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Abstract

The use of context dependency in neural networks is an important issue in many 
cognitive situations. In this report we introduce a novel context dependent neural 
network model based on overlapped multi-neural network structures. We present 
a detailed study about contextual features and some of its applications in neural 
networks. We also present some different strategies for applying overlapping in 
neural networks.

The generalization ability of a neural network is mainly influenced by three 
factors, the number and performance of the learning data samples, the complexity 
of the learning algorithm employed, and the network size. Neural network over­
lapping is one of the practical techniques of achieving a better generalization and 
recognition rate. This is due to its ability of decreasing the number of free weights 
of a neural network and providing less complexity of the neural network function. 
For this purpose overlapped neural networks have been used in feed-forward neural 
networks (MFNN) , self organizing maps (SOM) and in shared weight neural net­
works (SWNN). Overlapped neural networks also have the ability of performing a 
function localization over the neural network feature space.

Among the feature space of any problem, three different types of features ( 
from the relevance point of view ) can be distinguished: primary, contextual, and 
irrelevant features. Researches in the contextual features are mainly concerned 
with two issues. Identifying such contextual features, and managing them. We are 
presenting the strategy of identifying these context-sensitive features and five basic 
strategies for managing them. We are also presenting a context sensitive model for 
overcoming the slow convergence problems, and a context dependent (cd) neuron 
model that is considered a generalization of the traditional neuron model.

We introduce a novel approach for problems regardless of sufficiency or accuracy 
of their historical observations or lab simulation data. Our approach is based on 
imposing a context of problem performance metrics into networks and gaining the 
enhancement towards its satisfactory state. We use an overlapped system of back 
propagation neural networks for our purpose. A main neural network is responsible 
for mapping input and output relation while a regulatory neural network evaluates 
the performance metrics satisfaction. We provide special training and testing algo­
rithms for the overlapped system that guarantees a synchronized solution for both 
neural networks. An example of traffic control problem is simulated. The result of 
simulation shows a great enhancement of the solution using our approach.

ix
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Chapter 1 

Introduction

Since late 1980s there has been an explosion in research of neural networks. Today, 
neural network successful applications are reported across a big range of fields.

Neural network is a paradigm of learning tool, which is able to discover under­
lying dependencies between the given inputs and outputs by using training data 
sets. After the training process, it represents high-dimensional nonlinear functions.

Many research institutions, industries, and commercial firms have already started 
to apply neural network successfully to many diverse types of real world problems. 
The most important applications include the following, (See [19] and its references)

• Classification and pattern recognition for visual, sound, olfactory and tactile 
patterns.

• Time series forecasting for financial, weather, engineering time series.

• Diagnostics, e.g., in medicine or engineering.

• Robotics, including control, navigation, coordination, object recognition prob­
lems.

• Process control, like nonlinear and multivariate control of chemical plants, 
power stations and vehicles or missiles.

• Optimization, such as combinatorial problems, e.g., resource scheduling and 
routing.

• Signal processing, speech and word recognition.

• Machine vision, e.g., inspection in manufacturing, check reader, face recogni­
tion and target recognition.

• Financial forecasting for interest rates and stock indices, currencies.

• Financial services, like credit worthiness, forecasting and data mining , ser­
vices for trade like segmentation of^customer data.
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CHAPTER 1. INTRODUCTION 2

A Neural network function differs based on its application, e.g. In certain ap­
plication areas, such as speech and word recognition, neural networks outperform 
conventional statistical methods. While in other fields, such as specific areas in 
robotics and financial services, they show promising application in real world situ­
ations. One of the first successful applications was the NETtalk project (Sejnowski 
and Rosenberg 1987), aimed at training a neural network to pronounce English text 
consisting of seven consecutive characters from written text, presented in a moving 
window that gradually scanned the text.

The nonlinear nature of neural networks, the ability of neural networks to learn 
from their environments in supervised and unsupervised ways, as well as the uni­
versal approximation property of neural networks make them highly suited for 
solving difficult signal processing problems. For practical understanding of neural 
networks, it is imperative to develop a proper understanding of basic neural network 
structures and how they impact training algorithms and applications.

A challenge in surveying the field of neural network paradigms is to identify 
those neural network structures that have been successfully applied to solve real 
world problems from those that are still under development or have difficulty scaling 
up to solve realistic problems. It is also critical to understand the nature of the 
problem formulation so that the most appropriate neural network paradigm can be 
applied. In addition, it is also important to assess the impact of neural networks 
on the performance, robustness, and cost-effectiveness of the systems.

1.1 Artificial neural network basics
A Structure is the first step of understanding neural networks. In general a neural 
networks consists of a set of simple analog signal processors called ''processing ele­
ments" or ’'''neurons" connected through weighted links called "connections". Each 
processing element works by itself as a processing element on its inputs that comes 
to it through its input connections and generate one output and then spread it over 
its output connections to be processed again by other connected processing element. 
These connections are having some feature of changing the strength of the passing 
signal according to its connection weight. The output connection from a neuron 
can be an input to another neuron or a final output of the neural network. The 
input connection to a neuron can be an output of another neuron or an initial input 
to the neural network. The processing that is accomplished at any neuron over its 
inputs is established through applying a specific function called net function. The 
output of this function is the value of the neuron after processing its inputs. This 
value is called a net value. Another function called activation function or output 
function is then applied over the net value to produce the neuron’s output value 
associated to the current inputs.

In neural network processing begins with the entire network in a quiescent state, an
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CHAPTER 1. INTRODUCTION 3

external comprised of a set of signals to be processed by the network is applied to 
the input layer, then each processing element generates a single output signal with 
magnitude that is a function of the total simulations received by the unit. Collec­
tively , the output produced by all processing elements on the layer are then passed 
as input pattern to the subsequent layer , until the final layer produces output for 
the current input pattern (see [23]).

1.1.1 Basic neural network components
Among numerous neural network models that have been proposed over the years, 
all share the neuron as a common building block for its networked interconnected 
structures. The most widely used neuron model is McCulloch and Pitts neuron 
model illustrated in Fig 1.1.

>

Figure 1.1: McCulloch and Pitts neuron model.

In Fig 1.1, each neuron consists of two parts, the net function and the activation 
function. The net function determines how the network inputs {xj : 1 < j  < N}  
are combined inside the neuron. In this figure, a weighted linear combination is 
adopted:

u
N

E
j=i

W j X j  +  I (1.1)

[wj : 1 < j  < N }  are parameters expressing the synaptic weights. The quantity 
6 is called the Has and is used to model the threshold.

The output of the neuron, denoted by a in this figure, is related to the network 
input u via a linear or nonlinear transformation by the activation function:

a = f{u)  (1.2)

In various neural network models, different activation functions have been pro­
posed. The most commonly used activation functions are summarized in Table 1.1 
, (see [23])
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CHAPTER 1. INTRODUCTION

Activation Function Formula

Sigmoid /( '“) — i+e-«/T

Hyperbolic tangent f{u) — tanh{^)

. . f l  i f u >  ThresholdThreshold J W  — if u < Threshold

Gaussian radial basis f{u) = exp [—u||u — m|| /̂c7^]
where m  and a are parameters to be specified

Linear j{u) = au + b

Table 1.1: The most commonly used activation functions.

1.1.2 Neural network topology

(a) Acyclic topology. (b) Cyclic topology.

Figure 1.2: Illustration of (a) an acyclic graph and (b) a cyclic graph. The cycle in 
(b) is emphasized with thick lines..

In a neural network, multiple neurons are interconnected to form a network 
to facilitate distributed computing. Schematically, the configuration of the inter­
connections can be described efficiently with a directed graph. A directed graph 
consists of nodes (neurons) and directed arcs (synaptic links). The topology of the 
graph can be categorized as either acyclic or cyclic. Refer to Fig 1.2(a); a neural 
network with acyclic topology consists of feed-forward loops. Such an acyclic neural 
network is often used to approximate a nonlinear mapping between its inputs and 
outputs. As shown in Fig 1.2(b), a neural network with cyclic topology contains 
at least one cycle formed by directed arcs. Such a neural network is also known 
as a recurrent network. Due to the feedback loop, a recurrent network leads to a 
nonlinear dynamic system model that contains internal memory.

A special and common case, is the multi layered neural networks, in which
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CHAPTER 1. INTRODUCTION 5

the processing elements are grouped together into a layer structure where each 
processing element on each layer performs an analog integration on its inputs to 
determine its net and activation value.

1.1.3 Multi-layer perceptron (MLP) model
This is the most well known and most popular neural network among all the ex­
isting neural network paradigms. It consists of a feed-forward, layered network of 
neurons. Each neuron in an MLP has a nonlinear activation function that is often 
continuously differentiable. Some of the most frequently used activation functions 
for MLP include the sigmoid function and the hyperbolic tangent function. A 
typical MLP configuration is depicted in Fig 1.3. Each triangle represents an indi­
vidual neuron. These neurons are organized in layers, labelled as the hidden layer 
#1, hidden layer #2, and the output layer in this figure. While the inputs at the 
bottom are also labelled as the input layer, there is usually no neuron model im­
plemented in that layer. The name hidden layer refers to the fact that the output 
of these neurons will be feeded into upper layer neurons and, therefore, is hidden 
from the user who only observes the output of neurons at the output layer. Fig
1.3 illustrates a popular configuration of MLP where interconnections are provided 
only between neurons of successive layers in the network. In practice, any acyclic 
interconnections between neurons are allowed.

Output Layer

Hidden Layer 2

Hidden Layer 1

Input Layer

Figure 1.3: A three-layer multi-layer perceptron configuration.

It has been proven that with a sufficient number of hidden neurons, an MLP 
with as few as two hidden layer neurons is capable of approximating an arbitrarily 
complex mapping within a finite support (see [23] and its references).
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CHAPTER 1. INTRODUCTION 6

1.1.4 Error back-propagation training of MLP
The key step in applying an MLP model is to find the proper weight matrices. 
Assuming a layered MLP structure, the weights feeding into each layer of neurons 
form a weight matrix of that layer. The values of these weights can be found using 
the error back-propagation training method.

1

4

^  < 4

Figure 1.4: MLP example for back-propagation trainingsingle neuron case.

Let us first consider a simple example consisting of a single neuron to illustrate 
this procedure. Fig 1.4 represents the neuron in two separate parts: a summation 
unit to compute the net value u, and a nonlinear activation function to computer 
the neuron’s output o = f{u).  Then the output o is to be compared with a desired 
target value d, and their difference will be computed as the error e. There are two 
inputs (zi, %) with corresponding weights wl and w2. The input labelled with a 
constant 1 represents the bias. Here, the bias link weight is labelled w q . The net 
value is computed as:

u WjX - (1.3)y^wjXj
i=0

where xq = 1, W  = [wq Wi tug] is the weight matrix, and z =  [1 Xi zg]^ 
is the input vector, ^ is the matrix transpose. Given a set of training samples 
{[x{k),d{k)] : I < k < K},  the error back-propagation training begins by feeding 
all K  inputs through the MLP network and computing the corresponding output 
{o{k) : I < k < K}.  We usually use an initial random setup for the weight matrix 
W,  although some researchers like [6] have provided better guess for the initial 
setup of the weight matrix. Then a sum of square error will be computed as:

K K K

£ = E ["(*)!'' = E [''(*) - = E w*) - (14)
k —1 k = l  k = l

The objective now is to adjust the weight matrix W  to minimize the error E.  
This leads to a nonlinear least square optimization problem. There are numerous
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CHAPTER 1. INTRODUCTION 7

nonlinear optimization algorithms available to solve this problem. Basically, these 
algorithms adopt a similar iterative formulation;

W(t + l) =  W(t) + AW(t). (1.5)
where AW{t)  is the correction made to the current weights W{t). Different

algorithms differ in the form of AW{t).  The basis of the error back-propagation
learning algorithm is called the steepest descend gradient method where

AW (') =  - V ^  (1.6)

Here rj is caller the learning factor. Usually, it is a value between 0 and 1, it is 
specified by the network designer.

The derivative of the scalar quantity E  with respect to individual weights can 
be computed as follows:

_ f "  ^[6(A)]
dwi

(1.7)

Where

(18)

Hence

BE
= —2^[d(A :) — o{k)]f {u{k))xi{k). (1.9)

With 6{k) = [d{k) — o(k)]f'{u{k)) , the above equation can be expressed as:

BE
—  =  -2'^6{k)xi{k).  (1 10)

fc=i
6{k) is the error that represents the amount of correction needed to be applied 

to the weight Wi for the given input Xi{k). The overall change Awi  is thus the sum 
of such contribution over all K  training samples. Therefore, the weight update 
formula has the format of:

Wi{t -F 1) =  Wi{t) +rj 'Y^6{k)xi{k) .  (1.11)
fc=i

If a sigmoid activation function f{u)  =  is used,then the derivative f  {u)
IS
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CHAPTER 1. INTRODUCTION 

Then 5{k) can be computed as:

5{k) =
du

(1.12)

(1.13)

So far, we discussed how to adjust the weights of an MLP with a single layer of 
neurons.

Lets now discusses how to perform training for a multiple layer MLP. First, some 
new notations are adopted to distinguish neurons at different layers. In Fig 1.5, 
the net-function and output corresponding to the fc-th training sample of the j-th  
neuron of the (L -  l)-th are denoted by uj~^{k) and of~^{k), respectively. The 
input layer is the 0-th layer. In particular, Oj{k) =  Xj{k). The output is feeded into 
the z-th neuron of the L-th layer via a synaptic weight denoted by (t) or, for 
simplicity, vjlj , since we are concerned with the weight update formulation within 
a single training epoch.

Figure 1.5: Notations used in a multi-layered MLP neural network model. 

To derive the weight adaptation equation, dE/dwIj  must be computed:

dE K K

- ^ E
k=X

d M

'̂ 3 m = l

K

= - 2 Y ^ 5 [ { k )  X of \ k ) .  (1.14)
k = l

Where 1 < m < M, and M  is the number of neurons in layer (L — 1).

In Equation 1.14, the output (k) can be evaluated by applying the fc-th training 
sample x{k) to the MLP with weights fixed to vjly However, the delta error term 
5l{k) is not readily available and has to be computed. Recall that the delta error is
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CHAPTER 1. INTRODUCTION

ci-l

Figure 1.6: Illustration of how the error back-propagation is computed.

defined as wfj{k) = dE/duf{k) .  Fig 1.6 is now used to illustrate how to iteratively 
compute ôl(k) from S^^{k)  and weights of the (L 4- l)-th layer.

Note that of (A:) is feeded into all M  neurons in the (L + l)-th  layer. Hence:

dE M

E 6E
^ f(A )

M

E
m = l

M

=  /  (uf (&)) X ^  X - (1.15)
m—l

Equation 1.15 is the error back-propagation formula that computes the delta 
error from the output layer back toward the input layer, in a layer-by-layer manner.

1.2 G eneralization ability o f a neural network
The basic topics of multi-layered feed-forward neural networks (MFNNs), such as 
the network structures, mathematical descriptions, and back-propagation learning 
algorithms were discussed in the previous section. Beyond these aspects, signifi­
cant progress has been made on many related issues. In fact, numerous extensions 
to the basic MFNNs with the back-propagation algorithm have emerged. Most 
of these were developed to overcome some of the inherent limitations of the basic 
back-propagation learning algorithms. These extensions have involved the alterna­
tive error measure criteria for the standard back-propagation learning algorithm.
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CHAPTER 1. INTRODUCTION 10

complex regularization techniques for both improving the generalization capability 
of MFNNs and pruning the networks, sensitivity calculation based network pruning 
techniques for the purpose of optimizing the network structure and accelerating the 
learning phase, the procedures of dealing with the second derivatives of MFNNs to 
improve the convergence speed of the back-propagation algorithm, and many other 
advanced studies are still in progress for adapting the learning of MFNNs.

In this section we will concentrate on neural network generalization ability in 
particular in studding some extensions of the back-propagation that provides en­
hancement to the training process as well as the generalization ability of the neural 
network, (see [9])

D efinition 1.1. G eneralization ability of a neural network determines how well 
the mapping surface of the network will renderer the unseen inputs to the output 
space.

Fig 1.7 shows two symbolic cases of a neural network convergence in Fig 1.7(a) 
the wiggly curve shows that the neural network function is being too complex and 
the network is behaving over-fitting in the training data, in this case the network 
is memorizing the training data not generalizing them , and hence for any new 
stimulus the network will be going to categorize the input into one of the mem­
orized classes instead of recognize it, while in Fig 1.7(b) the convergence surface 
is performing better generalization for the unseen inputs because in this case the 
solution error for every unseen inputs is going to be less while probably the sum 
squared error over the whole test set would be bigger. However, in classification 
problems, the maximum recognition error over all samples is the important factor of 
generalization measure according to Geman and Bienenstock (1992) bias-variance 
dilemma (see [9] and its references).

«

*

(a) Training data (circles) is being mem- (b) Training data (circles) have been 
orized. generated.

Figure 1.7; Generalization versus memorization.

As shown in Fig 1.8, generalization is mainly influenced by three factors;
First, the number and performance of the learning data samples, which represent 

how well the problem at hand is characterized, generally speaking, a larger number
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Number and 
Performance 

Of data samples

Complexity 
of learning Network Size

Generalization of 
neural network

Figure 1.8: Factors influencing the generalization for neural networks.

of learning data samples can provide a better representation for the underlying 
problem, and if a suitable learning algorithm and network size are used, a better 
solution to the problem should be obtained.

Second, the complexity of the learning algorithm employed. It is known that 
extra training to the neural network result in more function complexity and over- 
fitting problem which definitely decrease the generalization ability of the neural 
network.

The third factor of the generalization for the neural networks is the network size. 
It is generally admitted that generalization of the back-propagation architecture 
will depend on the relative size of the training data and the trained network size. 
However, it is observed that the back-propagation networks are sometimes very slow 
in learning. This is because the synaptic connection weights, especially the hidden 
connection weights (connections among hidden neurons), are significantly smaller 
for a large network. This means that the networks cannot utilize hidden connections 
efficiently. Thus, hidden neurons cannot be appropriately used in speeding up the 
learning.

(a) All hidden connections are inactive. (b) Some hidden connections are inactive. 

Figure 1.9: The status of hidden neural connections.
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This situation is illustrated in Fig 1.9. The network in Fig 1.9(a) is a back- 
propagation network in which the hidden connections among the hidden neurons 
are inactive, while the input and output connections are active. If the hidden 
connections are weak; that is, the absolute values of the hidden weights are small, 
it is certain that the hidden neurons are not appropriately used in speeding up 
the learning. As shown in Fig 1.9(b), some hidden connections of the network are 
active.

In this case, the hidden neurons are expected to be used in improving the 
generalization as well as speeding up the learning. In order to adapt the size of 
the back-propagation network and activate hidden connections, an approach of 
complexity regularization may be applied. In this approach, a term is added to 
the error measure function that discourages the learning algorithm from seeking 
solutions that are too complex. This term represents, in fact, a measure of the 
network’s complexity; that is, both the quantities and number of weights. The 
resulting criterion or cost function is of the form

Cost = Network error measure + Model complexity measure.

where the first term on the right-hand side measures the network error between 
the network outputs and the task or desired outputs, while the second term is de­
termined only by the complexity of the network structure. This type of criterion is 
sometimes referred to as the minimum description length (MDL) criterion because 
it has the same form as the information theoretic measure of description length.

Simply speaking, the description length of a set of data is defined as the total 
number of bits required to represent the data. But for a neural network that is 
designed to represent a set of data, the total description length should be defined 
as the sum of the number of bits required to encode the errors. The cost function 
introduced above may be considered as one such form if the term of the network 
error measure is related to the number of bits required to encode the errors, and the 
term of complexity measure corresponds to the number of bits required to describe 
the network model. The learning process that minimizes this cost function then, 
to a certain degree, provides a minimal description of the data. In the context of 
back-propagation learning, or any other supervised learning procedure, such a cost 
function may be represented in a symbolic way as

F:^(w) =  E(w) +  ABc(tu). (1.16)
where the E(w)  is the error function used in the standard back-propagation 

learning, Ec{w) is the complexity measure, and the parameter A is a small posi­
tive constant that is used to control the influence of the term of the complexity 
measure Ec{w) in relation to the conventional error measure E(w). Consequently, 
the learning algorithm derived using such a criterion is a simple extension of the 
back-propagation algorithm. Later, we show the weight decay approach as one the 
approaches may be obtained as a choices of the complexity measure.
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1.2.1 Weight decay approach
The weight decay approach is a method of reducing the effective number of weights 
in the network by encouraging the learning algorithm to seek solutions that use as 
many zero weights as possible. This is accomplished by adding a term that is the 
sum of all the squared weights to the criterion function that penalizes the network 
for using the nonzero weights. Then, the new criterion function is formulated as

E tW  =  =  E W  +  ^  (1.17)
i

where the sum in the second term on the right-hand side performed over all the 
weights represents the complexity measure Ec of the network. It is to be seen that 
in this modification of the standard back-propagation learning algorithm, an extra 
term of the form is added for updating the weight vector. Therefore, one has 
the following new updating formulation;

w(k -b 1) =  w(k) -  77 +  A7u(t)^ =  (1 -  77A)w(k) -  (1.18)

This shows that the effect of A is to “decay” the weight vector by a factor of 
(1 — rjX). The weight decay approach does not actually delete weights from the 
network, nor does it typically produce weights that are exactly zero. Weights that 
are not essential to the solution decay to zero and can be removed. When some 
weights are forced to teike on values near zero, some other weights remain relatively 
large. The result is that the average weight size is smaller.

Another simple weight decay method is to define the cost function as

Et{w) — E{w) + \\w\. (1.19)

In this case, an additional term Xsgn{w) is used in the weight vector updating 
rule. Equation 1.19. If Wi > 0, the weight is decremented by A; otherwise, if Wi < 0, 
then it is incremented by A.

We have seen some methods that enhances the network structure and hence the 
generalization ability. The following is another method that can define a measure 
of the function complexity of the neural network algorithm.

1.2.2 Complexities in regularization and VC dimension
The VC (Vapnik-Chervonenkis) dimension h is a property of a set of approximating 
functions of a learning machine that is used in all important results in the statis­
tical learning theory, (see [23]). Despite the fact that the VC dimension is very 
important, the unfortunate reality is that its analytic estimations can be used only 
for the simplest sets of functions. Here for simplicity we only present the basic
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concept of the VC dimension for a two-class pattern recognition case, while it can 
be generalized for some sets of real approximating functions.

Consider a task of classification, in which we need to find a rule to assign an 
input to one two different classes. One possible formalization of this task is to esti­
mate a function /  : R ^  —> {-1,1} using input-output training data pairs generated 
identically and independently distributed according to an unknown probability dis­
tribution P{x,y)

: y  =  {-1,1}

such that /  will correctly classify unseen examples {X,Y).  An example is as­
signed to class 1 if f { X)  > 0 and to class —1 otherwise. The test examples are 
assumed to be generated from the same probability distribution P{X, Y)  as the 
training data. The best function /  that one can obtain, is the one that minimizes 
the expected error ( Risk ):

A[/] =  / / ( / ( % ) ,  y ) d f ( x ,y ) .  (1.20)

where I denotes a suitably chosen loss function. Unfortunately, the risk cannot 
be minimized directly, since the underlying probability distribution P{x, y) is un­
known. Therefore, we must try to estimate a function that is close to the optimal 
one based on the available information, i.e., the training sample and properties of 
the function class F  the solution /  is chosen from. To this end, we need what is 
called an induction principle. A particular simple induction principle consists of 
approximating the minimum of the risk in Equation 1.20 by the minimum of the 
empirical risk

It is possible to give conditions to the learning machine which ensure that, 
asymptotically (as n —»■ oo), the empirical risk will converge towards the expected 
risk. However, for small sample sizes, large deviations are possible and over-fitting 
might occur (see Fig 1.10). Given only a small sample (left), either the solid or 
the dashed hypothesis might be true, the dashed one being more complex but also 
having a smaller training error. Only with a large sample are we able to see which 
decision more accurately reflects the true distribution. If the dashed hypothesis 
is correct, the solid would under-fit (middle); if the solid were correct, the dashed 
hypothesis would over-fit (right). Then, a small generalization error can usually 
not be obtained by simply minimizing the training error (Equation 1.21).

One way to avoid the over-fitting dilemma is to restrict the complexity of the 
function class F  from which one chooses the function / .  The intuition, which will 
be formalized in the following, is that a simple (e.g., linear) function that explains 
most of the data is preferable to a complex one.
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Figure 1.10: Illustration of the over-fitting dilemma.

A specific way of controlling the complexity of a function class is given by Vapnik 
Chervonenkis (VC) theory and the structural risk minimization (SRM) principle. 
Here, the concept of complexity is captured by the VC dimension h of the function 
class F  from which the estimate /  is chosen. Roughly speaking, the VC dimension 
measures how many (training) points can be shattered for all possible labelling 
using functions of the class. Constructing a nested family of function classes Fi C 
■ ■ ■ C Fk with non-decreasing VC dimension, the SRM principle proceeds as follows. 
Let /i, • • • , fk be the solutions of the empirical risk minimization (Equation 1.21) 
in the function classes F) . SRM chooses the function class Fj (and the function fi 
) such that an upper bound on the generalization error is minimized.

Empirical RiskConfidecce

small Complexity o f Function Set

Figure 1.11: Schematic illustration of the VC dimension.

In Fig 1.11, The dotted line represents the training error (empirical risk), and the 
dash-dotted line represents the upper bound on the complexity term (confidence). 
With higher complexity, the empirical error decreases but the upper bound on the 
risk confidence becomes worse. For a certain complexity of the function class, the 
best expected risk (solid line) is obtained. Thus, in practice, the goal is to find the 
best trade-off between empirical error and complexity.

Theorem  1.1. Let h denote the VC dimension of the function class F  and let
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Remp be defined by Equation (1-21) using the Q/1-loss. For all 5 > 0 and f  E  F, 
the inequality bounding the risk

holds with probability of at least 1 — 5 fo r  n > h.

(1.22)

1.3 H ighlighting som e neural network types
There are around 50 different types of neural networks in use today [23]. According 
to the propagation direction most of these types can be categorized as either feed­
forward or feed-back neural networks. According to the structure growing they 
may be categorized either as static or dynamic neural networks. In this section we 
explain two types of them, that are helpful in understanding the following chapters.

1.3.1 Radial basis functions

Linear output weights

Non-linear receptive fields in attribute space

Figure 1.12: A radial basis function network.

The radial basis function network generally consists of two weight layers, a 
hidden layer of units performing linear or non-linear functions of the attributes, 
followed by an output layer of weighted connections to nodes whose outputs have 
the same form as the target vectors (see [10] and its references).

They can be described by the following equation:

y = Wo (1.23)
i= l

where /  is a radial basis function, Wi is the output layer neuron i weight, wq 
is the output offset, x is the input to the network, q  is the center associated with
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the basis function / ,  rih is the number of basis functions in the network, and || || 
denotes the Euclidean norm.

Structurally it can be viewed as an MLP with one hidden layer, except that 
each node of the the hidden layer computes an arbitrary function of the inputs 
(Gaussian is the most popular), and the transfer function of each output node is 
the trivial identity function.

Instead of “synaptic strengths” the hidden layer has parameters appropriate for 
whatever functions are being used; for example, Gaussian widths and positions. 
This network offers a number of advantages over the MLP under certain condi­
tions, although the two models are computationally equivalent.

These advantages include a linear training rule once the locations in attribute 
space of the non-linear functions have been determined, and an underlying model 
involving localized functions in the attribute space, rather than the long-range 
functions occurring in perceptron-based models. Fig 1.12 shows the structure of 
a radial basis function. The non-linearities comprise a position in attribute space 
at which the function is located (often referred to as the functions center), and 
a non-linear function of the distance of an input point from that center, which 
can be any function at all. Gommon choices include a gaussian response function, 
ex'p{—x^) and inverse multi-quadrics ([z  ̂4- c^]~^) as well as non-local functions such 
as thin plate splines (z^logz) and multi-quadrics {[z  ̂+ Although it seems 
counter-intuitive to try and produce an interpolating function using non-localized 
functions, they are often found to have better interpolating properties in the region 
populated by the training data. The radial basis function network approach involves 
the expansion or pre-processing of input vectors into a high-dimensional space. This 
attempts to exploit a theorem of Cover (1965) which implies that, “a classification 
problem cast in a high-dimensional space is more likely to be linearly separable 
than would be the case in a low-dimensional space”.

Training
In RBF network the training consists of parameterizing the unknown parameters 
in a particular RBF network. Generally speaking, this means determining (1) the 
number of basis functions (hidden units), (2) centers and widths of each basis func­
tion, and (3) output layer weights. For some algorithms, these steps are carried out 
separately, while in others, all parameters are found simultaneously. Furthermore, 
different techniques can be mixed and matched for training the different parameters.

A number of methods can be used for choosing the centers for a radial basis 
function network. It is important that the distribution of centers in the attribute 
space should be similar to, or at least cover the same region as the training data. It 
is assumed that the training data is representative of the problem, otherwise good 
performance cannot be expected on future unseen patterns.
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A first order technique for choosing centers is to take points on a square grid 
covering the region of attribute space covered by the training data. Alternatively, 
better performance might be expected if the centers were sampled at random from 
the training data itself, using some or all samples, since the more densely populated 
regions of the attribute space would have a higher resolution model than sparser 
regions. In this case, it is important to ensure that at least one sample from each 
class is used as a prototype center.

When center positions are chosen for radial basis function networks with localized 
non-hnear functions such as Gaussian receptive fields, it is important to calculate 
suitable variances, or spreads for the functions. This ensures that large regions 
of space do not occur between centers, where no centers respond to patterns, and 
conversely, that no pair of centers respond nearly identically to all patterns. This 
problem is particularly prevalent in high dimensional attribute spaces because vol­
ume depends sensitively on radius. Prager & Fallside (1989) have introduced a 
quantitative discussion of this point.

The process of optimizing the weights of RBF networks is simply performed by 
solving a linear system. The same problem arises in ordinary linear regression, the 
only difference being that the input to the linear system is the output of the hidden 
layer of the network, not the attribute variables themselves.

Let be the output of the k-th radial basis function on the z-th example. 
The output of each target node j  is computed using the weights wjk as

=  (1.24)
k

Let the desired output for example i on target node j  be Yj. Then the error is

^(w) =  ^ ■ (1-25)

This follows that

The error is minimum where this derivative vanishes. Let R  be the correlation 
matrix of the radial basis function outputs,

Aj. =  E » l t W .  (127)
i

The weight matrix W* which minimizes E  lies where the gradient vanishes:

^ ' t ' E E W r ^ '  (128)
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Thus, the problem is solved by inverting the square {H x i7)-matrix R, where 
H  is the number of radial basis functions. The matrix inversion can be accom­
plished by standard methods such as LU decomposition (Renais & Rohwer, 1989) 
and (Press et. a l, 1988) if R  is not singular. This is typically the case, but 
things can go wrong. If two radial basis function centres are very close together a 
singular matrix will result, and a singular matrix is guaranteed if the number of 
training samples is not at least as great as H  There is no practical way to ensure a 
non-singular correlation matrix. Consequently the safest course of action is to use 
a slightly more computationally expensive singular value decomposition method. 
Such methods provide an approximate inverse by diagonalizing the matrix, invert­
ing only the eigenvalues which exceed zero by a parameter-specified margin, and 
transforming back to the original coordinates. This provides an optimal minimum- 
norm approximation to the inverse in the least-mean-squares sense.

Another approach to the entire problem is possible (Broomhead & Lowe, 1988)
. Let n be the number of training examples. Instead of solving the H x H  linear 
system given by the derivatives of E  in Equation 1.26, this method focuses on the 
linear system embedded in the error formula (1.24) itself;

k
Unless n = H, this is a rectangular system. In general an exact solution does 

not exist, but the optimal solution in the least-squares sense is given by the pseudo­
inverse (Kohonen,1989) of for the matrix with elements

(i.30)

This formula is applied directly. The identity ^ denotes the
matrix transpose, can be applied to Equation 1.30 to show that the pseudo-inverse 
method gives the same result as Equation 1.28

W* -  (1.31)

The requirement to invert or pseudo-invert a matrix dependent on the entire 
data-set makes this a batch method. However an online variant is possible, known 
as Kalman Filtering (Scalero & Tepedelenlioglu, 1992). It is based on the somewhat 
remarkable fact that an exact expression exists for updating the inverse correlation 
R~^ if another example is added to the sum in Equation 1.27, which does not 
require re-computation of the inverse.

1.3.2 The basic SOM
The Self-organizing Map (SOM) is an effective software tool for the visualization 
of high-dimensional data. In its basic form it produces a similarity graph of input
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data. It converts the nonlinear statistical relationships between high-dimensional 
data into simple geometric relationships of their image points on a low-dimensional 
display, usually a regular two-dimensional grid of nodes. As the SOM thereby com­
presses information while preserving the most important topological and/or metric 
relationships of the primary data elements on the display, it may also be thought 
to produce some kind of abstractions (see [8 ]).

The SOM may be described formally as a nonlinear, ordered, smooth mapping 
of high-dimensional input data manifolds onto the elements of a regular, low­
dimensional array. This mapping is implemented in a way that resembles the 
classical vector quantization as follows:

Assume first for simplicity that the set of input variables is definable as 
a real vector x =  € R". With each element in the SOM array
we associate a parametric real vector rrii = [A, E R" that is called a
model. Assuming a general distance measure between x  and m, denoted d{x,mi), 
the image of an input vector x  on the SOM array is defined as the array element 
m, that matches best with x, i.e., that has the index

c-= argmm{d{x,mi)}. (1.32)

Differing from the traditional vector quantization, the task is to define rrii in 
such a way that the mapping is ordered and descriptive of the distribution of x.

Consider Fig 1.13 where a two-dimensional ordered array of nodes, each one 
having a general model m, associated with it. The initial values of the m, may be 
selected as random, preferably from the domain of the input samples in a symmetric 
way.

Then consider a list of input samples x{t), where t is an integer-valued index. 
Let us recall that in this scheme, the x{t) and m, may be vectors, strings of symbols, 
or even more general items. Compare each x(t) with all the m, and copy each x{t) 
into a sublist associated with that node, the model vector of which is most similar 
to x{t) relating to the general distance measure.

When all the x{t) have been distributed into the respective sublists in this way, 
consider the neighborhood set N, around model m,. Here A, consists of all nodes 
up to a certain radius in the grid from node i. In the union of all sublists in Ni, the 
next task is to find the “middlemost” sample Xj, defined as that sample that has 
the smallest sum of distances from all the samples x{t) , t E Ni . This sample x, 
is now called the generalized median in the union of the sublists. If x̂  is restricted 
to being one of the samples x{t), we shall indeed call it the generalized set median-, 
on the other hand, since the x{t) may not cover the whole input domain, it may 
be possible to find another item x\ that has an even smaller sum of distances from 
the x{t), t E Ni- For clarity we shall then call x( the generalized median.

Also notice that for the Euclidean vectors the generalized median is equal to 
their arithmetic mean if we look for an arbitrary Euclidean vector that has the
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x(l) x(2) x(3) X 4) 
X5) x(6 ) X 7) —

m.

X-  Generalized median

Figure 1.13: Illustration of the batch process in which the input samples are dis­
tributed into sublists under the best-matching models, and then the new models 
are determined as (generalized) medians of the sublists over the neighborhoods N i.

smallest sum of squares of the Euclidean distances from all the samples x{t) in the 
union of the sublists.

The next phase in the process is to form Xi or x' for each node in the above 
manner, always considering the neighborhood set Ni around each node i, and to 
replace each old value of rrii by Xi or respectively, in a simultaneous operation.

The above procedure shall now be iterated: in other words, the original x{t) 
are again distributed into the sublists (which now change, because the rrii have 
changed), and the new x, or x( are computed and made to replace the rrii, and so 
on. This is a kind of regression process.
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Chapter 2 

Context dependent neural 
networks

The wealth of information from the neuronal morphology of the brain is primarily 
the motivation for such an exciting state of the research in neural networks. One ob­
servation that was strongly employed in neural networks is the context dependency 
of the biological neural system, this observation simply states that the biological 
brain reacts differently to the same inputs if they were applied in different contexts.

The results of Wrobel A,(1998) in [20] of measuring potential in rat barrel cortex 
evoked by vibrissa stimulation are reported the conclusion as follows, “We hypoth­
esize that neuromodulatory action elicited by contextual stimulation activates all 
neurons in the principal barrel column, including those providing an output to the 
surrounding barrels. This mechanism may lead to experience-dependent changes 
within intracortical network.”

A simple example was given in [2] about that context dependency, stated that 
“Our reception is narrower when we are frightened or angry”.

In this chapter we first introduce the definitions of context by Peter Turney (1996) 
and the strategy of identifying the context sensitive features in Section 2.1. The 
strategies of managing the context sensitive features are then described in Section 
2 .2 , then we focus on two different techniques of managing the context sensitive 
features in neural networks to establish better performance are explained in Section 
2.3 and 2.4 (see [16] and its references).

2.1 Introduction to  contextual features
“Context” is a will-defined term. Here we are concerned with a specific type of 
context that influences decision making or any type of information processing of 
a contextual problem. In general, researches that involve contextual features are 
mainly concerned with two issues. The first issue is identifying such contextual

22
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features among the whole feature space of a problem. The second issue is managing 
these contextual features, in which researchers are concentrating on developing 
different techniques of managing these features and benefit from them.

The classification of such contextual features can help in creating symmetric en­
vironments for all primary data within one context class. Recent work has demon­
strated that, the strategies for exploiting contextual information can improve the 
performance and efficiency of machine learning algorithms.

In this section we describe the strategy of identifying contextual features for a 
specific type of context. In particular, the contextual features in supervised concept 
learning.

Assume the standard machine learning model of concept learning, where data 
are represented as vectors in a multi dimensional feature space. The feature space is 
partitioned into a finite set of classes. And the training data are labelled according 
to its association with the different classes. In many concept learning problems, it 
is possible to use common-sense knowledge to divide the features into three classes: 
primary features, contextual features, and irrelevant features.

Primary features are useful for classification even when they are considered in iso­
lation, without the other features. Contextual features are useful for classification 
only when they are considered in combination with other features. And irrelevant 
features are not useful, either in isolation or in combination with other features. 
For more understanding of these three types, example, “When classifying spoken 
vowels, the primary features are based on the sound spectrum. The accent of the 
speaker is a contextual feature. The color of the speakers hair is irrelevant.”

Surprisingly, the identification problem has received little attention in the re­
search, perhaps because common-sense makes the problem seem trivial. However, 
learning systems that can both identify and manage contextual features may have a 
substantial advantage over the systems that only manage them. A precise definition 
of context is the first step in the construction of such identification systems.

2.1.1 Definition of context
Peter Turney’s definition for context in (1993), did not consider the the possibil­
ity of weakly relevant features. In the light of the definitions given by John et al. 
(1994), Turney introduced new definition that does not have this problem in (1996).

Suppose we have m  dimensional feature space Fi x F2 x ■ ■ ■ x Fm where F) is 
the domain of the i-th feature. Let C be a finite set of classes. A training instance 
is in the form {X, Y) where X  E Fi x F2 x  ■ ■ ■ x Fm and Y  E C.

Assume that instances are sampled from Fi x F2  x • • • x Fn x C identically and 
independently with a probability distribution p:

p : Fi X F2 X ■■■ X Fm X C [0,1]. (2.1)
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In an instance of form {X, Y )  , where X  — (Xj, X 2 , • • • , X „) and Xi represents the 
i-th feature , x, represents the value of the f-th feature and similarly y is the value 
o fy .

Given the feature values for a new instance, Xi =  xi, • • • , X „ — x^ the learning
algorithm can predict the class of the instance, Y  — y.

Let Si be the set of all features except X, , i,e.

Si =  {Xi, • • • ,Xj_i, Xj+i, • • • ,Xm}- (2.2)

Let Si be an assignment of values to all of the features in Si

D efinition 2.1. Suppose that Xi is either strongly relevant or weakly relevant. By 
definition there is a subset of features S] of Si and an assignment of values s- to Si 
such that:

p{Y ^  y\Xi = Xi, Si = Si) 7  ̂p{Y = y\Si = s j .  (2.3)

(2.4)

There may be several subsets that satisfy (Equation 2.3 and 2.4). Each such 
subset S'i defines a context in which the feature X, is (strongly or weakly) relevant. 
Let a, be the cardinality of the smallest subset (or subsets) for which X, is relevant. 
Let Pi be the cardinality of the largest subset (or subsets) for which X, is relevant. 
ai is called the minimum context size and pi is called the maximum context size. 
When Xi is irrelevant, both ccj and Pi and are undefined.

It follows from Definition 2.1 that 0 < Oj < F  < m — 1. It is easy to see that
Xj is strongly relevant when /?» =  m — 1  and weekly relevant when Pi < m  — l.

Definition 2.2. The feature X, is primary if and only if ai = 0.

A primary feature is relevant even when the context is the empty set. That is,
if Xj is primary, then there exists some x, and y for which p(X, =  Xj) > 0 such 
that;

p (y  =  2/|Xj =  X j) f  p (y  =  i/). (2.5)

Definition 2.3. The feature Xj is contextual i f f  Oj > 0.

A contextual feature is only relevant when considered in some (non-empty) con­
text. A contextual feature is irrelevant when considered in isolation, that is, if Xj 
is contextual feature, then for all Xj and y:

p (y  =  =  :Cj) =  p (y  =  !/). (2 .6)

A contextual feature may be either strongly or weakly relevant.
The distinction between primary and contextual is dual to the distinction be­

tween weakly relevant and strongly relevant. As illustrated in Table 2.1.
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Term Definition Dual
strongly relevant Pi ^ m - 1 primary
weakly relevant Pi < m  — l contextual

primary Oj =  0 strongly relevant
contextual Oi > 0 weakly relevant

Table 2.1: Duality of relevance and context-sensitivity

We have defined primary features and contextual features. Now lets see what 
means for one feature to be con 

all features except Xj and X j, i.e.
it means for one feature to be context-sensitive to another. Let Sij be the set of

Si — {Xi, • • • ,Xj_i,Xj^.i, ■ • ■ X j- i, Xj+1, ■ • • ,Xm} (2.7)

Let Sij be an assignment of values to all of the features in Sij.

Definition 2.4. The feature Xj is weakly context-sensitive to the feature X j if 
and only if there exists a subset of features SA of Si j  for which there exists some 
Xi,Xj,s\ j and y for which p{Xi — Xi,Xj = xj, SA  =  sU) > 0  such that the following 
two conditions hold:

p (X  — y\K î ~  ^ii K j  — Xj, Fjj = Sj j) A  P{K =  y \Xj  =  xj ,  S i j  — ŝ  j ) .  (2.8)

pO^ — y \^ i — ^«1 =  Xj, S ij =  Sjj) 7  ̂p(Y  =  y|Xj =  Xj, S^j =  &jj). (2.9)

In this definition, the first condition (Equation 2.8) means that, the feature 
Xj must be relevant in some context that includes the feature X j . The second 
condition (Equation 2.9) means that, the feature X j is an essential (non-redundant) 
component of the context. The symmetry of these two conditions implies that Xj 
is weakly context-sensitive to Xj i f f  X j is weakly context-sensitive to Xj.

D efinition 2.5. The feature Xj is strongly context-sensitive to the feature X j i f f  
Xj is a primary feature, X j is a contextual feature andXi is weakly context-sensitive 
to X j.

2.1.2 Illustration example of the contextual features defin­
itions

In this simple example,the features and the class are boolean:

Fi =  F  =  F  =  C =  {0 , 1 }. (2 .1 0 )
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Class Primary Contextual Irrelevant Probability
y X 3 V
0 0 0 0 0.03
0 0 0 1 0.03
0 0 1 0 0.08
0 0 1 1 0.08
0 1 0 0 0.07
0 1 0 1 0.07
0 1 1 0 0.07
0 1 1 1 0.07
1 0 0 0 0.07
1 0 0 1 0.07
1 0 1 0 0.07
1 0 1 1 0.07
1 1 0 0 0.03
1 1 0 1 0.03
1 1 1 0 0.08
1 1 1 1 0.08

Table 2.2: Example of the different types of features

Table 2.2 shows the probability distribution and illustrates the above definition.^ : 
Fi X F  X F  X C [0,1].
From the table p{Y  =  1) =  0.5 and p(Y  = l|X i =  1) =  0.44, Since,

p(y = i) f  p(y = i|Xi = i) (2 .11)

It follows that X i is a primary feature. If the value of X i  is unknown, then 
the class Y  may be either 0 or 1 with equal probability {p(Y =  1) =  0.5). If X i  is 
known, then we can guess the class Y  with better accuracy than random guessing. 
If Xi =  1 , then y  is most likely to be 0 because p(Y = l\X i  — 1) =  0.44. If 
Xi =  0 , then Y  is most likely to be 1. The feature Xi is primary because it gives 
us information about the class Y , even when we know nothing about the other 
features, X 2  and X 3 .

Since p{Y — y\X 2  — X2 ) =  p{Y — y) for all values y and X2 , it follows that Xg 
is not a primary feature. However, Xg is not an irrelevant feature, since.

p (y  =  i |X i =  i,X 2  =  i,X 3  =  1) f  p (y  =  i |X i  =  i.X g  =  i) . (2 .12)

Therefore X 2  is a contextual feature. Furthermore, the primary feature Xi is 
(strongly) context-sensitive to the contextual feature Xg , since.
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p (y  =  l|X i =  1, Xa =  1) =  0.53. (2.13)

p{Y  =  l|X i =  1) =  0.44. (2.14)

That is, if we know only that Xi =  1, then our best guess is that y  =  0 (by 
Equation 2.14). However, if we know that Xi =  1 in the context of Xg =  1, then 
our best bet is that y  =  1 (by Equation 2.13). The feature Xg is contextual because 
it gives us information about the class Y, but only when we know the value of the 
primary feature Xf. Finally, X 3  is an irrelevant feature, since, for all values y,xi
,X2,and X 3 :

p{Y = y\X i = Xi,Xa =  Xg,X3  =  X3 ) == p(Y  — y\Xi — Xi,X2 = Xg). (2.15)

The feature X 3  does not give us any information about the class, even when we 
know the values of the other features.

2.1.3 Identification of context sensitive features
In general the probability distribution p of instances in the training data set is 
unknown. So we need to estimate p from the training data. Let D be a sequence 
of training instances (X, Y) selected from F  x F  x • • • x F« x (7 identically and 
independently with probability distribution p. Let d be an empirical estimate of 
p, based on the frequencies of occurrence observed in the training data D (see [16] 
and its references).

It is likely, due to random variation in D, that every feature Xj will appear to 
be primary, if we naively apply definition 2.2 to the estimate d. Random noise will 
cause the following inequality to be true, even when Xj is not actually primary;

d(y =  %/|Xj =  Xj) f  d(y =  %/). (2.16)

To apply the above definitions, we need to allow for the presence of noise in 
the training data D. Let £ be a small positive real number. We may say that the 
feature Xj appears to be primary when there is a value Xj of Xj and a value y of 
y , such that:

|d(y =  3/|Xj =  Xj)-d(y =  3/) |> £ . (2.17)

This inequality allows for noise. We can adjust our sensitivity to noise by 
altering the value of e. When e is very close to zero, the implication is that there 
is little noise in the data. For a fixed sample D, as we increase e, the number 
(apparently) of identified primary features decreases. Given a certain desired level 
of statistical significance (say 95%), we can use standard statistical techniques to 
calculate the required value of e.
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This concludes that, in addition to the problem of estimating the probability 
distribution p from the data set D, there is another problem of searching through 
all possible subsets S] of F- In general, it is not computationally tractable to 
examine every possible subset of features in order to determine which features are 
contextual and which are primary. In practice, it will be necessary to use heuristic 
search procedures.

2.2 M anaging context-sensitive features
In Section 2.1 we have shown the definition of the contextual features and discussed 
the strategy of identifying these features, the identification of these features is the 
first main issue with context dependency problem , the other main issue is the man­
agement of these identified features. In this section we show the different strategies 
or heuristics in ([17] and its references).

Assume the standard machine learning framework, where examples are represented 
as vectors in a multidimensional feature space. We assume that set of training 
examples is partitioned into a finite set of classes.

As explained earlier, we may distinguish three different types of features: pri­
mary, contextual, and irrelevant features.

Primary features are often context-sensitive. That is, they may be useful for 
classification when considered in isolation, but the learning algorithm may perform 
even better when we take the contextual features into account.

In this section we introduce a survey by [17] of strategies for taking contextual 
features into account. We will also list five heuristic strategies for managing con­
text.

We will review evidence that hybrid strategies can perform better than the sum 
of the component strategies.

Table 2.3 lists some of the examples of contextual features that have been exam­
ined in the machine learning literature. Many standard machine learning data sets 
(Murphy & Aha, 1996) contain contextual features, although this is rarely (explic­
itly) exploited. For example, in medical diagnosis problems, the patients gender, 
age, and weight are often available. These features are contextual, since they (typ­
ically) do not influence the diagnosis when they are considered in isolation ( see
[17]).

2.2.1 Strategies for managing context
Suppose we are attempting to distinguish healthy people (class A) from sick people 
(class B), using an oral thermometer. Context 1 consists of temperature measure­
ments made on people in the morning, after a good sleep. Context 2 consists of
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Task Primary Features Contextual Features Reference

image classification local properties 
of the images

lighting conditions 
(bright, dark)

Katz et al. (1990)

speech recognition sound spectrum 
information

speakers accent Pratt et al.(1991)

gas turbine engine 
diagnosis

thrust,
temperature,

pressure

weather conditions Turney&:Halas(1993)

speech recognition sound spectrum 
information

speakers identity 
and gender

Kubat(1996)

hepatitis prognosis medical data patients age Turney (1993)

heart disease 
diagnosis

electrocardiogram
data

patients identity Watrous (1995)

tonal music 
harmonization

meter, tactus, 
local key

to be discovered 
by the learner

Widmer (1996)

Table 2.3: Some examples from machine learning literature

temperature measurements made on people after heavy exercise. Sick people tend to 
have higher temperatures than healthy people, but exercise also causes higher tem­
perature. When the two contexts are considered separately, diagnosis is relatively 
simple. If we mix the contexts together, correct diagnosis becomes more difficult. 
Fig 2.1 illustrates the intuition about this common type of context-sensitivity.

Katz et al. (1990) listed four strategies for using contextual information when 
classifying. Turney. (1993) named these strategies contextual normalization, con­
textual expansion, contextual classifier selection, and contextual classification ad­
justment.
S tra tegy  1  Contextual normalization
Contextual features can be used to normalize context-sensitive primary features, 
prior to classification. The intent is to process context-sensitive features in a way 
that reduces their sensitivity to context. For example, we may normalize each 
feature by subtracting the mean and dividing by the standard deviation, where the 
mean and deviation are calculated separately for each different context. See Fig 
2 .2 .
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Context #1

3
Context <K2

I Combined Contexts

Feature

Figure 2.1: The result of combining samples from different contexts.

Context #1

Context #2

Combined
Contexts£

z

Normalized Feature

Figure 2.2: Contextual normalization: The result of combining normalized samples 
from different contexts.

Context #1 COTtext#2 Combined Contexts

I
A B

-------►

A
J
B

------- »
Feature

Figure 2.3: Contextual expansion: The result of combining expanded samples from 
different contexts.

S trategy  2 Contextual expansion
A feature space composed of primary features can be expanded with contextual
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features. The contextual features can be treated by the classifier in the same 
manner as the primary features. See Fig 2.3.

Class Class

Classifier 2 
(excluding context)

Classifier 1 
(excluding context)

Data
(Including context)

Contextual classifier 
selection

Classifier #2 A

J
Classifier #1 

»
Feature

Figure 2.4: Contextual classifier selection: Different classifiers are used in different 
contexts.

S trategy  3 Contextual classifier selection
Classification can proceed in two steps: First select a specialized classifier from a set 
of classifiers, based on the contextual features, then apply the specialized classifier 
to the primary features. See Fig 2.4.

Class

(N

I Adjusted Class0 < t û ü ü

Classifier 
(excluding context)

Contextual Classification 
Adjustment

Data
(Including context)

i Context *2I9
%

ComtJined Contexts

Feature

Figure 2.5: Contextual classification adjustment: The classification is adjusted for 
different contexts.

S trategy  4 Contextual classification adjustment
The two steps in contextual classifier selection can be reversed: First classify, using 
only the primary features. Then make an adjustment to the classification, based on 
the contextual features. The first step (classification using primary features alone) 
may be done by either a single classifier or multiple classifiers. For example, we 
might combine multiple specialized classifiers, each trained in a different context. 
See Fig 2.5.
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Turney. (1993) discussed another strategy called contextual weighting. 

Original Scale

^ 1

•k
A?

A'

-------►

Scale Stretched and Compressed by Weighting

I

Feature #1 Feature #1

Figure 2.6: Contextual weighting : The impact of weighting on classification. 

S trategy  5 Contextual weighting
The contextual features can be used to weight the primary features, prior to classi­
fication. The intent of weighting is to assign more importance to features that, in 
a given context, are more useful for classification. Contextual selection of features 
may be viewed as an extreme form of contextual weighting: the selected features 
are considered important and the remaining features are ignored. See Fig 2.6.

2.2.2 Hybrid strategies
Various combinations of the above strategies are possible. For example, [17] exper­
imented with all eight possible combinations of three of the strategies (contextual 
normalization, contextual expansion, and contextual weighting) in two different 
domains, vowel recognition and hepatitis prognosis (Turney 1993a, 1993b). In the 
vowel recognition task, the accuracy of a nearest neighbor algorithm with no mecha­
nism for handling context was 56%. With contextual normalization, contextual ex­
pansion, and contextual weighting, the accuracy of the nearest-neighbor algorithm 
was 6 6 %. The sum of the improvement for the three strategies used separately 
was 3%, but the improvement for the three strategies together was 10% (Turney, 
1993a, 1993b). There is a statistically significant synergetic effect in this domain. 
In the hepatitis prognosis task, the accuracy of a nearest neighbor algorithm with 
no mechanism for handling context was 71%. With contextual normalization, con­
textual expansion, and contextual weighting, the accuracy of the nearest-neighbor 
algorithm was 84%. The sum of the improvement for the three strategies used 
separately was 12%, but the improvement for the three strategies together was 13% 
(Turney, 1993b). The synergetic effect is not statistically significant in this domain.
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2.2.3 Context dependency in neural networks
Broadly speaking, context dependent neural networks means neural networks which 
can change their way of functioning in a context-sensitive mode. In other words, 
a context dependent neural network may react differently for the same sequence 
of inputs, depending on external conditions these conditions is expressed by the 
contextual variables.

Using context dependency in neural networks is an important issue in many 
cognitive situations. It opens another horizons to neural network solutions. In the 
last decade neural network researchers have paid attention to contextual aspects. 
Many of them have given attention to such aspects to improve systems performance 
by identifying and managing the context sensitive features among input data. [1 2 ] 
introduced an extension to the standard error back propagation algorithm that en­
ables it to train for the context dependent information by multi-layer feed forward 
neural networks, a special error function is used in the extension. In [18] a proba­
bilistic framework was presented to incorporate context dependent auditory mod­
els in hybrid segment based neural network speech recognition. Some researchers 
presented new neural network structures to achieve such context dependency. [3] 
presented a neural approach of using two layer recurrent attractor network which 
receives external input on one of its layers. Recently, [2] presented a context depen­
dent neural network model. This model allows nets weights to change according to 
changes of some environmental factors even after completing the learning process.

In this section we have seen different strategies for managing context sensitive 
features in any learning algorithm. The rest of this chapter will be zooming more 
into some neural network solutions for learning context sensitive features.

2.3 Overcom ing th e slow convergence problem s
In complex systems systems like for example, robotics and other control systems, 
learning the control mappings between inputs and outputs requires large size of 
neural networks. This can make the learning process and convergence prohibitively 
slow.

The problem size can be approximately quantified as the dimensionality of the 
input space. With an increase in the dimensionality, the input space will experi­
ence an exponential growth in size. Very often, the increase in dimensionality also 
increases the nonlinearity of the control mappings.

In order to acquire a highly nonlinear control mapping through learning, a large 
and complex network is required in order to approximate the mapping up to a 
certain degree of accuracy. The direct consequence of using large networks is the 
increase in time required to learn the appropriate network parameters using a given 
learning neural network. Learning becomes so slow that the problem may prove to 
be intractable.
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Context-dependent learning can usually simplify a learning problem signifi­
cantly. The segmentation of the problem different context makes the segmented 
subproblems to be reduced to simpler ones under each fixed context.

Of course,the system (natural or artificial) also needs to remember the relation­
ship between the learning subproblem and its associated context.

In [21], Yeung D.Y (1993) had explained the modulation technique of a big 
problem using the principle of divide-and-conquer to decompose a learning problem 
to be solved into a set of smaller subproblems corresponding to different contexts. 
The solutions to the individual subproblems in context-dependent learning are then 
integrated to give the solution to the entire problem. Decomposing a problem into 
smaller subproblems might be very expensive and difficult for some problems.

However, the principle of divide-and-conquer is very useful for handling a large 
variety of problems, especially those whose subproblems do not have very tight 
mutual interactions.

Input
units

Input
units

Module 1

Module 3

Module M

Module 2

m
Output
units

Figure 2.7: A simple neural network model based on modulation to implement the 
idea of context sensitivity .

Consider now the simple network model with n — rii + n 2 input units and m  output 
units as shown in Fig 2.7. The set of input units is divided into two groups. The first 
group consists of rii units. The activation values of these rii units in combination 
constitutes an address that can be used to access one of the M  modules. If these 
units have binary ( 0  or 1 ) or bipolar ( - 1  or 1 ) activation values, a maximum of 2 "' 
modules can be addressed using the binary coding scheme.

However, these input units can also take continuous activation values, as long as 
there is some mechanism to guarantee that only one module will get activated. The
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activated module is then provided with the actual input by the second group of ri2  

input units. After some internal processing, the activated module gives an output 
with m  values. One can view this model as a collection of M  sub neural network 
modules, each subneural network has ng inputs and m  output. The first group 
of input units serves to specify the context (hence the corresponding subnetwork 
module) under which further processing is to be carried out. The original problem 
of forming an (n —*■ m) mapping is thus decomposed into M  smaller subproblems of 
forming (ri2 —>■ m) mappings. It is important to mention here that the selection of 
these n — 1  inputs for the context network should based on a specific identification 
of contextual features out of the whole feature space.

This solution we have shown now is simply a modulation of the big problem which 
is considered the simplest way of applying context dependency, the disadvantage of 
this technique, is its one-to-one mapping between contexts and subnetwork mod­
ules, which probably require huge capacity hardware to process all the different 
submodules, especially in case of big number of modules that would be impossible 
to apply this technique.

Yeung D.Y (1993) in [21], developed another enhanced model that mostly 
doesn’t  require such huge hardware capacity although in some cases e.g. the very 
large neural networks, the model may fail to reduce the hardware capacity as shown 
later, the model is explained in the following subsection.

2.3.1 Context sensitive neural network for problem seg­
mentation

->
Context
inputs

Function outputs A A A

Context Network Function
Network

^
Function inputs

Figure 2.8: Schematic diagram of a context-sensitive network model.

A context-sensitive network is shown schematically in Fig 2.8. It consists of 
two feed forward neural networks, the context network and the function network. 
Context network is responsible about mapping the relation between the contextual 
variables as input and the weight setup of the other neural network as outputs. The
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function network is responsible to mapping the relation between the set of primary 
features as inputs and the problem solution as output.

The set of input variables is partitioned into two sets. One set (context input) 
acts as the input to a context network. The function inputs acts as the inputs to a 
function network. Depending on the context input provided by the current input 
pattern, the function network represents different functions at different times based 
on different contexts.

The feed-forward class of context sensitive neural networks is considered here 
for both neural networks, with the back-propagation learning neural network.

The context network has as many output units as the total number of adjustable 
weights in the function network. In general, the number of adjustable weights in the 
function network may be very large, hence the context network has to learn a large 
number of parameters. It is thus desirable that the function network be as simple 
as possible. The ideal case refers to the class of context-sensitive networks whose 
function networks are linear. This corresponds to the class of functions which are 
decomposable into parameterized families of linear functions.

Using the activation values of the output units in the context network directly 
as the weights of the function network is inappropriate, as the activation values 
are restricted to the range [—1,1]. This problem can be solved by introducing a 
coupling function to map these activation values from [—1 , 1 ] to their correspond­
ing values which span a wider range. For output unit I in the context network, 
its activation value, yi is coupled with a weight in the function network through a 
coupling function, gi . One simple choice is to let gi be the inverse of a sigmoid 
function,e.g. gi =  f f ^  , so that the weights of the function network can take values 
from ( —00, d o ) .

The use of one network to modulate the behavior of another network is a very useful 
property. In particular, a single piece of hardware (function network) can behave 
differently depending on the output of the context network. Hardware reusability 
is crucial to the design of networks for solving complex problems, so that in most 
cases the networks will not grow to an unmanageable size. Configuring a system to 
behave differently in a context dependent manner is a desirable property for robust 
systems.

With its programmability through the context network, the function network 
can compute different functions at different times. This helps in separating the 
network semantically into two different levels of abstraction, each of which plays a 
different role in network computation. While learning in the function network aims 
at generalization of the usual type, learning in the context network tries to achieve 
a better generalization.

This context dependent neural network model have two disadvantages. The con­
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text network is trained to produce the weight matrix of the function network , 
which mean that the output of the context network is usually too large, with a 
little increase in the size of the function network. The context network increases 
dramatically. In this case the context network will require extremely long training 
and probably more hardware resources.

Also the possibility of error mapping of the context network is not small for that 
large number of outputs , and in this case, selecting wrong weight matrix will let 
the function network output be too far from the desired. Even if the output of the 
context network is the proper weight matrix but with some notable error in some 
weights , that would lead to error in propagating the output of the function network.

In the following subsection we show different technique of imposing the context 
sensitive features in the neural network solution that doesn’t  have the mentioned 
disadvantages while learning complex nonlinear mappings.

2.4 C ontext dependent neuron m odel
The model we are showing here also introduces the idea of learning complex nonlin­
ear mappings in a context dependent manner. In the previous model the contextual 
features were separated from the primary features on a neural network level, i.e. 
Contextual features were applied to separate neural network other than the neural 
network that primary features are applied to. In The following model both contex­
tual and primary features are applied with the same neural network. More than 
that, they are both applied to the same neuron.

Hence, the model of context dependent neural networks we are showing in this 
section is considered a generalization of the traditional neuron model. The mapping 
adjustment is performed by contextual “fine-tuning” of weights obtained from a well 
trained traditional neural networks.

The model of Piotr Ciskowski. (2004) in [2], we are showing here assumes that 
the features are already identified and doesn’t involve any identification technique 
of the contextual features. It only concentrates on processing contextual data by 
context dependent neural networks. One of the aims of this models is to cover the 
case of continuous contextual variables.

2.4.1 Context dependent neuron model structure
Having Z  denotes the vector of contextual variables, the neuron model shown in 
Fig 2.9, can be expressed in the form

5=1

(2 .18)
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Figure 2.9: Context dependent neuron model

where Xs denotes the s-th primary input, y is the neurons output, and $  is the 
activation function.
The first difference between this model and the traditional one is the division of 
inputs into the two groups of: primary and context-sensitive inputs grouped in vec­
tor X , and contextual inputs in vector Z. The second difference is that the weights 
between neurons and primary inputs, depend on the vector of contextual variables,
i.e. Wg = Wg{Z) where s =  0,1, • • • , 5, as presented in Fig 2.9

The neural network model that is used here to solve a problem characterized 
both by primary and context-sensitive features a hybrid network, in which some 
weights are context dependent and others are traditional, traditional weight means 
that the weights are constant after training, i.e. they don’t change in all contexts.

In general, Z may functionally depend on Xg as being contextual sensitive to 
them. This model excludes such a possibility, that is, both functional and even 
stochastic independence of Xg and z will be assumed.

In other words by classifying contextual variables into the following categories,

• External contextual variables, which are provided to the network as parallel 
to input variables, without any functional or statistical dependencies between 
the context and input variables.

• Internal contextual variables, which are generated from input and/or output 
signals of the same network.

Then, this model concentrates on the external contextual variables, because its 
technique of incorporation of the contextual features to the output of the problem, 
is not depending on such relation between the contextual features among each other.
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2.4.2 Dependence of weights on context variables
As mentioned earlier, the second difference between this neuron model and the tra­
ditional one is that in this model weights are dependent on the contextual variables. 
This dependency can be expressed as follows.

Assume that in the model of a context dependent neuron in Equation 2.18, com­
ponents Ws{Z) of its weight vector W (Z), dependent on the vector Z  = [zi, - , ZpŸ' 
of contextual variables, in the form,

- ÿ(^), g =  0,1,. . .  , g. (2.19)

where V{Z) =  [vi{Z), V2 (Z ), ■ ■ ■ is a vector of basis functions, chosen
by the networks designer.

In Equation 2.19 Ag — Ha,;, ' ' ' € R ^  where s = 0,1, - - ,S  are
vectors of parameters, which specify the dependence of weights on context variables.
In other words, components o iV {Z ) are functions spanning the context dependent 
vector of weights and our aim is to choose the vectors of coefficients Àg where 
s =  0,1, • ■ • ,S . As components of Ÿ (Z).

2.4.3 M athematical model of a context dependent net
According to the provided form of dependence of weights on the contextual vari­
ables, here we show the mathematical model of the context dependent neuron.

For a random vector of input variables X ^  = [%, Zg, "  , and for a random 
vector Z  of contextual variables, the output of the network is given by

2̂ .2 0 )

where 0  is the activation function, ^ is the transposition, X  [l,Xj„]^. The 
&-th neurons weight vector is given by

(2 .2 1 )

where each weight Wk,s{Z) is approximated by the column vector of coefficients 
Ak,g and the vector of basis functions V{Z). as Wk,g{Z) — • V{Z).

For the A:-th neuron, the coefficient vectors are concatenated into one col­
umn vector

(2 .2 2 )

The layers weight matrix is constructed the same way as the weight matrix of a 
traditional network, only now the weights are dependent on the context vector as 
shown in 2.23

I ÿ ( f  ) -  [IVi(Z), Iÿg(f ) , . . .  , % (Z )]. (2.23)
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$  is assumed to be strictly monotone on R. Thus, exists and
=  4>“ (̂17) is well-defined random variable, if 17 is a random variable. The 

only important activation function, which is excluded by this assumption, is the 
step function, which however, can be arbitrarily closely approximated by strictly 
monotone functions.

2.4.4 Minimizing the error of a context dependent Network
The desired output of the net given by Equation 2.20 is represented by a random 
variable Y.  In summary, the existence of a probability distribution of {X, Z, Y)  is 
assumed. This distribution is unknown. In this learning algorithm we use a learning 
sequence (X ,̂ Zi,Yi),i = 1 , 2 , - - ,n, instead of the unknown common distribution 
of (X,X,y).

Lets consider that this probability distribution is known, and then we replace 
the unknown moments of this distribution by their empirical counterparts, based 
on the learning sequence. Thus, we shall use a variant of the classical method 
of moments, known to provide efficient estimators when underlying distributions 
are Gaussian, since then the method of moments coincides with the maximum 
likelihood approach. Usually, the measure of fit between Y  and ^[vA{Z) ■ X] is 
considered as

^(X,f,y){y -  ) - X ]}'. (2.24)
where E  denotes the expectation with respect to random variables specified be­

low this operator. Here, we consider an alternative approach to choose the weights 
in such a way that the following criterion is minimized:

(2.25)
which is later called the activation-error criterion, since the desired output Y  

is transformed back to the interior of the nets’ output neuron and then compared 
with its activation signal {uF{Z) ■ X) .

The advantage of Equation 2.25 in comparison with Equation 2.24, is that 
Equation 2.25 is a quadratic form with respect to the vector of weights W.  The 
following result additionally justifies the assumed mathematical model of the cd 
neuron.

2.4.5 Learning algorithm for feed-forward back-propagation 
context dependent networks

Piotr Ciskowski in [2] had presented many learning algorithms such as, nonre­
cursive Least Squares, Recursive Least Squares, Stochastic Approximation, and 
back-propagation algorithm.

Here we only present his extension to the back-propagation algorithm to train 
the network for such contextual features.
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Hence, in this subsection, a way of calculating the error functions gradient with 
respect to coefficient vectors of output and hidden layers neurons will be presented. 
The output-error function will be used, while results for activation-error function 
are analogical.

Let us now consider a two-layer network containing K  neurons in the first, and 
L neurons in the second layer. — [1, is the vector of the
first layers primary inputs. The first layers outputs =  [y^i\y2 \  • ■ • , 2/x^] ,
and the bias are primary inputs for the second layer X̂ '̂> =  [l ,y^i \y2 \  "  , Vk^] ■

= [ y f \ y 2 \ ' "  is the vector of the second layers outputs. Both
layers are supplied with the same vector of contextual inputs Z  = [zi,Z2 , ■ ■ ■ ,zp]. 
Each layer has its weight matrix;

(s+i)xir
where A: =  1,2, • • • , K  and s =  0,1, • • • ,S,  and

where Z =  1,2, ■ • • ,L  and A: =  0,1, ■ • • ,K.
{ K + l ) x L

(2.26)

(2.27)

Let us consider the second layer as the output layer of the network and, thus,
T

assume that the desired output values are given as = 
The error function for the network ( in [2] ) is given by

(2.28)

where Ap^^ is the error function for the second layers Z-th neuron,
given by

o f  (^W . Â f  ) =  {y?J -  0  («!“’) } '.  (2.29)

where up) =  $  {(Ap))^ - [X( )̂ ig) Ü(Z)] j ,

and =  4> I  (A^^))^ • [X^b (g ÿ (Z )] | is the vector of the first layers outputs, 
(g) denotes the Kronecker product of matrices.

Thus, the error functions gradient with respect to the second layers Z-th neurons 
coefficients is given by
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-E,

The coefficient update (in [2]) is given by

&,+! =  &. +  ) . $ ' (ü}")) . [%(") g, ÿ(Z)]. (2.31)

where
The error functions gradient with respect to the first layers k-th neurons coef­

ficient vector is given by

QTdd ̂ (V)Q — ^ (x
. / = !

(2.32)

By analogy to the traditional back-propagation rule, the unknown desired value 
of the neurons output 7/̂ 2 may be computed from the errors of all the next layers 
neurons that are connected to this neuron, and weights connecting the &-th neuron 
in the first layer with all neurons in the second layer. Thus, the estimated value of 
the first layers k-tb. neurons error is given by

4"=4Ï - 4" = E  Hï(^) ■ 4>] = E  Hï(®) ■ (»: - »'"')] • P.33)
/ = 1 l==l

where and dp^ denote error values for fc-th neuron in the first layer and l-th 
neuron in the second layer, respectively.

R em ark 2.1. Context dependent neural networks are, in fact, a generalization 
of traditional networks. By choosing the basis function vector with one constant 
function, we may build a context dependent network with the properties of traditional 
one.

2.4.6 Example: XOR problem
It is well known that it is impossible to find any weight vector for a single perceptron 
neural network ( Neural network consists of only one neuron ) to solve the standard 
4-point XOR problem, in the following subsection we show that with the generalized 
neuron model provided earlier, it is possible to solve five-points XOR problem (see 
[2]).
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e

/  : ..

0
Figure 2.10: Five-point XOR problem solved by a two-layer traditional network. 
(Left) Input points and discriminating lines of both hidden neurons. (Right) Input 
points transformed by the first layer and the discriminating line of the output 
neuron.

Figure 2.11: Five-point XOR problem solved by one context dependent neuron.

In this subsection, the differences are shown in the way traditional and context 
dependent networks work. The networks are used to solve the XOR problem en­
hanced by one additional point in the middle. Traditional networks topology is 2 
(Hidden neurons) and 1 (Output neuron). Each neuron in the input layer (not yet 
“aware” of the points context) is only able to perform linear separation of points, 
so the division into two classes takes place gradually in both layers.

In Fig 2.10, given five points as inputs : (0,0), (0,1), (1,0), (0.5,0.5), and (1,1) in 
two-dimensional input space, the first layer reproduces them into the second layers 
input space. Three of these points (no. 2, 3, and 4) belonging to the first class are 
transformed into points close to (0,1). Two other points (from the second class) 
are positioned in the area that is linearly separable from the transformed points of 
the first class. Linear separation is then done by the single neuron in the second 
layer.
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(a) Discriminating hyperplane of a tradi- (b) Hyper surface of a context dependent 
tional functional neuron. neuron.

Figure 2.12: Five-point XOR problem.

Let us now assume that points 1 and 3 belong to one context (for which z = —1),  
while the other three to another z = 1. Traditional neuron using the information 
about points context (supplied on additional primary input or using a functional 
input multiplying two primary ones) is able to solve the standard 4-point XOR 
problem (excluding point no. 3). As its decision hyperplane cannot bend through 
the contexts to perform the desired classification of point no. 3 [Fig 2.12(a)], it 
cannot solve the enhanced 5-point XOR problem, slightly more complicated than 
the standard one. Context dependent network (supplied with information about 
points contexts) works more efficiently.

The 5-point task may be solved by a single neuron. As for each context only 
one decision line is needed, context dependent neuron produces one discriminating 
line and adjusts it as the context changes (Fig 2.11). Although lines are parallel, 
their directions are reversed. Fig 2.12(b) shows the decision hyper-surface of a con­
text dependent neuron in the joint three-dimensional input space and the way it 
inverses its direction with the context change.

In this chapter we have shown, a formal method to distinguish the three differ­
ent types of features from the relevance point of view: primary, contextual, and 
irrelevant features, and an Illustration example was explained.

We have presented the strategy of identifying these context-sensitive features 
and the five basic strategies for managing them. Combining these strategies appears 
to be beneficial, as well as five different methods of managing these contextual 
features.

We have presented a context sensitive model for overcoming the slow conver­
gence problems this technique uses context sensitively between features to provide a 
segmentation to the problem solution. Another model of context dependent neural 
nets has been presented and its basic training algorithms, taking advantage of
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contextual dependencies in training data. It has been shown that context depen­
dent neural networks, being the generalization of traditional networks, have better 
transformation abilities.
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Chapter 3 

Overlapped neural networks

Neural network overlapping is known as one of the practical techniques of achiev­
ing better generalization and recognition rate. Overlapped Multi-Neural Networks 
(OMNN) have been used for feed forward neural networks by Hu & Hirasawa. 
(2000) in [4] and self organized maps by Atukorale & Suganthan. (1999) in [1] and 
by Suganthan & Winter. (1999) in [14] for this purpose. These systems impose 
a function distribution over the partially shared weight vector of a multi neural 
network in which some neurons react only to some inputs but not to the others.

Neural network overlapping is also used in shared weight neural networks (SWNN) 
in which the weight sharing or overlapping reduces the number of free weights while 
produces better performance on test sets by Yonggwan & Gader. (1995) in [22] and 
by Khabou & Gader. (2000) in [7].

Analysis presented by Jinwook & Chulhee.(1999) in [6 ] and by Stevenson & Winter. 
(1990) in [13] of the weight distribution and its error sensitivity concluded that the 
weight vectors of a trained neural network is not unique as there are many possible 
weight vector solutions based on the initial setup. They also concluded that such 
weight solutions tend to form concentrated groups in dimensional weight space. 
This analysis helps to understand the concept of reducing the network freedom by 
using overlapped neural networks to decrease the neural network function complex­
ity and achieve better generalization.

In an ordinary neural network, individual units do not have any special relations 
with the input patterns. However, according to recent knowledge of brain science, 
it is suggested that there exists function localization in a human brain, which means 
that specific neurons are activated corresponding to certain sorts of sensory infor­
mation the brain receives. Therefore, a brain-like neural network should have the 
capabilities of function localization as well as learning. Such a brain-like model 
may be more efficient because its individual units are mainly used to remember 
certain input patterns. To obtain such a brain-like model, the main problem is how 
to guide a training algorithm to realize the function localization.

46
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Main part o f overlapped neural network

ubnet 1

■Subnet 2

I Overlapped unit 

: 4 Usual unit

Figure 3.1: Multiple network, overlapped-multi-network and ordinary feed-forward 
network.

In the following we show an overlapped neural network model by Hu & Hira­
sawa. (2000)in [4]. In this model, a simple implementation of such brain-like model 
is considered by using an overlapped multi-neural-network (OMNN). This model 
OMNN consists of two parts: main part and partitioning part. The main part, 
structurally, is the same as an ordinary feed forward neural network, but it is con­
sidered as one neural network that consists of a class of sub-nets, all the sub-nets 
have the same input-output units but some different hidden units. The partition­
ing part, can be any structure that can make unsupervised classification, the main 
function of this part is to divides the input space into several parts, each of which 
is associated with one sub-net.

Various clustering or classification methods and algorithm may be used to im­
plement the partitioning part. In his work, Hirasawa has introduced a competitive 
network for this part in [4] and introduced SOM Model for the partitioning part in 
[11], However, a competitive network that has the same number of outputs as the 
number of parts of the input space divided is used here. Each output of compet­
itive network represents one input space part. For an input pattern, only one of 
competitive network outputs gives 1 , and only nodes of the sub-net associated with 
this output are fired, while all other nodes remain inactive. This realizes function 
localization of OMNN.

On the other hand, from a viewpoint of multiple network, the main part of OMNN 
is a multiple network with overlapped units, when the number of overlapped units is 
zero, it becomes an ordinary multiple network, while it is an ordinary feed-forward 
neural network when the number of overlapped units is equal to the total hidden 
units. In this sense, an OMNN can be seen as a learning network between an 
ordinary feed forward neural network and an ordinary multiple network. Fig 3.1 
shows an image of such relationship. Moreover, it is well-known that multi model
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approach is based on a divide-and-conquer strategy. The bias variance trade-off is 
an important issue for the divide and-conquer strategy. In general, dividing the 
training data set into subsets for process identification tends to increase the vari­
ance and decrease the bias. In multi model approach, soft or fuzzy splits of data 
are often used to ease the bias-variance dilemma.

3.1 Overlapped neural network for function lo­
calization

An OMNN has the capabilities of both learning and function localization. As 
shown in Fig 3.2, it consists of two parts: main part and partitioning part. The 
main part realizes the capability of learning and the partitioning part classifies the 
input space so as to realize the capability of function localization (see [4] and [11] 
and their references).

Main part : feed forward network

Partitioning part ; Competitive network

Figure 3.2: An OMNN consisting of two parts: main part and partitioning part.

Partitioning Part
The role of this part is partitioning of operating region. Let us consider problems 
such as system identification and pattern recognition. The operating region is 
defined as Z. An operating point z G Z  is a. vector of variables. The operating 
region is partitioned into M  operating regimes Zj : (z =  1, • • • , M) which is a subset 
of Z, on the basis of certain prior knowledge.

The input and output vectors of the model are called x  and y and consist 
of n and m  different variables respectively, where x = [xi,X2 , - “ ,Xn] and Y  =
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,%n].

Here, competitive neural networks is used for this part. The network selects a win­
ner, via a competitive learning process, highlighting the “winner-take-all” schema. 
That is, the output unit receiving the largest input is assigned a value of 1, whereas 
all other units are suppressed to a 0 value. As shown in the lower part of Fig 3.2, 
the competitive learning network has one layer of input neurons and one layer of 
output neurons. An input pattern z is a sample point in the n-dimensional real 
vector space. Binary-valued {0,1} local representations are used for the output 
nodes. That is, there are as many output neurons as the number of classes (M) 
and each output node represents a pattern category.

Main Part
Structurally, the main part is an ordinary feed forward multi-layer neural network, 
but it is considered to consist of M overlapped sub-nets.

If we denote the set of input units by I, the set of output units by O, and the 
set of i-th hidden layer units by A] : {z =  1 , 2, • • • } ,  then the j-th  sub-net can be 
described by {/, S'y, Zgj, • • • , 0 } where the set of z-th hidden layer units, Sy is a 
subset of Ni. 'That is, Sy C A  : {j =  1,2, • • ■ , M}.

These M  sub-nets are associated with the M  operating regimes (class). For the 
input and output vectors {x, y} of operating regime Zj, only the units corresponding 
to the j-th  sub-net of OMNN are active, while all other units are inactive and have 
zero output. The sets of hidden layer units of sub-nets, Sy, are determined based 
on the prior knowledge used in operating region partition such that all hidden layer 
units available in the sets A  are used in subsets S'y.

To establish this structure, there are several parameters to be determined: the 
number of sub-nets, the number of hidden units for each sub-net, the number of 
hidden units that overlap or the number of total hidden units.

The values of these parameters are certainly problem depended. Hirasawa. 
(2 0 0 0 ) gives an estimation for these numbers as follows:

1. The number of sub-nets. It is equal to the number of parts of input space 
divided. In many cases, prior knowledge is available for determining the 
number of input space to be divided. When there is no prior knowledge 
available, it is recommended to divide the input space into 4 to 6  parts gives 
better results.

2. The number of hidden units for each sub-net. This depends on the complexity 
of each part of input space. When no prior knowledge is available, the same 
number may be used for all sub-nets. It is found that when the number of 
hidden units for each sub-net is equal to |  to |  of the total number of hidden 
units, OMNN gives better results.
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3. The number of hidden units that overlap. This is rather difficult to determine. 
It seems that it is easier to determine the total number of hidden units first, 
then the number of hidden units that overlap by assigning the number of 
hidden units for each sub-net based on the |  to |  rule.

Structure example
Here we give a simple example to show the relation between the partitioning part 
and the main part in an OMNN.

In the e.g. shown in Fig 3.3, the main part has 2 input units, 6  hidden units and 
1 output unit. It is divided into two sub-nets with the same input-output units, 
the first sub-net contains the first to fourth hidden units, and the second sub-net 
contains the third to sixth hidden units. The partitioning part is a competitive 
network containing two output units. It divides the input space into two parts. 
The outputs of the competitive network control the firing of the hidden units of 
main part.

When an input set from the first part of input space appears, the competitive 
network gives 0 \  = I and Og =  0. This fires hidden units 1 to 4, while hidden 
units 5 and 6  contribute 0 to the output of OMNN. When an input set is from the 
second part, then only hidden units 3 to 6  are fired, and hidden units 1 and 2 will 
be kept inactive. Prom this example, it is clear that OMNN has not only learning 
capability, but also function localization capability.

X r

X 2-

competitive networtc

Figure 3.3: An example of OMNN showing the relationship between partitioning 
part and main part.
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3.1.1 Overlapped multi-neural network training
The training process here is two steps: first,training of the partitioning part, second 
training of the main part. It is clear that the former usually must be done before 
carrying out the latter training.

A competitive learning algorithm is used for training the partitioning part using 
the well known winner-take-all algorithm. In the following we discuss training of 
the main part.

The training of the main part of OMNN is formulated as a nonlinear optimiza­
tion defined by,

8  =  nrgnnn{E}, where 0  E IT. (3.1)

where E  is the error function, 0  is the weight vector and W  denotes a compact 
region of weight vector space. Let y is the OMNN output corresponding to the 
input vector x. Then the error function E  is defined by

^  =  (3.2)
i e D

where D is the set of training data, and y is the desired output.

Training algorithm
The ordinary random search method algorithm can be employed to find the required 
weight vector and hence the solution. Some modifications have been done by Hi­
rasawa (2000) to improve the efficiency of the random search algorithm. However, 
the following is the modified algorithm.

Let Q{k) =  [Ai(fc), • • • be the weight vector 0  € VF denoting the
weight vector corresponding to the k-th. search, and A0(A:) be the random vector 
A0(fc) =  [AAi (A),. -. , AXi{k), • • • ]^ generated based on a probability density func­
tions after the A:-th search. Then the random search algorithm can be described as
follows, (see [4] and [11])

Algorithm

1. Step 1:

• Choose an initial value 0(0) € VF
• calculate £'(0 (0 ))
• set k — 0 .

2. Step 2:

• Generate a random search vector AQ{k)
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• If Q{k) + AQ{k) ^  W  then let Q{k +  1) =  Q{k) and go to Step 3, else

• calculate £(0(fc)+A0(/c)), If £(0(A:)+A0(fc)) < E{Q{k)), (the current 
search is successful ), then set = 1  And 0(fc +  1) =  Q{k) +  A0(fc), 
else

• calculate £(0(fc)—A0(fc)), If £(0(A:)—A0(fc)) < E{Q{k)), (the current 
search is successful), then set ?/(*) =  1 And @{k +  1) =  0(A:) — AQ{k), 
otherwise

• (The search is Failure), Then set =- 0 and

{
0 (fc) if > ker and > kgr
0(A:) +  A0(A) ifA+<A;- 
0(A)-A0(& ) i f A+>A-

where k^r > 1  is the maximum error ratio, A+ and are defined by

+ £(e(A) +  A0(A))
£(0(A))

£(6 (A ) -A 0(A ))
£(0(A))

3. Step 3:
Stop if pre-specified conditions are met, else set A =  A +  1 and go to Step 2.

In a conventional random search algorithm, AA; is usually generated by using a 
Gaussian probability density function, the modification done by Hirasawa is put 
better strategy to find AAj based on a sophisticated probability density function.

Example of OM NN
Hirasawa had considered a benchmark problem. The problem is providing the 
separability of two nested spirals and he used OMNNs to for that purpose.

The training sets consist of 152 associations formed by assigning the 76 points 
belonging to each of the nested spirals into two classes. This is a nontrivial clas­
sification task, which has been extensively used as a benchmark for evaluation of 
neural network training. We use the example to discuss generalization ability of 
OMNN (see [4]).

The OMNN he used in the simulations is denoted by Nn-r-m x M / ut where 
Nn-r-m Î8  a sub-net with n input units, r  hidden units and m  output units, M  is 
the number of parts of input space divided, and nr  is the total number of hidden 
layer units. Since all sub-nets have the same number of hidden units, obviously 
when riT = r X M, that is, there is no overlapped units, the OMNN becomes a
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multi neural network, and when . n r  = r the OMNN is equivalent to an ordinary 
feed-forward neural network.

As described earlier in chapter 1  the network generalization is depending on 
three factors: The size of the data , the algorithm complexity, and network struc­
ture, and many methods is been proposed for achieving better generalization, we 
mentioned the weight decay approach for third factor (The network structure), 
and the VC dimension for the second factor (The algorithm complexity), it is also 
known that, soft or fuzzy splits of data are often used to this purpose and to ease 
the bias-variance dilemma. In this example, overlapping hidden units has the same 
impact so that it improves generalization ability of multi neural network, Hirasawa. 
(2000).

3.2 Overlapped self organizing maps
In this section we introduce another implementation of neural network overlapping. 
Suganthan in [14], had developed a model of Hierarchical Overlapped SOM’s (HO- 
SOM) for pattern classification, in which the overlapping is achieved by duplicating 
every training sample to train several upper-level SOM’s. That is, the winning neu­
ron as well as a number of runners-up neurons make use of the same training sample 
to train the higher-level maps grown from those neurons using Kohonen’s SOM.

In general every class is represented by several neurons. Further, as every training 
sample is used to develop a number of different upper layer maps, a degree of over­
lap in the upper-level SOM’s was achieved. This multiplicity allows to make the 
final decision by fusing the classification of several maps for every training and test­
ing sample. In addition, every higher-level map is trained using a different subset 
of the training data. As the top-layer maps are pruned by merging and removing 
neurons, the problem of over-training is curtailed. The resulting HOSOM network 
offers the best performance for any SOM-based classifier and somewhat compara­
ble performance to the best multi-layer back-propagation network-based classifier. 
Further, the HOSOM may be regarded as an efficient alternative to the k- nearest 
neighbor type algorithms.

3.2.1 HOSOM structure
Hierarchical SOM had been intensively researched and is known to provide lower 
solution cost for the large problems than the standard SOM, Here another feature 
is added, then the added structural features to the HOSOM relative to the standard 
SOM, is the the former is both hierarchical and overlapped. However, the network 
is initialized with just one layer first. The number of neurons in the layer has to be 
chosen. If there are too few neurons in the first layer, the network may have to be 
grown to have several layersi If there are too many neurons in the first layer, com­
putational advantage of hierarchical architecture may be compromised. In pattern
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recognition applications, the number of training samples may be considered in the 
selection of initial lattice size.

Secmdb^erSOM

;  Cl Cl

S O M

—  O
(hnmctàa» weights

Figure 3.4: The HOSOM structure.

Fig 3.4 shows the first-layer SOM and two instances of second-layer SOM’s 
grown out of nodes A and B. The figure also shows the overlap in the feature space 
of the two second-level maps conceptually.

3.2.2 HOSOM training
For the initial adaptation of the synaptic weight vectors, Kohonen’s SOM algorithm 
is employed. The algorithm is applied to the topmost layers which were grown 
during the last structure adaptation iteration.

Lets list the following three algorithms, for unsupervised, supervised learning 
and HOSOM algorithms ( see [14] and its references).

Table I: The unsupervised SOM algorithm

• U SO M l Initialize the weight for the given size map. First layer weights are 
randomly initialized. Subsequent layers are initialized around the root node.
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Initialize the learning rate parameter, neighborhood size and set the number 
of unsupervised learning iterations.

• USOM2 Present the input feature vector x = [zi, Z2 , • ■ • , zjv] in the training 
data set of the root neuron.

• USOM3 Determine the winner node c such that ||x — wdl =  minj{||x — w*||}

• U S0M 4 Update the weights within the neighborhood of node c, Nc{t) using 
the standard update rule: W i { t + 1 )  =  W i { t ) + a { t ) [ x n — W i { t ) ]  where % E N —c{t). 
The neighborhood wraps around at edges, i,e., column and row indices are in 
modulo representation.

• USOM5 Update learning rate and neighborhood size. According to a{t +  
1 ) =  a ( 0 ){ l-;^ }  , and |Afc(t+l)| =  , where iF is a constant and 
usually set to be equal to the total number of iterations in the self organizing 
phase.

• USOM6 Repeat USOM2-5 for the specified number of unsupervised learn­
ing iterations.

Table II: The supervised LVQ 2 learning algorithm for SOM

• SSOM l Present the input feature vector x = [xi,X2 , - ■ • , ẑ v] in the training 
data set.

• SSOM2 Locate the winner node c such that ||z — Wc\\ — min,{||z — Wi||}

• SS0M 3 If the winning neuron has the same level as the training example, 
update weights of the winning neuron only using the standard update rule: 
Wc{t -h 1) =  +  P[xn — Wc{t)]. If the winning neuron has a different label, 
then 1 ) update the weights of the winning neuron only using a small negative 
learning rate f3i as follows: Wc{t +  1) =  Wc(t) + /?i[z„ — Wc{t)] and 2) Locate 
the closest neuron with the same label as the training sample and update its 
weights using the update equation with a positive learning rate of /?2 -

SS0M 4 Repeat SSO M l-3 for the specified number of supervised learning 
iterations.

Table III: The HOSOM algorithm

• H O SO M l Apply USOM

• H 0 S 0 M 2  Label all output nodes using a simple voting scheme.

• HOSOM 3 Apply SSOM
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• HOSOM4 Merge/remove neurons 

HOSOM5 Apply SSOM

HOSOM 6  Obtain recognition rates on training data.

HOSOM7 Grow an additional layer and repeat HOSOM 1-6 until satis­
factory recognition rate is achieved or maximum complexity level is reached.

The SOM algorithm is summarized in Table I. Having completed the unsuper­
vised SOM learning, the neurons in the topmost layers are labelled using a simple 
voting mechanism. Then the supervised LVQ algorithm given in Table II is applied 
to fine-tune the prototype vectors. We apply the following structure adaptation 
techniques just after applying the supervised LVQ 2 algorithm.

1. Growing a Layer : The network may be grown, until either a satisfactory 
recognition rate is achieved or a predefined level of structural complexity is 
reached by the network. The complexity may be defined in terms of number 
neurons or layers.

2. Merging/Removing Neurons : The merging operation is essential in particular 
in the final layer which is not to be grown further.
Consider the following simple scheme. If an end-node neuron represents a 
few training samples, that neuron is merged with another neuron which is the 
closest with the same label. If there is no other neuron with the same label, 
the neuron is removed. It should be noted that merging operation improves 
the performance on test data set, in case the network has been over-trained 
or over-specialized, Kohonen,1997.

It was indicated earlier that overlapped SOM’s are obtained at the completion 
of training. The overlapping is achieved by duplicating every training sample to 
train several upper-level SOM’s. That is, the winning neuron as well as a number of 
runners-up neurons make use of the same training sample to train the higher-level 
maps grown from those neurons. By duplicating the training samples in the upper- 
level SOM’s, we obtain overlapped SOM’s. The testing samples are also duplicated, 
but to a lesser degree. Hence, the testing samples fit well inside the feature maps 
developed using the best matching and several runners-up in the training data.

In addition, this duplication of samples allows us to employ a voting scheme to 
obtain the final classification. The HOSOM algorithm for pattern recognition is 
presented in Table III. Fig 3.4 shows the first-layer SOM and two instances of 
second-layer SOM’s grown out of nodes A and B. The figure also shows the overlap 
in the feature space of the two second-level maps conceptually.
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3.3 Shared weight neural networks
In this section we just give a brief about the shared-weight neural networks, many 
researchers had used shared-weight neural networks for the problem of automatic 
target detection for its ability to improve the network generalization, for example 
by Yonggwan & Gader. (1995) in [22] and by Khabou & Gader. (2000) in [7].

It was mentioned earlier that many techniques exist to improve the general­
ization capability of a neural network by imposing predefined constraints on its 
weights. Such techniques include regularization, weight pruning and structural 
constraints. Regularization uses an added term to the neural-network cost function 
to reduce the effect of non useful weights or to impose a priori knowledge on its 
structure. Pruning eliminates weights that are deemed redundant.

Structural constraints reduce the number of independent weights by using a 
locally connected structure or sharing the same weights on many connections. This 
dramatically reduces the number of free weights while producing better perfor­
mance on test sets. The standard shared-weight neural network (SSNN) , the 
morphological shared-weight neural network (MSNN) and the Entropy Optimized 
Shared-Weight Neural Networks (ESNN) are examples of such networks.

3.3.1 Shared-weight neural network architecture

Feature Eximcüon Netvwrfc, fF)

r
* Kernels

Feature L^'cr

- - X ____________ I .Feedfora'ardi Ketwerk (C >

OutputNWc

Figure 3.5: Standard shared-weight neural network architecture.

The structure of SSNN is not far from the structure of the previous mentioned 
OMNN, a SSNN consists of two cascaded sub-networks, called stages: a feature ex­
traction stage F  followed by a feed-forward stage C. The feature extraction stage
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F  usually has a two-dimensional input and has local, translation invariant connec­
tions. The layers in this stage perform feature extraction by linear convolution of 
their inputs with the kernels defined by the local connections.

Each layer is partitioned into subsets called feature maps. Each feature map in 
a feature extraction layer has one kernel for each feature map in the previous layer. 
The nodes of the last feature extraction layer are the inputs to C (see Fig 3.5).

The morphological shared-weight neural network, MSNN has the same architec­
ture as the SSNN except that the kernels in the feature extraction layers perform 
gray-scale hit-miss transform on their inputs instead of convolution performed by 
the SSNN. For ESNN, Entropy defines a measure on the space of probability dis­
tributions, such that those of high entropy are in some sense favored over others.

During training in automatic target recognition, a shared-weight neural network 
takes a sub image as input, and produces two output values; target or nontarget.
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Chapter 4 

Novel context sensitive model

In the previous chapters, we have seen the context dependency usage in different 
models and the benefits that we may gain by employing them in a neural network 
solution, the major advantages of employing contextual features is actually depend­
ing on the way it is used, one of the advantages we have shown here is simplifying 
the problem while providing more efficiency to it, we also have described neural 
network overlapping, the major advantages of overlapped neural network, that it 
performs a function localization and improves the neural network generalization 
ability.

In this chapter we introduce a novel context dependent model for solving com­
plex problems regardless of sufficiency or accuracy of their historical observations 
or lab simulation data.

Our approach in this model is based on imposing a context of the problem perfor­
mance metrics into networks and gaining the enhancement towards its satisfactory 
state.

We use an overlapped system of back propagation neural networks for our pur­
pose. A main neural network is responsible for mapping input and output relation 
while a regulatory neural network evaluates the performance metrics satisfaction.

We provide special training and testing algorithms for the overlapped system 
that guarantees a synchronized solution for both neural networks. By the end of this 
chapter we present an example of traffic control problem. The result of simulation 
shows a great enhancement of the solution using our approach.

59
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Context Dependent Controller by Overlapped 
Neural Networks fo r  Perform ance M etrics  

Revision

4.1 Introduction
The theory and design of artificial neural networks have advanced significantly dur­
ing the past 20 years. Lots of attentions were given to it for its efficient capabilities 
in pattern recognition, classification, regression, decision making and other tasks 
of information processing. Many progresses are focused on establishing new tech­
niques and designs of network structures to increase the ability and the efficiency 
of solving complex problems and to add new features to neural networks.

In this chapter, we consider context dependent neural networks using a different 
model. Our model is based on a neural structure in which we control and benefit 
from the weight distribution of two overlapped neural networks to allow imposing 
the context dependent features into the final output. Different from the result of 
[2 ], our contextual variables are not independent on input variables in general. On 
the other hand, the contextual variables are not necessary generated from input 
and/or output of the same network. Therefore our approach is also different from 
the model of Elman’s network. These characteristics of our new model allows some 
special applications which are not fit the previous models.

Analysis in [6 ] and [13] of the weight distribution and its error sensitivity con­
cluded that the weight vectors of a trained neural network is not unique as there 
are many possible weight vector solutions based on the initial setup. They also 
concluded that such weight solutions tend to form concentrated groups in RX di­
mensional weight space. This analysis helps to understand the concept of reducing 
the network freedom by using overlapped neural networks to decrease the neural 
network function complexity and achieve better generalization.

Our model adapted some advantages of overlapped multi-neural networks for 
the purpose of context dependency.

The rest of this chapter is organized as follows. Section 4.2.1 describes our concept 
of applying performance metrics as a context dependency and give an example of a 
problem analysis according to this concept. In section 4.2.2 we explain the model 
structure and define the function of its components. In section 4.2.3 the output 
and the error computation based on the definition of SPM state vector and the 
provided structure is shown. Section 4.4 and 4.2.5 provide the training and SPM 
incorporation algorithms. Section 4.3 shows a simulation example and its results 
and finally, section 4.4 is our conclusion.
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4.2 M odel and structure o f our network
In this section, we describe a new model of context dependent neural networks.

4.2.1 Performance metrics state vector as context depen­
dency

Most of the problems (simple or complex) have a set of dependent performance 
metrics which are related to each other and dependant on the inputs and solution 
algorithm. Each performance metric works as a meter to the performance of the 
solution algorithm, and has a value or a set of values that constitutes the optimal 
or satisfactory states.

In our model we employ a criterion of context dependent parameters that is 
derived from some environmental observations of the performance metrics. It will 
be used to enforce the neural network to produce an optimal output towards the 
Satisfying Performance Metrics (SPM) state vector.

The study of this performance metrics satisfaction is very important in establishing 
an efficient and integral solution of problems in which an optimum satisfaction of 
the dependent performance metrics is required.

This study is also important for cases when the historical data of a problem 
can’t  provide the best consultations that guarantees the requested quality.

Example of that can be a mortgage calculation, where the historical data might 
seem good (case by case) but it doesn’t provide the maximum benefits for all the 
parties. In this problem, the study of the performance metrics as a context depen­
dency would be able to re-evaluate the historical data from the performance point 
of view and redefine the decision boundaries to achieve better estimations.

Performance metrics incorporation can also play a good role in fixing the lack 
of the historical information. It will help in providing enhanced solutions in spite 
of the lack of information.

Neural solutions that the training data is based on a laboratory or experimental 
data or that is based on a software computation might also use our technique to 
overcome possible human mistakes or insufficient study of the problem.

Definition 4.1. Satisfactory  Perform ance M etrics (SPM ) .• In this model 
we define SPM as the state vector of the performance metrics that describes the 
satisfactory states of these metrics.

Each factor or dimension of the SPM state vector defines the requested quality 
of a specific performance metric. We can view it as a magnet which creates an 
attraction force to let the neural network output towards or against its value. For
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ependent
)Metrics

Figure 4.1: In dimensional space, every SPM factor pushes or pulls the output 
vector towards its satisfactory state as possible.

all the SPM factors, the resultant force would be the enhancement to the solution 
towards satisfying that performance metrics.

SPM state vector is different from the neural network input and output vectors. 
It defines a subset of the problem dependent performance metrics.

To explain the SPM, let’s give an example of the bandwidth allocation problem 
for a new network connection request in ATM Networks. Let 
Inpu ts

• (fi) Network node buffer size

• (ig) Total available bandwidth

• (2 3 ) current network traffic conditions

• (ii) Requested connection quality

O utpu t

• (oi) Allocated Bandwidth

In this example, the performance metrics based on the total occupied bandwidth 
after such allocation are 
D ependent Perform ance M etrics

• (mi) The cell loss rate (CLR).

• (m2 ) The cell delay variation (CDV).

• (m3 ) The network resources utilization.
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It is clear that these metrics (mi) through (mg) are all depending on the decision 
of the bandwidth allocation algorithm as well as the current traffic conditions or 
the current inputs.

Now we can identify the SPM for this performance metrics as the best possible 
combination of these metrics as follows.
SPM  s ta te  vector

• (si) Minimum possible cell loss rate. (Min mi)

• (ss) Minimum possible cell delay variation. (Min mg)

• (S3 ) Maximum possible network resources utilization. (Max m3)

And we can define SPM for this problem as the state vector

S P M  =  (si, 5 2 , 5 3 ) — {0,0,max(bandwidth)).

In our model, employing the SPM state vector will force the neural network 
to obtain the possible best output towards satisfying all the metrics based on the 
defined state vector.

If we employ a specific SPM state vector that gives more attention to a specific 
performance metric than the other or that ignores some performance metrics, then 
the neural network will be forced to give more attention to these specific metrics 
than the others.

In the previous example, more attention is given to cell loss rate than cell delay 
variation in text data transfer, while giving more attention to cell delay variation 
than cell Loss rate in voice transfer.

Definition 4.2. P a rtia l SPM  .• We define a partial SPM state vector as a SPM  
vector that ignores one or more performance metrics.

For example,
{si, 8 2 , 3 3 ) — {0 ,-,max{bandwidth)).

is a partial SPM state vector that doesn’t give any attention to the second met­
ric.

In some cases it might be impossible for the network to reach the SPM state, 
because the complex relationship between these metrics makes satisfying one met­
ric is against the other. In our example, satisfying the cell loss rate (mi) and the 
cell delay variation (m2 ) will be against the complete satisfaction of the network 
resource utilization (m3 ). This is because achieving maximum ATM̂  network uti­
lization (m3 ) means increasing the network traffic and the allocated bandwidth, 
which increases the cell loss rate (mi) and cell delay variation (mg).
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4.2.2 Neural network structure
Our model consists of two back propagation neural networks, partially overlapped 
in the hidden layers and sharing the same input layer. The output layer of one 
neural Network plays two roles as it acts also as a part of a hidden layer of the 
other neural network.

SPM

Regulatory NN Output Layer

J
Mam NN Output Layer Hidden Neurons

k. >

Overlapped Hidden Layer(s) ' g

t
Shared Input Layer

Figure 4.2; Model Structure, two overlapped back-propagation neural networks.

M ain N eural N etw ork (M NN)

This is a 3(+) layers back propagation neural network with one or more hidden 
layers, this neural network is responsible for learning the relation between the inputs 
and the outputs of the problem. This neural network belongs entirely to the other 
bigger neural network called regulatory neural network (RNN).

Training of this neural network will be performed in parallel with the training 
of RNN as shown later. The output of this neural network will be pumped again 
to the regulatory neural network as shown in Figure 4.2.

R egulatory  N eural N etw ork (RNN)

This is a 4(+) layers back propagation neural network with two or more hidden 
layers. It is responsible for learning the relation between the inputs and the perfor­
mance metrics of the historical observations, and to impose the SPM state vector 
into the output of the main neural network.
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It includes all the hidden layers of MNN as well as the output layer which 
constitutes part of the top level hidden layer of RNN.

Advantages of the  model

Since MNN entirely belongs to RNN, all of its weights are actually shared by the 
two neural networks. That will limit its weight freedom which leads to better gener­
alization of the unseen data by providing less error for each simulation, comparing 
to the totally free weights neural networks.

RNN, as well, will have less number of free weights as big part of its weights are 
shared with MNN which also leads to less error decisions.

The combination of RNN and MNN will control the weight distribution over 
the whole system, and then we can benefit from that weight distribution to impose 
an external context into the behavior of MNN in an efficient way.

Simplicity of the model structure which is based on back propagation algorithms 
makes it fast and easy to be implemented.

4.2.3 SPM  and SSE
For a specific problem, we can express its historical data as a set of patterns in the 
form {X, y, M) where X  =  (xi, X2 , • ■ • , is the input vector, Y  = (yi,2/2 , • • • ,yp) 
is its output vector, and M  = {mi, m 2 , ■ • • , m,) is the observed performance metrics 
based on the input vector X  and its decision or output Y. SPM defined as the vector 
S  =  (si, S2 , • • • , Sg) is the state of the performance metrics which we are looking 
forward to achieve.

Then we can express the sum square error (SSE) between the output of RNN 
and SPM as

^  D  q

Hm,S = 2  ^  ~  SkjŸ- (4-1)
j = l  k = l

Where D is the number of training patterns,q is the number of neurons in the 
output layer of RNN.
RNN being well trained means that it is able to provide an output that is close 
enough to its desired output.

So we can take the limit over the error equation in (4.1) when M  M ,
M  is the set of actual outputs, M  is the set of desired outputs. Then we get

lim^ E ^ , s  — S ' (4-2)
M — >M

From (4.2) it is clear that for a trained neural network the error to the SPM 
state vector is tending to the error between the desired outputs and this SPM state 
vector. For a finite set of training data and a constant state vector the error EjÇj g 
is constant. For infinite set of training data or in the online training, EjÇj g would
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be the SSE of M  to S.

In our model we expect to decrease the effect of this error over the incoming deci­
sions by employing a set of virtual data patterns {X, Y, S) in which the output of 
RNN is always the same vector S. It is clear that we can’t  use this virtual set of data 
patterns to train the neural network, because it will result in mapping a relation 
from any vector to the constant vector S. In our model we use this virtual set of 
data patterns to test RNN for new input vectors in a very sensitive way in which 
we don’t  allow the weight vector of RNN to change dramatically by the training of 
such virtual data patterns. In this technique we always take a step back to the set 
of weights that provided the best mapping of {X, M ) .

This restoration of the weight vector protects the system from getting distorted. On 
the other hand the output Y  of MNN will be produced according to the imposing 
of the vector S.

The output of a neuron i in the output layer of RNN is

(4.3)

Where H  is the number of neurons in the topmost hidden layer of RNN, hj is 
the output of neuron j  in this hidden layer, Wji is the connection weight between 
neurons j  and i, and /® is the output sigmoid function.

Since the topmost hidden layer consists of two parts (as the output layer of 
MNN belongs to it), we can rewrite (4.3) as

= r  f 4- ) > (4.4)
\j= l k=p+l )

where % = hj Vj G {1,2, ...,p} and p is the number of neurons in the output layer 
of MNN. Then we can write

= r  (Gi(y, ly^) -b G2(h ,̂ ly^)) , (4.5)
where G\, G2 are functions expressing the two summations in (4.4) respectively,
is the set outputs from the non overlapped hidden neurons of RNN topmost layer, 
and ly ^  is the non overlapped part of RNN weight vector.

Since is propagated from preceding overlapped layers, we can make the 
following substitution.

m, = r  (Gi (y, W^) -b G2 (X, iy°, W^)) , (4.6)
where is the overlapped part of RNN weight vector. According to (4.6) we can
see that Gi, G2 indicate the dependency of the performance metrics over the input 
X  and the decision Y. And that dependency was established using the provided
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model weight redistribution.

If the number of the non overlapped neurons in the topmost layer is small enough, 
then the dependency function Gi will be incorporated more than Gg in producing 
the final output of RNN. Hence Y  as the output of MNN will be more adapted 
towards satisfaction of the performance metrics during the error back propagation 
of RNN.

4.2.4 Training algorithm
Training of this overlapped system using back propagation algorithms has to be 
done in parallel. We will minimize the training of both neural networks and try to 
get a reasonable balance between them. Extra consecutive training for any one of 
them will certainly result in a distortion of the weight vector of the neural networks.

The ideal case is when every training iteration for one neural network is followed 
by a training iteration for the other net. Consecutive training over the whole system 
in such a manner will force the weight vector of the RNN to perform a specific 
distribution in which the overlapped section will plot the relation between X  and 
Y,  while the whole weight vector is also able to plot the relation between X  and 
M.

Since it is not guaranteed that both neural networks provide an acceptable 
solution at the same time, we implemented the following technique to adjust the 
consecutive training so that allowing a neural network perform more training than 
the other.

We trigger the system to take such decision when one neural network reaches a 
good convergence state while the other one still not. In this case the slow neural 
network will have the opportunity to be trained more while the other one will wait 
for it or probably perform a little divergence until they both be in a same solution 
phase. If the system couldn’t  come to a solution for both neural networks, then 
more neurons should be added to the non overlapped and/or overlapped part of 
RNN.

Before introducing the training algorithm, lets define R r n n  as the training rate of 
RNN, and R m n n  as the training rate of MNN. Also let R uax  =  Max{RuNN, R m n n ) 
and R u in  = M in {R R N N , R m n n )- The training rate is the number of training itera­
tions for one training cycle, where the training cycle equals to Rmüx- Define 
to be the SSE of RNN, and similarly to be the error for MNN.

A lgorithm

1. Start

2 . Set R r n n  =  R m n n  = 1-

3. Initialize RNN with random weights.
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4. Pick a random training pattern {X, Y, M).

5. If R r n n  > R m n n  or R r n n  mod{RMax ~ RMin) 7  ̂ 0  then train RNN for

6 . If R m n n  >  R r n n  or R m n n  m od(RM ax — R M in)  0  then train MNN for
(x,y>.

7. Repeat (4) to (6 ) for (Rmüx) times.

8 . Repeat (4) to (7) for (D /R mox) times.

9. Repeat (4) to (8 ) for a number of epochs.

1 0 . If (E^ivjv i® acceptable but i® not acceptable) then increase R m n n , Else
if is not acceptable and is acceptable) then increase R r n n -

1 1 . If {R m n n  =  R r n n ) then Set R r n n  = R m n n  — 1-

12. Repeat (4) to (11) until i® acceptable and is acceptable.

13. End

It is known that the error function for the output layer neurons in back propa­
gation is different from the error function of the hidden neurons.

According to the provided training algorithm, the first hidden layer(s) will be 
treated as hidden layer in both neural networks, while this is not the case for MNN 
output layer as it will be trained for error as an output layer in MNN using the 
learning equation

ZiWij -

where ÿj is the desired output for neuron j  in the output layer of MNN, While 
get trained for error as a hidden layer in RNN using the learning equation

Awij =  -rj -d kW j^  Oj{\ -  oj)oi.

Where is the change of the connection weight between neuron i and j  
according to the back propagation algorithm, rj is the training factor, Ok is the 
output of neuron k in the upper layer, 5k is the output error of neuron k in the 
upper layer.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4. NOVEL CONTEXT SENSITIVE MODEL 69

4.2.5 SPM  incorporation algorithm
Lets define a degree of dissatisfaction for the output of a neuron k in RNN 
output layer as follows

^SPM _  f  ~ Tn-k if 7  ̂ “ — ”
 ̂ [ 0  otherwise

In case of partial SPM, will equal to 0 for all ignored metrics and will equal
to the error between the neuron output and the requested satisfaction if specified.

The following simple test algorithm is able to provide the output of MNN ac­
cording to the required satisfaction criterion. The regulatory neural network is first 
consulted to estimate the performance metrics of such input data and then evaluate 
it against the SPM state vector. The resulted error will be back propagated in the 
whole system to allow the main neural network to provide a suitable solution for 
such satisfaction.

Algorithm

1. Start.

2. Backup the weight vector of RNN.

3. Test RNN for the given input.

4. Compute the degree of dissatisfaction for all output neurons of RNN.

5. Back propagate the degree of dissatisfaction to RNN.

6 . Test MNN for the same given input.

7. Restore the weight vector of RNN.

8 . Repeat step (3) to (7) for all the test data.

9. End.

Steps (2) and (7) are used to backup the weight vector of RNN and restore it
again after the testing is done. The need for that is because our testing includes a
step of error back propagation for RNN. If we ignore its commutation that would 
cause divergence of the MNN.

4.3 A Sim ulation Exam ple
Street traffic control is chosen as an example for its well known structure. In this 
example, we want to control the intersection flow using information of the previous 
3 traffic cycles.
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Training data were obtained from a software program (Traffic flow controller) 
developed using C++ language based on real traffic rules. Traffic flow control and 
the performance metrics were obtained based on setup data such as intersection 
structures, average vehicle speed and dimensions, etc.

For simplicity we simulate two intersected streets constituting four traffic direc­
tions. Each street has three lanes and the middle lane is for left turning (see Figure 
4.3).

\N<- ■>€

Figure 4.3: An intersection of two streets with three lanes each, the middle lane is 
left turn lane.

We denoted the four directions by ( North, South, East, West ), or simply ( N, S, 
E, W ). Traffic Light has five statuses ( Red, Yellow, Green, Left Arrow, flashing 
Green ). A traffic load is an ordered set of numbers, {Nn s , A^vl, - - - , N wl), where 
Nns is the number of vehicles heading north straight and N ^ l is the number of 
vehicles heading north left, and so on.

A vector of the intersection traffic lights at any moment is ( N Light, S Light, 
E Light, W Light ). For example, the traffic light state vectors for the Intersection 
( Green, Green, Red, Red ) and ( Red, Red, Red, Red ) are valid vectors, while ( 
Green, Green, Green, Green ) is not a valid state vector. There are 14 valid state 
vectors in a traffic cycle. Each vector is associated with a time interval which in­
dicates the duration of that state vector. After that time interval, the traffic lights 
changes to the next state vector.

A solution for a given traffic load is a vector of ordered time intervals correspond­
ing to each of the 14 traffic light state vectors, which constitutes a complete traffic
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cycle. A Traffic cycle is set as 120 seconds.
The performance metrics in this example are cumulative numbers of vehicles 

which were delayed for at least one traffic cycle, while crossing the intersection. 
So the performance metrics vector M  = {D ^ s ,  Dnl,  • • • , D w l ), where Djvs is the 
number of delayed vehicles for North-Straight direction , and so on.

4.3.1 Neural network design
The main neural network has three layers of (32,32,14) neurons consisting 1472 
connection weights between them, with an output sigmoid function.

The 32-input vector describes the last three cycles traffic loads (24 numbers) 
and the numbers of current waiting vehicles. The 14-output vector is the sequence 
of the traffic light state time intervals, which is a solution estimated for the incom­
ing traffic cycle, based on previous three cycles traffic load.

The Regulatory neural network has four layers of (32,32,32,8) neurons consist­
ing 2304 connection weight between them, with an output sigmoid function.

The 32-input vector is similar to that of the main neural network while the 8 - 
output vector is the ordered set of the estimated performance metrics vector defined 
earlier.

It is clear that RNN is sharing about 2 thirds of its weight vector with MNN.

4.3.2 Simulation results
This example uses a set of 10,000 data patterns {X, Y, M)  which are from the 
C-I-+ program. 5,700 of them were used as training set while 4,300 were used 
for testing as unseen set of data. The neural networks were trained for 1,140,000 
iterations. SSE (Sum square error) between the neural network outputs and the 
desired outputs was read for training and testing for both neural networks.

7

8 

5 

4

3  - 

2 

1 

0

-  -  -  -MNN Not Trained 6 ■......-...........................................
----------- MNN Trained

-  •  -  -MNN Not Trained

20

(a) Training

5

4

3 • 

2 
1 

0
25

(b) Testing

Figure 4.4: SSE of MNN sharing all weights with training of both neural networks 
(Solid), only training RNN (Dashed)[X-axis is the training, Y-axis is the error].

The error on the Y-axis of Figures 4.4, 4.5 and 4.6 was computed as the SSE of 
the actual and the desired output.
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In Figure 4.4(a) and 4.4(b), we compared the results from different settings. The 
dashed line shows the error of MNN which is a part of RNN without any training, its 
weights change only according to the training of RNN. In this case its output layer 
was only acting as a part of the hidden layer of RNN. Training RNN certainly affects 
the weight vector of MNN but doesn’t  produce any specific weight distribution. The 
error for training set in Figure 4.4(a) and test set in Figure 4.4(b) respectively is 
very big. The neurons in the output layer of MNN is only trained as hidden neurons 
in RNN. The Training algorithm provided allows them to provide solutions together 
as well as provide the requested weight distribution. The solid line shows the error 
when both RNN and MNN gets trained according to our training algorithm.

eperate

Overlapped
 Seperate

-  -  -Overlapped

10 15 20 25

(a) Training (b) Testing

Figure 4.5: SSE of MNN sharing no weights (Solid), sharing all weights with RNN 
(Dashed) [X-axis is the training, Y-axis is the error].
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Figure 4.6: SSE of RNN sharing no weights (Solid), partially sharing weights with 
MNN (Dashed)[X-axis is the training, Y-axis is the error].

In Figures 4.5(a) and 4.5(b), we tested the effect of the network overlap. We 
considered two situations for the system  , separate and overlapped. In the separate 
status there is no weight sharing, i.e. MNN is totally isolated from RNN and has 
its own different set of weights. In the overlapped status MNN shares all its weight 
vector with RNN according to our model structure. The solid line shows the error 
of MNN in separate status and the dashed line line shows the error in overlapped
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status. It clearly shows that MNN provided the requested convergence although it 
shares all its weights with RNN. So overlapped system reduces the number of free 
weights without reducing the function of the system.

Figures 4.6(a) and 4.6(b), shows the error of RNN in the separate and over­
lapped situations in the solid and dashed lines respectively, we see that RNN also 
provided the requested convergence in the overlapped status.

In this case we see that the overlapped system is able to provide the performance 
metrics as the output of RNN, while being able to provide a solution to the given 
inputs from MNN output layer which is also part of RNN topmost hidden layer. 
We forced the weight change of RNN to perform such specific weight distribution 
that allows us to impose the SPM state vector over MNN behavior.

After establishing the requested weight distribution a test for the overlapped 
system reaction to different SPM state vectors was done over a test set of 1000 
unseen traffic cycles which forms 33 hours in terms of time. Testing of the 1000 un­
seen patterns was done by the provided SPM incorporation algorithm. The traffic 
light state time intervals was obtained from MNN as its output.

According to the obtained MNN output and the intersection traffic load we com­
puted the cumulative number of delayed vehicles using the traffic flow controller 
software. In this way we can measure the effect of imposing the SPM state vector 
on the traffic performance of the intersection.

For simplicity we express the number of cumulative delayed vehicles as 4 dimen­
sional vector. We take our measures for the four straight directions only.
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1 0 0 0

0
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(a) No SPM incorporation
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1000

0

----------- North

—  -  - - . South 

..............East

200 400 600  800  1000  1200

(b) SPM =  (0 ,0 ,0 ,0 )

Figure 4.7: Cumulative delayed vehicles over the time resulted by traffic computa­
tions over MNN output, [X-axis is the time, Y-axis is the number of cumulative 
delayed vehicles.].

Figure 4.7(a) shows the performance metrics over 33 hours without any SPM 
state vector incorporation. The measure of the cumulative delayed vehicles in the 
four directions was ( 1718, 1323, 3526, 1320 ) for ( Left, South, East, West ) 
respectively,

Figure 4.7(b) shows the incorporation of a SPM state vector (0 ,0 ,0 ,0),the mea­
sure of the cumulative delayed vehicles over the 33 hours was ( 2074 , 867 , 415 ,
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748 ). It is clear that the system provided a great enhancement of the traffic flow 
over the 33 hours by decreasing the cumulative delayed in the south, east and west 
directions, with a little increase in the north direction. This is considered the best 
performance metrics over the whole traffic system in these conditions.

The (0,0,0,0) SPM state vector acted like a set of magnets, each one of these 
magnets attracts the output of the main neural network towards the satisfaction of 
the corresponding performance metric separately.

The total force of attraction of these magnets could achieve such reduction of the 
cumulative delayed vehicles in the south, east and west directions. It also caused a 
little increase in the north direction.

The total enhancement in the four directions i,e. the summation of all the cu­
mulative delayed vehicles has been reduced from 7887 to 4104 delayed vehicle in a 
period of 33 hours.

According to the training data of MNN, it was trained to give more attention 
to the directions that are loaded with traffic. For example if the traffic load for 
north direction is expected to be high, MNN will produce a set of traffic light in­
tervals for the next cycle in which more time will be assigned to the north-south 
Green light.

We can see that the overlapped system has two sets of forces that affects the 
final output of MNN. These forces are solution force and the regulation force.

The solution force is produced from MNN training and its tendency to provide 
the desired solution. In our example, this force works to free the loaded traffic in 
any direction without paying attention to specific directions.

The regulation force is produced from the SPM incorporation to the output of 
MNN. In our example, it works to free the traffic of the four directions according 
to the requested satisfaction of the SPM state vector without paying attention to 
which one has more traffic load.

Hence we get the output of MNN that is balanced using the solution force 
towards the desired solution and the regulation force towards the SPM state vector.

In Figure 4.8 we are testing the system reaction to the partial SPM state vectors. 
In Figure 4.8(a) we gave priority to free the east and west directions by choosing 
SPM state vector =  — ,0,0) and in Figure 4.8(b) we gave priority to free the
north and south directions by choosing SPM state vector =  (0,0, —, —).

The results of imposing both partial SPM state vectors show an excellent reac­
tion from the system, and we could obtain the requested prioritization over the 
selected traffic directions.

Another set of results based on different SPM state vector is provided in the 
following table.
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Figure 4.8: Cumulative delayed vehicles over the time resulted by traffic compu­
tations over MNN output using partial SPM, [X-axis is the time, Y-axis is the 
number of cumulative delayed vehicles.].

SPM state vector Result Performance metrics
No SPM 
<0 , 0 , 0 , 0 )

(0 , 0 , - , - )  
( - ,  - , 0 , 0 ) 
(-- ,-- ,-- , 0 ) 
( - ,  - ,o ,  ~)  
(0 , - , 0 , - )  
<0 , - - ,- - , 0 ) 
(0 , - , 0 , 0 ) 
(0 , 1 0 , 0 , 0 )

( 1718 ,1323 ,3526 ,1320) 
( 2074 , 867 ,<115 , 748 )

( 9<U , 6713 , 2t%!3 ,<1314>
( igrri , 1560 , SI61 , 846 >
( 1454 , 11(%) , 2037 , 399 ) 
(2561,2255 ,1000 , 6  )

( 1567, 2546 , 772 ,386 )
(942 ,5 1 7 ,3 4 1 1 ,2 2 3  )

( 31355 , 3081 , 712 , 1.45 ) 
(:2216 ,3I()71 , 1062 , 41 )

Table 4.1: Performance metrics after imposing different SPM state vectors

4.4 Conclusion
Our novel approach of solving problems is based on satisfying its dependent perfor­
mance metrics. This approach allows us to provide an integral and efficient solution 
regardless of sufficiency or accuracy of its historical observations or lab simulation 
data.

We measure these dependent performance metrics of the problem and perform 
regulation to the neural network output to gain better satisfactory to these perfor­
mance metrics.

We employed a state vector (SPM) of the problem to express the required prob­
lem satisfaction and we used it to enhance the final solution of the neural network. 
The partial SPM vector also can be used to control the solution behavior by prior­
itizing the satisfaction of some specific metrics over the others.

Our model consists of two overlapped back-propagation neural networks that pos­
sesses a specific weight distribution among their weight vectors. The first is the
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main neural network which is responsible for mapping the input to output. The 
main neural network belongs entirely to the second neural network. The second 
network called regulatory neural network is responsible for evaluating the perfor­
mance metrics satisfaction and imposing the degree of dissatisfaction to the output 
of the main neural network.

Training of such system of overlapped multi neural networks required a specific 
algorithm that prevents extra consecutive training cycles to any of them and let 
them provide solutions in the same time. In this algorithm we trigger the slow 
neural network to train more than the faster one and also keep flipping training 
cycles between them.

Our algorithm for incorporating SPM state vector to the final solution is based 
on error back-propagation in which we let the regulatory neural network estimate 
the performance metrics for the unseen inputs, evaluates the degree of dissatisfac­
tion and then back propagate it through the overlapped neurons. It allows the main 
neural network benet firom the such regulation and provide better solution towards 
the required satisfaction.

Simulation results of a traffic system show that the overlapped system of neural 
networks could establish convergence to their desired solutions while the main 
neural network is sharing its entire weight vector with the regulatory neural net­
work. The results also shows that the system provided a great enhancement to the 
solution by incorporating SPM state vector so that the cumulative delayed vehi­
cles for all directions had decreased dramatically during a test period of 33 hours. 
We could control the behavior of the solution and give higher priority of freeing 
some traffic directions than others by incorporating partial SPM state vector that 
expresses the required satisfactory state.
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Chapter 5 

Conclusion

Context dependent neural networks mean neural networks which can change their 
way of functioning in a context-sensitive mode. Using context dependency in neural 
networks is an important issue in many cognitive situations. In this report we 
introduced a novel context dependent neural network model based on overlapped 
multi-neural network structure. For that we gave details about contextual features 
and some of its applications in neural networks. We also presented some different 
strategies for applying overlapping in neural networks.

First, we started by introducing the basic knowledge and concepts of neural net­
works, and explained its main constituting components. The most common neuron 
model is McCulloch and Pitts neuron. Many different neuron output formulation 
functions were listed. The sigmoidal function is the most common one. We ex­
plained the multi-layer perceptron (MLP) as the most common structure of neural 
networks. The well-known method of back-propagation learning was also briefly 
presented.

The generalization ability of a neural network determines how well the mapping 
surface of the network will renderer the unseen inputs to the output space. Gener­
alization is mainly influenced by three factors: the number and performance of the 
learning data samples, the complexity of the learning algorithm employed, and the 
network size. We have shown the weight decay as one the approaches may be ob­
tained for the complexity measure. We briefly touched upon Vapnik Chervonenkis 
(VC) theory as a concept of complexity measure that can be captured.

We highlighted the radial basis function (RBF) networks and self organizing maps 
(SOM). Radial basis function networks can be regarded as a very useful addition 
to the toolbox of neural networks. In general, it can be seen that for many ap­
plications, RBF networks can provide a fast and accurate means of approximating 
a nonlinear mapping based on observed data. Due to the locally acting nature of 
RBFs, they have a tendency to require more data than a comparable multi-layer 
sigmoidal network.

77
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Our study of the contextual features involved a formal method to distinguish the 
three different types of features from the relevance point of view: primary, con­
textual, and irrelevant features. Primary features are useful for classification when 
considered in isolation without regard for the other features. Contextual features 
are not useful in isolation, but can be useful when combined with other features. 
Irrelevant features are not useful for classification, either when considered alone or 
when combined with other features. An illustration example was explained.

Researches that involve contextual features are mainly concerned with two issues. 
The first issue is identifying such contextual features among the whole feature space 
of a problem. The second issue is managing these contextual features, in which re­
searchers are concentrating on developing different techniques of managing these 
features and benefit from them.

We have presented the strategy of identifying these context-sensitive features 
and five basic strategies for managing them. Combining these strategies appears 
to be beneficial.

We have presented a context sensitive model for overcoming the slow conver­
gence problems, this technique uses context sensitively between features to provide 
a segmentation to the problem solution.

A context dependent neuron model was also presented. This neuron is considered 
a generalization of the traditional neuron, according to the mapping adjustment 
which is performed by contextual “fine-tuning” of weights obtained firom traditional 
networks. The mathematical model and the learning algorithm of this context de­
pendent neural networks was presented. A sample five-point XOR problem was 
presented as well.

Neural network overlapping is one of the practical techniques of achieving bet­
ter generalization and recognition rate. It is been used in feed-forward neural 
networks as well as in self organizing maps. It has also been used in shared weight 
neural networks (SWNN) in which the weight sharing or overlapping reduces the 
number of free weights while produces better performance on test sets. Examples 
of overlapped multi feed forward neural networks to perform function localization 
was presented, and a benchmark problem example had shown better generalization 
based on the function localization performed using the overlapping technique.

We have introduced a novel approach of solving problems that is based on sat­
isfying its dependent performance metrics. This approach allows us to provide an 
integral and efficient solution regardless of sufficiency or accuracy of its historical 
observations or lab simulation data.

In our approach we measure the dependent performance metrics of the problem 
and perform regulation to the neural network output to gain better satisfactory to 
these performance metrics. For that we employed a state vector (SPM) that stands
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for (Satisfactory performance metrics) of the problem to express the required prob­
lem satisfaction and we used it to enhance the final solution of the neural network. 
We also introduced a partial SPM vector which also can be used to control the 
solution behavior by providing a control function of prioritizing the satisfaction of 
some specific metrics over the others.

The novel model consists of two overlapped back-propagation neural networks that 
possess a specific weight distribution among their weight vectors. The first is the 
main neural network which is responsible for mapping the input to output. The 
main neural network belongs entirely to the second neural network. The second 
network called regulatory neural network. And it is responsible for evaluating the 
performance metrics satisfaction and imposing the degree of dissatisfaction to the 
output of the main neural network.

Training of the system of overlapped multi neural networks required a specific 
algorithm that prevents extra consecutive training cycles to any of them and let 
them provide solutions in the same time. In this algorithm we trigger the slow 
neural network to train more than the faster one and also keep flipping training 
cycles between them.

We presented a test algorithm that allows incorporating the SPM state vector to 
the final solution. And it is based on the error back-propagation algorithm. We let 
the regulatory neural network estimate the performance metrics for the unseen in­
puts and then evaluates the degree of dissatisfaction and back propagate it through 
the overlapped neurons. This allows the main neural network to benefit from such 
regulation and provide better solution towards the required satisfaction.

Our simulation results of a traffic system show that the overlapped system of 
neural networks could establish convergence to their desired solutions while the 
main neural network is sharing its entire weight vector with the regulatory neural 
network. The results also shows that the system provided a great enhancement to 
the solution by incorporating SPM state vector. So that the cumulative delayed 
vehicles for all directions had decreased dramatically during a test period of 33 
traffic hours. We could control the behavior of the solution and give higher priority 
of freeing some traffic directions than others by incorporating partial SPM state 
vector that expresses the required satisfactory state.
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'':&Z 
/«■ 
/ '  ■ 
;Xf ■ 
/•̂

[j5ffiAt:i:;:S;;iiiiF3FissF
l a y e r s  o f  t h i s  ne t

momentum fa c to r  
l ea rn in g  r a t e  
gain o f  sigmoid function  ' 
t o t a l  n e t  e r ro r

V

#d%Bip# 7Wpaëglçi0ri#hsd!dh%F  ̂iigify) 7A#i!Rb#F 
'#Pe@lhd§$#^F#i:lcLblpBtiFIht#rvaLsigi%)s: :S'T 
F#dbfy:heF:0@fyëYOf;lë%btWdhsi:/7:FdTQ:bB)W%
AE7ï]F§07#:%#ii:- iU 77 '
7iB@|::fyp7Mlfyy|jüxip5ptiU fiCLbipBpEintervaTBli t7i:iA' CfîCC' . 'Fs’sB
'fpefîpeiïfyMiMiaitfyèr^ï^PdBpüÊsi il'®fyiîl:CipirfeharpÀs|;t:;i

i:G

{Number_Of_Tnputs[0 j '%  
{MNN__Number_Of_Outputs

s jràè  f  iiÇiïBimèftsidh?:: il:)':in t  P ile_ O u tp u t_ P o in ter[2] 
in t  Number_Of_Layers[2] -  
dpBïFWBB
Flptï ;FfyàinbëBi0:fTHidâëp fyji;:? i,
:intiNu03ppl0pi#üp
'fytFsfyMberi^ [4lfy{;{Nui^er^ [0 ]
;s;:i:iiTFi:-i:ii:f* i F; MfWLNufytërüĜ ^
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:dpnbleiSFfy)ëdi âiniii'i#0gB:;FFiFFFFFiFFF%F:F FF 'FFF: .F:.FFFF̂#Fg FFFsFFFF'iFFF''F''i'FiFFFFFrFFFFFFF.'''
:BpuBFlfy:GF̂ rFdSbar,tiEelFaÿTBaFteFFF#2 F;F; FsFFFFFs,,:FFFFFFF:FsF@FsW#FAtfŷ^̂
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F.fF’-'F' :-F,FFFFF F-FF'F]FF®FF-FFF,tPFÉArit:er®Mk®Yfe-3F-16Fw®MakiRë<fyFMà

/ /  Mi n V e c t o r  [T im e • -:yfy fyi-®:/)'"'. '®'i; ® - . 7" F i-'i'"F..
in t  Stage_Min[Traf fic_L igh t...In terva ls] = (0 ,0 , 0 ,0 , Green_Min, Yellow_Max, Red__FMax,

N C i N ' i ï c U ' y y N ' '  ;'-;-'7ff:-'- F . FiFFFiiFFF' FFiiFOFy 0 , G, G , Green„Min, Yellow_Max, Red_Max} ; ,F"--'ï-vf,-,,-'F';FfFs
■V;ç, M a yc:yec tç^[:T îm e  ■ \ sF-'fy;® 7'®- i,i-yFB'-jfyi:-'.

7inbFFFfytèryaFFLdBÎSraf f iFpTTdBBFtbîntêrvalafy ; : YiFFAttifyfFFWçife  ̂
in t  I n te r v a l [T ra ff ic _ I ,ig h t_ In te rv a ls3 ;

■ V /.M a p p in g  a x 'ra y  b^atw een: t h e  v e c to r s :  a n d  t h e  a f f e c t e d  T r a f f i c  D i r e c t i o n s
■ // i o j  , i l  j -':fpr t h e  'm a jo r  .two / a f  f é c t e d [ { p i r é c t î q n s ,  . ':-:..-®:i.F.'' . - /-i '

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2],.O .for/; ùhf m inai: 'two. a f feç t 'ed^D irec t ion s  :y ®:-
. ^ q d V j ; m y ,  ^ z - é c C i f d h

//'i'.' v N o t h -  i  [South:::::’E a s t..  ’:.r. """
 ̂ L: /}::S" '■■ r, : S " h r  '

in t  V D M ap[4][T raffic_L ight_Intervals]=
F  -  s i i F :  :  :  :  F S s ' P  

7B'.i:.7:F;FFF ;7;V-:®TF:7,FF;i7-;'i2;,:l>:3:v;;2,,F3F, a , F - f y ^
:F ;siiS:;F:s .sFsF F's- F. f - I v r l o F F t T / h i ' ; 4 ; ^  <F :F.

F:i.®7 FssisF:Fs.s,;::FFFfy:i'® ii"“B ,st iF' %72:, 4 1  i, ' : " i ' "Fl y -i:, 6 , 6 , - 1 } } ; 
i n t  VD M apY(Traffic_Light_Intervals] = { 0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0  };
d p u F b : f y F F : W K t b l n g ® E a c t p r ^  F F F i F F F . F F . F F F F F F F 7  F F U F F F F F s F F ' F / b F F F ' F F ' F :  F F f F s F ' F , ' F F ' - ' s F F F s F  'yy-ACÇ: :̂

s B q u B F l # F F W à f y F F t n g h E a c F t B r ® Ë n Æ . v b F . F ' i F F i s F i ^  S ' i F ® F : F F F F F : F i F F ; F 7 F F F F : F F F F F : F F : F
double Kean[2 ] [T ra ff ic ..L ig h t_ In te rv a ls ] ;

sdpFuFbleFFFl:TrainErrbrFiF2F17iF ® FFsFFs®:;v7F;FFFF''F,F:FF7Fi7FFiF;;:F 7FFF'FFiFF;FFiFFF'‘F,F:FFF::sFF:FFFFv;F 
FdpublBsTTraFinErrbrfynedidFtiFngBeanFfPFFiUF FiF7:FF7FFFFFFFF̂''F'FFF̂ FFFFFFlFF'FFFFi 
■'ddübFië;'FF7iïesFbFEr:rFpr:Fp2F}FFF?FFFFFFF;FF;FFFiFFFFFFFF:v F FFFv F f F : F f f f F F f F , : F ' F F f F F F F f F f F , F  
FFddùFblFBF;F::l%s,tFErrprPrëdicbîdgMéàh;[2:Li®FF''F:iF'FF'VFSFFF''FFFF7FsisF:FF:FF'''®vFF;;iF 
FFdduBie;;FFfyfyiFP®M̂F['2FFj7t.2F:;:FF*F,:FFTfcaFfy4,c®blmensFidFhsL : : : C ‘: C N

FdoublFS: F FF7ÀpqFl:3Wï#[i F#fyF'®FF%rkÿf i  c®]ipendFipn$FlFiFF;F̂  ̂F.iF-: FvFF FFFF/FiisF Fi - FFFFFFFs®F:(FFF@FF:i
KdpüFB®BFFFÔFutFçfitid*ldxï|2d;:l::ÿiSF®ÉÆdl̂  F F : F F f F F î F f f F F F f F f F F ; F f 7 F F F  ;®V:F,;SF:FFt;FF,'FFF
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7F777FFF7®FFFF277F7FFF7FifF:7É&n%î nW77Ka)gfyFI7[:iFFFF®p®Trà£Ffyd̂
F: FF'::®yy:yys;y:y®:;yy: y,®ss2::.tiE0dFfMioÈ0imënsiFdhs%FFFFF!F#FF:PF
®:fygF7##77#®782®:F®®5F2#077F08®
sFF;FE7F:'7F77gFF:®'®'7"Mb#fyî@0dPWP'FFŴ ^̂
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F;'.Fs'F'vFFF®®;®F:F7FFFFF;:sF:.:FFFFFF7F7FFFs®®sy:7NpmbeÈs;PfŷFBabèerênsF;F:7F''®FF'®'F'FF®F: '7777a.F7FFF7FsFF;FF.F'F'F'F;/F:
s:®F8F777i®7F7®%®K yFFF7FFF7FF®:F#$FFV®287̂^̂^̂ FFFFFFlFFF/'y'FFyvsiiF'iyyyiiFFFyFFF®
FFFFF. FF FF;}:;; syc/àss : ; s F Bbs e4F N; F, FF:;:®®/̂F ® AFFs - ■ ■■F"-7f:F>:'F.:F®s®:®,''.;f7F'F7eFFffF!f7'7F/F;,fF-7

FF®
Data_In_Double ' [i ] [j ] - L O ;

a®

7(î Fi;: =Traf f  ic_Dimensions i  
Output._Max[ 1] [j -T raffic_D im ensions] -  
Output_Min[l] [ j -T raffic_D im ensionsl : =

< (2*T raffic_D im ensioas); j F 
Inpuc_Max[l] [ -j ] ; 
Input_M in[l] [ j ] ;

+ r) {

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



void I n i t ia l iz e A p p l ic a t io n {void)
-y, F '■2s;yy2/;ii. :s,-/F7 y

F® yPiie i  Input s : : y F F=F: f  open ( F''FÎ npü t s , t x t  *y Fy " p  " ) ; y:, : F 
F y E ileT^U B erf ormànce : F Fr = y; f 6peÀF( TWPër f . t x t  '• F, : '' y " ) ; F F -

FFy'FFFFFii.erOuppubpFyFFyF. = f open {" Ou tpu t  s . tx t  " , " w " )  ; 'FyFFF;.®:'Fi:
FF F iieiT ptalS : y® fopen ( " T o ta ls . tx t"  , "a");

,;Fy;;ÿFEFilFe®qnt'pp-t: spFFdrmafcédFFF'F 7,yy =7 ,f FbpenyC ":ëbrma t-pèdiFFtFxblFF
FF7/'Fiië77N#^ëi'ghtà7sy;®F:i%F7f.9PFqpi F':WeighbSF7Bxt®Fy.y:yyrŵ
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f i i E K i E  % é é : k É E r r d r E [ O E l E : E i : ? : E E E : N e k ( ) ; T ' E ^  ' E E E  E E E - E ' f E Î E E E ' - E ^ i E E ' E E E E E ' E  i - E E E ’ E E ' E E E E E E iE ' E E E e E E ' ' - - '  - i ,  ' E E E [ ' ' E E E E E E ' i

E: E E ; E E  • E E S E i i n u l a E b d ^ e u r d i i E N e f e w d r K  : ( N e  1 1 . / v E E E L i n e  E 'i , E  O u  f c p u k l ' ^
E;::[E TësEkËrrOrEIEIjE: •4i:ë''ENé:fefe>Errpr EÊ-ï' E:E[EE';bEEÊEEE'EEE/'' iEEEEEEE>EEEEEEEEEEEEEEE/E'E':'EE:"E:̂

E E .,E E É # :E E E E E E E :E ;:E E È 'È ''E E E Ë E E É E 'iE # E @ E E E R ''@ : '% E ^ B
" "EEf ppinEtE;ÊlEFiEléEEJE®iElEëÇÊpîdnânpë:EîE ,:E: .NfnNEëtworEk 
E,EE[EiEEEEEEv®ïâihiiipEjSéPEE'&SEE;E%EOE:dEiEEpnEE'̂ ëskEEE'Sè,dE:EE;.EEEETraî
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ink De_Normalize_Output(double f In te rv a l  , ink TheJ , ink WhicEh_NN )
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e lse
; W aitingCars = i n t (Waiting_.Factor_EW * D ata_In_Integer[L ine] [ i ] ); 

V7aitingCars+=RndInt( 0 , D a ta_ In _ In teg e r[L in e ][ i]- W aitingCars) -  : 
i n t (1.0 * (D ata_ In ._ In teger[L ine][i]- W aitingC ars)/2 ); 

i f  (WaitingCars<0) W aitingCars =0; 
i f  (W aitingC ars> D ata_In_In teger[L ine][i])

■ W aitingCars =D ata_In_Integer[L ine] [ i ] ;  E E-

EÿërfprmancÉe^éiridàlilEÉE:## :%aitingCarsE:i'E'-E:E'k:EE E/X 
ECars„In_Queue[i] = D a ta_ In_ In teger[L ine][i]-W aitingC ars; 
Waiting_In_Queue [ i  ] =Pe.rf ormance_Metrics [i  ] ; Xee;x, ,;;;:ExiE;EEÉ

}
e# e:«:ex.
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{ / /  Then E s t im a te  Bow many C ars  w i l l  come d u r in g  th e  d e l a y  in  s t a r t  of t h e  l a s t  c a r  in
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E|ÉExWE'dE:EEEdxlEEÊE#ExxE'EEXX#EÉ2:Ê
’E'''E-'X' t o r  ( c - 1 ; c < = C a r s _ I n _ Q i a o u o  [V D M ap [ j ] [i] ] ; Ed#;4-E)‘' - EE-E'X

{
< E'EEiE EX'XE i f  (LastpaiStaptbelaiyEEX'EkXCddiEng E E ' 'E| E tr'E xx:: ' xEX 'EeEE'E''E'?x'E

xxEE'iE'xxx:: Min_Time_Interval_Between_Running_Cars)
E -.,e V e ; ' 1 ' x E ' x  iE E E 'x E E :E E x E i:E 'E E .E x '-E x E E 'É E - x

i f  (Rnddouble(0.0 , I n t e r v a l [ i ] ) <= (L astC arS tartD elay-
(ComingFirst * Min_Time_In te rv a l_Between_Running_Cars)) )

E/Exx-Ex X . EiiE.EE'EE\EEEEE:XxEEXE: EEEE XE'E/: xEEEE|iEEEE\xXTE E EiXEE :x:"'':x|EE'^\E-^ -X ÉE'eEx'E
C oningF irst+ f ;

X L astC arS tartD elay  - D elay..Iri_Start (Performance„M etrics
■ E EEeEE'"'"e.;ExEEE''E'E,e;x,ExiE-EE, Ee:,E [VDMap [j ] [1] ] E*E:(#bbingPiiàtExlEX 'E/E

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



vfx::.",e,';:x:""e ■ : , j  ç . ■. -xeex̂ e' X
Ex XEEe Ex . / X e x E V e E I eE  : ■:x ' ; E , . X X : E x EEx E:X,E

X  : X .X  X  : X : : ë i s e  X  ̂ ' X X ' X^ ^ X ■
d ExExX:;xx:xxxXx{E'-'''e . . . E E x X :X x : .

break; %
E:EEXEEEEXxxXxiE X E ^..x. / " - / E i
E:eXxEXx':;)'Exxx .. 'EtxEXEEEExX
ExExxxxIX xExX xXxxEE: . XX ...x.x.E
E'XExE:E;'XXx:X:X;EEEEEx:eX:E;Xx XX: :X xExEEE:xXEx;XiÉx/xxXxEE:E.x
IntervalRem  = I n te r v a l [ i ] ;  ■
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XXxXxEExX : X i E # X  : & e : : X R ë m a : x d l n ÿ X # 6 i ; e  i a E x e n q n % A x i E f c y ' â x x x  X'^EEEEEXxEiXxXEExX:

X PeEpÈprmadeëXj^ebrircà [EvËMaEpEE0:1̂ EEEEEEE'EEEEEEEExxx:XEx|xEEExxE'xEEEEEExE ■
' : x X E / x E x E x x x x  : C a d s _ « ï n : . _ d u ë d ë E [ % D M a p l g E b [ % : E ] : E # # E ' : 0 : ; x E E X i X E E x E : . i X E X : ; X : ; ; X E E X : E  E E E X :ExxE E xE  
x E E x E x E E K iE x X  X x x '‘E '''''E :EEEE X xxE ^E EX 'EE E E E :xE E E E iE E sÊ E'x 'E -E x:xxSgE E :E §¥“ExE.-EEEE
;EEEE}EEx;E:EE:Exxx:xE::xxxEE\:É'x'xxE:':x'EE'EEEEE''xEExEXxX ;  'EEx e êX x x x x eEx EEExxee 'x e x x x x I E x EE'EEEExE:EKEEEÉE:x'EXx::XxxxE
ExlEX'E:''EEE'EEÊ 'XX'EE':XE::xxEEE',xxEx: Exxx̂XEx':'ExEE:'EEE'ExE:EEE::ExExExxxxEx:xx'Ex'XE EXEE'dEÉEEEÉ,;x':X'xEExEÉE. eX:|EeEEexEEEX;EXxE':eexEEE'EEExxxE:xx

v d i d E : E Ê 3 r à s f e Q à E X G r é ë n E ^  I n t x . : X E E j E ; E . ; , ; x E î n t x E :  ' 1  x ) E  E. :'xE ' X X
E E lE x E X g x X '% E x E # E ,x E E [  E \ ' ' : ' x " É ^ x x X  E ' ' # x E E x É E E d x X
: : XXXin#x0 e p é n d  X  E:. xG anC dpsëE x E,: x E p E x E l  'X x e Ex;Ex E'Ex ESi e x x EXE::,x .X iX ix x  x ;  X x EeEEEEE;'Ex * e'X ;X.:xÊ XxEx ,x 'EEx E''E'
E E ; X E ® P t i b l è E ' x Ë # e é F a p t p r E ; X X x E : ' x } E x X ^  E'XXEx ; ,  Xx EE^E'EEE.:; E x X X E x X  :X x'x EEEx j E x x .x':E'EE;EEEE'X''
E E X i x k f  xE^ Ex] x d r Z i  E E p e g e n d a l x X x ë l ^  l i :

:0 E x F E re e P a o tb r;X ë x X (L p a d e d E X T  [ VDM ap [ D e p e n d ]  [i] 3 -  ■.,
'■ E x Ex x EXEEiE'x EEx  G a r s ^ l p ^ Q u e u é E i M ^ ^  [ 1 1 $  ) X :  '■'E'E,:EEE'X"'E'''éE

x x r '  X E E A p à d é d i J P i d E f  È l p x X i n d i p a t p  [ 1 ]  ]  j ; E ;  E ■ x
x E x E d ; Ê E E x . ' { , F i ë é Ë à d t p ' r ' x k f l x E ; ) ; X : ' P b ' p ê F a ë E t p r e O ;  x

'C cizo^sE i  f  ̂ t h e  c ip p d s it  e  directibTiÉEiîe,.
■ :■■■:"/■/ '■■■ ' Then  M u ltip iy :  i t  8yE t h ë ' ^  beEEùihex.acùiiad ECarsx:tE.hàt cEà)i x

CanCross =0 x . ^
xE y:EE/Y'EfTvenx R.unniügroarS; ~wi'l.l;haye^ 'tOr STqw. d o ^r :  l i k e  ■a 'fitop” \

tO.'xjbe x a ^ le  ùo :ç ro a5 #x SOx ji)ë\ t re a :t:e d -a g  E fe r^ o n n ^ c e  xM'eùi'içs ç a r s .  '
EEE: f o r  E ( E c e l ; x b < = # e r f p # # a n p E e X 0 e t r i c $  [ V B M a p E f i  3 +

C a r s „ l n _ Q u e u e [ V D M a p [ j  3 [ i  3 3 ;  c  +  f )
EEE xE{xEEE/xE/E E XEEEEX :x;,.E;x.,; XXxxxE/Xx X'.'-E'xExx'ExEEE- x E X EE„E .,;:xX'E-''EExx;XX'X,xXx.
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X.X ; ( In te rv a l [i]  >= Time_To_Cross_Root_Selected(c ) )
- Ei'X CanCross=c; X ■.;xX''E'E'X:'Ê; \x''X xE'Ex'',-'-

:XxX 'X: Eïélse X
X break;i  ̂ X;::'-.:

XX l/EXX E :':'ExXx' : :",;.X.;;.; ^
X //  Only Rirf .of ùÂèm .Can cross; accqrdlng ko X Ike çorrespoiïdlnV crafflc ; X X X: 

i f  (CanCross > 0 ) CanCross = i n t ( CanCross * FreeFactor );

: if: (EPerEdràniancëXMetrics [VDMap îg] [iixl .:#̂

Performance..M etrics [VDMap[ j 1 [ i]  ] -= CanCross; X x,x XXy
XEgl:'xEjix# ' Xx/XXEXiEx XX::;;.x, X::X, xjX'Exx'xdx^EX; :xxxÉX;xX;X:Éxx# EE'Er-EEÊxEExx;:
X::E;élse4X:xX!Xi'X:;xX XXyXXxX:xxX;X.X,rXX'XXXxEE X:X: :X;XX .xXE:X"XX;X':'X' ■̂X:XX;''XX:xXE:XX»;,f;:.,,:X ■XxiX;:.:,,X„; :X:/':X'XXXX.:.,'xX
ExXx#:X'E::;E::x,X j 0 :x:Exxx:Xx x::i,:xxxx:xX;:::::Xlxx;x
XX:Xx:::xX:iGarsvlhXQdeuei[VDMa.p f jix if  xPef f  ormance#¥ëtrids:[VDMà

:iEX:X'XBéfformandejXMe#ricsl:VDMâp::[oE]::[i3É]x =xOx:X::fX:'X::'X̂ xx X::x:;Xxx:;X X :x:Xî  
xXXExlx: Xx'-x̂ Exxx x-:xX EEx: ExExi;Xx:;X:;Ev:E;XX [iX: X : XX;XEEExx:E:xXxXxx XXjXxxEx
1 xEE;xXx:xx:'':e:ExX'X::xxx,,vxExxXx:xXx 'X':E::Xxx' ' x::xxxXEx'xx ExXxEXX;X:x:xx:xx.,x:':xEXXE::E;:XXxx:;;
X#x-xxxxXfEXxXx-#x-x%X-xxxxXrXX%xxxXX.-xXxXX-'X__XxXX-xix3:X:,-:xxXXXfxXXXXxXxX
void Calc_M etrics ( in t  Line) xXEE/X/'XXxX'XEEEX:Xf'XX'Xx::xXXxx:x;Xxx:Xx'':X::x%xX:- iXxiXEi-XiEXxxEX.,; x-X::xi,X:':'Xj;X.

X:fEv:Ex:#xEx:X:Xx'ExEE::xix
.:X|.EX#BxxEE:iXx/:X:Ej:x:;#:.ÿp:f̂  ::X:XxXE,x:xE;:jiE:ixX;::XX::: xxix'X: i' ExxE 'E'' xxEXEExXx X :EExxEX'':::EEXx'

E :X :E fd rE xE :fX :i E ,=;Q ;X X ;s:;:i:;xk.=i-6:;' x :iX X i4:):ExX X : /XxiXXXXixiEExx u X x x d x X x E X ''' x:E:XX::'X^X''xxX:XXXX:XX';Xxxx'"XX;XxX;:X;'xi\;
(lili:iS&x:X:x;xx|xx^-xESx::x;;;;xxEx:xxxxx
xXxx:xE:X%d:tNSXK=::̂ :Einfërvàd.̂  X:̂E:X'x/X!Xx:xj:xvx'X:xXX:xxxxx:'x«X:XxXx:::;:::'xXx:xXxXX:"Xxxx:'X:E::: xxX'x:
;i:x0gx:xEXxX;E':::Ex : :'x:E %xEX:xÊ '̂ EiXxlAxEx EXExx'xxX'X ExE'Exx'X
XiXxâraiEffa^LSad'fedf _EWEX:f :xîlx® : yXlfa f  f i  c XCypie ;Xx; xx x: :xxxExxEx:X::.X' ::E i-XExi;-' x ■
EEÉXEtÿaif iàpXFaÊÊ9bXii^;Xv1x&x0X::fx:ÉfTfafff%W%XxXBu#icafdx̂ LàXx&iedë:(iLine:îx;xx:X;XExEg:E:x:Exx.;
xX:xffidc xf i:;EiXE=.:Q:;X':x: :::îx'k = T r à f  Ef idXlXipïttxXiôÉërvaiEàrïf :XXiixX;+xiip
,; ii lx ;:::x .x f:x ;:x : ||x a x x sx #
|X:i XXx:XxXi;fxx#Inf ë tv a i  [iiEi:w5:)iXx.x::XiXxx:: : :XX%xXxX:X:XXXX̂:X:XXXX;X::x:̂  ̂ Xv':
x ||® ;S;;;|pX X xX JX X :;IX |E |fxX ;||x#
XXX: :EXEXXiixXfd f  :::X$iX̂  x:#:0;x;x:djX;%ë3;XX ::X:XXXx:xxX:ExiX:xiEiEErAiXxE;:ÉxxxExE xx.xxxx,.

x||xi:E:ixii|:fSx:;x;;E:ïi;|Sxxxx||lx
XxXxxEdxx:■ xxxxE xxxffX :X {% 6âpE ixg :^xB iX  '^xxX;xXXXrSExJx 'S x X  ex:Exx:XXdE;XxXXxx#iffy-yyyvW-rWExXxKÉ;XE:XXxEx:E:X:X:

{
E x i f : X x ( # M à p # i E ] : : # :  X : ' ; X ' E x ; ' ' É x ; x X X X x : ; : g # x x x x
.X:X Xxt X'XXXXX'îfX#xè:xxs#î:ï® xxXXxX: XXXXxxXEX'ExxXxXX'X'X.-X;Xx:x. :'X:''. X'X

Exx:;::GrdésxOnXŸél0d#(' ::j'X/x::iExx;)ii;■ '.ixXxxX :x:XxX:X:.'xxxr X X 
x x x ! x i X x | : f | X i | ; X x x E x : : : ; x x x S
XXXXxxeisdiXiXfXxXxixXEXiiiXdxXXXiEXX: :i':''x::XExXxx<̂^̂

X '  X :  X i x X x : f  c x  i s  l à X g x x ç x X i X  i X X X X : j x X ' X E i X : ' X i X x X i X X ' X : ' ' x X x x E ; : ' , ' : x -  E X : x : . . ; X X x : :  : " X X x X E ' ' ' d '
X x X x X x l f  ::x:(Xx:i:Xx̂ v-bl :;EXE#2i:vfXa x x i ' X ' x x x :

r X ; C f p p s x Q p E ^ Q f K l ^  x ix:i xWî
X X x D i s e :  : X /xainc:t W f c d x x d i x f c c ù i o ^ i s  ' : ' " ' X ; ; : ' X X X  X E

;X'X'xx;,:Xxt'XX::C3;àèëxÇiixCîfeéniXLdfdx|’:'"j'X;XX::ixi:
: X'XXEE) ;x: X :Xx;..;x ÉcX. ExEEE;::* E:Xxx; xxExf : "EEEx

XXEXxx:X::X':xX::lx:x::X:x:X;X:x,X:x
Exi.X: X''x:x'''xï;X:xxxx:;d:'XxEXXXx 
x'dx:x:ix,xdxX:
:E|xx:'̂ 'Xx:x|EXEE;xXxxx
A d d _ Q u e a e _ T o _ N e x t .J . V a i t l n g  ( ) ;
:lxxX:XXX:x%''xxE:Ex:E xEEEX'W

void Push_Text_Line ( .1 nt: Line)
x''xE''eexxEé:;E..;x

: ; i-nt E i  xE:X:;, xxE X ;:''X:'';,X'x:y':.v\X" :; , ''''XEEX:':;
f p r in t f  (File_Our.puts , "SoFar Xxx' " ) ;

■fp rin tf(F ile_ O u L p u ts , "%5d " , L ine); 
f p r in t f  (F ile_O utputs , "Actual : :

fo r  ( i  =0; i  <=Traf f ic_D irr.ensions-l ; i  ++)
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fprintf (File_Outputs , "%3d t , Data,.In..Integer [Line] [i] ) ;
}

X f p r i n t f  (F ilë L O u tp ü tsX ,, E f  : Program m ed__W aitipg " ) ; :
XXfor ( i  =Traf f ic_Dim ensions; i  <2*Traf fic_Dim ensions; i  +;»■) E E x-E
EE {

fp rin tf(F ilo „ O u tp u ts  , "%3d " , D a ta_ In _ In teg e r[L in e ][ i] ); 
i p y . :  x'E/xEE E,:.;EE.xEE., E' xE'É'xE-xE'E

f p r in t f  (F ile_O utputs , " Programir,ed_Xntcrvals " ) ;
fo r  ( i  =0; i  < T raffic_ L ig h t_ In te rv a ls ; i  ++)
{

fp r in tf(F ile _ O u tp u ts  , “%3d " , D a ta_ In _ In teg er[L in e][i
ExxxxxXxXxXXxX.x :X'?:xx +2*Traf f ic..Dimensions] ) ; x/xxX;::XxXxx.:'x:xE/xxXxx:E:xXxX\;EMixxxxEEE

}
■■ EE ■fprintfE::(File_Outputs ■:.■.XExx; NNXTntéfvaipXXx.:: XxE.E. 'x f  ■
: ifdr":x(EEExi eOEfXxE: ixxx<=Tra:f:fidX xd:ghtdïdtéfvais.-E i:;X: xEiX'xifixx'. X

■■■"̂E'E:EXEp EeeEeEEE:eEexx.:;eexeEEEx;‘;EeEEEExeEex;eèxEEE eEEeE:(EEÉ̂
x'EeX'X'-: f p r i n t f  iFiElejDutpu te  xXpxx:̂ $3dE:'XX; !'r:XiEntërvaldB![Eilx)Eix:xXxXE:EEXxEX/x'X:XEEEE:xExx:XxxX

f p r i n t f  ( F i l e  O u tp u ts  . " A d a p te d  I n t e r v a l s  [xix:x :.-:x. E
E EEfdfxx:(x. Eîxx-=QEfExx:Ei.EE;faTràEfEffc:yLiÊ MlnterVàlsflfEEX:EiEEE'i'+lxxx'y x'X 

{
f p r in t f  (F ile_O utputs X;?xxfEf3 dEE,EXXx::XxExintEerVaElE]'!]EE)'Ef ■ ; EEX̂ -xxXxxE"x,

}
XxEfpEtirttfx(Fifê:x;EQùfputsE’E.:xX’'Xx"ExxEEE'EWaitinaE:EEBéf6 fëExDQntfdiEE'XvXy.':tr:XEx:Eïxx--/x:ExE''xEx̂
X : Ef dr:x::#xdXE.-f X;EXX;̂ g;x': «zzTràf f  i  oEybimënsidnsf :1 fExx X::jx x:;i*.:)x xx x ExE"XX'-Ex'':xxx'xXEEx'xxX:ixXX:lx'EX'xEx:x':X 

C
XxxEExXxfpfEint'f (EFiiëEXbüEpuEfi'Sïx:J;:'x;s:<|3d:ExEfx'''yxX’EWaifing[XïnfQÜëuéE[u 

}
|x;xfprinffxtFilEeiSQj|EpuËsEE;;XX:jExX:Xx'Waiti'rigiMiE;iE|àf̂ ^̂
xxxfof'/;xfXEixx:àffx.xxxXj;xX:..;gTraEf f  i:cfDimenaidnsXf:fx.;;Xxx xxx:"-'-: xtE'.̂ ExE'’;îxX:E::!XïXExxxE:x.;ii'x
E##f:ExXf :EEExfEEExEEEE#EExEEx0 E#ExŴ
XExExEEEEf p f  in f f  lEFiEElë̂  EXxxXiEf 3d E. x " f  ]X ' f  ë f  f  drmanEcéfflëtf idEaE[î  ̂ yEXxxXxxxxxxxt E'ExExxXXxxx
xÉx#EExEEEE#EÉEEEXxEE#EEiEEEgxxEEEEE';:g0 Ef
Exxx.fprintf E(f i f  E ë f E 0 n % ] x ; x :EEEEEEExxEiX' xXEEx-X..' XX;
E#Eg;XEXEEEEXxEEx#xEEEEx[ExEExEEEEEEEE''EfxExXEEEfE:EEXX

void Push_Text...Linc_l ( i n t  Lino) -X" 'E'Xxxxxx:i xxxxxXX xxExxXxX'ExXxxExXxxExX'
Exf:Ex'EEE'ÊXxÊEEx:xÈgEEE:XxfÉEEEEÉ'E'E:E
X x ig f xxEE:%̂̂  ̂E Èf .xExxxx xEx x xxExEx E x ExEEEEEE: xxEXXxExxx. EE.:̂-xxxxE'X'-x'Ê X;EEEEEExEEE:E'xExf E'EEEEx:.E'EEE:ÈxEE Ex EEEEE:ExEEEEEEEEEEx ExEX E. ■ y i S . y y y y
xXxxfpfEjnffE iF iléo E o u tP Ü tf x x t é d  E k S o F Ë fx( EEXxxxX!';)EE;E XxxE''XxxxEEX:x:ExxxXxXxExxxx-: VxxxX:''XEXX:EXEEx 
X'XE:X:fp:frntlx(f i'ïxèfputpütpfFpEfniatfeâ::EEEE,ExEE;''''%5d;EEEEf ;EExE[xEEELinéEiEEf;EEExExEExEEEEExEx̂̂ 
xxxfpfiEnff-(xFiléXDuEtxpuEteXË6rfflàEtedE:.xxxxXEÀcEtüàlEExExxkxXx EE XxE'EEx'xXEEXEExxEEÊxxE ■EEExXE:xEEExEEEEEEEÉ:xEEEXE:EE
ExEfdxfExxx(:xx xixx E=OE;xEE xxEi x.-<:=:.%raffid#DiEdênâidns:-:f ;E xE/xiXxXfiE)X :X:XEXxxE::XX̂

{
fp rin tf(? ile„O u tp u ts_ F o n n a ted  , "%3d " , D a ta_ In _ In teg e r[L in e ][ i])

EEEE}XEEXxÉEEEEEXEEEÊEXEEx:xEEEEEEE'xXxx#;EfEEEE xEEEEE#
"XxfEpfidtf (File..O utputs_Form ated ■'Y:YY ■ PfodEfammédEEEWitiEnaExxxE ■'■.![]■ ; X'. ■ 'xx';EEE: 
■xxxf@fxXX(xxi =0 r'VxXEi : <=Traf fic_Dimensions-fx-xx xixxfxEtEjx '^
ÊExEEgEE'fxxxxE:EE-XEEEEE-̂ f-ExEExExEEÉE E.EExEEEEE:xxEEEExEEEEExEx xEE'EEEEE: E' '■EEEEEE;EEE''EÉx#ExEEEEEE':ExEf E-':XExxxE:EEE:

f p r in t f  (File_Outputs_Formated ExxXxffWxEx/'xExExEE'Dafâ fnflnfé̂
XEEX' EEixÿTràf fidnEbimehsidnEsE] )E ;:.xxxExx:xxXxExXxEEEE E'xEX'EEx'E-X'XX, ■E.xX'X:xX.,x.x-xXExx X;vXX'XX;:X::p,;X.x:''XxxxXXv:X'X'X'!;x,

}
f p r in t f  (F ile  DutPutàxXFbxfinà'tedE:ExXxx''X'E'NNxE'WaitinaEX Ex'Xixi,:X'X/'x'xXxx'"X' XXXip 
fo r  ( i  -0; i <=Traffic_D im ensions-l; i  + + ) ■E-xx'E'xXf::

E'EEiEEjEEEEEx:EEEE'EEExEEEExE'E#:E'''?EExx''■■:"
E f p r in t f  (File.,_Outputs_Formated , "%3d " , Per f omanco_,Metrics [ i  ] ) ;

EEEf: XxExEExE EEE.y Ex̂E# EEEEEE''-'EExE'-E' • xExEeE'' ■ E'ÊxE e''eE'"'EEE''è'E"E'E-'-E'Ex̂ ■̂■■ -'xxEEE-EEE'E
f p r in t f  (Fil e_Our.puts,_Formated , " \n" ) ;

}
xy/n-x— -x-tvx-XX " -xE-t - - - - -tX -E- _ _;X̂r X.K̂„ ... _X̂X_._ .,̂ x_ X
void A dapt„N ext_Traffic_Loads(int Line , i n t  Which_NK)
■EïExxE.ExE'EEEE;-xE'̂ EfExEX :\Et':EEExE'Ex-xxx'ExEEE"E.EE' x/E.vX'xx/, E E-

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



X: xùn# -X: i  , i  X
XXX fo r  X ( iX EkO ; i  <Traf flcfDim erisions ; X-ix ++)■ X ■: x 

: : : : x x ( / ' x x ' x : ' : x x : x x X  / x  i ; ' x - ' X ; # ' x : x x . . . x : : - x

X:Eata_Eln_Doüble [L inei [xpràf f ic_Diménsions^ x t  xr ]:=xx ' 
Nonnalize_InpuC(?erformance_M eCrics(i ] , i  , Which_NN);

xE :} "x X, ix'xXXXxx'X x:X XxXX , x..:;X.::Xxp;.X.X,... .'X,.
ÉXx:.XïxEXXEx:,xE/: .x. / /x/' -E-xxX-E kXXX x x.;;,,. x/:. X / ' X / X X - x  'XxxEE/

v o id  A d a p t _ I n t e r v a l s  { v o id )  ■ xx-x/xiX,: xX.X'Xxx, ; : x  Xxxx; xxEXxxx:/..
XÉ&xXXEEXExXXXXt £̂:x'x;E:x'E;XXÉ':É:xV E:xE:x/x;::;.:y:#t:,EEii-

x;:x : i n t  X; :ix:xE:,Xid'3x=Û xEx, xTbeOneEE X, xxxsem=Qx i  xx'bdT=:Pxx

XxXxxf o #  ,xX[xX:i xx̂ OE;: i  x kNu#)erx.iG:Ex#OUtputxsXi^^ xxxixxit ) x  xxiExxx'x.̂ xxxExxxXEXxXx 
gE/XX#xxXxxXEExxXxE '/V'-X x/:XE:XE)xXxX::tXv XXx'̂XXxEXXxxxExX̂XEXxX#/
XxX̂XXxE: X XxxXxintërvËlx[iXlEixax: QX;/:XxXxXEX/xiX': :XX xX:;X ■XXXXxX'ixXXXXxXxXvXXXiX;'ExxX.ÿX:':XXX'X
X x x g # X i x É : x E x x x x E ' E E % X x X / : E E . : x E X : : x ' .
XxftEXjÿSë:; xïntêrVai tBxf.OJxx, .;,+x xQÿitërVâlbË [xlEîxlxf Xxïnfcxervali B|:

X x E E E x x y x f X  x ( X ï [ 3 < # 3 ) x ; X x x x , / X :  E E x E  :  , X X  E x x x x x . / . ; X X X  : ; X X : i X : X x A X  x x E E x / x : x X x X / : X x / ; x X E : , X ^  : E x x E x x X : É É E : x X x i x E x E E > X , x x  x E Ê x E E E :

tSÉE|:x;;xXxExEE,ÉE:#;x'xx:xxX;x:.>:E:x
::,xXxXxx' xXxxXE xxxXEx XxxX'RëmëRém xxX*T3î  xE\:x xExxEXEx̂xXExXXxxXEx/xxEXxx xxExxXxE xXxx»xExX EEx xX.x/E: ■xEexxExx'xxEE'Xx:-.
' xlx® XX xEExxxEx xExi’â e  e -: EX ' xixXXxxEii'/,, ,xxxXx;,xx

; x x i x ' x ¥ x x / E : X E x x x x E x x E x : ; E x E ] ; x . x ; ; x i ' x x : , . f : x ; |
XX xxEE:if X: iTE3>staftersMdxx)EE EExxàxXxxx.̂ ^̂  ̂E ''YY:YYY£Y:Y-:Yi. ■X./EX:;::/;/:/
::/E#xxx/i.^^ EÉE ::x:'X#E;E,ExÉEÉE|ÉE :xEE:.. . ^ g x / x M E x , /ix'/xE/
v ' ' e’e EixEESxxXEXxXxXxExxEÉRèmgËéK: ;x+X E E ( ; . ÿ 3 E X E x # X E : : | | | a r t E e E f 2 5 M
EExXXE,xxXEX E/XXEXExXXxT3xëStàrteEtx#àk:;EÈ:/'XEX''' "EXx̂ XEE'EXxExxEXxXXxxXiXxxxxX:.; x̂ExxxxixXxE'E'xX'xX̂̂X'XxXxÿ/Xï
#É:X$ExgÉEEx/'xEEXX# E\E&X%:'EEEfEEgxX:,x XX'̂  /X/v
EfXxX: 1 #:xxx;(Énèëÿyà ['0] x>E#x'xlEnterEyaxl.iE6iE[îElx),X;ETlj#Qri;eXE =xxx:0;,;x:/ëlsxéEExxE'EBëbné̂ Ê ^
Es# XXii fx#g;ÿn |ërya!i^B  ,f TheO nc ] EXx:<E;XXlxXn:|,erVSfĉ  :XÏ#ëpnëEX|iEEX2; ;X;EÊ ÈXxxXx XxEXxlxxt

ÉEEXxXxIxn#ëXl0 axïx|[TbëP#ëx]xixx=x.#%#xE# #ExEExXxExEX'"X,,EXxExxExEXxx/'E:Ê
xEExEExEi:EfXXEX(i0ePnëxxX= E.x&:ÿ;XEx#È%EOEÎX- XXxxEXxExXExgEExxExÉXExEX/xxx ,,:XExX:EX:XEix#xExxExXx,x#
;:xjXxE:xX:X?XfEE:x/xxxXixla;tdr#a|;|: jl;€xi|§:t,d##er#Y eE||p
XXX:XXelaexEEEx:xxX:X:XExXXXxXxXxxXEXXEXxXxEjX ,X:EÉEE'XxE:::s'::EEEXXX̂XX'XxxExXxEX;XXxÆ EXXEXEEXX#xEXXEXX,'xXXs.XxX:xEEE,EE:EEXXEXixXX:EsxXxEE:6̂̂ ^̂ 'XEX:,,sXxEEEX
x X X X ' E E x s g g x g ' ^ x g B E / g ^ x ^
xeXeeXxxexs-/xxXEiSxSKsXX'intënyàixidxi xfx!#xsï: fix;; ̂  X ■ ;,./xxxix i xx/x's;XX; x/x X; x::*xxx/ 
xEÉBEEÉ|xiil:#|ixxiSiEE?ex;#;g
iiEsxxEX:Rë#SRëp\:,x̂ ,xfd:tërxyàl#B|3,îxxÿEÏ:pxteëExva#x|x3;i,x;x :XxExX:xxx,xEx#X:Exx'/x,x
XXxXExx̂ T:3=lnÉëxr#aEiixËi'7:Ei+lntërvaiiB[8 ]EE#ldtëfyàl##E[E:E9xI pxEsExXX:
E x ;E  ÊxxïfXXxxx(s##i0 X xXxx/x. E :  E E E X x E x E / X X i : # x E x E E  E :  /'xxExExsEx XEEXX ÉExxiXxiEÉxEEEExXxÉxXX EÊ̂̂̂ KxsE.E EEExxx.

E E E É | x x É : x { E x : x x t l . E x | E ; E x : x x j x X x x x x ; x E E x x x : ; x x x É ; ^
XXEExXEXEE:EExE:xEExE:is#:::,[̂X̂axR̂xs#T:3x#!xXExxX;xXEExXEXX XxX; #X:XxEEEEx E xxxXgxE X xXXxxxx 
EEEEXXExi«xJ#X#X':)jEj#gÿ/#X#E:Ej;:;|iï|XÉEE:xx/|Ej=,;Xt#
; X / | | | E | x X x E E # x x E # E x : ; # x / x | # / x . X x x E # ] i
E / x E E E x x i # x E x x E ( E T 3 > Ë t a r t ë f # M Ë M x x E E x x  " : E x x x " x x E x % E E E  ; X x E X x E E # x x : X X ' E E E X E : x ' E  E E x , E X x i g x X E x x x E E E X X E x x ' # X x E E ' k
| x E x É É E x t E t É x E | | # E # | E ; , , ; , : ,
XXxExXxExxEEX;.XvExX:'xE x R é m % Ë ë M X E : E +  . ,/(;%:E:E^EEESt:aftërÿMa#)x )xEX X;XXX X ; x X : X E E E X x E ^  x 
E'E;EExxEExi#ÈxE,xxxEEEX;xExÿ3='Star'Ëër#̂  EE.ExXXXxiEXxEXEExXXxixX
É ; É x : E x E | E K | # x l x x E : E : E : # # X x ; ' : E ; x E E E x i E # E : x x E E ; ÿ

E/xExxEi6,ExEx(EIntëivdlXLEB,E[E#]xx'E>:̂ f EEET#ëQnêxÉEE#ëE5x;xX/ëlsfeE’;xÿKèbndE
xExXXE ExiEgxxxEExilnxtëxfya k  E/ixdtërxyàlxiBEfS ElXEÎ x x%Eéb#ëExxx#ExExxĝ^̂ ^̂  XXEXxÈsxXx.x Ex; E xxx x-x ','XE/„Ex

Es:EExxïiitexfya#E[ÉTW:0:ne]x,E3E xqxxd/XxxxX:. X '  xx/x/E
■ —c r i :  iiic T3>û) E x : x , X x : X x x X x , E E E X E v ; x x : : x E x X x E x E x ; : E i x x t i  E - ; _ x  ■

x E x X :  ’xxEX'.seEE E : x x X x x , E $ n t ë r ÿ a l i E l C ) ] E = x x x E S E t a K # ë f E ë y ë I l . p \ # j N ë x : ; E Ê X E x E x E E E  ''EEyXE..x.,.,x/xEXy Ex.-
: e l c e  xxExxExEixkXExxxxx.'xxx; "■e-'xxExEE -xvvixX': xEE]xxxx/ 'xxX'Ex„ExxeE' XxxX'sE -E-Ex, Ei Xt
EiE:EfEEEEE'xE'É:xE'.#È'i'sx,ÉE':È-
ExEExE/ExxEE'ExxEEE, I n t e r v a l  [ 10 ] ■ C ;

' E x # E E # " ' ' ' E : , E E E : E ; X x E  E : E , X : X X X % . ' ^  E X v E : x E x E # x # i r ; x x E x E x  x E x x x E E x , ' ' X E : E E , x : É ' E E
X ExEËem=RëmE + in të x r v a l# B  [ lp  ] f  E in terV a l [10:#  EE:XEE'EEE 
E x% I n  t ë r v a l  x [ 5 El E ëE E : E E E ixEExs'x

x x x  Exlntextyal [ i # E ! E =  YelElOWvMàx; E E E i  E x  E ÊxExxxEE.x'xx/'Exxxx' i
I n t e r v a l  [6] = xxEEe'.Ex.ssEx-eEExExeEx'E;-, sÎE.. . : -[''YYYYy
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I n t e r v a l [13]= Red_Max;
Rem = Rem + ln terval_B [5] - I n t e r v a l [5];
Rem = : Rem x+x :Interval_B  [ 12 ] - In te rv a l: [ 12 ] : ; ;

X,' Rem' = : :Remxs:+\xxInterval#B [6 1 \v ln te rv a l [ 6  ]E ;x. xXX xx/ xf : xX;sx/x X/x x:: xx .E XxxxE
RemxXgxXxRem: txEInteryaEl_B[13] - I n t e r v a l [13] ; 
fo r  ( i  -0 ; i  <Number_Of_Outputs [0] ; i  ++) fxXx -xx

.//X.{X;, V ■' # # ' x X i X X X X : ^ ;  Xf#X/"'EEE XXXX:'' .x.xX:X#':X:]#
xXX E TàTf - I n tè f  va i [ 1 ] ; xX X ,

É-EE'ï-X;!:'X'-"ï|i'E'x'Ei.l'xXX'X#X":'xfE'X|.x'
XXXXExTnl'fXKxxEinféfvaluËE[4:]x:;x /Ex/xxX:x EExE'-'XExX'-ÊEXxX'x'XXx;;.,,x:xxx:X'xX
/:X:sXE,xTpT*#gx;inxtefva%#@x 
X xxxXxxRêmxx ëE'iExËemxEXxEfixTfaf

GiveToNS = in t  ( (In terval_B  [4 j / ( In terval_B  ( 4 ]+Interval_B  [11] ) ) * Rem); XxXxxfxx'/xXx 
X :XxGiveirdEW X: axx Ëemi x GivaTobSlEx x x xx xX; X xEEXXXxxx x xx. ■ xxxXxXX; .
:x:sX:XIxnfXeryaXlxxlÊlxEXxMXxEfhfeErxvaxl#BI[x4x]x̂  XQiveToNb;xX:Exxix: x.;X_. ^
xxXxXintëfvaï ïxi:iE]xEXx=:''intéfval#è|:lxixix+XxXpivel’dËWixXxxxxXxx;x'
:;||;x:;xX;,;::Xx;xXXxxX;:XX:#:XxEiXx#,g..X'XX#x;:##

xydld'XXPuaXh#EfQtxaïe#ËlneXX(xdKafX'X*SdrnmentxXxx/XXxin:t''XxÉpdchsx)...XXvXX:Xx'XXxXXxxX X:XxX''X:X:X;. ■:xx''XXxX'X:XxtXXX''XXXXxx'xXX;X;xXxxX:;x
x;ffxXxx#xx#E|;|x||xExx;pExXx||xx;dE:iiSE#;E.,
x/x.x:xxXxx.X''Ex:':XXil#fx::ExExxfXx%fx;XExExXxX:E'X'XEXxXxEx:xXx#:xxXXXxExXxixxxxx:ExEExXExXxxixXXXxX
|xExXXExxxExE;'xXx|xx/ÏSEnintf;lxFxiEe#Tota|xnx.,̂  x,sXx{Zxpfmtenf:):xf EE'ExxExxxxxxxxxxXx/EXxEX'Xx
xxxXxxXXEx X X:xsXx/Xxf dfixXtxxEIXX x=XQ';x xix :<Txraffi,dJ3imenadoXns'#xx ix'xx+x+:l XiEx;/' xXxxxx xxXxx/XX-XxXx
xS:l;xlx|li:?5;x'x!'xxxx'iii
ix,fts:XxXx::xxxX:xXXxi;xxxxx:xjxx;iXxXX:xxxxxxfptintxfXxfFiie#Tdf:a'ls;xx«xxX|fS5xds'Xxx̂XXX:|SX'X.Perfdfinan 
ExÉExEEixExidXvIii: 'f WxEE'X'E ExExxExxxE xEEEE'x'ExExXx#xE:X;E'ExxXiExXxxxf #  E'̂x : xX/xx#ïxxX':x:Xxx#x#.'X

X#/i-̂ Xt-Hf fxffif f  f - -ff xixi.?Sx#tiX#|x çs.:Q,ÿX̂ x̂.-x,
xyxdidExTësX'tSNetwofk#Seffbrmànd^(NET* Net)X°'XXxX;XXX<xXsX.vX', ■ Xx:jiXxxx:xX:x'lxxxXxxx'*:xxx'X'X/xXx/xXi?|p /xxxxxX/XiXXXx
l|xfi;El|li@xSlix#EEx!E|xfx;;;xxExx#EfrxExŝ
Xx#x:xxX:#xXintxxE#:xlXx:xEXE/Xx::xbfbdfE'XXxXxX'E:xxxxHXX#xXxxxxExXX:X'EX''ExxxE 
:XxE#XxX:XXxdpnblxeXxxxbnfputlxMirNxxNiAbexrxxpf/iGëtputsxïXXXÿXxXX

ïEEvX:xXixXX::XX'XX|xxx:|XGrxxxXXfLinëXéïfaî:ninB#Stafx|bXpdintëbpxXÈinë#xëXMîî ^
{

X:ïExxXXX:xEx®:EXXxXxix;xX:xxXEpfXxh#;|jx(X':?i#i]r̂ |̂X|̂ gX#̂Jî |̂
XExxxExEX'/Ex4xXxxil|X;IX;xxxX/XxSEimulxXa#|sfNeufal#NeXtxwXdfkx(̂  x.,'Xxxx&xXxxfxXX'XXfafsXe||XxXx̂
Xxxxïx-xxxxXXfxXXx/xXXfXx.xîÿ'ôrxXxXxxixXEXlxxxéxl'XfxxXixxxxxëxNixmiÊëfabf̂ xXX'xXxxXxxs'xXXXxXXx#:' 'XxXxfxxix xxxxxX/x;:.;:'
fx#x%EXxXXXBxg0 ;g#%W#^
xE;#x;|#X x/Xxj##]::xx;:;XXXX|ntë:fVal#B;|xi:]xxX:;:ë#bë#NbXfma:lfxZ;ë#büfEpü;Ë
xXXxEXXXXxxxx x/iXXxxX'xxX::X;XxXx-Data#Inbbbdblex[LiXdexixX[E:2 fWafxfi;b#bximbnbibns:k:!:xXXx EbutpntxxpilxEfixxxxXxXxv
xExx|/i'Xx|E;:#?ix|#4«|x'x;fi|X|y:,x|.]

xB#XXijx:'xXxxxx;Xx:XxxsE:xXxx':ES#aBtbIp4ëfyafex[|xî)/;bE'X/xXxxXX'Xx y v i Y Y ÿ Y Y Y W y y '
îîEsExxX;'Xx£;XxxpX:|#xCàXlb#MëébfbnXfbin̂  ̂ , :'XEE.XiEEx'XxExxX;sEExx.#EEX:EXXx'E#xE:XxXEXxXi'XxxE::/
xxxx#xxExXxxxxXxxxx'XE/X:#;XXxxSda|itX#isrextbT:raf;f#e#ix,oadgXx(xbxinXaE
'':XX:XXXxXXX:xxxXxx xxxxXXxxxfbr:xxx[xxixxK.Ox; ::xiXXXxx<x§XrafildxnDimensxibnX$x 'XX/xxxxxsXiXX'XX'EiX'ExXixXXx'XEE'Xxx/.X'X'X̂xxXx'i/xxXx'XxXXxEXxxEfxExxxxxx/
î|x:Eb/ïxX:x||-x;;x;EE!:|;EXx.Exx|##:'E#Xxx>#';xxx|/#
Y Y y i Y ' y Y f M .  XxxxE Ferform ance_N etrics_Totals [ i]  += Per£ormance_Metrics [i] ;
bxX#//Xx g':E|EX/xxx;x}#x / x; Xi'Ei#. X ]//EX/:]E#Ex/Eii|̂
xxxXEE..XïExEEX;|xxEx|xiXïxx'PH:S'b̂[iex:t#xÈfnxax(xbMë)xXx;ixxxE:Xfxx:x xXEEXXXxXxxxxX# EEXf xXixE;xXx/xXX#XxXxx:;xxxXEx;/xx;̂
ixExXE'Exi;xEXx#®:xxxX/aESX(xbinéFXFËuii&ëxrbQEfiX|>ëffëXxçenS'#.ÿ:)xX'' Xx:XX''fx
X X" EsxX-sXExxEXxxx xx'x xxx:xxE/xE.;:PuàXhbTbfain#:f ixnel''xBëfXbf^  ̂ K xXxx.f x'XE xxx 'XxEx.X'XXxX'» YYY-'Yl

}
X : XX: xxEXX:fbr;XsX(x Xi =0 f  ;,±.. <Traf f ic_Dimensions ; i  ++) XXs-xx-Xj;:.;x-xxixx'xx: x< x:;;.:X":x;XxxxsXXxx 

:ExEExXEExx#xE##[xgE;Xx:XEExE/xXx.b
: XE perfoWancërt#xxfribs.^Tb:tals [Xi] x=xEX:OX;- x 

#xx'Vx'É''xxE/xxxEx.:XE'EExXxxXEEx'xExxxx# xx/xXJx ....sVxx.X::.,;.:;:̂^̂^̂  ̂ bX;//XE:XiEE::,xXXExx!'ExxxXxXxEE
xXl xx;:E##bE,XX'E'XE 'XX''xxx.:/:''., ,E\x„XxX/,/E/E:,,E '̂XxX''xE::x'EEyEX,,.'.X'̂ ,̂Xx4 //:. :,x:Xx#

void Performance_V;ithoiit_SPM(KET' Net)
{ EXE/''/#x#:/x :.,/;.,//# .x/;;,,EEX';eE',:EEEEExEX'EE::EE'''''' ; xXX'EEXxE/''b.-'/E'XX'Exb:.;XE

X/:yExXixn0:xxxxxxiX X /E/Line E;X
double Output [RNIxr_Number_0£_Outputs] ;
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; fo r  (L inë= T rain ing_S taftt.P d in ter; Line<i=Number_Of^Patterens-:l; Lfne 4r:+ )

i f  (Line= = 535) - X':X" ; /'/X:-'':,
"X Line = L ine;

Xp r in f  f  x( " in T ia f  f  i c  xshaping. . . . .  vx x%3d x  x /  . . Line) ; '
: SimulateiNeufalJiehwDrXk [Net , fiinex XX#: Ô ufput. :,x 0 z, 1  ,, fa lse )/; x ;
X : fo r  (' i  =0 x; i  '<NumberLOf_QufpuXts [ l lfx  i  , ++),' x x /  x

■■X'\/;b/:/##,/x:i .Ex/;,.E X'-' b ''kssÿxXxbb̂xxÊ bb/E ,/ ..E:4X.,#Xx'EX'x%E 4 ;̂̂̂  X ] ' / E b b
X x  ' X b  X  x E B e f  f b r m à n c ë r M ë t r i è ^  [ X i x ]  : x  =  X x D ë / J ^ b r m à l i z e ^ b n t p u t  ( Û u t p u f  [ x i j x ^ x y  

X / É / ' x / X ; ' - ; "  ; ' ' / / x ' / ï ' ' ' ' ^ / É / X ; b # ^  ' E ' X'/xv'vbX/ : x ; : # b 4 4 / x # ^ ^ ^ ^ ^  X '  ' x x ' ] ' x ' X ' X X X : : X 4 , / X X ' : : : X /  : X / X / : X ; x
; ' X ; X f x 6 r ' ' x X X ( X / X i x x = P . ; s : 4 i X X : : X k T r : a f : f i c b D i m é n s x i X b b n : ; X / X i / ' X + x i l x . 4 X 4 4 ' / : x / ' - ' X ' ' : ' , ' ' ' /  4

./xbXÉE'bb? / x { / / , b ' x / X x / ' : ' / 4 ' ' X ' : x : x ' X X / X 4 b / x / b ] # : x E E E b
'4: s, x/'pèrfbXinnandXeXXEMèfricât.Totaïs'[i''l'XxX+a::,:XEèrf oianànéxe^etricn

//X/4xEXX;:/bbxXXXX)X''EXx:XX:Xxx4/,X'::#XxX#x.X:Mx/xXbx/44#
,/XxXXxX." .x:/xx.x/,X/ xXxXPushrTékxtx/ÉinëblXfbihëXiEfXXXXXxx/XXxxxxX .xxXXXXxXEEx XxX:XX:X;/x X 4'̂ xx/xxxx:'.xXXx./xXjt'X'X/Xx:xX'X;:E

x E x E / E E E x x E / z E ^ E x e i x E x x x E E ' E / x / E - x x x x E # ' ; ] : : ' / : / / ' ' ' /  4E//:x'X/EExE/̂ ^
fp r in t f  (File_Outputs._Formated , "\n  T o ta l Performance_M etrics I s ' ') ;  

xXxxxfprintfX(xBiEle/33ufE0iX#s_bFoXcmated:sXx,x:X;:X'bn ,;-ab:-,-:-^r:x------f-x\:n.#
X / x X É X x ' E  E X b/b; f p r in t f  fp iie/bputpuf s bFpfmatedXx#;/■/4\n>#>#>#> > >
XX'Xxxx'xxXXx/EvXxxX/iforxXXXf'.iX;X==XSX;'''''''ix/XkTraff ictEimëhsibEns;Xxx'â4X't'+XX)':X;,Xxxx̂ X sx/'x4''x:/x4:: 'X4':X''''xs;4''/xxx::xxx'''''4x;iXx'4'''X.Xi‘4;X'Xxx' 
/4xE#bEEExb{X':EbXEE#xEExx/://g/4;E4#̂3EEbx

b b b X X :  E / X . x X  f p f  E i n x t x f  i F i l ë / b u t x p u t X s ^  E t E  X x E % 3 d x  x " x X / /  /  / X  X ^ E /  E
4/xX'XEXxxX''XEïX'4xbxXx'Xxx’'xx' /X Perf bfxmance/i)IbEt:Epf bxs/̂  ̂ xXxXXx 4 'xx/'xE'xX:xXX:4/xE/:xbE/xxXX//ExExEEXx'X4XXxXX
'EX':E:E'EEEX'-'xXxE:X'ExXEx/X/xperfbrïSàncXéiXÎiëtrics#TbfalXs;{xiixxxx=Xxx,0 ’;:x:i.''X'XX:vx 'x''XxXXxXx.xx'//':JX;;X/X/xX''xxxx4X4/x;;XXXîXxXXx;î 
xEEE/xXXEEX:EE:XxEjsb‘'Xbx'bE//;xx:E'Ej?x;x:.bXx;E;E|/E:XE/X:Xx;x/X:/x:4/EX/4̂
■fEbÉEE:rEb;4/E-x;//xx/xXxExxxtx!XxxEbXxx:xxx̂xEx:bE'bx/xxxExExxExxx̂'''EEX/'''xXs/':ExxEEEx'X/XE'4E//4xE/x/

V b i d X  TfaiWëfxFbfBêttXiËËT*' xNetl:. :,:,XXxintxEXË0)bhsX)xX:Exxx X X  'XX/X/ xXxXXx 4 EXy44:''':x/bxx//'X''XXx;4xx/
EgExE#E4/x{E#Éx#ExEEx%@Eb|Ex4/;#
/X:X;xxXSnSJ|xLinexxX;/,xaibX:X/i;E:XXX:/b 'X/xXEit/EXXExxExxX/XxxE/bXxExxExxXEEx/XXXXEEx
X/xXxXxdbuiiieEE pntputxf xX .s4X//4X'bx/'bxX4 :X::XjXx//x/'X/X/i/4/XjX
X'X'XxXX'xfpfX/xifa tQ ;;X 4 E a # Ë p b G ) ï ê X ; x 't x d f  t î  4'xxf Esxx/xExXX xx/ExE/XEIxXEEEE 4xxx'X : x/x vx: Ex 
'XX:XE//bxxxXxXfp:r/Exx(xEinefEfxfaidixngbsfaft#PbintefX;/'/̂  
ExXxXïxExx/x/xxxxx'ixx'xXXiBimnld'EteSiîëufaiblfets/bfklNeti'X.x/xxsxËiriêxXxi/X/buEtpû  
x/b'/Ex:lxxxîjEX'XxEbEEXxE|XxEEEEE.ExXxE:xEEtxixXrXxEE;:;bxbfXĝ̂ ^̂̂ ^̂̂ ^̂̂ ^
'''b"b4}XxExXx////xxxxxxEE:Exx)Xbxxx/x/x:x:x4//:/::%#X:xxXXxb4x#
X:X)xExXExExxE'X :E;x'/Ex'XXx/x#//XX44xXX'E'XxxEX'X4X;bX#X/4#bxÉx'XxbxxX

E:XX:':X4xXxXX:'4/;/.:X.:XX;XX',,/X:XxEx
xXvoid'E'P'ërxxfbrteancëytfifbiSËXMiEMEf :*'''XxNetQ/'X-';xXXxKÉf:fXxXxNëtXXL4XbX'':sintïX'XEpbcha')x4X
xXiE'E'xExEE/ExE'//;bx||/ExxfEEE|'|;gxx|X/||p#
x;b4#'ntE4E;Xxfxiné'E)X4:â Ex:|;b;iClEE:i:X'i ■ xx/EX,ExX.xEx ' EEx/ZxEEX̂/xxE/x̂xxxxxXxXXXxxxÊ :xXXxxX:'X:/xXXExXxxbX"xE: /xX.#x'

yXiXXxxxBBXuXblë xxb^tpttD/ixxËWEWWW? Elxx)E/EE x XxxxE E xx/EXxx'XXxExEEXsExxEE'':Ex'ExE/XE'X/b
XxX/x/xdbuXblëbxOuXtputxlx[p]n#L%n#eEf̂  i.;4/x,:XxX:Xx;4/XxXxX:/''Xx'''''4xXX'X'x:vx'X4;,/x.

rfEI  ̂ /'.\b'/E#.:x.xX: ' É/.E:; ■/E.e/:E''E,;X#:é
/xExX/f ëxfx XEx( / El ExëOE'f/xXXxf xxxX%Xf f  a f  f  f  b /p i^  . /Xfxx+Xfj/xxfxx x/;/.Xx:iEx/x'::XX'//4 //ix/';::/ij/X;

XX /  i  ' f  X : W P % i D b n X b f  e / x x [ i E i  E X !  x ë x X x E - x i ' & x x x :  E X E / ' x x x : / X X ' / / ' x x . / x ' : X x ; X X X X X \  . x / x / x , / x ; / x x
b:EEEx/:E:/:'''i'EEx'xEE'ExxExE E / E x ' x E E E x / x E E E  E ; 4 X ' E E x x E E e E ' ) x e ; x / x ' ' ; ' ' E : E x E 4 / /  ■/e  bE'ExxEExx"E/Eb
EEXx';/x/Exx'ExE''E.fE©iîSbjlêiXî|àxx[l# ii;l4...=:::4gPX[̂  ■xX,;,'X., XEEXXXxExE/X44XXx.4/xXxX4X/XExx:4xE/
xEsExE xXEx: ' XEXxxxxbx/X/xxx'xxioutput/AinW SPM_lnteger [i]  r' X'Ex?' 'x'X'x/xxE''X:x'X:X.xX'x/xx:/bX\ XXxxXX;::x,XX4 .E;xXx/XxXXx
E:E'EbXxbXXX4XXE]X,4x/XEXxbxxxxxX/XX'4XEE:X'xE'XEE/xtX:xxEXE;E.XEExExExX#XxxEXxX4X4x'Ex.XXExxE
x b x x x x x E i E : :X":E:' E ^ E XX.̂.XX:4X'/EE E E X / E E / É x E x x E E E x E x E x E / E x x E E ' b x x E x x x xEÊ"'' Ê EE'XEeExEE' E f E E .ExE'EEEx4XExXExExExX:ExXEb E E x / X ' X # / : # ; . ^
; ; f b f  ( L in e - f f a X in in g ^ S t a f X f ^ P b lx n t e f  ;X; L i n è f T é s t  jS n d ..-P 9 i n t ; ë r ; / LiXnë'frtfXxXxix Exxx/ExXX

X Restore_W eights (Nef f/ //l):/x E X'X'/x/ ' tX/Xs xx//4bx./.'X;EbxXEvxx
EXXE xXxXX xxxE X: f b f x xX (X:àX= Qx; /atEfBxbdXtiSxfx,. at+X )/ X Et : ■ " bXXEXbXb

Simulate_Neural_Network(Netl ; Lino , O utputl , 1 , 1 , t ru e  );
4EbEE'ExxE/Efxx:E;XXEExEEEE:EExEExx4 / E 'ExExEE/b,bx''xEx/Exx'xE#'XExxE/x'

E/ EX'CppmXxÊ  ̂ (NetO , N ctl , 0) ; / E Exx x/xx/xxxxX:'vX:X4/xx'xXX/X4.x̂/;t'xx /xE
Simulate_Neural_NetworX< (NetO , Line , OutputO , 0 E,x Qx EvExtaXlse /)X;

XX X:/ fo r  ( i  =0; i  <Number_Of_Outputs [0] ; i  ++)
X/xE/Ebx/bf EEEEbbX'/ EXEbX// x//:./:; X/sEExb E Ex/E Ex''E'"'"'X'''"E -'E/;/1 .,-,x x̂'xxx.
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In te rv a l_ B [i ) = De_Normalize_Outpuc(OutputO[i] , i  , 0); 
Data_In_Double[LineJ t2*Traffic_Dimensions+ i]=  O utputO [i];

A d a p t_ In te rv a ls  ( ) f  y ■ .
'/x.x ■ ■b'4X''4xpaIetilèbrlçs.(;LipëK:;;; 4 .4 /'

^ a p t j ^ g x t _ T E â f f i c j j o a d s ( I j i n e -  ,;XxOx):;:
4 4 4  ' i t fo r (: i  =0; i  <Traffic_Dim ensions ; i  ++) b

Eb ■fb/ÉxExbiEtxt'b;;:,XtEEX'/.EEfEEEEE XibE'eEÉ:;E;;EEE:4EEb . '.b.by
XiEi Xiit tii 4 4,;4 4i'X iPefxf drman®ebMetricXs#T6tal P e r f  o r m a n c ë ^ e tr iç s : [ i  ];:;: - ; t i/i,:

4':EE:4EEi/EE:::t'::;iitEEtEE;/Xb'EEb:EEE:bbE
XXXbi :4Ebxi44#;Bus%#?e:Kt_JL:ine4(:Dine)i;tiu'ttbxt  ̂ i'.bbEtxEEE'b Xt. - ii ts ti:'b444Xtt .«it.X’x;:;:,:
Ebbi bb ; E :ii:Etf - ( L i n e n n f ë s t # E n d _ p d r  )x E
ïbbE''4XXt:'iiEb44;4iX::'4:'PusKvïdtaiëE£ibinëX('b:Aftèr" iitiiîËpoclië)4bi:Xxi4i;:44t:;/
:E;EbE'EbE:EEEÉi::iEEx'xEEEiEE:EEEE4b bEb:E'E bbX'EEi'xExÊEbxEEEÊExEEE'S
Xitt.xb'Eb'i'fbr: 4(;EXitx=0i;: 4i:E4;<TraEEfic-bimënaronsE; Eif/X'^
É-ElEE:EiE'E||E;bEE;E;EE;EEE|EEEEEÉ-EbEEExEEEEEEEEEEEE;E;4b
it44::: : x/: iXbtbibpeffEofmandëtEMeEtXrr Ï'XX =: X'EO i 4

'EEEX:iiEX4Et"'xEbb'E XEExt/iXtiitXiî E://.-''/;;,,̂

Xrnt:XEbtmarnx(E#n#EEàfgciibE4ibTp;^p^*ii/  ̂ 4:i4tEX/::bb4X:44:'::;EiX:X,::4:: YiYYY^YjhYi
{

iXi4 4:ihxt:EE:ESoFaf=:0b'EEEEEEiEE EbEEEEx4EEEx4i4E.EEE'EEb4:EX:'XtiEXXiEiXEXxEXit:/ EiEb:;/̂  4/:'''t .44X:b:EE;EE'E
EEb:N;EÿEEEÉE%.#  ̂ E#xbEEE /̂Ebb.EEEÈEEbEEbbExbEiEiE : EbxbEEEb'iEEEEEEEE/É'EEEEiEbXb
:bEbinp4:;s;t:bEpfEbEEbEEEEb®lxEEibbiîtXb;jîE EEE' .i'xrxi/X EEt;b:4EiiEtEb'EEExbEEEiEiEbEEbE
iXEtrntbiKlEtEh/iw^tbib/ExEExbEbEEE 4XbxE:i.b;:4iX44/E'"':''b'4i4X4E4EiXib:EbE'EEEbxEbEibEi4;b4ibE
iîx:44rntb:&npféasingEbOEb4b''Xx:b4 4::xX::i:i 'iiiXxXi itEX/iXii/tEXiiE'tiXiiit/iXX 4

EbEEEEEX'dpublexxx̂ inTe# ' XE xxttbE'EbEEEExX' çxExxiExx/EXEEEE xxxiX xxxEbxxxxbEbx S'EX/X' xXxEKEEixXiXxExt' iiExtEExExxxEbbÉEEbEEx
t»X4gpritiaEir%e#andprn#:E 'xbX'xx Xx' E4 xxxXiEEt EE'EibXb/xE XtbbXxXxEbExxxxEEbxXExXExE'
XjXEitliiniijIiiâMdiéApp Y::Yy ■YyYhy-YïïYYMcYy'v^^

XXXb EXXfpr X(%iEc]%[#MO X;E%#ixd]X%/Î  ̂ X: iXi ; ittxtttx tiX/xXX̂ '/ixti. 'X; X4 iXEEEXXiXXiEx XX:Xibx/iEXibXxxx
|||EEEE;EEEEEEE|y||Exi;l|Exf|pEE||E|||x:#b;xEEb
ExbxXXXb XbGëpëiEXaxtë^ënf aîxtËgxfewPf k f '^ e t  X iw#;ioEh#NN
aXXXxxxEE4x;ixêêEtÿRanEdxpiEnj#wdiBW®E(;&rietEl||lif XXEE XEbEXïbE/X ■x.bEEx b-'.'x Ex bXt EbEEExïxxEExEEj
XExxEExxbc4:xxSftEiE6XïdXlMâBMëxtwprEipE(xx̂ Ëë:#:[:tt#rë}iX|tÎNEix̂
xbEXiXXEtxx MinEbës:EtËEnf pnEi#XÊiXç)%0NE}EEXXEXnXE,Ê^
iEEiSp4x!xbX:xEEi'EÊxb|b|xÉ|’x E E ||xE t||E j|||E bbÿ
XXEiXEs£pBixEpExOE:|E bxbEEExxEEX;EEbxEXEEEx|EX:EEXxEEEExEEEEiXE:X:b44Xii4xEEExExxxxEE,Xb;:XbXsbEStiEbE

Ex ExXxdo ' i:f EEtExbxxbEEEEiEiiX'EEExbXEEEb̂̂  EExxbEXbxbXE EE 4E4EEEXEEExE.ExEibEi:;EXxxbEEExxEiE4''4
XbxXi4E4E4 4 4E.spEFaEi*AibEXEbXEEExExEbxxb4XxxEbxEiE XiXxExxx b /t i  xxxxxtxxEXE'XbE b bxXxxXxExxXbxxXX-'xbxEb''xXxxixEExxE'EbxxxxX'xEEExtEEEx-xXxEbxxbExxXEbE
ExE''X5EX'X: XbbbxEEExbxf Ê'4($pË##%x=x52Ë): /xb'x'V x't: yttXExEXXxXxEbXEXXXbExXt̂^
EEX'XibxEEE Xi EEXxbbE'XbbXXxËPËarxE'ExëExExSPFapbEExxXXX/bbEbXbtXXxXbxXbxEXiXtXx tbEb

ExxXxExEtXxXE'îxÊ ExEXxXËnEdrnxbMeündiEEEîsIetwprkxlx&llïétlEÔi'bbxXi&XNètxl̂
, : TesttJsrëünaElXL#ëtwpxf#bxx(^ 4/4 'i&ENetxCxlIxx-, xxxEbXiEX ),;ExE 'bEb.

EEEEXE:b::,bEbE EXEÏtcrèXâSfrtBEbEbxrXXExXExEEEEEEEExXxtEEE''E-b4XXX44bXbiXb4'

xXxxX xxpf intEfXx(i;b#u^ÉwpXrkX:XTxtd%n#-:ngx.t. EbEb 
xxXibxxtX 'ËPËdf :XiExEETd%xtEppQfE[XoEX[XxX,xxXtëEut iEÏEx]EixbEXxEExbbE Ex̂EXXxxEiXi iX ■'XiEtii'XyXxExEtxXisEtxxx̂/xx

E.X'''''Exbb.E-iX ,.ixÊXE'l:xTëstËrfppx[xÔElxEXi<E, %ln$ëstEËrrpxr[ÔxEli:bE:4&& <Xxxx.4X',:xXEx::tXXiXX\'Xx-'
Xb4Xtx:4:X4XX44XxxxxXX4X. XxxMinfëXstE r r P r i  1 ],)XX.Exx4x4X' tti.iVXiXiXxXXtXiXb'x' 'bx'''X44- XbXXxxbxxXXxi'tiXXX
E:EbbxxxExExExEEEEExxEi4EEEEEE''EEEEEbEEEt4X̂ExEEEbExEEbbEbEb ,EExbExEEEEiE"Ex,4xEEE
XxEXEE''XxX'4 :EbxsxaxvëEiWëigBtsEX(x6NeEtx[EÔ} ,xxbOixiEbx iiXxxt.-.., 4X,ttX: 4xtx.xb

S a v e . .W e ig h ts  (& N et [1 ] x, blixiE^b'
ExxExxXExÉ'E'XE'NxEE EEbÊ E-i-"#ExE:̂  bxE'ExEEEXixExExEEx-x- /bitEEXtEbX'XsXbxEEx"

X Xfif ( iMixnTëëxtErrpf [XOlE - Tes tXError [ XQ El > ;0:. Ô 6 1 ' && M infes tXErrpf [ 1 ] X E-; 
T e s tE r r o r i l ]  > 0 .001 ) ■■ iX;Xb.xXiXX4X.xxtXXxX4XXX.XxXXiXb,.4''

EEEx/xE E xE b fE  ;E ■' ,,EbbEEEbbbbxE:XEbEExbE'bEEbEEEEE bEEEEEExbEE. xExbxEEEEEEi' xXty.xx
I n c r e a s i n g  = 0 ;  xxEEXb b
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}

f p r i n t f (File_NN_Performance , " - saving Weights . . . " ) r : Y y Y  
M inTestError [0] = T estE rro r [0] ;
M inT estE rror[1] = T e s tE rro r[1];

e lse  //''XX:'';': :'X4\\:xXxE'Ex':XXX:Xtx'':xXXxXX::, xXXX; ' b:/'Xx4xX''4'/XX''xx.XXX xxx/'.
Xxxx:XX;:/if;/ x i;In creap ih g: >= 3 x;| |x x/X

X i (MinXrestErrprlxO jx: fx/XfèstÉrfôr [Q]XXXX<= :XO:tQQxi’XX&& 'MinTesfEfroixiO 1 S:/ 
T e s tE rro r[0] > 0 . 0 ) | |  ■ {M inTestError(1] - T e s tE rro r[1] <= 0.001

xxXX/'X/Xxx X/ X:X;;:;x/X/p&/XxMrxnTe8tfrror:[4l:]/xX :̂fx/tesfp;pfPf [ljx/>/:xO:::.XO
XXf:

f p r in t f ( ? i l e _ K N _ P e r f o r m a n c e  , " -  s t o p p i n g  T r a i n i n g  && r e s t o r i n g
E t t t ' f ' X X ' V / E x W e i ^ t x s s ' x X r t v i X / X b f e ^ ^  ■ X ' t / ' / x X v X X X / - i 4 / X / E / ' X ; b x X ; X : f  J X , , ; ; : ) -
:x'xStôpX4fx::/i:x;::xx:4x/XXxXX;x";XX//X:E'//x//Xj4X.f X:XXX4xE:x/xxXx'X'xXX//xX:‘XXxX::xXx "X'//X'4XXx;/x'
xxEeStprexxt\?eigh:tsx(ixNef i/Oxi''/X̂ xXX'xX xxis/'' . ..xxxxx'XxXxbxx x'Xx xyXxX'/XiX
X'XxXResxtpf iilA feighf sX(x&NetX['lxi::x,xg ' : tx/X 4::/:xb; XX; /XX.

XXJXX'
'XX|/::XwB:iiêXXXXx(/lK':Stppx)x;x/itxX//:Xxx/Xxxi::/XxxxXxX':'X/:/X;/5/XXxX;X;xXXxX:t

XîËei;E:Pfmançëx/rtiffpnffSXPMXC'àNet!fiîx)xfxi:''X:rXXXxxX:XXxxXxxx//xX
X j f X p f i r t f f i x E i x x I X e b Q n x f p n x t x & j X i E / f l X r i X p ë f f p r m a n ç ë x / B ë x f ^
X/f B f  i n f  f  X / f b n b f  f  f  bXfx n - ; #  f  f  f  ;)x'Xf
XXiTëSfx/NëtXBXpfË/BëEfprmanëëxf&Në'fc'l/OIXIX'fxXiEXx'XEX'"/X
X x f X p f i n f f x X t X Ë X i ï ë A  d n t p ü n  s  X i X i / x y ï X f i l n P é r f  p X n t i a r i c ë  ; x . â l B
f p r in t f  (File_O utputs , ”\n ---------------------------------------------------------Xn" ) ; X

X|fpfînfB||iXi:lXe/Tpfais:Xx;XXpxi!!x|xnXîXDMËSXiX'Xxx//Xx//̂ xf
XxXPéifxpfXfanexex/MifîibSPXiiÇx&XfJëxtxtO;]XX@îfXxX̂ Ëlë̂ ^
/ExinaixifeABxBixidatipnX(XxNx)XxxxEXxX:/x:xxxX:XExx/:x/xXxx/xxx /xx
xfXfëfxOSïlXEOxfxXi/Xx/XX# XXX;XXX'XxxXxx/XxX::X4Xxx'H/XX/iXxxxX:;:'ExxxxxX4xX;:XX;xXX:iXXXXi/xX/::XXxX:XExXX4xXX
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