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Abstract

The use of context dependency in neural networks is an important issue in many
cognitive situations. In this report we introduce a novel context dependent neural
network model based on overlapped multi-neural network structures. We present
a detailed study about contextual features and some of its applications in neural
networks. We also present some different strategies for applying overlapping in
neural networks.

The generalization ability of a neural network is mainly influenced by three
factors, the number and performance of the learning data samples, the complexity
of the learning algorithm employed, and the network size. Neural network over-
lapping is one of the practical techniques of achieving a better generalization and
recognition rate. This is due to its ability of decreasing the number of free weights
of a neural network and providing less complexity of the neural network function.
For this purpose overlapped neural networks have been used in feed-forward neural
networks (MFNN) , self organizing maps (SOM) and in shared weight neural net-
works (SWNN). Overlapped neural networks also have the ability of performing a
function localization over the neural network feature space.

Among the feature space of any problem, three different types of features (
from the relevance point of view ) can be distinguished: primary, contextual, and
irrelevant features. Researches in the contextual features are mainly concerned
with two issues. Identifying such contextual features, and managing them. We are
presenting the strategy of identifying these context-sensitive features and five basic
strategies for managing them. We are also presenting a context sensitive model for
overcoming the slow convergence problems, and a context dependent (cd) neuron
model that is considered a generalization of the traditional neuron model.

We introduce a novel approach for problems regardless of sufficiency or accuracy
of their historical observations or lab simulation data. Our approach is based on
imposing a context of problem performance metrics into networks and gaining the
enhancement towards its satisfactory state. We use an overlapped system of back
propagation neural networks for our purpose. A main neural network is responsible
for mapping input and output relation while a regulatory neural network evaluates
the performance metrics satisfaction. We provide special training and testing algo-
rithms for the overlapped system that guarantees a synchronized solution for both
neural networks. An example of traffic control problem is simulated. The result of
simulation shows a great enhancement of the solution using our approach.

ix
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Chapter 1

Introduction

Since late 1980s there has been an explosion in research of neural networks. Today,
neural network successful applications are reported across a big range of fields.
Neural network is a paradigm of learning tool, which is able to discover under-
lying dependencies between the given inputs and outputs by using training data
sets. After the training process, it represents high-dimensional nonlinear functions.
Many research institutions, industries, and commercial firms have already started
to apply neural network successfully to many diverse types of real world problems.
The most important applications include the following, (See [19] and its references)

Classification and pattern recognition for visual, sound, olfactory and tactile
patterns.

Time series forecasting for financial, weather, engineering time series.
Diagnostics, e.g., in medicine or engineering.

Robotics, including control, navigation, coordination, object recognition prob-
lems.

Process control, like nonlinear and multivariate control of chemical plants,
power stations and vehicles or missiles.

Optimization, such as combinatorial problems, e.g., resource scheduling and
routing.

Signal processing, speech and word recognition.

Machine vision, e.g., inspection in manufacturing, check reader, face recogni-
tion and target recognition.

Financial forecasting for interest rates and stock indices, currencies.

Financial services, like credit worthiness, forecasting and data mining , ser-
vices for trade like segmentation oflcustomer data.
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CHAPTER 1. INTRODUCTION 2

A Neural network function differs based on its application, e.g. In certain ap-
plication areas, such as speech and word recognition, neural networks outperform
conventional statistical methods. While in other fields, such as specific areas in
robotics and financial services, they show promising application in real world situ-
ations. One of the first successful applications was the NETtalk project (Sejnowski
and Rosenberg 1987), aimed at training a neural network to pronounce English text
consisting of seven consecutive characters from written text, presented in a moving
window that gradually scanned the text.

The nonlinear nature of neural networks, the ability of neural networks to learn
from their environments in supervised and unsupervised ways, as well as the uni-
versal approximation property of neural networks make them highly suited for
solving difficult signal processing problems. For practical understanding of neural
networks, it is imperative to develop a proper understanding of basic neural network
structures and how they impact training algorithms and applications.

A challenge in surveying the field of neural network paradigms is to identify
those neural network structures that have been successfully applied to solve real
world problems from those that are still under development or have difficulty scaling
up to solve realistic problems. It is also critical to understand the nature of the
problem formulation so that the most appropriate neural network paradigm can be
applied. In addition, it is also important to assess the impact of neural networks
on the performance, robustness, and cost-effectiveness of the systems.

1.1 Artificial neural network basics

A Structure is the first step of understanding neural networks. In general a neural
networks consists of a set of simple analog signal processors called “processing ele-
ments’ or “neurons” connected through weighted links called “connections”. Each
processing element works by itself as a processing element on its inputs that comes
to it through its input connections and generate one output and then spread it over
its output connections to be processed again by other connected processing element.
These connections are having some feature of changing the strength of the passing
signal according to its connection weight. The output connection from a neuron
can be an input to another neuron or a final output of the neural network. The
input connection to a neuron can be an output of another neuron or an initial input
to the neural network. The processing that is accomplished at any neuron over its
inputs is established through applying a specific function called net function. The
output of this function is the value of the neuron after processing its inputs. This
value is called a net value. Another function called activation function or output
function is then applied over the net value to produce the neuron’s output value
associated to the current inputs.

In neural network processing begins with the entire network in a quiescent state, an
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CHAPTER 1. INTRODUCTION 3

external comprised of a set of signals to be processed by the network is applied to
the input layer, then each processing element generates a single output signal with
magnitude that is a function of the total simulations received by the unit. Collec-
tively , the output produced by all processing elements on the layer are then passed
as input pattern to the subsequent layer , until the final layer produces output for
the current input pattern (see [23]).

1.1.1 Basic neural network components

Among numerous neural network models that have been proposed over the years,
all share the neuron as a common building block for its networked interconnected
structures. The most widely used neuron model is McCulloch and Pitts neuron
model illustrated in Fig 1.1.

X, W)

X, Wy

X, W, >
g 1

Figure 1.1: McCulloch and Pitts neuron model.

In Fig 1.1, each neuron consists of two parts, the net function and the activation
function. The net function determines how the network inputs {z; : 1 < j < N}
are combined inside the neuron. In this figure, a weighted linear combination is
adopted:

N
j=1

{w; : 1 < j < N} are parameters expressing the synaptic weights. The quantity
0 is called the bias and is used to model the threshold.

The output of the neuron, denoted by a in this figure, is related to the network
input u via a linear or nonlinear transformation by the activation function:

a= f(u) (1.2)
In various neural network models, different activation functions have been pro-

posed. The most commonly used activation functions are summarized in Table 1.1
, (see [23])
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CHAPTER 1. INTRODUCTION 4

Activation Function Formula
Sigmoid flu) = H—eim
Hyperbolic tangent f(u) = tanh(%)
i - {1, a2 T
Gaussian radial basis f(u) = exp[—ul|lu — m|?/0?]
where m and o are parameters to be specified
Linear flu)=au+b

Table 1.1: The most commonly used activation functions.

1.1.2 Neural network topology

(a) Acyclic topology. (b) Cyclic topology.

Figure 1.2: Illustration of (a) an acyclic graph and (b) a cyclic graph. The cycle in
(b) is emphasized with thick lines..

In a neural network, multiple neurons are interconnected to form a network
to facilitate distributed computing. Schematically, the configuration of the inter-
connections can be described efficiently with a directed graph. A directed graph
consists of nodes (neurons) and directed arcs (synaptic links). The topology of the
graph can be categorized as either acyclic or cyclic. Refer to Fig 1.2(a); a neural
network with acyclic topology consists of feed-forward loops. Such an acyclic neural
network is often used to approximate a nonlinear mapping between its inputs and
outputs. As shown in Fig 1.2(b), a neural network with cyclic topology contains
at least one cycle formed by directed arcs. Such a neural network is also known
as a recurrent network. Due to the feedback loop, a recurrent network leads to a
nonlinear dynamic system model that contains internal memory.

A special and common case, is the multi layered neural networks, in which
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CHAPTER 1. INTRODUCTION 5

the processing elements are grouped together into a layer structure where each
processing element on each layer performs an analog integration on its inputs to
determine its net and activation value.

1.1.3 Multi-layer perceptron (MLP) model

This is the most well known and most popular neural network among all the ex-
isting neural network paradigms. It consists of a feed-forward, layered network of
neurons. Each neuron in an MLP has a nonlinear activation function that is often
continuously differentiable. Some of the most frequently used activation functions
for MLP include the sigmoid function and the hyperbolic tangent function. A
typical MLP configuration is depicted in Fig 1.3. Each triangle represents an indi-
vidual neuron. These neurons are organized in layers, labelled as the hidden layer
#1, hidden layer #2, and the output layer in this figure. While the inputs at the
bottom are also labelled as the input layer, there is usually no neuron model im-
plemented in that layer. The name hidden layer refers to the fact that the output
of these neurons will be feeded into upper layer neurons and, therefore, is hidden
from the user who only observes the output of neurons at the output layer. Fig
1.3 illustrates a popular configuration of MLP where interconnections are provided
only between neurons of successive layers in the network. In practice, any acyclic
interconnections between neurons are allowed.

Output Layer

Hidden Layer 1

Input Layer

Figure 1.3: A three-layer multi-layer perceptron configuration.

It has been proven that with a sufficient number of hidden neurons, an MLP
with as few as two hidden layer neurons is capable of approximating an arbitrarily
complex mapping within a finite support (see [23] and its references).
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CHAPTER 1. INTRODUCTION 6

1.1.4 Error back-propagation training of MLP

The key step in applying an MLP model is to find the proper weight matrices.
Assuming a layered MLP structure, the weights feeding into each layer of neurons
form a weight matrix of that layer. The values of these weights can be found using
the error back-propagation training method.

J

Figure 1.4: MLP example for back-propagation trainingsingle neuron case.

Let us first consider a simple example consisting of a single neuron to illustrate
this procedure. Fig 1.4 represents the neuron in two separate parts: a summation
unit to compute the net value u, and a nonlinear activation function to computer
the neuron’s output o = f(u). Then the output o is to be compared with a desired
target value d, and their difference will be computed as the error e. There are two
inputs (z1,z2) with corresponding weights wl and w2. The input labelled with a
constant 1 represents the bias. Here, the bias link weight is labelled wy. The net
value is computed as:

2
Y= Zwixi = Wx. (1.3)
i=0

where 2o = 1, W = [wp w; wy] is the weight matrix, and z = [l 3 xg]T
is the input vector, T is the matrix transpose. Given a set of training samples
{[z(k),d(k)] : 1 < k < K}, the error back-propagation training begins by feeding
all K inputs through the MLP network and computing the corresponding output
{o(k) : 1 < k < K}. We usually use an initial random setup for the weight matrix
W, although some researchers like [6] have provided better guess for the initial
setup of the weight matrix. Then a sum of square error will be computed as:

E=3"[e®f = S [d(k) - oW = S [dlk) - FWx ()P (1.4)
k=1 k=1 k=1

The objective now is to adjust the weight matrix W to minimize the error E.
This leads to a nonlinear least square optimization problem. There are numerous
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CHAPTER 1. INTRODUCTION 7

nonlinear optimization algorithms available to solve this problem. Basically, these
algorithms adopt a similar iterative formulation:

Wt +1) = W(t) + AW(t). (1.5)

where AW (¢) is the correction made to the current weights W (t). Different
algorithms differ in the form of AW (t). The basis of the error back-propagation
learning algorithm is called the steepest descend gradient method where

OF
t) = Ui
Here 7 is caller the learning factor. Usually, it is a value between 0 and 1, it is
specified by the network designer.
The derivative of the scalar quantity £ with respect to individual weights can
be computed as follows:

AW/( (1.6)

M=

2[d(k) — o(k)] (_agg:)) fori=0,1,2. (L7

= k=1

Where

Hence

gzi = ‘22 [d(k) = o(k)}f (u(k))z:()- (1.9)

=1
With §(k) = [d(k) — o(k)]f (u(k)) , the above equation can be expressed as:

OE X
o, = —2;5(k)xi(k). (1.10)

0(k) is the error that represents the amount of correction needed to be applied
to the weight w; for the given input z;(k). The overall change Awj; is thus the sum
of such contribution over all K training samples. Therefore, the weight update
formula has the format of:

wi(t +1) = wi(t) +n Y _ 6(k)zi(k). (1.11)

If a sigmoid activation function f(u) = 1—;;57/7" is used,then the derivative f (u)
is
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CHAPTER 1. INTRODUCTION 8

fw) = f)t = f(w)]. (1.12)
Then 6(k) can be computed as:
)
§(k) = e [d(k) — o(k)] x o(k) x [1 — o(k)]. (1.13)
So far, we discussed how to adjust the weights of an MLP with a single layer of

neurons.

Lets now discusses how to perform training for a multiple layer MLP. First, some
new notations are adopted to distinguish neurons at different layers. In Fig 1.5,
the net-function and output corresponding to the k-th training sample of the j-th
neuron of the (L — 1)-th are denoted by uX~(k) and of‘l(k), respectively. The
input layer is the 0-th layer. In particular, oé(k) = z,;(k). The output is feeded into
the i-th neuron of the L-th layer via a synaptic weight denoted by w{’j (t) or, for
simplicity, wiLj , since we are concerned with the weight update formulation within
a single training epoch.

4o (0)

" (k) 1y k(A WO L it
@ O A CAY 1) {0 (i ® o,

k.

Figure 1.5: Notations used in a multi-layered MLP neural network model.

To derive the weight adaptation equation, 0F/ 8wiLj must be computed:

OE X BE  Bub(k) < o &L, .
—_— i = -2 ] L ,b-1
owk 2; ul (k) % dw; ; 55 (k) x dw; mzz:lw"nom (k)

K
=—2) 67 (k) x o (k). (1.14)
k=1
Where 1 < m < M, and M is the number of neurons in layer (L — 1).
In Equation 1.14, the output 0]].“ -1 (k) can be evaluated by applying the k-th training

sample (k) to the MLP with weights fixed to w};. However, the delta error term
6 (k) is not readily available and has to be computed. Recall that the delta error is
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CHAPTER 1. INTRODUCTION 9

Figure 1.6: Tlustration of how the error back-propagation is computed.

defined as w;(k) = OE/duf (k). Fig 1.6 is now used to illustrate how to iteratively
compute 67 (k) from 65+1(k) and weights of the (L + 1)-th layer.

Note that of (k) is feeded into all M neurons in the (L + 1)-th layer. Hence:

8 M. O9E  fukt M o <
6 (k) = 6u§k) =3 G I<€’)ﬂ> =3 |5 % g Do vkl (4 (9)
M
= f (uF(B)) x Y (85 (k) x wh,) . (1.15)

Equation 1.15 is the error back-propagation formula that computes the delta
error from the output layer back toward the input layer, in a layer-by-layer manner.

1.2 Generalization ability of a neural network

The basic topics of multi-layered feed-forward neural networks (MFNNs), such as
the network structures, mathematical descriptions, and back-propagation learning
algorithms were discussed in the previous section. Beyond these aspects, signifi-
cant progress has been made on many related issues. In fact, numerous extensions
to the basic MFNNs with the back-propagation algorithm have emerged. Most
of these were developed to overcome some of the inherent limitations of the basic
back-propagation learning algorithms. These extensions have involved the alterna-
tive error measure criteria for the standard back-propagation learning algorithm,
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CHAPTER 1. INTRODUCTION 10

complex regularization techniques for both improving the generalization capability
of MFNNSs and pruning the networks, sensitivity calculation based network pruning
techniques for the purpose of optimizing the network structure and accelerating the
learning phase, the procedures of dealing with the second derivatives of MFNNs to
improve the convergence speed of the back-propagation algorithm, and many other
advanced studies are still in progress for adapting the learning of MFNNs.

In this section we will concentrate on neural network generalization ability in
particular in studding some extensions of the back-propagation that provides en-
hancement to the training process as well as the generalization ability of the neural
network. (see [9])

Definition 1.1. Generalization ability of a neural network determines how well
the mapping surface of the network will renderer the unseen inputs to the output
space.

Fig 1.7 shows two symbolic cases of a neural network convergence in Fig 1.7(a)
the wiggly curve shows that the neural network function is being too complex and
the network is behaving over-fitting in the training data, in this case the network
is memorizing the training data not generalizing them , and hence for any new
stimulus the network will be going to categorize the input into one of the mem-
orized classes instead of recognize it, while in Fig 1.7(b) the convergence surface
is performing better generalization for the unseen inputs because in this case the
solution error for every unseen inputs is going to be less while probably the sum
squared error over the whole test set would be bigger. However, in classification
problems, the maximum recognition error over all samples is the important factor of
generalization measure according to Geman and Bienenstock (1992) bias-variance
dilemma (see [9] and its references).

(a) Training data (circles) is being mem- (b) Training data (circles) have been
orized. generated.

Figure 1.7: Generalization versus memorization.
As shown in Fig 1.8, generalization is mainly influenced by three factors:

First, the number and performance of the learning data samples, which represent
how well the problem at hand is characterized, generally speaking, a larger number
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Number and C lexi
Performance d?:gg ’i('ty Metwork Size
Of data samples rning

Generalization of
nheural network

Figure 1.8: Factors influencing the generalization for neural networks.

of learning data samples can provide a better representation for the underlying
problem, and if a suitable learning algorithm and network size are used, a better
solution to the problem should be obtained.

Second, the complexity of the learning algorithm employed. It is known that
extra training to the neural network result in more function complexity and over-
fitting problem which definitely decrease the generalization ability of the neural
network.

The third factor of the generalization for the neural networks is the network size.
It is generally admitted that generalization of the back-propagation architecture
will depend on the relative size of the training data and the trained network size.
However, it is observed that the back-propagation networks are sometimes very slow
in learning. This is because the synaptic connection weights, especially the hidden
connection weights (connections among hidden neurons), are significantly smaller
for a large network. This means that the networks cannot utilize hidden connections
efficiently. Thus, hidden neurons cannot be appropriately used in speeding up the
learning.

(a) All hidden connections are inactive. (b) Some hidden connections are inactive.

Figure 1.9: The status of hidden neural connections.
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This situation is illustrated in Fig 1.9. The network in Fig 1.9(a) is a back-
propagation network in which the hidden connections among the hidden neurons
are inactive, while the input and output connections are active. If the hidden
connections are weak; that is, the absolute values of the hidden weights are small,
it is certain that the hidden neurons are not appropriately used in speeding up
the learning. As shown in Fig 1.9(b), some hidden connections of the network are
active.

In this case, the hidden neurons are expected to be used in improving the
generalization as well as speeding up the learning. In order to adapt the size of
the back-propagation network and activate hidden connections, an approach of
complexity regularization may be applied. In this approach, a term is added to
the error measure function that discourages the learning algorithm from seeking
solutions that are too complex. This term represents, in fact, a measure of the
network’s complexity; that is, both the quantities and number of weights. The
resulting criterion or cost function is of the form

Cost = Network error measure + Model complexity measure.

where the first term on the right-hand side measures the network error between
the network outputs and the task or desired outputs, while the second term is de-
termined only by the complexity of the network structure. This type of criterion is
sometimes referred to as the minimum description length (MDL) criterion because
it has the same form as the information theoretic measure of description length.

Simply speaking, the description length of a set of data is defined as the total
number of bits required to represent the data. But for a neural network that is
designed to represent a set of data, the total description length should be defined
as the sum of the number of bits required to encode the errors. The cost function
introduced above may be considered as one such form if the term of the network
error measure is related to the number of bits required to encode the errors, and the
term of complexity measure corresponds to the number of bits required to describe
the network model. The learning process that minimizes this cost function then,
to a certain degree, provides a minimal description of the data. In the context of
back-propagation learning, or any other supervised learning procedure, such a cost
function may be represented in a symbolic way as

Ei(w) = E(w) + AE.(w). (1.16)

where the E(w) is the error function used in the standard back-propagation
learning, F.(w) is the complexity measure, and the parameter A is a small posi-
tive constant that is used to control the influence of the term of the complexity
measure E.(w) in relation to the conventional error measure E(w). Consequently,
the learning algorithm derived using such a criterion is a simple extension of the
back-propagation algorithm. Later, we show the weight decay approach as one the
approaches may be obtained as a choices of the complexity measure.
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1.2.1 Weight decay approach

The weight decay approach is a method of reducing the effective number of weights
in the network by encouraging the learning algorithm to seek solutions that use as
many zero weights as possible. This is accomplished by adding a term that is the
sum of all the squared weights to the criterion function that penalizes the network
for using the nonzero weights. Then, the new criterion function is formulated as

Ei(w) = E(w) + %I]w“ = E(w)+ —g wa (1.17)

where the sum in the second term on the right-hand side performed over all the
weights represents the complexity measure F, of the network. It is to be seen that
in this modification of the standard back-propagation learning algorithm, an extra
term of the form A, is added for updating the weight vector. Therefore, one has
the following new updating formulation:

E OF

wk+1)=wk)—n (éﬁfm + Aw(k)) = (1 —n\w(k) — nm. (1.18)
This shows that the effect of A is to “decay” the weight vector by a factor of
(1 —nA). The weight decay approach does not actually delete weights from the
network, nor does it typically produce weights that are exactly zero. Weights that
are not essential to the solution decay to zero and can be removed. When some
weights are forced to take on values near zero, some other weights remain relatively

large. The result is that the average weight size is smaller.

Another simple weight decay method is to define the cost function as

Ey(w) = E(w) + Awl. (1.19)

In this case, an additional term Asgn(w) is used in the weight vector updating
rule, Equation 1.19. If W, > 0, the weight is decremented by A; otherwise, if w; < 0,
then it is incremented by A.

We have seen some methods that enhances the network structure and hence the
generalization ability. The following is another method that can define a measure
of the function complexity of the neural network algorithm.

1.2.2 Complexities in regularization and VC dimension

The VC (Vapnik-Chervonenkis) dimension h is a property of a set of approximating
functions of a learning machine that is used in all important results in the statis-
tical learning theory, (see [23]). Despite the fact that the VC dimension is very
important, the unfortunate reality is that its analytic estimations can be used only
for the simplest sets of functions. Here for simplicity we only present the basic
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concept of the VC dimension for a two-class pattern recognition case, while it can
be generalized for some sets of real approximating functions.

Consider a task of classification, in which we need to find a rule to assign an
input to one two different classes. One possible formalization of this task is to esti-
mate a function f : RY — {-1,1} using input-output training data pairs generated
identically and independently distributed according to an unknown probability dis-
tribution P(z,y)

(X, Y4), (X, Y,) e RV xY : Y={-1,1}

such that f will correctly classify unseen examples (X,Y). An example is as-
signed to class 1 if f(X) > 0 and to class —1 otherwise. The test examples are
assumed to be generated from the same probability distribution P(X,Y) as the
training data. The best function f that one can obtain, is the one that minimizes
the expected error ( Risk ):

Rlf] = / I(f(X),Y)dP(X,Y). (1.20)

where [ denotes a suitably chosen loss function. Unfortunately, the risk cannot
be minimized directly, since the underlying probability distribution P(z,y) is un-
known. Therefore, we must try to estimate a function that is close to the optimal
one based on the available information, i.e., the training sample and properties of
the function class F' the solution f is chosen from. To this end, we need what is
called an induction principle. A particular simple induction principle consists of
approximating the minimum of the risk in Equation 1.20 by the minimum of the
empirical rigk

Romolf] = 5 Y UF(X0), Y. (1.21)

It is possible to give conditions to the learning machine which ensure that,
asymptotically (as n — o0), the empirical risk will converge towards the expected
risk. However, for small sample sizes, large deviations are possible and over-fitting
might occur (see Fig 1.10). Given only a small sample (left), either the solid or
the dashed hypothesis might be true, the dashed one being more complex but also
having a smaller training error. Only with a large sample are we able to see which
decision more accurately reflects the true distribution. If the dashed hypothesis
is correct, the solid would under-fit (middle); if the solid were correct, the dashed
hypothesis would over-fit (right). Then, a small generalization error can usually
not be obtained by simply minimizing the training error (Equation 1.21).

One way to avoid the over-fitting dilemma is to restrict the complexity of the
function class F' from which one chooses the function f. The intuition, which will
be formalized in the following, is that a simple (e.g., linear) function that explains
most of the data is preferable to a complex one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 15

o?
o ® .. ’ 0 oo"f 20 "o
’ 4
9, O\: ‘. .‘.l.’ Vo ._’%
'O C°. 9, o 09;00008 0°% 2,
330 SR Sels
‘o o O 0C 000" 50

Figure 1.10: Illustration of the over-fitting dilemma.

A specific way of controlling the complexity of a function class is given by Vapnik
Chervonenkis (VC) theory and the structural risk minimization (SRM) principle.
Here, the concept of complexity is captured by the VC dimension h of the function
class F from which the estimate f is chosen. Roughly speaking, the VC dimension
measures how many (training) points can be shattered for all possible labelling
using functions of the class. Constructing a nested family of function classes F} C

-+ C Fj; with non-decreasing VC dimension, the SRM principle proceeds as follows.
Let fi,---, fix be the solutions of the empirical risk minimization (Equation 1.21)
in the function classes F; . SRM chooses the function class F; (and the function f;
) such that an upper bound on the generalization error is minimized.

A Expected Risk /

Figure 1.11: Schematic illustration of the VC dimension.

In Fig 1.11, The dotted line represents the training error (empirical risk), and the
dash-dotted line represents the upper bound on the complexity term (confidence).
With higher complexity, the empirical error decreases but the upper bound on the
risk confidence becomes worse. For a certain complexity of the function class, the
best expected risk (solid line) is obtained. Thus, in practice, the goal is to find the
best trade-off between empirical error and complexity.

Theorem 1.1. Let h denote the VC dimension of the function class F' and let
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Repyp be defined by Equation (1.21) using the 0/1-loss. For all § > 0 and f € F,
the inequality bounding the risk

h(in%2 +1) —in(8/4)
” :

R[f] € Remplf] + \/ (1.22)

holds with probability of at least 1 — & for n > h.

1.3 Highlighting some neural network types

There are around 50 different types of neural networks in use today [23]. According
to the propagation direction most of these types can be categorized as either feed-
forward or feed-back neural networks. According to the structure growing they
may be categorized either as static or dynamic neural networks. In this section we
explain two types of them, that are helpful in understanding the following chapters.

1.3.1 Radial basis functions

Linear output weights

Non-linear receptive fields in attribute space

Figure 1.12: A radial basis function network.

The radial basis function network generally consists of two weight layers, a
hidden layer of units performing linear or non-linear functions of the attributes,
followed by an output layer of weighted connections to nodes whose outputs have
the same form as the target vectors (see [10] and its references).

They can be described by the following equation:

y=w+ Y wif(|z - al]) (1.23)
i=1

where f is a radial basis function, w; is the output layer neuron ¢ weight, wy
is the output offset, z is the input to the network, ¢; is the center associated with
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the basis function f, ny is the number of basis functions in the network, and || ||
denotes the Euclidean norm.

Structurally it can be viewed as an MLP with one hidden layer, except that
each node of the the hidden layer computes an arbitrary function of the inputs
(Gaussian is the most popular), and the transfer function of each output node is
the trivial identity function.

Instead of “synaptic strengths” the hidden layer has parameters appropriate for
whatever functions are being used; for example, Gaussian widths and positions.
This network offers a number of advantages over the MLP under certain condi-
tions, although the two models are computationally equivalent.

These advantages include a linear training rule once the locations in attribute
space of the non-linear functions have been determined, and an underlying model
involving localized functions in the attribute space, rather than the long-range
functions occurring in perceptron-based models. Fig 1.12 shows the structure of
a radial basis function. The non-linearities comprise a position in attribute space
at which the function is located (often referred to as the functions center), and
a non-linear function of the distance of an input point from that center, which
can be any function at all. Common choices include a gaussian response function,

exp(—z?) and inverse multi-quadrics ([22 + cz]—%) as well as non-local functions such

as thin plate splines (2%log 2z) and multi-quadrics ([2? + 02]%). Although it seems
counter-intuitive to try and produce an interpolating function using non-localized
functions, they are often found to have better interpolating properties in the region
populated by the training data. The radial basis function network approach involves
the expansion or pre-processing of input vectors into a high-dimensional space. This
attempts to exploit a theorem of Cover (1965) which implies that,“a classification
problem cast in a high-dimensional space is more likely to be linearly separable
than would be the case in a low-dimensional space”.

Training

In RBF network the training consists of parameterizing the unknown parameters
in a particular RBF network. Generally speaking, this means determining (1) the
number of basis functions (hidden units), (2) centers and widths of each basis func-
tion, and (3) output layer weights. For some algorithms, these steps are carried out
separately, while in others, all parameters are found simultaneously. Furthermore,
different techniques can be mixed and matched for training the different parameters.

A number of methods can be used for choosing the centers for a radial basis
function network. It is important that the distribution of centers in the attribute
space should be similar to, or at least cover the same region as the training data. It
is assumed that the training data is representative of the problem, otherwise good
performance cannot be expected on future unseen patterns.
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A first order technique for choosing centers is to take points on a square grid
covering the region of attribute space covered by the training data. Alternatively,
better performance might be expected if the centers were sampled at random from
the training data itself, using some or all samples, since the more densely populated
regions. of the attribute space would have a higher resolution model than sparser
regions. In this case, it is important to ensure that at least one sample from each
class is used as a prototype center.

When center positions are chosen for radial basis function networks with localized
non-linear functions such as Gaussian receptive fields, it is important to calculate
suitable variances, or spreads for the functions. This ensures that large regions
of space do not occur between centers, where no centers respond to patterns, and
conversely, that no pair of centers respond nearly identically to all patterns. This
problem is particularly prevalent in high dimensional attribute spaces because vol-
ume depends sensitively on radius. Prager & Fallside (1989) have introduced a
quantitative discussion of this point.

The process of optimizing the weights of RBEF networks is simply performed by
solving a linear system. The same problem arises in ordinary linear regression, the
only difference being that the input to the linear system is the output of the hidden
layer of the network, not the attribute variables themselves.

Let yk ) be the output of the k-th radial basis function on the i-th example.
The output of each target node j is computed using the weights w;; as

Z wiyl. (1.24)

Let the desired output for example ¢ on target node j be Y;. Then the error is

) Z (Z kaykz J‘L> . (1.25)

This follows that

Y S wnaPy - S Y. (1.26)
k4 i

OWpg

The error is minimum where this derivative vanishes. Let R be the correlation
matrix of the radial basis function outputs,

=S iy, (1.27)
i

The weight matrix W* which minimizes E lies where the gradient vanishes:

e = Z Z Yy Ry, (1.28)
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Thus, the problem is solved by inverting the square (H x H)-matrix R, where
H is the number of radial basis functions. The matrix inversion can be accom-
plished by standard methods such as LU decomposition (Renals & Rohwer, 1989)
and (Press et. al., 1988) if R is not singular. This is typically the case, but
things can go wrong. If two radial basis function centres are very close together a
singular matrix will result, and a singular matrix is guaranteed if the number of
training samples is not at least as great as H There is no practical way to ensure a
non-singular correlation matrix. Consequently the safest course of action is to use
a slightly more computationally expensive singular value decomposition method.
Such methods provide an approximate inverse by diagonalizing the matrix, invert-
ing only the eigenvalues which exceed zero by a parameter-specified margin, and
transforming back to the original coordinates. This provides an optimal minimum-
norm approximation to the inverse in the least-mean-squares sense.

Another approach to the entire problem is possible (Broomhead & Lowe, 1988)
. Let n be the number of training examples. Instead of solving the H x H linear
system given by the derivatives of E in Equation 1.26, this method focuses on the
linear system embedded in the error formula (1.24) itself:

k

Unless n = H, this is a rectangular system. In general an exact solution does
not exist, but the optimal solution in the least-squares sense is given by the pseudo-
inverse (Kohonen,1989) y )" of (), for the matrix with elements ngH):

W =Yy", (1.30)

This formula is applied directly. The identity Y+ = YT(YYT)" | T denotes the
matrix transpose, can be applied to Equation 1.30 to show that the pseudo-inverse
method gives the same result as Equation 1.28

+
W =yy'® (Y<H>YT‘H’) . (1.31)

The requirement to invert or pseudo-invert a matrix dependent on the entire
data-set makes this a batch method. However an online variant is possible, known
as Kalman Filtering (Scalero & Tepedelenlioglu, 1992). It is based on the somewhat
remarkable fact that an exact expression exists for updating the inverse correlation
R~! if another example is added to the sum in Equation 1.27, which does not
require re-computation of the inverse.

1.3.2 The basic SOM

The Self-organizing Map (SOM) is an effective software tool for the visualization
of high-dimensional data. In its basic form it produces a similarity graph of input
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data. It converts the nonlinear statistical relationships between high-dimensional
data into simple geometric relationships of their image points on a low-dimensional
display, usually a regular two-dimensional grid of nodes. As the SOM thereby com-
presses information while preserving the most important topological and/or metric
relationships of the primary data elements on the display, it may also be thought
to produce some kind of abstractions (see [8]).

The SOM may be described formally as a nonlinear, ordered, smooth mapping
of high-dimensional input data manifolds onto the elements of a regular, low-
dimensional array. This mapping is implemented in a way that resembles the
classical vector quantization as follows:

Assume first for simplicity that the set of input variables {{;} is definable as
a real vector z = [§,&, - ,§n]T € R™ With each element in the SOM array
we associate a parametric real vector m; = [, o, -+ , ,un]T € R™ that is called a
model. Assuming a general distance measure between x and m; denoted d(z, m;),
the image of an input vector x on the SOM array is defined as the array element
m, that matches best with z, i.e., that has the index

c=arg miin{d(:r, m;)}. (1.32)

Differing from the traditional vector quantization, the task is to define m,; in
such a way that the mapping is ordered and descriptive of the distribution of z.

Consider Fig 1.13 where a two-dimensional ordered array of nodes, each one
having a general model m, associated with it. The initial values of the m, may be
selected as random, preferably from the domain of the input samples in a symmetric
way.

Then consider a list of input samples z(t), where ¢ is an integer-valued index.
Let us recall that in this scheme, the z(¢) and m, may be vectors, strings of symbols,
or even more general items. Compare each z(t) with all the m, and copy each z(t)
into a sublist associated with that node, the model vector of which is most similar
to z(t) relating to the general distance measure.

When all the 2(¢) have been distributed into the respective sublists in this way,
consider the neighborhood set N, around model m;. Here N; consists of all nodes
up to a certain radius in the grid from node ¢. In the union of all sublists in N;, the
next task is to find the “middlemost” sample Z;, defined as that sample that has
the smallest sum of distances from all the samples z(t) , t € N; . This sample Z;
is now called the generalized median in the union of the sublists. If Z; is restricted
to being one of the samples z(t), we shall indeed call it the generalized set median;
on the other hand, since the z(¢) may not cover the whole input domain, it may
be possible to find another item Z; that has an even smaller sum of distances from
the z(t), t € N;. For clarity we shall then call Z} the generalized median.

Also notice that for the Euclidean vectors the generalized median is equal to
their arithmetic mean if we look for an arbitrary Euclidean vector that has the
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x(1) x(2) x(3) x(4)
x(3) x(6) x(7)----

OO0,

1(1 Generalized median

Figure 1.13: Tllustration of the batch process in which the input samples are dis-
tributed into sublists under the best-matching models, and then the new models
are determined as (generalized) medians of the sublists over the neighborhoods N;.

smallest sum of squares of the Euclidean distances from all the samples z(t) in the
union of the sublists.

The next phase in the process is to form Z; or Z; for each node in the above
manner, always considering the neighborhood set N; around each node 4, and to
replace each old value of m; by Z; or Z., respectively, in a simultaneous operation.

The above procedure shall now be iterated: in other words, the original z(t)
are again distributed into the sublists (which now change, because the m,; have
changed), and the new Z; or Z} are computed and made to replace the m;, and so
on. This is a kind of regression process.
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Chapter 2

Context dependent neural
networks

The wealth of information from the neuronal morphology of the brain is primarily
the motivation for such an exciting state of the research in neural networks. One ob-
servation that was strongly employed in neural networks is the context dependency
of the biological neural system, this observation simply states that the biological
brain reacts differently to the same inputs if they were applied in different contexts.

The results of Wrobel A,(1998) in [20] of measuring potential in rat barrel cortex
evoked by vibrissa stimulation are reported the conclusion as follows, “We hypoth-
esize that neuromodulatory action elicited by contextual stimulation activates all
neurons in the principal barrel column, including those providing an output to the
surrounding barrels. This mechanism may lead to experience-dependent changes
within intracortical network.”

A simple example was given in [2] about that context dependency, stated that
“Our reception is narrower when we are frightened or angry”.

In this chapter we first introduce the definitions of context by Peter Turney (1996)
and the strategy of identifying the context sensitive features in Section 2.1. The
strategies of managing the context sensitive features are then described in Section
2.2, then we focus on two different techniques of managing the context sensitive
features in neural networks to establish better performance are explained in Section
2.3 and 2.4 (see [16] and its references).

2.1 Introduction to contextual features

“Context” is a will-defined term. Here we are concerned with a specific type of

context that influences decision making or any type of information processing of

a contextual problem. In general, researches that involve contextual features are

mainly concerned with two issues. The first issue is identifying such contextual
22
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features among the whole feature space of a problem. The second issue is managing
these contextual features, in which researchers are concentrating on developing
different techniques of managing these features and benefit from them.

The classification of such contextual features can help in creating symmetric en-
vironments for all primary data within one context class. Recent work has demon-
strated that, the strategies for exploiting contextual information can improve the
performance and efficiency of machine learning algorithms.

In this section we describe the strategy of identifying contextual features for a
specific type of context. In particular, the contextual features in supervised concept
learning.

Assume the standard machine learning model of concept learning, where data
are represented as vectors in a multi dimensional feature space. The feature space is
partitioned into a finite set of classes. And the training data are labelled according
to its association with the different classes. In many concept learning problems, it
is possible to use common-sense knowledge to divide the features into three classes:
primary features, contextual features, and irrelevant features.

Primary features are useful for classification even when they are considered in iso-
lation, without the other features. Contextual features are useful for classification
only when they are considered in combination with other features. And irrelevant
features are not useful, either in isolation or in combination with other features.
For more understanding of these three types, example, “When classifying spoken
vowels, the primary features are based on the sound spectrum. The accent of the
speaker is a contextual feature. The color of the speakers hair is irrelevant.”

Surprisingly, the identification problem has received little attention in the re-
search, perhaps because common-sense makes the problem seem trivial. However,
learning systems that can both identify and manage contextual features may have a
substantial advantage over the systems that only manage them. A precise definition
of context is the first step in the construction of such identification systems.

2.1.1 Definition of context

Peter Turney’s definition for context in (1993), did not consider the the possibil-
ity of weakly relevant features. In the light of the definitions given by John et al.
(1994), Turney introduced new definition that does not have this problem in (1996).

Suppose we have m dimensional feature space Fy x Fy X --- x F, where F; is
the domain of the i-th feature. Let C be a finite set of classes. A training instance
is in the form (X,Y) where X € Fy x Fyx ---x F, and Y € C.

Assume that instances are sampled from Fy X Fy X -+ - X F, x C identically and
independently with a probability distribution p:

p: i X Fpx---x F, xC —|[0,1]. (2.1)
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In an instance of form (X: ,Y') , where X = (X1, X5, -, Xm) and X; represents the
i-th feature , z; represents the value of the i-th feature and similarly y is the value
of Y.

Given the feature values for a new instance, X1 = z1,--- , X;n = Z,, the learning
algorithm can predict the class of the instance, ¥ = y.

Let 5; be the set of all features except X; , i,e.

Si=A{X1,, Xie1, Xir1, -+, X} (2.2)
Let s; be an assignment of values to all of the features in S;

Definition 2.1. Suppose that X; is either strongly relevant or weakly relevant. By
definition there is a subset of features S, of S; and an assignment of values s} to S;
such that:

p(Y =y|Xi = 2,,S; = 5;) # p(Y =ylS; = s)). (2.3)

$C S5 CS (2.4)

There may be several subsets that satisfy (Equation 2.3 and 2.4). Each such
subset S; defines a context in which the feature X; is (strongly or weakly) relevant.
Let o, be the cardinality of the smallest subset (or subsets) for which Xj is relevant.
Let f; be the cardinality of the largest subset (or subsets) for which X; is relevant.
«; is called the minimum context size and f; is called the maximum context size.
When X is irrelevant, both ¢; and §; and are undefined.

It follows from Definition 2.1 that 0 < o; < §; < m — 1. It is easy to see that
X; is strongly relevant when 3; = m — 1 and weekly relevant when 3; < m — 1.

Definition 2.2. The feature X; is primary if and only if o; = 0.

A primary feature is relevant even when the context is the empty set. That is,
if X; is primary, then there exists some z; and y for which p(X; = z;) > 0 such
that:

p(Y =y|X; = z;) #p(Y = y). (2.5)
Definition 2.3. The feature X; is contextual if f o; > 0.

A contextual feature is only relevant when considered in some(non-empty) con-
text. A contextual feature is irrelevant when considered in isolation, that is, if X
is contextual feature, then for all z; and y:

p(Y =ylX; =z;) =p(Y =y). (2.6)

A contextual feature may be either strongly or weakly relevant.
The distinction between primary and contextual is dual to the distinction be-
tween weakly relevant and strongly relevant. As illustrated in Table 2.1.
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Term Definition Dual
strongly relevant (3, =m —1 primary
weakly relevant G, <m -1 contextual
primary o; =0 strongly relevant
contextual a; >0 weakly relevant

Table 2.1: Duality of relevance and context-sensitivity

We have defined primary features and contextual features. Now lets see what
it means for one feature to be context-sensitive to another. Let S;; be the set of
all features except X; and X, i.e.

Si={X1, X1, Xiy1, - Xj_1, Xj1, -, X } (2.7)
Let s;; be an assignment of values to all of the features in S; ;.

Definition 2.4. The feature X, is weakly context-sensitive to the feature X; if
and only if there exists a subset of features S;’j of S;; for which there exists some

T;,25,8; ; and y for which p(X; = z;, X; = x5, S;‘j = 3;7].) > 0 such that the following
two condztzons hold:

p(Y__—y'Xi:xi?Xj ::I;j,Sf. - )%p(y le —xJa IR B z]) (28)

%7

(Y ’le _qu CL'],S ',j) ?ép(Y=yIX IL'“ 4, = z]) (29)

4T

In this definition, the first condition (Equation 2.8) means that, the feature
X; must be relevant in some context that includes the feature X; . The second
condition (Equation 2.9) means that, the feature X; is an essential (non-redundant)
component of the context. The symmetry of these two conditions implies that X;
is weakly context-semsitive to X; iff X; is weakly context-sensitive to Xj.

Definition 2.5. The feature X; is strongly context-sensitive to the feature X; if f
X 1s a primary feature, X; is a conteztual feature and X; is weakly context-sensitive
to Xj .

2.1.2 TIllustration example of the contextual features defin-
itions
In this simple example,the features and the class are boolean:

Fi=Fy=F=C=/{0,1}. (2.10)
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Class Primary Contextual Irrelevant Probability

Y Xi X X3 Y4

0 0 0 0 0.03
0 0 0 1 0.03
0 0 1 0 0.08
0 0 1 1 0.08
0 1 0 0 0.07
0 1 0 1 0.07
0 1 1 0 0.07
0 1 1 1 0.07
1 0 0 0 0.07
1 0 0 1 0.07
1 0 1 0 0.07
1 0 1 1 0.07
1 1 0 0 0.03
1 1 0 1 0.03
1 1 1 0 0.08
1 1 1 1 0.08

Table 2.2: Example of the different types of features

Table 2.2 shows the probability distribution and illustrates the above definition.p :
Fi x Fy x F3 x C — [0,1].
From the table p(Y = 1) = 0.5 and p(Y = 1|X; = 1) = 0.44, Since,

p(Y =1) #p(¥ =1|X; = 1) (2.11)

It follows that X, is a primary feature. If the value of X; is unknown, then
the class Y may be either 0 or 1 with equal probability (p(Y = 1) = 0.5). If X; is
known, then we can guess the class Y with better accuracy than random guessing.
If Xy =1, then Y is most likely to be 0 because p(Y = 1|X; = 1) = 0.44. If
X1 =0, then Y is most likely to be 1. The feature X; is primary because it gives
us information about the class Y, even when we know nothing about the other
features, X, and X3.

Since p(Y = y| Xy = z9) = p(Y = y) for all values y and z, it follows that X,
is not a primary feature. However, X5 is not an irrelevant feature, since,

Therefore X, is a contextual feature. Furthermore, the primary feature X; is
(strongly) context-sensitive to the contextual feature X, , since,
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p(Y =1jX; =1, X, = 1) = 0.53. (2.13)

p(Y =1|X; =1) = 0.44. (2.14)

That is, if we know only that X; = 1, then our best guess is that Y = 0 (by
Equation 2.14). However, if we know that X; = 1 in the context of X, = 1, then
our best bet is that Y = 1 (by Equation 2.13). The feature X, is contextual because
it gives us information about the class Y, but only when we know the value of the
primary feature X;. Finally, X3 is an irrelevant feature, since, for all values y,z;
,Zg,and z3:

p(Y = lel = ZBl,XQ = $2,X3 = .’1,’3) = p(Y = y|X1 = fL‘l,Xg = .’132). (215)

The feature X3 does not give us any information about the class, even when we
know the values of the other features.

2.1.3 Identification of context sensitive features

In general the probability distribution p of instances in the training data set is
unknown. So we need to estimate p from the training data. Let D be a sequence
of training instances ()Z" ,Y) selected from Fy X Fp X --- X F,, x C identically and
independently with probability distribution p. Let d be an empirical estimate of
p, based on the frequencies of occurrence observed in the training data D (see [16]
and its references).

It is likely, due to random variation in D, that every feature X; will appear to
be primary, if we naively apply definition 2.2 to the estimate d. Random noise will
cause the following inequality to be true, even when X; is not actually primary:

dY =yl Xi = z:) # d(Y =y). (2.16)

To apply the above definitions, we need to allow for the presence of noise in
the training data D. Let £ be a small positive real number. We may say that the
feature X; appears to be primary when there is a value z; of X; and a value y of
Y, such that:

d(Y = y|lX; = z;) —d(Y = y)| > &. (2.17)

This inequality allows for noise. We can adjust our sensitivity to noise by
altering the value of e. When ¢ is very close to zero, the implication is that there
is little noise in the data. For a fixed sample D, as we increase €, the number
(apparently) of identified primary features decreases. Given a certain desired level
of statistical significance (say 95%), we can use standard statistical techniques to
calculate the required value of e.
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This concludes that, in addition to the problem of estimating the probability
distribution p from the data set D, there is another problem of searching through
all possible subsets S; of S;. In general, it is not computationally tractable to
examine every possible subset of features in order to determine which features are
contextual and which are primary. In practice, it will be necessary to use heuristic
search procedures.

2.2 Managing context-sensitive features

In Section 2.1 we have shown the definition of the contextual features and discussed
the strategy of identifying these features, the identification of these features is the
first main issue with context dependency problem , the other main issue is the man-
agement of these identified features. In this section we show the different strategies
or heuristics in ([17] and its references).

Assume the standard machine learning framework, where examples are represented
as vectors in a multidimensional feature space. We assume that set of training
examples is partitioned into a finite set of classes.

As explained earlier, we may distinguish three different types of features: pri-
mary, contextual, and irrelevant features.

Primary features are often context-sensitive. That is, they may be useful for
classification when considered in isolation, but the learning algorithm may perform
even better when we take the contextual features into account.

In this section we introduce a survey by [17] of strategies for taking contextual
features into account. We will also list five heuristic strategies for managing con-
text.

We will review evidence that hybrid strategies can perform better than the sum
of the component strategies.

Table 2.3 lists some of the examples of contextual features that have been exam-
ined in the machine learning literature. Many standard machine learning data sets
(Murphy & Aha, 1996) contain contextual features, although this is rarely (explic-
itly) exploited. For example, in medical diagnosis problems, the patients gender,
age, and weight are often available. These features are contextual, since they (typ-
ically) do not influence the diagnosis when they are considered in isolation ( see

[17]).
2.2.1 Strategies for managing context

Suppose we are attempting to distinguish healthy people (class A) from sick people
(class B), using an oral thermometer. Context 1 consists of temperature measure-
ments made on people in the morning, after a good sleep. Context 2 consists of
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Task Primary Features Contextual Features Reference

image classification  local properties lighting conditions Katz et al. (1990)

of the images (bright, dark)
speech recognition  sound spectrum speakers accent Pratt et al.(1991)
information
gas turbine engine thrust, weather conditions Turney&Halas(1993)
diagnosis temperature,
pressure
speech recognition  sound spectrum speakers identity Kubat(1996)
information and gender
hepatitis prognosis medical data patients age Turney (1993)
heart disease electrocardiogram  patients identity Watrous (1995)
diagnosis data
tonal music meter, tactus, to be discovered Widmer (1996)
harmonization local key by the learner

Table 2.3: Some examples from machine learning literature

temperature measurements made on people after heavy exercise. Sick people tend to
have higher temperatures than healthy people, but exercise also causes higher tem-
perature. When the two contexts are considered separately, diagnosis is relatively
simple. If we mix the contexts together, correct diagnosis becomes more difficult.
Fig 2.1 illustrates the intuition about this common type of context-sensitivity.
Katz et al. (1990) listed four strategies for using contextual information when
classifying. Turney. (1993) named these strategies contextual normalization, con-
textual expansion, contextual classifier selection, and contextual classification ad-
justment.
Strategy 1 Contextual normalization
Contextual features can be used to normalize context-sensitive primary features,
prior to classification. The intent is to process context-sensitive features in a way
that reduces their sensitivity to context. For example, we may normalize each
feature by subtracting the mean and dividing by the standard deviation, where the
mean and deviation are calculated separately for each different context. See Fig
2.2.
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Figure 2.1: The result of combining samples from different contexts.
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Figure 2.2: Conteztual normalization: The result of combining normalized samples
from different contexts.
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Figure 2.3: Contextual expansion: The result of combining expanded samples from
different contexts.

Strategy 2 Contextual expansion
A feature space composed of primary features can be expanded with contextual
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features. The contextual features can be treated by the classifier in the same
manner as the primary features. See Fig 2.3.

Data 4 Classifier#2 A B
[ (Including context) } '

Contextual classifier
selection

: !

Classifier 1 Classifier 2
(excluding context) (excluding contexi)

(o)

Figure 2.4: Contextual classifier selection: Different classifiers are used in different
contexts.

Strategy 3 Contextual classifier selection

Classification can proceed in two steps: First select a specialized classifier from a set
of classifiers, based on the contextual features, then apply the specialized classifier
to the primary features. See Fig 2.4.

Context #1
a Data
s {Including context )
g T A B
| é Classifier %, >
; ‘ Context #2
§< @@ | LECluding contexd § A 5
Class kS >
g 58 - 'é Combined Contexts
P Contextual Classification 3
Adjustment 4
S<noo Adjusted Class Fealure »

Figure 2.5: Conteztual classification adjustment: The classification is adjusted for
different contexts.

Strategy 4 Contextual classification adjustment

The two steps in contextual classifier selection can be reversed: First classify, using
only the primary features. Then make an adjustment to the classification, based on
the contextual features. The first step (classification using primary features alone)
may be done by either a single classifier or multiple classifiers. For example, we
might combine multiple specialized classifiers, each trained in a different context.
See Fig 2.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 32

Turney. (1993) discussed another strategy called contextual weighting.

Original Scale

Scale Strelched and Compressed by Weighting

Feature #2

Feature #2

v
L 4

Feature #1 Feature #1

Figure 2.6: Conteztual weighting : The impact of weighting on classification.

Strategy 5 Conteztual weighting

The contextual features can be used to weight the primary features, prior to classi-
fication. The intent of weighting is to assign more importance to features that, in
a given context, are more useful for classification. Contextual selection of features
may be viewed as an extreme form of contextual weighting: the selected features
are considered important and the remaining features are ignored. See Fig 2.6.

2.2.2 Hybrid strategies

Various combinations of the above strategies are possible. For example, [17] exper-
imented with all eight possible combinations of three of the strategies (contextual
normalization, contextual expansion, and contextual weighting) in two different
domains, vowel recognition and hepatitis prognosis (Turney 1993a, 1993b). In the
vowel recognition task, the accuracy of a nearest neighbor algorithm with no mecha-
nism for handling context was 56%. With contextual normalization, contextual ex-
pansion, and contextual weighting, the accuracy of the nearest-neighbor algorithm
was 66%. The sum of the improvement for the three strategies used separately
was 3%, but the improvement for the three strategies together was 10% (Turney,
1993a, 1993b). There is a statistically significant synergetic effect in this domain.
In the hepatitis prognosis task, the accuracy of a nearest neighbor algorithm with
no mechanism for handling context was 71%. With contextual normalization, con-
textual expansion, and contextual weighting, the accuracy of the nearest-neighbor
algorithm was 84%. The sum of the improvement for the three strategies used
separately was 12%, but the improvement for the three strategies together was 13%
(Turney, 1993b). The synergetic effect is not statistically significant in this domain.
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2.2.3 Context dependency in neural networks

Broadly speaking, context dependent neural networks means neural networks which
can change their way of functioning in a context-sensitive mode. In other words,
a context dependent neural network may react differently for the same sequence
of inputs, depending on external conditions these conditions is expressed by the
contextual variables.

Using context dependency in neural networks is an important issue in many
cognitive situations. It opens another horizons to neural network solutions. In the
last decade neural network researchers have paid attention to contextual aspects.
Many of them have given attention to such aspects to improve systems performance
by identifying and managing the context sensitive features among input data. [12]
introduced an extension to the standard error back propagation algorithm that en-
ables it to train for the context dependent information by multi-layer feed forward
neural networks, a special error function is used in the extension. In [18] a proba-
bilistic framework was presented to incorporate context dependent auditory mod-
els in hybrid segment based neural network speech recognition. Some researchers
presented new neural network structures to achieve such context dependency. [3]
presented a neural approach of using two layer recurrent attractor network which
receives external input on one of its layers. Recently, [2] presented a context depen-
dent neural network model. This model allows nets weights to change according to
changes of some environmental factors even after completing the learning process.

In this section we have seen different strategies for managing context sensitive
features in any learning algorithm. The rest of this chapter will be zooming more
into some neural network solutions for learning context sensitive features.

2.3 Overcoming the slow convergence problems

In complex systems systems like for example, robotics and other control systems,
learning the control mappings between inputs and outputs requires large size of
neural networks. This can make the learning process and convergence prohibitively
slow.

The problem size can be approximately quantified as the dimensionality of the
input space. With an increase in the dimensionality, the input space will experi-
ence an exponential growth in size. Very often, the increase in dimensionality also
increases the nonlinearity of the control mappings.

In order to acquire a highly nonlinear control mapping through learning, a large
and complex network is required in order to approximate the mapping up to a
certain degree of accuracy. The direct consequence of using large networks is the
increase in time required to learn the appropriate network parameters using a given
learning neural network. Learning becomes so slow that the problem may prove to
be intractable.
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Context-dependent learning can usually simplify a learning problem signifi-
cantly. The segmentation of the problem different context makes the segmented
subproblems to be reduced to simpler ones under each fixed context.

Of course,the system (natural or artificial) also needs to remember the relation-
ship between the learning subproblem and its associated context.

In [21], Yeung D.Y (1993) had explained the modulation technique of a big
problem using the principle of divide-and-conquer to decompose a learning problem
to be solved into a set of smaller subproblems corresponding to different contexts.
The solutions to the individual subproblems in context-dependent learning are then
integrated to give the solution to the entire problem. Decomposing a problem into
smaller subproblems might be very expensive and difficult for some problems.

However, the principle of divide-and-conquer is very useful for handling a large
variety of problems, especially those whose subproblems do not have very tight
mutual interactions.

Q
n |Q
Input | 2 Module 1
units )
O
Module 2
Q
G O
mput | ] Module 3 O m
units ! . ; Output
O ' i units
: O
!
]
'
Module M —[

Figure 2.7: A simple neural network model based on modulation to implement the
idea of context sensitivity .

Consider now the simple network model with n = ny +n» input units and m output
units as shown in Fig 2.7. The set of input units is divided into two groups. The first
group consists of ny units. The activation values of these n; units in combination
constitutes an address that can be used to access one of the M modules. If these
units have binary (0 or 1) or bipolar (-1 or 1) activation values, a maximum of 2™
modules can be addressed using the binary coding scheme.

However, these input units can also take continuous activation values, as long as
there is some mechanism to guarantee that only one module will get activated. The
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activated module is then provided with the actual input by the second group of ng
input units. After some internal processing, the activated module gives an output
with m values. One can view this model as a collection of M sub neural network
modules, each subneural network has n, inputs and m output. The first group
of input units serves to specify the context (hence the corresponding subnetwork
module) under which further processing is to be carried out. The original problem
of forming an (n — m) mapping is thus decomposed into M smaller subproblems of
forming (ny — m) mappings. It is important to mention here that the selection of
these n — 1 inputs for the context network should based on a specific identification
of contextual features out of the whole feature space.

This solution we have shown now is simply a modulation of the big problem which
is considered the simplest way of applying context dependency, the disadvantage of
this technique, is its one-to-one mapping between contexts and subnetwork mod-
ules, which probably require huge capacity hardware to process all the different
submodules, especially in case of big number of modules that would be impossible
to apply this technique.

Yeung D.Y (1993) in [21], developed another enhanced model that mostly
doesn’t require such huge hardware capacity although in some cases e.g. the very
large neural networks, the model may fail to reduce the hardware capacity as shown
later, the model is explained in the following subsection.

2.3.1 Context sensitive neural network for problem seg-

mentation
Function outputs
A A A
Context > .
inputs 2] Context Network Function
2 Network
A A A

Function inputs

Figure 2.8: Schematic diagram of a context-sensitive network model.

A context-sensitive network is shown schematically in Fig 2.8. It consists of
two feed forward neural networks, the context network and the function network.
Context network is responsible about mapping the relation between the contextual
variables as input and the weight setup of the other neural network as outputs. The
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function network is responsible to mapping the relation between the set of primary
features as inputs and the problem solution as output.

The set of input variables is partitioned into two sets. One set (context input)
acts as the input to a context network. The function inputs acts as the inputs to a
function network. Depending on the context input provided by the current input
pattern, the function network represents different functions at different times based
on different contexts.

The feed-forward class of context sensitive neural networks is considered here
for both neural networks, with the back-propagation learning neural network.

The context network has as many output units as the total number of adjustable
weights in the function network. In general, the number of adjustable weights in the
function network may be very large, hence the context network has to learn a large
number of parameters. It is thus desirable that the function network be as simple
as possible. The ideal case refers to the class of context-sensitive networks whose
function networks are linear. This corresponds to the class of functions which are
decomposable into parameterized families of linear functions.

Using the activation values of the output units in the context network directly
as the weights of the function network is inappropriate, as the activation values
are restricted to the range [—1,1]. This problem can be solved by introducing a
coupling function to map these activation values from [—1, 1] to their correspond-
ing values which span a wider range. For output unit [ in the context network,
its activation value, y; is coupled with a weight in the function network through a
coupling function, g; . One simple choice is to let g; be the inverse of a sigmoid
function,e.g. g; = ffl , so that the weights of the function network can take values
from (—o0, 00).

The use of one network to modulate the behavior of another network is a very useful

- property. In particular, a single piece of hardware (function network) can behave
differently depending on the output of the context network. Hardware reusability
is crucial to the design of networks for solving complex problems, so that in most
cases the networks will not grow to an unmanageable size. Configuring a system to
behave differently in a context dependent manner is a desirable property for robust
systems.

With its programmability through the context network, the function network
can compute different functions at different times. This helps in separating the
network semantically into two different levels of abstraction, each of which plays a
different role in network computation. While learning in the function network aims
at generalization of the usual type, learning in the context network tries to achieve
a better generalization.

This context dependent neural network model have two disadvantages. The con-
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text network is trained to produce the weight matrix of the function network ,
which mean that the output of the context network is usually too large, with a
little increase in the size of the function network. The context network increases
dramatically. In this case the context network will require extremely long training
and probably more hardware resources.

Also the possibility of error mapping of the context network is not small for that
large number of outputs , and in this case, selecting wrong weight matrix will let
the function network output be too far from the desired. Even if the output of the
context network is the proper weight matrix but with some notable error in some
weights , that would lead to error in propagating the output of the function network.

In the following subsection we show different technique of imposing the context
sensitive features in the neural network solution that doesn’t have the mentioned
disadvantages while learning complex nonlinear mappings.

2.4 Context dependent neuron model

The model we are showing here also introduces the idea of learning complex nonlin-
ear mappings in a context dependent manner. In the previous model the contextual
features were separated from the primary features on a neural network level, i.e.
Contextual features were applied to separate neural network other than the neural
network that primary features are applied to. In The following model both contex-
tual and primary features are applied with the same neural network. More than
that, they are both applied to the same neuron.

Hence, the model of context dependent neural networks we are showing in this
section is considered a generalization of the traditional neuron model. The mapping
adjustment is performed by contextual “fine-tuning” of weights obtained from a well
trained traditional neural networks.

The model of Piotr Ciskowski. (2004) in [2], we are showing here assumes that
the features are already identified and doesn’t involve any identification technique
of the contextual features. It only concentrates on processing contextual data by
context dependent neural networks. One of the aims of this models is to cover the
case of continuous contextual variables.

2.4.1 Context dependent neuron model structure

Having Z denotes the vector of contextual variables, the neuron model shown in
Fig 2.9, can be expressed in the form

S
y=20|w(2)+ > Wi2)z,|. (2.18)

s=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTEXT DEPENDENT NEURAL NETWORKS 38

Figure 2.9: Context dependent neuron model

where z, denotes the s-th primary input, y is the neurons output, and @ is the
activation function.
The first difference between this model and the traditional one is the division of
inputs into the two groups of: primary and context-sensitive inputs grouped in vec-
tor X, and contextual inputs in vector Z. The second difference is that the weights
between neurons and primary inputs, depend on the vector of contextual variables,
i.e. w, = wy(Z) where s = 0,1,---,S, as presented in Fig 2.9

The neural network model that is used here to solve a problem characterized
both by primary and context-sensitive features a hybrid network, in which some
weights are context dependent and others are traditional , traditional weight means
that the weights are constant after training, i.e. they don’t change in all contexts.

In general,Z may functionally depend on z, as being contextual sensitive to
them. This model excludes such a possibility, that is, both functional and even
stochastic independence of z, and Z will be assumed.

In other words by classifying contextual variables into the following categories,

o External contextual variables, which are provided to the network as parallel
to input variables, without any functional or statistical dependencies between
the context and input variables.

e Internal contextual variables, which are generated from input and/or output
signals of the same network.

Then, this model concentrates on the external contextual variables, because its
technique of incorporation of the contextual features to the output of the problem,
is not depending on such relation between the contextual features among each other.
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2.4.2 Dependence of weights on context variables

As mentioned earlier, the second difference between this neuron model and the tra-
ditional one is that in this model weights are dependent on the contextual variables.
This dependency can be expressed as follows.

Assume that in the model of a context dependent neuron in Equation 2.18, com-
ponents w,(Z) of its weight vector W (Z), dependent on the vector Z = [21, 22, - - , 2p)
of contextual variables, in the form,

T

we(Z) = AT -V(Z),s=0,1,---,S. (2.19)
where V(2) = [v1(2),v2(Z), - - ,vM(Z)]T is a vector of basis functions, chosen

by the networks designer.
In Equation 2.19 A, = [a,1,0s2, - ,as,M]T € RM where s = 0,1,---,8 are

vectors of parameters, which specify the dependence of weights on context variables.
In other words, components of V(Z) are functions spanning the context dependent
vector of weights and our aim is to choose the vectors of coefficients A, where
§=0,1,---,S. As components of V(Z).

2.4.3 Mathematical model of a context dependent net

According to the provided form of dependence of weights on the contextual vari-
ables, here we show the mathematical model of the context dependent neuron.

For a random vector of input variables X;,, = [z1, 72, - - - ,xS]T and for a random
vector Z of contextual variables, the output of the network is given by

Y = o[W7(2) - X]. (2.20)

where @ is the activation function, 7 is the transposition, X & 1, X’in]T. The

k-th neurons weight vector is given by

Wi(Z) = [wio(2), wp1(Z), -, wis(2)]. (2.21)

_ where each weight wy +(Z) is approximated by the column vector of coefficients
Ay, and the vector of basis functions V(Z). as w+(Z) = AL, - V(2).

For the k-th neuron, the coefficient vectors A; ; are concatenated into one col-
umn vector
T
]

Ap =[AL0, ALy, AL (2.22)

The layers weight matrix is constructed the same way as the weight matrix of a
traditional network, only now the weights are dependent on the context vector as
shown in 2.23

W(Z) = Wi(2),Wa(Z), -, Wk(2)]. (2.23)
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® is assumed to be strictly monotone on R. Thus, ¥(t) = ®7(t) exists and
Y(U) = & }(U) is well-defined random variable, if U is a random variable. The
only important activation function, which is excluded by this assumption, is the
step function, which however, can be arbitrarily closely approximated by strictly
monotone functions.

2.4.4 Minimizing the error of a context dependent Network

The desired output of the net given by Equation 2.20 is represented by a random
variable Y. In summary, the existence of a probability distribution of (X,Z,Y) is
assumed. This distribution is unknown. In this learning algorithm we use a learning
sequence (X;, Z;,Y;),i = 1,2,--- ,n, instead of the unknown common distribution
of (X,2,Y).

Lets consider that this probability distribution is known, and then we replace
the unknown moments of this distribution by their empirical counterparts, based
on the learning sequence. Thus, we shall use a variant of the classical method
of moments, known to provide efficient estimators when underlying distributions
are Gaussian, since then the method of moments coincides with the maximum
likelihood approach. Usually, the measure of fit between Y and ®[@7(Z) - X] is
considered as

Egzn{Y —oa”(2)- X]}". (2.24)

where F denotes the expectation with respect to random variables specified be-
low this operator. Here, we consider an alternative approach to choose the weights
in such a way that the following criterion is minimized:

Egzv[®}(Y) -a7(2)- X]". (2.25)

which is later called the activation-error criterion, since the desired output Y
is transformed back to the interior of the nets’ output neuron and then compared
with its activation signal (@7 (Z2) - X).

The advantage of Equation 2.25 in comparison with Equation 2.24, is that
Equation 2.25 is a quadratic form with respect to the vector of weights W. The
following result additionally justifies the assumed mathematical model of the cd
neuron.

2.4.5 Learning algorithm for feed-forward back-propagation
context dependent networks

Piotr Ciskowski in [2] had presented many learning algorithms such as, nonre-
cursive Least Squares, Recursive Least Squares, Stochastic Approximation, and
back-propagation algorithm.

Here we only present his extension to the back-propagation algorithm to train
the network for such contextual features.
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Hence, in this subsection, a way of calculating the error functions gradient with
respect to coefficient vectors of output and hidden layers neurons will be presented.
The output-error function will be used, while results for activation-error function
are analogical.

Let us now consider a two-layer network containing K neurons in the first, and

_ T
L neurons in the second layer. X® = [1,z{" 2", ... 2] is the vector of the
_ T
first layers primary inputs. The first layers outputs Y = [y yél), Ly
~ T
and the bias are primary inputs for the second layer X® = [1, y ygl), . ,yf%)] .

_ T
Y@ = [[ @ 2 ) ] is the vector of the second layers outputs. Both

layers are supplied with the same vector of contextual inputs Z = [, 2, - - , 2p].
Each layer has its weight matrix:

v (Z (\ . 2.2

wH(2) = [ “’(Z)] (S+1)xK (2:26)
where k=1,2,--- ,K and s =0,1,---,§, and

Fr@) (7Y — |, D (7

W (Z) = [v(2)] . (2.27)
where [ =1,2,---,Land k=0,1,--- , K.

Let us consider the second layer as the output layer of the network and, thus

assume that the desired output values are given as Yd@) [yff}, y((f%, ,yff%] .

The error function for the network ( in [2] ) is given by
L
Q=Q® (4®, A2) = 3" [ (a9, 4P)] . (2.28)
=1

where ng) (A(l), Af”) is the error function for the second layers I-th neuron,
given by

2
2 (2 1
Q§>(A(1>,Al< )) 5Bz 2420 {ydl _ ( l())} _ (2.29)

where u =& {(A(2)) [ X® V(Z)]},

and YU = @ {(A(l)) XV V(Z)]} is the vector of the first layers outputs,
® denotes the Kronecker product of matrices.

Thus, the error functions gradient with respect to the second layers I-th neurons
coefficients is given by
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grad;0Q = ~ (g, 5 o0 {d§2> ¥4 (ul(?)) X®g V(Z)]} . (2.30)

The coefficient update (in [2]) is given by

Ans1 = An +70d® - @ (ul(z’)-[)‘(@)@x?(z")]. (2.31)

where d§2) yl(fl) o (ufz))
The error functions gradient with respect to the first layers k-th neurons coef-
ficient vector is given by

L
gmd (1)Q (X(l) 29®y { [Z w(2) ( (2) yl(2)> Y (ul@))jl

@ (o) - [XV e 7(2)]}. (2.32)

By analogy to the traditional back-propagation rule, the unknown desired value
of the neurons output yg’l,z may be computed from the errors of all the next layers
neurons that are connected to this neuron, and weights connecting the k-th neuron
in the first layer with all neurons in the second layer. Thus, the estimated value of
the first layers k-th neurons error is given by

&) =yl -y ‘i[ 82)-d?) = ‘i[ Q@) (48 -4™)].  @39)

=1

where dfcl) and d§2) denote error values for k-th neuron in the first layer and I-th
neuron in the second layer, respectively.

Remark 2.1. Contexrt dependent neural networks are, in fact, a generalization
of traditional networks. By choosing the basis function vector with one constant
function, we may build a context dependent network with the properties of traditional
one.

2.4.6 Example: XOR problem

It is well known that it is impossible to find any weight vector for a single perceptron
neural network ( Neural network consists of only one neuron ) to solve the standard
4-point XOR problem, in the following subsection we show that with the generalized
neuron model provided earlier, it is possible to solve five-points XOR, problem (see

[2D)-
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Figure 2.10: Five-point XOR problem solved by a two-layer traditional network.
(Left) Input points and discriminating lines of both hidden neurons. (Right) Input
points transformed by the first layer and the discriminating line of the output
neuron.

Figure 2.11: Five-point XOR problem solved by one context dependent neuron.

In this subsection, the differences are shown in the way traditional and context
dependent networks work. The networks are used to solve the XOR, problem en-
hanced by one additional point in the middle. Traditional networks topology is 2
(Hidden neurons) and 1 (Output neuron). Each neuron in the input layer (not yet
“aware” of the points context) is only able to perform linear separation of points,
so the division into two classes takes place gradually in both layers.

In Fig 2.10, given five points as inputs : (0,0), (0,1), (1,0), (0.5,0.5), and (1,1) in
two-dimensional input space, the first layer reproduces them into the second layers
input space. Three of these points (no. 2, 3, and 4) belonging to the first class are
transformed into points close to (0,1). Two other points (from the second class)
are positioned in the area that is linearly separable from the transformed points of
the first class. Linear separation is then done by the single neuron in the second
layer.
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(a) Discriminating hyperplane of a tradi- (b) Hyper surface of a context dependent
tional functional neuron. neuron.

Figure 2.12: Five-point XOR problem.

Let us now assume that points 1 and 3 belong to one context (for which z = —1 ),
while the other three to another z = 1. Traditional neuron using the information
about points context (supplied on additional primary input or using a functional
input multiplying two primary ones) is able to solve the standard 4-point XOR
problem (excluding point no. 3). As its decision hyperplane cannot bend through
the contexts to perform the desired classification of point no. 3 [Fig 2.12(a)], it
cannot solve the enhanced 5-point XOR problem, slightly more complicated than
the standard one. Context dependent network (supplied with information about
points contexts) works more efficiently.

The 5-point task may be solved by a single neuron. As for each context only
one decision line is needed, context dependent neuron produces one discriminating
line and adjusts it as the context changes (Fig 2.11). Although lines are parallel,
their directions are reversed. Fig 2.12(b) shows the decision hyper-surface of a con-
text dependent neuron in the joint three-dimensional input space and the way it
inverses its direction with the context change.

In this chapter we have shown, a formal method to distinguish the three differ-
ent types of features from the relevance point of view: primary, contextual, and
irrelevant features, and an Illustration example was explained.

We have presented the strategy of identifying these context-sensitive features
and the five basic strategies for managing them. Combining these strategies appears
to be beneficial, as well as five different methods of managing these contextual
features.

We have presented a context sensitive model for overcoming the slow conver-
gence problems this technique uses context sensitively between features to provide a
segmentation to the problem solution. Another model of context dependent neural
nets has been presented and its basic training algorithms, taking advantage of
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contextual dependencies in training data. It has been shown that context depen-
dent neural networks, being the generalization of traditional networks, have better

transformation abilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Overlapped neural networks

Neural network overlapping is known as one of the practical techniques of achiev-
ing better generalization and recognition rate. Overlapped Multi-Neural Networks
(OMNN) have been used for feed forward neural networks by Hu & Hirasawa.
(2000) in [4] and self organized maps by Atukorale & Suganthan. (1999) in [1] and
by Suganthan & Winter. (1999) in [14] for this purpose. These systems impose
a function distribution over the partially shared weight vector of a multi neural
network in which some neurons react only to some inputs but not to the others.
Neural network overlapping is also used in shared weight neural networks (SWNN)

in which the weight sharing or overlapping reduces the number of free weights while
produces better performance on test sets by Yonggwan & Gader. (1995) in [22] and
by Khabou & Gader. (2000) in [7].

Analysis presented by Jinwook & Chulhee.(1999) in [6] and by Stevenson & Winter.
(1990) in [13] of the weight distribution and its error sensitivity concluded that the
weight vectors of a trained neural network is not unique as there are many possible
weight vector solutions based on the initial setup. They also concluded that such
weight solutions tend to form concentrated groups in RY dimensional weight space.
This analysis helps to understand the concept of reducing the network freedom by
using overlapped neural networks to decrease the neural network function complex-
ity and achieve better generalization.

In an ordinary neural network, individual units do not have any special relations
with the input patterns. However, according to recent knowledge of brain science,
it is suggested that there exists function localization in a human brain, which means
that specific neurons are activated corresponding to certain sorts of sensory infor-
mation the brain receives. Therefore, a brain-like neural network should have the
capabilities of function localization as well as learning. Such a brain-like model
may be more efficient because its individual units are mainly used to remember
certain input patterns. To obtain such a brain-like model, the main problem is how
to guide a training algorithm to realize the function localization.

46
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Qvetlapped unit

Usual unit

Figure 3.1: Multiple network, overlapped-multi-network and ordinary feed-forward
network.

In the following we show an overlapped neural network model by Hu & Hira-
sawa. (2000)in [4]. In this model, a simple implementation of such brain-like model
is considered by using an overlapped multi-neural-network (OMNN). This model
OMNN consists of two parts: main part and partitioning part. The main part,
structurally, is the same as an ordinary feed forward neural network, but it is con-
sidered as one neural network that consists of a class of sub-nets, all the sub-nets
have the same input-output units but some different hidden units. The partition-
ing part, can be any structure that can make unsupervised classification, the main
function of this part is to divides the input space into several parts, each of which
is associated with one sub-net.

Various clustering or classification methods and algorithm may be used to im-
plement the partitioning part. In his work, Hirasawa has introduced a competitive
network for this part in [4] and introduced SOM Model for the partitioning part in
[11], However, a competitive network that has the same number of outputs as the
number of parts of the input space divided is used here. Each output of compet-
itive network represents one input space part. For an input pattern, only one of
competitive network outputs gives 1, and only nodes of the sub-net associated with
this output are fired, while all other nodes remain inactive. This realizes function
localization of OMNN.

On the other hand, from a viewpoint of multiple network, the main part of OMNN
is a multiple network with overlapped units, when the number of overlapped units is
zero, it becomes an ordinary multiple network, while it is an ordinary feed-forward
neural network when the number of overlapped units is equal to the total hidden
units. In this sense, an OMNN can be seen as a learning network between an
ordinary feed forward neural network and an ordinary multiple network. Fig 3.1
shows an image of such relationship. Moreover, it is well-known that multi model
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approach is based on a divide-and-conquer strategy. The bias variance trade-off is
an important issue for the divide and-conquer strategy. In general, dividing the
training data set into subsets for process identification tends to increase the vari-
ance and decrease the bias. In multi model approach, soft or fuzzy splits of data
are often used to ease the bias-variance dilemma.

3.1 Overlapped neural network for function lo-
calization

An OMNN has the capabilities of both learning and function localization. As
shown in Fig 3.2, it consists of two parts: main part and partitioning part. The
main part realizes the capability of learning and the partitioning part classifies the
input space so as to realize the capability of function localization (see [4] and [11]
and their references).

Partitioning part : Competitive network

Figure 3.2: An OMNN consisting of two parts: main part and partitioning part.

Partitioning Part

The role of this part is partitioning of operating region. Let us consider problems
such as system identification and pattern recognition. The operating region is
defined as Z. An operating point 2z € Z is a vector of variables. The operating
region is partitioned into M operating regimes Z; : (¢ = 1,--- , M) which is a subset
of Z, on the basis of certain prior knowledge.

The input and output vectors of the model are called z and y and consist
of n and m different variables respectively, where = = [z}, 22, - ,2,]) and ¥V =
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[X/h}/é;”. ’Ym]-

Here, competitive neural networks is used for this part. The network selects a win-
ner, via a competitive learning process, highlighting the “winner-take-all” schema.
That is, the output unit receiving the largest input is assigned a value of 1, whereas
all other units are suppressed to a 0 value. As shown in the lower part of Fig 3.2,
the competitive learning network has one layer of input neurons and one layer of
output neurons. An input pattern z is a sample point in the n-dimensional real
vector space. Binary-valued {0,1} local representations are used for the output
nodes. That is, there are as many output neurons as the number of classes (M)
and each output node represents a pattern category.

Main Part

Structurally, the main part is an ordinary feed forward multi-layer neural network,
but it is considered to consist of M overlapped sub-nets.

If we denote the set of input units by I, the set of output units by O, and the
set of i-th hidden layer units by NV; : {¢ = 1,2,---}, then the j-th sub-net 