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Abstract

This thesis presents five different nonlinear control techniques for voltage regulation of a
DC-DC buck converter operating in continuous conduction mode. A state space
averaging model is derived from a non-ideal buck converter circuit with the consideration
of resistances of each component.

Based on this model, different nonlinear control techniques have been developed to
control the DC-DC buck converter. These include backstepping control, sliding mode
control, backstepping sliding mode control, adaptive backstepping control, and adaptive
backstepping sliding mode control. All these proposed controllers have been evaluated by
computer simulation and implemented on the DC-DC buck converter which is built for
this thesis.

Simulation and experimental results show that all the proposed controllers are able to
stabilize the closed loop system and to achieve satisfactory voltage regulation
performances under source voltage variations and load changes.

Key words: Backstepping, adaptive control, sliding model control, pulse width

modulation, DC-DC buck converter.
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Chapter 1

Introduction

1.1Background

DC-DC converters are used to convert unregulated dc voltages to regulated or variable dc
voltages at the output [1]. They are widely used in the power supply equipment for most
electronic systems. In recent years, pulse width modulation (PWM) DC-DC converters
have become a popular topic for many researchers as the demands for highly efficient and
small size power sources increase. Various analysis methods on general properties and
robust stabilities for PWM converters have been reported in [6] [8].

Generally speaking, the DC-DC converter has nonlinear components. The value of
inductor change nonlinearly if the converter is disturbed [12]. When the linear control
theory is applied to a converter, it could be effective around a fixed operating point and
with small disturbances. However, when the DC-DC converter has significant
disturbances, the operating point will not be fixed at one nominal position and the
controller must be robust against these uncertainties. It is therefore important to develop
nonlinear control techniques for DC-DC converters with nonlinearities [11].

In order to make these controller design techniques relevant and applicable to DC-DC
converters, an average model [2] is needed to describe the dynamics of DC-DC
converters. The conventional averaging technique, which is easy to understand and
straightforward to apply, particularly for DC-DC converters [7], gives a useful
representation of the converter and allows simple design procedures for operation in

certain regimes.
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In this thesis, a state space averaging model is developed for a buck converter with the
concern of resistances of each component in the converter circuit. Based on this model,
different nonlinear control techniques have been developed. These include backstepping
control, sliding mode control, backstepping sliding mode control, adaptive backstepping
control, and adaptive backstepping sliding mode control. Our objective is concentrated on
finding a proper controller for the switching DC-DC buck converter to minimize the
steady state error in the presence of the output voltage variations and load changes. All
these five nonlinear controllers are simulated using MATLAB and implemented on the
prototype PWM DC-DC buck converter, which is constructed in laboratory with a fixed
switching frequency. Moreover, the experimental result of the PI controller is also
evaluated. Their behaviors are compared with the following basic conditions: steady state
responses to setpoint changes, sensitivities to load changes, and disturbances in the power
supply.

This thesis 1s organized as follows:

In Chapter 2, the state space averaging model of the DC-DC buck converter is derived in
detail using the fundamental Kirchhoff’s current and voltage laws.

In Chapter 3, Lyapunov theory, backstepping control, sliding mode control and adaptive
backstepping control theory are reviewed, which will provide fundamental theories for
the nonlinear controller design. And the reduced order observer is also introduced, which
will be used to estimate the inductor current based on the output voltage measurements in
Chapter 6.

Chapter 4 describes the design procedures of five different nonlinear controllers for the
DC-DC buck converter. These include backstepping, sliding mode, backstepping sliding
mode, adaptive backstepping, and adaptive backstepping sliding mode control.
Simulations are performed to evaluate the proposed controllers using MATLAB software
in Chapter 5.

In Chapter 6, a buck converter experimental system is constructed to implement the
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nonlinear controllers designed in Chapter 4. The experimental results are shown and
compared in terms of steady state errors, transient responses, and sensitivities to load
changes and disturbances in the power supply.

In Chapter 7, the main contributions of this thesis are summarized and suggestions for

future research work are given.

1.2 Literature Review

Backstepping is a systematic and recursive design methodology for nonlinear feedback
control. This type of control has been well studied in [5]. The main advantage of
backstepping is the construction of a Lyapunov function whose derivative can be made
negative definite by a variety of control laws. The systematic construction of a Lyapunov
function for the closed loop system makes the stabilization problem much easier for
nonlinear systems. With backstepping, system nonlinearities do not have to be cancelled
by the control law. Some useful uncertain nonlinearities can be retained, which can
reduce control efforts and increase robustness to model errors [10].

Backstepping can be perfectly applied to a nonlinear system with a lower triangular form.
For an ideal DC-DC buck converter circuit, the state space averaging model of the
converter is shown to be in the lower triangular form [9]. However, for a non-ideal
DC-DC buck converter circuit, with the consideration of the equivalent series resistance
of the capacitor, the output voltage is not equal to the capacitor voltage and the averaging
model does not possess a lower triangular form. To solve this problem, in [11] and [12], a
reduced order model is derived in order to show that the equivalent series resistance of
the capacitor can be ignored for the DC-DC buck converter. An averaging reduced slow
model is derived with the two state variables formed by inductor current and output
voltage, which is a suitable model for the backstepping approach.

Adaptive nonlinear controllers, which are designed for nonlinear systems with unknown

parameters, have been developed in literature [5] [10]. Among many adaptive nonlinear
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control techniques, backstepping control is regarded as a new breakthrough. This type of
approach offers a systematic design procedure where unwanted cancellation of favorable
nonlinearities can be avoided [5]. In contrast with the conventional approaches based on
the certainty equivalence scheme, adaptive backstepping employs a tuning function as a
parameter update law in the recursive design procedure. With this control technique, the
global asymptotic stability of nonlinear systems with unknown parameters can be
guaranteed.

In this thesis, the backstepping control technique is developed for a non-ideal DC-DC
buck converter. With the selected two state variables, inductor current and output voltage,
a state space averaging model is derived under some assumptions. Moreover, in the case
of unknown parameters, adaptive backstepping is also developed to ensure the control
objective. The parameter estimate update laws are designed such that the stability of the
closed loop system is guaranteed when the parameter estimators are used by the
controller.

Switch mode power supplies can be considered as a particular class of the variable
structure systems (VSS), since their structure is periodically changed by the action of
controlled switches and diodes [17]. From this point of view, sliding mode control, which
is initially derived from the VSS theory, can be appropriately applied to DC-DC
converters, especially to buck converters operating in the continuous conduction mode.
This control technique offers several advantages: stability even for large source
disturbances and load variations, robustness, good dynamic response and simple
implementation. Its capabilities emerge especially in applications to high-order
converters, yielding improved performances as compared to classical control techniques
[31].

The feasible application of sliding mode control to switching mode power supplies has
been widely investigated in literature [15]-[18]. However, it has been shown that sliding

mode controlled converters generally suffer from significant switching frequency
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variation when the input voltage and output load are varied [25]. Hence, it is more
desirable to operate the converters at a constant switching frequency that does not deviate
too far from its nominal value. One solution to this is to employ the PWM technique in
the sliding mode control [14]. The idea is based on the assumption that the control action
of a sliding mode controller is equivalent to the duty cycle control action of a PWM
controller at a high switching frequency.

In order to obtain good performance under source disturbances and load variations,
sliding mode control for power converters has been investigated in several different
models, such as small signal model [19] and state space averaging model [20] [32]. In [27]
and [28], a mathematical model is derived with the output voltage error and the rate of
change in the voltage error as two state variables for the DC-DC buck converter.
Moreover, various complex hybrid sliding mode control structures have been developed.
By combining sliding mode control with other techniques, such as adaptive control
techniques [23] [28], these hybrid controllers ensure the control objectives even though
there exist unknown parameters in systems. Most of these hybrid controllers require
complex implementation algorithms.

Chattering describes the phenomenon of finite frequency, finite amplitude oscillations
appearing in many sliding mode control implementations. These oscillations appear
because the high frequency switching excites unmodeled dynamics in the closed loop
system [33]. Without a proper treatment in the control design, it has been a major
obstacle for implementation of sliding mode control to a wide range of applications.
Many different schemes have been proposed in literature [19] [33] to eliminate the
chattering. In [34], the chattering problem is studied and four solutions are presented.
However, all four methods possess advantages and disadvantages which depend on the
system specifications. When designing a sliding mode controller for a given system, all
details of the controlled system should be carefully considered to choose a proper method

to prevent chattering. Unfortunately, there is no unified method suitable for solving the
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chattering problems for all systems.

In this thesis, the sliding mode control theory is reviewed and its application to PWM
DC-DC buck converters is investigated. Two hybrid controllers, backstepping sliding
mode control and adaptive backstepping sliding mode control, are also proposed. The
simulation and experimental results on these controllers demonstrate their performances

under setpoint variation, source deviations and load changes.
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Chapter 2
Modeling of DC-DC Buck Converter

2.1 Introduction

Mathematical models for DC-DC buck converters can be found in many books [1] [2].
With the fundamental Kirchhoff’s current and voltage laws, the dynamic models of
DC-DC buck converters can be derived. The methodology for the derivation of the model
is quite straightforward. First, we fix the position of the switch and derive the differential
equations of the circuit model. Second, we combine the derived models into a single one
by using the switch position function whose values are in the binary set {0, 1}. Finally,
by letting the switch position function take values in the closed interval of the real line
[0,1], we can obtain an average model from the switched model.

In this chapter, a state space averaging model is derived for a non-ideal DC-DC buck
converter under some necessary assumptions so that it is suitable for nonlinear controller

design in Chapter 4.

2.2 State Space Averaging

A buck converter is used to convert a high dc input voltage to a lower desired dc output
voltage, and it is also called a step-down converter. The circuit of a buck converter is

illustrated in Fig.2-1. In this diagram, the components of the buck converter are not ideal,

and R.,R,,R, and R; denote the equivalent series resistance of the capacitor,

inductor resistance, diode resistance and the resistance of the switch, respectively. The
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switch is an electronic device that operates in either on or off mode. The switch is

controlled by a switching signal with a period T in such a way that it is closed for

t,, =DT and open for ¢, =(1-D)T, where D is the duty cycle of the switching

signal.

Fig.2-1: The circuit of buck converter

State space averaging method requires two set of state equations, which describe circuit
dynamics when the switch is open and the switch is closed. Then the state equations are

averaged over the switching period.

Switch Closed
W yic vin
R +
EC) ) R?VO
1

Fig.2-2: Equivalent circuit for switch closed
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When the switch is closed, the diode is reverse biased and an equivalent circuit of the
buck converter is shown in Fig.2-2. Using the Kirchhoff’s voltage law in the outermost

loop of the circuit, we get

L—L+(R,+Ry)i, +Ri,=E 2.1
Kirchhoff’s current law gives

e (2.2)
dt

For the left inner loop, we use Kirchhoff’s voltage law to get

I, =1, =i, =i, —

L%+(RL+RS)iL+iCRC+vc =E (2.3)

Rearranging the equation (2.3) yields

p=c®e Llp 1% (R yR)i, -,
dt RC dt (2.4)
Combining equations (2.1) to (2.4) gives the state equation
é.L_z____Ii__vC - ___I.Q_RSC__.*..]_QL__*._&_ i +£
dt (R+R.)L (R+R.)L L L L (2.5)
Kirchhoff’s voltage law around the right inner loop gives
Ve +ioR, =1,R (2.6)
Combining equation (2.6) with (2.1) gives the state equation
dv, 1 R ,
=— Ve + 1
d  (R+R.)C =~ (R+R.)C (2.7)
9
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Switch Open

L
I E
- .
i ‘zc ‘lR
ch N
;RD R?Vo
+ —
C_?:

Fig.2-3: Equivalent circuit for switch open
While the switch is open, the diode becomes forward biased to carry the inductor current.
Fig.2-3 shows the equivalent circuit of the buck converter during the time when the

switch is open.

Using the same strategy, the following differential equations can be easily obtained:

dv, 1 R .
=— Ve + i
dt (R +RC)C (R+RC)C (2.8)
d____ R Ve — RR +—1§£+—1-{2 i
dt (R+RC)L (R+RC)L L L (2.9)

Note that both diode and switch resistances are quite small and there is no much

difference. Therefore, it is assumed that R, = R, for simplifying the analysis. With this

assumption, the following equations can be derived from (2.5), (2.7), (2.8), and (2.9):

dve 1 - R ;
dt  (R+R.)C © (R+R.)C"
d_ R [ RR R R E,
dt (R+R.)L (R+RC)L L L L (2.10)

10
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This model is usually referred to as the switched model because the switch position

function u takes values in the discrete set {0,1} .

The averaged model would be represented exactly by the same model by redefining the

control input u as a function taking values in the closed interval [0,1]. Now a pulse

width modulation (PWM) circuit is used to determine the switch position. The PWM

policy is specified as follows,

)= 1 for t <t<t +p(t)T
H= 0 for t,+u )T <t<t +T (2.11)
where f, represents a sampling instant defined by ¢, =¢, +7, k=0,1,..., T 1is the

fixed switching period, the duty ratio function u(t), taking values from the closed

interval [0,1], is a control input to the system.

The averaged model of the buck converter is then described as follows:

dvc__ 1 _— R ;
dt  (R+R,)C ° (R+R.)C"
di, R RR. R, R, E
L= - +E4+ 2l +—=
dt (R+RC)LVC [(R+RC)L AN A 2.12)

For the buck converter, the output voltage v, can be determined from the following

equation

vo:RiR:R(iL—ic)zR(iL—v"_vC] o)

Solving (2.13) for v, produces

RR. . R
v, = I + Ve
R+R, R+R, (2.14)

11
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Note that the capacitor resistance R. 1s very small compared with the load resistance R .
Hence, for simplicity, it is reasonable to neglect R.. As a result, it follows from (2.14)
that

v, =v, 2.15)
Another reason for neglecting R. is to make the mathematical model suitable for the

backstepping controller design.

Simplifying the averaged model, equations (2.10) can be written as follows

X, =6x +0,x,
' (2.16)
X, =0,x,+0,x, + 0,1

where x, and x, represent, respectively, the capacitor voltage and inductor current.

The parameters 6,,6,,6,,8, and 6, are defined by the following equations:

1
"~ (R+R.)C

R
0, = ———
(R+R.)C

12
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Chapter 3
Nonlinear Control Theory

3.1 Introduction

Lyapunov theory has been an important tool in the study of nonlinear theory. Although
there might be some difficulties to find a Lyapunov function for a given system, if one is
found, the system is known to be stable. Backstepping is a systematic and recursive
design method for nonlinear feedback control based on Lyapunov theory. The main
advantage of backstepping is the systematic construction of a Lyapunov function for the
closed loop system. The backstepping design procedure consists of several steps. A
virtual control law is constructed for each subsystem until a control law for the whole
system has been constructed. Backstepping method is applicable to systems in the lower
triangular form [5].

Sliding mode control is well known for its robustness and stability. Using the high speed
switching operation makes the system phase trajectory approach a surface S =0, which

is called sliding mode surface or switching surface. And the surface can be reached as

long as the existence condition SS <0 is satisfied. When system state vectors enter the

sliding surface, they are limited in the surface S =0[3].

Adaptive control [4] is always applied to a system which has parameter uncertainties. If
such parameter uncertainties are not reduced properly, it may cause inaccuracy or
instability for the control system. The task of adaptive control is to maintain the
consistent performance of a system in the presence of uncertainties or unknown

variations in plant parameters.

13
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In this chapter, we presents Lyapunov theory, backstepping control, sliding mode control
and adaptive backstepping control theory, which will provide fundamental theories for
the nonlinear controller design in Chapter 4. A reduced order observer design is also

introduced, which will be used to estimate the inductor current in Chapter 6.

3.2 Lyapunov Theory

In this section we define the notion of stability in the Lyapunov sense, and review the
main tools for proving stability of an equilibrium point.

Consider the system

x= f(x) G-D
where x is the system state vector.
Let x=x, be an equilibrium point of the system, that is, f(x,)=0. The stability
properties of this equilibrium point are characterized by the following definition.
Definition 3.1 (Lyapunov stability) The equilibrium point x=x, of (3.1)is
® stable if for each £ >0 there exists d(¢) >0 such that

[(0) - x, <g, Vt=0

<d = "x(t) -X,

@ unstable if it is not stable
® asymptotically stable if it is stable and in addition there exists » >0 such that

|x(®-x|<r = lim x(f) = x,

® globally asymptotically stable (GAS) if it is asymptotically stable for all initial

conditions, that is, if
limx(#)=x,, Vx(0)
t—ro0
Let us first introduce some useful concepts, which are often used in discussing

Lyapunov’s direct method (or second method).

14
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Definition 3.2 A function ¥V (x) is said to be

® positive definite if V(0)=0 and V(x)>0, x#0

® positive semi-definite if V' (0)=0 and V(x)=20, x#0

® negative (semi-)definite if —F(x) is positive (semi-)definite

® radially unbounded if ¥(x) = as |x] -

We now state the main theorem to be used for proving global asymptotic stability
Theorem 3.1 Consider the system (3.1) and let £ (0)=0. Let ¥ (x) be a positive definite,
radially unbounded, continuously differentiable scalar function. If

V(x)<0, x#0
then x=0 is a globally asymptotically stable (GAS) equilibrium point.
In some cases, global asymptotic stability can be shown when ¥ (x) is only negative

semi-definite.

Theorem 3.2 Consider the system (3.1) and let f(0)=0. Let V(x) be a positive

definite, radially unbounded, continuously differentiable scalar function, such that
V(x)<0, Vx

let S= {x V(x)= 0} and suppose that no other solution than x(¢t) =0 can stay forever

in S.Then x=0 isa globally asymptotically stable equilibrium point.

Note that both theorems give no clue about how to find the function V satisfying the
conditions necessary to show GAS. In some cases, there are natural Lyapunov function
candidates like energy functions in electrical or mechanical systems. In other cases, it is

basically a matter of trial and error.
15
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3.3 Nonlinear Backstepping Control

Let us assume that the plant parameters are known. The application of backstepping
approach to nonlinear system with the lower triangular structure is illustrated as follows.

Consider an SISO nonlinear system of the following form

%= fi(x)+g (xl)x2

%= f(x,%)+ 8, (x,x,)x,

X = (%%, %)+ g5 (x,%,,x, )u (32)
where f, and g, are smooth functions and g,(0)#0, x,x, and x; are the state

variables, u is the control input.

First, choose the Lyapunov function ¥, that s,

V()= (33)
2
the derivative of the Lyapunov function ¥, is given by
Vl = XX (3.4)

If x, is considered to be the virtual control for the first equation of (3.2), it would be

designed as the following equation

1
x, =0 (x)= —cx — filx
2 1( 1) gl(xl)( 171 1( 1)) (35)
which will make the derivative of V]
= 69

negative definite, where ¢, >0 is a design parameter.

Second, x, is viewed as the virtual control in the second equation of (3.2), introducing

the new error variable x, —¢(x,) .

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Choose the Lyapunov function 7,
1 2
Vz(xl,x2)=V1+5(x2—al) (3.7

Then, the derivative of the Lyapunov function V, is

V, =V, +(x, — o) f, (30 %) + 8,(5,, %,)%, —%‘i(ﬁ(xlngl(mxz»

(3.8)
The virtual input x, is given by
= (5,7) = (e (5~ )~ i)+ S )+ 2, ()%)
82(%,%,) (3.9)
which results that the derivative of V,
V,=—cx —c,(x,~ )’ (3.10)

is negative definite, where ¢, >0 1is a design parameter.

Finally, introduce the new error variable x, -, (x;,x,) and design our actual feedback

control u to stabilize the system by using the Lyapunov function ¥,
V3(x1,x2,x3)=V2+—;-(x3—0!2)2 (3.11)

The derivative of the Lyapunov function is

V3 = Vz +( = )00, %5, %) + g5 (%, X, X3 Ju

(f(x1)+g1(x1)x2)‘ () ,06,5)%) (3.12)

1
The control u can be chosen as follows:

1
U =—-—-———-[“Cs(x3 “az)_f3(x1’x2’x3)
g5(x,%,,%;)

(f(x1)+g1(x1)x2)+ e (fi (x5 %)) + &%, X,)%3)]
X, (3.13)

17
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to make ¥, negative definite, that is
V3=—c1x12—c2(x2—(11)2—c3(x3—a2)2 <0 (3.14)
Where ¢, >0 is adesign parameter.

In summary, for system (3.2), the backstepping controller can be implemented as follows:

1
u :———‘—[—c3(x3 "az)"]g(xl,xza)%)
g}(x13x2>x3)

+

%az (fi(x) +g1(x1)x2)+'a_az‘(f1(xvx2)+ 8,(x;,x,)x,)]
X, ox,

where aQ, (xl) =

alm oA

o, (%, x,) = "'_1"—(_02()‘2 —ay)— f(x,x,) + ‘Q&(fl(xﬂ +g,(x)x;))
gz(xnxz) axl

3.4 Sliding Mode Control

The sliding mode control scheme consists of two steps. The first involves the design of a
sliding surface so that the sliding motion satisfies the design specifications. The second is
concerned with the selection of a control law, which will make the sliding surface
attractive to the system state. It is worth noting that this control law is not necessarily to

be discontinuous.

Let’s consider the following general system with a scalar control input

x= f(x,t,u) (3.15)

where x is the column vector, f is a function vector with dimension »n, and u
represents the control input.

The function vector f is discontinuous on the surface S(x,t)=0, that is,

18
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fT(x,t,u”) for $>0

f(x’t’u):{f‘(x,t,zf) for S<0 (3.16)

The system is in sliding mode if its representative point moves on the sliding surface

S(x,)=0.

3.4.1 Reaching Condition

Consider the system x= f(x,t,u) with the scalar discontinuous input u# which is
given by

u" for S(x)>0
U=
u~ for S(x)<0 (3.17)

Let [x"] and [x7] be the steady state representative point corresponding to the input

+

u” and u~, where x 1is a column vector. Then a sufficient condition for the system to

reach the sliding surface is given by
[x"]e S(x)<0
(3.18)
[x"1e S(x)>0

This means, if the steady state point for one substructure belongs to the region of the
phase space reserved to the other substructure, sooner or later the system representative

point will hit the sliding surface.

3.4.2 Existence Condition
The sliding mode existence condition requires that when the system phase trajectories are

near the sliding surface S(x,#)=0 in both regions, they must be directed toward the
sliding surface. In other words, for the points which satisfy S >0, the corresponding

state velocity vector f* must be directed toward the sliding surface when it approaches

19
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the sliding surface, and the corresponding state velocity vector f~ will do the same
movement for the points satisfying S <0.
Indicating with subscript N the components of the state velocity vectors f* and f~

orthogonal to the sliding surface, the following equations can be obtained

lim f; <0 = SlimVSf+<0
-0"

S—0"
o ) - (3.19)
lim f; >0 = 1lmVSf >0
S0 S—07
Since
dS 308 ds o
dt 3 axi dt (3.20)
The existence condition of the sliding mode becomes
lim—6£<0, imP 50 Sim® <o (3.21)
S=0" dt S0 dt S0

When the inequality equation (3.21) holds in the entire state space and not only in the
region around the sliding surface, then this condition is also sufficient condition for the

system to reach the sliding surface.

3.4.3 Equivalent Control

In this section, we focus on the behavior of the system operated in a sliding regime.

Equation (3.22) defines a system that is linear with the control input,

x=f(x,t)+g(x,t)u (3.22)
The scalar control input u is discontinuous on the sliding surface S(x,z)=0, while f
and g are discontinnous function vectors. Under sliding mode control, the system

trajectories should stay on the sliding surface S(x,¢) =0, that is,

20
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S(x,0)=0 = S(x,1)=0 (3.23)

: dS & oS dx,
S(x,)=—=) —L=VSx=Jx
o= =L o TSRS (3.24)

where J is a 1xn matrix, the elements of which are the derivatives of the sliding

surface with respect to the state variables. Using equations (3.22) and (3.24), we obtain

Jx=J f(x,)+J g(x,0u,, =0 (3.25)
where the control input u was substituted by a equivalent control u, that represents

an equivalent continuous control input, which maintains the system on the sliding

surface.

Rearranging the equation (3.25), we get
U, =—(J &) J f(x,0) (3:26)
Substituting equation (3.26) into equation (3.22) leads to
i=[I-g(J gy J1f(x,1) (3.27)
Equation (3.27) describes the system motion under sliding mode control. It is important
to note that the matrix I-g(J g)"'J is not of full rank. This is because, under sliding

regime, the system motion is constrained to be on the sliding surface. As a consequence,

the equivalent system described by equation (3.27) is of the order n-1.

This equivalent control u, is also valid for multiple control inputs. In this case, the

system motion is constrained on the hyper surface obtained by the intersection of the

individual switching surface S,(x,#)=0.

3.4.4 Chattering

The chattering phenomenon is described as finite frequency, finite amplitude oscillations

in the neighborhood of the sliding manifold. These oscillations are caused by the high
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frequency switching of a sliding mode controller exciting unmodeled dynamics in the
closed loop system. The chattering phenomenon shown in Fig.3-1 appears in many
sliding mode implementations.

The chattering should be definitely eliminated. Otherwise it would result in loud noise,
high wear of moving mechanical parts. Many different schemes have been proposed in

research literature to eliminate the chattering [12] [13].

Trajectory

- X

Chattering

Sliding surface

Fig.3-1: Chattering phenomenon in sliding mode control

In summary, the sliding mode controller can be expressed as

ut  for S(x)>0
u=su for S(x)=0

€q

u for S(x)<0
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3.5 Adaptive Backstepping Control

For systems with parametric uncertainties, there exists adaptive backstepping [5]. Here, a
tuning function is designed as a parameter update law such that closed loop system
stability is guaranteed. In what follows, the application of adaptive backstepping
procedure for a third order nonlinear system in the lower triangular structure is

developed.

Consider the following system

X, =x,+¢(x)0

X, =x+¢,(x,x,)0

X, =u+@,(x,x,,x,)0 (3.28)
where 6 is the unknown constant parameter. x,,x, and x, are the state variables and
u 1s the control input. ¢,(0)=0,9,(0)=0 and ¢,(0)=0.
First, if x, is considered to be a virtual input for the first equation of (3.28), an adaptive
controller can be designed as

X, =0 (xl,é) =—cz, =@ (xl)é (3.29)

where z =x and 6 is the estimation of the unknown parameter. Introducing the new
error variable z, =x, — ¢, the Z equation becomes

=0 +z, +¢,(x)0 (3-30)

Select the Lyapunov function ¥,

1

Vi =-1-212 +_1_9~2

2 2y (3.31)

where 6 =0-6 is the parameter estimation error.
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The derivative of the Lyapunov function is

V1 =z/(o +z, +¢19)—léé
4

=z(0y +z, +¢1é)"";;é(é—7¢1zl)

(3.32)
We can eliminate § from ¥, with the update law 6 = yo,, where
0,(x) =¢(x)z (3.33)
Since x, is a virtual control input, here, we retain the 6 termin V1
. 2 ~ 1 &
V,=—cz +zz, +0(——0+0,)
v (3.34)

Second, x, is viewed as the virtual control for the second equation of (3.28).

Introducing the new error variable z, =x, —¢,, the Z, equation becomes

Z, =X, —Qg—licl —%é
ox, 00
oq, o, ;
=x,+¢,0 ——Ltx ——+
X, + @, o X 30
=z3+052—aal xz—aof‘ é—aal $0+0,0
ox, 96 ox, (3.35)
Choose a Lyapunov function 7,
1
1/221/1_}__2_222 (3.36)
The derivative of the Lyapunov function is
; o, oa, ; 9« ~ 14
V,=—czl +z,(z,+z, + 01, — ax: x, - aél 6 ax: ¢10+¢20)+0(——};9+01)
) oo, » o A A = 12 )
=G 42,5 2+ 0~y — S0 40+4,0) 48— b+0 +2,(— 4 +4)
o © 3 oy 14 dx, (3.37)
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From the equation (3.37), the term 6 can be eliminated with the update law 6= Yo,

where

A a0
62(x1’x2:9):0'1+22(—_§x_1¢1+¢2) (3.38)
1 .

If x, is actual control for the given system, we could let z, =0, that is,x, =¢,. ¢,

can be designed as follows

5 oo o, o, . A . A
0, (%, %,,0) ==z, = ¢,z, + — X, + =)0, +— 90— 9,0)
axl e E)xl (339)
to make V, =~z —c,z;
Since x, is virtual control, we retain the tuning function o, in V2 , that is,
V,=—czl—c,z} + 2,2, +z, 923(70'2 - é) + é(o‘2 —lé)
00 Y (3.40)
Finally, the derivative of z, canbe expressed as
. oa. oo, aa,
=X —0,=u+@9f——=+x% ——=x,——=6
3 3 2 ¢3 axl 1 axz 2 ag
:u+¢3e_8a2 x2_8a2 ¢19_8a2 , _da, ¢26_805A2 4
ox; ox, ox, ox, 00 (3.41)
Now, choose the Lyapunov function 7V,
V=7, +%z; (3.42)

The derivative of ¥, is given by

. o A
Vy= "01212 - 02222 +2 ”a_él—(yo'z —0)

o o Jo. oo oo, A = 14
+z,(z, tu+ 9,0 ——2x, - —2 40 -—2x,——=2$,0——20) +6(c, ——6
Z3 (22 u ¢3 axl x2 axl ¢1 ax2 x3 axz ¢2 a 9 ) (62 }/ )
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oq, A
=—¢z —¢,27, +2, "a?}(?t% -0)

A~ o oo, . » aa
+ +tu+@g0-—=x,——=¢0 - % % 4
Z3 (ZZ U ¢3 ax1 x2 axl ¢l axz x ¢2 a 9 )

+9(G _;9"'2 5 (8 - ac) ¢1 i ¢2))

(3.43)

In equation (3.43), the term 6 can be eliminated with the update law 0= Y0, , where

o, is tuning function

o,

%)
x

0,(x,,%,,%,,0) =0, + z,(¢, — 2¢1—

The control input can be designed as follows

aazx +8a2 ¢1é+8a2x +8a2 6,0+ aa2

u=-z —cz—¢é+
SRR R ox, °  ox,

7@+%)

where v, is a correction term to be determined later. ¥, becomes

. . A
V,=—cz} —c,z5 —cyzi + 2, —ab%(}/o'z -0)+z,0,

Note that
A o« o«
0 —yo, = yo, -0, = y0,(¢ _s;z_gbl - ax2 )
1 2
and equation (3.46) can be rewritten as
;o 2 2 2 o, 8a2
Vi==¢z) —¢,2; =3z +2,(0; - Zz - Y(¢, - ¢1 3 ,))
X2
Now the correction term v, is chosen as
aq, o
V. =z 1 2 a, )
! 2867% ﬂ %
26
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(3.49)



Finally, the derivative of V, can be obtained
V; =—cz —¢z) — c3z32 <0 (3.50)

In summary, the adaptive backstepping controller for a given system (3.28) can be

designed as follows
L oo, . » o« aa
=z —cz—0,0+°% L6604+ 22 26,6+ 2% 45, 40
U==2)—CZy— o X o, & ax2 Xy ¢2 36 Yo, +0;)
with the update law é =)0,
where o (X, 6) = —c,z, - ¢,(x)0
A elo? aa o,
az(xl,xz,é‘):—-zl—c222+——1— 702+'—_1—¢19 ¢29)
ox, ° 89
o, oa, oa,
UV, =z, — - 0=
3 Z2 a 9 7/(¢3 axl ¢1 axz ¢2)

3.6 Reduced Order Observer

Suppose not all state variables can be measured. Then the state vector x can be

partitioned into two sets,

x, : Variables that can be measured directly
x, : Variables that cannot be measured

The state equations are written as follows

x =4,x +4,x,+BuU

X, = Ay x, + Ay x, + Bl (3.51)

and the observation equation is
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where C, 1is square and nonsingular matrix.
For the full order observer, we could get the observer equations

;ﬁ =A\X% + A%+ Bu+L(y-Cx)
R X ) R (3.53)
X, = Ay X + Ay X, + B+ L (y-CXy)

Because we can measure the state variables x; directly, there is no need to implement

the first observer equation for X, .

£ =x=C"y (3.54)

1

In this case the observer for those state variables that cannot be measured becomes
%, = 4,Cly+ A, %, + By (3.33)
which is a dynamic system of the same order as the number of state variables that cannot

be measured. The dynamic behavior of this reduced order observer is governed by the

eigenvalues of 4,,, a matrix over which the designer has no control. Since there is no
assurance that the eigenvalues of 4,, are stable, we need a more general system for the
reconstruction of x,. We take

X,=Ly+z (3.56)
where zZ=Fz+Gy+Hu

Define the estimation error

e=x—x= L= =
X T Xy € e, (3.5,

then we get
€, =%, — X,
= Ayt Ay, + B, -z
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=4, +A4,x, +B,u—-LCx —Fz-Gy—-Hpu

= A, x + A, x, + B 1= LC (4, % + A,x, + Bu)—F (%, - Ly)-Gy-Hu (3.58)
Since
%-Ly=x,—e,—Ly=x,—¢,—LCyx, (3.59)
we get

& =Fe, +(4, — LG4, — GG +FLG)x, +(4, ~ LG4, ~F)x,+(B,~LCB-H)u  (3:60)
The matrices multiplying x,, x, and ¢ must be zero so that the error could be

independent of x,, x, and u

F=4,-LCA4,
H=B,-LCB,
G=(4, ~LCA)NG +FL (3.61)
Then
, = Fe, (3.62)

and for stability the eigenvalues of F' must lie in the left half s— plane. Therefore, we

see that the problem of reduced order observer is similar to the full order observer with
(4, —LCA4,) playing the role of (4—LC). The block diagram schematic is shown in
Fig.3-2.

In summary, the reduced order observer can be implemented by introducing new state

variables z . The state variables x,, which can not be measured, can be estimated with
the equation

L=Ly+z

2= (dy —LCA,)z+( (A — LC,A)C + FL] y+ (B, - LC,B) it
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Plant

Fig.3-2: Block diagram of reduced order observer
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Chapter 4

Nonlinear Control Design Methods for Buck
Converter

4.1 Introduction

DC-DC power converters, as one type of the simplest power electronic circuits, have
been widely used in power supply equipment for most electronic systems. In recent years,
several different nonlinear control techniques have been developed for DC-DC power
converters. These include feedback linearization technique [26], self-tuned dither control
[13], sliding mode control [22]-[24], backstepping control strategy [11] [21], and so on.
In this chapter, the following five nonlinear controllers are designed for a DC-DC buck
converter based on three nonlinear control methods discussed in the previous chapter.

e Backstepping control

e Sliding mode control

e Backstepping sliding mode control

e Adaptive backstepping control

e Adaptive backstepping sliding mode control
Our objective is to develop feedback controllers for the DC-DC buck converter to
minimize the steady state error in the presence of load changes and input voltage
variations.
Before we start to design the nonlinear controllers, let’s recall the state space averaging

model of the DC-DC buck converter introduced in Chapter 2,
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X =6x +6,x, (4.1
(4.2)
X, =0x, +6,x,+ 6,1

where 6,,6,,6,,0, and 6, are the parameters of the buck converter defined by the

following equations,

1

' (R+R.)C
- R
(R+R.)C

R

> (R+R.L

x, and x, represent, respectively, the output capacitor voltage v. and inductor current

i,,R.,R, andR; denote the resistance of the capacitor, inductor and switch/diode,

respectively, E stands for the value of the external source voltage, R is the load

resistance.
Note that 6, is always greater than the zero if £#0 and 6, is always greater than

zero if the load resistance R is not zero. Throughout the thesis, we assume that E #0

and R#0.

In order to achieve a good control performance, an integral term is introduced to

eliminate the steady state error. The state equation is given by:
é =x -V, (4-3)

where V, is the desired output voltage.
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4.2 Backstepping Control

According to the backstepping design theory, a controller is designed in the following

steps:

Stepl. In equation (4.3), x; is viewed as a virtual input. Select the Lyapunov function:

v =Le (4.4)
2
Then the virtual control
x, =0, =—c,E+V, (4.5)
makes the derivative of V], that is,
V=86 =—c,&" +&(x —aty) (4.6)

negative definite, where ¢,>0 is a design parameter.
Differentiating ¢, toget ¢, and ¢, as follows:
by ==¢,§ +V, ==¢, (0 ~V)+7, @7
C o (4.8)
Oy =—co(X, =V ) +V, =—c,(0x, +0,x,)+c V, +V,
Step2. The derivative of the new error x, —¢, is expressed as
X, — 0y =0x, +6,x, -, (4.9)
The augmented Lyapunov function is chosen as
V2=V1+%(x1—060)2 (4.10)
The derivative of V,, using (4.6) and (4.9), is
Vy =P+ (5 —0)(% — )
=—c,&* +E(x, — ) + (x, — ) ) (%, — &)

=—c,& + (x, — o )& +6,x, +0,x, — 0t (4.11)
33
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The virtual control can be designed for x,, thatis,

X, = =L[—cl(xl —o)—E-0x +6,)]
0, (4.12)

tomake ¥, negative definite, i.e.
V,=—c,&* +(x, — 0, (E+6,x, +0,x, — &, + 6,0, — 6,01
==& + (4 —)[E+6% +6,x, — G + (6, (5~ ) =&~ bx, + 6 )~ 6, ]
= —, &% + (x, — 0=, (%, — ) + 0, (x, — )]
=—c,&" — (x5, — ) +6,(x, — o )(x, — ) (4.13)
where ¢ >0 is a design parameter.

Step3. It follows from (4.12) that the time derivative of ¢, is given by

1 ; . . ..
29 :g_[—cl(xl _ao)_§_91x1 +a0:\
2

= Ly~ (5 -7 + @) + (- — )65 + 6,x,)]
0, (4.14)

The derivative of x, —¢; can be expressed as
X, — ¢, =0,x,+0,x, + O, 1~ ¢, (4.15)
At this point, select a Lyapunov function and design control input 4 to make its
derivative negative definite. To this end, choose
V=V (5= ) (4.16)
then its derivative, using equations (4.13) and (4.15), is
V=V, +(x,— )%, — 6)

=—c,& —c(x, — )" +0,(x, — 0, )(x, — ) + (x, — a4, )(%, — &)
34
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=—c,& = (x, =) +(x, — )6, (x, — )+ O,x, + O,x, + O, — &, ] (4.17)

The control input 4, which cancels the indefinite term in V3 , 18 given by.

1 )
U -—-5—[—c2(x2 —a,)—0,(x,—0)—0,x, —0,x, + ]
s (4.18)

where ¢,>01s a design parameter.
With the designed control input x, the derivative of the Lyapunov function V; is

Vy=—c&? —c (%~ o) ¢, (%, ~ )’ (4.19)

which is negative definite.

4.3 Sliding Mode Control
4.3.1 Design of Sliding Surface

In sliding mode control, the input switching states £, which corresponds to the turning

on and off of the power converter’s switch, is determined by a sliding surface S.
The basic idea of sliding mode control is to design a certain sliding surface in its control

law that will direct the trajectory of the state variables towards a desired origin. For our

system’s model, assume the output voltage error is ¢ =v,—V,, where V, is output

reference voltage. The following sliding surface is chosen

S=¢é+Ke =0 (4.20)
where K is a sliding coefficient. Then the dynamic performance of the error ¢, is
e,(t) = e(t)e ¥ (4.21)
Where 7 isany point in time and ¢, (7) is the voltage error at 7.

According to Routh criteria, when the sliding coefficient K >0 is met, the error ¢
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converges to zero. Note that x, =v, and

é =v, =0x +0,x, (4.22)
From (4.20) and (4.22), it follows that

S=¢+Ke =0x+0,x, +K(x,—V,)
(4.23)
=6, +K)x, +6,x, +KV,.

The purpose of the sliding surface is to serve as a boundary to split the phase plane into
two regions. Each of these regions is specified with a switching state to direct the phase
trajectory toward the sliding surface. It is only when the phase trajectory reaches and

tracks the sliding line toward the origin that the system is considered to be stable.

4.3.2 Equivalent Control

The equivalent control input £, can be formulated by setting $=0
S=(6,+K)x, +6,%,
=(6,+K)(O,x, +0,x,)+6,(6,x, +0,x, + 6, 1t)
=((6,+K)6, +6,0,)x, +((6,+K)0, +6,0,)x, + 6,04 (4.24)
General speaking, the control input has two forms: £=0.5(1+sign(S)) or
M1 =0.5(1-sign(S)) in DC-DC converters. How to select a control input value is depend
on the sliding surface S=0 and approaching condition SS<0. Assume the control
inputis 4 =0.5(1-sign(S)). Then,

|0 for §>0
71 for s<0 (4.25)
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To get equivalent control, let S =0. Using equation (4.24), we have

__(6,4K)6,+66, _(+K)8,+6,6,
K 6,0, 1 6,6, 2 (4.26)

where 4, is continuous and O<pu, <1.

4.3.3 Existence of Sliding Mode Control

Although abiding the hitting condition, which states that the system trajectory must
eventually reach the sliding surface, the control law in (4.25) only provides the general
requirement that the trajectories will be driven toward the sliding surface. However there
is no assurance that the trajectory can be maintained on this surface. To ensure that the
trajectory is maintained on the sliding surface, the existence condition, which is derived
from Lyapunov’s second method to determine asymptotic stability, must be obeyed

lim SS < 0 (4.27)

S$—-0
Thus, by substituting the time derivative of S, the condition for the existence of a

sliding mode is
SS = S[((6, + K)B, +6,6,)x, + (6, + K)8, +6,0,)x, +6,0,11] < 0 (4.28)
The control input # includes two parts
1=y + (4.29)
where u, isequivalent control and g, 1is nonlinear switching control.

Substituting equation (4.29) into (4.28) produces

SS=8(8,0.1)<0 = Su, <0 (4.30)
When $>0, u=0and O<p, <1, p =p—p, <0 . At this time, the condition

SS=S;1”<0 is met. On the other hand, when S<0, u=1and O<py, <1,
37
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M, =p—p,, >0. At this time, the condition SS = Su, <0 is also met. Therefore, the

condition SS <0 is always met, then the sliding mode exists and sliding mode control is

effective.

4.3.4 Chattering

Ideally, a converter will switch at infinite frequency with its phase trajectory moving on
the sliding surface when it enters sliding mode operation. However, in the presence of
switching imperfections, such as switching time constant and time delay, this is not
possible. The discontinuity will produce a particular dynamic behavior around the sliding
surface known as chattering. If the chattering is left uncontrolled, the converter system
will become self-oscillation at a very high switching frequency corresponding to the
chattering dynamics. This is undesirable because high switching frequency will result in
excessive switching losses, inductor losses, and electromagnetic interference noise.

To solve this problem, the control law in (4.25) is redefined as

0 for S>k
u=qu, for —k<S<k

1 for S <~k
4.31)

where £ is an arbitrarily small value. The reason for introducing a hysteresis band with
the boundary condition S>k and S<-k is to provide a form of control to the
switching frequency of the converter [25]. This is a method commonly employed to

alleviate the chattering effect of sliding mode control.
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4.4 Backstepping Sliding Mode Control

The design procedures are shown as follows.

Stepl. In equation (4.3), x, is viewed as a virtual input. Select the Lyapunov function:

y=lg (4.32)
2
Then the virtual control
X, =0, =—c,E+V, (4.33)
makes the derivative of /], that is,
Vl =& =—c, & +&(x, — ) (4.34)

negative definite, where ¢,>0 is a design parameter.
Differentiating ¢, yields
a, =—c0§+Vd =—c,(x,~V,)+V, (4.35)
L . (4.36)
Oy =—co(x, = V)+V, =—c,(6x, +0,x,) +c V, +V,
Step2. The derivative of the error x, — ¢y, 1is expressed as
%~ = 0x, +6,x, - @, (4.37)
The augmented Lyapunov function is chosen as
V,=V, +—;—(x1—050)2 (4.38)
The derivative of V¥, using (4.34) and (4.37), is
Vo =V+ (= 0) (5 = &)
==, & + &(x, — o) + (x, — o (X, — ¢ty

= —0062 + (.xl - ao )(f + Hlxl + 92x2 - 060) (439)
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The virtual control can be designed for x, as

(4.40)
to make ¥, negative definite, i.e.
V, =—c, & +(x, — o, (E+0,x, + 0,x, — &, + 0,0, - 0,0
==, & +(x, — ) [E+ 0%, +0,x, — & + (=, (x, — ) =& = Ox, + &) — 6,01, |
=—c, & +(x, — [, (x, ~ )+ 6, (x, ~ )]
=, 2~ (%, — 0, ) +0,(x, — &, )(x, ~ ;) (4.41)
where ¢ >0 is a design parameter.
Step3. It follows from (4.40) that the time derivative of ¢, is given by
¢, =9i2[—c1(5c1 ~ 0~ €=~ + 4, |
- eiz[(clozo (4 =V + )+ (=6, = 8)(B.x + 6,%,)] o
The derivative of x, —¢; can be expressed as
%, ~ 0, = 0,x +6,x, + 0,1~ (4.43)

At this point we will define a sliding surface S, select a Lyapunov function ¥, and

design a feedback law 4 to make ¥, negative definite.

S=x,-¢
1, (4.44)
V; —'—"-Vz +5S

The derivative of Lyapunov function 7, using equations (4.41), (4.42) and (4.43), is:
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V,=V,+SS
=—c, & —c,(x, =) +6,(x, — &, )x, — )+ S(x, — &)
= _c0§2 —¢(x _ao)z +S [92 (x, =) +0,x, +6,x, + O —dl] (4.45)

The feedback law 1, which cancels the indefinite term in V3 , 1s given by.

1 . :
H= 9_[—02 (x, =) —O0,x, —0,x, + 0y — kS —k,sign(S)]
5 (4.46)

where &, >0 and k, >0 are design parameters and sign(.) is a sign function.

Notice that the control law (4.46) reduces to a type of sliding mode control if the

parameter k; is zero and to a type of backstepping control when k&, =0.

With the designed control input 1, the derivative of the Lyapunov function V] is

V3 ==, & —c(x — ) =k S* ~k,S - sign(S)

=—,&" —q (% -0’ kS —k, || (4.47)

which is negative definite.

4.5 Adaptive Backstepping Control

The performance of a backstepping controller is good under the condition that parameters
of the buck converter model are well known. In real situation, it is hard to know the exact
values of parameters. For instance, the load resistance is unknown and time-varying.

Therefore, an adaptive backstepping controller is introduced to the buck converter to deal

with the unknown parameters. Since the parameters 6,,6,,6,,8, and 6, are unknown,

the parameter estimators will be introduced in the following design procedures.
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Stepl. In equation (4.3), x, is viewed as a virtual input. Select the Lyapunov function:

y=lg (4.48)
2
Then the virtual control
X =0, =—c,E+ (4.49)
makes the derivative of V], that is,
i=g=—af +x-a) (4-50)

negative definite, where ¢,>0 is a design parameter.

Differentiating ¢, we have
Gy =—c,E+V, = —cy(x,~V,) 4V, 4.51)
L I (4.52)
dy =—cy(x,=V)+V,=—c,(0x, +6,x,) +tc,V,+V,
Step2. The derivative of the error x, — ¢, is expressed as
X -, =0x +0,x,— ¢, (4.53)
The augmented Lyapunov function is chosen as
V=V (5~ (4.5)
The derivative of V,, using (4.50) and (4.53), is
V, =P+ (x — o) (% - &)
=—¢, &+ E(x, = o)+ (x, — &) (%, — &)
=—c,&* +(x, — o ) (E+0x, +6,x,— ) (4.55)
The virtual control can be designed for x, to make V2 negative definite, that is,
1 A :
X, =0 = ?[—cl(xl —-a,)-&-0x +0{0]

, (4.56)
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where 6, and 632 denote the estimates of the parameters 6, and 6,, ¢;>0 is a design

parameter.

From (4.55), together with (4.56), the resulting derivative becomes:
Vy ==, &8+ (3 — )& +0,x, +0,x, — 0y + B,04 — By01,)
=—c, &7 +(x, - ) [—c1 (x,— ) +(6,—6)x, +6,x, — é2a1]
=&~ (n—0p) +(x —%)[(91 -4)x+(6, —@)xz] +Hx-a)(n-0) (457

Step3. From (4.56), taking the derivative of ¢, gives:

. 1 A A
& :_'9727[_5'1(3‘1_ao)_f—qxl"'ao]gz .
1 . . A . .. 1 A .
-7-(610(0—5—91)61+cOV:1+V:,)+—:—<—cl—61—co)xl
6, 6,
= A+ B(6x,+6,x,) (4.58)
1 A B U B L
where A:—E—z—[—cl(xl—ao)—§-0,x1+a0]92+07(c1a0—§—91x1+con+Vd)
2 2
1 A
B=—|-¢ -6 —c
H-a-d-a)

The derivative of x, —¢;, can be expressed as
X, =0 =0x+0,x,+0 -0, (4.59)

From the equation (4.57) to (4.59), the presence of parameter estimates suggests the
following Lyapunov function:

1 1 < A
V=V, +—(x, )’ +— > |6,-6,
o2 272{( ) (4.60)

where ¥, (i=1,...,5) are constant positive adaptive gains.
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The derivative of this function, using equations (4.57), (4.58) and (4.59), is:

. . ) . 1< A A
V3=V2+<x2—a1>(x2—a1)+72(a—a)(—a)
i i=l

D>

=& —a (% —0p) +(x —ao)[(@—él)xl+(92—é2)aa}+%g(a— )(-6)

(= 0q)] 6,05, = @) + 6,5, +0,x, + 0,1~ A= B(6,%,+6,%,) | (4.61)
The control g can be obtained by canceling the indefinite terms in the last bracket in

(4.61) and the estimates él are used to deal with the unknown parameters 6,(i=1,...,5).

1 . A A A n
H= T[—cz (x,=00)=6,(x, )~ O0,x, -0, x, + A+ B (91x1 +0,x, )]
% (4.62)
Substituting the control 4 in (4.61), the derivation of ¥V, becomes:

. n 1 A
V3 = _00‘52 _c1(x1 "ao)z "Cz(xz "al)z +(9x _91) ‘:(xl —ao)xl —B(X2 _Q)xl _—01}

1

+(92 _éz)\i(xl —04)%, = B(x, —a)x, ";1‘9;21\'*'(93 _és)\:(xz 0% _";_9;3]

2 3

+(64 —-0;){()62 —04)%, —

1 A 1
7‘94}“*'(95 —95)\:()52 _al),u"'?gs]

4 5 (4.63)
Now the (‘9; - é,) term can be eliminated with the update laws:

él =nhx [(x1 —-a,)— B(x, —051)]
éz =72% [(xl — )= B(x, - al)]
93 =7%(x, — )
é4 =7,%,(%, - &)
0, =,(x,~ 0t

S 75( 2 l):l'l (4_64)
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which makes the derivation of 7]

V3 = —Coé:z —q(x - )2 - (x, - al)z (4.65)

negative semi-definite.

4.6 Adaptive Backstepping Sliding Mode Control

The design procedure of an adaptive backstepping sliding mode controller is shown

below.

Stepl. In equation (4.3), x, is viewed as a virtual input. Select the Lyapunov function:

y=Lle (4.66)
2
Then the virtual control
% =0 =—c,E+V, (4.67)
makes the derivative of 7/, that is,
= 8 = £ -at) (4.68)

negative definite, where ¢,>0 is a design parameter.
Differentiating ¢, yields

Gy =—c,E+V, =—c,(x,—V,) +V, (4.69)
R S (4.70)

oy, =—cy(x, = V) +V, =—c,(6,x, +O,x,)+c V, +V,
Step2. The derivative of the error x, — ¢, is expressed as

X —a, =0x +6,x,— ¢, (4.71)

The augmented Lyapunov function is chosen as

Vo=V, () (4.72)
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The derivative of ¥, using (4.68) and (4.71), is
V, =V, +(x, ~ ) (%, — &)
=—c, &8 + E(x, = o)+ (x, — 0, (X, — &)
=—c, & +(x, - o (E+6,x, +6,x, — &) (4.73)

The virtual control can be designed for x, to make ¥, negative definite, that i,

1 A .
X, =0 :_:—l:_cl(xl —0,)—§-0x, +a0}
6, (4.74)

where 6, and 6, denote the estimates of the parameters 6, and 6,, ¢,>0 is a design

parameter.

From (4.73), together with (4.74), the resulting derivative becomes:
Vy ==& + (5 =, (E+ 6%, +0,x, — &y + B, — B,
=, + (= 0)] —6,(%, = @,) +(6, - 6)x, +6,x, — 6,0, |
=& —G(q—05) +(x —%)[(91 —6)x+(6, —92)&] +9,(x —04) (%, — %) (4.75)

Step3. From (4.74), taking the derivative of ¢, gives:

. 1 ~ A A
& :—5'{[“6‘1(761 —)—§-8x +a0]92

2

1 ( . . A . . 1 A .
+——{c 0, —&—6x +c )V, +V)+T‘ —c,— 6, —¢, )X
g, O — & =0 + ¢V, +V, 92( 179 0) 1
= A+B(6x +6,x,) (4.76)
1 A LA 1 . . A . .
where A=—é2[—cl(xl—ao)—§—91x1+a0]02+5—(c1a0—5—91x1+c0Vd +Vd)
2 2
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The derivative of x, —¢; can be expressed as

X, =0, = 0%, +6,x, + 0,1 — ¢, (4.77)
Now we define a sliding surface S, select a Lyapunov function ¥, and design control
input 4 to make its derivative negative semi-definite

S=x,—

_ l 2 1 5 A 2
V=V, S +;Zg,(9,-~9,-) (4.78)
where ¥,(i=1,...,5) are constant positive adaptive gains.

The derivative of Lyapunov function 75, using equations (4.75), (4.76) and (4.77), is

. . 1 e A A
v, =’6+SS+Z§(@—@)(—9i)

= ~ali-a) + i) (6-0)x +(0,-8)x | +— Y04 4]

+8[ 8,0, — o) + 0,5, + 6%, + Oy — A= B (6%, + 6,1, ) | (4.79)
The control u can be obtained by canceling the indefinite terms in the last bracket in

(4.79) and the estimates él are used to deal with the unknown parameters 6,(i =1,...,5).

Ir ; s s .
u= T[—HZ (x,—0,)—0,x,-0,x, + A+ B (‘913‘1 +6,x, ) —ks— kzszgn(s)}
A (4.80)

where k20 and k, >0 are design parameters and sign(.) is a sign function.

Notice that the control law (4.80) becomes a sliding mode control law if the parameter

k, is set to zero and it becomes an adaptive backstepping controller as &, =0.

With the designed control input £, the derivative of Lyapunov function ¥, becomes
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. . 1 2
v, :-—cog2 - (x —a0)2 4-(91 —Q)\:(xl —0,)x, — BSx, —7911\

1

+(e, —éz)[(x1 —o)x, — BSx, —-1—52}(93 —9;){5% —%ég}
2 3

+(6, ——@){sz -——1—9*4}(95 -és){su—lés}klsz _K,S - sign(S)

V4 Vs (4.81)
Now the (9,. - 9:) term can be eliminated with the update laws:
él =hx [(xl _ao)-BS]
éz =72% [(xl — ) _BS]
és =13%S
é4 = YaXS
X (4.82)
0; = ysSu
which makes the derivation of 7,
V,=—c,&* —c,(x, — )’ —kS* — k,S - sign(S)
(4.83)

= —Coé:z —c(x, —a'o)2 "k1S2 —k, |Sl

negative semi-definite.

4.7 Estimation of the Inductor Current
In our experimental system, the output voltage x, can be accurately measured. For the

other state variable, inductor current x, can be measured with a current sensor.

Meanwhile, inductor current also can be estimated using a reduced order observer.
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According to the reduced order observer design theory, the differential equation for the

output voltage x,
X, =6x,+6,x, (4.84)
is first rearranged to serve as a measurement equation for x,
0,x,=x,-0x, =z (4.85)

where z can be considered as a new measurement.

Since the state equation for x, is
X, =0,x,+0,x, + 0,1 (4.86)
The reduced order estimator with z is given by
%,=0x+0,%+0.u+L_(z-6,%,) (4.87)
where L, is an estimator gain which can be selected by using the pole placement

method.

Now we introduce a new state variable x,
% =5 L% (4.88)
Then differentiating the new variable x,, we obtain
% =%~ L k=0 +0,% +0,u+ L, (z-60,3)-L %

=0,x+0,x, +0,u+L, (x,-60x)—L

est

92'£2 —Le:txl
=(0,+L,,0,~ L0~ L, 6,)x +(6,~L,0,)x,+ 0,11 (4.89)

Finally, the inductor current X, can be computed from the following equation

X, =x,+L % (4.90)

est
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Chapter 5

Simulation Analysis of the Control Strategies

The five nonlinear controllers developed on the state space averaged model of the
DC-DC buck converter in Chapter 4, namely backstepping, sliding mode, backstepping
sliding mode, adaptive backstepping, and adaptive backstepping sliding mode controller,
are simulated on a computer using MATLAB. The responses of the controllers have been

compared with the following conditions:

® Setpoint changes from 8 volts to 10 volts

® [oad resistance changes from 8 ohms to 4 ohms
® 2 volt step disturbance in the power supply.

The specifications of the converter are given in Table.5-1. In the simulation, the value of

the desired output voltage is set to be V, =8 volts. The design parameters of the
proposed controllers, which were chosen by trial and error, are shown in Table.5-2.
Note that the parameter estimators éz and és appear in denominators in the proposed

adaptive controllers, which implies that they must be non-zero. It is worth monitoring

their values in the simulation.
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Parameter name Symbol Value

Power supply E 20 wvolts

Inductance L 92 uH

Capacitance C 220 uF

Load resistance R g Q

Inductor resistance R, 74 mQ

Capacitor ESR R, 70 mQ

Diode resistance R, 30 mQ

Switching resistance R, 44 m€
Table.5-1: Specification of buck converter (simulation)

Control strategy Design parameters
Backstepping ¢, =120, ¢, =60000, c, =50000
Sliding mode K =20000
Backstepping sliding mode ¢, =120, ¢, =60000, k =50000, k, =2000
Adaptive backstepping ¢, =120, ¢, =60000, c,=50000, ¥=10%(G=1,..,5
Adaptive backstepping sliding mode | ¢ =120, ¢ =60000, k =50000, k, =2000

7, =107(3i =1,..,5)

Table.5-2: Specification of design parameters (simulation)
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5.1 Response to Setpoint Change

In order to study the ability of the developed controllers to regulate the output voltage to
the desired value, in this section, the output voltage reference is changed from 8 volts to
10 volts at the time 0.1s.

Fig.5-1 depicts the performance of the backstepping controller. It can be seen that when
the setpoint changed, the output voltage exhibits a good performance in tracking the
output reference voltage.

The behavior of the sliding mode controller is shown in Fig.5-2. It is obvious that sliding
mode control has some overshoots.

The response of the backstepping sliding mode controller is shown in Fig.5-3. It has been
found that this controller has a good performance in output voltage regulation.

In the case of the unknown parameters, the two adaptive controllers, adaptive
backstepping controller and adaptive backstepping sliding mode controller, are simulated.
Their performances to the setpoint changes are presented in Fig.5-4 and Fig.5-5,
respectively. It can be observed that they all have good voltage regulation.

For the two adaptive controllers, it is necessary to check the behaviors of the parameter

estimators 6, and és , which are displayed in Fig.5-6, Fig.5-7, Fig.5-8 and Fig.5-9. It

can be seen that the values of these parameter estimators are changing but never go to

ZE€10.
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Backstepping sliding mode
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Adaptive backstepping sliding mode
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5.2 Response to Load Change

In this section, the performances of the proposed controllers are analyzed in the presence
of load variations. The load resistance is changed from its normal value R =8Q to R = 42
during the time interval [0.1, 0.15]s.

The behaviors of the controllers are shown in Fig.5-10, Fig.5-11, Fig.5-12, Fig.5-13 and
Fig.5-14. It can be seen that the backstepping, backstepping sliding mode, adaptive
backstepping, and adaptive backstepping sliding mode controller have similar
performances. Their output voltage exhibits about 160m} overshoots during the load
variations. The performance of the sliding mode controller shows larger overshoots and

faster response time to the load changes.
For the two adaptive controllers, the behaviors of the parameter estimators 6, and 95

are shown in Fig.5-15, Fig.5-16, Fig.5-17 and Fig.5-18. It can be seen that the values of

these parameter estimators are not zero.
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Backstepping
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Backstepping sliding mode
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Adaptive backstepping sliding mode
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5.3 Response to Source Voltage Change

The ability of the proposed controllers to attenuate pulse disturbances at the source
voltage is studied because it might occur in practice. In this simulation, the disturbance is
introduced by changing power supply from 20 volts to 18 volts during the time period
[0.1,0.15]s.

Fig.5-19, Fig.5-20, Fig.5-21, Fig.5-22 and Fig.5-23 display the performances of the
controllers. It can be seen that the backstepping controller has about 15mV overshoots,
its output voltage dropped and then recovered to the desired voltage during the
disturbances. The performance of sliding mode controller to source voltage changes has
larger overshoots but faster response time. The backstepping sliding mode has similar
performance to the backstepping controller. Adaptive backstepping and adaptive

backstepping sliding mode controller show better performances due to the smaller

overshoots.
For the two adaptive controllers, the behaviors of the parameter estimators 6, and 6,

shown in Fig.5-24, Fig.5-25, Fig.5-26 and Fig.5-27 indicate that the values of these

parameter estimators converge to some non-zero values.
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Fig.5-25: 6, -Adaptive backstepping
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Fig.5-27: 6, -Adaptive backstepping sliding mode
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5.4 Simulation Results Comparison

All the designed nonlinear controllers are simulated under three conditions using

MATLAB. The performances, which are compared in terms of steady state error,

transient response and settling time, are shown in Table 5-3.

Control strategy Setpoint change | Load change | Source
voltage
change

Backstepping | Steady state error 0.1 mV 0.1 mV 01 mV
Transient response 8.5 mV 159.6 mV 144 mV
(peak value)
Settling time 25 ms 45 ms 40 ms
Sliding mode | Steady state error <0.01 mV <0.01 mV <0.01 mV
Transient response 1925 mV 323 mV 97 mV
Settling time 26 ms 1 ms 4 ms
Backstepping | Steady state error <0.01 mV <0.01 mV <0.01 mV
sliding mode | Transient response 85 mV 156.8 mV 11.6 mV
Settling time 25 ms 45 ms 40 ms
Adaptive Steady state error 0.1 mV 0.1 mV 0.1 mV
backstepping | Transient response 8.5 mV 159.5 mV 14.4 mV
Settling time 25 ms 45 ms 40 ms
Adaptive Steady state error <0.01 mV <0.01 mV <0.01 mV
backstepping | Transient response 85 mV 156.8 mV 11.4 mV
sliding mode | Settling time 25 ms 45 ms 40 ms
Table.5-3: Simulation results comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70




Chapter 6
Experimental Setup and Results

6.1 Introduction

In this chapter, a buck converter experimental system is constructed in the laboratory to
implement the nonlinear controllers designed in Chapter 4. The whole experimental
system is shown in Fig.6-1. It consists of the buck converter circuit card, data acquisition
(DAQ) board, and personal computer (PC). The buck converter circuit receives control
signals from the DAQ board placed in the computer. The DAQ board acquires the output
voltage signal from the buck converter circuit card by using an A/D converter. Two DC
power supplies are needed to operate the whole system, one to provide crnergy to the buck
converter system and the other to feed the electronic parts of the card.

The prototype buck converter circuit card is assembled using low cost commercial
electronic components. The controllers are implemented on the PC through the DAQ
board. This is clearly not a practical solution because the computer implementation is too
expensive. We could have performed it with analog circuits, but this is not the essential
point of our study. Our objective is to test the proposed controllers and compare the

controller performances using a standard laboratory setup.
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Fig.6-1: Buck converter experimental system
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6.2 Experimental Setup

The diagram of the experimental setup is shown in Fig.6-2. The proposed controllers are
implemented on PC using Visual C++ language, which contains the description of the
controllers. In each sampling period, the computer obtains the output voltage from the
buck converter circuit, calculates the control input in terms of duty cycle and translates
the duty cycle to voltage signal which is sent to the PWM circuit to generate PWM
signals to control the buck converter. Time derivatives in some of the control laws are
accomplished with Runge-Kutta method.

In this experiment, the sampling period is set as 1 millisecond, which is fast enough for

the computer to finish reading signals from the boards, calculating and sending signals

back to the boards.

< Buck DC Power
Converter Source

DAQ Board

D/A [A/D

Control
Siganl

HEEN

PWM

D Circuit

= Buck Converter
Circuit Card

1
i

PC

Fig.6-2: Diagram of the experimental setup
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6.2.1 Buck Converter Circuit Card Description

Fig.6-3 shows the buck converter circuit card, which is built with a buck converter circuit,
a pulse width modulation circuit, and a MOSFET driver circuit.

The buck converter circuit is basically composed of an inductor, a capacitor, a resistance
load, a MOSFET (IRF540N) and a rapid diode (MUR1520) in a suitable manner. All
these elements are fed by a DC power supply. The values of these components are shown
in Table.6-1, which are taken from the datasheets.

The buck converter circuit can be controlled by means of a PWM control circuit or by
directly introducing a switching signal coming from the DAQ board. In our experiment,
the PWM control circuit is designed using a TL494 integrated circuit. The PWM control
circuit, which is shown in Fig.6-3, converts a continuous voltage signal in the range [0, 5]
to a PWM signal of the duty ratio from 0 to 100%. Output pulse width modulation 1s
accomplished by comparison of the positive sawtooth waveform across the capacitor to
the external control signals fed into deadtime control.

The MOSFET is a voltage controlled device and its on state is achieved when the
gate-to-source voltage sufficiently exceeds the threshold voltage. The MOSFET driver
circuit is performed by using chip IR4428. The PS8601 eight pin optocoupler, made by
NEC, is used to create a floating ground between the MOSFET and the control circuit.
The output voltage of buck converter circuit will be fed into the DAQ board to be used in
the control law. A voltage divider is used to reduce the level of the output voltage signal

in such a way that its final value is always in the range {0, 10] volts.

6.2.2 DAQ Board

In the laboratory the data exchange between instruments and a computer can be realized
by using a DAQ board. A typical commercial DAQ board contains analog to digital

converters (ADC) and digital to analog converters (DAC) that allow input and output of
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analog and digital signals in addition to digital input/output channels.

The DAQ board used for our experiment is ADIO1600 from ICS Advent. It 1s a
multi-function high-speed analog/digital /O card for use in computers. With this card
installed, the computer can be used as a precision data acquisition and control system.
The DAQ board is plugged in PCI slot inside the computer, and the connection to buck

converter circuit is made via a 37-pin D type connector.

+12V Output
2Q feedback
§ — —L>
™ Az 220 uF =< -12v
=2 20
IRF540N §S
=
20
+12V
1 16 ©
From DAQ | L— 2 15——l J__ b @
u(IN) 3 14 B g% o)
o 4 13 1 s S 105
S TL494 . e L oA
= 6 1 3 7 37
$= —
ST & 7 10 4 8 4 8
2 F 8 9 Vs w
( g PS8eol IR4428
GND ©

+12V

Fig.6-3: Buck converter circuit card
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6.3 Experimental Results

The five control laws described in Chapter 4 have been implemented on the buck
converter experimental system. Their behaviors are compared with the following basic
criteria:

® Transient and steady state response to step output voltage references.

® Response to the load resistance changes

® Disturbances in the power supply.

~

In the design procedure of two adaptive controllers, the parameter estimators 8, and és

appear in the denominators. It is worth taking a look at their values in the experiment.

The specifications of the buck converter circuit are given in Table.6-1. In the experiment,

the value of the desired output voltage is set to ¥, =8volts.

Parameter name Symbol Value
Power supply E 20 volts
Inductance L 92 uH
Capacitance C 220 uF
Load resistance R 8 Q
Inductor resistance R, 74 mQ
Capacitor ESR R. 70 mQ
Diode resistance R, 30 mQ
Switching resistance R, 44 mQ
Switching frequency f 70 KHz
Table.6-1: Specification of buck converter (experiment)
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6.3.1 Current Estimated Using Reduced Order Observer

In this section, the inductor current is estimated with the designed reduced order observer.

The design parameters of the proposed controllers are shown in Table.6-2.

Control strategy Design parameters
Backstepping ¢, =0.75, ¢, =150, ¢, =400, L _=0.01
Sliding mode K =32000, L =0.01
Backstepping sliding mode ¢, =0.75, ¢ =150, k, =400, k,=5, L_=0.01
Adaptive backstepping ¢, =0.75, ¢, =150, c, =400

L, =001, =10%@=1,..,5

Adaptive backstepping sliding mode ¢, =0.75, ¢, =150, k =400, k, =5

Y, =107(@ =1,..,5), L =0.01

Table.6-2: Specification of design parameters (estimated current)

6.3.1.1 Response to Output Voltage Reference

The controller responses to the output voltage reference change from 8 volts to 10 volts
are shown in Fig.6-4, Fig.6-5, Fig.6-6, Fig.6-7 and Fig.6-8. It can be seen that the five
nonlinear controllers have good performances to the output reference change. All the
controllers show about 40 millivolt overshoots. The sliding mode controller exhibits little

chattering around the desired value.

~

The behaviors of the parameter estimators 6, and és for the two adaptive controllers

are shown in Fig.6-9, Fig.6-10, Fig.6-11, and Fig.6-12. Their values are adjusted by
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calculating the update laws to make the controller work well. It is clear that they never be
Zero.

Note that there are some disagreements between the experimental results and simulation
results in terms of the overshoots and the settling time. This is mainly due to the

parameters’ deviation between the actual experimental circuit and the simulation

program.
Backstepping
T T T r 'r T T T T
T R b
1) OCURIRS SRR NSO WSS RN SRS A
T e e s
s R R R T e
3 AR S A R SRR R S
Eg Y NG S NS RSN S SSRGS S
R
SFW%WW ------ J: ------- Ll e -
L 1 L ! I Ly 1 1
0 2 4 & 8 16 12 14 16 18 20
Time(s)

Fig. 6-4: Backstepping
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6.3.1.2 Response to L.oad Change

In order to introduce a load change to the experimental system, the load resistance R is
reduced from R=8QtoR=4Q . The performance of the backstepping controller is
shown in Fig.6-13. It can be seen that the output voltage dropped and recovered to the
desired value during the load changes. The biggest steady state error is about 25mV
and the transient response is about 90m/V .

In Fig.6-14, the sliding mode controller shows its robustness and faster response time to
the load variations and exhibits +20m}” chattering as well.

The behavior of the backstepping sliding mode controller is shown in Fig.6-15, it can be
seen that there is no chattering. The steady state error is about +25m} and the transient
responseis 90mV .

Fig.6-16 depicts the performance of the adaptive backstepping controller, from which
about +25mV steady state error and 70mV transient response can be observed.

The behavior of the adaptive backstepping sliding mode controller is presented in
Fig.6-17. It can be found that this controller shows no chattering problem, but it exhibits
+20mV  steady state error and 40mV  transient response.

As shown in Fig.6-18, Fig.6-19, Fig.6-20 and Fig.6-21, the values of parameter

estimators 92 and és for the adaptive controllers will never be zero.
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Backstepping sliding mode
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Fig.6-15: Backstepping sliding mode
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Fig.6-17: Adaptive backstepping sliding mode
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6.3.1.3 Response to Source Voltage Change

For a practical buck converter system, the main disturbance is generated by the power
source. It is important to study the nonlinear controllers’ robustness to source
disturbances. In this experimental system, the disturbance is introduced by changing the
source voltage from 20 volts to 18 volts.

The performance of the backstepping controller, which is shown in Fig.6-22, reveals that
the output voltage is less sensitive to the disturbance and it has about *+25mV steady
state error and 60mV  transient response.

The performance of the sliding mode controller is shown in Fig.6-23, from which the
controllers’ robustness and faster response time to disturbances can be observed.
Meanwhile, there also exists +20m}  chattering.

As shown in Fig.6-24, the backstepping sliding mode controller doesn’t have chattering.
The steady state error is about +25m} and the transient response is 50mV .

The performance of the adaptive backstepping controller is shown in Fig.6-25. This
controller has +20mV  steady state error and 50mV transient response.

Fig.6-26 shows the behavior of the adaptive backstepping sliding mode controller. It can
be seen that the chattering problem is gone. The controller shows +20m})  steady state

error and 50mV transient response.
After checking the performances of the parameter estimators éz and és for the

adaptive controllers shown in Fig.6-27, Fig.6-28, Fig.6-29 and Fig.6-30, the values of the

estimators are not zero.
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Fig.6-26: Adaptive backstepping sliding mode

<D

=
v
'
¢
3
¥
R SSTusy g e
1
'
]
'
'

—

:::::::::::

Y I I A i PO A NS [y AP Rt U Y QU ) R

B e

Il S et b (i et Bett it e

B e R it I B it o Y AN

[ L PP,
v
'
v
'
'
'
P e R R T

||||||||||||

4545 5

4545 45 - ----

46454 - ----

4545 3F------
464526 |- ----

4545 15 -~~~
4545 1

10 12 14
Time{s)

8

~

Fig.6-27: 8, -Adaptive Backstepping
92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

)

N I I | I I | I R
1 1 1 L} U L3 1 1
© " " : : " : " “

£ PR ponmengeeen omoes Frrzotdoo-on bl e
" ; : " “ " : :
" " " " : " ” "

W Lo T S S S A el .
bl ) 1 1 v [ 1 t 1
2 A R T

s g, P boeonngmnnon o seen Fermmedmmeee . boef e
. " “ " " : " “ ;
3 : : " " " " ; :

. 4 L “ : : e Lo Ll
- g [T v s et e e ;
-~ 0 " " " " : " : "
1] ) 1 1 L} 1] L} r

T Z ) RO R SR AR 0 A R \\\
L m = & & ' f 1 1 ' V ] '
E & R R T PR R S G
3 “ : “ “ " _ " "

w T e
) B oo
oo : " ; “ ! : :

w N st ek Lot e cnn borsnadesosod R boees o
o " ; n " “ " “ ”
g 1 ] ] [ [} ¥ ] 1
o “ ” : v " ; “

<t F N A S U oo Yol Vool J_ |||||| " |||||| .1 ||||||
REE

™ T R yoTTTARneers ERE b e et S
A N
o | ; i ; i i ; i

[s] | ¥5] [y]

2 2 38 3 8 3 2 5 28

% ¥y} o L0 2 Ty M %)

3 2 8§ ¥ % % 8 32 3

- =} =t <t

12

10

Time{s)

93

8

n

Fig.6-29: 6, -Adaptive backstepping sliding mode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L) ~-

1
'
1
'
'
)
v
’
'
1l
1
v
'
v
'
v
»
1
'
1]
'
O U U UV Sy

T
'
v
'
'
'
'
.
)
'
.

T Al Tt

T
'
.
s
v
]
.
]
'
)
]

-
'
'
'
'
v
v
«
Il
}

L
12

0.2
015 F------
04 f------

£'18el1T -

16 18 20

14

16
Time(s)

A

Fig.6-30: 6, -Adaptive backstepping sliding mode

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3.2 Current Measured Using Current Transducer

In this section, the current transducer (LTS 6-NP) is used to measure the inductor current.

The design parameters of the proposed controllers are shown in Table.6-3.

Control strategy Design parameters

Backstepping ¢, =5, ¢ =60000, c,=56000

Sliding mode K =22000

Backstepping sliding mode ¢, =5, ¢=60000, k =56000, k,=2000,

Adaptive backstepping ¢, =5, ¢, =60000, c,=56000
7,=107(=1,...,5)

Adaptive backstepping sliding mode c, =5, ¢, =60000, k =56000, k, =2000
7, =107 =1,...,5),

Table.6-3: Specification of design parameters (current sensor)

6.3.2.1 Response to Output Voltage Reference

The controller responses to the output voltage reference change from 8 volts to 10 volts
are shown in Fig.6-31, Fig.6-32, Fig.6-33, Fig.6-34 and Fig.6-35. It can be seen that the
five nonlinear controllers have good performances to the output reference change. The
backstepping controller, backstepping sliding mode controller, adaptive backstepping
controller and adaptive backstepping sliding mode controller show about 50 millivolt

overshoots. The sliding mode controller has 30 millivolt overshoots.
The behaviors of the parameter estimators éz and és for the two adaptive controllers

are shown in Fig.6-36, Fig.6-37, Fig.6-38, and Fig.6-39. Their values are not zero.
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6.3.2.2 Response to Load Change

The performance of the backstepping controller is shown in Fig.6-40. It can be seen that
the output voltage dropped and recovered to the desired value during the load changes.
The steady state error is +15mV, and the transient response is about 50mV .

In Fig.6-41, the sliding mode controller shows its robustness and faster response time to
the load variations and exhibits +25m) chattering as well.

The behavior of the backstepping sliding mode controller is shown in Fig.6-42, it can be
seen that there is no chattering. The steady state error is about *15mV and the transient
response is 50mV .

Fig.6-43 depicts the performance of the adaptive backstepping controller, from which
about *15mV steady state error and 50mV transient response can be observed.

The behavior of the adaptive backstepping sliding mode controller is presented in
Fig.6-44. It can be found that this controller shows no chattering problem, but it exhibits
+10mV steady state error and 40mV transient response.

As shown in Fig.6-45, Fig.6-46, Fig.6-47 and Fig.6-48, the values of parameter

estimators éz and 95 for the adaptive controllers will never be zero.
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6.3.2.3 Response to Source Voltage Change

The performance of the backstepping controller, which is shown in Fig.6-49, reveals that
the output voltage is less sensitive to the disturbance and the steady state error is from
—25mV to +10mV .

The performance of the sliding mode controller is shown in Fig.6-50, from which the
controllers’ robustness and faster response time to disturbances can be observed.
Meanwhile, there also exists —30mV to +20m}  chattering.

As shown in Fig.6-51, the backstepping sliding mode controller doesn’t have chattering.
The steady state error is from —22mV to +10mV .

The performance of the adaptive backstepping controller is shown in Fig.6-52. This
controller has —22mJV to +10m) steady state error.

Fig.6-53 shows the behavior of the adaptive backstepping sliding mode controller. It can
be seen that the chattering problem is gone. The controller shows —20mV to +5mV

steady state error.
After checking the performances of the parameter estimators éz and és for the

adaptive controllers shown in Fig.6-54, Fig.6-55, Fig.6-56 and Fig.6-57, the values of the

estimators are not zero.
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6.3.3 PI Control Results
A PI controller is implemented on the buck converter with the gains K, =25, K, =80

under the three conditions. It can be seen that the PI controller has 40m¥V overshoots
when the setpoint changed from 8 volts to 10 volts. For the load change, the steady state
error is from -40mV to —15mV and the transient response is about 25m} . The PI

controller has good performance to the source voltage change.
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6.3.4 Experimental Results Comparison

All the designed nonlinear controllers are implemented on a buck converter under three
conditions. Their performances are compared in terms of steady state error, transient
response and settling time. Two sets of results, which are obtained using reduced order

observer and current transducer, are shown in Table 6-4 and Table 6-5 respectively.

Control strategy Setpoint change | Load change | Source voltage
change
Backstepping | Steady state error 255 mV 32.5 mV 31.5 mV
Transient response | 385 mV 63.7 mV 58 mV
(peak value)
Settling time 38 s 2.1 s 15 s
Sliding mode | Steady state error 16myV 21.5 mV 212 mV
Transient response | 295 mV 36.7 mV 19.8 mV
Settling time 35 s 0.6 s 0.1 s
Backstepping | Steady state error 25 mV 32.5 mV 31 mV
sliding mode | Transient response | 355 mV 582 mV 52.5 mV
Settling time 35 s 2.1 s 1.5 s
Adaptive Steady state error 24 mV 282 mV 31.5 mV
backstepping | Transient response | 347 mV 58.5 mV 43.8 mV
Settling time 35 s 1.6 s 12 s
Adaptive Steady state error 24 mV 173 mV 31.8 mV
backstepping | Transient response | 348 mV 46.8 mV 42.6 mV
sliding mode | Settling time 3.5 s 1.6 s 12 s
Table.6-4: Experimental results comparison (estimated current)
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Control strategy Setpoint change | Load change | Source voltage
change
Backstepping | Steady state error 18 mV 20 mV 25 mV
Transient response | 532 mV 372 mV 16 mV
(peak value)
Settling time 1.1 s 21 s 03 s
Sliding mode | Steady state error 14mV 272 mV 23.7 mV
Transient response | 243 mV 17 mV 23.7T mV
Settling time 1.5 s 1.0 s 0.1 s
Backstepping | Steady state error 16 mV 36.5 mV 24 mV
sliding mode | Transient response | 528 mV 582 mV 14 mV
Settling time 1.1 s 1.5 s 0.1 s
Adaptive Steady state error 16 mV 35 mV 23 mV
backstepping | Transient response | 536 mV 36.4 mV 12 mV
Settling time 1.1 s 15 s 0.1 s
Adaptive Steady state error 15 mV 16 mV 22 mV
backstepping | Transient response | 533 m/V 31.5 mV 12 mV
sliding mode | Settling time 1.1 s 1.4 s 0.1 s
PI controller | Steady state error 15 mV 30 mV 22 mV
Transient response | 366 mlV 2577 mV 13 mV
Settling time 1.1 s 1.5 s 0.1 s

Table.6-5: Experimental results comparison (current transducer)
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Chapter 7
Conclusions and Future Work

7.1 Conclusions

This thesis has proposed five different nonlinear control techniques to minimize the

steady state error for a DC-DC buck converter under source disturbances, setpoint

changes and load variations. A state space averaging model has been derived from a

non-ideal buck converter circuit. Based on this averaged model, several nonlinear

controllers were designed. These include backstepping, sliding mode, backstepping

sliding mode, adaptive backstepping, and adaptive backstepping sliding mode control.

The two adaptive control methods have been developed to deal with the parameter

uncertainties.

All these control techniques have been simulated on computer by using MATLAB.

Moreover, a DC-DC buck converter experimental system was built in the laboratory to

implement these control techniques. Comparing the simulation and experimental results

on these control methods leads to the following conclusions:

® All the nonlinear controllers performed well in tracking the output voltage reference
changes. They exhibited a less sensitivity to source voltage disturbances than to load
resistance changes.

® Adaptive controllers have automatically tuned its control parameters for the DC-DC
buck converter with unknown parameters.

® Sliding mode control does show its robustness to the source disturbances and load

changes, however, it still has little chattering.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



® PI controller has similar performance with these developed nonlinear controllers
under setpoint variation and source deviation. For the load changes, the PI controller
has better performance.

® These nonlinear controllers show better performance using current sensor than using
the reduced order observer to estimate the current.

® The efficiency of the buck converter is over 90%.

7.2 Suggestions for Future Research

The DC-DC buck converter experimental system was constructed in laboratory with low
cost commercial electronic components. However, the proposed controllers were
implemented using a DAQ board mounted in a computer, which definitely made our
control algorithms more expensive than any commercial solutions. An alternative
solution to this problem is to use microprocessor control techniques to implement these
control algorithms for the DC-DC buck converter.

Another interesting research area is the extension of the proposed control methods to

boost converters and buck-boost converters.
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