SELF-TUNED NEURO-FUZZY

CONTROLLER

BASED INDUCTION MOTOR DRIVE

By

Zhi Rui Huang

A thesis submitted in partial fulfilment of the requirement for the of Masters of
Science
at
Lakehead University
Thunder Bay, Ontario

August 2007

©Copyright by Zhi Rui Huang, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-33589-5
Our file  Notre référence
ISBN: 978-0-494-33589-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Among various ac motors, induction motor (IM) occupies almost 90% of the
industrial drives due to its simple, robust construction and generally satisfactory
efficiency as compared to dc motor. However, the control of IM is complex due to its
nonlinear nature and the parameters change with operating conditions. Since 1980s,
field orientation principle (FOP) has been used for high performance control of IM.
Due to the well-known drawbacks of the fixed-gain proportional-integral (PI),
proportional-integral-derivative (PID) and various adaptive controllers, over the last
two decades researchers have been working to apply artificial intelligent controller
(AIC) for IM drives due to its advantages as compared to the conventional PI, PID
and adaptive controllers. The main advantages are that these controllers can handle
any nonlinearity of arbitrary complexity, and their performances are robust. Also
fuzzy rules and neural network (NN) can be used to model a process for model
reference or model predictive control. Meanwhile, the desighs of these controllers do
not depend on accurate system mathematical model. Neuro-fuzzy controller (NFC), as
a kind of artificial intelligent controller (AIC), has attracted much attention by
researchers as it takes advantages from both fuzzy logic controller (FLC) and NN by
combining the expert human knowledge and the learning ability of the NN.

Despite lots of research on AIC application for motor drives, industries are
still reluctant to use AIC for real-life industrial drives. The main reason is that most of
AIC require complex calculation and hence suffer from high computational burden.

Therefore, attention needs to be paid to develop AIC which is suitable for practical
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applications. In order to achieve that, in this thesis, first, a novel, low computational
and simplified self-tuned NFC is developed for the speed control of IM drive. For the
proposed NFC only the speed error is used as the input, unlike conventional NFCs,
which utilize both speed error and its derivative as inputs. Obviously, this
simplification lowers down computational burden and makes the NFC easier to be
implemented in practical applications. Next, a faulty IM with broken rotor bars
(IMBRB) is considered and a NFC is developed to minimize the speed ripple of that
motor. The speed error and rotor electrical angle are used as two inputs of the NFC.

A supervised self-tuning method is also developed for the developed NFCs.
The system error, instead of controller error, has been utilized to tune the membership
functions and weights because the desired controller output is not readily available.
Also the convergences/divergences of the weights are analyzed and investigated.

Simulation models for indirect field oriented control of IM incorporating both
of the developed NFCs are developed in Matlab/Simulink. IM drives based on both of
the developed NFCs are successfully implemented in real-time using DSP board
DS1104. For the first NFC, comparisons with conventional NFC and PI are done both
in simulation and experiment at different operating conditions for a laboratory 1/3 hp
IM. Also fhe effectiveness of the second NFC is tested for a laboratory 0.5 hp IMBRB
both in simulation and experiment, compared to a well-tuned PI controller. It is found
from the experimental results that the proposed NFC reduces the fundamental and
second harmonic components of speed ripple which are significant components as

compared to high frequency components.

iii
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Chapter 1

Introduction

This chapter provides an introduction about induction motor (IM) and a review
of the state-of-the-art-work on the control of the IM drivers. At the end the motivation

and organization of this work are also provided.

1.1 Structure of Induction Motors

The IM have been used as a workhorse in the industry due to its simple and
robust construction. The squirrel-cage motor is a type of widely used IM, as
compared to the wound-rotor IM. The squirrel-cage motor has unwired and
inaccessible rotor and owns the additional degree of ruggedness. Therefore, only
squirrel-cage induction motors are considered in this thesis.

In general, an IM consists of three basic components as shown in Fig. 1.1.

1) Stator: Houses the stator core and windings. The stator core consists of many
layers of laminated steel, which is used as a medium for developing magnetic

fields.
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Fig. 1.1 Structure of squirrel-cage induction motor: (a) stator, (b) rotor.
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2) Rotor: Also constructed of many layers of laminated steel. The rotor windings
consist of bars of copper or aluminium alloy shorted, at either end, with shorting
rings.

3) End shields: Support the bearings which center the rotor within the stator.

The basic principle of operation of IMs is that the rotating magnetic field acts
upon a rotor to develop mechanical torque. The stator winding of the IMs are evenly
distributed by 120 electrical degrees. As the three-phase current enters the stator
windings, it creates a rotating magnetic field within the air gap (the space between the
stator and rotor). The speed that the fields rotate around the stator is known as the

synchronous speed ( Ny ). As the magnetic field revolves, it cuts the conductors of the

rotor and generates a current flowing in the rotor conductors. This creates another

magnetic field which interacts with the air gap field producing a torque. Consequently,

the motor rotates at a speed N < N in the direction of the rotating field. The actual

output speed of the rotor is related to the synchronous speed and the slip, S, as:

Ny-N
§=—i 1.1
N, (1.D)

1.2 Literature Review

Nowadays IMs have been widely utilized in various industrial variable-speed
drive applications because of the maintenance advantages and less expensive over dc
motor drivers. However the control of IMs is still a challenging problem due to the
following reasons:

1) The dynamical system is nonlinear.

2) Two of the state variables (rotor fluxes/currents) are not usually measurable.
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3) Due to heating, the rotor resistance varies considerably with a significant impact
on the system dynamics [1].

The development of high-performance control theory for ac drives, driven by
industry requirements, has followed a rapid evolution during the last two decades.
One comprehensive process of IM control system design involves two levels: first to
choose a control strategy; and then to design a controller.

As shown in Fig. 1.2 [1], IMs control strategies can be broadly classified into
two categories such as scalar control and vector control.

Although simple to be implemented, Scalar control has only been used in
low-performance, cost-effective industry drives. In scalar control, only magnitude and
frequency (angular speed) of voltage, current, and flux linkage space vectors are
controlled. The most common scalar technique is that of constant volts/frequency (v/f).
In v/f method magnitude of stator voltage is adjusted in proportion to the frequency in
order to maintain an approximately constant stator flux in the IM. The v/f method
consists of controlling the speed of the rotating magnetic field of the stator by
changing the supply frequency. However, as the scalar control strategy is based on
steady-state principles, the transient performance is not optimized. For example, when
starting an IM directly on line, many times full load torque is developed with inrush
currents of perhaps six times than rated one.

On the contrary, in vecfor control, which is based on relations valid for
dynamic states, not only magnitude and frequency (angular speed), but also
instantaneous positions of voltage, current, and flux space vectors are controlled. Thus,
the vector control acts on the positions of the space vectors and provides their correct

orientation both in steady state and during transients. The most popular two
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vector methods are known as field-oriented control (FOC) [2]-[4] and direct torque
control (DTC) [5]-[9]. They have been invented respectively, in 70°s and 80’s. These
control strategies are different on the operation principle but their objectives are the
same. They both aim to control effectively the motor torque and flux in order to force
the motor to accurately track the command trajectory regardless of the machine and
load parameter variation or any extraneous disturbances. Both control strategies have
been successfully implemented in industrial products.

There also exist other vector control methods implemented in different ways.
Marino et al. [10] has proposed a nonlinear transformation of the motor state variables
so that, in the new coordinates, the speed and rotor flux amplitude are decoupled by
feedback. The method is called feedback linearization control (FLC) or input—output
decoupling [5], [11]-[13]. A similar approach, derived from a multi-scalar model of
the induction motor, has been proposed by Krzeminski [15]. A method based on the
variation theory and energy shaping called passivity-based control (PBC) [14] has
been investigated. In this case, an IM is described in terms of the Euler-Lagrange
equations expressed in generalized coordinates.

Numerous controllers have been utilized in IM control based on control
strategies mentioned before. The general classification of the controllers is presented
in Fig. 1.3.

Over a long time, conventional linear controllers such as PI, PID have been
widely applied to IM drives. But these controllers are sensitive to parameter variations
and load disturbance. The performance depends on operating conditions and PI gains
and it is also difficult to tune PI gains to solve the overshoot and load disturbance
rejection problems simultaneously. Overshoot elimination setting will cause a poor

load disturbance rejection, and rapid load disturbance rejection setting will cause
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overshoot or even instability in the system. To overcome this problem, PI/PID
controllers with tuning gains have been proposed [18]-[23]. However, the complicated
calculation makes the tuning either be done off-line [18]-[21] or on-line with a very
long sampling time such as 10ms [22] and 50ms [23] which are not acceptable in

some applications.

Controllers
\ 4 1 I A
Conventional Adaptive& Robust Intelligent Fault-tolerant
Controller Controller Controller Controller
PI VGPI MRAC SMC Fuzzy ANN Sensor Inverter
\ 4

Backstepping Mot
otor

H2&Hinf

Fig. 1.3 Classification of controllers for IM.

In order to avoid the shortcomings of PI/PID controllers, researchers applied
adaptive control techniques for IM drives to achieve parameter insensitivity and fast
response [24]-[30]. Lorenz and Lawson [24] proposed the model reference adaptive
control (MRAC). This adaptation functions by creating an error signal between a
reference motor model and an estimated quantity based on motor outputs. This error
will modify a gain in the system until the error is driven to zero. However, the
utilization of the motor voltage terminal quantities increases the system complexity.
Also these signals can be noisy and degrade the system performance. Rowan and

Kerkman [25] presented some other models and found that none of them will provide
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a total solution to the detuning problem. Applications of sliding mode control (SMC)
in ac drives, mostly in position control systems, have been reported in [26]-[28]. The
structure and design of SMA is relatively simple. However, the SMC is facing the
chattering problem which puts unacceptable vibration stress on the load [28] due to
the finite sample times of microprocessor implementation. The authors of [30]
combined field orientation and adaptive backstepping approach for the control of IM.
The design of the control law and the estimation rotor resistance and load torque were
based on the nonlinear model of IM. However, it is often difficult and sometimes
almost impossible to develop an accurate mathematical model of an IM.

H?2 & Hw control theory is also used to design robust controllers for IM
systems [31]-[36] . Field orientation or feed back linearization has to combine with
H2& Ho theory in order to eliminate IM intrinsic nonlinearity. The
H2& Ho controllers demonstrated robustness to parameters variations and
exogenous disturbances, but are highly dependent on accurate system model and
parameters. In addition complex calculation makes its application limited.

In order to overcome the disadvantages of conventional PI, PID and adaptive
controllers, recently researcher applied intelligent controllers for motor driver
applications. The main advantages of intelligent controllers are: the design of
intelligent controllers is independent of the system parameters and it can handle
system nonlinearity.

The artificial neural network (ANN) is well known for its learning ability and
approximation to any arbitrary continuous function. The ANN also possesses the
ability to perform in noisy environments and is tolerant to faults and missing data.
Some work has been reported on the use of ANN controllers for IM drives [37]-[41].

However, due to the iterative nature of the neural network, training of the ANN is too
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slow for certain applications. For example, the authors in [38] presented a FOC
control scheme for IM incorporating an ANN controller with two input nodes, eight
hidden log-sigmoid neurons and three pure linear output neurons. The ANN was
trained with 750 samples with a 1% sum-squared error goal. The proposed ANN
converged after 80,000 iterations. In [39], the authors proposed a simple network
structure with 4 input nodes, 2 output nodes and no hidden layers for the vector
control of IM. The error tolerant was set to be 0.1% of the command speed. The ANN
was trained by an unsupervised algorithm and took “at least a few seconds” to reach
the goal. Because of this reason, most of ANN controllers are trained off-line.
However, for off-line training, the ANN controllers need a large amount of data in
order to cover all the operating conditions. The ANN controller exhibits unacceptably
poor performance outside of the operating conditions over which they have been
trained [37]. Also it is difficult for an off-line-trained ANN controller to cope with the
dramatically changed environment or system parameters. On the other hand the on-
line training algorithms generally take too much computational overhead and limit the
sample frequency of the overall system [40]. In order to reduce the execution time of
the ANN controller, authors in [41] proposed a network structure with partial fixed-
weights. But the values of these fixed-weights depended on accurate mathematical
models which were not always available.

The theory of fuzzy-logic controller (FLC) is based on the linguistic rules with
an IF-THEN general structure, which is the basis of human logic. The FLC could also
handle the nonlinearity of arbitrary complexity. These advantages make FLC
attractive to IM drives [43]-[48]. However, the design of FLC depends on the
expertise and trial and error procedure. The values of the constants, membership

functions, fuzzy sets for the input/output variables, and the rules are all need to be
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adjusted by trial and error if optimized performance is wanted [43]. To make the
things worse, a fuzzy controller implemented in the motor drive speed control usually
has asymmetric membership functions [43], [44]. It is a time-consuming job to find
proper parameters for these membership functions even by an expert.

Neuro-Fuzzy Controller (NFC) has attracted much attention due to its
combined ideas FLC and ANN. A NFC offers the control system designer the
opportunity to make use of the advantages from both FLC and NN by combining
transparent and linguistic control rules of FLC and the learning ability of the NN. The
NFC has been utilized by researchers for motor drive applications [49]-[59] and fault
tolerant control of motor [60], [61]. A typical NFC has a four layer structure: input,
fuzzfication, rules, and defuzzfication. This leads to the higher complexity compared
to the FLC and ANN controller. The high complexity causes high computational
overhead. Despite many advantages of NFCs, the industry has been still reluctant to
apply these controllers for commercial drives due to high computational burden
caused by large number of membership functions, weights and rules, especially on
self-tuning condition [56], [57]. High computation burden leads to low sampling
frequency, which is not sufficient for real-time implementation. In [50] the authors
presented a four-layer NFC with 2 inputs, 3 membership functions each, 9 rules. Only
rules (weights) were tuned to lower the computational burden, but the cost is that the
parameters of membership functions have to be chosen by trial and error procedure. In
[58] the authors proposed a five-layer NFC: input, fuzzfication, rules, normalization,
and defuzzfication, in the discrete direct torque control of IM scheme. The authors

found relatively high torque ripple caused by low sample rate.

10
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1.3 Thesis Motivation

In this work the indirect field-oriented control (IFOC) is selected as a control
strategy because of its simple structure and low implementation complexity.

As discussed in literature review, the high complexity and computational
burden have prevented the practical utilization of the NFCs. Thus in this thesis a low
computational self-tuned NFC is developed for the speed control of IM drive. The
objective of this work is to simplify the complicated structure of the conventional
NFCs and at the same time maintain the system performance to the most extent.

Next, the work has been extended for a faulty IMBRB which suffers from high
frequency speed ripple and hence mechanical vibration. Conventionally, first, the
fault is diagnosed and then a fault tolerant controller (FTC) is developed to minimize
the speed ripple. However, the development of a model for the fault and hence a FTC
is difficult and time consuming. Therefore, in this thesis, first, the speed ripple of
IMBRB is investigated through an open loop experiment. And then a NFC is
developed to minimize the speed ripple of IMBRB. Thus, the developed NFC works

as a type of FTC.

1.4 Thesis Organization

The remaining chapters of the thesis are organized as follows. In Chapter 2 the
basic concept of field oriented control (FOC) and neuro-fuzzy controller (NFC) with
fuzzy singleton rules are explained. The parameters tuning of NFC in a control system
is also discussed in this chapter. Next, Chapter 3 shows the design procedure of the
low computational neuro-fuzzy speed controller for an IM drive. Experimental setup

and detail implementation procedure are described in this chapter. Simulation and

11
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experimental results are shown. A supervised self-tuning method is also developed for
the NFC. The system error, instead of controller error, has been utilized to tune the
weights because the desired controller output is not readily available. Chapter 4
describes research work on the utilization of NFC for IMBRB and analyzes the
convergences/divergence of the weights of the developed NFC. Finally, Chapter 5
presents a summary of the contributions of this work, future work and the conclusions.

After that all pertinent references and appendices are listed.

12
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Chapter 2

Field Orientation & Neuro-Fuzzy

Control Techniques

This chapter introduces the theory of field orientation control (FOC) and the
Neuro-fuzzy controller (NFC) with fuzzy singleton rules. The training methods of
NFC are outlined in this chapter. The difference between the Mamdani's fuzzy and
Sugeno-type fuzzy interferences is also explained. Also the problem related to

application of NFC in the control systems is illustrated.

2.1 IM Model for FOC

FOC provides a method of decoupling the two components of stator currents:
one producing the air gap flux and the other producing the torque. Therefore,
independent control of torque and flux, which is similar to a separately excited dc
motor, can be achieved. The magnitude and phase of the stator currents are controlled

in such a way that flux and torque components of current remain decoupled during

13
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transient and steady-state conditions. The FOC consists of three steps as follows,
Stepl: Clarke’s Transformation (abc-dg),
Step2: Park’s Transformation(dg-DQ),

Step3: Rotor Flux Alignment.

2.1.1 Clarke’s Transformation

Krause and Thomas [16] introduced a two phase equivalent machine
representation of 3-phase IM. The changes of variables, so-called Clarke’s
transformation or abc — a3, which transform thé motor equations in the original three
phase system to the equivalent two phase reference frame, for example, stator coils

three phase voltages Vas,Vbs,Vesinto corresponding vectors in the stator reference

frame, are given by,

11
[usas} 2 2 Vm
o= s @.1)
Yol o BB

2 2

The inverse Clarke’s transformation, abc —af3, can be performed as

~ -

2
AN
Uu
Vis |= “é‘ ?/l__ { a} 2.2)
v, 3L
e 11
L 3 3

Analogous transformations may apply to the other vector quantities of the IM. Thus

the IM dynamic equations can be described in « — f coordinates as,

Ri +———a/1‘” =u,, (2.3)
ot

14
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o,

Ri +—2 =i 24

slﬂx at uﬂs ( )
OA,

Ri’ +—2=0, 2.5

rlar at ( )

Ri, + 22 g (2.6)

i =0, .

T ot

where R, i, A,u denote resistance, current, flux linkage, and stator voltage input to the

“_n “on

machine; subscripts “s” and “r” stand for stator and rotor, («,f) denote the

equivalent two phase axis, superscript “s” denotes the components of a vector with
respect to a fixed stator reference frame, “r” denotes the components of a vector with

respect to frame rotating at speed w, .

It is noted that the stator vector i/, 4] and u; are revolving in the fixed stator
reference frame with speed w,, and that the rotor vector if and A are revolving with
speedw,; in the rotor reference frame which is rotating at speed w, . And we have

w, =0, +ao, 2.7)

Figure 2.1 illustrates the relationship between stator and rotor reference frames.

or: Rotor Reference Frame

as:Stator Reference Frame

§
Xas

Fig. 2.1 Illustration of rotor reference frame and stator reference frame.
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2.1.2 Park’s Transformation

From Fig. 2.1, it is easy to see that the vector quantities in « — J reference
frame have sinusoidal ac waveforms. AC quantities are somewhat inconvenient as
they change with rotor position. Therefore, another transformation, named Park’s

transformation, is introduced which allows conversion of the stationary a - f
components of the motor vectors into synchronously rotating « — S frame where the
quantities become fixed. The Park’s transformation involves the excitation reference
frame (d,q) which rotates with the speed @, as shown in Fig. 2.2.

gs ps
A

%ok | ds: Excitation Reference Frame

)Ld 6, = w,l
» s :Stator Reference Frame

Fig. 2.2 Tllustration of the excitation reference frame.

This (a, f) — (d,q) transformation is expressed as,

Xy | [ cos8,) sin(6,)] X, 2.8)
X, | [-sin@,) cos@,) || X, |’ *

gs
where the superscript denotes the new rotating reference frame. While the inverse

(d,q) - (a, B) transformation is given by,
X, cos(d,) —sin(@) || X,
{ as}:|: ) ( e) ( e)} ds ) (2.9)
X, sin(6,) cos(6,) || X,
The magnetic equations in rotating frame are given by,
16
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]’ds = Lsidf + LMidr ° (210)

ﬂqs =L5iqs +LMiq,, 2.1
Ap =Lyt +Li,, (2.12)
ﬂqr = LMiqs + Lriqr . (2.13)

And the torque equation in (d,q) frame can be written as [3]

2n, L, .
T; = é??(lqsﬂ’dr ‘ldsﬂ’qr) H (214)

where 7, is the rotor time constant
T, =—, (2.15)

and n, is the number of pole pairs of the IM.

2.1.3  Rotor Flux Alignment

Since the (d,q) frame has been defined as rotating with the same angular

velocity as the vector quantities of the motor, any one of these vectors can be used as

a reference with which the (d,q) frame is to be aligned in order to further simplify

the torque (2.14). In classical approach the (d,q) frame is aligned with rotor flux

vector A, . This leads to

Ay =0. (2.16)
Then the torque equation becomes
2n
T = ﬁ?-%’—iqsﬂd, =K Ay s (2.17)
where
17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



_ 27 Lm

KT b .
3R, 7,

(2.18)

Hence, when

A, = Constant,

There is a linear relationship between current i, and torque.

The FOC schemes can be classified into two groups: the direct field
orientation (DFO) and indirect field orientation (IFO). The DFO is based upon
estimation of the rotor flux from the terminal voltage and current, while the IFO

avoids the requirement of flux estimation by computing the appropriate motor slip

frequency w,, to obtain the desired flux positioné, :

0, = [(o, +0,)dt, (2.19)
where
o, :|——I£M—*5’—*i;;. (2.20)
r lcommand r

Both the DFO and IFO, particularly IFO, are parameter sensitive. For example,
inductance parameters vary about +20%, whereas rotor resistance changes
dramatically (+100%) with temperature.

A typical closed loop IFO control scheme of IM is shown in Fig. 2.3. The

objective of block “Controller” is to generate reference torque 7, . The block “ i;s

Calculation” calculates the reference i;s according to (2.17) as

{ =t @.21)
y KTﬂ'dr

where the reference rotor flux vector A, is given by block “Phir*”. The block “i,

Calculation” calculates the reference i, by [3],

18
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i, ==, (2.22)
The function of the block “Rotor Position Estimator” is to estimate the rotor flux

position &, according to (2.19) and (2.20). The block “dq-ABC” does the inverse

Park’s and Clarke’s transformation according to (2.9) and (2.2), and then outputs the
reference 3-phase current. These reference 3-phase current is compared to the
measured 3-phase current in the block “Current Regulator” which outputs switch

signals for the inverter block “Universal Bridge”.

2.2 Neuro-fuzzy Controller (NFC)

2.2.1 Basic Structure of Fuzzy Logic Controller

Fig. 2.4 shows the basic structure of a traditional fuzzy logic controller based
system. Fuzzy logic controllers produce their command outputs from inputs based on
the fuzzy rules. The fuzzy rule base contains a set of [F-THEN statements R. For a

MISO (multi input single output) system,
R={R,R,,...R},
where the ith fuzzy logic rule is
R:1Fxis4' ANDx, is4/AND ... ANDx,is 4", THEN y is M’ . (2.23)
In expression (2.23) x, is a crisp input variable, y is the command output variable, 4"
and M’ are fuzzy sets which affect the way how a human being describes the input x,

and output y. The input membership functions are formulas used to map the inputs to

fuzzy sets with degree of membership in that set. So for a specific value x,(¢) at time ¢,

20
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it is mapped to the fuzzy set 4 with degree 4 (x,()) and to the fuzzy set 4 with

degree 4’ (x,(+)), and so on.

Functions

NH ZE PH

NH ZE PH

Input Membership

«——— Inference Engine ————»-

Fuzzy Logic Controller
Fuzzy Rules Output Membership
Functions
o) p.y Defuzzifier
THEN *'M\/' &_
THEN o} /z o, E
\{A i
- System >
THEN : States or
) ‘%f : Outputs
\Jj‘ PH

Fig. 2.4 The basic structure of a traditional fuzzy logic controller based system.

The inference engine in Fig 2.4 is to perform implication. For example, if

there are two rules:

R:IFxisd'ANDzx, is 4!, THEN y is M,

R,: IF x is A* ANDx, is 4%, THEN y is M*.

Then the firing strengths of rules R and R, are defined as ¢, and «r, , respectively.

Hereq, is defined as

o = 1 (6) A (%), (2.24)

where A is the fuzzy AND operation. The algebraic product is utilized as the fuzzy

AND operation in the thesis. Hence, «;, i =1,2, becomes

27 =,Lt,i(xl)/\,tz£(x2)=/¢;(x1)0p;(x2). (225)

The above two rules, R and R, , lead to the corresponding decision with the

membership function, M .(3), i=1,2, which is defined as

21
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M,(y)=0o, AM,(y)=a, M,(y), (2.26)
where y is the variable that represents the support values of the membership function.
Combining the above decisions, we obtain the output decision

M) =M,()v M), (2.27)

where v is the is the fuzzy OR operation. The max (maximum) is utilized for fuzzy OR

operation. Hence the output decision becomes

M) = M,(y) v M, () = max(M,(7), M, (7). (2:28)
Notice that the last result is the membership function curve. Before feeding the signal
to the system, we need a defuzzification process to get a crisp decision, and the

defuzzifier in Fig. 2.4 serves this purpose. Among the commonly used defuzzification

strategies, the centroid, which returns the centre of area under the curve, yields a

superior result. Let y; be the support value at which the membership function, M (»),

reaches the maximum value 3 ;(”)|,.,, » then the defuzzification output is

M)y,

e — (2.29)
M;(y)
%

yll

2.2.2 Fuzzy Singleton Rule Based NFC

The section 2.2.1 describes the standard function operations, the so-called
Mamdani's fuzzy inference method, in a traditional fuzzy logic control system. In
spite of several well known advantages of fuzzy logic controller, the systematic
procedure for the design of fuzzy logic controller is still lacking at present. The most
straightforward approach is to define membership functions and rules subjectively by

studying a human-operated system or an existing controller and then testing the

22
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design for the proper output. The membership functions and/or rules should be
adjusted if the design fails the test, or types of system are changed, or the control
objectives are altered.

The progress made in Neural Network theory has made available self-learning
procedures. One of the important characteristics of neural network is that neural
network can adapt itself to changing control environment and can learn by the type of
input and output. In fact as any fuzzy system can be viewed as a highly structured
neural network, typical neural network learning techniques can be used to optimize
the design of fuzzy logic controller. The combination of fuzzy logic with neural
network leads to Neuro-Fuzzy controller.

However this combination brings heavy computational burden. The tuning of
the parameters of membership functions and rules involves large amount of multi-
plications and divisions. This fact has prevented the utilization of the neuro-fuzzy
network into some industrial cost-sensitive field.

In this thesis, we adopt the Sugeno-Type Fuzzy Interference to speed up the
computational process. The Sugeno-Type Fuzzy Interference, introduced in 1985, is
similar to the Mamdani method in many respects. The first two parts of the fuzzy
inference process, fuzzifying the inputs and applying the fuzzy operator, are exactly
the same. The main difference between Mamdani and Sugeno is that the Sugeno
output membership functions are either linear or constant.

A typical rule in a Sugeno fuzzy model has the form
R:TF xis A ANDx, is4,, THEN y = ax, + bx, +c.
For a zero-order Sugeno model, or fuzzy singleton rules, the output level y is a

constant (a = b = 0). Such fuzzy singleton rules are in the following form:

R:TF xis4 ANDx, is4,, THEN y = w,.
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The output level y of each rule is weighted by the firing strength ¢, of the rule. For

example, for an AND rule with x,is 4 AND x, is 4, , the firing strength is

@ = #:(xl) ':u; (x,), (2.30)
where £ (.) and z4,(.) are the membership functions for inputs x, and x,. The final

output of the system is the weighted average of all rule outputs, computed as

N

PNAY
Final Output = =L (2.31)
.

1]

M=

)

Because it is a more compact and computationally efficient representation than
a Mamdani system, the Sugeno system lends itself to the use of adaptive techniques
for constructing fuzzy models. These adaptive techniques can be used to customize
the membership functions so that the fuzzy system best models the data. Also because
of the linear dependence of each rule on the input variables, the Sugeno method is
ideal for acting as an interpolating supervisor of multiple linear controllers that are to
be applied, respectively, to different operating conditions of a dynamic nonlinear
system.

Figure 2.6 shows network structure of the fuzzy singleton rules based NFC

[74]. x,is an input variable, y, is the output variable, 4’ are linguistic terms of the
precondition part with membership functions z ; (x,)s w,is a real number of the rule
part, j=1,2,..,Mandi=12,..,n.

Next we describe the functions of the nodes in each of the four layers. In the

following, Oy is the out put of the Nth node in the Mth layer. From the network

structure, it is note that the inputs of the Oy are coming from O} ™. In the following

equations, superscript is used to indicate the layer number.
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= Layer I: The nodes in this layer just transmit input values to the next layer.
That is,

O =x,. (2.32)
From the above equation, the link weight at layer one (w;) is unity.

»  Layer 2: The output function of the node in this layer is membership function.
For example, for a isosceles triangular function as shown in Fig. 2.5

p o O/ -¢/
O =p,(x)=M(c,b)=1- o (2.33)

i

where ¢/ and b/ are, respectively, the center and the half of width of the

isosceles triangular function of the jth term of the ith input linguistic
variable x, .

Fig. 2.5 The triangular function.

» Layer 3: The links in this layer are used to perform precondition matching of
fuzzy logic rules. Hence the rule nodes should perform the fuzzy AND
operation,

o" =TJo". (2.34)

Then the link weight in layer three (w) is unity.
» Layer 4: The node in this layer performs defuzzification.
f:O.IHW.
O = (2.35)
Z 0!11
i=l

From equation (2.32) - (2.35), the final output of the NFC can be found

Z(H#A, (),

Y, =5 (2.36)

Z(H H oy (% ))

j=1 =l
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Layer 4
[Defuzzifier Layer]

Layer 3
[Rule Layer]

() (4]
[Fuzzifier Layer]

Layer 1
[Input layer]

Fig. 2.6 Fuzzy singleton rules based NFC.

2.2.3 Parameters Tuning Methods

Parameter tuning of NFC with fuzzy singleton rules is the tuning of input
membership function 1, and the weightsw, .

2.2.3.1 Back Propagation (BP)

Back propagation was created to train the parameters of both nonlinear and
linear, differentiable transfer functions and rules in a multiple-layer network. Standard
backpropagation is a gradient descent algorithm. The training process requires a set of
examples of proper network behavior - network inputs and corresponding target

outputs. During training the weights (or rules in our fuzzy singleton rules based NFC)
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and parameters of membership functions of the network are iteratively adjusted to

minimize the network performance function, which is usually defined as

1
E= -i(y,, -y (2.37)

where y? is the desired output for input vector X = (x,,x,,...,x,)" .

As an example, the tuning rules based on BP algorithm for the membership
functions and weights can be written as,

OF

c/(n+l)=c/ (m-n,—, (2.38)
oc/

- - O0FE

b/ ) =b/(n)-n,—, 2.39

() =80 -, (2:39)
OF

wj(n+1)=wj(n)—77w5w—.—. (2.40)

J

The derivatives can be found by the chain rule

OE _OE oy, %Ky

—= . 241
ou ,
O _OE &y, Py (2.42)
abij ayu alu A abrj , '
OE OF ©
o —-é—fv— . (2.43)
;O oW,

The hypothesis behind BP algorithm is that properly trained BP networks tend
to give reasonable answers when presented with inputs that they have never seen.
Typically, a new input leads to an output similar to the correct output for input vectors
used in training that are similar to the new input being presented. This generalization

property makes it possible to train a network on a representative set of input/target
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pairs and get good results without training the network on all possible input/output

pairs.

2.2.3.2 Recursive Least-Squares (RLS)

From equation(2.36), it is observed that for fuzzy singleton rules, the final

inferred output y, is a linear function of the consequent parameters w,. Hence, given

the values of the membership parameters and p training data ( X®,y?® ),

k=1,2,..., p, we can form p linear equations in terms of the consequent parameters as

follows:
~ 1 o — — M - —_— — I !
yio 20w, + T W, T W, a2V 7 Loul | w
d(2) =(2) =(2) —(2) —(2)  —=(2) —(2)
v 0w AW, i Wy, u, u, T\ w,
= ' = ' ' L, (244)
d(p) —=(p) =(p) =(p) =(p) =(p) —=(p)
Bl B P hie VR a7 a TS O e VR B A u, VAR IR

[Tx, ) \
Where the £ == and [« (%) value are calculated, for example,

é (l;[ ﬂAij (x,)) =

from equation (2.33) when the input is X

Introducing vectors

o () =[7" 7 .. #)], (2.45)
o=[¢') ¢'@ - 7], (2.46)

o=[w w, .. w[, (2.47)
y=[y0 yo . o7, (2.48)

equation (2.44) can be expressed in a matrix-vector form

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y=046. (2.49)

According to linear equation (2.49) the tuning of w;can be viewed as a problem of

parameters estimation. The least squares method is a useful technique for parameter

estimation. And this method is particularly simple if the model has the property of

being linear in the parameters such as (2.49). If ®"® is non-singular, the parameter
should be

f=(@ D) 'd’Y (2.50)

So as to minimize the least-squares loss function
1¢ d(i) T /s
V(,p) =EZ(y,, -9 (H0). (2.51)
i=1

In many cases, the row vectors of matrix @ and the corresponding elements in Y are
obtained sequentially in real time. Therefore it is desirable to compute the least

squares estimation of @ recursively by using the following formula:
O(n) =6(n-1)+ K(m)(y{ - ¢" (mh(n-1)), (2:52)
K(n) = P(n)p(n) = P(n=1)p(n)(I +¢" (n)P(n-De(n))™", (2.53)

P(n)=P(n—1) - P(n-Dp(n)(I +¢" (nP(n-De(n)" ¢" () P(n~1) _

. (2.54)
=(I-K(nmyp (m)P(n-1

2.2.3.3 Kaczmarz’s Projection Algorithm

~

The RLS algorithm given by equation (2.52) - (2.54) has two sets of state variables, 8
and P, which must be updated at each step. For large » the updating of the matrix P
dominates the computing effort. There are several simplified algorithms that avoid
updating the P matrix at the cost of slower convergence. Kaczmarz’s projection

algorithm [91] is one simple solution. It gives
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é(n)=é(n—1>+—f@“)—(y5‘"> -o" (MO(n-1)), (2.55)
@' (W)p(n)

where 0 <y <2 is a factor used to change the step length of the parameter adjustment.

2.2.4 NFC in Control Systems

A major property of NFC for control systems is their ability to generate input-
output maps that can approximate any function with desired accuracy. The
performance of a NFC in control systems is to large extent dependent on how the
NFC is trained. However an important issue related to the training of NFC has raised
much concern. This issue is that the desired output of the network (the appropriate
controller-generated control input to the plant) is not readily available but has to be

induced from the known desired output. Some solutions are
® Inverse dynamics of the plant;
®  Differentiating a model;

®  Reinforcement learning [56], [74].

2.2.4.1 Inverse Dynamics of the Plant

Fig. 2.7 (a) shows how a neural network can be used to identify the inverse of
a plant, where the input to the network is the output of the plant and the target output
of the network is the plant input. Once one has such an inverse, it can be used for
control purpose as shown in Fig. 2.7 (b). The desired plant output is provided as input
to the network, and the resulting network output is then used as input to the plant.

Since the network is a plant inverse, this plant input causes the desired plant
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Fig. 2.7 (a) Training of the plant inverse model, (b) Application of the plant inverse model.

output. A major problem with inverse identification is that the plant’s inverse is not
always well-defined. That is, more than one plant input produces the same output. In
this case, the network attempts to map the same network input to many different target
responses. As a result, it tends to average over the various targets, thereby producing a

mapping that is not necessarily an inverse.

2.24.2  Differentiating a Model

Fig. 2.8 shows the basic control scheme. Since the error at the output of the
NFC (controller errore, ) is not directly available and only the system error e, can be

measured at the output of plant, the objective function to be minimized by the NFC is

defined as,

1
E==0, - ). (2.56)
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Thus the equation (2.41) - (2.43) become

OE _ OE &y dy, %y

ab]l ay ayu alu 4 ab[l

M

OE _ _OE %y Oy,

8w' ay ayu GW/' .

J

oy
oy,

The term

2.57)

(2.58)

(2.59)

, known as Jacobian matrix, corresponds to the forward gain of the

plant. To find the derivatives of the equation (2.57) - (2.59) we need to know the

Jacobian matrix of the plant. This usually implies that we need a model for the plant

Yu

X—>» NFC

BP
Error

Plant y
+
e
Yw
N
(Plapt Model)
(a)
Ya
+ €
»  Plant —y>(£ ----- £,
NN
Plant
(Plant Model) | _output Emror_|
(b)

Fig. 2.8 (a) Training of the plant model, (b) Application of the plant model.
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and the Jacobian matrix obtained from the model, which could be a neural network
[42], neural fuzzy network (NFN) [59], or another appropriate mathematical
description of the plant [49], [50].

As shown in Fig. 2.8 (a) a multilayer network is first trained to identify the
plant’s forward model, then this network and another NFN used as the controller are
configured as in Fig. 2.8 (b). The advantage of a forward model having this form is
that one can efficiently compute the derivative of the model’s output with respect to
its input by means of the BP process, which evaluates the transpose of the network
Jacobian matrix at the network’s current input vector. As a result, propagating errors
between actual and desired plant outputs back through the forward model produces
error in the control signal, which can be used to train another NFN to be a controller.
This error back-propagation path is illustrated by the dash line in Fig. 2.8 (b). This
method has advantages over the direct identification of a plant inverse when the

inverse is not well-defined.

2.2.4.3  Reinforcement Learning

The reinforcement learning is proposed to overcome the difficulty encountered
by supervised learning. The supervised learning schemes require precise training data
to indicate the exact desired output, and then use the precise training data to compute
the output errors for training the whole network. Unfortunately, such detailed and
precise training data may be very expensive or even impossible to obtain in some real
word applications because the controlled systems may only be able to provide the
learning algorithm with an “evaluative” reinforcement feedback such as a binary

direction of right/wrong of the current controller output.
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Fig. 2.9 The reinforcement control scheme.

The reinforcement control scheme is more complicated than the conventional
NFC as illustrated in Fig. 2.9 [74]. The Predictor is a NN or NFN function as an
internal evaluator capable of evaluating the plant performance. Another NFN
functions as an action network. These two networks share the same input vector and
membership functions. The action network output y does not directly act on the plant.
Instead, it is treated as mean (expected) action. The actual action, y, is chosen by
exploring a range around this mean point. This range of exploring corresponds to the
variance of a probability function which is the normal distribution in our design. This

amount of exploration, o (¢), can be chosen as

o(t) = (2.60)

1+e2P®)”°
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where £ is a search-range scaling constant which can be simply set to 1, and p(#) is the
predicted (expected) reinforcement signal used to predict #(#). Equation (2.60) is a
monotonic decreasing function between k£ and 0, and o(f) can be interpreted as the
extent to which the output node searches for a better action. Since p(t) is the expected
reward signal, if p(?) is small, the exploratory range, o(¢), will be large according to
(2.60). On the contrary, if p(t) is large, o (¢) will be small. This amounts to narrowing
the search about the mean, y(2), if the expected reinforcement signal is large. This can
provide a higher probability to choose an actual action, y, which is very close to y(?),
since it is expected that the mean action y(?) is very close to the best action possible
for the current given input vector. On the other hand, the search range about the mean
y(t) is broadened if the expected reinforcement signal is small such that the actual
action can have a higher probability of being quite different from the mean action y().
Once the variance has been decided, the actual output can be set as:

YOy =K*N(y(0),0(). (2.61)
K is a scaling factor to fit the specifications of the controlled plant. That is, y(¢)is a

normal or Gaussian random variable with the density function:

Uyt
y) = e 2, 2.62
f) iy (2.62)
The gradient information is estimated as [74]:
or ye-1)-y-1)
—=[r{t)-p(t . 2.63
5, =0 )][ T .63

A

In(2.63), the term Y~ is the normalized difference between the actual and expected
lof

actions, (2) is the real reinforcement feedback for the actual action p(t —1), and p(?) is

the predicted reinforcement signal the expected action y(#-1). Equation (2.63) was
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derived based on the following intuitive concept. If »(¢)> p(¢), then y(r—1) is a
better action than the expected one, y(t-1) and y(t-1) should be moved closer to
y@-1).If r(t) < p(t), then p(r—1) is a worse action than the expected one, and y(z-
1) should be moved farther away from p(¢—1). This idea also comes from the

observation of a discrete gradient descent method. The concept behind (2.63) is
frequently adopted in the stochastic exploration technique.
After the gradient information is available, the reinforcement learning has

been transformed to the supervised learning.
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Chapter 3

Development & Implementation of a
Low Computational Neuro-Fuzzy Speed

Controller for IM Drive

In this chapter a novel and low computational self-tuned NFC is developed for
speed control of an IM drive. The proposed NFC combines fuzzy logic and a four-
layer artificial neural network (ANN) scheme. The proposed NFC lower down the
computational burden by using only speed error as the input instead of using both
speed error and its derivative which are widely employed as inputs by the
conventional NFCs. The simple structure of the proposed NFC makes it easier to be
implemented in practical applications. Based on the knowledge of vector control and
Back Propagation (BP) algorithm a supervised self-tuning method is developed to
adjust membership functions and weights of the proposed NFC. The complete drive

incorporating the proposed self tuned NFC is experimentally implemented using a
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digital signal processor board DS-1104 for a laboratory 1/3 hp motor. The
effectiveness of the proposed NFC based IM drive is tested both in simulation and
experiment at different operating conditions. Performance comparisons between the
developed NFC, conventional NFC and PI controller are also provided. Comparison
of results in simulation and experiment proves that the simplification of the proposed

NFC does not decrease the system performance.

3.1 Control Structure

The schematic diagram of the proposed NFC-based indirect field oriented
control of induction motor is shown in Fig. 3.1. The basic configuration of the drive
system consists of an induction motor fed by a current controlled voltage source

inverter. The normalized speed error Aw% is processed by the NFC to generate the

reference torque T, (). The command current igs (n)is calculated from equation (2.17)

as following,

ot + 3Rr Tr 1
(M =T, (n)——F—.
27’lp Lm ﬂ’Dr

G.1)

Currents i and ip; are transformed intoi;, i, and i, according to inverse Clarke’s

and Park’s transformation as,

I
i 3
‘ 6) -sin@)] [i
gl =|-L L|eos@) —sin@)) i 32)
- 3 3| sin(6,) cos(8,) s L% )i

¢ dm 1

1
3 3]

The 6,(n) is calculated indirectly based on (1.20) and (1.21) as,

8,(n) = 6,(n-)+[w,(n) + 0, (M]T,, (33)
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where T, is sampling time and

§

L

m Rr re¥
0, () == 0, G4

¥ lcommand r

The phase command currentsi,, i, and i, are then compared with the corresponding
actual currentsi_, i, and i . Current error signals Ai,, Ai, and Ai, are then applied to

the hysteretic current controllers to generate PWM logic signals, which are used to
fire the power semiconductor switches of the 3-phase inverter. Thus the inverter
produces the actual voltages to run the induction motor. This PWM control technique
is called Current-Controlled Voltage Source Inverters which is illustrated in Fig. 3.2.

The input-output characteristics of the phase-A hysteretic current controller is shown

in Fig. 3.3. The width of the hysteresis loop, denoted by 4, represents the tolerance

bandwidth for the controlled current. If the current error, Ai_, is greater than #/2, i.e.,

current i, is unacceptably lower than the reference current, i, the within the tolerance

band. The other two controllers operate in a similar manner. Thus the switches of the

3-phase inverter are controlled on the following logic,

if Ai, >g, then Sa =1, T1 is ON, i, increase;
if Ai, < ~—g—, then Sa'= 1, T4 is ON, i, decrease;
if A, >§, then Sb =1, T3 is ON, i, increase;
if Aj, < ——g , then Sb’=1, T6 is ON, i, decrease;
if Ai, > 121- , then Sc = 1, T5 is ON, i, increase;

if Ai, < —121— , then Sc'= 1, T2 is ON, i, decrease.
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Fig. 3.2 Block diagram of current-controlled VSI.

Fig. 3.3 The input-output characteristics of hysteretic current controller.

The width, A, of the tolerance band affects the switching frequency of the

inverter. The narrower is the band, the higher frequency in the switching and hence
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the better quality of the current. However, due to the limitation of the switching
frequency of the semiconductor devices, the hysteretic band is chosen as 0.05 for real-

time experiment in this thesis.

3.2 Design of the Neuro-Fuzzy Controller

The proposed NFC incorporates fuzzy logic and a learning algorithm with a
four-layer artificial neural network (ANN) structure as depicted in Fig. 3.4. The
learning algorithm modifies the NFC to closely match the desired system performance.

The detailed discussions on different layers of the NFC are given below.

Fuzzification Rules

> Self-tuning

Fig. 3.4 Structure of the NFC.

Input Layer:
The input of the proposed NFC is the normalized speed error, which is given

as,

0" =2 =2 +100%, (3.5)
(1)

where @ is the measured speed, @ is the command speed, I denotes the 1** layer.
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Fuzzification Layer:

A three membership function-based fuzzy set is utilized to obtain the fuzzy
number for the input. In order to keep the computational burden low, in the proposed
NFC, triangular and trapezoidal functions are chosen as the membership functions as
shown in Fig. 3.5.

The node equations in this layer are given as,

1 x' <b,
X, a
b 1
O, = b’ 5 i , (3.6)
'\~ | <X <@
0 x!'>a
0 |xiHl2b2
or = i 3.7
2 = l_xi —a, H ( . )
Vi
bz ‘x,. l<b2
0 x! <a,
1
n_ X, —
0; = . g (3.8)
v—a,  a,<x'<b
I
1 x; 2b,

where x' is the input of the 2" fayer which is same as the output of the 1% layer. It is

considered that a,=0 in order to further lower the computational burden.

76

Fig. 3.5 Membership functions for input.
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Rule Layer:
No “AND” logic is needed in the rule layer since there is only one input in the
input layer. The node equations in rule layer are specified as,

o = x,-ij _ Oiuwj , (3.9)

Where x is the input of the 3" layer which is same as the output of 2™ layer.

Defuzzification Layer:
The center of gravity method is used to determine the output of NFC. The

node equation is specified as,

vi Vi/g 1
y:QVI_in _Zoi _ZOI' Wi (3.10)

—ZO'H—ZO‘” - ZOH ’

where x! is the input of the 4" layer which is same as the output of 3 layer.

In order to compare with the conventional 2-input NFC, we adopt the
conventional 2-input NFC structure in [49] as shown in Fig. 3.6 and implement it in
simulation and experiment. The NFC in [49] employed normalized speed error and its
derivative as two inputs and has been successfully used for high performance control
of IM. This NFC has 9 rules and 9 weights and hence the computational overhead is

high.

3.3 On-Line Self-Tuning Algorithm

Since it is impossible to determine or calculate the desired NFC’s output zf;s

and find train data off-line covering all operating conditions, a kind of supervised on-

line self-tuning method is introduced in this thesis. Instead of using desired

controller’s output ié; as target, the system error is used to assess the performance of
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controller

» Self-tuning

Fig. 3.6 Conventional NFC.

and evaluate the current state of system, and then to guide the control action in the

right direction.

The objective function to be minimized is defined by
1, 1,. 2
E=—r=—(o -o) .
2 =50 -o)

Hence, the learning rules can be derived as follows [74],

a(n+1)=a,(n)-n, &,
" Oa

i

oF
b(n+)=b(n)—-n —,
y(n+1) =b,(n) s 5,

OE
.wj(n+l):w/'(n)—77wj?a;-’

J
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(3.12)

(3.13)

(3.14)



where Mays Ty, >0, AT€ the learning rates of the corresponding parameters. The

derivatives can be found by chain rule as,

(3.15)

da, Or dw dy 00" da,’
v
§£=—a£*a£§-ai—ay,, 9 , (3.16)
0b, 0Or 0w Oy 00O, 0b,
OF _OEordedy (3.17)
ow, 0Or dw dy ow,
where the common parts of equations (20)-(22) are as follows,
&k o o0, (3.18)
or
or
—=-1, 3.19
Fy (3.19)
Ow
—=J(), (3.20)
Ay

where J(¢)is the Jacobean matrix of the system [74]. The Jacobean matrix J(?) is not
easily found directly. Thanks to the FOC the IM system can be viewed as a single
input single output system, then the J(?) can be estimated as a constant value K, > 0
[76], [77].

From equations (3.6) - (3.20), the update rules can be determined as follows [75],

O (n-1)
et (3.21)

2.9

w(n) 1- 01” (n)
>0/ b(n)-a(n)’

w,(n) = w,(n=1) +1, K,r(n)

a(n+l)=a,(n)-n,K,r(n)

(3.22)

w(n)  O'(n)
Z 0;1 b,(n) - a,(n) ,

by(n+1) = b(m)~n, K,r(n) (3.23)
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w,(n) 1- 02” (n)

b2(n+1) :bz(n)+77b2K1r(n) ZOII b (n)
J 2

, (3.24)

wy(n) 1-0/(n)
> 0" by(n)-a,(n)’

a(n+l)=a,(n)-n, K,r(n) (3.25)

wy(m) O (n)
> 07 b(m)-a,(n)

by(n+1)=b,(m)—n, K,r(n) (3.26)

In our control scheme, we set n, =7, =n, =7, =7, .

Based on these update rules, the following steps are employed for tuning the

parameters of a, a,, b, b,, b, and w, [74]:
Step 1: First an initial set of fuzzy logic rules and initial values of a,, 4,, 5, b,, b,and
w,are selected.

Step 2: The normalized speed error is calculated, which is input to the NFC.

Step 3: Fuzzy reasoning is performed for the input data. The membership values

O/ are then calculated by using (3.6)-(3.8).
Step 4: Tuning of the weights w, of the consequent part is performed by using (3.21).
Step 5: Tuning of the q,, a,, 5, b, and b, is done by substituting the tuned real

number w; obtained in step 4, the measured reinforcement signal », the membership

value O/ into equations (3.22) - (3.26).

Step 6: Repeat from step 3.

3.4 Simulation results

Before implementing in real time, the performance of the proposed NFC based
IM drive is investigated extensively in simulation. A simulation model of the

proposed NFC is developed in Matlab/Simulink [72] software as shown in Fig. 3.7.
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The performance of the proposed NFC is compared to a conventional 2-input

NFC [49] and a tuned PI controller. The proportional gain X, is set as 0.1, and the

integral gain X is set as 0.35 after trial and error so that the overall performance of PI

controller is comparable with both of the NFCs. The parameters of the IM utilized for
simulations are listed in Appendix A-1.

Fig. 3.8 (a)-(c) show the simulated starting speed response of the drive at rated
load and rated speed for the proposed NFC, conventional NFC and PI controller,
respectively. As seen from Fig. 3.8 (c¢), both of the NFCs show zero overshoot and
less settling time than PI controller. Fig. 3.9(a)-(c) show the corresponding stator
currents of the drive. Fig. 3.9(c) shows that for PI controller the starting current is
higher as compared to both of NFCs. Fig. 3.10(a)-(c) show the corresponding torque
responses of the drive. Obviously, the PI controller needs more torque and hence more
current to start the motor.

Fig. 3.11 show the speed responses of the drive system with a step increase in
load from zero to rated level using the proposed NFC, conventional NFC and PI
controllers, respectively. In this test, the proposed NFC and conventional NFC show
less dip in speed and less settling time than PI controller. The proposed NFC has a
longer settling time than the conventional NFC, but smaller dip in speed.

Fig. 3.12 (a)-(c) show the speed responses of the drive system first with a step
decrease on the command speed from 180rad/sec to 150rad/sec, and then a step
increase on the command speed from 150rad/sec to 180rad/sec using the proposed
NFC, conventional NFC and PI controllers, respectively. In this test, the proposed
NFC has a little larger undershoot than PI controller, but no overshoot and less

settling time.
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Fig. 3.13 (a)-(c) show the simulated starting speed response of the drive for the
proposed NFC, conventional NFC and PI controller, respectively, when the rotor
resistance has been risen to be two times of the rated one.

Fig. 3.14 (a)-(c) show the corresponding torque response. Compared with Fig.
3.8 and Fig. 3.9, it is noted that the transient torque response of PI controller is
displaying oscillation which leads to higher overshoot and longer settling time in the
speed response. While the proposed NFC shows fairly same performances. This
proves the robust ability of the proposed NFC.

Based upon tests, it is evident that the proposed NFC has overall better
performance in terms of speed overshoot, dropdown and tracking over conventional
PI controller. It also shows that the proposed NFC does not decrease system
performance significantly as compared to the conventional 2-input and 9-membership
functions NFC. These simulation results prove that the proposed NFC has no trade off

between simplification and performance decreasing.
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Fig. 3.10 Simulated starting Torque of the drive: (a) proposed NFC, (b) 2-input NFC,

(c) PL.
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Fig. 3.11 Simulated speed responses at a step change of load: (a) proposed NFC, (b)
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conventional 2-input NFC, (c) PL
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Fig. 3.12 Simulated speed responses at a step change of speed reference: (a) proposed
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NFC, (b) conventional 2-input NFC, (c) PL.
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