  — ü-,

1

x f  < a.

(3.8)

where x f  is the input o f the 2"‘‘ layer which is same as the output of the layer. It is 

considered that a2 = 0  in order to further lower the computational burden.

►  X ,

Fig. 3.5 Membership functions for input.
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Rule Layer:

No “AND” logic is needed in the rule layer since there is only one input in the 

input layer. The node equations in rule layer are specified as,

O/" ==.%"'*. == C f'w ,, (3.9)

Where x ‘" is the input of the 3"" layer which is same as the output of 2"  ̂layer.

Defuzzification Layer:

The center of gravity method is used to determine the output of NFC. The 

node equation is specified as,

= = (3.10)

where x,”  is the input of the 4* layer which is same as the output of 3"̂  layer.

In order to compare with the conventional 2-input NFC, we adopt the 

conventional 2-input NFC structure in [49] as shown in Fig. 3.6 and implement it in 

simulation and experiment. The NFC in [49] employed normalized speed error and its 

derivative as two inputs and has been successfully used for high performance control 

o f IM. This NFC has 9 rules and 9 weights and hence the computational overhead is 

high.

3.3 On-Line Self-Tuning Algorithm

Since it is impossible to determine or calculate the desired NFC’s output

and find train data off-line covering all operating conditions, a kind of supervised on­

line self-tuning method is introduced in this thesis. Instead of using desired 

controller’s output (C as target, the system error is used to assess the performance of

4 4
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controller

Rules
T h e n

Fuzzification

Normalization

A ( 0  - r * < X -
Defuzzification

Output

T u n in g

Self-tuning

Fig. 3.6 Conventional NFC.

and evaluate the current state of system, and then to guide the control action in the 

right direction.

The objective function to be minimized is defined by

t r ^ 2  1 /  «E = — r = —{co —co) .
2  2 \ /

Hence, the learning rules can be derived as follows [74],

9EaXn + l) = a,{n)-7]
da,

00,

ÔE
ÔW,

(3.11)

(3.12)

(3T3)

(3.14)
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where are the learning rates of the corresponding parameters. The

derivatives can be found by chain rule as,

dE _ dE dr dco dy dOf
dOj dr d o  dy dO, da,

dE _ dE dr d o  ^  dOf 
db, dr d o  dy dO" db,

dE _ dE dr d o  dy

(3.15)

(3.16)

(3.17)
dwj dr d o  dy dwj 

where the common parts o f equations (2 0 )-(2 2 ) are as follows,

dE . /T ION—  = r = o  - o ,  (3.18)
a r

df
:---== -1, (3.1S))
do

^̂ ^̂  ==./('), (3.20)

where 7(7) is the Jacobean matrix of the system [74]. The Jacobean matrix J(t) is not

easily found directly. Thanks to the FOC the IM system can be viewed as a single

input single output system, then the J(t) can be estimated as a constant value K j >() 

[76], [77].

From equations (3.6) - (3.20), the update rules can be determined as follows [75], 

Wj{n) = Wj(» - ! )  + 77,,,K j r { n ) , (3 21)

a,(M + l) = a,(»)-77 (3.22)

6 X » + 1) = 6 , ( » ) - ; ; ,
6 ](M )-a,(")
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w,(n) X- O^j n)
6 ,(» + !) = 6,(») + (3.24)

a, (« + !) = a^{n)- r] Kjr{n) ^ ^   ̂ - y  . , (3.25)
Z ^ y  6 3 (M)-o,(M)

b,{n + \) = b,(») - rj, K j r { n ) ^ - ■ (3.26)
Z<^y 6 3 (M)-a;(M)

In our control scheme, we set 77^ = 77 = 77  ̂ = 77^ = 77. .

Based on these update rules, the following steps are employed for tuning the 

parameters o f a ,, a , ,  6 ,, 6 ; ,  6 , and w. [74]:

Step 1: First an initial set o f fuzzy logic rules and initial values o f a , , «3 , 6 ,, 6 %, and 

are selected.

Step 2: The normalized speed error is calculated, which is input to the NFC.

Step 3: Fuzzy reasoning is performed for the input data. The membership values 

o f  are then calculated by using (3.6)-(3.8).

Step 4: Tuning o f the weights ŵ  o f the consequent part is performed by using (3.21). 

Step 5: Tuning o f the a , , a^, è ,, b̂  and is done by substituting the tuned real 

number Wj obtained in step 4, the measured reinforcement signal r, the membership

value o f  into equations (3.22) - (3.26).

Step 6: Repeat from step 3.

3.4 Simulation results

Before implementing in real time, the performance o f the proposed NFC based 

IM drive is investigated extensively in simulation. A simulation model of the 

proposed NFC is developed in Matlab/Simulink [72] software as shown in Fig. 3.7.

4 7
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Fig. 3.7 Simulation model of the proposed NFC.

Fen 2 S a tu ra tio n
T e-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The performance o f the proposed NFC is compared to a conventional 2-input 

NFC [49] and a tuned PI controller. The proportional gain is set as 0.1, and the

integral gain K, is set as 0.35 after trial and error so that the overall performance o f PI 

controller is comparable with both of the NFCs. The parameters o f the IM utilized for 

simulations are listed in Appendix A-1.

Fig. 3.8 (a)-(c) show the simulated starting speed response of the drive at rated 

load and rated speed for the proposed NFC, conventional NFC and PI controller, 

respectively. As seen from Fig. 3.8 (c), both of the NFCs show zero overshoot and 

less settling time than PI controller. Fig. 3.9(a)-(c) show the corresponding stator 

currents of the drive. Fig. 3.9(c) shows that for PI controller the starting current is 

higher as compared to both o f NFCs. Fig. 3.10(a)-(c) show the corresponding torque 

responses o f the drive. Obviously, the PI controller needs more torque and hence more 

current to start the motor.

Fig. 3.11 show the speed responses o f the drive system with a step increase in 

load from zero to rated level using the proposed NFC, conventional NFC and PI 

controllers, respectively. In this test, the proposed NFC and conventional NFC show 

less dip in speed and less settling time than PI controller. The proposed NFC has a 

longer settling time than the conventional NFC, but smaller dip in speed.

Fig. 3.12 (a)-(c) show the speed responses of the drive system first with a step 

decrease on the command speed from 180rad/sec to 150rad/sec, and then a step 

increase on the command speed from I50rad/sec to ISOrad/sec using the proposed 

NFC, conventional NFC and PI controllers, respectively. In this test, the proposed 

NFC has a little larger undershoot than PI controller, but no overshoot and less 

settling time.

4 9
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Fig. 3.13 (a)-(c) show the simulated starting speed response of the drive for the 

proposed NFC, conventional NFC and PI controller, respectively, when the rotor 

resistance has been risen to be two times of the rated one.

Fig. 3.14 (a)-(c) show the corresponding torque response. Compared with Fig. 

3.8 and Fig. 3.9, it is noted that the transient torque response of PI controller is 

displaying oscillation which leads to higher overshoot and longer settling time in the 

speed response. While the proposed NFC shows fairly same performances. This 

proves the robust ability o f the proposed NFC.

Based upon tests, it is evident that the proposed NFC has overall better 

performance in terms of speed overshoot, dropdown and tracking over conventional 

PI controller. It also shows that the proposed NFC does not decrease system 

performance significantly as compared to the conventional 2-input and 9-membership 

functions NFC. These simulation results prove that the proposed NFC has no trade off 

between simplification and performance decreasing.
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3.5 Experimental Implementations & Results

3.5.1 Drive Set-up

The proposed self tuned NFC based vector control of IM drive system has 

been implemented in real-time using the DSP board DS1104 [73]. This board is 

mainly based on 64-bit floating-point MPC8240 processor with PPC603e core. The 

block diagram and the photograph of the experimental system are shown in Fig. 3.15 

(a) and (b), respectively. The PC-based controller produces numerical switching 

commands sent to DSP board and the outputs of the DSP board are sent to the 

amplifier circuit to drive the VSI inverter. The actual motor currents are measured by 

the Hall-effect sensors and fed back to the DSP board through the A/D channels. The 

Rotor position is sensed by an optical incremental encoder of 1000-line resolution and 

is fed back to the DSP board through the encoder interface. The test IM is coupled to 

a dc machine. The dc machine is operated as a generator in order to adjust load to the 

IM.

The NFC and self-tuning algorithm are implemented through developing a 

real-time Simulink model as shown in Appendix D. Then the model is compiled and 

downloaded to the DSP board utilizing ControlDesk software and real-time workshop 

(RTW). Since the proposed NFC has a simple structure, the highest sampling 

frequency can reach up to 14.3 kHz. For comparison purpose, a Pl-controller-based 

system is also developed and experimentally implemented. In real-time, the 

proportional gain, K^,  and the integral gain, Æ,, are readjusted by trial and error to be

0 . 1  and 0 .0 2 , respectively, so that there is no steady-state error and the settling time, 

overshoot, undershoot can be comparable to the proposed NFC. For the NFC, the 

tuning rate for weights is chosen to be 0 .1 , and the tuning rate for membership

5 8
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Fig. 3.15 (a) Block diagram of the experimental setup, (b) Photograph of the 
laboratory experimental setup.
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functions is chosen to be 0.008. The small values of tuning rates are chosen so that 

there will be a smooth transition from one state to another. A conventional 2-input 

NFC based system is also developed and experimentally implemented. To make a fair 

comparison, we change the membership functions in [49] are changed in similar way 

as proposed NFC, but with fixed parameters. Same modification is done to the self­

tuning method. For fair comparison, the sampling frequency utilized for both of the 

NFCs and PI controller was 10 kHz.

3.5.2 Experimental Results

The simulated results are verified by the experimental results. The 

experimental data is sampled by DSP board and filtered to eliminate the speed ripple 

which is caused by unbalance of power source and / or IM structure. Sample 

experimental results are presented below.

Fig. 3.16 (a)-(c) show the no load experimental starting speed response o f the 

drive at command speed o f 150rad/s for the proposed NFC, conventional NFC and PI 

controller, respectively. As seen from Fig. 3.16 (a)-(c), the PI controller shows bigger 

overshoot and longer settling time compared to NFCs. Both of the NFCs show the 

almost same performance.

Fig. 3.17 (a)-(c) show the no load experimental speed responses of the drive 

system first with a step decrease on the command speed from 150rad/sec to 

1 2 0 rad/sec, and then a step increase on the command speed from 1 2 0 rad/sec to 

150rad/sec for the proposed NFC, conventional NFC and PI controllers, respectively. 

In this test, both o f the NFCs show the almost same performance.
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show the almost same performance, no overshoot and short settling time. Whereas the 

PI controller shows bigger overshoot and longer settling time compared to NFCs.

Fig. 3.19 (a)-(c) show the experimental speed responses o f the drive system 

first with a step decrease on the command speed from 150rad/sec to 1 2 0 rad/sec, and 

then a step increase on the command speed from 1 2 0 rad/sec to 150rad/sec with an 

approximate 20% rated level load for the proposed NFC, conventional NFC and PI 

controllers, respectively. In this test, both o f the NFCs show the almost same 

performance. During command speed step increasing, both the NFCs show invisible 

overshoot, but PI eontroller shows a bigger overshoot.

Fig. 3.20 (a)-(c) illustrate the test on the step increase/decrease of load from 

zero to mostly 20% of the rated level for the proposed NFC, conventional NFC and PI 

eontrollers, respectively. In this test, both of the NFCs show much less 

overshoot/undershoot in speed as compared to PI controller.

Figures 3.22 (a)-(b) illustrate the comparison o f the reference current and 

measured current during the load increase/decrease. It can be seen that the actual 

current is following the reference current well.
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Fig. 3.16 Experimental starting speed responses o f the drive at no load: (a) proposed 
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Fig. 3.17 Experimental speed response of the IM drive due to a step change in 
command speed at no load: (a) proposed NFC, (b) 2-input NFC, (c) PI.
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Proposed NF Controller, With Load
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Fig. 3.19 Experimental speed response of the IM drive due to a step change in 
command speed at load condition: (a) Proposed NFC, (b) 2-input NFC, (c) PI.
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3.6 Conclusion

In this chapter, a novel and low computational on-line self-tuning NFC-based 

speed control o f IM drive has been developed and experimentally implemented for a 

laboratory 1/3 hp motor. In the proposed NFC, both weights and membership 

functions are on-line tuned based on operating conditions. The proposed controller 

can also be applied to other types o f motors of different sizes only by adjusting the 

tuning rates. The comparison o f the proposed NFC with a conventional 2-input NFC 

has also been presented in simulation. It is found that without any significant 

performance decreasing, the simplified structure reduces the computational burden 

and is easier to implement in real-time as compared to the conventional 2-input NFC. 

The proposed simplified self-tuned NFC-based IM drive system is found robust and 

could be a potential candidate for high performance industrial drive applications.
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Chapter 4

A Novel Neuro-fuzzy Based Speed 

Ripple Minimization of Faulty Motor

with Broken Rotor Bars

In this chapter a novel self-tuned neuro-fuzzy controller (NFC) is developed 

to minimize the speed ripple of a faulty induction motor with broken rotor bars 

(IMBRB). First the performance of an IMBRB is investigated in the open-loop 

condition. Then a new mechanical model of induction motor is presented and a new 

NFC is proposed to control the IMBRB in an indirect field oriented control scheme. 

The proposed NFC maintains the system performance by minimizing the speed 

ripples with electrical field frequency. Based on the knowledge o f motor control and 

intelligent algorithms a supervised self-tuning method is also developed to adjust 

weights o f the proposed NFC. The convergence/divergence of the weights is 

discussed and investigated by simulation. The complete drive is experimentally 

implemented using a digital signal processor board DS-1104 for a laboratory 1/2 hp
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faulty motor. The effectiveness of the proposed NFC is tested both in simulation and 

experiment.

4.1 Open Loop Study of IMBRB

The faulty motor considered in this work has 3 broken rotor bars as shown in 

Fig. 4.1. The open loop experimental setup is shown in Fig. 4.2. The IMBRB was 

driven by a commercial v /f driver. The DC generator was working as a load to the 

IMBRB. The load level was set by adjusting the variable resistor. The objective of 

open loop study is to figure out the pattern and causes of speed ripples. Thus it will be 

helpful to develop a fault tolerant controller (FTC).

Theoretically, an IMBRB will display a low frequency of 2sf^ modulation in 

rotor speed (f is the rotor slip and /.th e  supply frequency) [6 6 ], [89]. Moreover, the 

open loop experimental study found that the IMBRB also displays speed oscillation 

with electrical field frequency and its harmonics as shown in Fig. 4.3. Table 4.1 

summarized open-loop experimental results at different load and speed settings. It can 

be seen that the magnitude o f speed ripple with fundamental field frequency is 

approximately 1 0 - 2 0  times larger, and speed ripple with twice field frequency is 

approximately 6-15 times larger than that o f the low frequency speed ripple.

The high frequency speed ripples may be caused by the unevenness of air gap 

and finite number o f stator slots and rotor bars [79], [80], stator asymmetry (e.g. stator 

winding fault or unbalance power supply) [78], [89]. Although these high frequency 

speed oscillations are not caused by motor defect itself, they deteriorate system 

performance much more than the low frequency speed ripple since they have much 

bigger magnitude.
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Fig. 4.3 (a) Rotor speed o f an IMBRB, (b) FFT analysis of speed signal.
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Table 4.1 FFT Analysis o f Faulty Motor with Broken Rotor Bars

Load Level Speed setting (rpm)
Speed Ripple

/.(rad/s) 2 / ;  (rad/s) 2 i/;

L.DW 600 0.266 IL252 0.014

900 0 J84 0.319 0.016

1 2 0 0 0.358 IL389 0 . 0 2 2

r
1500 0.519 0.387 0.025

Medium 1800 0.733 0.381 0.033

Medium 600 0.214 0 . 2 1 1 0 . 0 2 1

900 0.414 0.369 0.035

1 2 0 0 0.512 0.334 0.034

1r
1500 0.626 0.396 0.043

High 1800 0.740 0.434 0.070

Further analysis has been done to reveal the relationship between speed ripples 

and rotor position.

Fig. 4.4 (a) illustrates the relationship between the first field frequency speed 

ripple and the rotor position angle i9, while the Fig. 4.4 (b) the second field frequency 

speed ripple and 2<9 . It gives us the theory support that the nth order speed ripple 

could be modeled by

^mh_npp,e = Ka cos(«^) + K, sm(nÔ) (4.1)

The speed or torque ripple compensation methods for induction motors can be 

found in [6 6 ], [81], [90]. A compensation scheme found in [90] requires a torque
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sensor to obtain a compensation torque, which maybe unacceptable in many 

application fields. In [81] the authors utilized a compensation method by correcting 

current measurement error. But the current measurement error is not the only source 

of speed ripples. In [6 6 ] the authors only mentioned and compensated the low 

frequency ripples o f an IMBRB by using a fault-tolerant controller.

In this chapter a new NFC is developed to minimize speed ripples with field 

frequency and its harmonics which are significant components. The proposed NFC 

produces a constant torque plus a reverse ripple torque to fulfill two control targets: 

speed set point and lower speed ripple.

4.2 Mechanical System Model and Mathematical Analysis

The experimental observation suggests that;

1) The IM yields speed ripples under a constant torque;

2) The signature low frequency speed ripple 2 .s/, can be neglected because of too 

small magnitude at the initial stage of fault;

3) The source o f speed ripples can be modeled as a linear summation o f sinusoidal 

functions whose frequencies are multiple of the field frequency.

Then the modified IM mechanical model can be proposed as follows,

1 + Z  cos(«^) + sin(n^)]

 T - i r a -------------------------------------------------- t * 2 )

where co  ̂ is rotor speed, is moment of inertia, is the coefficient of viscous 

friction, 0 is rotor field angle and are scale factors representing magnitudes

and phases o f frequency components respectively. T*is the desired developed torque, 

is a constant load torque.
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Fig. 4.5 IM control scheme.

Fig. 4.5 depicts the control scheme based on the proposed IM model. 

From (4.2) one can get.

dt
(4 3)

In order to reach the reference speed setting as well as minimize the speed ripples, the 

developed torque can be decomposed into two parts: andT^.^,^. 7’„  is a constant

torque regarding reaching the speed reference, and 7]., is the reverse ripple torque

regarding eliminating the speed ripples. Then the equation(4.3) can be written as 

following.

= ^  + i ( ^  -  71 + J Z  cos(M^) + sin(»^)] + 7 ;^ ,
I  n=\

To eliminate the speed ripple, it means that:

% - T ,  + T ,^ .) t , lK „  cos( « 0  + K,. = 0

(4.4)

M=1 (4 5)
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Then and 7], can be obtained by:

-  71 ) t  cos( « 0  + K,, sin{nO)]
T" _  ________________________

l + ̂ [ 7 r _ c o s W  + j^^sin(M^)] '

Equation (4.6) shows great complexity and nonlinearity. Traditional 

techniques are difficult to fit such kind of equation. However Neuro-fuzzy is a good 

candidate to approximate nonlinear functions, thanks to its ability to learn. Speed 

error 0 % -  , rotor field angle Û are chosen to be the two inputs of the NF speed

controller.

4.3 Design of the Proposed NFC for IMBRB

The proposed NFC incorporates fuzzy logic and a learning algorithm with a 

five-layer artificial neural network (ANN) structure as depicted in Fig. 4.6. The 

learning algorithm modifies the NFC to closely track the speed reference, and at the 

same time minimize the speed ripples. The detailed discussions on different layers of 

the NFC are given below.

Input Layer:

The normalized speed error, rotor field angle are the inputs o f the proposed 

NFC, which are given by,

O/ -  Input 1 -  * 100%, (4.7)

O2 = Input 2 = 0 ,  (4.8)

where cô  is the measured speed, ry* is the command speed, 6 * is rotor field angle 

which can be measured by encoder, 7 denotes the layer.
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Fuzzification Layer:

In the proposed NFC, triangular and trapezoidal functions are chosen as the 

membership functions in order to lower the computational burden. For input 1, the 

membership functions are shown in Fig. 4.7. For input 2, the membership functions 

are in

Fig. 4.8. The output o f the I®‘ layer is the input of the 2"  ̂ layer.

Rule Layer:

The Rule Layer includes Rule I f  Layer and Rule Then Layer. Based on our 

knowledge the rules are formed between inputs ofO/andC^. Fuzzy singleton rules [74] 

are utilized in our proposed NFC as the following form,

R( : IF is 4  AND Oj is 4 , THEN y isw ,.

Rule I f  Layer:

The multiplication method is chosen to implement ‘AND’ Logic. The node 

equation in this layer is,

(4.9)

where x f  is the input o f the 3'^ layer which is same as the output o f 2 "‘* layer.

Rule Then Layer:

Sugeno zero mode is adopted in this proposed NFC, which utilizes crisp 

numbers instead of fuzzy numbers as the rule’s results. The node equation in this layer 

is,

(4.10)

where x f  is the input of the 4*'’ layer which is same as the output of 3"̂  layer, w. is the 

weight at ith node.
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Fig. 4.6 Structure of the proposed NFC for IMBRB.
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Fig. 4.8 Membership functions for input 2.

Defuzzification Layer:

The center of gravity method is used to determine the output of NFC. The 

node equation is specified as:

~ i o " ' ~ Y o ' r
(4.11)

where x f is the input of the S**" layer which is same as the output o f 4'" layer,th

4.4 On-Line Self-Tuning Algorithm

A supervised on-line self-tuning method is introduced in this work. The 

objective of the proposed NFC is to generate the desired command torque Tf in the
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indirect field orientation, and then produce correct torque to counteract torque ripples. 

The difficulty is that the NFC output, which is needed for updating the weights, is not 

readily available but has to be induced from the known desired system output error. 

Some methods have been proposed in the literatures to solve this problem [74].

1) Approximations based on a mathematical model of the system

2) Identification of system inverse dynamic

3) Reinforcement learning

The methods 1) and 2) are to derive the NFC output error from the system 

error measurements. In our case, for method 1) the system parameters have to be 

known, such as moment o f inertia and viscous friction coefficient. The method 2) and

3) will bring heavy computational burden and complex algorithm.

In this work, the system output error is employed to guide the control action in 

the right direction to achieve desired response. The NFC parameters are directly tuned 

to reduce the output error.

When using the back propagation for control application, the weights are 

converging rather slowly [74]. In this paper the Kaczmarz ‘s Projection Algorithm [91] 

is used to update the weights since it is faster than the BP algorithm.

The update rules are given as follows:

M'y (») = M'y (» - 1) + Z(W Æ  ^

Where is the controller output error, y > 0 is a learning factor. In terms of

the Jacobean Matrix J(n) o f the system, the system error and controller output error 

can be expressed as

(4.13)J{u)
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In equation (4.13) the Jacobean matrix J(n) is not easily found directly. As 

mentioned earlier in Chapter 3, IM can be viewed as one SISO system, then the J(n) 

can be estimated as a constant value K j >0 [76].

Then the equation (4.12) can be rewritten as,

O f ( n - l )
(») = W/M - 1) + 77(ü)̂  - G)m)

ywhere n = .
K j

However this weight-updating method may cause problems. For the weights 

w,_3 , the updating is always happening at the time when < 0 . Since 7  > 0

O f ( n - X )
and -=r—^ —  > 0 , the weights are consistently decreasing. On the contrary, 

^ 2 )

the weights are consistently increasing.

In this thesis an algorithm is developed to fix the problem, which consists of 

following three steps,

Step 1 : Assign appropriate initial values to the weights w,_g and .

Since the weights w,_g relate to the time when , the NFC is desired to

produce which is smaller than the , while weights relate to the 

time when a^<co„, the NFC is desired to produce r f  which is bigger than 

the , the initial values are given as,

Wj_g = - P B , Wjg_27 = +PB , PB is a positive constant.

Step 2: Tune the weights and weights at different specific time as

described below.

The IM mechanical equation is as following:
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+ = (4.15)

When the system reaches the steady state, the speed is varying around the set 

point. At this time

(4.16)

Meanwhile one can split the NFC output T f into two parts; T f  and , 

and load torque into: T j '  and . T f  and T / ' are constant values, and 

rpnppie jnpph  rlpplc componcuts which are varying continuously.

For a small change in torque AT, there is a corresponding change in speed 

AûJ„. Hence (4.15) can be rewritten as,

+ B ,o , : ^ A T  + r "  -  r , (4.17)

where AT = . Obviously, B„o)l -  T“ - T “ . Thus (4.17) is reduced

to

J , ^ ^ + B , A a > , = A T  (4.18)

From (4.18) one can see that, 

d  A g)
dt

dAco.

^ 0 & A o , .  ^ 0 ,  A T < 0 ;

> 0 & Aw_ > 0 , AT > 0 .
dt

A<y„ is the system error and at is the controller output error. This gives the 

specific time when the weights and weights will be tuned as 

illustrating in Fig. 4.9. Since speed fluctuation happens at the same rotor 

position at different time, decreasing / increasing at different

rate, respectively.
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Step 3: Stop tuning when the system error is smaller than the threshold.

No tune in 
this time

No tune in 
this time

Act) > 0 
d A o )

Fig. 4.9 Weights W] _ 9  and 1̂ 1 9 - 2 7  tuning time.

4.5 Simulation Study

A simulation model of indirect FOC of IMBRB drive is developed in 

Matlab/Simulink[72] according to Fig. 4.10. The electrical and mechanical 

parameters are listed in Appendix A-2. The IMBRB has been damaged by introducing 

a rotor fault as shown in Fig. 4.1. The total load torque is added in as follows,

(4 19) 

(4.20)

= sin(<9) + 0.5 sin(2^) (4.21)

where 7 ^  is applied load torque, is the added disturbance to the load torque

and d  is rotor angle.

The performance o f the proposed NFC is compared to a fine tuned PI 

controller at different reference speed. To make a fair comparison, the PI controller is

^  “  '̂ Lapp

'̂ Lapp
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&
> M i .

Fig. 4.10 Block diagram of the proposed NFC based speed ripple minimization of
IMBRB drive.
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readjusted whenever reference speed is changed and the P-gain is set as large as 

possible. The parameters o f the PI and NFC are listed as following.

PI: Kp=Q.9,  K^=Q.6 cû^=\99radls

Kp = 0.5, K- = 0.3 cô  — \5Qrad/ s 

Kp=QA,  K. =0.3 ry* = 1 SOrad/ s 

NFC: Learning Rate = 0.1

Initial Value = -2 .5  , = +2.5

Fig. 4.11-4.13 show the simulated comparative speed response between PI and 

the proposed NFC based IMBRB drive at speed references lOOrad/s, 150rad/s, and 

180rad/s, respectively. It is evident that the proposed NFC significantly reduced peak- 

to-peak speed ripples at different operation conditions as compared to conventional PI 

controller.

The weights are crucial to the effectiveness of the speed ripple

minimization and system stability. The Fig. 4.14-Fig. 4.16 show the trend of the 

weights changing at speed references lOOrad/s, 150rad/s, and 180rad/s,

respectively. The simulation results suggest that the weights are convergent at 

different values. It proves the effectiveness of the proposed tuning algorithm and 

stability o f the proposed NFC.

One simulation was conducted at reference speed of 150rad/s considering the 

speed loop delay and quantization error introduced by the encoder in order to simulate 

the real-time situation. Instead o f directly obtaining the rotor speed from the IM 

model, in this simulation the speed is calculated by

(4.22)
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whereé' is the rotor position and is the sampling interval. The quantization error is

simulated by a set o f embedded code in Matlab/Simulink. Fig. 4.17 compares the 

speed response o f PI and proposed NFC considering the speed loop delay o f 10719 and 

quantization error. It is proved that the proposed NFC shows better performance than 

PI controller in case of simulating a real-time situation.
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Speed Response: 100rad/s

<0 99

PI

Proposed NFC

T  '  1

2,5 3.51.5 2
Time (second)

Fig. 4.11 Simulated speed response: reference lOOrad/s (steady-state zoom in view).
Speed Response; 150rad/s
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Fig. 4.12 Simulated speed response: reference \5Qrad/s (steady-state zoom in view).
Speed Response: 180rad/s
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Fig. 4.13 Simulated speed response at \%Ç>rad/s (steady-state zoom in view)
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Fig. 4.14 Simulated results of weights variation at reference speed \OQrad/s: 
(a) Weights 10-12, (b) Weights 13-15, (c) Weights 16-18.
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Fig. 4.15 Simulated results of weights variation at reference speed \ 5Qrad/s: 
(a) Weights 10-12, (b) Weights 13-15, (c) Weights 16-18.
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Fig. 4.16 Simulated results of weights variation at reference speed 180ra<i4': 
(a) Weights 10-12, (b) Weights 13-15, (c) Weights 16-18.
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Speed Response; 150rad/s

piï Proposed NFC

1.5 2 2.5
Time (second)

Fig. 4.17 Simulated speed response at reference speed \ 5Qrad/s considering the 
speed loop delay and quantization error (steady state, zoom in view)

4.6 Experimental Study

4.8.1 Factors Affecting Speed Ripple In Real-Time

Some factors influencing efficiency o f speed ripple minimization include:

(1) Accuracy o f speed measurement

(2) Delay in speed loop

The overall performance o f a closed-loop system depends, to some extent, on 

the quality of the feedback signal which is the angular velocity in this case. Two types 

o f velocity transducer are mostly used for high performance motor control systems: 

tachometer and optical encoder. But both have its drawbacks. The tachometer 

produces a DC voltage which is proportional to the shaft speed. The accuracy o f a 

tachometer is suffering from its inherent non-linearity, temperature variations and 

components aging [81]. The encoder generates pulses representing rotor position 

which is essential in AC motor vector control system to implement field orientation. 

Velocity is estimated from discrete position data by approximate algorithms such as

9 2
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derivation. Although several algorithms have been developed [82]-[87], it seems the 

estimate error and delay are inevitable.

In the experiment an incremental encoder with 1000 pulse per revolution is 

used. The rotor speed is obtained by counting the number of pulse in a fixed period 

m T .

N{n)  -  N{n  -  m) 
mT,

where 7) is the sampling time. Because the pulse counting is actually a rising edge 

counting and the start point o f this fixed period is random, a quantization error is 

produced which is illustrated in Fig. 4.18.

Start Point2 mTs (6 pulses) —

^  -Start Pointi mTs (7 pulses) --------

Fig. 4.18 Quantization error illustration

In case 1, the pulse number is counted as 7; in case 2, the pulse number is counted as 

6 , although the situation is same. The maxim value quantization error is- ^
4000

The quantization error belongs to random error. Obviously this error will decrease as 

the time period increases. However, as the time period increases the speed loop 

feedback delay increases, the system dynamic response decreases. In order to select a 

proper time period for speed loop, an experiment was done using a PI controller. The 

m is set to be 1,5,10 and 100. Also in order to evaluate the system performance under 

different delay times, we collected the data of rotor position 9  and calculated the 

rotor speed off-line by
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9 { n ) -e {n -m )
m T

(4.23)

Fig. 4.19-4.22 show the calculated speed response. And from the eomparison of these

experimental results, we finally chose m==10'm our next experiments.

m Quantization Error (rad/s) Delay ('second')
1 15.71 0.0001
5 3.14 0.0005
10 1.571 0.001
100 0.157 0.01

Speed Loop delay = 1 Ts Speed Loop delay = 5 Ts

i l  I
t I  V

I I

If

5.5 6 6.5 7.5 8 8.5 9.5 1C

Fig. 4.19 Experimental result for m=L Fig. 4.20 Experimental result for m=5.
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■ | . . l

I
I

fli
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Fig. 4.21 Experimental result for m=10.
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Fi

101,5

5.5 6 6.5 7 7.5 8 8.5

Fig. 4. 22 Experimental result for i
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4.8.2 Experimental Results

The complete diagram of the proposed self tuned NFC based speed ripple 

minimization of IMBRB drive system has been implemented in similar way as 

mentioned in Chapter 3. The photograph of the experimental system is shown in

Fig. 4,23.

For comparison purpose, a Pl-controller-based system is also developed and 

experimentally implemented. After trial and error, the proportional gain and the

integral gain AT,, are selected as 0.4 and 0.3, respectively, so that the magnitudes of 

speed ripples can be comparable to the proposed NFC.

The sampling frequency is set to be 10 kHz in order to achieve a good tracking 

response. Due to the limitation o f the computational power of the processor, in 

practice the proposed weights w,_g and weights are fixed based on simulation 

studies as following,

Wj_9 = - 3  , W,9_27 = 3

Fig. 4.24 shows the zoom in view of the steady-state speed response for PI and 

proposed NFC based vector control of IMBRB drive. It is shown in this figure that 

proposed NFC and shows that the proposed NFC has eliminated the speed ripple up to 

50%. Fig 4. 25 shows the FFT analytical results of speed response for PI controller 

and the proposed NFC, respectively. It is can be seen that the proposed NFC reduces 

the speed ripples with fundamental field frequency, second harmonic, fourth harmonic, 

and fifth harmonic.

Fig. 4.26 (a) - (c) show the changing trend o f the weights w,o_,g in a time 

segment of 100 seconds. It is evident that the proposed NFC is capable to minimize 

the fluctuation o f speed and illustrate fault tolerant ability.
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IMBRB

Fig. 4.23 Photograph o f the laboratory experimental setup for IMBRB.
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Experim ental Speed  R esponse  Comparison: 150rad/s
154
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Fig. 4.24 Steady-state zoom-in-view o f the experimental speed response at 150 rad/s.

FFT of Speed: PI FFT of Speed: Proposed NFC
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Fig 4. 25 FFT analysis o f speed response for (a) PI, (b) the proposed NFC.
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Fig. 4.26 Experimental results o f weights variation at reference speed \5Qrad/s\
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4.7 Conclusion

In this chapter, a novel NFC is developed to minimize the high frequency 

speed ripple o f an IMBRB. A self tune algorithm has also been developed to update 

the weights according to the operating conditions. The convergence/divergence of the 

weights are investigated and validated by simulation results. A performance 

comparison with a PI controller showed that the proposed NFC can significantly 

improve the speed ripple. Thus, the proposed NFC acts like a fault tolerant controller 

for the IMBRB.
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Chapter 5

Conclusion

This thesis develops an AIC for high performance IM drive in order to achieve 

fast and accurate speed response, quick recovery of speed from any disturbance such 

as parameter variations, load changes, step changes o f command speed, etc. The 

intelligent controller has been developed in such a way that the computation burden is 

low and hence suitable for real-time application. Another intelligent controller has 

also been developed for an IMBRB in order to minimize the speed ripple and thus 

work as a type of fault tolerant controller. The particular work done in different 

chapters are briefly outlined below.

In Chapter I, a state-of-the-art review of IM drives utilizing various control 

techniques has been provided. The motivation o f the thesis and finally the 

organization o f the thesis have also been presented.

In Chapter 2, the FOC theory and NFC with fuzzy singleton rules have been 

introduced. Various training algorithms such as BP, RLS and Kaczmarz’s projection 

algorithms have been outlined. Inverse dynamics, differentiating model, and 

reinforcement learning have also been described as alternative solutions to the 

problem o f training of NFC in a practical control system.
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In Chapter 3, a novel and low computational NFC have been developed for 

speed control o f an IM drive. A supervised self-tuning method has been developed to 

adjust membership functions and weights of the developed NFC. The control of a 

three phase inverter using hysteresis current has been briefly discussed. The complete 

real-time implementation procedure utilizing the dSPACE DSP board DS1104 has 

also been provided.

In Chapter 4, the detail investigation about speed ripple for a faulty IMBRB 

has been provided. Another NFC has been developed for minimizing the speed ripple 

o f an IMBRB. The performance of the NFC has tested both in simulation and 

experiment.

In a conclusion, the NFC has found to be a good candidate for high 

performance industrial drive applications.

5.1 Contributions

The contributions o f this thesis are as follows,

■ A novel, simplified NFC has been developed and successfully implemented in 

real-time for speed control of a high performance IM drive. Comparison with a 

conventional 2-input NFC showed that the proposed NFC does not decrease the 

system performance, while it improves the computational burden significantly.

■ A new self-tuning algorithm has been developed to adjust the weights and 

membership functions for the simplified NFC. In this algorithm system error was 

directly used for self tuning the weights and membership functions. In this work 

the convergence/divergence of the weights has also been investigated and 

validated by simulation.
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■ The speed ripple of IM and its relationship with rotor electrical angle have been 

investigated. A mathematical representation of speed ripple has been proposed and 

used to design the NFC.

■ A novel NFC has been developed to minimize the speed ripple of an IMBRB. The 

developed technique has been tested both in simulation and experiment at 

different operating conditions. There is a close agreement between simulation and 

experimental results.

5.2 Future work
■ From the experimental results, one can see that the developed NFC in Chapter 3 is 

still suffering from the overshoot and undershoot. This drawback could be solved 

by adaptively adjusting the tuning rates for the weights and membership functions.

■ The objective of the work in Chapter 4 is to develop a FTC for the faulty IM. The 

design of a FTC involves two phases. The first phase is fault detection and 

isolation (FDI). In this phase the task is to design a dynamical system (filter) 

which, by processing input/output data, is able to detect the presence of an 

incipient fault and to isolate it from other faults and/or disturbance. Once the FDI 

filter has been designed, the second is to design a supervisory unit to reconfigure 

the controller so as to compensate for the effect o f the fault and to fulfill 

performance constraint. In Chapter 4, instead of following the conventional 

procedure to develop a FTC, a NFC has been developed to minimize speed ripple 

and act as a FTC. In future, the FDI for an IMBRB and a FTC for IMBRB 

utilizing the procedure mentioned earlier can be developed.

■ When NFC is trained for a particular work, a large training rate would lead to 

worse performance or even instability. In the future, the analysis of the stability 

and robustness could be done to find a suitable tuning rate.
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Appendix -  A
IM parameters

1. Parameters of IM (used in Chapter 3)

Power 5 0 0 1 F

Stator resistance 4 . 1 2 Q

Rotor resistance 1 . 7 9 7 0

Number of pole pairs 1

Stator inductance 0 .0 1 1 4 / 7

Rotor inductance 0 .0 0 7 3 / 7

Mutual inductance 0 . 2 4 5 / 7

Inertia Q .O m ilk g rrd

Rated speed 3600RPM

2. Parameters of IMBRB (used in Chapter 4)

Power 2 5 (% F

Stator resistance 6 . 5 Q

Rotor resistance 3 . 4 0

Number of pole pairs 2

Stator inductance 0 . 0 1 0 3 / 7

Rotor inductance 0 .0 1 5 4 / 7

Mutual inductance 0 . 2 6 5 5 / 7

Inertia 0 . 0 0 1 2 / g m ^

Rated speed 1 7 2 5 / P M
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Appendix -  B
Simulink Subsystem for Simplified NFC (Fig. 3.7)
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Appendix -  C
Simulink Model of NFC for IMBRM Drive
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C l. Simulink model of NFC developed for IMBRB drive (Chapter 4)
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C2. Subsystem o f “Weights Tuning” in Fig. C.l
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Appendix -  D
Real-time Simulink Model

D l. Real-time Simulink model o f low computational NFC based IM control scheme 
(Chapter 3)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I :

n ccI  1 2
1  1 o'â  g. Z

a  % S --

D2. Real-time Simulink model of NFC based speed minimization of IMBRB control 
scheme (Chapter 4)
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