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Curvature-Density Functional Theory of Shape Transformation in Vesicles of Two-
Component Lipid Systems 

By 

Ian MacKay

ABSTRACT

The shape transformations and composition variation of two-component model 
lipid membrane isolated vesicles are studied. These are studied as aggregates in low 
concentration solutions so that the vesicles are isolated from each other and interaction 
effects can be ignored. The seminal work of Julicher and Lipowsky derived a curvature- 
functional free energy, which has predicted or verified many of the experimentally 
observed behaviors of model vesicles. One aspect that has not been well explored is the 
composition variation of the liquid domains. In this work, the theory of Julicher and 
Lipowsky is modified to include couplings between the curvature and composition but 
the shape of the vesicle is restricted to include only ellipsoids of varying degree of 
eccentricity and constant area. We also introduce a free energy to describe bilayered 
micelles (“bicelles”). The energetics of this structure is studied and phase diagrams are 
found for various vesicle-bicelle transitions. The properties of liquid domains, including 
compositional variations with temperature are also discussed. These results are then 
compared to experiments on vesicles and bicelles using small angle neutron scattering 
and nuclear magnetic resonance.
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1. INTRODUCTION

1.1. One Component Membrane Systems

Lipids are one of the principle components of biological membranes forming a 

selectively permeable barrier between the cell’s inner and outer environments. The 

phospholipid molecule is a surfactant (surface active agent) that consists of a glycerine 

hinge that connects a phosphatic head group (which perhaps may be very complex) and a 

tail group of two fatty acid tails which are typically about 15-18 carbons long (see figure 

1.1).

"o — fatty acid 
"o o  _§,~ acid««-> Cl — cti

F ig l.l. Diagram o f  a phospholipid molecule 

Often, one tail is longer than the other and they may be saturated differently (Peliti,

1997a) but in most of the experiments relevant to this project, they are identical (for 

example, DMPC-dimyristolphosphatidylcholine and DHPC-

dihexanoylphosphaticdylcholine). The phosphatic head, polarized or charged, attracts 

water molecules and is thus strongly hydrophilic; the fatty acid tails are non-polar and are 

less attracted to water than the head. Thus, they are relatively hydrophobic. Because of 

these two simultaneous properties of the surfactant, it is also called an “amphiphile” 

(loving both polar and non-polar molecules).

In amphiphilic solution, phospholipids undergo a structural transformation and 

arrange into complex structures called micelles that shield their tails from water, leaving 

their polar heads exposed to water. They form when the phospholipid concentration is 

above a threshold value commonly called the critical micelle concentration, or CMC for
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short. Above this concentration, even though micelles are formed, there is still a small 

number of monomers in solution. The CMC has an exponential dependence on the 

hydrophobic area of the tail group and ranges from about 10° molar for an eight carbon 

chain double tail PC to 10"10 for a sixteen carbon chain double tail PC (Boal, 2002a).

Depending on molecular geometry, amphiphiles will form various micelle shapes 

such that amphiphiles are closed packed and their hydrocarbon chains are shielded from 

water (Boal, 2002b) as depicted in figure 1.2.

■ HHS

Figl.2. The relation o f  interface shape to molecular geometry, (a) Single chains tend to fo rm  
micelles, (b) dual chain phospholipids with moderate size head groups prefer bilayers, (c) Phospholipids 

with small head groups tend to form  inverted micelles

A parameter that characterizes the molecular geometry is the shape factor, which is given

by Vhc/(aolhc) where V|1C is the volume of the hydrocarbon chain, ao is the average

membrane surface area of the molecule and lilc is the projected length of the hydrocarbon

chain. The shape factor is roughly the ratio of the volume of the hydrocarbon chain

volume over the head group volume. For a shape factor less than 1/3, the amphiphiles

tend to form spherical micelles as shown in part a) of figure 1.3:

f f | } 1
T  i

(a) (b) (c) m
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Figl.3. Packing constraints experienced by a typical amphiphile in fou r aggregates: (a) spherical micelle, 
(b) cylindrical micelle, (c) bilayer, and (d) inverted micelle. The cross sectional area is coloured black

while the molecular shape is gray.

Such amphiphiles are characterized by a large headgroup area ao compared to Vhc/lhc

corresponding to the conical shape also shown in the figure.

For shape factors between 1/3 and Vf the amphiphiles are more wedged shaped and 

the aggregates tend to be more cylindrical shaped, as in figure 1.3b). When the shape 

factor is greater than lA but less than unity, the molecule has more of a cylindrical 

geometry, with the ideal cylinder corresponding to a shape factor of unity, and sheet-like 

lamellar bilayers as in figure 1.3c) have the optimal closed-packed structure. The 

bilayers are comprised of two monolayers stacked so that the lipid tails are in the interior. 

The value of ao for phospholipids is typically 0.5 nm2 which is about double the average 

cross-sectional area of a single hydrocarbon chain. Therefore dual chain phospholipids, 

ideal for biological membranes, will have a shape factor of around unity, forming 

bilayers. The bilayer structure is shown in figure 1.4.

Fig 1.4. The lipid bilayer structure o f  dual-chain lipid molecules separating two aqueous domains.

For shape factors greater than 1 we have the hydrocarbon volume being larger than 

the product of the head group area with the chain length. With a relatively small head
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group, the molecules have the truncated cone shape and form inverted micelles which is 

shown in figure 1.3d).

We have seen that micelles form at the CMC, but at this concentration the micelles 

themselves do not have long range order. Above the CMC micelles will interact with 

each other when the concentration is large enough. The inter-micelle forces include 

excluded volume interactions and steric interactions which are repulsive. When the 

concentration of amphiphile is increased, repulsive interactions between the micelles 

become significant and this repulsion leads to crystallization of the micelles into a 

structure with long-range order (Jones, 2002a). Some these phases are shown in the 

figure 1.5:

(a) (b) (c)

Fig 1.5. Some high concentration phases, (a) A section o f  the lamellar phase, (b) Plum ber’s nightmare, 
a bicontinuous phase and (c) cylindrical rods in a hexagonal phase. (From Jones, R. A. L., “Soft

Condensed M atter”, p l4 8 )

The phase behavior of these high concentration structures is very rich and well

studied. We are interested in the behaviour of bilayered vesicle aggregates at

concentrations above the CMC, but below the high concentration regime where

interaction effects can be ignored and the vesicles can be considered isolated.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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1.2. One Component Bilayers and Model Vesicles

For systems of one kind of phospholipid in aqueous solutions, at sufficiently high 

concentration, two-dimensional bilayer sheets are stable. These bilayer sheets are about 

40A-100A in thickness and can be infinite in extent (Jones, 2002b). The edges of this 

sheet are where the exposed hydrophilic hydrocarbon tails are located (see figure 1.6). 

Because of this unfavourable arrangement, the exposed edge increases the energy of the 

system (Boal, 2000).

Fig 1.6. Cross section o f  a unilamellar vesicle (left). The bilayer sheet structure (right) 

However, if the edges of the sheet are allowed to close up on one another to give a 

closed unilamellar vesicle as in figure 1.6, the extra edge energy may be eliminated. But 

to allow the bilayer sheet to close up requires the bilayer to bend which also requires 

additional energy, called the curvature energy. The curvature energy will be discussed in 

section 2.2.3. The curvature energy needs to be set against the energy decrease from 

eliminating the edge, together with the gain in translational entropy that arises from going 

from an infinite lamellar sheet system with small polydispersity to a finite vesicle system 

with much larger polydispersity (Jones, 2002b).

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



At concentration significantly above the CMC the bilayers are stacked, giving rise to 

the lamellar phase depicted in figure 1.5a). This is a phase with one-dimensional long- 

range order in the direction normal to the bilayer.

For one component systems, vesicles are generally not stable. Sheet-like aggregates 

are more stable because of the symmetric bilayer which has no curvature preference. 

However, vesicles can be obtained in the lab relatively easily by using ultrasound to 

break up the bilayer in the lamellar phase (Benton, 1987). These sonicated vesicles are 

only metastable but are reasonably long-lived on experimental timescales (Jones, 2002b).

The radius of unilamellar vesicles (ULV’s) is commonly between 10 and 100 nm 

(Nieh, 2003). In experiments, one has a solution containing many of these ULVs whose 

sizes may be polydispers or monodisperse (Nieh, 2003) which gives rise to a translational 

entropy of the system. But, in many theoretical studies (including this one) the entropic 

contribution to the free energy due to polydispersity are neglected since it is the dynamics 

of only a single vesicle that are studied (Safran et al., 1991; Julicher and Lipowski, 1996).

1.3. Vesicles in Biological Systems

For a typical biological membrane, the lateral diffusion coefficient is around 1 p m V 1, 

so a molecule can move from one end of a vesicle to the other in about one second. 

However, it takes about a few hours for molecule to skip from one monolayer to the other 

which is of the same order of magnitude as the characteristic time to exchange with the 

solution. Therefore, on small time scales one can think of the phospholipids molecules as 

being bound to one layer but free to diffuse laterally in it (Peliti, 1997a).

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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Vesicles are of great importance in the pharmaceutical industry. For example, they 

are used to encapsulate drug molecules during delivery to a target part of the living 

system. This protects the molecule from unwanted interactions. If the vesicle breaks up 

in a controlled way at the target, then the drug can be delivered efficiently. Vesicles are 

also commonly thought of as a simple model of a biological cell, whose contents are 

separated from the outside world by the phospholipid membrane (Jones, 2002b).

1.4. Two Component Systems/Phase Formation

Living membranes are usually comprised of two or more kinds of lipids, as well as 

cholesterol and proteins. On the inside of the membrane is the cytoskeleton which 

consists of a net of proteic filaments anchored to the membrane via protein complexes 

(Peliti, 1997a). Experiments on bio-membranes usually neglect the cytoskeleton, and 

focus on two-lipid systems with or without the addition of cholesterol (Nieh, et al., 2005; 

Baumgart, Hess, Webb, 2003; Triba et al., 2005; Veatch, Keller, 2005).

Of the many studies of two component vesicles, the theoretical study of vesicle 

budding induced by the presence of domains is of particular interest. In that study the 

domain itself, which is composed of a lipid with higher curvature than the bulk, forms a 

small bud off the main vesicle (Julicher and Lipowski, 1993). In those systems, there is 

an extra energy term due to the presence of the domain boundary. This edge energy, 

which is proportional to the length of the edge, competes with the bending energy of the 

vesicle. The domain can form a high curvature bud by decreasing the length of the 

domain edge, which lowers the edge energy. If the energy loss due to the decreasing

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



domain edge is greater than the bending energy gain of the high curvature bud, then the 

budded state will be stable.

These domains are also studied as models of lipid rafts, which are small (< 100 nm) 

inhomogeneous regions of lipids and membrane-bound proteins found in cell plasma 

membranes. These rafts are associated with membrane signaling pathways and have 

recently generated interest among cell biology and membrane biophysics researchers 

(Veatch and Keller, 2005).

It was mentioned in section 1.2 that in a one-component bilayer system the lamellar 

phase is generally more stable than the vesicle phase (except at extremely low 

concentrations, of course). This is due to the energy gain of bending the bilayer. The 

bending energy is minimum for a symmetric bilayer that is flat (zero curvature) leading to 

a vanishing spontaneous curvature. However, if there are two components, the local 

bilayer composition may be distributed in a non-symmetric way and thus the local 

spontaneous curvature would be non-zero (Safran et a l, 1991). The implication of this is 

that for two-component systems we can have stable vesicles, which does not happen in 

one-component systems. Stable two-component vesicles have been observed in 

numerous experiments (Baumgart, Hess, Webb 2003; Neih et a l, 2005; Triba et a l 2005).

1.5. The Bicelle Phase

Another structure consisting of the phospholipid bilayer is the bilayered micelle also 

called the “bicelle”, which is shown in figure 1.7:

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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Fig 1 .7. The bilayered micelle, also known as the bicelle structure. The long chain molecules (in green) 
are situated on the major faces o f  the bicelle. The short chain molecules occupy the rim.

Bicelles are recognized as potentially important magnetically alignable substrates for

solid-state nuclear magnetic resonance and neutron scattering studies of membrane-

associated peptides and proteins (Katsaras et a l, 1997; Sanders et al., 1992; Hare et al.,

1995; Neih et al., 2001; Neih et al., 2002). They are composed of short-tail and long-tail

phospholipids with the short tail lipids situated to form a high curvature rim along the

side of the bicelle and the long tail contained in the bilayer as in figure 1.7. This structure

has been inferred from small angle neutron scattering experiments (Nieh et al., 2005;

Nieh et al., 2003) and nuclear magnetic resonance experiments (Triba et al., 2005;

Andersson and Maler, 2006) which have used bicelles made of DMPC and DHPC. They

exist in experiments with a radius typically between 10 and 100 nm and a thickness

generally between 4 and 5 nm (Nieh et al., 2005; Boal, 2000).

The bicelles also have an additional feature in that they possess an edge energy 

associated with the discontinuity at the edge of the disk as can be seen from figure 1.7. 

The energy penalty for the formation of edges can be characterized by an edge tension, an 

energy per unit length along the edge of the bicelle. Due to the edge energy the bicelle 

disk is circular, since this is the configuration that minimizes the edge perimeter for a 

given volume.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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Using theoretical models, Boal and Raudino independently proposed the existence of 

bicelles in one-component phospholipids systems (Boal, 2000; Raudino, 1995). However, 

its edge consists of the exposed tails of the bilayer and does not have phospholipids 

rounding out the edges (see figure 1.8).

Fig 1.8. One component bicelle 

The unfavourable configuration of the exposed hydrophobic tails gives rise to an edge

energy in much the same way that the high curvature edge does in the two component

structure. However, the edge energy would be greater for the one-component bicelles.

To describe the hydrophobic energy due to the exposed tails, one can use, to simplest

approximation, the same form of the free energy functional as the two component bicelle

disk described earlier. Microscopically, the two structures have different interactions, but

phenomenologically the edge energy can be described by the same parameter in the

macroscopic sense.

1.6. Experiments Involving Bicelles

There have been many experimental studies over the years that have examined the 

transitions between bicelles, vesicles and lamellar phases. In the experiments to be 

discussed, the systems are at low enough concentration such that the aggregates do not 

interact and crystallization of the micelles does not occur. The systems under study are

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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generally two-component systems of short-tail and long-tail phospholipids. DHPC (two 

6-carbon-long saturated acyl chains) and DMPC (two 14-carbon-long saturated 

hydrocarbon chain, no double bonds) are usually used. Sometimes DMPG (dimyristol- 

phosphatidyglycerol) is substituted for DMPC because it is useful for stabilizing bilayer 

systems (Losonczi and Prestegard, 1998). It differs from DMPC only by its anionic head 

group.

In the small angle neutron scattering (SANS) experiments, it has been observed that 

for a relatively high concentration, as the temperature is raised, the bicelles coalesce to 

form lamellar bilayers that happen to have hole defects littered along the surface. It is 

inferred that these holes themselves are lined with DHPC along their edges (Nieh et al., 

2005). This result can be understood by considering that the edge of the bicelle is an 

unfavourable high curvature configuration and thus gives rise to an effective edge energy 

as described in the last section. Therefore, the edge to area ratio of the bicelles will tend 

to be minimized, which is facilitated by their coalescence. Upon dilution, the lamellar 

bilayers undergo an unbinding transition at a critical concentration and form polydisperse 

unilamellar vesicles (ULV’s).

Another study used mixtures of DMPC/DHPC and DMPC/DHPC/DMPG doped with 

Tm3+ ions (to facilitate bilayer alignment in the presence of an applied magnetic field) 

and observed that bilayers formed for low temperatures. At high temperature and 

concentration, stacks of lamellae with pores whose edges are lined with short chain 

DHPC are formed. For lower concentrations, unilamellar vesicles exist, while at 

intermediate concentrations the ULV’s coexist with the lamellar phase. The phase 

diagram for this phase behavior is given in figure 1.9 (Nieh et al. 2001):

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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Fig 1.9. Schematic o f  the phase diagram determined by Nieh et al. showing the phase behavior o f  
vesicular, bicellar, and lamellar phases. The phase transition temperature is at 35° C.

Nuclear Magnetic Resonance (NMR) experiments have also been done on 

DMPC/DHPC systems. One study suggests that the segregation of DHPC on the rim and 

DMPC on the bilayer is not always complete (Triba et al., 2005). As the temperature is 

raised above the gel-liquid crystal transition temperature, Tm, of DMPC the two 

components begin to mix. Above Tm there is a small fraction of DHPC in the DMPC rich 

area and vice versa. While some investigators have suggested that the observed 

measurements are accounted for by an increase of the short-tail DHPC molecules in the 

solution, this does not account for some of the observed structures and the inter-bicelle 

two-component mixing model explains the structures more accurately. It is also found 

that this fraction of mixing increases slightly in this pseudobinary system as temperature 

increases above the transition temperature, Tm, and that the molar fraction, s, of DHPC in 

the DMPC-rich bilayer section is, to first approximation, only temperature dependent.

The temperature dependence of e is given in figure 1.10 (Triba et al. 2005).

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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Fig 1.10. Molar fraction s o f  lipids with a short chain (DHPC) in the bilayer section as a function o f  
temperature. The black circles and the white circles represents two different methods used by the

authors o f  the study (see Triba et al. 2005)

The NMR study by Triba et al. also describes a possible mechanism for a bicelle- 

vesicle transition that occurs at high temperatures, which is given by the following: As 

the temperature is increased above Tv, a new transition is observed by NMR and is 

accompanied by a modification of the macroscopic characteristics of the sample, which 

become milky and fluid. The s increase remains small (figure 1.10) yet it theoretically 

initiates a rapid divergence of the bicelle radius for a critical value of s:

(1.1)
1

£iim ~ “T 
<7 + 1

where q is the mol ratio of DMPC/DHPC. The explanation for this divergence is based 

on the geometry of the bicelle. The bilayer edge increases as R, while the area increases 

like R . Above a critical value of a, the increased DHPC partition into the bilayer section 

of the disks does not leave enough short-chain lipids to stabilize the edges. The edge 

energy is also increased from the growth in edge length. Therefore, in order to reduce the 

exposed edges, the bilayers must either fuse together to make large size lamellae or reseal
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by forming bilayered vesicles. If large lamellae are formed, their bending modulus may 

be reduced by the mixing of the two components in the bilayer and the high temperature 

of the sample may facilitate undulation and, eventually, the spontaneous resealing of the 

bilayer to form a vesicle.

A tentative phase diagram for bicelles and vesicles produced by this experimental 

study with an accompanying description is given in figure 1.11. The following diagram 

is incomplete, however. The regions of dotted lines represent extrapolations by the 

authors where the precise boundary of the domains has not been measured.

DMPC {%)
0 40 60 rQ 80

Fig 1.11. Tentative temperature/composition diagram o f  DMPC/DHPC mixtures, at a concentration in 
water o f  25% (w/w). q represents the mole ratio o f  DMPC/DHPC. The dotted lines represent incomplete

regions, (from Triba et al. 2005)

The boundary indicated by open circles, corresponds to a transition between bicelles with

almost perfect segregation to bicelles with mixing between the DMPC and DHPC regions.

The region labeled B+V corresponds to a co-existence region, where bicelles and vesicles

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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are equally stable. Full triangles correspond to a boundary between mixed bicelles and 

multilamellar vesicles, starting with perforated vesicles ( Vp), coexisting with remaining 

mixed bicelles (.shaded zone). The perforated vesicles have short chain DHPC lining the 

holes. Full squares correspond to a boundary between perforated vesicles and non­

perforated vesicles whose bilayer consists of mixed DMPC and DHPC.

A possibility not mentioned by Triba et al. is that the dotted line between Vp and Bm 

may represent regions of Bm and Vp in co-existence.

1.7. Detection of the Oblate Structure

Another interesting structure is that of the oblate shaped vesicle, which was also 

observed in the SANS experiments (Nieh et al., 2005) and is given in figure 1.12.

hydrophobic
layerhydrophiic

layer

Fig 1.12. Oblate ellipsoid. ashdh bshdh acore and bcme correspond to the various minor and major axes radii
o f  the oblate ellipsoid’s shell and core, repectively.

For low sample concentration (0.1 wt%), relative concentration of about

([DMPC]+[DMPG])/[DHPC] = 3.2, and very small amount of DMPG ([DMPG]/[DMPC]

= 0.01), the sample was prepared at 10°C. The sample begins in the bicelle phase and

upon heating forms small polydisperse unilamellar vesicles (ULV) with radius of 98A.

When the sample is cooled back to 10°C, the SANS data does not show the characteristic

pattern for bicelles but instead a scattering curve best fit using monodisperse core-shell
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oblate ellipsoids with major and minor radii of 180A and 62A, respectively. Reheating 

the sample gives a scattering curve identical to the initial one formed by the ULV, 

indicating that the ULV has conserved its size and mass. Theoretical calculations for the 

shell thickness give an increase of shell thickness from 36A (ULV) to 45 A (oblate 

ellipsoids) and this increase in shell thickness is consistent with a bilayer undergoing a 

transition from the liquid crystal to gel phase. Furthermore, the measurements indicate 

that the size of the oblate and spherical vesicles are nearly the same.

The authors describe the oblate morphology in terms of the nascent stages of 

segregation between the gel-phase DMPC and DMPG from liquid crystal DHPC. The 

long chain lipids form a rigid planar structure which decreases the curvature energy 

resulting from the high bilayer bending rigidity as the temperature is decreased below the 

liquid crystal/gel transition temperature. However, since DHPC has a very high CMC, at 

this low concentration, there may be an insufficient amount of DHPC to stabilize the 

bicelle’s rim. Therefore, the long chain planar bilayers are bridged via the flexible DHPC 

molecules, resulting in oblate ellipsoids.

1.8. The Relevance of a Composition-Curvature Theory

It was mentioned in section 1.4 that the study of two-component systems and their 

phase separation is important for understanding certain mechanisms for bud formation 

and for the study of lipid rafts. However, in the case of domain induced budding, the 

authors (Julicher and Lipowski, 1993) assume that highly segregated, homogenous, 

domains have already formed and that there is a discontinuous change in composition 

between them. This assumption, however, neglects that in general the amount of mixing
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(the composition) varies continuously along the surface and that domain boundaries are 

not necessarily sharp but can be smooth. Then they construct the vesicle free energy of 

mixing in terms of the two separated domains plus a domain boundary energy as follows:

Fm = A{a)f {a) + + Ft ( 1 -2)

where the first term accounts for the mixing energy of one domain, the second term for 

the other domain, and the final term describes the energy due to the line tension between 

the two domains. The mixing energy is combined with the bending energy to examine 

vesicle stability. While this approach has predicted or verified many of the observed 

experimental behaviors, the authors neglect important factors that arise from the variation 

of local mixing. These factors include the entropy of mixing, and the change in the local 

bending rigidity and spontaneous curvature.

To investigate this, we will modify the approach of Julicher and Lipowsky and 

introduce a composition-curvature free energy functional that varies with the local 

composition and curvature. By performing functional minimization we obtain the 

equilibrium shape of the vesicle as well as the composition variation across the vesicle.

To study bicelles we will introduce a bicelle edge energy term to the free energy 

functional. This will mimic the increase in energy at the bicelle’s edge when short-chain 

lipids mix with long chain lipids (Triba et al., 2005). Phase diagrams are obtained by 

standard statistical mechanical methods, and the results are compared to experimental 

diagrams of figures 1.9 and 1.11.
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2. THEORY AND METHODS

2.1. Introduction

In this chapter, the free energy of the vesicle and the bicelle will be derived. There 

are a few terms that contribute to the total free energy of the system that have to be 

considered. The curvature or bending energy takes into account the bending energy of 

the bilayer, while the coupling energy takes into account the interaction between different 

pairs of molecules. The coupling energy is a result of the free energy of mixing that 

arises from the aforementioned generalization of the free energy of Julicher and Lipowski. 

The other terms that contribute to the free energy are the entropy of mixing, the chemical 

potential and the edge energy for the bicelle. With the full description of the free energy, 

Lagrange’s principle of least action will be applied to the free energy functional, giving 

the self-consistent equation for the local composition. This will be used to obtain the 

stable vesicle shapes and the composition profile.

2.2. Introduction to Curvature

To describe the bending energy, it is necessary to introduce the curvature (Peliti, 

1997b), which quantifies the amount of bending at a given point on the surface. One 

chooses the origin of a coordinate axes (x , x , x ) to coincide with a point P while the 

direction is defined such that the first two coordinate axes are in the tangent plane and the 

third axes is orthogonal to it and directed toward the exterior. The shape of the 

membrane is given by a form called the Monge representation of the surface, given as 

follows:

x 3 = u (x 1 , x 2 ) (2-1)
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Close to P. the function u(x!, x ) will approximately be represented by the following 

quadratic form:

C2-2)
u (x  1 , x 2 )  = — Q. y x 1 x

2 i, j=  i

Qij is the curvature tensor. It has the eigenvalues Cj and c?, which are the two principal 

curvatures and they are equal to the two extremal values of the curvature radius. There 

are two important quantities which are invariant to the curvature tensor and these are the 

mean curvature and the Gaussian curvature. The mean curvature is the trace of the 

curvature tensor and is given by H  -  c; + c?, it can be thought of as the average of the 

curvatures. The Gaussian curvature is the determinant of the curvature tensor and it is 

given by K  = C1C2 .

To get an idea of the geometrical meaning of these quantities, we will look at the 

following. If K=  0, then the value of at least one the curvatures is zero and the local 

surface can be applied onto a flat plane. If K > 0, then the surface locally looks like a 

sphere and if K < 0, then the surface locally looks like a saddle. If H  = 0 then the two 

principal curvatures are opposite to each other and the surface has saddle geometry and is 

locally extremal under small deformations of the surface.

The Gaussian curvature is named after the mathematician Gauss, who introduced it 

and studied its properties. One of the important properties of the Gaussian curvature is 

that the integral of it over the whole closed surface is a topological invariant. It is 

proportional to the number nc of connected components and the number «/, of handles of 

the surface, and given by the Gauss-Bonnet theorem:

j d A K  =  A t v x  e  =  4 7 r ( n c -  n h )  ( 2 ' 3 )

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



23

This formula will be useful in a later section for the calculation of the curvature energy of 

the closed vesicle membrane.

A useful formula for the curvature is needed later on so we will start with the 

definition of the curvature of a curve:

(2.4)
c = d T

ds

this states that the curvature is the derivative of the unit tangent vector with respect to the 

arc length of the curve, s. The unit tangent vector is given by:

(2.5)

r (01
where the prime indicates a derivative with respect to t, a generalized parameter. The 

curvature is easier to use if it is expressed in terms of the generalized parameter t, so one 

makes the following manipulations:

and (2.6 a, b)
d T 
dt

d T ds 
ds dt

dT d f/d t
ds ds/dt

where the equation 2.6a) is the chain rule. However, in equation 2.6b), the denominator 

ds/dt is simply equal to | r ’(t) | so the curvature is now expressed as:

(2'7)

V (01

This form will be more useful.

A useful example is the curvature of a sphere of radius a. The two principal 

curvatures of this sphere will obviously be 1/a. A diagram illustrating the two principle 

curvatures of saddle like surface is shown in figure 2.1.
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Fig2.l. Principle radii o f  curvature o f  a saddle-like surface. (Taken from  Boal D, 2000)

2.3. Curvature-Composition Free Energy

2.3.1. Bending Energy

Displacing bilayer phospholipids from their equilibrium position requires energy 

input. A couple of ways to displace bilayer phospholipids is by compression, stretching 

or bending of the bilayer.

Membranes do not respond well to stretching. As the bilayer is stretched, it becomes 

thinner and its hydrophobic core (lipid tails) is increasingly exposed to water. The 

membrane will fail once it has been stretched to only about 2-5% of its equilibrium area. 

At this point a hole is formed that permits the phospholipid density to return to its optimal 

value and the membrane is effectively burst (Boal, 2002c). In light of this relatively low 

tolerance of the bilayer to stretch, we will only consider the bending contribution to the 

bulk conformational energy of the membrane.

The bending of a bilayer involves both the stretching of one layer of the compression 

of the other as shown in the figure 2.2.
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Fig 2.2 Bending a symmetric bilayer from  a planer configuration (a) to a curved shaped (b) involves 
stretching (top) and compressing (bottom) the individual leaflets.

The bending energy per unit surface increases with the curvature. The simplest form of

this energy contains contributions from the mean curvature (C1+C2 ) 2 and Gaussian

curvature C1C2 where C/ and C2 are the principal curvatures described earlier. The

bending energy density will then be as follows (Peliti, 1997b):

<2-8>
3  =  f - ( c t +  C 2 ) 2 +  r G C , C 2

where the two parameters Kb and kg are bending rigidity and the Gaussian rigidity, 

respectively. The parameters both have units of energy and are specific to the material of 

interest.

The total Gaussian bending energy of a given surface is given by the constant quantity 

4n(nc-nh), where nc is the number of connected components and n/, is the number of 

handles. The Gaussian bending energy is thus a topological invariant under continuous 

deformations of the vesicle. For example, if a spherical vesicle deforms into an ellipsoid, 

then the Gaussian bending energy does not change. Since we are concerned with shape 

changes with a constant topology, the Gaussian energy term can be neglected. Another 

modification will be to include the spontaneous curvature Co, which reflects possible 

asymmetries in the two monolayers on the membrane. Asymmetries can occur in two
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component systems (Safran, 1991) and will, therefore, depend on the local composition. 

Co will thus depend on the local composition of the membrane which will be discussed at 

a later section.

If the form of the energy density is selected so that the stable configuration occurs 

when the curvature is the same as the spontaneous curvature, the bending energy density 

for a given component becomes:

(2.9)
-a = K b ( C l + C 2 -  C 0 ) 2

The bending rigidity Kb is of the order 10'19 J, or few tens of k^T (Peliti, 1997c). 

Therefore, an isolated, unconstrained membrane undulates easily at room temperature. 

Many measurements of the bending rigidity have been done by analyzing the amplitude 

of the bilayer’s thermal fluctuations for synthetic vesicles (Schneider et al., 1984; Faucon 

et al., 1989; Duwe et al., 1990; Meleard et al., 1997) or flat bilayer sheets (Mutz and 

Helfrich, 1990). Another approach examines the effective in-plane area of a membrane 

as produced by thermal fluctuations (Boal, 2002d).

A functional relationship between the bending rigidity and the thickness of the bilayer 

is predicted by a polymer brush model to give

P-10)

where <41 is the thickness of the bilayer (Boal, 2002d).

2.3.2. Coupling Energy of a Binary Mixture (Safran, 2003)

In two component systems there will be interactions between neighbouring molecules 

that contribute to the free energy of the system. We will examine thermodynamic and
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structural properties on length scales much larger than molecular sizes. Therefore, we 

take into account excluded volume interactions between the hard cores of the molecules 

by putting the two components on a lattice whose sites are labeled by i = 1 ,.. .N. We can 

use a lattice in which each site is the same area since we are studying a system of 

surfactants whose head groups are generally the same size but whose tail groups are 

different lengths. We denote component “A” by the variable st = 1 and denote 

component “B” by y  = 0 where the index “i” indicates lattice site i. The interaction 

energy between two “A” molecules a distance | Rj -Rj | apart is given by coupling 

energy Ji/1A while the similar interaction between two “B” molecules is given by J BB and

A Rbetween an “A” and “B” pair is Jtj . The microscopic Hamiltonian of this lattice-gas 

model is:

(2 .11)

H  = - ~ Y K iio  lJZ ij

where

K'j (Z12)

The negative sign in the Hamiltonian indicates that the interactions are attractive while 

the “J ” terms indicate the magnitude of the attractive interactions. The first term will be 

non-zero only when there are two “A” molecules at sites i and j ,  while the other terms 

follow similar considerations.

The Hamiltonian from equation 2.11 can be rearranged in such a way that redefines 

the zero of energy of the system. Ignoring this constant term, one can write the net 

interaction of the system as:

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



28

(2.13)

Z ij

Therefore, if the number of attractive interactions between AA and BB pairs are more 

than those of the AB pairs, the system will tend to phase separate into an “A” rich phase 

and a “B” rich phase, maximizing the number of AA and BB pairs. The interaction 

Hamiltonian can thus be re-written in following simple form:

(2.14)

y

where

r _ I jAA jBB _  9 TAB (2.15)
ij L ij ij Z J ij .

The partition function of this Hamiltonian is difficult to evaluate so we must introduce a 

variational method to find an approximate solution.

2.3.3. Variational Method

Consider a system described by an exact Hamiltonian, H. The probability distribution,

• ♦ W /TP, of the system is given by the Boltzmann factor, P ~ e ; which is the result of the 

minimization of the total free energy parameterized by the probability distribution, P:

F* = T \d A P \o g P +  \dAPH  (2' 16)

where F* is the exact free energy and A represents the phase space of the system. A 

variational approximation to the true Boltzmann weight and hence to the free energy can 

be obtained by considering a reference system, described by a Hamiltonian, Ho, which
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’K
contains several parameters and by minimizing F  with respect to these parameters. 

Therefore, the free energy is approximated by:

F - r j j A P 0 logP0 + JVAP0f f  (2.17)

where Po ~ exp(-H(/T). In fact, it can be shown that the exact free energy, F  , of the 

system with a Hamiltonian H  obeys the inequality:

F , < F  = F0 + { H - H 0)I1 ( 2 ' 1 8 )

where Fo is the free energy of the model system and the average values are taken with 

respect to the Boltzmann factor exp(-H(/T) of the model Hamiltonian. Thus, if one 

chooses Ho to have a given functional form with some unknown parameters, an 

approximation to the free energy may be derived by minimizing F  as defined above with 

respect to these parameters so the lowest upper bound on F  , is obtained. We can now 

use this variational method to help find an approximation to the exact free energy of the 

system.

2.3.4. Free energy of a Heterogeneous Binary Mixture

On the surface of the lipid membrane, the relative composition that is, the relative 

number fraction of “A” molecules, is given by (j) and for “B” molecules is 1 - <|>. The 

composition will not be homogenous throughout the system since the curvature will vary 

along the membrane surface and each component will have a different curvature 

preference than the other. It is thus necessary to use a model in which the composition 

changes along the surface -  ie,, <j>(r) varies in space.
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We will start with the lattice-gas model of a two-component system given in equation 

2.14 and consider, for simplicity, only two-body interactions between the components. 

The Hamiltonian of the exact system, H, written as a function of the local composition 

variable at site i, sL where s, = 1 represents an “A” molecule and s, = 0 represents a “B” 

molecule. We then have:

(2.19)

Z ij

where is the net interaction between the two components as before. In order to obtain 

phase separation of the mixture, the terms Jy must be positive. However, as mentioned, 

the partition function for this Hamiltonian is difficult to evaluate because of the coupling 

between the sites. We will then invoke the variational method, as described in the last 

section, and construct a model Hamiltonian, Ho, a function of single-site variables only:

(2.20)
o = I  T f i t s ,

i

where the factor of T is put in the definition of Pi for convenience. The parameters Pi are 

determined using equation 2.18 to derive the upper bound F, on the exact free energy, F*, 

and then minimizing F  with respect to the parameters P, (with the constraint that the 

average composition is fixed) to determine the least upper bound and best estimate within 

the variational scheme. The integral depicted in the discussion of the variational scheme 

over all the degrees of freedom is of the form

(2.21)

but since we are using a discrete lattice model, we will use:
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(ie., a product over all sites i of the sum over the two possible values of y=0,l).

The free energy of the model system, Fo, is given in terms of the partition function, Zo, 

as follows:

F0 = -T  log Z0 (2 2 V

(2.24)

z o = n ,
Sj = 1,0 1 Ti

where (j>, = [1 + exp(f3l)]~1. One can show by taking the average with respect to Po = 

exp[(Fo-Ho)/T] that (j); = (si)o; <(>i is the equilibrium average value of the local 

concentration variable, Sj in the ensemble described by Ho and Pq. Since it is an average 

quantity <j)j can vary continuously from 0 to 1 and will be useful in constructing a 

continuous density profile for the system with an interface. A similar calculation gives

(2.25)

( H  -  o>„ = ( l  v f  -  O -  r I  M i
2 ij i

Using the above equations we find that the upper bound on the exact free energy is

(2.26)

F  = I  [ T {(1 -  ^  ) lo g (l -  ^  ) + &  log &}] + J i j h (i -  h )
/ 1 ij

The above free energy gives the energy of mixing for an inhomogenous system, that is, a 

system in which the local relative concentration c()i varies in space. Such a system can 

possess a phase boundary between two regions in which one region is rich in “A” 

molecules and the other region is rich in “B” molecules.
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The free energy from equation 2.26 also incorporates the edge tension energy of the 

interface between the “A” rich region and the “B” rich region, or in other words, between 

two phases. By examining the coupling term in the free energy, one can see that the

of these regions). But in the region of the interface, the local composition <j) will be 

somewhere in between 1 and 0 which will raise the coupling energy, and therefore, 

account for the interfacial energy.

In the previous section, a discrete lattice-gas model was introduced to describe the 

interaction energy of the binary system. The length scales of two-component vesicles 

that are studied experimentally are often much larger than that of the individual 

molecules. For example, the head group of a membrane lipid has a bilayer surface area 

of around 40-70 A2 (Boal pl40), whereas the membrane surface area is of the order 105 

A2. This gives about 104 lipid headgroups across the membrane surface. It is therefore a 

valid approximation to take the discrete model to the continuum limit in order to describe 

two-component lipid bilayer vesicles.

To obtain the continuum limit, it is noted that

In the continuum situation, we will have a free energy per unit volume instead of free 

energy per site in which the difference <|)j - cj>j is converted to a gradient. For short-range, 

nearest-neighbour interactions, this gives

coupling energy is relatively low in either of the phases (since <j) is around 1 or 0 in either

1 (2.27)

(2.28)
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where a is the nearest-neighbour distance. The free energy of mixing can then be written

as:

F = jdr
(2.29)

where B = J/(2a), J  = 'ZjJj (like a local mean field), and with <j> —» §(r) being the local 

value of the composition. The nonlinear, local part of the free energy per unit volume, fo

is

/o = A I + 0 -  ̂ )log0 -  ̂ )]+ ^  -  <£)
J

(2.30)

The above expression contains a gradient term, an entropy of mixing term and a term that 

is of the same form as the coupling term in the discrete lattice-gas model. We shall 

ignore non-local effects, which requires setting the gradient term to zero (Seifert, 1993), 

and the free energy of mixing will then be as follows:

(2.31)

F = \ d} -y \ j [ ^ )  lo§ <̂(F)+ 0 _ ̂ (F)) log0 “ ̂ (F))l + ̂  ̂ (F)0 - </>(r ))

2.3.5. Simplification of the Entropy

From the determination of the two-component coupling energy there emerges an 

entropy of mixing term

<j){f )log^(r )+ (1 -  (j)(r j)\og(l -  )) (2'32)

which has the same form as Shannon’s formula,

(2.33)
M

S = -K 'ZP j^P /
7=1
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where S is the entropy, K  is a constant and Pj is the probability (or fraction) of component 

j. The entropy of mixing accounts for the disorder resulting from the mixing of the two 

components and varies along the surface of the membrane.

However, in real membrane systems, there are other contributions to the entropy. The 

first of these is the entropy due to the thermal undulations of the membrane, called the 

conformational entropy. If a membrane is confined not to be able to wander further than 

a certain distance from a plane, then a very large number of configurations that otherwise 

the membrane would have explored during the course of its thermally driven undulations 

will be forbidden to it, with a consequent loss of entropy (Jones, 2002c). This leads to an 

effective long ranged entropic potential that is important for a system of membranes. An 

additional source of entropy, called the translational entropy, arises as a result of the 

polydispersity of a system of aggregates, in which the vesicles have distribution of the 

sizes about a mean. Systems of polydispersed and relatively monodispersed unilamellar 

vesicles have both been observed in experiments (Neih, 2005).

In this project we follow Safran et al. (1991) and study equilibrium vesicles in the 

approximation where all the vesicles have (i) the same size and composition asymmetries 

(composition profile) and (ii) the same ratio of the two surfactants. By doing this, we 

will effectively ignore the conformational and translational entropy among other 

contributions and consider only the entropy of the mixing as derived for the continuous 

binary system.
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2.3.6. Complete Free energy of the Vesicle

By including curvature and mixing effects, the total free energy of the vesicle is 

written as:

F  -  fr , F (2-34)
vesicle mixing 1 bending

i (2-35)
le n d in g  = j d A  + *2 (l - + C2 “ C0 F

F'mixing CJ' d A

(2.36)
— (j){ 1 -  tf) + T\(/> In (j) + (l -  ^)ln(l -  ^)] +

In the bending energy term, we have described the local bending rigidity in terms of the 

phenomenological parameters Kt and K2 where the first term denotes the bending rigidity 

contribution of component “A” and the second term for component “B”. We see that 

Ki is coupled to the relative composition of component “A” and k2 is coupled to the 

relative composition of component “B”. This mean-field like description of the local 

bending rigidity is somewhat simplified but is more manageable than a complete 

microscopic description that would include complicated interactions of the lipid tails, 

among other things.

At this point a more detailed description of the spontaneous curvature, Co, can be 

given. We will use a model for Co where it will depend in a simple way on the local 

composition. By looking at the molecular geometry, we see that if the membrane locally 

consists of only long chain molecules (<j> = 1) or short chains (<|> = 0), then Co will be zero 

due to the symmetric bilayer. If the membrane locally has maximal mixing ((j)=l/2), then 

Co will be a maximum. This would occur because the membrane must curve in order to
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obtain a closed packed configuration of the phospholipid molecules. A functional form 

with respect to the local mixing (j) that satisfies this is:

c„M=c«t(i-«s) <2 3 T >

where C is a phenomenological parameter. This form is similar to that used by other 

authors who have studied spontaneous curvature (Seifert and Lipowski, 1995).

The free energy of mixing consists of terms directly related to the composition 

(j) = <j)(r). To achieve the desired lipid composition, the Lagrange multiplier u is included. 

This term is related to the chemical potential difference between the “A” and “B” 

components.

2.3.7. Free Energy of The Bicelle

In order to describe the free energy of the bicelle we simply add an edge energy term 

to the vesicle free energy:

F h - n = F h d- + F  ■■ + F  ( ' 2 ' 3 8 ^x bicelle bending mixing a

T? (2‘39)
■* edge ^ ra v e

where

/I = 2 nrX  (2.40)

The bending and mixing free energy density is integrated over the bilayer (which is 

constrained to be flat) and the edge is treated separately. The bilayer curvature is 

spatially isotropic (zero everywhere) so the composition profile, (j), will be homogenous 

(thus denoted (j)ave) since the “A” and “B” components have different curvature 

preferences. In this description, X is the edge energy parameter, which is proportional to
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the length of the bicelle edge perimeter 2nr, where r is radius of the bicelle, and V  is the 

effective edge energy per unit length as described in a previous section.

The edge energy is phenomenologically set to be proportional to the relative 

composition in the bilayer. This can be justified by the following. We note that the 

thickness of the bicelle increases as the relative composition § increases, ie: the more 

long chain molecules there are in the bilayer, the thicker the bilayer will be. And, in turn, 

thicker bilayers will have a larger edge region, thus increasing the edge energy. The 

bicelle free energy as described by equation 2.38-40 can thus be used to represent the 

mixed bicelle phase (see figure 1.11) observed by Triba et al (2005).

2.4. Methods of Solution

2.4.1. Calculation of the Free Energy

We would like to solve for the free energy of the vesicle and the disk (equ 2.34-36 

and 2.38-40). We start by dividing the free energy out by the bending rigidity, kj. We 

also use an appropriate unitless reference area since we will study constant area vesicles. 

This will give the following unitless expressions for the bending, mixing and edge energy:

bending - = jdA i[*  + * ( 1  -  *0][C, + C2 -  c 0]2
K.\ 2

(2.41)

bending

mixing
mixing

(2.42)
<jdA ~ ^ ( l — (f )  + T\<j>h\<j) + ( l - ^ )ln (l- ^)] +
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where the barred terms, which are rescaled and unitless, can be considered 

phenomenological parameters.

It was mentioned earlier that ki was the mean-field bending rigidity for component 

“A” and K2 for component “B”. We would like to make qualitative comparisons of the 

theory with the experiments that have been discussed that typically use long chain DMPC 

molecules and short chain DHPC molecules. With this in mind, we designate component 

“A” with the long chain molecules and “B” with the short chains. From equation 2.10, k 

= d2, the bending rigidity ki will be larger than the bending rigidity K2 and the ratio K1/K2 

(denoted by a barred k  in equation 2.41) will vary between zero and one. This ratio is 

thus a microscopic parameter that measures the relative molecular geometry of 

component “A” and “B”. From equation 2.10 when “A” is much longer than “B”,

K1/K2 is small and when “A” approaches the same length of “B”, K j / k 2 increase up to 

unity.

In general there are many different kinds of stable shapes, that range from simple to 

relatively complicated, that are solutions to the free energy. These shapes generally need 

two variables to parameterize their surface. In order to simplify calculations we restrict 

the possible solutions to the class of axisymmetric ellipsoids. This kind of simplification 

where the shape is restricted has been done by other theoretical investigators (Safran, 

1991; Chen, Higgs et al, 1997). This has the benefit that it can be parameterized by a 

single variable, the arc length (or equivalently the angular position) of the cross-sectional 

contour (see figure 2.3).
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Y

Figure 2.3. Digram o f  the a cross section o f  the axisymmetric ellipsoid where a is the length o f  the 
vertical axis and  b is the length o f  the horizontal axis.

By using axisymmetric ellipsoids (Fig 2.3), the vesicle shape can be parameterized by the

eccentricity, which is defined as the ratio of the axisymmetrical axis length to the

horizontal axis.

The justification of this simplification is that in the aforementioned NMR and SANS 

experiments, the observed closed vesicle shapes consist of only spherical and oblate 

ellipsoidal shapes. Obviously, this theory also includes prolate ellipsoids.

The equilibrium vesicle states will be found by first using Lagrange’s variational 

principle and minimizing the free energy with respect to the composition:

(2.44)
dF(£,T,u,J,K,0) _ q 

d(f>

where s is the eccentricity and T, u, J, k  are the rescaled, unitless parameters and are now 

denoted without bars. From this point on the rescaled parameters will continue to be 

denoted without bars. The self-consistent equation for the composition profile emerges 

from this which has the following implicit form:

</>{e,d) = g(e,T,u,J,K,<f>) (2-45)
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where g is a function of the eccentricity, the composition profile and the other parameters 

and 9 is the angular position. It can be seen that the solution to this, which must be found 

numerically, will give the composition profile, <|)(9), for different vesicle shapes of 

varying external conditions and material characteristics. These findings will be discussed 

in chapter 3. With the solution to the composition profile, the free energy can now be 

calculated.

2.4.2. Parameterization of the Membrane Surface

The shape transformations for axisymmetric, two-component membranes have been 

studied before (Julicher and Lipowsky, 1996; Hu, J-G and Ou-Yang, 1993). One 

common way to obtain shape equations consists of expressing the free energy in terms of 

the arc length S, and writing down the Euler-Lagrange equations using the appropriate 

constraints. Functional minimization gives a set of differential equations which have 

been used to calculate phase diagram for axisymmetric vesicles in spherical and toroidal 

topologies (Seifert, U., 1991; Seifert, U. et al., 1991; Bemdl et al., J., 1990). One can 

also do the above by using the distance between the axis of symmetry and the contour as 

the parameter, instead of the arc length (Hu, J-G., Ou-Yang, Z-C, 1993).

In this project we parameterize with the angular position of the arc length and express 

the curvature and area in terms of this. These are then substituted in the free energy 

functional and this is integrated over with respect to the arc length. The detailed 

calculations are given in the appendix.
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2.4.3 Calculation of the Phase Diagram

Stable vesicle shapes are found by examining the energetics of the system with 

respect to the eccentricity. It is possible to have three different vesicle shapes from the 

vesicle model: axisymmetric oblates, prolates and spheres. From the energetics of the 

system, the temperature vs. chemical potential phase diagrams are determined. These are 

used to construct temperature vs. average composition diagram, which are more 

appropriate for comparison with experimental data. This is relevant for comparing our 

theoretical model with the SANS results. This will be the subject of chapter 3.

In chapter 4 the bicelle phase will be examined. We simply compare the energies of 

the bicelle and vesicle and construct the phase diagram for vesicle and bicelle 

morphologies which will be compared to the NMR and SANS results.

Appendix A to Chapter 2 

Parameterization of the Membrane Surface

The shape of the axisymmetric vesicle is defined by the shape of the cross section of 

the vesicle given by figure 2.4. We use as the independent parameter the angle 9. The 

arc length is parameterized as follows:

S  = S {0 ) (2.A.1)

and so is x-coordinate andy-coordinate:

X = x(0 ) y  = y(9) (2.A.2a, b)

The area of the vesicle is then as follows:

(2.A.3a,b)

o
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The derivative of S  with respect to the angle in terms of the x and ̂ -coordinate will also 

be needed:

| 4 | ! + f i | ! (2 'A 4 )

de \ \ d d j  Kdd)

The curvature was given in equation 2.7 as follows:

, - , M (2'A '5)
r '( qc ( 0  = TZ77^
\ r  (01

where the numerator contains the derivative of the tangent vector and the denominator 

contains the derivative of the position vector. There are two principle curvatures and in 

order to establish these, we must set up a coordinate system for the two dimensional 

membrane surface. The first component, the angle of the cross-sectional arc length, has

already been given. The other component, given in figure 2.4, is the radial position given

by the angle, (j). The tangent with respect to 6 is given in the diagram by the angle >//:

y/ = y/(0) (2. A.6)

, d ¥  (2.A.7)

r  d 9

and the position is the arc length, S. This gives for the first principle curvature:

¥ > (2.A.8)
C\~
1 S '

The second principle curvature is given by

sin^
x

(2.A.9)

We would like to write out the local curvature in terms of the eccentricity and the angular 

position. The x and y -components are given as follows:
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x - a  sin <9 (2. A. 10)

y  ~ b sin 0  (2.A. 11)

where a and b are the length of horizontal and vertical axis, respectively, and are shown 

in the following diagram:

S-arclenglh

Figure 2.4. Cross section o f  an axisymmetric ellipsoid. The arc length from  the origin is given by S
which parameterizes the surface.

In order to express i// as function of 6 we consider the following relation for the tangent

angle:

tan i// = - dy
dx

and the relation between the x andy component:

—y h— j — \ - y y  — bA\ — ; 
a2 b2 V a

Now we take the derivative ofy  from (2.A. 13) with respect to v:

ten*
dx a y  a

(2. A. 12)

(2.A.13)

(2. A. 14)

where the relation x/y =(a/b)tand has been used.
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At this point, we will simplify the calculations by using the eccentricity parameter:

s  = 
a

b (2.A.15)

as described in section 2.4.1 and equation 2.A. 14 becomes

(2.A.16)
dy i x— = - s  — = -e  tan 0 
dx y

We can now express y  in terms of 6 by relating the expression from (2.A.16) for 

dy/dx\

tan \f/ = s  tan0 —» y/ = tan-1 [<? tan <9] (2.A. 17)

We can now take the derivative of \p with respect to 6 is needed for the first principle 

curvature:

(2.A.18)
, dur 1 £ £

W ~ ~
dO 1 + s 1 tan2 6 cos2 6 cos2 6 + £2 sin2 0 

The arc length, S, must also be expressed in terms of 6. We start out with the definition 

of the arc length:

(2.A.19)

S= jd 0 '— f = \d0'

= jdd'^la2 cos2 9 + b2 sin2 0 
o

Using the Leibniz rule for differentiation of integrals:

S' = —  = <Wcos2 0 + £2 sin2 6 
dd

The first principle curvature can now be obtained:

(2.A.20)
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(2.A.21)

The second principle curvature is relatively easier to find. It is as follows:

_ sin y/ _ sin [tan-1 (s tan 9) j
(2.A.22)

x a  s in#

where the appropriate equation for y/(9) and x(6) has been used.

From these expressions, we see that cj and o  vary with 6, ie: along the surface of the 

vesicle.

Appendix B to Chapter 2 

Vesicle Free Energy In Terms of 0 and e

In chapter two, the free energy of the vesicle was given by equation 2.41-43. We 

will now write these in terms of 0 and e. We will simplify the curvature energy by 

introducing a curvature term, K, as follows:

The free energy functional must be integrater’ over the whole membrane surface which 

can be done by using the following .

[-K (0 ,s )=  ^  + | ( 1  -  </>) (c\ + c2 ~ c0)2
(2.B.1)

a

where

(cos2 0 + s 2 sin2 oY1

1
+

sin[tan
(2.B.2)
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(2.B.3)
K

cjdA = 2 k  JxS'dQ 
—  o

n i---------------------
= 2 m 2 jdOsinO-Jcos2 0 + s 2sin2 0 

o

where S' has now been written as:

S' = <Wcos2 9 + e 2 sin2 6 (2.B.4)

and x is given from equation 2. A. 10. The free energy of bending and mixing, which are 

written in unitless form, are now giving as follows:

Fbend -  2k  jdOsinO^Jcos2 0 + e 2 sin2K(6, s ) 
o

(2.B.6)
71 ______________

Fmixing = ^  \dO sm O ^co^d + P' sin2 0{a2J<f>(l-(f>)
0

+ a2T\(j) In (j) + (l -  ln(l -  ̂ )] + a2u<j)}

Minimizing the free energy functional with respect to the composition profile gives the 

self-consistent equation for the composition profile, as mentioned in 2.4.1. This gives:

(2.B.7)

1 -  tanh<
\ k ( 0 ,£ )  + u - 2 J</>
a

I T
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3. RESULTS FOR VESICLES 

3.1. Intoduction

The main results of this section come from the calculation of the composition profile 

and the phase diagram in the temperature vs. total composition regime (T vs 0av). The 

composition profile is simple to find and is described in 2.4.1. The T vs <pm phase 

diagram is not as straightforward to find and requires the calculation of the temperature 

vs. chemical potential phase diagram (T vs. u). The results have been obtained using 

numerical methods with FORTRAN 90.

3.2. Results

In this section we will calculate the T vs. u diagram for specific values of the bending 

rigidity, k , the coupling, J, and the spontaneous curvature, crh for constant area vesicles. 

The variable, u, is actually related to the chemical potential difference of the two 

components but we will nevertheless refer to it as the chemical potential.

The coupling parameter, J, is kept at 0.5 and we do not show graphs with variations in 

J  since we are interested in bending effects, which are more directly related to the 

curvature parameters k  and c q .

The free energy vs. eccentricity (F  vs. e) graph is plotted for a given range of 

temperature and chemical potential. For each point (u, T) on the phase diagram, the 

stable and meta-stable shapes (denoted by e) are found from the F  vs. e graph. The phase 

diagrams for different values of k  are as follows:
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k - 0 .2 , J=0.5, c_spont=0.2
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Figure 3.1.

Figures 3.1-6. Temperature vs chemical potential phase diagram. S  represents the region 
corresponding to a spherical vesicle, O represents the region corresponding to oblate ellipsoid vesicles. 

The transition between these two regions are separated by the phase boundary. Toward the critical poin t
(oval), the transition gradually disappears.
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Figure 3.2. Caption below fig : 3.1.
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Figure 3.3. Caption below fig. 3.1 

In figures 3.1-3, the data points map out the phase boundary for a discontinuous 

transition in the temperature vs. chemical potential plane. This transition is from the 

spherical state (e ~ 1) denoted by the letter “S” to the oblate state (e ~ 0.5) denoted by the
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letter “O”. Prolate shaped vesicles (e > 1) are not observed for vesicles of constant area. 

A general phenomena that is not illustrated in the graphs is a weak, almost continuous 

change from the oblate state back to the sphere state with further increase of the chemical 

potential. This occurs around u = -0.6 to u = -0.8. The phase boundary line disappears at 

high temperature and chemical potential. At this region (the critical point), the transition 

disappears and for temperatures higher than this region, the spherical state is favoured for 

the whole range of chemical potential. In the region about the critical point, the free 

energy minima become very shallow and this gives rise to higher thermal fluctuations in 

the eccentricity.

The shape of the phase boundary is generally the same for all values of the relative 

bending rigidity, coupling parameter and spontaneous curvature but as the parameters are 

varied, the phase boundary changes in size and location as we will now discuss.

In the graphs shown thus far, J  and cq are held constant while the k is varied from 0.2 

and increased. It is seen that for low re, the critical point occurs at high temperature (T ~ 

1.1) and as k  is increased, the critical point is lowered in temperature. For even lower k  

(k  = 0.1) the critical point is as high as T=  2.1 (graph not shown). If k  is increased 

further than 0.35, then the critical point will not be much higher than the initial 

temperature and the phase diagram consists almost completely of spherical vesicles 

(graphs are not shown for this).

The phase diagrams for different values of the spontaneous curvature, Co, are now 

shown:
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Figure 3.4. Caption below fig . 3.1.
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Figure 3.5. Caption below fig. 3.1.
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Figure 3.6. Caption below fig. 3.1.

In these diagrams, we see a similar effect on the phase boundary upon increasing the 

spontaneous curvature (denoted c _ s p o n t  in the figures) as with increasing k . The critical 

point for zero spontaneous curvature occurs at the highest temperature (T = 0.8) and the 

critical temperature is lowest for cq -  0.7 at T= 0.45.

We now show the T vs. <pav phase diagrams, which are obtained by calculating the 

average composition (eq. 3.1) of the equilibrium phase at fixed temperature (7) and 

chemical potential (u). The coexistence boundaries are found by determining, at a fixed 

temperature, the chemical potential at which the sphere and oblate phases are equally 

stable. The coexistence boundary then corresponds to the average compositions of the 

sphere and oblate at this point (T, u) for the two stable eccentricities at the phase 

boundary in the T vs. u phase diagrams.
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Figure 3.7.

Figures 3.7-10. Temperature vs average composition phase diagram. S  represents spherical vesicles, O 
represents oblate shaped vesicles. S+O is the coexistence region. In this region, spheres and oblates both 
exist, however the average composition o f  O will be that at the left boundary and o f  S  will be that at the 

right boundary. The critical region is denoted by the oval.
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Figure 3.8. Caption below fig  3.7.
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Figure 3.10. Caption below f ig  3.7.

In the above figures S denotes the region where the spherical vesicle is stable, O denotes 

where the oblate vesicle is stable and the region where the two states co-exist is given by 

S+O. Regions of high average composition, (f>ave, correspond to low chemical potential 

and low (f)ave to high chemical potential. The coexistence regions coincide with the phase 

boundary in the T vs u phase diagram and the tip at the top of the coexistence region is 

the critical point. Above this point, only the spherical state exists and there is no phase 

transition.

As the bending rigidity, k , is increased we see that the critical point is lowered in 

temperature and the coexistence region shifts slightly to smaller values of <f)ave . For k  =  

0.2 the edge of the coexistence region is at the end of the <j)ave axis and as k  is raised to 

0.35, it shifts to about ^ave = 0.93. In general, the oblate region of the phase diagram
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decreases with increasing k . It is hard to investigate higher values of k , however, because 

the spherical phase begins to dominate the phase diagram, as mention earlier.

Increasing the spontaneous curvature, cq, has the same effect as raising k. For cq = 0 

in figure 3.10, we see that the edge of the coexistence region is at the end of the (f>ave axis 

and when Co is raised to 0.7 (not shown), the edge shifts to <j)ave = 0.8, decreasing the 

oblate region of the phase diagram.

The composition profiles for various stable vesicles are also given:

k=0.2, J=0.5, c_spont=0.2, u=-2.99, T=0.26, e=0.377

co
w u.a

I  0.6o

5  0 4oo n 9

2.00E+001.00E+00 1.50E+000.00E+00 5.00E-01

theta

Figure 3.11.

Figures 3.11-14. Composition profiles fo r  different vesicles. The interpretation o f  this is given in figu re
3.16.
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Figure 3.14. Caption below fig . 3.11.
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Figure 3.15. Composition profile for a high temperature sphere.

Since the vesicles are axisymmetric, we plot only up to nil = 1.571 which covers half of 

the cross-sectional contour. The other half of the contour will simply be the mirror image 

of the first half. The interpretation of these plots is shown in the next figure:
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long chain

sho rt chain

S f w f f w

Figure 3.16. A sample graph o f  the composition profile. The angle theta o f  the horizontal axis o f  the 
graph denotes the position on the cross sectional contour on the right diagram. The graphs go up to n/2, 

which is the first quadrant o f  the diagram on the right.

The first two figures are the composition profile for the oblate state (e ~ 0.377) and the 

spherical state (e = 0.989) which occur at either side of the phase boundary of figure 3.1 

for lower temperature (T -  0.26, u = -2.99). With the oblate state, we see domain 

segregations where the composition varies abruptly from very high at almost one to very 

low. This is a general feature of oblate shapes. The long chain molecules are located at 

the relatively flat top and bottom regions and the short chains are along the higher 

curvature sides of the vesicle. In contrast, for the spherical vesicle no domain segregation 

occurs and the composition remains relatively constant.

The second set of figures are for the oblate and spherical state at the phase boundary 

for higher temperature (T -  1.00, u -  -2.00). The oblate composition profile in this case 

is less sharp than that of the lower temperature oblate. The phase boundary between the 

two components is somewhat blurred. In addition to this, there is less segregation 

between the two components in the domains compared to the low temperature oblates.
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The high temperature spherical vesicle has a less homogenous composition profile than 

for low temperatures.

3.3 Discussion

As already apparent in the results section, the shape changes of the vesicles can be 

described by a phase diagram in the T vs u plane or the T vs (j)av plane while the locations 

of the phase boundaries can vary upon changing the phenomenological parameters k  and 

Co. In this section we will relate our theoretical results to some experimental works that 

have been done and discuss the thermodynamic behavior of these structures.

In all of our results, the spherical vesicle is stable for high temperatures and the oblate 

for lower temperatures with the highest temperature for stable oblates just below the 

critical point. We see in the composition profile of the high temperature sphere (figure 

3.15) a much higher degree of mixing than the lower temperature oblates which is 

expected since the entropy of mixing increases at higher temperatures.

In figures 3.1-3 and 3.7-9, we show the results of increasing the bending rigidity and 

observe that the critical point is lowered as k  increases, destabilizing oblate vesicles in 

favour of spherical vesicles. This can be understood in terms of the relative bending 

rigidities of the two components and how this is related to the curvature variations along 

the vesicles. As mentioned in Chapter 2.3.1, k  describes the relative molecular geometry 

of the two components and, by equation 2.10, approaches unity as the two components 

get closer in length. If both molecules have similar geometries (higher k), the local 

bending rigidity and hence the curvature cannot vary too much. This would favour the 

formation of a spherical vesicle. However, if both molecules have greater differences in
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molecular geometry (lower k) the range of the local bending rigidity and hence curvature 

is greater. Vesicles can then form oblate shapes, which have wider curvature variations, 

with less of an energy penalty. This is what we see in figures 3.1-3 and 3.7-9 where 

oblates are more stable for lower k .

In figure 3.4-6, 3.7, and 3.10 we see that the effect of increasing the spontaneous 

curvature, Co, is the same as increasing k  in that it increases the stability of spherical 

vesicles. cr> is a measure of curvature preference so as it is increased we expect vesicles 

that posses a particular curvature, namely spheres.

In figures 3.11-14, we see directly how the local curvature is co-related to how the 

long chain and short chain molecules are situated. The low curvature top and bottom 

region of the oblate are high in long chain molecules, which have higher bending rigidity, 

while the high curvature side of the vesicle is high in short chains of low bending rigidity, 

which is expected. The composition profile for the low temperature oblate and sphere 

phase exhibits a high degree of segregation as well, resulting in relatively low entropy. 

This type of behavior where the short chain molecules occupy high curvature regions and 

the long chains occupy lower curvature regions is generally seen in these systems 

(Baumgart, T„ Hess, S. T„ Webb, W. W. 2003).

Figures 3.11-14 also exhibit the result of varying the temperature. At higher 

temperature the oblate and sphere both exhibit a smaller degree o f  segregation ' dig the 

entropy of mixing which is also expected. This hi gh temperature mixing is remin . scent 

of the inter-domain mixing reported by Tribe, et al. (2005) for two-component bicelles, 

which have been mentioned in section 1.6.
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An important result is the presence of a sharp boundary between a long chain rich 

region and short chain rich region on the oblates. This high segregation is reminiscent o f 

domain boundaries that have been observed in various experiments (Veatch, S. L. and 

Keller S. L. 2005; Baumgart, T., Hess, S. T., Webb, W. W. 2003).

The constant curvature of the spherical vesicle can be understood in terms of its 

generally homogenous composition profile (figures 3.13 and 3.14). The local bending 

rigidity is dependent upon the local mixing. But in spheres we see that the local mixing 

and hence the local bending rigidity does not vary too much. As mention earlier, the 

constant bending rigidity tends to forms constant curvature, ie: spherical, structures. This 

effect is different than the previous effect where increasing k  stabilizes spheres in that for 

the present effect it is the mixing profile that stabilizes spheres and in the previous case it 

is the relative bending rigidity.

The most obvious effect of changing the average composition for a homogenous 

sphere is that the bending rigidity (which is a constant) will vary. For a sphere consisting 

of mainly long chain molecules the bending rigidity is high, and this gives rise to low 

curvature, increasing the size of the sphere. However, if the sphere consists mainly of 

short chain molecules the bending rigidity is lower, giving rise to higher curvature which 

decreases the size of the sphere which has been observed (Baumgart, T., Hess, S. T., 

Webb, W. W. 2003). However, as mentioned before, our theory only considers constant 

area vesicles and thus cannot consider size variations of spherical vesicles. So at this 

point we cannot say how the composition varies for spherical vesicles.

An interesting result from the phase diagrams is that for a decrease in concentration, 

the stable state changes from the spherical vesicle to the oblate vesicle (figure 3.7-10).
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This type of behavior is reported by experimenters (Nieh et a l, 2005) using small angle 

neutron scattering experiments (SANS) in which for low temperature ( T -  10°C) oblate 

shaped vesicles exist (see section 1.7) and for higher concentration, polydisperse 

spherical vesicles exist. This experimental work even proposes that the composition 

profile of these oblates consist of long chain molecules in the low curvature region and 

short chain molecules in the high curvature region but this has not been verified by direct 

measurement. The composition profiles that we obtain also are similar to what Nieh et al. 

proposes.

3.4 Conclusion to Chapter 3

In this chapter we have examined axisymmetric ellipsoidal vesicles with constant area 

by modifying the theory of Julicher and Lipowsky to include varying degees of mixing 

such that the relative composition is coupled to the curvature. Our system exhibits phase 

transitions between oblates and spheres below the critical temperature. The relative 

bending rigidities and spontaneous curvature are found to have a predictable effect on 

the shape, thus the curvature variations of the vesicle. Some of the behavior exhibited is 

similar to that observed in experiments such as the oblate to sphere transition, the 

presence of segregated domains, and the correlation of long chains to low curvature 

regions and short chains to high curvature regions.
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Appendix to Chapter 3 

Conservation of Total Area of a Vesicle

In chapter three, calculations are done for vesicles with constant surface area. This 

constraint is imposed to mimic the tendency of lipid membranes to resist stretching which 

was mentioned in section 2.3.1. We need a formula for the length of the horizontal axis, 

a, that satisfies this. In order to implement this in terms of the geometric variables, 8 and 

e, given in the appendix to chapter two we will introduce a reference vesicle. This 

reference vesicle is a sphere (s =1) of radius a -  1. The total area of the vesicle will then

o

where a is the length of the horizontal axis. For a given e, the value of a that conserves 

the area, A, to that of Aref is  found by setting

, , „ (3 .A
A  =  ref =

By substituting this to the area of the ellipsoid and rearranging, we get the following 

equation loi

be

A ref  = 4 n a 2 = 4 n
(3.A.1)

We use the area of an ellipsoid as given by (2.B.3):

7Z (3.A.1)

(3.A.3)

4 2
a ~
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so we now have an equation for a in terms of the eccentricity (a = a(s)). This formula is 

used for a in the free energy of mixing given in equation 2.B.6 and is solved numerically.
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4. RESULTS FOR BILAYERED MICELLE TO VESICLE TRANSITION

4.1 Introduction

In this chapter we construct phase diagrams for vesicle to bicelle (or bicelle) 

transitions in the T vs u plane and in the T vs (j)av plane. Even though the vesicle and 

bicelle are described by the same free energies are the same (see equations 2.41-43), the 

two systems differ in structure. The bicelle is flat with zero curvature energy in the 

absence of spontaneous curvature, but has a positive edge energy proportional to X. The 

vesicle has a positive curvature energy, but no edge energy. To find the thermodynamic 

range of stability of each phase we simply compare the bicelle energies to the stable 

vesicle energies at different values of (T, u). We study the effect of independent 

variations of the edge energy, X, and spontaneous curvature, Co, but not the bending 

rigidity, k , or the coupling, J.

We do not obtain composition profiles for the bicelle. The bilayer region including 

the edge is assumed to be homogenous, in composition, while the edge energy is simply 

described by the parameter X and the bilayer composition, (j>. This means that the bicelle 

discussed here most closely resembles the mixed bicelle proposed by Triba et al. (2005)

4.2. Results and Discussion

Some phase diagrams in the T vs u plane are given in figures 4.1a-b. Vesicles have 

their own particular phase behavior, discussed in chapter 3, and we include this with the 

vesicle-bicelle phase diagram. A general feature of these graphs is that for low values of 

average composition (high amount of short chain molecules) the bicelle (labeled “D” in 

the diagrams) is more stable than the vesicle. At high temperatures we often see that the
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two boundaries of the coexistence region cross each other so there is a low temperature 

and high temperature coexistence region. The region where the two phase boundaries 

cross is hard to understand as it is not a common phenomenon so we will not discuss it at 

length.

In the coexistence region the average composition of oblates and bicelles are that 

which correspond to points on the phase boundaries. The high-temperature D+O 

boundary on the left is sometimes close to <f>av = 0 and may even be indistinguishable 

from the T axis. For such regions, the bicelle cannot be stable since there are not enough 

long chain molecules to stabilize the bilayer. In fact at <j)av > 0, mixed micelles will tend 

to form and this is depicted in Triba et al. ’s phase diagram in figure 1.11. Though, the 

structure of these micelles is unknown.

k = 0 .1  , J = 0 .5 ,  c _ s p o n t = 0 . 7 ,  X = 1 .9

1 .8 
1 .6 
1 .4  

1 .2 
1

0.8
0.6

0 . 4

0.2
0

0 . 2  0 . 4  0 . 6

A v e r a g e  Com pos i t ion

_  D + O  j.
-------— /f* ----- ---- *
/

t  \  ^ S _ sD ^ 4 \
,. - D + O \  o I  s + o \

\  I t
\  9 1

0.8

Figure 4.1

Figure 4.1-4. Temperature vs average composition (T  vs <j>av)  phase diagrams fo r  bicelles or “ disks” o f  
varying edge energy, X (fig 4.1., 4.2.) and varying spontaneous curvature, denoted “c spont” (fig4.3 ., 

4.4.). Vesicle phases are  denoted by S (sphere) and  O (oblate) and their phase behavior is discussed in 
chapter 3. D iskpha 'ire denoted by D. The transition occurs in the low composition regions o f  the  

diagram and exhibits a coexistence region, denoted by D+O.
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k=0,1 , J=0.5, c_spont=0.7, A=2.7

. S

0.8

0.6 s+oD + O
0.4

0.2

0.4 0.6 0.80 0.2
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Figure 4.2. Caption below 4.1.

k=0.2, J=0.5, c _ sp o n t= 0 .4 ,1=2.2

A v e r a g e  Com pos i t io n

Figure 4.3. Caption below 4.2.
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k=0.2, J=0.5, c_spont=0.7, X=2.2
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Figure 4.4. Caption below4.1.

In figures 4.1 and 4.2, the bending rigidity, k , the coupling, J  and the spontaneous

curvature, Co, are fixed while the edge energy is increased. We examine intermediate 

values of X because at low values of X ( k  = 0.1, J  = 0.5 and cq -  0.7, for the case of X 8 

1.6), the phase boundaries cross at very low temperature. Increasing X tends to shift both 

phase boundaries to the left, decreasing the range of stability of the bicelle as depicted in 

figures 4.1-2. The high temperature coexistence region decreases as well. X represents 

the unfavourable configuration of the edge region characteristic of bicelles so we expect 

the bicelle to become less stable as X increases.

In figures 4.3 and 4.4 the results of inc. > the spontaneous curvature White.fixing 

the other parameters are shown. I n '  casing c q  generally decreases the region of stability 

for the bicelle. In the case rT k = 0.2, J  -  0.5 and X = 2.2, the right phase boundary at 

high temperature t e c s  from <j>av > 0 to <j>av > 1 as c0 is lowered past -0.331. The bilayer 

' o f  the bicelle, by construction, has zero curvature and thus its bending energy is 

proportional to co . So unless c q  is zero, the bilayer is in an unfavourable configuration
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and increasing the spontaneous curvature will tend to destabilize the bicelle. However 

the vesicle bilayer is allowed to bend and will tend to conform to curvature preferences.

The vesicle-bicelle phase diagram proposed by Triba et al. from NMR experiments is 

shown in figure 1.11 and in many respects is consistent with our results. In the 

experiments there are pure bicelle regions, pure vesicle regions and coexistence regions. 

The system studied by Triba et al. exhibits bicelles occuring at low temperatures for all 

degrees of short and long chain mixing as does Nieh et al. (2001) using small angle 

neutron scattering (SANS). Other systems explored by SANS show that bicelles occur at 

low temperatures but are replaced by vesicles if the fraction of long chain DMPC is high 

enough (Nieh et al., 2005). Our phase diagrams are more consistent with the latter 

showing a bicelle-vesicle coexistence occurring between about at low values of <f>av for 

minimal values of the temperature. One problem with our result is the coexistence region 

for these low temperatures, which is not present in Nieh et al. (2005) and located at the 

high (pav region in figure 1.11. However the experiments generally show that bicelles 

tend to exist at low temperature and our diagram does behave like this.

Another feature of our diagrams is the high temperature coexistence region. A high 

temperature coexistence region is observed by Triba et al. but has not been mentioned by 

the aforementioned SANS reports by Nieh et al. (2 0  0  ! 0 :. i  ■ i figure 1.11 this

coexistence region lies beside a high temperature, high <j>av region where mukilamellar 

vesicles, MLV’s, (see figure 4.5) reside labeled Vm). Triba et al. suggest that the 

coexistence region precedes Vm w nere, as the fraction of long chain molecules increases, 

the bicelles join to form
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Figure 4.5. Multilamellar vesicle(left). A patch o f  a single lamellar layer (left). Taken from
Triba et al.(2005).

extended bilayers that close up form MLV’s. Our theory does not account for MLV’s but 

does consider the stability of bicelles and vesicles and thus can be applied to figure 1.11.

Finally our diagrams exhibit high </>av regions consisting of pure vesicles and low <j)m 

regions consisting of pure bicelles. These regions are also present in figure 1.11. The 

region between the pure vesicle and bicelle phases in figure 1.11 is unmeasured 

(indicated by the broken line) so it is unclear in this system the nature of the transition 

between the two phases. However in our diagram, we have a point where the two 

coexistence boundaries cross which, as mentioned earlier in the section, is an unusual 

phase behavior. However it is not inconsistent with the D+O phase boundary of Fig. 1.11 

and it is possible that further experiments will find such behaviour in bicelle-vesicle 

systems.

4.3 Conclusion to Chapter 4

In this chapter we have examined the stability of the mixed bicelle and vesicle phases. 

Our model behaves such that increasing either the edge energy or spontano >  ̂curvature 

destabilizes the bicelle in favour of the vesicle, which is expecte d m real systems. Our 

phase diagrams show behavior that is quite consi steal with figure 1.11 and to some 

degree consistent with the results of Nieh et al. (2001; 2005). Finally our diagrams 

generally contain an unusual point where the two boundaries of the coexistence region 

cross that happens to be in the same vicinity as the unmeasured region of figure 1.11.
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