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Abstract of the Thesis
The optical dose in mJ/cm^ for causing mortality of Escherichia coli, using 

wavelengths between 230-375 nm in the UV and 400-532 nm in the mid-visible spectral 

regions, has been determined in this study. Currently, the mercury 254 nm UV line or 

UV flash lamp sources are used in most optical equipment designed for bactericidal 

action. However, little is known about the bactericidal effect of UV at longer than 254 nm 

and visible light radiation between 400-532 nm. An accurate knowledge of the 

bactericidal dose versus wavelength is of central importance in the optimal choice of 

light source for a given application. Now that UV diodes and lasers emitting in the 280 

to 340 nm range are entering the developmental phase, they can be added to the list of 

existing UV flash lamps, discharge lamps and high intensity visible lasers for use in 

bactericidal applications.

E. coli cell suspensions at about 1x10® CFU/ml were exposed to various 

dosages of radiation between 230-532 nm and the survival cell densities were 

determined by drop-plating. Radiation between 260 to 280 nm in the UV region was 

most efficient in killing the E. coli cells. In addition, significant mortality of E. coli was 

observed when the cell suspensions were exposed to visible light at 458 and 488 nm. 

Based on the E. coli survival data at various wavelengths and dosages, we constructed 

a predictive equation to estimate the survival of E. co//when exposed to a known 

dosage of radiation at a specific wavelength. Log(S/So) = - (1.089 xlO^e  

Where S = survivor cell density (CFU/ml),

So = initial cell density (CFU/ml),
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D = Radiation dose (mJ/cm^), 

k = wavelength of radiation (nm).

It was also determined that E. coli cells had an absorption peak between 260-280 nm 

which coincided with the UV spectrum that had the highest killing capacity for E. coli.

The FTIR spectrums of UV-treated and untreated E. coli showed that there was a 

decrease of C-O-C and C-O-P bondings after the UV treatment, indicating the 

destruction of the glycan backbone of peptidoglycan and phosphodiester backbone of 

nucleic acids, respectively. There was also an increase in protein content in the UV- 

treated samples because there was a significant increase in the amide bonds. This 

increase may be a stress response mechanism of the E. coli cells exposed to the UV 

treatment. The UV-treated cells also showed an increase in the amount of CH2 

stretching of fatty acids, indicating a change in membrane structure of the UV treated 

cells. Furthermore, UV-treated samples showed an increase of hydroxyl functional 

group, an indication of an increase of reactive oxidation species (ROS) in the E. coli 

cells.
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Chapter 1: Literature Review
1.1 Introduction

Ultraviolet (UV) radiation damages many living organisms including prokaryotic 

bacteria, lower and higher plants, animal tissues and fungi (Hockberger, 2002). UV is 

and has been used for many purposes, including waste and drinking water treatment 

(Decho, 2000), blood irradiation (Ben-Hur and Petrie, 2004), operating room 

disinfectant, to sterilize operating instruments and as a bactericidal agent (Wilson,

1994). In addition, there has been extensive research on the destructive mechanisms 

of UV on cells (Godley et al., 2005; Hader and Sinha, 2005; Becerra et al., 2004).

Currently, the mercury 254nm UV line or UV flash lamp sources are used in most 

optical equipment designed for bactericidal purposes (Decho, 2000; Sharrer et al.,

2004; Schwartz et al., 2003). However, longer wavelength at mid-visible light can induce 

bacterial mortality if the dose is high enough (Godley et al., 2005; Hamblin et al., 2005). 

Now that UV diodes and lasers emitting in the 280nm to 340nm range are entering the 

development phase, they can be added to the list of existing UV flash lamps, discharge 

lamps and high intensity visible lasers for use in bactericidal applications. Thus, 

accurate knowledge of the bactericidal dose versus wavelength is of central importance 

in the optimal choice of light source for a given application.

Conversely, little is known about the lethal effects of visible light on 

microorganisms and there is even less known on the killing mechanisms of visible light. 

Visible light lasers are being used for photodynamic therapy (Szpringer et al., 2004) to 

remove dental plaque and are being looked into as a possible bactericidal agent 

(Wilson, 1994). More information is needed to assess whether visible light alone could
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affect bacterial mortality and thus it could be more accepted as a possible way to treat 

infections. With modern visible lasers as light sources, implementing the use of visible 

light in the control of microorganisms could be cost effective. In addition, there may be 

fewer side effects for the patient than modern drugs.

This study is a spectral analysis from 230 to 532 nm, which aims to determine 

the effects UV and visible light have on bacteria mortality. With a partial goal to 

determine the effectiveness of visible light has on killing bacteria. Generating such 

information has broad applications in the medical, environmental, and physical fields. 

An Escherichia coli strain was selected to be a bacterial model to test the disinfecting 

properties of UV and visible light. This bacterium was chosen because it is an indicator 

of fecal contamination in drinking water and has pathogenic forms that affect the health 

of people world wide (Deborah Chen and Frandel, 2005).

1.2 Overview of Ultraviolet and Visible Light

Ultraviolet (UV) and visible light are components of the electromagnetic spectrum 

(Cartier, 2004). Visible light is the only portion of the electromagnetic spectrum that the 

human eye can see. Visible radiation precedes infrared light on the electromagnetic 

spectrum, ranging from about 400 to 700 nm (Jones and Childers, 1993). If a white light 

is passed though a prism, a color spectrum will be noticeable. This color spectrum 

includes violet, blue, cyan, green, yellow, orange and red light (Crummett and Westem, 

1994). After visible light on the electromagnetic spectrum, UV radiation is predominant 

(Jones and Childers, 1993).

10
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UV light, ranges from 10 nm to about 400 nm, and is more energetic than visible 

light (Crummett and Westem, 1994). There are three categories of UV, UVA (320nm - 

400nm), UVB (290nm-320nm) and UVC (below 290) (Cartier, 2004). Indoor tanning 

beds use UVA emissions. UVB is predominately the tanning agent when outdoors, and 

UVC gets absorbed by the atmosphere. UV irradiation has been accepted as a highly 

effective way to kill microorganisms for decades (dagger, 1976; Hockberger, 2002). UV 

has also been used to kill yeast, viruses and fungi (Devine et al., 2001).

1.3 Past and Present Research on the Effects Ultraviolet Irradiation on Bacteria

In the 18*̂  century, it was believed that sunlight, in the form of sunbaths, cured 

many ailments, such as skin ulcers and other skin anomalies (Hokberger, 2002). Ward 

(1884) reported that on plate cultures. Bacillus anthracis spores where killed by sunlight 

and not by increasing temperature. At one time, it was recommended that sunlight 

disinfection of drinking water should be implemented. Research then evolved into 

looking at how UV irradiation could be used for sanitation, disinfection, and sterilization 

(Hokberger, 2002).

Gates (1929), exposed Staphylococcus aureus to varying, wavelengths (238nm 

to 302nm), intensities, times, and examined the lethal action of UV on this bacterium. It 

was found that S. aureus was killed by UV, but the rate at which the bacteria were killed 

was dependent on different energy levels at different wavelengths. However, in order to 

achieve total kill of this bacterium, long exposure times were needed. It was noted that 

this might be due to the speculation that young bacteria are more resistant to UV light 

than that of the older bacteria. Thus, it was thought that the resistance of these young

11
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bacteria increased exposure time. A second paper, written by Gates in 1929, indicated 

that trying to study wavelengths higher than 302nm was faulty because the amount of 

exposure time needed was unrealistic and such an exposure time may be prone to 

many uncertainties. Also, temperature change was measured in his study and it was 

stated that change in temperature was not high enough to induce mortality in S. aureus. 

A third study by Gates (1930) showed that within the wavelengths used (238-302nm), 

lower dose was needed between 260-270nm in order to generated significant kill than 

any other wavelengths tested. This peak in bactericidal action was speculated to 

correlate with the absorption spectrum of S. aureus, where there is a peak of light 

absorption between 260-270nm. However, it was stated that experimental errors 

accosted with obtaining the absorption spectrum for S. aureus where numerous, thus 

rendering such data unreliable. Preceding these studies, there seems to be no other 

notable studies investigating the dose dependence and wavelength relationships of UV 

killing. Increasingly more interest was put into the mechanisms of UV killing.

In the 1970s, research was being done in order to understand how UV induces 

growth and division delay in E. coli (Thomas, 1977). DNA damage was thought to be 

the prime suspect for UV induced bacterial impairment (Eisenstark, 1987). The 

mechanisms of UV action are detailed later in this review.

A study by Folwaczny et al. (1998) used a 308nm laser to determine the 

bactericidal effects it had on S. aureus and E. coli. The laser produced a significant 

reduction in bacterial cells at an energy density of 0.5 J/cm .̂ It was also noted that the 

temperature change noticed was only 4.5°C higher than the original temperature of the 

sample, which was significantly below the critical temperature increase that would result

12
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in thermal damage. In a similar study, Richter et al. (2002) used a pulsed nitrogen laser 

at a wavelength of 337nm on a biofilm forming bacterium E. coli. At a fluence of 0.74 

J/cm^, the removal of the biofilm was observed.

1.3.1 Applications of Ultraviolet Disinfection

The disinfectant properties of UV irradiation can be implemented in numerous 

ways that are currently being used for medical and industrial practices. Such practices 

include using UV as an operating room and medical instrument disinfectant (Wilson, 

1994), for drinking water and waste water treatment (Decho, 2000).

UV irradiation has been used in operating rooms for more than a half of a 

century, so to reduce airborne bacterial infections (Lidwell, 1994). Due to the use of UV 

as an operating room disinfectant, there has been a substantial reduction in the 

incidence of wound sepsis or deep sepsis due to joint replacements (Lowell and 

Pierson, 1989).

UV irradiation is used in conjunction with other disinfectants as an effective way 

to treat bacterial communities that contaminate waste water (Schwartz, 2003). Some 

waste water treatment plants employ UV disinfectant techniques exclusively, dismissing 

the use of chemicals, and thus the possible harmful side effects they might have. 

Excluding the use of other harmful chemicals like chlorine, UV as a disinfectant can 

reduce the pollution in aquatic systems. It is also well documented that chlorine can 

produce by-products that are mutagenic (Chang et al., 1985). UV can also be used as 

a sterilizing agent in hospitals and other facilities that require procedures to disinfect 

equipment. The use of UV irradiation as an antiseptic might have implications in 

treating some human ailments.

13
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UV irradiation could, also, be implemented as an effective way to treat human 

illnesses without the use of light sensitive drugs. An example of this is the use of UV 

blood irradiation to kill viruses, such as hepatitis C, AIDS and bacteria. UV blood 

irradiation is used by first draining blood from the patient, mixing the blood with an 

anticoagulant, then exposing it to a selected UV dose and then returning the treated 

blood back into the patient (Ben-Hur and Petrie 2004). Ben-Hur and Petrie (2004) 

noted that patients that used this technique showed a 66 to 96 percent reduction of the 

hepatitis C virus titer in their blood. This study also states that the patent with the 96 

percent reduction of hepatitis C could possibly be on his/her way to recovery. Excluding 

the use of light sensitive drugs, UV irradiation would be a cheep and effective way of 

treatment.

1.3.2 Present Understanding of the Lethal Mechanisms Associated with 
Ultraviolet Irradiation

UV irradiation, between 100nm and 400nm, is known to denature the DNA of 

microorganisms, resulting in bacteria mortality (Sharrer et al., 2005). When bacteria are 

exposed to UV the formation of free radicals become more predominant, these 

chemicals then interfere with DNA transcription and replication, thus, leading to the 

eventual misreading of the genetic code. This causes mutations and possible death of 

the cells (Sinha and Hader, 2002). UV radiation also induces harmful effects on 

important molecules such as proteins, lipids, and chromophores (Hader and Sinha, 

2005). Single and double DNA strand breaks are, also, thought to be an important 

cause of cell death (dagger, 1976).

14
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UV damage can also affect the cytoplasmic membrane of bacterial cells. It has 

been shown that when E. coli is exposed to UV light, considerable damage to the 

membrane is noticeable (Eisenstark, 1987). Membrane damage could further degrade 

the cell, with DNA injury, making repair mechanisms less successful. However, it is 

commonly known that DNA degradation is the major factor effecting bacterial mortality 

due to UV irradiation (Weber, 2005; Moan, 1989).

Bacteria exposed to UV light causes the production of free radicals, such as the 

reactive oxygen species (ROS) (Heck, 2003; Hader and Sinha, 2005; Wei et al., 1998). 

The production of ROS can cause DNA, RNA, protein and lipid damage, producing 

altered cell growth and differentiation (Wei et al., 1998). There are three main types of 

ROS, which are the superoxide anion, hydrogen peroxide and singlet oxygen (Becerra 

et al., 2004). DNA double-strand breaks are one of the major products of ionizing 

radiation and ROS (Tuteja and Tuteja, 2001). Single strand breaks and double strand 

breaks are, also, thought to decrease as wavelength increases (Moan, 1989).

In addition, less energetic UV radiation causes chemical modification in DNA, 

resulting in different DNA lesions. These DNA lesions can change a coding base into a 

mutagenic one or a lethal non-coding lesion (Hader and Sinha, 2005). There are two 

main DNA lesions caused by UV radiation, which are cyclobutane-pyrimidine dimers 

(CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) and their Dewar 

valence isomers (Sinha and Hader, 2002). CPDs and 6-4PPs block the function of DNA 

and RNA polymerases, which may in turn result in the misreading of nucleotides or may 

inhibit polymerase progression during DNA replication or transcription (Weber, 2005). 

CPDs are the most abundant mutagens present after UV disinfection and thought to be

15
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the most cytotoxic lesion. However, the 6-4PPs may inflict more serious and mutagenic 

effects (Sinha and Hader, 2002). Buger et al. (2002) found that some E. coli cells, after 

UV irradiated, lost their ability to divide and this dysfunction may be due to the formation 

of CPDs.

1.3.3 UV Repair Mechanisms

Mutations arise due to DNA damage by UV irradiation, which in turn can be 

repaired, but without repair the mutant cells can show malignant transformations. To 

combat the effects of UV irradiation many organisms utilize different repair mechanisms 

to maintain genetic integrity and prolong life.

One major repair mechanism that can to minimize the effects of UV damage is 

the enzyme DNA photolyases. Discovered in 1993, DNA photolyases are monomeric 

proteins that repair the lethal and carcinogenic effects of UV (Carell et al., 2001). There 

are two major types of DNA photolyases, one that repairs CPDs called CPD 

photolyases and one that fixes 6-4PPs called (6-4) photolyases (Carell et al., 2001). 

CPD photolyases have been found in bacteria, fungi, plants, invertebrates and many 

vertebrates. Photolyase is dependent on blue light excitation in order to reverse DNA 

damage due to UV light (Hader and Sinha, 2005).

Excision repair, on the other hand, does not rely on light activation and is referred 

to as a dark repair pathway. This pathway is complex and works by replacing damaged 

DNA with new nucleotides based on the information on the complementary strand 

(Hader and Sinha, 2005). Excision repair is divided into two categories, which are base 

excision repair (BER) and nucleotide excision repair (NER). BER is thought to protect 

cells from the ROS hydrolysis and the simple alkylating agents, utilizing key enzymes

16
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called DNA glycosylases (Tuteja and Tuteja, 2001). There are specific DNA 

glycosylases that remove different types of damage, and the repair pathway is 

determined by the kind of glycosylase involved. With a total of 30 gene products, NER 

repairs many types of DNA lesions, including CPDs and (6-4)PPs (Sinha and Hader, 

2002).

Another important mechanism that cells use to fix derogated DNA is 

recombination repair, which effectively restores double-strand DNA breaks and single­

strand DNA gaps. This is done through a process of complex biochemical reactions that 

utilize varying numbers of gene products (Sinha and Hader, 2002). DNA Repairs after 

UV irradiation are not foolproof, the repairs might cause errors that change the genetic 

script of the microorganisms, causing mutations and flawed replication.

1.4 Review and Present Research on the Effects of Visible Light on Bacteria

Visible light is less energetic than UV light, and thus is a less effective 

disinfectant. Early research into the killing effects of visible light left most scientists 

skeptical about the validity of such work. It was unknown weather the killing action was 

due to other reasons, such as the possible UV or heat emitted by the lamps used 

(Eisenstark, 1971). However, it has been shown that, with the right dose of energy, 

visible light will kill bacteria (Hamblin et al., 2005).

Earlier research into the killing properties of visible light was used for treatments 

in plaque-related diseases or as a disinfectant in the dental field. Extra-oral bacterial 

species, such as Pseudomonas aeruginosa and Staphylococcus aureus where being 

treated with laser light and killed (Wilson, 1994).

17
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Hamblin et al. (2005) conducted an experiment where they showed that visible 

light alone can kill Heliobacter pylori in the stomach of humans, using fiber optics. The 

wavelength of light that was most useful in killing this bacterium was between 375nm- 

475nm with a dose of 100mW/cm^. A study conducted by Elman et al. (2003) noted 

that after exposing acne vulgaris to 405-420nm UV free blue light, a significant 

reduction of this bacterium was noticed.

Nandakumar et al. (2003) used a Nd:YAG laser at 532nm, with a fluence of 0.1 

J/cm^, to irradiate two coastal water diatoms, Chaetoceros gracilis and Skeletonema 

costatum. It was found that the visible laser induced significant mortality in both S. 

costatum and C. gracilis. Furthermore, Nandakumar et al. (2002) also used the same 

Nd’.YAG laser to asses the mortality of Pseudoalteromonas carrageenovora. After 15 

minutes of irradiation on the bacterium, counts went down 53%. It was also found that 

mortality of the bacterium increased as the duration of laser irradiation increased. In 

addition, after 5 hours of the laser treatment, the total viable count of the bacteria 

decreased 87.14 to 99.01%. Another study by Nandakumar et al. (2003) showed that 

visible laser at 532nm was very effective in removing Pseudoalteromonas 

carrageenovorsa biofilm. More information is needed in order to assess whether visible 

light could kill harmful bacteria and if so at what energy and dose levels.

1.4.1 Applications of Visible Light for Anti-Cancer and -Microbial Therapies

Photodynamic therapy (PDT) is a relatively new technique that strives to kill 

cancer cells using visible light sources and light sensitive drugs. PDT utilizes the 

generation of free radicals, due to light irradiation, to harm and possibility kill the cancer

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cells being treated (Moore et al., 2005). Treatments that use PDT are becoming more 

of an acceptable standard. This therapy has been approved for use by the U.S. Food 

and Drug Administration and various other organizations throughout the world 

(Dougherty, 2002). PDT has been used, successfully, to treat gram-negative and gram- 

positive bacteria, mycoplasma, fungi, viruses, and various infectious diseases (Hamblin 

et al., 2005). This new procedure has also been used to treat human patients with 

different malignant, premalignant and ophthalmic conditions and is also being 

investigated for the treatment of localized infections in humans (Szpringer, 2004).

1.4.2 Present Knowledge on the Lethal Mechanisms of Visible Light

Little is known about how visible light affects microorganisms, even though some 

studies have shown that certain wavelengths of visible light can cause cellular 

inactivation and cell death (Godley et al., 2005). Eisenstark (1987) noted that UVA and 

visible light produce biological damages on bacteria cells, different from that of UVB, 

and UVC. In the visible region, it is thought that the majority of DNA damage is caused 

by single strand DNA cleavage (Moan, 1989). The use of high power visible lasers can 

cause photochemical effects, such as the breaking of chemical bonds, which in turn 

could also affect the mortality of bacterial cells (Nandakumar et al., 2003).

Research into how visible light, up to 700nm, affects cell mortality indicates that 

damage is primarily caused by reactive oxygen species (ROS) (Hader and Sinha, 2005; 

Godley et al., 2005). These include singlet oxygen, hydroxyl radical and superoxide 

anion (Godley et al., 2005). The generation of excess ROS can damage lipids, 

proteins, and DNA. Godley et al. (2005) showed that blue light irradiation on non-
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pigmented epithelial cells cause mitochondrial dysfunction and mtDNA damage. 

However, no measurable damages were found on nuclear DNA. This implied that 

mitochondrial DNA was more susceptible to ROS damage.

Another theory describing how bacteria are sensitive to visible light is that many 

species of bacteria are fluorescent, and thus more responsive to specific wavelengths of 

visible light. Furthermore, it has been shown that some bacteria may have some 

natural photosensitizers, such as porphyrins, cytochromes, and carotenoids, which 

make the bacteria more sensitive to certain wavelengths (Hamblin et al., 2005). Some 

studies have also shown that visible light irradiation can cause a reduction of NADH 

(Eisenstark, 1971) and ATP (Nandakumar et al., 2003) in bacterial cells.

1.5 Using the Attenuated Total Reflectance - Fourier Transform Infrared (ATR- 
FTIR) to Study UV Damages on Bacterial Cells

UV-induced damages to bacterial cells can be measured by determining the 

increase in H2O2 (a product of superoxide anion) or 8-hydroydeoxyguanosine 

(generated by oxidative damage of DNA) (Schriner et al., 2005). However, these 

assays are designed to quantify specific groups of UV affected chemicals that indicate 

specific types of UV damage. Therefore, these assays cannot reflect the effect of UV on 

the overall changes in bacterial cells at the molecular level. The FTIR can be used to 

analyze the types and the relative amount of biochemical bonds in a complex organic 

sample and the resulting IR spectrum represents a molecular fingerprint of the sample 

(Hirschmugl, 2004). FTIR analysis is well suited for examining the overall impact of UV 

radiation on bacterial cells at the molecular structure level. One of the objectives of this 

study is to examine the effect of UV damage at the molecular level of E. coli cells.
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The ideas that lead to FTIR spectroscopy started with the invention of the 

Michelson interferometer, created by Albert Abraham Michelson in 1880 (Griffiths, 

1986). The FTIR spectrometer, however, was not commercially available until the 

1940s and the technology then was far from what it is today (Stuart, 1996).

FTIR spectroscopy is useful in the analyzing a variety materials, such as liquids, 

pastes, films, solutions, powders, films, gases, fibers and many different kinds of solid 

surfaces (Stuart, 1996). It provides data on chemical bondings between atoms and is 

based on the vibrations of atoms and bonds in a molecule or molecular system 

(Hirschmugl, 2004).

1.5.1 Bond Vibrations

When interpreting infrared spectra, it is important to note that peaks in an IR 

spectrum correspond to bond vibration modes of a specific molecule. Thus, it is 

important to understand the concept of bond vibrations.

Bond vibrations include bond stretching (i.e. change in bond length) and bond 

bending (i.e., change in bond angle) (Smith, 1996). Stretching of bonds can vary, some 

stretch symmetrically, while others stretch asymmetrically (Hirschmugl, 2004). Bending 

vibrations can be in or out of a plane, including deformations, rocking, wagging, and 

twisting (Christy et al. 2001). Deformations occur when certain atoms in a molecule 

move in opposite directions of its plane, and rocking happens when atoms move in the 

same direction in its plane (Hirschmugl, 2004). Wags and twists are vibrations out of a 

particular plane. Within a particular molecule, there may be many different modes of
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vibrations. For example, alkyl bromide (CH2=CHCH2 Br) has 21 vibration modes (Smith, 

1996).

1.5.2 Attenuated Total Reflectance (ATR)

An ATR accessory is used to hold a sample in place for the FTIR analysis. 

Usually, samples can be in form of solid, liquid, semisolid or thin film samples (Smith, 

1996). In the centre of the ATR accessory, there is an infrared transparent crystal of 

high refractive index, such material can be zinc selenide (ZnSe), KRS-5 (thallium 

iodide/thallium bromide) or germanium (Smith, 1996). In addition, there is an accessory 

that mounts over the crystal that compresses the sample to ensure that the surface 

contact is optimal (Griffiths, 1986).

ATR is achieved by placing a sample on an infrared transmitting crystal of ZnSe 

in our case. The crystal has the shape of the bottom half of a regular prism and light is 

fed into and out of it at the sloped ends. Since it has a larger refractive index than the 

sample, the infrared light that enters the prism is internally reflected at the interface 

between the prism and the sample (Christy et al., 2001). Total internal reflection occurs 

when the angle of incidence at the interface between the sample and crystal is greater 

then the critical angle (Stuart, 1996). Although total internal reflection implies that light 

does not leave the crystal, there is a short distance beyond the crystal surface ( - 1 /4 ) 

termed the evanescent region, that optical energy penetrates. When material is pressed 

into this region, its optical spectrum can be obtained.
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1.6 Escherichia coli

E. coli is a Gram - negative bacterium and a natural part of the gut flora in 

humans. Thus, most E. coli strains are not harmful to humans and other mammals. 

However, some E. coli strains are pathogenic and cause severe illness in humans 

(Betts, 2000). Such illnesses include urinary tract infection, diarrhoeal illness, 

hemorrhagic colitis, hemorrhagic uremic syndrome (Kuhnert et al., 2000), dysentery, 

bladder infections, pneumonia, septicemia, and meningitis (Salyers and Whitt, 2002). A 

well documented serotype of this bacterium is E. coli 0157; H7. This serotype is a well 

known as a food poisoning organism which only requires a small amount to be ingested 

in order to case illness (Betts, 2000).

Despite the fact that most E. coli strains are non-pathogenic, the presence of this 

bacterium in drinking water treatment facilities or in commercial foods indicates feacal 

contaminations and potential existence of feacal pathogens. Thus, E. coli is used as a 

fecal contamination indicator to assess the cleanliness of drinking water and 

commercial foods (Van Houdt and Michiels, 2005). When the total number of E. coli in 

a sample is quantified, a risk assessment of the sample can be determined based on 

the E. coli density (Kuhnert et al., 2000).

1.7 Objectives

The objectives of this study are to: (i) evaluate the disinfection properties of UV 

and visible light on an E. co//strain ATCC 25922; (ii) develop a predictive equation to 

estimate the killing capacity of various wavelengths of radiation at different dosages;
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and (iii) develop an ATR-FTIR spectroscopic method to study the effect of UV radiation 

on the E. coli strain at the molecular level.
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Chapter 2: Broad Spectrum Analysis of UV and 
Visible Light on E. coli

2.1 Introduction

Ultraviolet (UV) and visible light are part of the electromagnetic spectrum 

(Cartier, 2004). Ultraviolet light is invisible to the human eye; visible light, on the other 

hand, is the only portion of the electromagnetic spectrum the human eye can see. 

Visible light ranges from about 400nm to 700nm, where as UV radiation starts at 10nm 

and proceeds until roughly 400nm (Jones and Childers, 1993). UV light is more 

energetic and has shorter wavelengths then visible light, thus penetrates water poorly 

(Crummett and Westem, 1994). Conversely, visible light is less energetic, but 

penetrates water better than UV radiation, because wavelengths of visible light are 

longer (Jones and Childers, 1993).

UV light has been documented to be effective in damaging many living 

organisms such as prokaryotic bacteria, eukaryotic cells, lower and higher plants, 

animal tissues and fungi (Hockberger, 2002). There are many important uses for UV 

disinfection, including waste and drinking water treatment (Decho, 2000), blood 

irradiation (Ben-Hur and Petrie, 2004), operating room disinfectant, to sterilize operating 

instruments and as a bactericidal agent (Wilson, 1994). UV blood irradiation is used by 

first draining blood from the patient, mixing the blood with an anticoagulant, then 

exposing it to a selected UV dose and then returning the treated blood back into the 

patient (Ben-Hur and Petrie 2004). Ben-Hur and Petrie (2004) noted that patients that 

used this technique showed a 6 6  to 96 percent reduction of the hepatitis C virus titer in
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their blood. In order to carry out the disinfecting properties of UV irradiation the mercury 

254nm UV line is used in most UV bactericidal systems. However, with the creation of 

new UV diodes and lasers, emitting radiation between 280nm to 340nm, applying this 

new technology to UV flash and discharge lamps can create a whole new line of 

bactericidal applications with greater penetrability than the 254nm line.

There is little known on the lethal effects of visible light, however visible light 

lasers are being used as bactericidal agents, for photodynamic therapy (Szpringer et 

al., 2004), and to remove dental plaque (Wilson, 1994). Photodynamic therapy (PDT) is 

a relatively new technique that strives to kill cancer cells using visible light sources and 

light sensitive drugs (Moore et al., 2005). The use of visible light as a bactericidal agent 

may prove to be cost effective and cause fewer side effects then modern drugs.

Hamblin et ai. (2005) showed that visible light alone can kill Heliobacter pylori in the 

stomach of humans, using fiber optics. The wavelength of light that was most useful at 

killing this bacterium was between 375 and 475 nm with a dose of lOOmW/cm^. Due to 

the fact that visible light is less energetic than UV, it has been questioned whether it can 

be used as a bactericidal agent. Hence, more information is needed in order to assess 

whether visible light could kill harmful bacteria and if so at what energy dosages.

The bacterium Escherichia coli is used to determine the bactericidal effects of UV 

and visible light. E. coli is a gram negative bacterium and is a natural part of the human 

gut flora. Thus, most E. coli strains are not harmful to humans or other mammals. 

However some E. coli strains are pathogenic and can cause severe illness in humans 

(Betts, 2000). Such illnesses include urinary tract infection, diarrhoeal illness, 

hemorrhagic colitis, hemorrhagic uremic syndrome, dysentery, bladder infections.
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pneumonia, septicemia, and meningitis (Salyers and Whitt, 2002). These harmful 

strains of E. coli can leach out into the environment (due to fecal contamination) and 

become present in human food and drinking water (Kuhnert et al., 2000). Thus, E. coli 

is used as an indicator organism to assess the cleanliness of drinking water and 

commercial food (Van Houdt and Michiels, 2005). The total number of E. coli can be 

quantified, in a sample and a risk assessment can be determined based on this number 

(Kuhnert et al, 2000).

The purpose of this study is to examine the mortality of E. coli ATCC 25922 when 

it is exposed to radiation at different wavelengths (250-532 nm) and dosages. The 

second objective is to develop a predictive model to estimate the killing capacity of 

various wavelengths of radiation at different dosages.

2.2 Materials and Methods 

2.2.1 UV Source
The light source, though a monochromator, was a 100W PTl xenon arc lamp. A 

Jarrell- Ash % meter monochromator was used to select the wavelength of light under 

study (Figure 2.1). The wavelengths selected where 230nm, 240nm, 250nm, 265nm, 

275nm, 290nm, 300nm, 325nm, 350nm, 365nm, and 375nm. Each wavelength had 

varying doses and the dose was measured using a pyroelectric power meter (Laser 

Precision Corp., Utica, New York).

2.2.2 Laser Sources
The visible light source consisted of two types of lasers. For wavelengths

457.9nm, 488nm and 514nm, a Coherent Innova 70.4 Argon Ion laser was used (Figure
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2.2). The Argon Ion laser lines were separated by a glass prism. The power output of 

this laser was 700mW at 488nm and at 457.9nm. At 514 nm the output of the Argon Ion 

laser was two watts. At 532 nm, a Spectra Physics Mellenia V frequency doubled 

Nd:YAG laser (Figure 2.2) was used. Light intensity of the Nd:YAG laser was measured 

at 2.0W. Dose and power output was measured by a Coherent 210 laser power meter 

(measured 0-1OOW).

2.2.3 Bacteria Preparation
The E. coli ATCC 25922 strain, a Gram-negative bacterium, were obtained from

the American Type Culture Collection (ATCC). It was stored in 25% glycerol at -80°C, 

and re-grown on tryptic soy agar plates. The E. coli cells were cultured in tryptic soy 

broth for 15h, in a shaking incubator at lOOrpm, at 37°C. After incubation, the medium 

was washed in sterile distilled water and centrifuged for 10 minutes at 3000 x g. This 

process was repeated three times. An OD of 0.30 was selected for both UV and visible 

light treatments. The E. coli suspension was placed in a device used for either UV or 

visible light exposure.

2.2.4 UV Treatment
As soon as the E. co# was prepared in suspension, lOOpI of the cell suspension

was pipetted into a device used for UV treatment (Figure 2.3). This device was 

composed of a glass slide with an aluminum ring; this ring was affixed on the glass slide 

with nail polish (Figure 2.3). In addition, the aluminum ring was tapered along the 

center so that the shadowing of the suspended medium will be negligible. After lOOpl of 

E. coli suspension is put into the aluminum ring, the device was put under a Jarrell-Ash 

% meter monochromator. When the appropriate UV wavelength was selected, the E.
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coli suspension was treated with a selected dose. After treatment, the medium was 

serial diluted and drop plated.

2.2.5 Laser Treatment
An E. coli suspension, 1ml, was put into a 4ml glass cuvette with a small magnet

stir bar at the bottom. This device was placed on a magnetic stir plate. During visible 

light irradiation the liquid culture was stirred with the bar magnet. For treatment, an 

Argon Ion laser or a frequency double Nd:YAG laser was used. After treatment, lOOpI 

was taken out of the treated E. coli suspension and serial diluted and drop plated.

2.3 Results

2.3.1 Effect of UV and Visible Radiation on E. coli
Figure 2.1 to 2.19 show the killing capability of radiations at various wavelengths,

ranging from 230-532 nm. Between 265-532 nm a higher dosage of radiation was 

required to cause morality of E. coli at a longer wavelength (Figure 2.20). However, 

when the wavelength of the UV was below 265 nm, the killing capacity of the radiation 

also decreased. At 265 nm, the UV radiation was most effective in killing the E. coli 

cells, requiring about 1.17 log mJ/cm^ to achieve 100% killing. However, a higher 

dosage of UV radiation was required to reach 100% killing when the E. coli cells were 

exposed to radiation with a wavelength shorter than 265 nm (Figure 2.22). For 

instance, at 230 nm and 300 nm, radiation dosages of 1.80 and 1.95 log mJ/cm^ were 

required to cause 100% morality of the E. co//cells.

Radiations in the visible spectrum, such as 400, 458 and 488 nm were able to kill 

the E. coli cells and a one-log reduction of the E. coli cells were observed at about 4.2,

5.5 and 6.9 log mJ/cm^, respectively (Figure 2.21). However, visible radiations with
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wavelengths longer than 500 nm did not cause any significant reduction on the viability 

of the E. coli cells when the dosage of radiation was < 7 log mJ/cm^.

2.3.2 Analysis of Bacterial Survival vs. Applied Optical Dose

All of the UV and visible light dose dependent survival curves could be fit using

the equation y = P r P a e  Initially, the parameters Pi, P 2  and P 3  were adjustable best 

fit parameters. However, Pi is just the y-intercept of the survival curve. Since this was 

always normalized to an initial E. coli sample number of 7.85 (expressed as a log unit). 

Pi must also be 7.85 for all values of A. P2 determines the degree of bending of each 

curve, and this was dependent on the radiation wavelength. During the fitting process, 

it was noted that P 3  was always a value near 2.3. Since 2.3026 is the factor for 

converting log to In, it was eventually set to this constant for all the equations.

Noting that ‘y’ is the log of the survivor number (log S), x' is the logarithm of the 

optical dose (log D) in mJ/cm^, and Pi = log So = 7.85, we have for P3 a parameter 

log S = log So -  P2 e Equation 2.1

or log S = log So -  P^e

log S = log So -  P a e  (lnD)/2.3026]

log S = log So - Pae P"(D) P3/2.3026]

so log S = log So -

But since it was found that P 3  was always close to 2.3026

log S = log So -  PaD Equation 2.2

Thus, we have the general form

log (S/So) = - P2 D Equation 2.3
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At the 100% lethal dose level, Diethai, the survival number (i.e. log S) is zero, and 

from Equation (2.2)

lo g  S o  =  PaDiethal

So the expression for the lethal radiation dose at a given wavelength, is

Diethai = 7. 85/ P2 or log(Diethai) = log(7.85/P2) Equation 2.4

2.3.3 Wavelength Dependence of P2

Based on Figure 2.24 the relationship between log P2 and X can be represented 

by an linear equation of the form y = yo + mx i.e. as

log P2 = A + BA.

From a linear best fit using Origin 7.0, one obtains A = 7.0369 ± 0.4134 and 

B = -0.0275 ±0.00117.

The above equation can be rewritten as:

log P2 = log K - bA log (e) where B = -b  log(e) and log K = A

or P2 = Ke-‘’ ^

Therefore:

K = 1.0886 X 10  ̂ with an uncertainty of ~6 %

Since log e = 0.43429 and B = -0.0275

b = -B/log(e) = 0.0275 ± 0.00117 /0.43429 = 0.0633 ± 0.00269 

Thus, in terms of wavelength A, and leaving out the uncertainties of about 6 %

Equation 2.5P2 = 1.089 X 10V°°®^^^
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Incorporating P2 into the original survivor equation 2.3 for S, finally results in:

Log(S/So) = - (1.089 x 1 0  ̂ D Equation 2.6

This form shows the exponential relation between survivors S and D, and the double 

exponential relation between S and X.

2.3.4 UV and Visible Light Absorption Spectrum of E. coli

The absorption spectrum of the E. co//suspension (Figure 2.23) shows that the 

absorbance of the sample increases with the decrease of wavelength of the incident 

radiation. However, an absorption peak was observed at 265 nm before the 

absorbance increased exponentially at wavelengths less than 240 nm.

2.3.5 Wavelength and Bond Breaking Energy Equivalence

The energy required to break covalent bonds in biological systems (kcal/mole)

can be converted to the equivalent wavelength in nanometers needed to break certain 

bonds in a biological system (Table 2.2). Examples of these conversions are explained 

below:

Energy Conversions:

1 mole = 6.023 x 10̂  ̂ items 

1 calorie = 4.186 joules 

1 joule = 1 coulomb x 1 volt 

Since the charge on an electron or proton has magnitude -1.6 x 10'̂ ® coulomb, if it is 

moved through a potential difference of 1 volt, the energy change is 1 electron-volt (eV). 

This leads to the more convenient small scale energy unit of the electron-volt (eV).

So: le v  = 1.60217 X 10'̂ ® joules
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Using the conversion factors above, 100 kcal/mole in eV/item (where items = photons) 

becomes:

100 X (4,186joule/6.02217 x 10̂  ̂items) x (1eV/1.60217 x 10'̂  ̂joule) = 4.3384 eV/item. 

The energy of a photon in eV can also be determined from:

E = hv = hc/A where v = photon frequency, c = speed of light,

and

A = wavelength, and h = Planck’s constant

Substituting h = 6.626068 x 10'̂ "* joule-sec and setting c = 2.99792458 x  10̂ "* 

microns/sec, for A in microns gives:

E(eV) = 1.23984/A(nm).

From the above, 100 kcal/mole bond energy is 4.3437 eV per bond and the equivalent 

photon wavelength for this energy is:

A(pm) = 1.23984/4.3437 = 0.28559 pm = 285.35 nm.

These conversions indicate that UV -  visible photons represent enough energy to 

effectively break strong bonds in biological systems. Photons of the various 

characteristic bond energies strike a biological system, bonds should be broken or at 

least altered quickly in either a direct manner or through induced reactions.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tables

Table 2.1

P2 parameter fits for all wavelengths studied, with associated error numbers.

Wavelength

A

Single P2 parameter 

fits*

Log(P2) Log(P2 ) error

230 0.1252 -0.90239 ±0.01214
250 0.27451 -0.56144 ±0.03228
265 0.52329 -0.28125 ±0.0276
275 0.44537 -0.351323 ±0.0199
290 0.27691 -0.55766 ±0.04556
300 0.08587 -1.06616 ±0.02895
325 0.00509 -2.29328 ±0.05521
350 0.00245 -2.6108 ±0.01907
365 0.00265 -2.57675 ±0.0819
375 0.00234 -2.63078 ±0.01817
400 0.00006 -4.2218 ±0.06695
458 3.37E-6 -5.47237 ±0.06182
488 1.5106E-7 -6.82086 ±0.10913

* P2 = [(1.089 ± 0.4134) X 10 )̂] exp -(0.0633 ± 0.0027)A
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Table 2.2

Type of bond broken with a specific energy in kcal/mole, eV/bond, or specific 
photon wavelengths. The color associated with photon wavelengths is also included.

Bond Energy
(kcal/mole)

Energy
(eV/bond)

Photon 
Wavelength (nm)

Colour

0 - H 1 1 0 4.7722 259.80 grey

H -H 104 4.5119 274.79 grey

P - 0 1 0 0 4.3384 285.78 grey

C - H 99 4.2520 291.58 grey

N -H 93 4.0347 307.29 grey

C - 0 84 3.6442 340.22 grey

C -C 83 3.6009 344.32 grey

S - H 81 3.5141 352.82 grey

C -N 70 3.0369 408.26 violet

C -S 62 2.6898 460.94 blue-violet

N - 0 53 2.2994 539.21 green

S -S 51 2.2126 560.36 yellow
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Figures

Figure 2. 1 - UV output from the monochromator redirected onto the sample.
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Figure 2. 2 - A Coherent 1-70, 4 watt Argon Ion laser for 457.9nm, 488nm and 514nm 
illumination. Also, a Spectra Physics Millenia V frequency doubled Nd:YAG laser for 
532nm illumination.
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Figure 2. 3 - Sample holder used for UV radiation in planar and lateral views.
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Figure 2. 4 - E  coli log survival vs. log dose at 230nm. Parameter P2 = 0.1252.
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Figure 2. 5 - E. coli log survival vs. log dose at 240nm, with P2=0.11279.
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Figure 2 . 6 - E .  coli log survival vs. log dose at 250 nm. Parameter P2=0.27451.
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Figure 2 .7  - E. coli log survival vs. log dose at 265 nm. Parameter P2=0.52329.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

275 nm
7

■

ro ^

I 3

8 2 
Ui

1

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Log Dose(mJ/cm )

Figure 2 . 8 - E .  coli log survival vs. log dose at 275 nm. Parameter P2=0 .4 4 5 3 7 .
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Figure 2. 9 - E. coli log survival vs. log dose at 290 nm. Parameter Pz=0.27691.
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Figure 2. 10 - E. coli log survival vs. log dose at 300 nm. Parameter P2=0.08587.
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Figure 2. 11 - E. coli log survival vs. log dose at 325 nm. Parameter Pa=0.66802.
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Figure 2. 12 - E. coli log survival vs. log dose at 350 nm. Parameter P2=0.00245.
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Figure 2. 13 - E. coli log survival vs. log dose at 365 nm. Parameter P2=0.00265.
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Figure 2. 14 - E. coli log survival vs. log dose at 375 nm. Parameter P2=0.00234.
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Figure 2. 15 - E. coli log survival vs. log dose at 400 nm. Parameter Pa=0.00006.
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Figure 2. 16 - £. coli log survival vs. log dose at 458 nm. Parameter P2=3.7314E-6.
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Figure 2. 17 - E. coli log survival vs. log dose at 488 nm. Parameter P2=1.5106E-7.
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Figure 2. 18 - E. coli log survival vs. log dose at 514 nm.
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Figure 2. 19 - E. coli log survival vs. log dose at 532 nm.
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Figure 2. 20 - Best fit curves of all E. coli survival vs. dose wavelengths between 230 to 
488 nm. The visible wavelengths 514 nm and 532 nm where not included because 
there was no kill observed at these wavelengths.
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2.4 Discussion

The greatest number of bacteria killed per one unit of dose occurred between 

260 -  280 nm. It is apparent that the peak of the killing curve in Figure 2.22 coincides 

with the absorption peak of the UV -  visible absorption spectrum of the E. coli cells 

(Figure 2.23). From our calculation of the equivalent photon wavelengths (Table 2.2), 

for the most important biomolecular bondings, such as 0 -H , P -0 , and N-H bonds, it is 

apparent these are susceptible to breakage by UV radiation at around 260 -  280 nm. 

Since P -0  bonds are a part of the backbone structure of nucleic acids (Becker et al., 

2003) and the 0 -H  and N-H bonds are essential to the hydrogen bonds that maintain 

tertiary structure of proteins and DNA (Lodish et al., 1994). This may explain the high 

killing capability of UV at around 270 nm and the UV absorption peak around 260 -  280 

nm. Another explanation for the decrease in the killing capacity of UV at wavelengths 

less than 265 nm may be due to the exponential increase in UV absorption of water at 

wavelengths less than 250 nm

Total kills were not obtained in the visible light section, but there was significant 

killing observed at the 458 and 488 nm laser lines (Figure 2.16 and 2.17) after very high 

photon fluxes (doses) were delivered. The high photon fluxes were required because 

only the low energy C-S, N-0, and S-S bonds (Table 2.2) could be broken and these 

are apparently less important to the survival process. However, for the longer visible 

light wavelengths, 514nm and 532nm, no significant kill was observed (Figure 2.18 and 

Figure 2.19). Photon energy at these wavelengths can no longer break the C-S bonds 

which are presumably more important than the N-0 and 8-8 bonds. Using the graph in 

Figure 2.22, one obtains an estimate of the required lethal dose at about 20,000,000
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mJ/cm^ for 532 nm. At high intensity, a visible laser could inflict heat damage on the 

bacterium causing cell death. However, this was not tested in this study because 

temperature increases were kept below ~1 C in all sample runs. Despite the fact that 

UV light irradiation has been used as a disinfectant for decades, there has not been a 

predictive model reported to quantify the killing capacity of radiation at various 

wavelengths. However, based on the E. co//survival data at various wavelengths and 

dosages obtained during this study, an equation has been proposed (Equation 2.6) that 

generally predicts the mortality of E. coli from ~250nm to 500 nm, and over a change in 

dose of seven orders of magnitude. Further, it is speculated that the rapid variation in 

the mortality (exponential in dose and double exponential in wavelength) is due to the 

direct effect that bond breaking photons have on the photochemistry of the biochemical 

organisms. At present though, a complete model of the biological changes induced by 

the light, can not be offered. In order to try to obtain further information on the possible 

biochemical effects induced by the light, a spectroscopic investigation of UV exposed E. 

coli was initiated. This is further discussed in the next Chapter.
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Chapter 3: ATR-FTIR Spectroscopy of UV Treated 
E. coli
3.1 Introduction

Since UV is so widely used as a bactericidal agent (Decho, 2000; Hamblin,

2005), it is important to understand the mechanisms in which UV damages bacterial 

cells. When bacteria are exposed to UV radiation, the high energy radiation can initiate 

photochemical reactions that involve breaking chemical bonds of biomolecules, causing 

the formation of harmful byproducts. For example, cyclobutane-pyrimidine and 

pyrimidine-pyrimidone dimers are common UV-induced byproducts that cause mutation 

to microorganisms (Hader and Sinha, 2005). UV also creates reactive oxygen species 

(ROS) such as superoxide anion, hydrogen peroxide and singlet oxygen which cause 

oxidative damages to cellular components (Becerra et al., 2004).

Some techniques are available to assess UV damages to bacterial cells. For 

example, to determine the increase in ROS production, there are different procedures at 

hand. Such procedures include determining the increase of ROS by measuring the 

oxidation of Nitro Blue Tétrazolium (NBT) (Becerra et al., 2004) and the decrease of 

cytochrome c (Godley et al., 2005). There are numerous ways to detect the DNA 

damage inflicted by ROS. One example is to measure the increase of 8- 

hydroydeoxyguanosine (generated by oxidative damage of DNA) (Schriner et al., 2005). 

However, most of these assays are designed to quantify a specific group of UV affected 

chemicals, which indicate a specific type of UV damage. None of these assays shows 

the effect of UV on the overall changes of biomolecules in bacterial cells.
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FTIR can be used to analyze the types and the relative amount of chemical 

bonds that are present in a complex organic sample (Hirschmugl, 2004). It is useful for 

variety of sample matrixes, such as: liquids, pastes, powders, films, gases, fibers and 

many different kinds of solid surfaces (Stuart, 1996). When a specific wavelength of IR 

radiation interacts with a sample, it will be absorbed by a specific chemical bond 

causing the chemical bond to vibrate (Smith, 1996). The IR spectrum of a sample 

represents the chemical bonding fingerprint of the sample (Hirschmugl, 2004). 

Furthermore, the signal to noise ratio of the FTIR assay can be increased significantly 

by using an attenuated total reflectance (ATR) sampler (Christy et al., 2001). Therefore, 

the ATR-FTIR analysis is well suited for examining the overall changes of bacterial cells 

at the molecular structure level. In the previous chapter, we showed that UV radiation 

between 260-280 nm was most efficient in causing mortality to E. coli cells. The 

objective of this chapter is to use the ATR-FTIR method to examine the effect of UV on 

E. coli at the molecular level.

3.2 Materials and Methods

3.2.1 ATR-FTIR Spectrophotometer

ATR-FTIR spectroscopy was used to assess the different chemical bondings 

present in the UV treated and untreated E. coli samples. The FTIR in this experiment 

was a Bruker Tensor 37 FTIR. The ATR accessory was a MiRacle ATR from PIKE 

technologies (2901 Commerce Park Drive, Madison, Wl 53719). The ATR used in this 

study had a ZnSe crystal and was fixed with a 0-8 pound pressure clamp.
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3.2.2 Bacteria Preparation and UV Treatment

Escherichia coli ATCC 25922, a Gram-negative bacterium, was obtained from 

the American Type Culture Collection (ATCC). Enterococcus faecalis ATCC 29212 is a 

Gram - positive bacterium. The Pseudomonas strain (previously classified as a 

Moraxella strain) used in this study was obtained form an active sludge environment 

(Spain and Gibson, 1991). The E. coli ATCC 25922 and E. faecalis ATCC 29212 were 

cultured in sterile Tryptic Soy Broth (TSB) for 15h, with shaking at 150 rpm, at 37°C.

The Pseudomonas strain was cultured in sterile TSB for 15h, with shaking at 150 rpm, 

at 30°C. After incubation, all bacterial cultures were washed 3x in sterile distilled water 

and suspended in sterile distilled water at an ODeoo of 0.30 (about 10® CFU/ml). 

However, only the E. coli sample was treated with UV radiation in this study. One 

hundred pi of the E. co//suspension was placed in a ring device for UV treatment as 

described in the previous chapter. A sub-sample of the E. coli suspension was used for 

an experimental control that did not receive the UV treatment. In this study, only 275 

nm UV light was used to treat samples, and the dose was set at about 3x the lethal 

dose (1.2 mJ/cm^) of that wavelength.

3.2.3 ATR-FTIR analysis
Because water has a high absorbance of IR radiation, complete drying of the

bacterial cells by lyophilization was necessary. To prepare the sample for lyophilization, 

2 ml of UV treatment of E. co//was centrifuged for 5 minutes at 3100 x g. Excess water 

was removed from the cell pellet and the pellet was mixed with 4ml of 5% 

dimethylsulphoxide (DMSG) aqueous solution to preserve the cells during lyophilization. 

The E. coli suspension was placed into sterile glass vials with a sterilized cotton closure.
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The cell samples were rapidly frozen in liquid nitrogen and the frozen samples were 

placed into to a lyophilizer and dried for two days. The lyophilized samples were placed 

on the ZnSe crystal holder in the ATR-FTIR, analyzed, and the corresponding IR 

spectra were produced.

3.3 Results and Discussion

To examine the sensitivity of the ATR-FTIR assay, Mid-IR spectra of the E. coli 

ATCC 25922 strain, E. faecalis ATCC 29212 strain, and a Pseudomonas strain was 

compared. Figure 3.1a and b show that the ATR-FTIR assay detected all the major 

cellular molecular components of the 3 bacterial species as described in other studies 

(Naumann, 2000). For instance, the spectral region between 900-1200cm'^ represents 

the symmetric stretching vibrations of C-O-P and P=0 of nucleic acids and C-O-C of 

polysaccharides (cell wall and polysaccharide capsule structures). The major peak at 

1230 cm'  ̂ represents asymmetric stretching vibration of P=0 groups of nucleic acids. 

Other major absorption peaks such as 1400, 1450, 1550, 1670, 3100-2800, 3250 and 

3400 cm'  ̂ represents -COO , CHz, N-H of amide, 0 = 0  of amide, 0= 0  of fatty acids and 

lipids, N-H of proteins and 0-H stretching of hydroxyl groups, respectively (Naumann, 

2000). Figure 3.1b also shows that the intensity ratios of the 0 -0 -0  peak (900-1200 

cm'^) to P=0 peak (1230 cm' )̂ of the 3 bacterial strains are substantially different from 

each other. The E. faecalis had the highest 0 -0 -0 ; P=0 ratio. The Pseudomonas strain 

was the second and the E. coli had the lowest ratio. This agrees with the fact that E. 

faecalis is a Gram - positive bacteria, which has the highest amount of cell wall (i.e., 0 - 

0 -0  bending). Pseudomonas species is well known to produce a large amount of
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capsular polysaccharides and this may attribute to the higher C-O-C : P=0 ratio of the 

Pseudomonas strain.

Having shown that our ATR-FTIR protocol was sufficient to detect differences 

between molecule structures and/or components of various bacterial species, we used 

the ATR-FTIR assay to examine the effect of UV on the cellular molecular composition 

of the E. coli ATCC 25592. Figure 3.2a illustrates the IR spectra of the UV- treated and 

the untreated E. coli. Figure 3.2b and 3.2c show the IR absorbance ratios of the UV- 

treated and untreated E. coli cells in two independent FTIR trials, showing reproducible 

outcomes of the two trials. Figure 3.2d represents the average IR absorbance ratios of 

the UV-treated and untreated cells, showing several major molecular changes on the 

UV-exposed E. coli cells. For instance, a significant decrease of absorbance between 

900-1200 cm'  ̂was observed for the UV-treated E. co//samples. This indicated a 

decrease of C-O-C, C-O-P, and/or P=0 bonding after UV-treatment, indicating 

destruction of the glycan backbone of peptidoglycan and the phosphodiester backbone 

of nucleic acids. This observation agrees with other studies that UV can affect the cell 

wall (Eisenstark, 1987) and adhesion of bacterial cells (Nanadakumar et al., 2006). UV 

is also known to degrade nucleic acids by breaking their phosphodiester bonds.

Despite the well known fact that UV will break down nucleic acids (Hader and Sinha, 

2005), a decrease of the 1230 cm'  ̂ peak, representing the P=0 of nucleic acids, was 

not detected on the UV-treated samples. This infers that UV is involved in breaking the 

P-O-C bond (at 900-1200 cm'^) but not the P=0 bond (at 1230 cm'^) of nucleic acids.

In contrast to nucleic acids and carbohydrates, there was an increase in protein 

content in the UV-treated samples. This can be observed in Figure 3.2d, that there are
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significant increases in peaks at 1550, 1670 and 3280 cm '\ representing the N-H and 

C=0 of the amide I and amide II bonds, and N-H stretching of amide bonding of 

proteins, respectively. The increase in cellular proteins may be a stress response 

mechanism of the E. coli cells exposed to the UV treatment. Storz and Hengge-Aronis 

(2000) showed that a SOS-like response was initiated in bacterial cells after UV 

irradiation. This may explain the increase in protein content of the UV-treated £. coli 

cells in our experiment.

The UV treated cells also showed an increase in the amount of CH2 stretching of 

fatty acids (between 2800-3100 cm'^), indicating a change in membrane structure of the 

UV treated bacteria (Alberts, 1994). Furthermore, the increase in the hydroxyl groups 

(3400 cm'^) on the UV-treated samples may reflect an increase of reactive oxidation 

species (ROS) in the E. co//cells. For example, the hydroxyl radical ( OH) has been 

shown to damage cellular components, such as DNA, RNA, proteins and lipids, forming 

hydroxyl derivatives (Pomposiello et al., 2000).

In conclusion, the ATR-FTIR assay was able to reveal several molecular 

changes in the UV treated E. coli cells. Besides the predicted decrease in nucleic acids 

and increase in hydroxyl derivatives, interesting observations such as the increase in 

proteins and fatty acids deserve further investigation because the cellular changes may 

have implications to the stress survival response mechanisms of bacteria against UV 

radiation.
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