
An ontological approach for searching mnlti datasonrce W eb services
Arif, Ahmed Sabbir
ProQuest Dissertations and Theses; 2006; ProQuest Dissertations & Theses (PQDT)
pg. n/a

AN ONTOLOGICAL APPROACH
FOR SEARCHING MULTI

DATASOURCE WEB SERVICES

by

Ahmed Sabbir Arif

A thesis submitted to the faculty of graduate studies
Lakehead University

in partial fulfillment of the requirements for the degree of
Masters of Science in Mathematical Science

Department of Computer Science
Lakehead University

April 2006

Copyright © Ahmed Sabbir Arif 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1^1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-24050-2
Our file Notre référence
ISBN: 978-0-494-24050-2

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents (Mr. M. A. Mannan and Mrs. Shireen Jahan) and younger
brother (Ahmed Sazzid Arif).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Disclaimer

T his thesis* has referred a lot of published articles. While quoting form here please
acknowledge the ORIGINAL references. The author of this thesis will not be hold
responsible if any portion of the thesis is copied, published or distributed without
proper referencing. The following sections of the research have been collaborated
with other researchers and authors, while using materials from these sections please
refer accordingly; The example used in Section 1.3 was originally given by David
Chappell (Chappell 2002) in his blog. He is the Principal of Chappell & Associates in
San Francisco, California, USA. Section 3.4 is collaborated with Erhard Rahm and
Philip Bernstein’s (Rahm, Bernstein 2001) survey. Erhard Rahm is a professor at the
University of Leipzig in Leipzig, Germany and Philip Bernstein is the principal
researcher in the Database Group of Microsoft Research. Section 3.5 is collaborated
with Badrul Sarwar’s (Sarwar, Karypis et al. 2001) research on item-based
collaborative filtering recommendation algorithms. Badrul Sarwar works at Attosoft
Corporation in Santa Clara, California, USA. Other than that some portions of the
Section 2.2 and Section 2.3 have been collected from this book (Lemow, Newcomer
2004). I would like to thank all of them for their kind support.

* To get an UPDATED VERSION of this thesis please email the author [asarif@gmail.com,
asarif@lakeheadu.ca]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:asarif@gmail.com
mailto:asarif@lakeheadu.ca

Abstract

T h is thesis addresses the issue of Web Service search. This thesis focuses on solving
the problem of searching for Web Services which are associated w ith relatively
similar datasources. It attempts to overcome the search limitations of the UDDI
standard Web discovery protocol which is based on simplest keyword search and
have no primitives to look into datasource associated w ith Web Services.

This thesis developed a searching framework that take into account the Web Service
with variety of ontologies and through adopting techniques hke schema matching
and ontology merging; the developed prototype can find relatively similar
datasources. The prototype also adopted techniques based on Collaborative Filtering
to infer more datasources that are relevant to the search request based on relatively
similar matches from other datasources.

The prototype represents an extension to the capability of Apache Axis. The
prototype has been tested on sample of locally published Web Services that have
datasources on books. The developed searching techniques prove to be more flexible
than other frameworks including UDDI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to express appreciation to my thesis supervisor Dr. Jinan Fiaidhi, for
leading me into this interesting research field and guiding me throughout my
master's studies and for providing me w ith the Faculty Research Scholarship from
her NSERC grant. I would like to thank everyone from the Department of Computer
Science, Lakehead University for their kind support. I would also hke to thank Dr.
Sabah Mohammed and Dr. Ruizhong Wei for providing me w ith the guidance and
cooperation whenever 1 needed. I gladly acknowledge the Graduate and
International Studies of Lakehead University for awarding me with NSERC
Research Capacity Development and Graduate International Tuition Awards.
Finally 1 would like to thank all of my friends and families for their love and
support.

Reproduced with permission o tthe copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract

Acknowledgement

List of Figures. . .

List of Tables . . .

List of Examples

1. Introduction ..
1.1. In troduction ...
1.2. How Does Web Service Work?...

1.2.1. Simple Object Access Protocol (SOAP).....................
1.2.2. Web Service Definition Language (WSDL) . . .
1.2.3. The Universai Description, Discovery and Integration
1.2.4. Other Web Service Registries...................................
1.2.5. The Advantages of Using Web Services . . .

1.3. REST: Another Way of Looking at Web Services . . .
1.4. Describing the Semantics of Web Services: WS Schema. . .

1.4.1. Schema & Ontology Integration
1.5. Proposed Web Service Searching Architecture....................

2. Service Oriented Architecture & Web Services
2.1. In troduction ...
2.2. What are Services?
2.3. Service Oriented Architecture....................
2.4. Creating Web Services.................................

2.4.1. Creating Web Service in ASP.NET
2.4.2. Creating Web Service in Apache Axis
2.4.3. Apache Axis Architectural Overview

2.5. Apache Axis or ASP.NET?

Web Service Search via XML Schema & Ontology
3.1. Web Service S e a r c h ...
3.2. The Role of W3C XML Schema..............................

3.2.1. The Role of XML Schema in Our System
3.3. The Role of Ontology...

3.3.1.
3.3.2.
3.3.3.
3.3.4.

W3C Resource Description Framework (RDF) . . .
W3C Web Ontology Language (OWL)....................
Role of RDF Ontology in Our S y s te m
The RDF Ontology Syntax Supported by Our System

VI

vl

1
1
2
3
4
4
6
7
8
9
10
10

13
13
13
15
16
17
19
21
24

26
26
27
29
31
32
33
34
35

III

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4. Schema-level Matching
3.4.1. The Match O p e ra to r..............................
3.4.2. Matching Strategy in Our System . .
3.4.3. An Approach to Ontoiogy Merging . .

3.5. The Use of Coilaborative Filtering (CF).................
3.5.1. Coliaborative Filtering in Our System . .

4. System Prototype Implementation
4.1. Web Service Im plem entation..............................

4.1.1. The RDF G e n e ra to r
4.2. Infoset Streaming ...

4.2.1. Puii Parsing versus Push Parsing . .
4.3. Web Service Search Prototype..............................

4.3.1. Schema Matching and Ontology Merging
4.3.2. Searching for Web S e rv ic e s
4.3.3. Collaborative Filtering..............................
4.3.4. Editing and Vaiidating XML-type Files . .
4.3.5. About Tab ..

4.4. Source C o d e s ..

5. Conclusion & Future R esearch
5.1. Future Research ..

Bibliography..

36
36
38
40
41
43

47
47
50
51
52
53
58
59
63
65
66
66

67
68

70

I V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1. Web Service Participants................
1.2. Web Service Runtime Environment. ,
1.3. Conceptual Search in Our System . ,
1.4. Collaborative Fiitering in Our System

2 .1.
2 .2 .
2.3.

2.4.
2.5.
2.6.
2.7.
2.8.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.
4.7.

4.8.
4.9.

4.10.

Breakdown of Web Service Components . . .
Requesting Different Types of Web Services

(a) A Typicai Three-tier Appiication Architecture
(b) A Service-oriented Application Architecture

The ASP.NET C# Web Service Status Page. . .
A Fragment of the WSDL for ASP.NET C# Service
The Java Axis Web Service Status Page . . .
The Server Side Message Path of Axis . . .
The Client Side Message Path of Axis . . .

The UDDI Data Model ...
Visual Representation of XML Schema
Search for Web Services with Keys Like "author's name"
Role of Ontology in Services Discovery
Graph Representation of a P (R, V) T rip ie
Tripie Representation of a Resource Description . . .
RDF Generation with our Application
Ontoiogy Merging Process in Our S y s te m
The Coliaborative Filtering Process.................................

Isolation of Co-rated Items and Similarity Computation
Item-based Coilaborative Filtering Algorithm . . .
Item-based Coliaborative Filtering in Our System . . .

A Fragment of the WSDL for Our Web Service
The Start Page for One of Our Web Services
A Portion of One of Our Web Service Datasources.................................
RDFGenerator Too ...

(a) Screenshot of the First Tab of the WSSearch Appiication . . .
(b) Screenshot of the Second Tab ..
(c) Screenshot of the Third T a b ..

Class Diagram for WSSearch Prototype ...
(a) Screenshot of the "endpoints.txt" File
(b) Screenshot of the "webservices.txt" File

The SearchHelper File ...
(a) Shows a Screenshot of the WSSearch Application after the User Performed

a Search for Ali Book Related Web S erv ices ..
(b) Shows a Screenshot of the Same Appiication after the User Performed

Search With a Keyword ..
Sequence Diagram for all Book Related Web Services Search . . .

1
7
11
12

14
14
15
15
18
19
21
22
23

26
29
30
31
32
33
35
41
42
44
45
46

49
49
50
50
53
54
55
56
58
58
59

60

61
62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.11. Sequence Diagram for Keyword S e a r c h
4.12. Similarity Computed Record F i le ...
4.13. Sequence Diagram for Coliaborative Filtering (Recommender)
4.14. Recommender in WSSearch S creen sh o t..............................
4.15. (a) Document Editing in WSSearch S c reen sh o t.................

(b) Document Validating in WSSearch Screenshot . .

62
64
64
65
66
66

List of Tables

2.1. ASP.NET versus Apache Axis ... 25

3.1. Match on Schemas .. 37
3.2. Structure-level Match ... 38
3.3. Match Cardinality.. 39

4.1. XML Parsers .. 52

List of Exampies

2.1. A Sampie C# Web Service... 17
2.2. A Sample Java Axis Web S e rv ic e ... 20

3.1. XML Schema .. 28
3.2. Different Representation of a RDF Statement 33

V I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1. Introduction

eh Services (WS) provide a framework for application-to-application interaction,
biult on top of existing Web protocols (e.g. HTTP) and based on Extensible Markup
Language (XML) Standards (Siblini, Mansour 2005). Nowadays, Web applications are
integrating Web Services from a variety of resources and can run on all kind of
machines, either w ithin em enterprise or at external sites (Siblini, Mansour 2005).
This case of integration enables tighter business relationships and more efficient
business processes.

In other words we can say, a Web Service is a software system identified by a
Unijbrm Resource Identifier (URI), whose public interfaces and bindings are defined
and described using)0vIL (Bray, Paoh et al. 2004). Moreover, Web Services can be
written in different programming languages, usually distributed over a network or
on the Internet that m ay not have the same runtime environment. Its definition can
be discovered by other software systems. These systems may interact w ith a Web
Service in a way described by a Web Services Definition Language (WSDL) docum ent
using internet protocol (Booth, Haas et al. 2004, Christensen, Curbera et al. 2001). A
WSDL füe is an XML document that describes a set of messages and how the
messages are exchanged. The Web Service framework is divided into three areas;
exchanging messages, service description, and service discovery. Figure 1.1 shows how
Web Services connect these three participants.

Registry
e.g. UDDI Points to

Points to

WSDL

Finds
Describes

Service
Consum er <^Z3«rz[>

C om m unicates
with XML

Web
Service

Figure 1.1: Web Service participants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

Web Services are registered so that potential users can discover them. This is done
w ith Universal Discovery Description and Integration (UDDI) directory, which could be
seen as the yellow pages of Web Services. Nowadays there are commercial and
experimental Web Service search engines available (e.g. Woogle^ etc.). However,
Web Service discovery remains a hot research area (Shen Derong, Yu Ge et al. 2005).
In most of the cases clients relay on the functions or services available within a Web
Service or by the Web Service datasource description created by the Web Service
providers.

Web Service interoperability relies on the use of open-source data within XML w ith
its semantics expressed in XML metadata. Schema and ontology languages (e.g.
XML Schema, RDF Schema etc.) provide enhanced as well as more comprehensive
and powerful features than a Document Type Definition (DTD), the traditional
mechanism used to describe the structure and content of XML documents (Brickley,
Guha et al. 2004, Manola, Miller et al. 2005, McGuinness, Harmelen 2004).

Searching and m ining Web Service datasources require intrinsicedly different
techniques and algorithms than those been used w ith the traditional databases
paradigm (Doan, Domingos et al. 2003, Doan, M adhavan et al. 2002, Govert, Kazai et
al. 2003, Hakimpour, G eppert 2002, Rahm, Bernstein 2001, Xiao, Cruz et al.). One of
the methods of datasource search is the use of schema (and also ontology) matching
techniques to create a global schema and then perform search on that. This requires
rewritten queries on global schema on the local XML Web Service documents
validated by their representative local schemas (Sakamuri, Madria et al. 2003).

In this thesis we wiU demonstrate a schema & ontology oriented searching strategy
to discover Web Services and to perform Collaborative Filtering on the data
available in the service datasources. Our proposed architecture wiU increase the
possibility of discovering only the services the searcher is looking for; moreover, it
wUl add some value-added services hke “product recommendations” (coUaborative
fUtering). Our strategy also enables the use of service datasources w ith external
services or appUcations; this gives the users (or searchers) tremendous flexibihty and
power over the service datasources.

1.2. How Does Web Service Work?
Web Services communicate via XML, which makes it “loosely coupled” architecture
(Booth, Haas et al. 2004). XML is a mainstream, non-proprietary, simple but very

 ̂http://haydn.cs.washington.edu:8080/won/wonServlet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://haydn.cs.washington.edu:8080/won/wonServlet

CHAPTER 1: INTRODUCTION

flexible text format for exchanging data. Unlike HyperText Markup Language (HTML),
it provides the logical structure of data instead of a visual representation. Using
XML, apphcations can communicate using Web Services even if they are w ritten in
different programming languages and run on different operating systems.

Web Services are the building blocks for distributed applications functioning over
standard internet protocols. Typically, these are simple request or response services
that can be located and invoked by the others. At the same time, each of them
remains independent and self-contained (Systinet Corporation 2005). Developing a
number of such Web Services into a sophisticated information system is also
possible.

We can look at Web Services as a way of connecting three participants: a provider, a
requester and a directory (see Figure 1.1). The first has a service to offer. The second
is looking for a service to use. The third helps the other two find each other. Usually
using UDDI Inquiries, the requester talks to the registry about the services it needs.
The registry returns services matching the query and the service requester chooses
the one it wants to access.

Web Services translate data structures and method calls into XML text. They send
this text using standard transport protocols and translate it back into functions and
data structures on the server end. It allows data structure of virtually any complexity
be transmitted along with method calls (Booth, Haas et al. 2004). Web Services use
three standard formats or protocols namely SOAP, WSDL and UDDI to translate into
and out of XML.

1.2.1. Simple Object Access Protocol (SOAP)

SOAP is an XML based m arkup language. The core protocol underlying Web
Services, SOAP defines a standard message format for carrying data objects (Box,
Ehnebuske et al. 2000). Depending on the rules of how its contents should be
serialized, the body of a SOAP document contains one or more objects to be
consumed by the receiving application. The root of a SOAP message is an envelope in
which a developer can place the XML representation of these objects. The SOAP
envelope can also contain routing, state and security information, these are placed in
one or more headers (Box, Ehnebuske et al. 2000).

Web Services can handle SOAP messages in two different ways. In their simplest
form they w rap function arguments and return values. In this way they act as the
bonding element for Remote Procedure Call (RPC) mechanisms. The second approach
is to treat a SOAP message as a one-way document containing information to be
handled by a service with the response message optional.

3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

1.2.2. Web Services Definition Language (WSDL)

WSDL is an XML based markup language used to describe and define Web Services
(Christensen, Curbera et al. 2001). A WSDL document makes public the “What,
How, and W here” of a Web Service. It describes w hat the Web Service does, how it
communicates, and where it resides. A client application developer uses the WSDL
document at development-time to generate data types to be placed in SOAP
messages, and service interface stubs which are then compiled into the application.
Some SOAP implementations use WSDL at runtime to support dynamic
communications through generated service proxies.

1.2.3. The Universal Description, Discovery and
Integration (UDDI)

The UDDI project is a partnership among industry and business leaders and was
founded by IBM, Ariba, and Microsoft and now over 300 companies participate
(BeUwood 2002). UDDI provides a standards-based set of specifications for service
description, discovery, as well as a set of Internet-based implementations (Clement,
Hately et al. 2000). This specification has developed quickly because it is backed w ith
rapid implementation, which proves the concepts and provides a rich experience
base for further refinement of the specification.

A UDDI registry stores information about service providers and their Web Services.
Service providers are typically companies, organizations, or institutions. The
information stored in a registry follows a relatively straightforward schema, and
many implementations use a relational database system as storage manager. The
interface to a registry provides two main functionalities (Sun, Lin et al. 2004). Firstly,
the information in the registry m ust be maintained, that is, it can be registered and
updated. Secondly, users can query the registry to retrieve information about service
providers and their services. The UDDI information model contains four core
elements (Mahmoud 2002);

1. Business Information: This is described using the b u s i n e s s E n t i t y element,
which represents a physical organization. It contains information such as name,
description, and contacts about the organization. The b u s i n e s s E n t i t y
information includes support for yellow pages taxonomies so that searches can be
performed to locate organizations who service a particular industry or product
category.

- 4 -

Repro(duce(d with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

2. Service Information: This is described using the b u s i n e s s S e r v i c e element,
which groups together related services offered by an organization.

3. Binding Information: This is described using the b in d in g le m p la te element,
for information that is relevant for application programs that need to connect to and
then communicate with a remote Web Service. In other words, it provides
instructions on how to invoke a remote Web Service. The instructions may either be
in the form of an interface definition language such as WSDL, or a text-based
document.

4. Information about Specifications fo r Services: This is described using the
tM odel element, which is an abstract representation o f the technical specification. A
tM odel has a name, publishing organization, and URL pointers to the actual
specifications themselves.

The UDDI Application Program Interfaces (API) are divided into two logical parts: the
Inquiry API and the Publish API. They describe the SOAP messages that are used to
publish and discover an entry in the registry.

□ The Publish API: The Publish API provides methods for publishing and updating
information contained in a UDDI registry. A business should select a UDDI registry
operator site to host its information. Invoking methods in the Publish API requires
authorization and is usually done through HyperText Transfer Protocol Secure
(HTTPS). The API consists of methods for saving information: s a v e _ b u s i n e s s ,
s a v e _ s e r v i c e , s a v e _ b i n d i n g , and s a v e _ t M o d e l . These methods take
a u t h T o k e n (it's optional, if operators provide another mechanism of authentication
such as username and password) and one or more b u s i n e s s E n t i t y elements.
This API also contains methods for deleting information: d e l e t e _ b u s i n e s s ,
d e l e t e _ s e r v i c e , d e l e t e _ b i n d i n g , and d e l e t e _ t M o d e l . These methods
take the u u i d key (which was generated by the registry when information was first
published) as an input parameter.

n The Inquiry API: The Inquiry API provides methods for querying the registry.
Some of these methods are: f i n d _ s e r v i c e , g e t _ b u s i n e s s D e t a i l ,
g e t _ s e r v i c e D e t a i l , g e t _ b i n d i n g D e t a i l , and g e t _ t M o d e l D e t a i l .

UDDI is not a core Web Service specification. It is clear that a service registry is
required part of the Web Service platform, bu t it isn 't clear that UDDI wiU ever truly
become that solution (Lomow, Newcomer 2004).

- 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

1.2.4. Other Web Service Registries

Electronic Business XML (ebXMLfi is one of the most important Web Service registry
for business-to-business framework, developed by the ebXML initiative which is a
joint project of the United Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) and the Organization for the Advancement o f Structured Information
Standards (OASIS) (OASIS Open 2006). The ebXML membership includes
representatives from over 2000 businesses, institutions, governments, standards
bodies, and individuals from around the globe.

An ebXML registry allows organizations to advertise and discover information
about businesses (Mahmoud 2002). It stores Collaboration-Protocol Profile (CPP) and
Collaboration-Protocol Agreement (CPA) and other information relevant to business
collaboration. The CPP is an XML document that contains information about a
business and the way it exchcmges information w ith other businesses. The CPA is
also an XML document that describes the specific capabilities that two businesses
have agreed to use in business collaboration.

Unlike the UDDI registry, which is a registry of metadata only, the ebXML registry is
both a metadata registry as well as a repository that can hold arbitrary content. Only
the metadata about a Web Service is published to UDDI. The actual Web Service
description (that is, the WSDL document) cannot reside in UDDI and m ust reside in
the service provider's Website. In contrast, a Web Service description may be
published in an ebXML registry and repository to include aU metadata as well as
technical specifications and related artifacts. A common example is as follows:
businesses register their profiles (CPPs) in an ebXML registry. When a business
searches the registry and finds another business that it wants to collaborate with, it
creates a technical agreement (CPA) using the CPP and sends the CPA to the other
business. The two businesses collaborate according to the CPA. The ebXML registry
offers many other unique features that are valuable for e-business collaboration.

There are other Web Service registry specifications available too, for example,
Systinet Registry^, METEOR-S Web Service Discovery Infrastructure (MWSDI)*, etc.

 ̂http://www.ebxml.org
 ̂http://www.systinet.com/products/sr/overview
http://lsdis.cs.uga.edu/proj/meteor/mwsdi.html

6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ebxml.org
http://www.systinet.com/products/sr/overview
http://lsdis.cs.uga.edu/proj/meteor/mwsdi.html

CHAPTER 1: INTRODUCTION

reg ister service The application ,
th a t im plem ents

the serv ice !

SOAP and WSDL
Processing

UDDI

DB
find WSDL

WS ContainerSOAP
M essage

P rocessor Web Service
SOAPClient

Proxy
Web Services S erver

FrameworkFramework

Application
Browser
Device, etc.

LegacyWEB Application Server

sso

Web Services runtim e productsEZl
Code g en era ted by WS tools

Figure 1.2: Web Service runtime environment.

1.2.5. The Advantages of Using Web Services

Web Services offer many benefits over other distributed computing architectures
(Booth, Haas et al. 2004, Lomow, Newcomer 2004, Systinet Corporation 2005).

□ Interoperability: This is the most important benefit o f Web Services. Web Services
typically work outside o f private networks, offering developers a non-proprietary
route to their solutions. Services developed are likely, therefore, to have a longer life­
span, offering better return on investment o f the developed service. Web Services also
let developers use their preferred programming languages (e.g., Java, C++, VBScript,
JavaScript, etc.). In addition, because of the use of standards-based communications
methods Web Services are virtually platform-independent.

□ Usability: Web Services allow the business logic o f many different systems to be
exposed over the Web. This gives applications the freedom to choose the Web Services
that they need. Instead of reinventing the wheel for each client, only including
additional application-specific business logic on the client-side is required. This
allows developers to develop services and/or client-side code using the languages and
tools that they want.

□ Reusability: Web Services provide not a component-based model of application
development, but the closest thing possible to zero-coding deployment o f such

- 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

services. This makes it easy to reuse Web Service components as appropriate in other
services. It also makes it easy to deploy legacy code as a Web Service.

□ Deployability: Web Services are deployed over standard Internet technologies. This
makes it possible to deploy Web Services even over the firewall to servers running on
the Internet on the other side of the globe.

1.3. REST : Another Way of Looking at Web
Services

Web Services described up to now communicates via SOAP. Although some m ight
argue that it's possible to create Web Services w ithout this standard protocol
(Chappell 2002, Clark 2003). SOAP can be used in an asynchronous style, it evolved
from an earlier protocol called XML-RPC, and die initial SOAP specification
explicitiy defined an RPC-style m apping of SOAP to HTTP (Chapped 2002). SOAP
clearly grows out of this earlier tradition in distributed computing.

However Web Service can utilize another communication protocol caUed
Representational State Transfer (REST). Rather than growing out of the RPC world, its
roots are solidly embedded in the Web itself.

Let's look at an example to understand the differences better. In the SOAP world,
each endpoint has a URI, such as http://www.lakeheadbank.com, and each
endpoint exposes various methods. Any of these can be invoked via an HTTP POST,
with the specific SOAP method being caUed identified within a SOAP envelope that
gets embedded in the POST request. Each data object that's accessed is identified
using some parameter value, such as a character string. To read the balance of a
savings account maintained by QwickBank, for example, a chent might invoke a
GetBalance method at http : //www. lakeheadbank. com identifying a particular
account by passing its account number as a parameter.

REST takes more strictly Web-oriented approach. But the result exposing methods
using Web technologies is much the same. The way those methods are exposed,
however, is quite different. For instance, rather than assigning each endpoint a URI,
the REST approach argues that each data item should have a URI. Instead of a single
endpoint for QwickBank, it exposes a distinct URI for each account the bank
maintains. This is much more hke the Web today, in which each item (for example,
each page) that a chent wishes to access can be directly named.

- 8 “

Repro(duce(d with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.lakeheadbank.com

CHAPTER 1: INTRODUCTION

And rather than hiding arbitrary m ethod names inside a generic HTTP POST
request, it uses the HTTP methods that already exist. These methods, such as PUT,
GET, POST, and DELETE can be used to create, read, update, and delete information.
These four operations, sometimes referred to w ith the inelegant acronym CRUD, are
the fundamental things we need to do to data. We can't use them directly for many
reasons, hke for example, then firewaUs could filter based on HTTP method names
rather than performing the complex (and perhaps impossible) task of deciphering
each SOAP packet to filter requests on a per-method basis.

Similarly, rather than identifying parameters using character strings & other values
opaquely embedded in a SOAP packet, REST uses URIs. Identifying everything w ith
a URI is fundamental to how the Web works. Among other things, a common
naming scheme allows easier composition of independently developed software,
which is a core goal of Web Services. In the REST model, requesting the balance of
an account maintained by QwickBank could be as simple as sending an HTTP GET
to the account's URL Rather than building a distinct infrastructure on top of the
Web, REST uses w hat the Web provides to create a simpler and perhaps more
effective means to the end of Web Services.

Though REST's ideas are attractive, it's hard to imagine SOAP being displaced
(Chappell 2002). Every major vendor supports SOAP today, and its already quite
well established, still the ideas embodied in REST are worth understanding
(Chappell 2002).

1.4. Describing the Semantics of Web
Services: WS Schema

Schemas and ontologies provide a vocabulary of terms that describes a domain of
interest. They constrain the m eaning of terms used in the vocabulary.

WS schema and ontology is described by XML schema and ontology languages. It
resembles the Data Definition Language (DDL) for a relational database (Roy,
Ramanujan 2001). In a relational database, we use a DDL to create a table and to
specify rules and constraints for that table. Similarly, the XML schema and ontology
languages provides the necessary framework for creating XML documents by
specifying the valid structure, constraints, and data types for the various elements
and attributes of an XML document. Ontology differs from an XML schema in that it
is a knowledge representation, not a message format (Smith, Welty et al. 2004).

- 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

1.4.1. Schema and Ontology Integration

Most work on schema and ontology match has been motivated by schema and
ontology integration, a problem that has been investigated since the early 1980s
(Rahm, Bernstein 2001).

Since the schemas and ontologies are independently developed, they often have
different structure and terminology. This can obviously occur w hen the schemas and
ontologies are from different domains, such as a “real estate schema” and “property
tax schema”. However, it also occurs even if they model the same real world domain,
just because they were developed by different people in different real-world contexts
(Rahm, Bernstein 2001). Thus, a first step in integrating the schemas and ontologies
is to identify and characterize these inter-schema and ontology relationships. This
process is called schema and ontology matching. Once they are identified, matching
elements can be unified under a coherent, integrated schema and ontology. During
this integration programs or queries are created that permit translation of data from
the original schemas into the integrated representation (Rahm, Bernstein 2001).

1.5. Proposed Web Service Searching
Architecture

General prevalent crawler based search engines are not a solution for searching
highly dynamic contents of Web Services (Graupmann, Biwer et al. 2003), because:

□ Information is not acœssible by crawlers as sometimes it is generated as a response to
a HTML form submission.

□ Links between pages change frequently, for example the content of bidding Web
Service that changes continuously.

To solve that problem, nowadays developers w rap the portal search engines
themselves into Web Services and use them in the fashion of a meta-search-engine.
But discovering the services is another issue that remains a hot research area (Shen
Derong, Yu Ge et al. 2005). Even though UDDI was proposed as a standard to enable
universal discovery of services, the promise of dynamically finding Web Services is
n o t fu lly ach ieved in the current specification (C olgrave, Akkiraju et al. 2004).

UDDI is limited in its search services by its inabüity to extend beyond the keyword-
based matches (Colgrave, Akkiraju et cd. 2004). For example, if we have two similar
services w ith slight change in their description, the traditional UDDI search w on't be

- 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

able to discover the one that don 't have the requested keyword in it. That is why
searching for Web Services containing multi-data resources need a special searching
framework. Another problem w ith UDDI is the registry does not provide any value-
added service, such as checking the quality of the registered services, collaborative
filtering, etc. (Pautasso 2005).

As an attempt to resolve these problems, in this thesis we wül show a new
architecture for discovering Web Services. In our architecture we will use schema
and ontology matching strategy. To be more specific, in our architecture we will
match and merge the ontology for the service and the schema for the datasources to
create an XML based search helper file; and wül parse through that füe during the
searching process to discover services. This wül extend our searching from keyword-
based search to conceptual search. Figure 1.3 shows how our conceptual search
works.

Conceptual
Search in the

Merged
Description

Search Result

WS-1 WS-nWS-2

Search
Keywords

Figure 1.3: Conceptual search in our system.

At first the system generates a search helper (merged description) füe that contains
the simüar type of Web Services' information. Later w hen user enters a keyword to
find particular services our system parses through the search helper (merged
description) to look simüar services. The simüarity or relation is understood from
the merged description itself. If any match, relation or simüarity found then the
system will return the user w ith the Web Service URI and other information.

W ith our system it is also possible to search into the Web Service datasources. This
kind of search is important w hen the user is looking for services where a specific
item or information is avaüable. In this kind of search the system looks for the
requested item or information in the service datasource first (with the help of the
search helper füe). The system will only show the services those have simüar item or
information in their datasource.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

Along w ith Web Service discovery and datasource search we added value-added
service like collaborative filtering in our architecture. While the user is looking for a
specific item in the service datasources, we use collaborative filtering algorithms to
recommend or predict other similar items that the user might hke. Figure 1.4 shows
how collaborative filtering works in our system.

Search
Keyword Prediction

Computation
Process

Similarity
database

Figure 1.4: Collaborative filtering in our system.

More details on the architecture wiU be discussed in the next chapters. This is to be
noted that, we do not attem pt to replace the existing meta-data searching or Web
Service discovery approaches, we just show another way of doing it.

- 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

CHAPTER 2
SERVICE ORIENTED ARCHITECTURE

AND WEB SERVICES

2.1. Introduction

I n this chapter we will discuss the Service-oriented Architecture (SOA) and differences
between Web Services and other architecture for SOA. Then we wiU demonstrate
and compare a few popular ways of creating Web Services, and finally we will show
how we've created our Web Services and why we believe that our way of creating
Web Service is better.

2.2. What are Services?
A service is a location on the network that has a machine-readable description of the
messages it receives and optionally returns (Lomow, Newcomer 2004). In other
words, a service is an abstract notion that m ust be implemented by a concrete agent.
The agent is the concrete piece of software or hardware that sends and receives
messages, while the service is the resource characterized by the abstract set of
functionality that is provided (Booth, Haas et al. 2004). The agent may have changed
but the Web Service remains same. A schema for the data contained in the message
is used as the main part of the contract (i.e., description) established between a
service requester and a service provider. Other items of metadata describe the
network address for the service, the operations it supports, and its requirements for
reliability, security, and transactionality.

Figure 2.1 illustrates the relationship among the parts of a service, including the
description, the implementation, and the m apping layer between the two. The
service implementation can be any execution environment for which Web Service
support is available. The service implementation is also called the executable agent
(Lomow, Newcomer 2004). The executable agent is responsible for implementing the
Web Service p rocessin g m o d el as d efin ed in the variou s W eb Service specifications.
The executable agent runs w ithin the execution environment, which is typically a
software system or programming language.

- 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

Mapping
Sen/ice

Imptementation/
Requester Executable AgentLayers

.NET J2E E

Service x
Descriptions / Service

Requests

CORBA IMS

Service
Implementation/

Executable Agent

Service
Implementation/

Executable Agent

Figure 2.1: Breakdown of Web service components.

An im portant part of the definition of a service is that its description is separated
from its executable agent. One description might have multiple different executable
agents associated w ith it (see Figure 2.1). Similarly, one agent might support
multiple descriptions. The description is separated from the execution environment
using a mapping layer (a.k.a., transformation layer). The mapping layer is often
implemented using proxies and stubs. The mapping layer is responsible for
accepting the message, transforming the XML data to the native format, and
dispatching the data to the executable agent.

The Web Service's roles include requester and provider (see Chapter 1). The service
requester initiates the execution of a service by sending a message to a service
provider (see Figure 2.2). The service provider executes the service upon receipt of a
message and returns the results, if any are specified, to the requester. A requester
can be a provider, and vice versa, meaning an execution agent can play eiüier or
both roles. The whole concept is highly abstract. One of the greatest benefits of this
service abstraction is its ability to easily access a variety of service types, including
newly developed services, w rapped legacy applications, and applications composed
of other services (Lomow, Newcomer 2004).

Newly Developed Service

Wrapped Legacy Application

Composite Service

Figure 2.2: Requesting different types of Web Services.

14 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

2.3. Service-oriented Architecture (SOA)
A Service-oriented Architecture (SOA) is a style of design that guides all aspects of
creating and using business services throughout their lifecycle. It's also a way to
define and provision an Information Technology (IT) infrastructure to allow different
applications to exchange data and participate in business processes, regardless of the
operating systems or programming languages underlying those applications
(Anand, Padmanabhuni et al. 2005, Channabasavaiah, Holley et al. 2003, He 2003,
Lomow, Newcomer 2004). Unlike three-tier model, in a service-oriented architecture
clients consume services rather than invoking discreet method calls directly. Figure
2.3 compares SOA with traditional three-tier architecture.

Presentation Business Objects Data/Persistence

C lie n t

(a)

Presentation Business Objects D ata/Persistence
Service

(b)

Oknt s [

Figure 2.3: (a) A typical three-tier application architecture, (b) A service-oriented application
architecture.

The concept of SOA isn 't new, w hat is new is the ability to mix and match execution
environments, clearly separating the service interface from the execution technology,
allowing IT departments to choose the best execution environment for each job
(whether it's a new or existing application) and tying them together using a
consistent architectural approach. Previous implementations of SOA were based on
a single execution environment technology (Lomow, Newcomer 2004). The prior
effort that has gone into defining distributed, inter-appUcation communication
architectures are as follows (Dietzen 2004):

□ Synchronous (RPC-oriented): CICS Distributed Program Link (DPL), Distributed
Computing Environment (DCE), Distributed Component Object Model (DCOM),
Common Object Request Broker Architecture (CORBA) HOP, Java Remote Method
Invocation (RAH), Relational Database Management System (RDBMS) stored
procedures, and so on.

- 15 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

□ Asynchronous (Messaging-oriented): CICS Transient Data Queues (TDQs),
Tuxedo ATMl, IBM MQSeries, Tibco rendezvous, Microsoft Message Queuing
(MSMQ), Java Message Service (JMS), and so on.

Although the concepts behind SOA were established long before Web Services came
along; Web Services play a major role in a SOA. This is because Web Services are
built on top of well-known and platform-independent protocols (e.g., HTTP, XML,
UDDl, WSDL, and SOAP). These protocols helps Web Service fulfill the key
requirements of a SOA that is a service m ust be dynamically discoverable and
invokeable. As we have seen in Chapter 1, this requirement is fulfilled by UDDl,
WSDL, and SOAP. SOA requires that a service have a platform-independent
interface contract. This requirement is fulfilled by XML. SOA m ust have
interoperability. This requirement is fulfilled by HTTP. This is w hy implementing a
service-oriented architecture using Web Services technologies confirm a new way of
building applications within a more powerful and flexible programming model
(Channabasavaiah, Holley et al. 2003, Hashimi 2003, Lomow, Newcomer 2004,
Vasudevan 2001).

Among prior standards CORBA is mostly compared with Web Service because, from
technical perspective we can use CORBA for almost everything we can use Web
Services for. But CORBA (as well other standards) d idn 't succeed widely because of
vendor politics and for not defining a standard for interoperability (Jones 2005). The
implication was that interoperability d idn 't matter if we had a standard interface.
Web Services started w ith SOAP, which is an interoperability standard (Box,
Ehnebuske et al. 2000). Even from hum an perspective Web Services are much easier
to leam, and the missing features from CORBA don 't matter as much as
interoperability.

2.4. Creating Web Services
Various application server and programming languages can be used to create Web
Services. Among application servers Java 2 Platform Enterprise Edition (J2EE),
Microsoft .NET, Apache Axis; and among programming languages Java, C++, C#, VB
are mostly used. Here we will demonstrate two widely used application servers and
prograimning languages to create two test Web Services: in programming language C#
with .NET and in programming language Java with Apache AXIS.

16 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

2.4.1. Creating Web Services in ASP.NET

In this section we wül demonstrate how to create, test and deploy Web Services in
ASP.NET. The examples used and information provided in this section are collected
from various articles (Ferrara, MacDonald 2002, Perris 2001, Strahl 2002).

□ Platform Requirements:
■ Windows 2000, Windows XP Pro, Windows Server 2003.
■ Internet Information Serviœs (IIS) 5 or later.
■ SQL Server 2000 or MSDE.
• .NET Framework Distributable 1.0 SP2 or later installed, with ASP.NET

functionality tested.
■ A recent version of Web browser (Internet Explorer 5.5 or later preferred).
■ Visual Studio .NET 2003 or 2002.
• I f running Visual Studio .NET 2002, the Visual Studio .NET Data Loss Fix

installed.
■ A minimum of 512 MB RAM; 640 MB RAM or higher is strongly preferred.

□ Creating A Sample Web Service: Though Visual Studio .NET provides a feature-
rich integrated development environment for .NET development, it's possible to
create Web Services using any text editor or the command-line tool provided with the
.NET Framework SDK. Here for simplicity we will use Notepad. No matter what
editor we use, the file extension has to be . a s m x and must be places in an Internet
Information Service (IIS) folder on a server or workstation that has the .NET
Framework installed.

After saving the code to a folder served by the IIS Web server it's immediately
becomes ready to run. To get the file to our Web server, if we are running IIS locally
on our workstation (we need the .NET Framework to be installed locally) we have to
save the file to a suitable location on ourlocal drive (e.g., c : \ i n e t p u b \ w w w r o o t \) .
While using a remote server (in this case we do not need the .NET Framework to be
installed locally), we might have to use FTP or a network share instead.

Example 2.1 lists the code for a C# version of a test application that delivers .
message aver the Web through an exposed method called T e s t (). To identify tlu:
class and method as a Web Service to the compiler, this code uses s,-r>ic sper^ '
notation. It also includes an ASP.NET directive at the head of the fie . To cr
sample test Web Service in C# we have to enter the code from Example 2.1 exact!.i •
it appears, and save the file to our web server under the web rn a folder for our system
(in our case c : \ i n e t p u b \ w w w r o o t) with the name f i . s t w e b s e r v i c e . asmx.

Example 2.1; A Sample C# Web Service

<%@ WebService Language="C#" Class="FirstWe! service" %>
using System;

- 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

using System.Web;
using System.Web.Services ;
public class FirstWebService
{

[WebMethod]
public string Test()
{

return "Test Service !";

Example 2.1 begins with a W e b S e r v i c e directive, an ASP.NET statement declaring
that the code that follows is a Web Service:
<%0 WebService Language="C#" Class="FirstWebService" %>

To make T e s t Web Service work we must assign values to two W e b S e r v i c e
directives attributes: L a n g u a g e and C l a s s . The required Language attribute lets
.NET know which programming language the class has been written in. The
acceptable values for the language attribute are currently C#, VB, and JS for
JScript.NET. The C l a s s attribute which is also required, tells ASP.NET the name
of the class to expose as a Web Service, because a Web Service application can
comprise multiple classes, some of which may not be Web Services.

It's possible to use a u s i n g statement to tell the compiler to alias a particular
namespace to the local namespace. For example, in C#, this directive is:
using System.Web.Services;
This directive allows us to refer to objects in the S y s t e m . Web. S e r v i c e s
namespace without having to fully qualify the request. This statement is optional.
Namespaces can contain definitions for c l a s s e s , i n t e r f a c e s , s t r u c t s ,
enums , and d e l e g a t e s , as well as other namespaces.

File Edit View Fjvorites Tools tte'P d!
O ' G ' 8 @ /O ^
Address http://localhost/f5rsbvebservlce.asmx

1 FirstWebService
1 The following opérations are suDDorted. For a formal definition, o lease review th e Service Descrintion. 1

• Test Service!

Done ^ L o a l in l r a n e t %

Figure 2.4: The ASP.NET C# Web Service status page.

- 18 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost/f5rsbvebservlce.asmx

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

□ Testing the Web Service: To check out the Web Service all we can access the URL
for it in a Web browser like this:
h t t p : / / I o c a l h o s t / f i r s t w e b s e r v i c e . asmx
this will open the Web Service status page which will look something like Figure 2.4.
It lets us see and test the methods that the Web Service exposes. We can also review
and optionally capture the WSDL description for the service.

The runtime automatically creates a service description in WSDL which we can see
by clicking the service description link. This page can also be viewed in a Web
browser by appending 7WSDL (e.g., f i r s t w e b s e r v i c e . asmx?wSDL) to the page
URL. The service description for our service is shown in Figure 2.5.

File Edit ÏIew Fjvorites Tools Help i r

G ' 0 ' @ g | (I l : /

Adoisss http://localhost/first'A'ebservlce,asmx?'A'sdl 3 a GO

<?xml v e r s io n = " l . 0" en co d ing = "u f t -8 " ?>
- <defi n i t i o n s xm lns:s="http://vA-.v/.w3.org/2001/XMLSchema"

xmlns:h t t p * " h t t p : / / s c h e m a s , xml soap, o r g / w s d l /h t t p / "
xmlns: mime="h t t p : / / s c h e m a s , xml soap, org /w sdl/m i me/"
xmlns:tm -"h t t p : / /m i c r o s o f t . com/wsdl/mime/textM atchi ng /"
xm ln s :so ap = "h t tp ; / / sc h e m as . xml s o a p .o r g /w s d l / s o a p /"
xm ln s :so an en c= "h t to ; / / sch em as , xm lso a o .o ro /so ao /en co d in o /"

^ Done ^ Local intranet A

Figure 2.5: A fragment of the WSDL for ASP.NET C# service.

□ Visual Studio .NET and IIS: It's preferred to use Microsoft's Visual Studio .NET
(VS.NET) environment to create ASP.NET Web Services (Ferrara, MacDonald
2002). It provides many features to support creating complex Web Services. With
Visual Studio .NET we can get a Web Service up and running real fast. The
deployment process is also easy as long as we properly configure Visual Studio .NET
to be able to deploy to our instance of IIS. It's also possible to deploy a Web Service
directly to IIS (Ferrara, MacDonald 2002).

2.4.2. Creating Web Services in Apache Axis

In this section we wUl demonstrate how to create, test and deploy Web Services in
Apache Axis. The examples used and information provided in this section are
collected from various articles (Ahnaer 2002, Apache Axis 2005, Gibbs, Goodman et
al. 2003, Hansen).

□ Platform Requirements:
■ An application server up (full distribution of Jakarta Tomcats version 4.1.x is

recommended) running on the localhost at port 8080.

http://tomcat.apache.org

- 19 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://Iocalhost/firstwebservice.asmx
http://localhost/first'A'ebservlce,asmx?'A'sdl
http://vA-.v/.w3.org/2001/XMLSchema
http://schemas
http://schemas
http://mi
http://tomcat.apache.org

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

■ Full installation of Apache AXIS (including supporting far files in the C L A SS­
PATH).

■ A recent version of Web browser (Internet Explorer or Firefox preferred).

□ Creating A Sample Web Service: We can create Axis Web Services using any text
editor. Here for simplicity we will use Notepad. No matter what editor we use, the
file extension has to be . j w s and must be places in an A x i s \ web- i n f subdirectory
on a server or workstation that has the Apache Tomcat and Axis installed (in our
case, C : \ P r o g r a m F i l e s \ A p a c h e S o f t w a r e F o u n d a t i o n \ T o m c a t
5 . 5 \ w e b a p p s \ a x i s) . After saving the code to that directory it's immediately
becomes ready to run.

Axis needs to be able to find an XML parser. I f the application server or Java runtime
does not make one visible to web applications, we have to download and add it. Java
1.4 includes the Crimson^ parser, so we can omit this stage, though the Axis team
prefers Xerces^.

To add an XML parser, we have to acquire any JAXP 1.1 XML compliant parser.
Apache recommend Xerces jars from the x m l - x e r c e s distribution. In case our JRE
or app server doesn't have its own specific requirements, we have to add the parser's
libraries to . . . \ a x i s \ W E B - I N F \ l i b . I f using Xerces, we have to add x m l -
a p i s . j a r and x e r c e s l m p l . j a r to the AX I S -C L A S S - P A T H so that Axis can
find the parser.

Example 2.2 lists the code for a Java version of a test application that delivers its
message over the Web through an exposed method called T e s t (). Unlike .NET we
don't need any special notation to identify the class and method as a Web Service to
the compiler, that's what the code will appear as an ordinary Java source.

Example 2.2: A Sample Java Axis Web Service

public class FirstWebService
{
public String Test()
{

return "Test Service!";
}

}

To create a Java version of the test Web Service we have to enter the code from
Example 2.2 exactly as it appears, and save the file to our Web server under the
w e b - i n f o folder for our system with the name f i r s t w e b s e r v i c e . j w s .

® http://xml.apache.org/crimson
 ̂http://xerces.apache.org/xerces-j

- 20 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://xml.apache.org/crimson
http://xerces.apache.org/xerces-j

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

Testing the Web Service: To check out the Web Service we can access the URL for
it in a Web browser like this:
h t t p : / / l o c a l h o s t : 8080/a x i s / f i r s t w e b s e r v i c e . jws
this will open the Web Service status page that will look like Figure 2.6. It will let us
see and test the methods that the Web Service exposes. We can also review and
optionally capture the WSDL description for the service.

File Edit View Fjvorites Tools Help i f

G ' @ f .': .

Àçcrsss http://localhost;8080/axls/firstA'ebservice.jws â Go

There is a Web Senice here

Click to see the WSDL

:@ Done ^ Local intranet / .

Figure 2.6: The Java Axis Web Service status page.

Like ASP.NET, Axis creates a service description in WSDL which on runtime that
we can see by clicking the service description link. This page can also be vieioed in a
browser by appending ?WSDL to the page URL, as in f i r s t w e b s e r v i c e . j w s 7NSDL.
The service description for Java service will look the same as .NET Web Service's
service description as shown in Figure 2.5.

2.4.3. Apache Axis Architectural Overview

In this section we'll give an overview of how the core of Axis works. The core of
Axis can be divided into three sections (the information provided here is collected
from the online Axis Architecture Guide^):

1. Handlers and the Message Path in Axis: When the central Axis processing logic
runs, a series of H a n d l e r s are each invoked in order. The particular order is
determined by two factors, deployment configuration and whether the engine is a
client or a server. The object which is passed to each H a n d l e r invocation is a
M e s s a g e C o n t e x t . A M e s s a g e C o n t e x t is a structure which contains several

http://ws.apache.org/axis/java/architecture-guide.html

- 21 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080/axis/firstwebservice.jws
http://localhost;8080/axls/firstA'ebservice.jws
http://ws.apache.org/axis/java/architecture-guide.html

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

important parts: 1) a request message, 2) a response message, and 3) a bag o f
properties.

There are two basic ways in which Axis is invoked:
a) As a server, a T r a n s p o r t L i s t e n e r xvill create a M e s s a g e C o n t e x t

and invoke the Axis processing framework.
b) As a client, application code (usually aided by the client programming model

of Axis) will generate a M e s s a g e C o n t e x t and invoke the Axis processing
framework.

In either case, the Axis framework's job is simply to pass the resulting
M e s s a g e C o n t e x t through the configured set of H a n d l e r s , each of which has an
opportunity to do whatever it is designed to do with the M e s s a g e C o n t e x t .

Transport Global Service

Request
Request

'P rov ld tr
Target
Service

? ResponseResponse

Response
Axis Engine

Figure 2.7: The server side message path of Axis (small cylinders represent Handlers and the
larger, enclosing cylinders represent Chains).

2. Message Path on the Server. Figure 2.7 illustrates the server side message path. A
message arrives at a T r a n s p o r t L i s t e n e r . Here we are assuming that the
L i s t e n e r is a HTTP servlet. It's the L i s t e n r ' s job to package the protocol-
specific data into a M e s s a g e object (o r g . a p a c h e . a x i s . M e s s a g e) , and put the
M e s s a g e into a M e s s a g e C o n t e x t . The M e s s a g e C o n t e x t is also loaded with
various properties by the L i s t e n e r . In this example, the property
h t t p . S O A P A c t i o n would be set to the value o f the S O A P A c t i o n HTTP header.
The T r a n s p o r t L i s t e n e r also sets the t r a n s p o r t N a m e S t r i n g on the
M e s s a g e C o n t e x t , in this case to h t t p . Once the M e s s a g e C o n t e x t is ready to
go, the L i s t e n e r hands it to the A x i s E n g i n e .

The A x i s E n g i n e ' s first job is to look up the transport by name. The transport is an
object which contains a request C h a in , a R e s p o n s e C ha in , or hath. A C h a i n is
a H a n d l e r consisting of a seqiænce of H a n d l e r s which are invoked in turn. I f a
transport request C h a i n exists, it will be invoked, passing the M e s s a g e C o n t e x t
into the i n v o k e {) method. This will result in calling all the H a n d l e r s specified
in the request C h a i n configuration.

22 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

After the transport request H a n d l e r , the engine locates a global request C h a in , i f
configured, and then invokes any H a n d l e r s specified therein.

A t some point during the processing up until now, some H a n d l e r must has set the
s e r v i c e H a n d l e r field o f the M e s s a g e C o n t e x t (this is usually done in the
HTTP transport by the URLMapper H a n d l e r , which maps a URL like
“h t t p : / / l o c a l h o s t / a x i s / s e r v i c e s / A d m i n S e r v i c e ” to the A d m i n S e r v i c e
service). This field determines the H a n d l e r going to be invoked to execute service-
specific functionality, such as making an RPC call on a back-end object. Services in
Axis are typically instances of the S O A P S e r v i c e class
(o r g . a p a c h e . a x i s . h a n d l e r s . s o a p . S O A P S e r v i c e) , which may contain
request and response C h a i n s (similar to what we saw at the transport and global
levels), and must contain a provider, which is simply a H a n d l e r responsible for
implementing the actual back end logic o f the service.

The provider is the o r g . a p a c h e , a x i s , p r o v i d e r s . j a v a . R P C P r o v i d e r
class for RPC-style requests. This is just another H a n d l e r that, when invoked,
attempts to call a backend Java object whose class is determined by the c l a s s N a m e
parameter specified at deployment time. It uses the SOAP RPC convention for
determining the method to call, and makes sure the types o f the incoming XML-
encoded arguments match the types of the required parameters o f the resulting
method.

Service Global Transport

Request
Request Request

Sender

response
message
f c p t t c n a l }Response

Target
Service

Response
Axis Engine

Figure 2.8: The client side message path of Axis (small cylinders represent Handlers and the
larger, enclosing cyiinders represent Chains).

3. Message Path on the Client: The M e s s a g e Pa t h on the client side is similar to
that on the server side, except the order o f scoping is reversed, as shown in Figure
2.8. The service H a n d l e r , if any, is called first. On the client side, there is no
“provider” since the service is being provided by a remote node, but there is still the
possibility of request and response C h a i n s . The service request and response
C h a i n s perform any service-specific processing of the request message on its way
out o f the system, and also o f the response message on its way back to the caller.

23 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost/axis/services/AdminService%e2%80%9d

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

After the service request Cha in , the global request Chain , if any, is invoked,
followed by the transport. The T r a n s p o r t S e n d e r , a special H a n d l e r whose job
it is to actually perform whatever protocol-specific operations are necessary to get the
message to and from the target SOAP server, is invoked to send the message. The
response (if any) is placed into the r e s p o n s e M e s s a g e field o f the
M e s s a g e C o n t e x t , and the M e s s a g e C o n t e x t then propagates through the
response C h a i n s -first the transport, then the global, and finally the service.

2.5. Apache Axis or ASP.NET?
We have demonstrated two popular approaches to Web Services. But among those
why we m ight w ant to use one method over others? From the issues w e've
discussed in the above sections and from the Chapter 1 we understood no matter
w hat approach we use a Web Services m ust fulfill 4 basic requirements as follows:

1. Service Description: Web Services must be described as collections of message-
enabled endpoints or ports in WSDL. The abstract definition of endpoints and
messages must be separated from their concrete deployment or bindings. The concrete
protocol and data format specifications for a particular endpoint type must constitute
a binding. An endpoint must be defined by associating a Web address with a binding,
and a collection of endpoints defines a service.

2. Service Implementation: Implementing Web Services means structuring data and
operations inside of an XML document that complies with the SOAP specification.
Once a Web Service component is implemented, a client sends a message to the
component as an XML document and the component sends an XML document back
to the client as the response.

3. Service Publishing, Discovery and Binding: Once a Web Service has been
implemented, it must be published somewhere that allows interested parties to find it.
Information about how a client would connect to a Web Service and interact with it
must also be exposed somewhere accessible to them. This connection and interaction
information is referred to as binding information. Registries are currently the
primary means to publish, discover, and bind Web Services. Registries contain the
data structures and taxonomies used to describe Web Services and Web Service
providers. A registry can either be hosted by private organizations or by neutral third
parties.

4. Service Invocation and Execution: Web Service recipients must operate as SOAP
listeners and notify interested parties when a Web Service request is received. The
SOAP listener validates a SOAP message against corresponding XML schemas as
defined in a WSDL file. The SOAP listener then un-marshals the SOAP message.

- 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: SERVICE ORIENTED ARCHITECTURE & WEB SERVICES

Within the SOAP listener, message dispatchers can invoke the corresponding Web
Service code implementation. Finally, business logic is invoked to get the reply. The
result of the business logic is transformed into a SOAP response and returned to the
Web Service caller

Both Axis and ASP.NET (along w ith many others) handle these challenges w ith
great sophistication. The key advantage of using the ASP.NET approach to Web
Services is that it has been designed for that purpose. On the other hand Axis is
being retrofitted by the addition of further APIs. Another advantage of using Axis as
a base for our system is that we have a m uch w ider choice of vendor for our pre­
built software, including numerous open source projects.

Basic challenges can be achieved
Has no preferred editor
Easy to instal^Low system requirements
Free of cost
Programming language support

Table 2.1: ASP.NCT versus Apache Axis
Microsoft ASP.NET

V
X
X
X

a t, VB,]s

Apache Axis
V
V
V
V

Java, C++

If we consider these two platforms from a developer's point of view. Axis clearly
beats ASP.NET. First of aU, it takes a long time to make tire system compatible w iüi
ASP.NET. In case we are working on an operating system other than W indows,
things get even more complicated. Usually ASP.NET is used w ith Visual
Studio.NET, which is a very heavyweight editor that takes huge am ount of space
and time to install. On the other hand. Axis is an open-source project, using and
distributing it is open to all. Moreover it takes lesser time to understand and adopt
Axis than other approaches. This is why in this thesis we have used Apache Axis to
create our sample Web Services. Table 2.1 compares a few aspects of ASP.NET and
Apache Axis from a developer's perspective.

25 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

CHAPTER 3
WEB SERVICE SEARCH VIA

XML SCHEMA AND ONTOLOGY

3.1. Web Service Search

Discovery and composition of services are key steps to build Web applications. Web
Services are usually published and searched in central registry of UDDl servers. To
understand how UDDl is being used to discover services we have to understand
how UDDl Registries contain information about businesses and the services they
offer, that we have already discussed in Chapter 1, Section 1.2.3. Figure 3.1 shows
the information or data model of UDDl.

businessEntity tModel

businessServlce

bindingTempiate

Figure 3.1: The UDDl Data Model.

When looking for a Web Service, a developer queries the UDDl registry, searching
for a service offered by a business. From the bindingTempiate entry for the
specific service, the developer can obtain the service access point and a pointer to the
tModel that describes the service type. From the tModel, the developer can obtain
the WSDL description describing the service interface. Using the access point and
the WSDL description, the developer can construct a SOAP ctient interface that can
communicate w ith the Web Service. Because of UDDTs dependency on taxonomy
and tModel it is also through for the businesses to find each other and the services
meet their needs (Xu Bin, Wang Yan et al. 2005).

This taxonomy and tModel based search also stand as a barrier in Web Services
composition (Xu Bin, Wang Yan et al. 2005). Nowadays, composition of Web
Services has received much interest to support B2B or enterprise application
integration. Applications are to be assembled from a set of appropriate Web Services

- 26 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

and no longer be written manually. Seamless composition of Web Services has
enormous potential in development distributed application. To composite Web
Services into new application, it is often inside a domain to search related Web
Services. For example, to develop an application about “books”, the developer
should search Web Services tike “ordering used books”, “preordering unreleased
books” etc. Because of most of the Web Services' searching are based on tModel of
UDDl, it is not convenient to search Web Services in a domain. By domain we m ean a
specific area (for example, the “book” dom ain is about concepts of publishing).
Instead the developer has to search through keywords like “book”, “comics”, so forth
separately. Furthermore, Web Services which are not registered in UDDl servers
can't be discovered through tModel.

We try to overcome these issues w ith our approach where we use Web Service
datasources' schema matching and Web Service ontology merging to search for
services as well as in related datasources. In this chapter we will discuss briefly the
methods used for schema matching and ontology merging. We will also discuss how
Collaborative Filtering (CF) algorithms are being used in our architecture to
recommend or predict items (or next search keywords).

3.2. The Role of W3C XML Schema
One of the most closely watched developments within the XML community is the
XML schema language for describing the legal structure, content, and constraints of
XML documents (Roy, Ramanujan 2001). Schema language provides enhanced as
well as more comprehensive and powerful features than a DTD, the traditional
mechanism used to describe the structure and content of XML documents. The W3C
Schema Working Group, which supervises the development of XML schemas, issued
the language as a candidate recommendation on 24 October 2000 (Thompson, Beech
et al. 2004).

The main features that W3C recommended XML Schema are as follows (Li, MUler
2005, Roy, Ramanujan 2001, Thompson, Beech et al. 2004);

□ Features fo r Reuse: XML schema supports inheritance, so we can create new
schemas by deriving features from existing schemas. We can also override derived
features when new ones are required. The XML schema language also provides for
breaking a schema into separate components. We can then refer to appropriate
predefined components in writing schemas.

Inheritance enables efficient software reuse and help developers avoid building
everything from scratch again and again. It significantly improves XML software
development process, code maintainability, and programmer productivity.

- 27 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3; WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

□ Tight Integration w ith Namespaces: Every XML Schema uses at least two
namespaces - the t a r g e t n a m e s p a c e and the XMLSchema n a m e s p a c e , with
the exception of n o - n a m e s p a c e s c h e m a s (out of scope of our discussion). The
namespace plays an important role in the identification process. However,
namespaces are also the source of much confusion in XML. Most o f the problems
during developing the XML Schema documents are related to namespaces in one way
or another. The confusion, however, is related to namespace semantics as opposed to
the syntax outlined by the specification.

□ User-defined Types: One of the most powerful aspects o/W3C XML Schema is that
the language support for user-defined types, and more specifically for custom
value/lexical spaces. There are two custom types: s i m p l e T y p e and
c o m p l e x T y p e , which W3C XML Schema makes posséle for users to define in the
schema documents. In addition, W3C XML Schema defines a set of type
characteristics. Instead of treating all XML data as just plain text, users can enforce
formal syntax and semantics in XML documents.

In schemas, models are described in terms of constraints. A constraint defines w hat
can appear in any given context. There are basically two kinds of constraints that we
can give, content model constraints describe the order and sequence of elements and
datatype constraints describe valid units of data.

For example, one of our Web Service schema describes a valid <book> with the
content model constraint that it consist of <title>, <author>, <coverType>,
<genre>, <year> and <new> elements. The contents of these elements can have
further datatype constraint. The schema can also define how many times an element
can appear. Example 3.1 shows fragment of one of our XML data source and the
XML schema that has been used w ith that. Figure 3.2 shows the visual
representation of the same schema.

Example 3.1: XML Schema

(a) Fragment of an XML data source

<?xml-stylesheet type="text/xsl"
href="bookstore.xsl" version="l.0" encoding="UTF-8"?>

<bookstore xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsl:noNamespaceSchemaLocation="bookstore.xsd">

<book no="l">
<title>Deception Point</title>
<author>Dan Brown</author>
<coverType>Paperback</coverType>
<genre>Thriller</genre>
<year>2002</year>
<new>7.19</new>

</book>

28 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

</bookstore>

(b) XML Schema for the data source

<?xml version="l.0" encoding="utf-8"?>
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com) by Ahmed Arif
(Lakehead University) — >
<xs: schema xmlns:xs="http://w ww.w 3 .org/2001/XMLSchema">

<xs:element name="bookstore">
<xs:complexType>

<xs:sequence>
<xs:element name="book" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs: element name="title" type="xs:string"/>
<xs: element name="author" type="xs:string"/>
<xs:element name="coverType" type="xs:string"/>
<xs: element name="genre" type="xs:string"/>
<xs: element name="year" type="xs:integer"/>
<xs:element name="new” type="xs:decimal"/>

</xs:sequence>
<xs: attribute name="no" type="xs: integer"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Every specific, individual docum ent which doesn't violate any of the constraints of
the model is, by definition, valid according to that schema.

—p coverType |
bookstore ^3~~j book A —

Figure 3.2: Visual representation of XML schema.

3.2.1. The Role of XML Schema in Our System

XML Schemas can be used for service discovery. As XML schema contains
information about datasources (e.g., datatypes, etc.), matching schemas to
understand the Web Services or Web Service datasources might prove useful,
especially considering specific domains.

29 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.altova.com
http://www.w3.org/2001/XMLSchema

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

For example, let's consider some services like “OrderBook”, “GetBooks”,
“Orderltem”, all of these three services let's the user search and order fiction books.
Using UDDl based searing strategy we might be able to discover all of these three
services. But, w hat if the user wants to look only for the services those have “Harry
Potter” or “Robert Langdon” series books available in their stock? Our schema
matching strategy can solve this problem. Instead of “Book”, “Fiction” like keywords
the user can search w ith keywords like “Harry Potter (central character's name)”,
“Hum ayun Azad (author's name)” so forth.

Let's say the user is looking for book related Web Services w ith the “H um ayun
Azad” keyword. Before starting the search process the user needs to do the schema
matching or ontology merging (any one of these strategies could be used; we wül
discuss ontologies in later sections). Both schema matching and ontology merging
process creates a simple XML füe, which we are calling the SearchHelper file. During
the schema matching the system goes directly to the service datasource schema. By
parsing the schema it can understand that in that particular Web Service datasource
“author's name” is tagged as, let's say <my : w r i t e r > (this matching is done using a
Dictionary, more on this wül be discussed in next sections). The system stores these
kinds of useful information in the SearchHelper füe.

Datasources Web Services
has

XML WS 1Search
Key

has
if m atched info found XML WS 2

gets

XML
search
helper SearchApplication

— n r ------
get info

inform user:
no m atch found

has
XML WS n

inform user:
1. m atch found, or
2. no m atch found

Figure 3.3: Search for Web Services with keys like "author's name".

This SearchHelper füe is stored locaUy, so that the user doesn't have to go through
the schema matching and ontology merging process before every search operation.
H e/she has to recreate the SearchHelper füe, only w hen new services are register
w ith the system. After the completing the SearchHelper creating process, the system
wiU go directly to the SearchHelper file. By parsing it the system w ül remember - in
that particular Web Service datasource “author's nam e” is tagged as <my : w r i te r > .

30 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

Then it will go to the datasource to look if there is any author called "Hum ayun
Azad” available; if yes, it wiU return the user that Web Service's URL

So we can say using schema matching and ontology merging strategy for Web
Service discovery increases the possibÜity of the discovering only the services the
searcher really interested in. Figure 3.3 illustrates this process.

The schema matching strategies wUl be discussed in depth in later sections.

3.3. The Role of Ontology
Ontologies specify a conceptualization of a domain in terms of concepts, attributes,
and relations (Fensel 2003, Fiaidhi, Passi et al. 2004). They are a w ay of specifying the
structure of dom ain knowledge in a formal logic designed for machine processing.
The effect on IT is to shift the burden of capturing the meaning of data content from
the procedural operations of algorithms and rules to the representation of the data
itself (Dermy 2004).

For example, let's say we have a Web Service called “findFlat”. In some regions of
the world (hke Eastern Asia) “flat” means “apartm ent”. Now if that service doesn't
have ontology to describe that the task of it is to look for accommodation, the search
apphcation wül have to rely on its ow n logic to understand that. If the appHcation
faüs, the service wül be undiscovered. Figure 3.4 ülustrates this issue.

Search for
accom m odation '

Found findFlat_2

Search
Application

W eb S erv ice 1 W eb S erv ice 2 Ontology

P l a t

A o a r tm e r iw

Figure 3.4: Role of ontology in service discovery. Service description with ontology can
increases the possibility of service discovery. Here the search application understood from
the service ontology that flat means apartment.

- 31 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

Infusing even a little semantic quality into our data (like, residing in Web pages,
Web Service, database tables, electronic documents etc.) can mean that data is more
immediately, broadly, and profoundly usable by all applications (including ours)
aware of the knowledge-representation scheme, the ontology (Dermy 2004, Fiaidhi,
Passi et al. 2004).

Practical ontology languages are being adopted; the Resource Description Framework
(RDF) and the Web Ontology Language (OWL) are recently recommended by the W3C
for building Web ontologies (Denny 2004, Manola, Miller et al. 2005, Smith, Welty et
al. 2004). These language specifications were developed over several years both
within and outside of the organization.

3.3.1. W3C Resource Description Framework (RDF)

The Resource Description Framework (RDF) is the first W3C standard for enriching
information resources of the Web with detailed descriptions (Manola, Miller et al.
2005). RDF provides a model for data, and syntax so tiiat independent parties can
exchange and use it. RDF was designed to provide a common way to describe
information so it can be read and understood by computer appHcations. RDF
descriptions are not designed to be displayed on the Web.

The RDF data model defines the structure of the RDF language. The data model
consists of three data types (Bonstrom, Hinze et al. 2003, Manola, Miller et al. 2005):

1) Resources: All data objects described by a RDF statement are called resource. It can
be anything that can have an URL, like Web Service.

2) Properties: A specific aspect, characteristic or relation of a resource is described by a
property, like the creator of the service.

3) Statements: A statement combines a resource with its describing property and the
value of the property, like the name of the creator. RDF statements are the structural
building blocks o f the language.

A RDF statement is typically expressed as “resource-property-value” triple,
commonly written as <P (% T) where a resource <2(,has a property (P with value
These triples can also be seen as object-attribute-value triple and as graphs w ith
nodes for resources and values where directed edges represent the properties. Figure
3.4 shows the graph of the resource (î^with an edge for the property directed to the
property value T/.

% — V

Figure 3.5: Graph representation of a P (R, V) triple.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

Resources are represented in the graph as circles. Properties are represented by
directed arcs. Property-values are represented by a box. These values are called
graph endnodes. Values can also become resources if they are described by further
properties, i.e., if a value forms a resource in another triple. They are then
represented by a circle. The Example 3.2 shows one of our Web Service descriptions
and Figure 3.5 shows the triple representation for the metadata of the same
description.

Example 3.2: Different Representation of a RDF Statement

This is the description created fo r one o f our W eb Services, URL, h ttp://localhost:8080/axis/M YW Sl.

<?xml version="l.0"?>
<rdf; RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:my="http://lakehead.fake/">

<rdf: Description rdf :about="http;//localhost;8080/axis/MYWSl">
<my: xml my:is="bookstore.xml"/>
<my:author my :is="author"/>
<my:book my:is="title"/>
<my:character my :is="character"/>
<my:genre m y :is="genre"/>
<my: year my :is="year"/>

</rdf:Description>
</rdf:RDF>

Triple: See Figure 3.6

Number Subject Predicate Object
1 genid:ARP1192 http://lakehead.fake/is "bookstore.xml"
2 http ://localhost:8080/axis/MYWSl http://lakehead.fake/xml genid:ARP1192
3 genid:ARP1193 http ://lakehead.fake/is "author"
4 http://localhost:8080/axis/MYWSl http://lakehead.fake/author genid;ARP1193
5 genid:ARP1194 http ://lakehead.fake/is "title"
e http : / /localhost : 808 0/axis/MYîJSl http ://lakehead.fake/book genid:ARPl194
7 genid:ARPl195 http://lakehead.fake/is "character"
8 http: //localhost : 8080/axis/MY7JSl http ://lakehead.fake/character genid:ARP1195
9 genid:ARPl196 http ://lakehead.fake/is "genre"
1 0 http : //localhost : 8080/axis/MYî-JSl http ://lakehead.fake/genre genid:ARP1196
11 genid:ARP1197 http://lakehead.fake/is "year"
12 http ://localhost:8080/axis/MYWSl http://lakehead.fake/year genid:ARP1197

Figure 3.6: Triple representation of a resource description.

3.3.2. W3C Web Ontology Language (OWL)

W3C Web Ontology Language (OWL) is a semantic m arkup language for publishing
and sharing ontologies on the semantic Web, OWL is designed as an extension of
RDF/S and is derived from the DARPA Markup Language (DAML+OIL) Web
ontology language (zhihong, Mingtian 2003). OWL was designed to provide a

- 33 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080/axis/MYWSl
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://lakehead.fake/
http://lakehead.fake/is
http://lakehead.fake/xml
http://localhost:8080/axis/MYWSl
http://lakehead.fake/author
http://lakehead.fake/is
http://lakehead.fake/is
http://lakehead.fake/year

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

common way to process the content of web information. Like RDF, OWL is also not
meant for to be read by humans.

RDF and OWL are not similar but eventually they are much of the same thing, only
OWL is a stronger language w ith greater machine interpretabiHty and it comes w ith
a larger vocabulary and stronger syntax than RDF (McGuinness, Harmelen 2004).
We can call OWL as an extension of RDF Schema, in the sense that OWL w ould use
the RDF meaning of classes and properties and would add language primitives to
support the richer expressiveness.

Unfortunately, the desire to simply extend RDF Schema clashes w ith the trade-off
between expressive power and efficient reasoning. RDF Schema has some very
powerful modelling primitives, such as the r d f s : C la s s (the class of all classes) and
r d f : P r o p e r ty (the class of aU properties); these primitives are very expressive,
and wül lead to uncontroUable computational properties if the logic is extended with
the expressive primitives (Antoniou, Harmelen 2003).

3.3.3. Role of RDF Ontology in Our System

It is possible to replace XML schema with ontologies in our system to understand the
datasource elements (please see Section 3.2.1). Ontologies have one advantage over
schemas that is - it can describe the services too, though, not necessarily aU services
will or w ant to have ontologies. That's why in our system we kept both options; the
searching can be done either with the help of schema matching or ontology merging.

Let's consider the same example we used in section 3.2.1, a user searches for services
w ith keyword like author's name, “Hum ayun Azad”. If h e /sh e wants to do the
search through ontologies, then exactly like the schema matching, before starting the
search h e /she needs to go through the ontology merging process. Like schema
matching, ontology merging process also creates the SearchHelper file. During the
ontology merging the system goes directly to the service ontology and by parsing
the ontology it realizes - in that particular Web Service datasource “author's nam e” is
tagged as <my : w r i te r > . The system stores these kinds of useful information in the
SearchHelper file.

We already mentioned in Section 3.2.1 that, the SearchHelper file is stored locaUy, so
that the user doesn't have to go through the schema matching and ontology merging
process before every search operation. But, h e / she has to recreate the SearchHelper
füe, w hen new services are registered w ith the system. After the user is done w ith
creating the SearchHelper füe, h e / she can proceed w ith the search. During search
the system w ül go directly to the SearchHelper file and by parsing it wül remember
in that particular Web Service datasource “author's nam e” is tagged as

- 34 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

<my : w r i te r > . Then it will go to the datasource to look if there is any author called
“H um ayun Azad” available; if yes, it will return the user that Web Service's URL

For describing our Web Services and service datasources we used RDF. We have
mentioned, RDF and OWL shares same syntax only that OWL is stronger language
with greater machine interpretability and it comes w ith a larger vocabulary and
stronger syntax. While describing a simple Web Service or Website it is better to use
RDF as developing and handling RDF is easier than OWL. But no matter in w hat
format our description is, converting RDF to OWL or OWL to RDF for simple
ontologies can easily be done. Especially m our case, the ontologies are written in
very simple logics that if we change a few lines in the source and change the
extension in OWL it will become OWL ontology. If we change our ontologies from
RDF to OWL our system will still work fine w ith a very minor change in coding.

For the convenience of service providers, we took the opportunity to create an
application that wiU generate RDF descriptions for a service page by taking minimal
user input. Figure 3.7 shows the RDF generation process with that tool.

RDF

input
Generator

generates

RDF
Files

Figure 3.7: RDF generation with our application.

3.3.4. The RDF Ontology Syntax Supported by Our
System

The RDF descriptions can be created w ithout the use of this tool, as long as the
providers follow the syntax, semantics our system supports. Expressed in shorthand
form, the Description element m ust have the following structure (where “?”
denotes zero or one occurrence; “+” denotes one or more occurrences; “*” denotes
zero or more occurrences; and the empty element tag means the element m ust be
empty):
<rdf: Description rdf:about+>+

<my:xml my:is?/>
<my:author my:is?/>
<my:book my:is?/>
<my: character my:is?/>
<my:genre my:is?/>
<my:year my : is ?/>

</rdf:Description>
Here the Description element and the about attribute are from RDF vocabulary,
xml, author, book, character, genre and year are mandatory elements from

- 35 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

our namespace http: / /lakehead. fake/. These elements provide the following
data:

O xml: Web Service datasource name (e.g., name. xml)
author: The database tag where author names are stored.

|=> book; The database tag where book titles are stored.
■=> character: : The database tag where character names are stored.
|=> genre: The database tag where book genres (e.g., fiction) are stored.
■=> y e a r : The database tag where publishing years are stored.

The i s attribute is a mandatory attribute to be used with the above elements to
describes the corresponded information (e.g., a u th o r i s writer).

3.4. Schema-level Matching
A fundamental operation in the manipulation of schema information is Match, which
takes two schemas as input and produces a m apping between elements of the two
schemas that correspond semantically to each other (Doan, Domingos et al. 2003,
Miller, loannidis et al. 1994, Mho, Zohar 1998, Sakamuri, Madria et al. 2003). Match
plays a central role in numerous applications, in our case we wül be using it for
schema integration and ontology merging. In this section we w ül cover some
existing approaches for schema-level matching, and wül demonstrate how we have
done our schema matching and ontology merging.

Most work on schema match has been motivated by schema integration that is, given
a set of independently developed schemas; construct a global view (Batini, Lenzerini
et al. 1986, Sheth, Larson 1990). In an artificial inteUigence setting, this is the problem
of integrating independently developed ontologies into a single ontology.

Since schemas are independently developed, they often have different structure and
terminology. Thus, a first step in integrating the schemas is to identify and
characterize these inter-schema relationships. This is a process of schema matching.
Once they are identified, matching elements can be unified under a coherent,
integrated schema or view. Sometimes during this integration, or as a separate step,
programs or queries are created that perm it translation of data from the original
schemas into the integrated representation (Rahm, Bernstein 2001, Sakamuri, Madria
et al. 2003).

3.4.1. The Match Operator

To define the match operator Match we need to choose a representation for its input
schemas and output mapping. We define a m apping to be a set of “m apping
elements”, each of which indicates that certain elements of schema SI are m apped to

- 36 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

certain elements in S2. Furthermore, each mapping element can have a “m apping
expression” which specifies how the SI and S2 elements are related. The m apping
expression may be directional, for example, a certain function from the SI elements
referenced by the mapping element to the S2 elements referenced by the m apping
element. Or it may be non-directional, that is, a relation between a combination of
elements of SI and S2. It may use simple relations over scalars (e.g., =, ^), functions
(e.g., addition or concatenation), ER-style relationships (e.g., is-a, part-of) or any
other terms that are defined in the expression language being used.

We define the M atch operation to be a function that takes two schema elements
SI.element and S2. element as input and returns a m apping between those two elements
as output, called the “match result”. Each m apping element of the match result
specifies that certain elements of schema SI logically correspond to certain elements
of 52.

Unfortunately, the criteria used to match elements of SI and S2 are based on
heuristics that are not easily captured in a precise mathematical way that can guide
us in the implementation of M atch (Rahm, Bernstein 2001).

Table 3.1: Match on Schemas
SI elements S2 elements

Book
BookName
Author
Binding

Iteml
Title
Writer
Cover
Page

In this thesis we represent a mapping as a similarity relation = , where each pair in
— represents one mapping element of the mapping. For example, the result of

calling Match on the schemas of Table 3.1 could be (BookjBook^ame = Iteml.TTtle,
(Boo^utfior — Iteml.‘Writer and {Iteml.Cover, Iteml.Page} — (BookÆinding. A complete
specification of the result of the invocation of Match w ould also include the m apping
expression of each element that is <Boo^(Book^ame = Iteml.lîtk, (Boo^utfior =
Iteml.Writer and Concatenate (Iteml.Cover, Iteml.Page) = (BookjBituRng describes a
mapping between two S2 elements and one SI element. When mapping expressions
are involved, we will explicitly mention them. Otherwise, we will simply use = .

Schema-level matchers only consider schema information, not instance data. The
available information includes the usual properties of schema elements, such as
name, description, data type, relationship types (p a r t - o f , i s - a , etc.), constraints,
and schema structure. In general, a matcher will find multiple match candidates. For
each candidate, it is customary (but not mandatory) to estimate the degree of
similarity by a normalized numeric value in the range 0-1, in order to identify the

- 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

best match candidates (Bergamaschi, Castano et al. 1999, Castano, De AntoneUis
2001, Doan, Domingos et al. 2000).

3.4.2. Matching Strategy in Our System

There are two main alternatives for the “Granularity of Match”, element-level and
structure-level. In element-level matching for each element of SI, system determines
the matching elements in S2. In the simplest case, only elements at the finest level of
gramularity are considered, which we call the atomic level, such as attributes in an
XML schema. In our system we considered this kind of granularity. But it's not
restricted to the atomic level, but may also be applied to coarser grained, higher level
elements (Rahm, Bernstein 2001). For the schema fragments shown in Table 3.2, a
sample atomic-level match is IM ySoo^uthor = IMylteml.lVriter

Table 3.2; Structure-level Match
SI elem ents S2 elem ents

M yBook M y lte m l Full structural match.
BookName Title
A uthor W riter
Binding CoverType

Book Item l Partial structural match.
BookName Title
A uthor W riter
Binding Cover

Page

On the other hand, structure-level matching refers to matching combinations of
elements that appear together in a structure. Arrange of cases is possible depending
on how complete and precise a match of the structure is required. In the ideal case,
all components of the structures in tiie two schemas fully match. Alternatively, only
some of the components may be required to match (i.e., a partial structural match).
Examples of the two cases are shown in Table 3.2. For more complex cases, the
effectiveness of structure matching can be enhanced by considering known
equivalence patterns, which may be kept in a library (Rahm, Bernstein 2001).

There could be 4 kinds of relations or “Match Cardinality” between elements, namely
1:1, l:n, ml, and mtn. Element-level matching is typically restricted to local
cardinalities of 1:1, ml, and l:m Obtaining mm mapping elements usually requires
considering the structural embedding of the schema elements and thus requires
structure-level matching (Rahm, Bernstein 2001).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

Table 3.3: Match Cardlna ity
Local match SI elem ents S2 elem ents Matching expression
cardinalities

1 1:1, element-level BookName Title BookName = Title
2 n :l, element-level Cover, Page Binding Binding = Cover, Page
3 l:n , element-level Binding Cover, Page Cover, Page = Extract

(Binding, . ..)
4 n :l structure-level B.Title, A.Book, A.Book, A .Publisher =

n:m element-level B.PuNo, A.Publisher Select B.Title, P.Name
P.PuNo, From B, P
P.Name Where B.PuNo=P.PuNo

Table 3.3 shows examples of the four local cardinality cases for individual m apping
elements. In row 1 and 2, the match is 1:1 and ml. Row 3 explains how Cover and (Page
are extracted from (Binding, where row 4 uses a SQL expression combining attributes
from two tables. It corresponds to an n. m relationship at the attribute level and an m l
relationship at the structure level. But this is out of our scope here, because in our
system only the elements at the finest level of granularity are considered, we
identified only 1:1 relationship cardinalities because successfully matching these
means matching other relations can also be adopted (Doan, Madhavan et al. 2002,
Sakamuri, Madria et al. 2003).

We identified the relations and did matching using a “Linguistic Approach”.
Linguistic matchers use names and text (i.e., words or sentences) to find semantically
similar schema elements. There are usually two types of linguistic approaches, name
matching and description matching. We used name-matching in our system. Name-
based matching matches schema elements w ith equal or similar names. Similarity of
names can be defined and measured in various ways, including:

■ The Equality o f Names: An important subcase is the equality of names from the
same XML namespace, since this ensures that the same names indeed bear the same
semantics.

• The Equality o f Canonical Name: Representations after stemming and other
preprocessing. This is important to deal with special prefix/suffix symbols. One
example of this kind of equality is TTtCe-^ (BookÿCame.

■ The Equality o f Synonyms: As name implies, the equality of synonyms considers
synonyms as equality, like price = cost.

■ The Equality Hypemyms: Considers hypemyms as equalities. For example, Sook̂
i s - a publication and article i s - a publication imply 5oo^ — puSCication, article —
publication, and 6ook ̂— article.

■ The Sim ilarity o f Names: This is based on common substrings, edit distance,
pronunciation and soundex (an encoding of names based on how they sound rather
than how they are spelled), etc. For example written(By — writer.

- 39 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3; WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

■ User-provided Equality: The user defined name matches, for example the user
defined Iteml is actually a book, Iteml — 6ook̂

Exploiting synonyms and hypem ym s requires the use of thesauri or dictionaries
(Rahm, Bernstein 2001). General natural language dictionaries, perhaps even multi­
language dictionaries (e.g., EngHsh-Bengah) are being used to deal w ith input
schemas of different languages. In addition, name matching can use domain or
enterprise specific dictionaries and i s - a taxonomies containing common names,
synonyms and descriptions of schema elements, abbreviations, etc.

Name-based matching is possible for elements at different levels of granularity.
Furthermore, it can be applied across levels, e.g., for a lower-level schema element to
also consider the names of the schema elements it belongs to (e.g., to find that
autfor.name = JlnthorlHaniè). This is similar to context-based disambiguation of
homonyms.

Though we used name-based matching for finding on ly f.i matches; it's not Hmited
to 1:1 matches. It can identify multiple relevant matches for a given schema element.
For example, it can match Type w ith both cover type and binding type. Name matching
can also be driven by element-level matching.

Schema matching is typically semi-automatic, sometimes supported by a graphical
user interface which is sometimes tedious, time consuming, error-prone, and
therefore expensive process (Rahm, Bernstein 2001). In our system the schema
matching is fuUy automatic.

3.4.3. An Approach to Ontology Merging

As we have discussed before, our system deals w ith ontologies in a very
straightforward manner. It requires the service providers to create their ontologies
according to the syntax our system supports (the syntax is provided in Section 3.3.4).
The “RDF Ontology Generator” tool has also been developed to help this process. As
all the ontologies are in same syntax, we simply “name (id)” each ontology with the
Web Service they collaborate with. For example, suppose we have 3 Web Services
MYWSl, MYWS2 and MYWS3. When we ask our system to do the ontology
merging, it goes to each endpoint, parse the ontology files and merge them aU
together depending on the WS name (id):

<Web servive id = 1 ontologyl>
<Web servive id = 2 ontology2>

Figure 3.8 illustrates this process.

40 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

ws 1
■

XML S earch
H elper

WS nW S 2

C lient
A pplication

O nto logy m erg in g
S c h e m a m atch in g

Figure 3.8: Ontology merging process in our system.

Later w hen a user looks for a Web Service or Web Service datasource w ith a key like
“Robert Langdon (central character's name)” the system goes to the merged
description to look for that key. As the description contains possible linguistic 1:1
matches (e.g. TÇSl.iteml — 'WS2.6oo^, the system recognizes similar items other than
that key (e.g., iteml in Web Service 1) and shows the result (see Figure 3.3).

3.5. The Use of Collaborative Filtering (CF)
The main idea of collaborative filtering is to automate the process of “word-of-mouth”
by which people recommend products or services to one another (Breese,
Heckerman et al. 1998, Heylighen 2001, Resnick, lacovou et al. 1994, Shardanand,
Maes 1995). When we need to choose between varieties of options w ith which we do
not have any experience, we wUl often rely on the opinions of others who do have
such experience. However, w hen there are thousands or millions of options, like in
the Web, it becomes practically impossible for an individual to locate reliable experts
that can give advice about each of the options.

By shifting from an individual to a collective method of recommendation, the
problem becomes more manageable. Instead of asking opinions to each individual,
we can determine an average opinion for the group. This, however, ignores user's
particular interests, w h ich m ay b e d ifferent from th ose o f the average person
(Heylighen 2001). Another way is to hear the opinions of those people who have
similar interests, that is to say, a dimsion-of-labor type of organization, where people
only contribute to the domain they are specialized in.

- 41 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

There are many approaches to collaborative filtering. Usually collaborative filtering
algorithms (CF-algorithms) use collection of user profiles to identify interesting
information for these users. A particular user gets a recommendation based on the
user profiles of other, similar users (Breese, Heckerman et al. 1998, Heylighen 2001,
Wang, Vries, Arjen P. de et al. 2006). User profiles are commonly obtained by
explicitly asking users to rate the items. Collaborative filtering has often been
formulated as a self-contained problem, apart from the classic information retrieval
problem (Wang, Vries, Arjen P. de et al. 2006).

In a typical CF scenario, there is a list of tn users •.«»,} and a list of M
items ^ "= {'1 >'2 . ■ ■. Each user has a list of items which the user has expressed
h is /h e r opinion about. Opinion can be explicitly given by the user as a rating score,
generally w ithin a certain numerical scale, or can be implicitly derived from
purchase records, by analyzing timing logs, by mining web hyperlinks and so on
(Konstan, Miller et al. 1997, Terveen, Hill et al. 1997). Notable that L. Ç T and it is
possible for U, to be null-set. There exists a distinguished user € U called the
active user for whom the task of a collaborative filtering is to find an item likehness
that can be of two forms.

□ Prediction: That is a numerical value, T.j expressing the predated likeliness of item
’j t for the active user This predicted value is within the same scale (e.g., from
1 to 5,1 to 10) as the opinion values provided by

□ Recommendation: That is a list o fN items, !>• C I , that the active user will like the
most. Notable that, the recommended list must be on items already purchased by the
active user, (i.e., T this interface ofCF algorithms is also known as Top-N
recommendation.

Active user
Input (ratings table)

. - Hem for which prediction
is sought

Prediction

R ecom m endation

C F-Algoiithm

P jj (predic'jon on
item I for the active

user)

V '7 |. .T cT^} Top-N
V list of items for the

active user

Output Interface

Figure 3.9: The collaborative filtering process.

Figure 3.9 shows the schematic diagram of the collaborative filtering process. CF
algorithms represent the entire x user-item data as a ratings matrix, A . Each
entry in A represent the preference score (ratings) of the ?’th user on the Jth

- 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

item. Each individual rating is within a numerical scale and it can as well be 0
indicating that the user has not yet rated that item.

Researchers have devised a number of collaborative filtering algorithms that can be
divided into two mail categories: User-based (a.k.a., memory-based) and Item-based
(a.k.a., model-based) algorithms. In this section we provide a brief idea about existing
CF-based recommender system algorithms.

□ User-based Collaborative Filtering Algorithms: User-based or Memory-based
algorithms utilize the entire user-item database to generate a prediction (Breese,
Heckerman et al. 1998). These systems employ statistical techniques to find a set o f
users, known as neighbors that have a history of agreeing with the target user (i.e.,
they either rate different items similarly or they tend to buy similar set of items).
Once a neighbor of users is formed, these systems use different algorithms to combine
the preferences of neighbors to produce a prediction or top-N recommendation for the
active user. The techniques, also known as nearest-neighbor or user-based
collaborative filtering are more popular and widely used in practice.

□ Item-based Collaborative Filtering Algorithms: Item-based or Model-based
collaborative filtering algorithms provide item recommendation by fast developing a
model o f user ratings (Breese, Heckerman et al. 1998). Algorithms in this category
take a probabilistic approach and envision the collaborative filtering process as
computing the expected value o f a user prediction, given his/her ratings on other
items. The model building process is performed by different machine learning
algorithms such as Bayesian network, clustering, and rule-based approaches. The
Bayesian network model formulates a probabilistic model for collaborative filtering
problem (Breese, Heckerman et al. 1998). Clustering model treats collaborative
filtering as a classification problem and works by clustering similar users in same
class and estimating the probability that a particular user is in a particular class C*,
and from there computes the conditional probability o f rating (Basu, Hirsh et al.
1998, Breese, Heckerman et al. 1998, Ungar, Foster 1998). The rule-based
approach applies association rule discovery algorithms to find associations between
co-purchased items and then generates item recommendation based on the strength of
the association between items (Sarwar, Karypis et al. 2000).

3.5.1. Collaborative Filtering in Our System

Our system uses item-based algorithm. Unlike the user-based collaborative filtering
algorithm th e item -based, approach look s into the set o f item s the target user h as
rated and computes how similar they are to the target item < and then selects k
most similar items •.««.}; at the same time their corresponding similarities
{•Sii,Si2 , - • •,sal are also computed (Sarwar, Karypis et al. 2001). Once the most similar

43 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XML SCHEMA & ONTOLOGY

items are found, the prediction is then computed by taking a weighted average of
the target user's ratings on these similar items.

1 2 3 n-1 n

m-1

CR R)
- R

C.R R.) 1

C.R r ;̂
R -

Item-item similarity is computed by
looking into co-rated items only. In
case of items / and y ttie similarity s,,
computed by looking into them. Note;'
each of these co-rated pairs are
obtained from different users, in this
example they come from users 1,
and m-1.

Figure 3.10: Isolation of co-rated items and similarity computation.

One critical step in the item-based collaborative filtering algorithm is to compute the
similarity between items and then to select the most similar items; this process is
known as “Similarity Computation”. The basic idea in similarity computation
between two items i and J is to first isolate the users who have both of these items
and then to apply a similarity computation technique to determine the similarity J
(Deshpande, Karypis 2004, Sarwar, Karypis et al. 2001). Figure 3.10 illustrates this
process, here the matrix rows represent users and the columns represent items.
There are many similarity computation algorithms. In our system we used the
correlation-based similarity algorithm. In this cilgorithm, similarities between two
items i and 3 is measured by computing the Pearson-r correlation To make
the correlation computation accurate we must first isolate co-rated cases (i.e., cases
where the users rated both i and 3) as shows in Figure 3.10. The set of users who
both rated * and 3 are denoted by U then the correlation similarity is given by:

Here denotes the rating of user u on item L Ri is the average rating of the * -th
item.

Anotiier important step in a collaborative filtering system is to generate the output
interface in term s o f prediction; this process is k n o w n as the “P rediction
Computation”. Once we isolate the set of most similar items based on the similarity
measures, the next step is to look into the target user's ratings and use a technique to
obtain predictions (Sarwar, Karypis et al. 2001). There are many algorithms available
for prediction computation; in our system we used the weighted sum algorithm. As

- 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

the name implies, this method computes the prediction on an item * for a user H by
computing the sum of the rating given by the user on the items similar to i . Each
ratings is weighted by the corresponding similarity j between items i and J . We
can denote the prediction ; as;

s i m i l a r i t e m s .

^ Z a l l s i m i l a r i t e m s . X (I i)

Figure 3.11 illustrates the prediction generation process for five neighbors.

I 2 3 i-1 I .+? n-1 n

1

2
m-1

fegfess:wvl>asedm

2no 1st 3rd 5th

I I
Ranking of the items similar to the /-th item

Figure 3.11: Item-based collaborative filtering algorithm. The prediction generation process is
illustrated for 5 neighbors.

45 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: WEB SERVICE SEARCH VIA XM L SCHEMA & ONTOLOGY

In our system when a user looks for a product (e.g., book title) it wül try to find
similar items (that has been generated manually using correlation-based). If there are
similar items exists in the similarity database then it will start computing the
prediction using weighted sum algorithm. We used weighted sum algorithm
because it can be easily converted to regression model (Deshpande, Karypis 2004,
Sarwar, Karypis et al. 2001). If tire prediction computation indicates some items that
could interest the user, our system wül recommend those items along w ith the
search result. Figure 3.12 illustrates this process.

Search
Key

if similar p roduct found
gets

CF
Similarity

dbg e t info

no sim ilarity found

CF
Prediction
Computation

Client
Application

recom m end

Figure 3.12: Item-based collaborative filtering in our system.

- 46 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

CHAPTER 4
SYSTEM PROTOTYPE IMPLEMENTATION

4.1. Web Service Implementation

I n this section, the details of implementing multiple Web Services will be discussed
where they share the same ontological similarities. All of our service location
contains the following files:

1. A Web Service (*.jws): A Web Service, which has been created in Apache Axis^
(we've already discussed in Chapter 2, Section 2.4.2 how to create Web Services
using Axis). To test our architecture we used three simple services (these services
will be denoted as MYWSl, MYWS2 and MYWS3 from now on). All o f these
services perform the same functionality; they take the endpoint as input from the
system and return the system either the ontology location or schema location,
whatever the system asked for. The prototype is designed to search for book related
data from family of Web Services (M YWSl, MYWS2, ..., MYWSn). The services
contain data on books with varying structures and ontology. In real world, this
service could be a “book bidding service”, “book ordering service” or something more
complex. Our system assumes all service locations have a service that returns the
schema or ontology location when asked for.

Creating the service is straightforward. We create a call that typically is associated
with WSDL. Then we set the target endpoint (provided by the system), operation
name (e.g., get Sch em aU Ri (), getDBName ()), and request intent (either schema or
ontology location). Then we use an overloaded invoke provided by Axis that deliver
the return value.

2. A Datasource File (*.xml): This file contains item information, as we picked up
“book” domain, in our case it would be book information (e.g., book title, author, etc.).
The file could be in any semantic. The code fragment below show a portion of our
bookstore datasource for MYWSÏ:
<?xml-stylesheet type="text/xsl" href="bookstore.xsl"

version="l.0" encoding="UTF-8"?>
<bookstore xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:noNamespaceSchemaLocation="bookstore.xsd">

<book no="3">
<title>Digital Fortress</title>
<author>Dan Brown</author>

’ http://w s.apache.org/axis

4 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/2001/XMLSchema-instance
http://ws.apache.org/axis

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

<type>Paperback</type>
<genre>Thriller</genre>
<character>Susan Fietcher</character>
<year>2003</year>
<price>

<new>6.59</new>
<used>4.47</used>

</price>
</book>

</bookstore>
The first tag in the code fragment denotes the datasource uses a stylesheet named
books to re , x s l; the second tag denotes it uses a schema rmmed b o o ksto re .xsd .

3. An XSL Stylesheet (*.xsl): The Extensible Stylesheet Language Family (XSL)“ is a
family o f recommendations far defining XML document transformation and
presentation. INe used it with our datasource to give it a presentable and user
readable look. As this file is not a mandatory part of our system.

4. A n XM L Schema File (*.xsd): We've already discussed about what schema does,
and how it plays an important role in Web Services and in our system (Chapter 3,
Section 3.2.1). The schema can be in any semantics, the system don't require it to be
in a specific format.

5. A RDF Ontology File (*.rdf): We've also discussed RDF ontologies and their
standing in our architecture in Chapter 3, Section 3.3.3. There we mentioned that the
service ontologies must follow the syntax our system supports (the syntax is showed
in Chapter 3, Section 3.3.4), otherwise the system will be unable to recognize the file.
In below we provide a fragment o f the ontology we are using:
<?xml version="l.0"?>
<rdf: RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:my="http://lakehead.fake/">

<rdf; Description rdf :about="http://localhost:8080/axis/MYWSl">
<my; xml my :is="bookstore.xml"/>

<my:genre my :is="genre"/>
<my: year my ;is="year"/>

</rdf ;Description>
</rdf:RDF>
The forth line of the ontology indicates the description is for the location
h t tp : / / lo c a lh o s t : 8080/axis/MYWSl. The 5th line says the datasource this
ontology represents is “b o o k s to re . xm l”. Then it starts providing synonyms to
help the Ma t ch process:
<RDF>

<Description about="service-location">
<database is="database name">
<tag-in-database-for-genre is="synonyms">

</Description>
<RDF>

10 http ;//www.w3 .org/Style/XSL

- 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://lakehead.fake/
http://localhost:8080/axis/MYWSl
http://localhost
http://www.w3

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

6. An Index File (*.html): We kept a simple HTML file jbr to show welcome message
for the service location (e.g., h t t p : / / i o c a i h o s t : 8 0 8 0 / a x i s / M Y W S l , will bring
up the index file in any Web browser).

7. Some Image Files (*-jpg, «ko have two image files for decorating the
HTML index file.

htfp ://localhost:8080/axis/M Ÿ W S1/B ookstoreW Si.jw s?w sdl : M icrosoft In te rn e t Explorer

Fie Edit View Favorites Tools Help l l

a a e .

Adcress http://localhost;S080/axis/MYWS 1/BookstoreVVS l.j'A'sP'A’sdl j ii3 Go
xmlns : wsdl=''h t tp ; / / s c h e m a s .x m is o a p .o rg / w s d t/ "
xmlns:-.vsdlsoap=''h t t p : / / s c h e m a s .x m l s o a p . o r g / w s d l / s o a p / "
xmlns: x s d - 'h t t p : / /w w w . w 3 .o r g /2 0 0 l/X M L S c h em a ">

- <!--

-->
<w sdl:m essage n am e= "getU R IR equest" />

- <w sdl:m essage n a m e = ''g e tS c h em a U R IR e sp o n se ">
< w sdl:part n am e= "g etS ch em aU R IR e tu rn " ty p e= "x sd :s tr in g " />

«Vwsdl:m essage>
- <w sdl:m essage nam e= "g etU R IR esp o n se">

cv /sd h p art n a m e -g e tU R IR e tu rn ty p e= "x sd :s tr in g " />

Done Local intranet

Figure 4.1: A fragment of the WSDL for our Web Service.

Figure 4.1 shows a fragment of the WSDL generated for our Web Service (how to get
see WSDL of a service has been demonstrated in Chapter 2).

F3e Edit View Faytwites Tools Help

V 0 ' 2 l @1 ^ .
A ddress http://localhost:8080/axisyMYVVSl/ ^ ^ G o

Bookstore Web Service 1

T h is p a g e will d i r e c t y o u t o o u r b o o k s to r e d a t a b a s e in 5 s e c o n d s .

'•d^^Dwered by

.@Done Local intranet %

Figure 4.2: The start page for one of our Web Services. This page is written in HTML.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://iocaihost:8080/axis/MYWSl
http://localhost;S080/axis/MYWS
http://schemas.xmlsoap.org/wsdl/soap/
http://www
http://localhost:8080/axisyMYVVSl/

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

Figure 4.2 shows the welcome page of our Web Service (combination of HTML and
image ^ s) .

Me Edit View Favorites Tools Help V

.y ' _ a a i d P :

1 Address '.ê î http://iocalhost:8Q8Q/axis/MYWS 1/bookstore.xml

Bookstore: Web Service 1
I D a ta s o u r c e : b o o k sC o re .xm l S c h e m a : b o o k s to r e .x s d S t y l e s h e e t : b o o k s to r e .x s l S

Book Name Aathor Cover Genre Main Character Year Price - New Price - Used
Deception Point Dan Brown Paperback Thriller Rachel Sexton 2002 7.19 2.49
Angeh and Demons Dan Brown Paperback Thriller Robert Langdon 2003 7.19 5.00
Digital Fortress Dan Brorvn Paperback Thriller Susan Fletcher 2003 6.59 4.4'
The Da Vinci Code Dan Brown P^erback Thriller Robert Langdon 2003 22.77 20.00
The Philosopher's Stone J.K. Rowling Hardcover Fantasy Harry Potter 2000 18.95 14.40

Done **2! Local intranet % |

Figure 4.3: A portion of one of our Web Service datasources. This pleasant look is createc
with a stylesheet.

Figure 4.3 shows a portion of MYWSl datasource that has been made presentable
using a stylesheet.

4.1.1 The RDF Generator

As we've seen in Chapter 3, Section 3.3.4 our system requires the RDF ontology to
foUow a specific syntax. Generating a file following a specific semantic sometime is
irritating and error prone. That's why we've provided a simple RDF generation tool
(this tool is discussed in Chapter 3, Section 3.3.3) that wiU take inputs from user and
will create the ontology by itself. We generated this tool considering our test case, to
show that providing a simple tool like this is really helpful and effective. Figure 4.4
shows a screenshot of this tool.

G j RDF Generator

[*] Address :http://localhost:8080/axls/MYW31 i

[*3 Database 'bookstore.xml

Author Name iautbor

Book Name title
Main Character ,character
Book Genre jgenre _____ ________
Publishing Year y eaj____________________ ,

Create

Figure 4.4: RDFGenerator tool.

- 50 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://iocalhost:8Q8Q/axis/MYWS
http://localhost:8080/axls/MYW31

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

In this tool the provider wUl have to insert the Web Service URl in the “Address”
field and the database name in the “Database” filed. These two fields are mandatory.
Other then that, in the “Author Name” filed he/she has to insert the tag name that
represents au th o /s name in the service database. Similarly in the “Book Name” filed
the tag name that represents book title, in the “Main Character” field the tag name
that represents the central character of a fiction book, in the “Book Genre” field tag
name that represents the book type and finally in the “Publishing Year” field the tag
name that represents the publishing year of a book in the service database. These
fields can be empty if any of these information is /a re not avciilable in the service
database.

4.2. Infoset Streaming
There are mainly two programming models for working w ith XML infosets,
document streaming and the Document Object Model (DOM) (the java web services
tutorial 2005).

The DOM model involves creating in-memory objects representing an entire
document tree and the complete infoset state for an XML document. Once in
memory, DOM trees can be navigated freely and parsed arbitrarily, and as such
provide maximum flexibUity for developers. However the cost of this flexibility is a
potentially large memory footprint and significant processor requirements, as the
entire representation of the document m ust be held in memory as objects for the
duration of the document processing (the java web services tutorial 2005). This may
not be an issue w hen working w ith small documents, but memory and processor
requirements can escalate quickly w ith document size.

Streaming refers to a programming model in which XML infosets are transmitted
and parsed serially at application runtime, often in real time, and often from
dynamic sources whose contents are not precisely known beforehand. Moreover,
stream-based parsers can start generating output immediately, and infoset elements
can be discarded and garbage collected immediately after they are used (the java
web services tutorial 2005).

While providing a smaller memory footprint, reduced processor requirements, emd
higher performance in certain situations, the primary trade-off w ith stream
processin g is that w e can o n ly see the in fo set state at on e loca tion at a tim e in the
document. The implication being that we need to know what processing we w ant to
do before reading the XML document. Table 4.1 compares the common XML parser
API features.

- 51 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

Fable 4.1: Xl̂ L Parsers
Feature SAX StAX DOM TrAX

API Type Push, Pull, In memory XSLT rule
stream ing streaming tree

Ease of Use M edium High High M edium
XPath Capability N o No Yes Yes
CPU & Memory Efficiency Good Good Varies Varies
Forward O nly Yes Yes No No
Read XML Yes Yes Yes Yes
Write XML N o Yes Yes Yes
Create, Read, Update, Delete N o No Yes No

Strearning models for XML processing are particularly useful w hen an application
has strict memory limitations, as w ith a cell phone running J2ME, or w hen an
application needs to simultaneously process several requests, as w ith an application
server. In fact, it can be argued that the majority of XML business logic can benefit
from stream processing, and does not require the in-memory maintenance of entire
DOM trees (the java web services tutorial 2005). That's why we proffered streaming
APIs over DOM to implement our prototype.

The Transformation API for XML (TRaX) API is a standard interface for Extensible
Stylesheet Language Transformation (XSLT) engines. TRaX is not a good choice for
us because it is designed to be used as a general-purpose transformation interface for
XML documents. TRaX bridges various XML transformation methods (e.g., JDBC,
JNDl, etc.) including SAX Events and XSLT Templates. TRaX relies upon a SAX2 and
DOM-Ievel-2-compliant XML parser and XSLT engine.

Most of our system is implemented in the Simple API for XML (SAX) This is
because, other than all the advantages discussed above, the performance of push
parser like SAX is better considering anonymous XML files than pull parser like The
Streaming API for XML (StAX) 1 2 . We used StAX only to merge multiple files, because
StAX can read multiple documents at one time with a single thread. More on this
wiU be discussed in Section 4.3.1. We discuss the differences between push and pull
parsing in the next section.

4.2.1. Pull Parsing Versus Push Parsing

Streaming puU parsing (e.g., StAX) refers to a programming model in which a client
application calls methods on an XML parsing library when it needs to interact w ith

“ http://www.saxproject.org
http://stax.codehaus.org

- 52 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.saxproject.org
http://stax.codehaus.org

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

an XML infoset; that is, the client only gets (pulls) XML data w hen it explicitly asks
for it (the java web services tutorial 2005).

Streaming push parsing (e.g.. Simple API for XML-SAX) refers to a programming
model in which an XML parser sends (pushes) XML data to the client as the parser
encounters elements in an XML infoset; that is, the parser sends the data whether or
not the client is ready to use it at that time (the java web services tutorial 2005).

In our system we used both models, depending on which one solves our problem in
a better way.

4.3. Web Service Search Prototype
O ur Web Service searching and collaborative filtering prototype (a.k.a., WSSearch) is
written in Java 2 Standard Edition w ith the help of SAX, StAX and Axis APIs. Figure
4.5 (a, b, c) shows three screenshots of three tabs of the WSSearch.

a o'
iâK*Search '^A lw u t

G Search for all th e Book re la ted Web services available Search

O Search with an a u th o r

G Search with a title CF Activated

G Search with a central c h a ra c te r

ResuKSearch And

Figure 4.5 (a): Screenshot of the first tab of the WSSearch application. Users can search for
Web Services in this tab.

53 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

Q w sseirc li p'cr" S
1 Search ^KWch&EdK Abort

Schema Matching Ontoéogy Merging Open Save Validate

Figure 4.5 (b): Screenshot of the second tab. Users can generate SearchHelper by schema
matching or ontology merging strategy from this tab. They can also edit and save XML and
text type documents, and validate XML type documents in this tab.

- 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

Q w s s e a r c h

[(^S ea rch [^ Malcli & EON Abort

--- r

[Q-4] How to search with an author's name?
[1] Make sure th e local server (e.g., Apache Tomcat) is running if the

services run on localhost:8080,
[2] Go to th e "Search" tab ,
[3] Check th e "Search with an au thor " checkbox,
[4] Enter th e au thor's nam e (e.g ., Dan Brown) in th e textbox,
[5] Click on th e "Search " button.

[Q-5] How to search with a book title?
[1] Make sure th e local server (e.g ., Apache Tomcat) is running if the

services run on localhost:8080,
[2] Go to th e "Search " tab ,
[3] Check th e "Search with a title"" checkbox,
[4] Enter th e title (e.g.. Deception Point) in th e textbox,
[5] Click on th e "Search" button.

[Q-6] How to search with a central character?
[1] Make sure th e local server (e.g ., Apache Tomcat) is running if the

services run on localhost:8080,
[2] Go to th e “Search" tab ,
[3] Check th e "Search with a central character" checkbox,
[4] Enter th e character's nam e (e.g ., Harry Potter) in th e textbox,
[5] Click on th e "Search" button.

[Q-7] How to edit and validate an XML/TXT file?
[1] Go to th e "Match a Edit" tab ,
[3] Check th e "Open" button,
[4] A file chooser will pop up, select a file to be edited from

there ,
[5] Do th e editing in th e "Edit Area",
[6] Click on th e "Save" button a fter done with th e editing,
[7] Click on th e "Validate " button to validate XML-type documents.

Ail

Figure 4.5 (c): Screenshot of the third tab, which shows the ReadMe file to help the user.

WSSearch is the combination of ten classes: WSSearch, Books tor eCl lent,
RDFIinf ormation. Schema Informât ion. Merger, Search, DataCol lector,
KeySearch, CFRecommender and EditorClass. Figure 4.6 shows the Unified
Modeling Language (UML) class diagram of these classes.

- 55 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

Setrch
-Hne:Strino null
-4otal:lnt- 0
-array Stri non
-tag:Slrina

« create »+Seaich(5:Stringn:int7esultArea:JTextA'ea,tJFrame)Seatch
♦startDocumentOvoid
+startElement(name!paceURI:StrinalooalNa(ne:String,qualiledName;String,atts:/l(fnj(iufes)void
+endOocuinentOvold

CF Reconrmendcr
-key: String

< create »+CFRecommendeiO<:String,textA-ea JTextArea)CFRecommender
+startElement(uri; String Jo caIN am e: String ,qName:String,atts;Altr/tufe^: void

EdHorClaas

« create »+EditorClass(tFile,area:JText/>rea,(t: JFrameJEditorClass
« create >»-rEditorClass(extString,ISIename:String,lrJFrameJEditorClass

BookatofsCiient

+getMyURI(endpoint: String): String
♦gets chemaURI(endpcint: String) String
♦getBDName(endpoint String): String

WSSearch

-y«Num:int=3
-taoS tring : *nuir
-editFile:File
-ext: String: null
-flename:String= null

« create »+WSSeardrO:WSSearch
#tal30ne(): JComponent
#tataT vw(): J CO mponent
«abThreeO J Co mponent
+actionP erfotm ed(e: Action Eve nt) void
-rit em StateC h anged 0 : Item E vent): void
*createimaoeiccmfpath.String):lmagelcon
-createAndShowSUirtvoid
vmainCargsStringflVvoid

KqrSearch
-istData:ArravList= null
-strLastE I em entSth ng= "
-kev: String
-counler:lnt: 0

« create »+KeySearct(k:String,textW ea JTextA-ea)KeySearch
+startElement(uri: String Jo calName:String.qName: String .attributes Atfri/rutes) void
+characters(ch:chaill .start: kit,le ngth:int): void
+endOocumentOvoid
+seaich():void

Schemthifa'iTalion
-d_author:String(l« ("viriter", ■author”)
-d_book:String(^ {"IrookName". "title")
-d_char:String(]= {"ctiaracter”. th a ra d e rs ”)
-d_genre.String(]= ("genre", "storyType")
-d_year:String(l= ("year", "published")
-database:Strino= ""
-authorStrincM ""
-book:Strlno= "
-character String: "
-oenre Strinrp '
-y ea r String: ■
-number: kit

« create »+Schemain1ormationCi:int,db:String.k:JFrame):Schemalnfoimation
+startElement(namespaceURI:String,iocaiName:String,qualifedName:String.atts:A(tr)t)irfes)void
+endDocumentOvoid

RDFIifonnation

-database:Strincp nuli
-au th o rS trir» nuii
-bookString: null
-character String: null
-aenre:String= niii
-year String: null
-number: Int

! create »+RDFInfbrmation(i:int.tr:JFrame)RDFIntbrmation
tstartElement(namespaceURI:StrinalocalName:String,c|uali1edName:String,atts:/l(fri6utes)void
vendD ocum ent 0 void

Merger
-t1:Fle
-O F ie
-tF le= newFier'SearchHelper.im ri

« create »-Merger(lile1:FHe,tle2String):Merger
rmainOFIe
-readToNeitE lem enlf reader: XM LEventReader.wter:XM LE ventkWter.processE net boolean): String

DataColtoctor

-array Strinctl
-tag:String
-key: String
-ine:String

« create »+DataCollectoi(k:String,n:kit,resultArea:JTextArea,I:JFrame):DataCollector
+startDocument 0 void
■i-startElement(namespaceURi:String,iocalName:String,gualiledName:String,atts:A(trfbo(es)void

Figure 4.6: The class diagram for the WSSearch prototype.

- 56 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

The responsibilities of these classes are as stated below:

■ WSSearch: This is the top-level JFrame. It creates several objects and builds
the graphical user interface.

• BookstoreClient: This class works as a Web Service client. It invokes Web
Services and gets the Web Service datasource's füe name, schema or ontology
location as requested.

■ RDFInformation: This class parses through RDF ontology files and creates
an XML file for each in SearchHelper's syntax. These XML files wiU be
referred as “C hunk/ Chunks” in this thesis from now on.

• Schema Informât ion: This class is responsible for schema matching. It
parses through the XML Schema files and does the matching operation w ith
the help of a build in dictionary (arrays of synonyms). The outcome of this
class is the same as RDFInf ormation, it creates Chunks for each schema in
SearchHelper's syntax.

■ Merger: Takes aU the Chunks and merge those together to create the
SearchHelper.

■ Search: This class is responsible for searching all book related Web Services.
■ DataCol lector: This class collects data from SearchHelper füe to proceed

w ith keyword searching and collaborative fütering.
■ KeySearch: Responsible for keyword searching (search for aU services those

have author H um ayun Azad's books in their database).
■ CFRecommender: This class does the collaborative fütering prediction

computation and recommends users related items.
■ EditorClass: This class is responsible for editing, saving and validating

XML type documents (e.g., XML, XML schema, RDF, etc.). This class also
shows the ReadMe file to the users w hen requested.

Some other supporting fües are also required to make this program fuUy functional.
Like, we wiU need three Portable Network Graphics (PNG) images in Â e “images”
folder. These three images are used as icons in the tabs (see Figure 4.5 (a, b, c)). We
also need three endpoints. txt, webservices. txt and readme. txt text fües in the
“locations” folder. The endpoints. txt füe works like a Web Service register; it
stores one Web Service URIs in each tine, on the other hand webservices. txt stores
one service locations in line. Figure 4.7 shows the screenshots of these fües. The
read m e . txt file contains instructions on how to use the prototype. This füe wül be
loaded in the “About” tab (see Figure 4.5). FinaUy we need some XML files in the
“simüarity” folder. These XML fües are supposed to be generated using the
simüarity computational algorithm. As we d idn 't pu t user login and product rating
system in our program, these fües are being created manually. These fües are
mandatory to produce recommendations.

57 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

4 endpoints.txt Notepdd

Fite gdt Format Vje-At Hetp
h ttp : / / ^ ocal host : 8080/ax"i s/MYWSl/Bookstorewsi. jws
h t tp : / / lo c a l host:8080/axis/MYWS2/8ookstorews2.iws
h ttp : / / Io c a lh o s t :8080/ax1s/MYWS3/8ookstorews3. jws

(a)

webservices.txt - Kofepad

6k Fgmat ÿe-A' Hplp
h ttp ; / / I ocal host •. 8080/ax1 s / mywsI
h ttp :/ / Io c a lh o s t :8080/axi s/MYWS2
h ttp : / /Io c a lh o s t :8080/axi s/ myws3

(b)

Figure 4,7: (a) Screenshot of the "endpoints.txt" file. Each line stores a Web Service URI. (b)
Screenshot of the "webservices.txt" file. Each line stores a Web Service location.

4.3.1. Schema Matching and Ontology Merging

The schema matching can be done independently by clicking on the “Schema
Matching” button located in the “Match & Edit” tab. When we click on the button the
program starts the following loop:

Takes a endpoint (Web Service location) from the “endpoints.txt”;
Invoke the service by calling the B o o k s t o r e C l i e n t class;
O Get the schema location;
Parse the schema with the S c h e m a i n f o r m a t i o n class

Recognizes the elements by using a dictionary;
<=> Create a Chunk file.

This loop creates one Chunk file (see the class responsibility list) for each service
using schema matching strategies. We've already discussed the matching strategies
in detail in Chapter 3, Section 3.4.

After aU Chunks have been created, the program calls the Merger class to merge
those into one file (a.k.a., SearchHelper). The Merger class is written in StAX. This is
because:

□ With puU parsing, the client controls the application thread, and can call
methods on the parser w hen needed. By contrast, with push processing, the
parser controls the application thread, and the client can only accept
invocations from the parser. As we know the exact format of the Chunk files,
this function of the pull parsing will be beneficial.

- 58 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://local

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

□ Pull parsing libraries can be much smaller and the client code to interact w ith
those libraries much simpler than w ith pushes libraries.

□ Pull clients can read multiple documents at one time w ith a single thread.
This is the main reason of using StAX in the Merger class. In this class we
wiU be parsing two Chunks at the same time.

The Merger class is being caUed in a loop that runs for each service location. In this
class we used classical merging algorithm to merge the lists from Chunks.
Depending on the comparison between the merge criteria from the Chunks, w e
either copy events from Chunk 1 to the SearchHelper or from Chunk 2 to the
SearchHelper. We used some extra logic for detecting the end of the book list.

The ontology merging process (that could be started independently by clicking on
the “Ontology Merging” button, located right beside the “Schema Matching” button)
works almost the same as schema matching process. The only difference is from the
WSSearch class we call RDFInf ormation class instead of Schemainf ormation,
that parses aU the Web Service RDF file in loop and creates a Chunks aU of them. All
other processes works exactly same as before.

<?xml v e rs io n = “1.0 '' encoding="U T F-8" ?>
- < S sa rc h >

<book id = "l" db = bookstore.xm l a u = au th o r bk="title" cr="character" gn=“genre" yr=“year" />
<book id="2" db="bookdatabase.xm l" au ="writer" bk=""bookName"' cr=""' gn="'"" yr= "published"" />
<book id-"3"" db= bookstore.xml" au=""author"" bk=""title"" cr="""" g n - "genre"" yr=""year"" />

< /S e a rc h >

Figure 4.8: The SearchHelper file.

A screenshot of a SearchHelper fUe is provided in Figure 4.8. In that file each book
tag represents a book related Web Service. Attribute id tells us the Web Service's id
number and db tells us the Web Service datasource's name. On the other hand au
tells us under which tag author's names are stored in that Web Service's data source;
like that au tells us about author's name, bk book title, o r central character's name,
gn book type and yr publishing year. If any attribute value is null, that means that
information is not provided in that Web Service datasource.

4.3.2. Searching for Web Services

After the SearchHelper file has been created by using schema matching and
ontology merging method, we can start searching for services. The service search can
be done in two ways:

1. A ll Book Related Web Services: Where the WSSearch program returns the user
all the book related services available by parsing the SearchHelper. No user input is
required for this search. Figure 4.9 (a) shows this kind of searching process.

- 59 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

2. Filtered Web Services by Keywords (Search in Web Service Datasources): In
this search the user enters book related keywords like the author's name (e.g., Dan
Brown), a book title (e.g., Angels and Demons) or the central character's name (e.g.,
Robert Langdon) and the program returns the services those have the keyword related
items available in the service datasource. Collaborative filtering is enabled in this
kind of search (to be more specific, in the search with a book title). Figure 4.9 (b)
shows filtered searching process.

H WSSearch a'o'
(^S earch Ma»ch4 Ed« T A b o r t

0 Search for ail th e Book re la ted Web services available .

□ Search with an a u th o r |

□ Search with a title CF A ctivated |

□ Search with a central c h a rac te r |

Search And Colaboration ResuK

Search

Book related Web service found in location:
WS ID#1 :http://localhost:8080/axis/M YW Sl

Book related Web service found in location;
WS ID#2 ;http://localhost:8080/axis/MYW S2

Book related Web service found in location:
WS ID#3 :http://localhost:8080/axis/MYW S3

Total Match Found: 3

Figure 4.9 (a); Shows a screenshot of the WSSearch application after the user performed a
search for all book related Web Services. The application found 3 such services.

60 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080/axis/MYWSl
http://localhost:8080/axis/MYWS2
http://localhost:8080/axis/MYWS3

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

□ WSSearch d' d'

Search Match A Ed» [Abort

□ Search for all th e Book related Web services available .

0 Search with an a u th o r I

□ Search with a title CF A cbvated |

□ Search with a central c h a rac te r |

Search And Codahoratlon ResrtI

Search

In d a tab ase http://localhost:8080/axis/MYW S 1/bookstore.xml
Total 4 hits for dan brown !

In d a tab ase http://localhost;8080/axis/M YW S2/bookdatabase.xml
Total 4 hits for dan brown !

In d a tab ase http://localhost:8080/axis/MYW S3/bookstore.xml
Total 4 hits for dan brown !

Figure 4.9 (b): Shows a screenshot of the same application after the user performed search
with a keyword, author's name, "dan brown." The application found 4 matches match for this
keyword in three Web Service datasources (in total 12 hits).

When the user checks the “Search for all Book related Web Services available”
checkbox and cUcks on the “Search” button (see Figure 4.9 (a)) the WSSearch class
calls the Search class to parser the SearchHelper file.

The Search class works like an XML parser. It reads Web Service locations from the
webservices . txt file and store all the Web Service locations in an array. We do
that so that we can inform the user the exact line number of the webservices . txt
where the service is recorded (or registered). Then we see if there is any tag nam ed
book is /a re available, if yes, that means we have a book related Web Service. The i d
attribute in SearchHelper is same as the line num ber of the webservices. txt
where the service is recorded (or registered). The class then prints all book related
service location, id number (same as line number) and total number of matches
fou n d to the user. Figure 4.10 sh o w s the UM L seq u en ce d iagram for all book related
Web Service search.

- 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080/axis/MYWS
http://localhost;8080/axis/MYWS2/bookdatabase.xml
http://localhost:8080/axis/MYWS3/bookstore.xml

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

1: K eyw ord S ea rch
1.1: P a rs e SearchH elper.xm l

I Data found

S h o w s e rv ic e s
V iew resu lts

User Main Interface Local Directory

Figure 4.10: Sequence diagram for all book related Web Services search.

If the user is willing to search for Web Services w ith keywords, h e /she has three
options (see Figure 4.5). H e/she can search services w ith an “author”, a “book title”
or with a “central character”. When the user searches with a “book title” the
collaborative filtering will start working. We will discuss the collaborative filtering
in the next section. In this section we wül just see how the keyword search is done in
the prototype.

Let's assume the user is searing for a Web Service w ith an author's name, Dan
Brown (see Figure 4.9 (b)). In that case the program wül do the following:

■=> Store the search keyword in a String variable;
O Pass the variable (along with other parameters) to the Da t a C o l l e c t o r class;
I:* Start parsing SearchHelper file with the Da t a C o l l e c t o r class.

Figure 4.11 shows the UML sequence diagram for keyword search.

1 : K eyw ord Search
1.1 : P a rse SearchHelper.xm l

1 Data fou n d

1.1.1: Search for Keyword

Match fou n d
V iew result

User Main Interface Local Directory Web Service Datasource

Figure 4.11: Sequence diagram for keyword search.

We have already seen the format of the SearchHelper füe (Figure 4.8) and we know
in this XML füe each book tag represents a Web Service. Each book tag keeps the

- 62 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

Web Service id, database name and the tag names (those represents author name,
book title so forth in the Web Service datasource) as its attributes. While the
DataCol lector class parsing the SearchHelper, it does the following:

■=> When the document starts, read the service locations and store those in an array;
For each start-tag, check i f the tag name is book and if it has the tag value the user
looking for (in this case author’s name);
■=> I f yes, then do the Jbllowing:

O Get the id number;
O Get the database name;
■=> Start parsing the database with the Key Sea rch class for the keyword;

O I f keyword found then print the matches for the user.
■=> I f not, then inform user.

'=t> I f no, then do the following:
<=S Skip to the next tag.

In the KeySearch class we used a new method to get the pcdata from the XML
datasource. For each start-tag the KeySearch class gets a tag and its corresponded
pcdata and stored these two as a pair (tag:pcdata) in an ArrayList, unless
there is no corresponded pcdata available. In that case the class will skip to the
next tag. After the parsing is done, the class searches for the keyword in the
ArrayList and prints the result {match found or no match found).

Searching w ith a “book title” or a “central character” works exactly the same way.
Only while searching with a “book title” the collaborative filtering gets enabled. We
d idn 't use collaborative filtering w ith search w ith “author's name” or “central
character” because the sample datasources we are using don 't have many items. All
of the three datasources contains 10 books from common authors and central
characters. So in total we have just 3 unique authors and 3 central characters, which
is not enough to proceed w ith collaborative filtering based recommendation. On the
other hand we have 10 different book titles; that's somewhat okay to proceed w ith
testing the prediction computation. The collaborative filtering implementation is
discussed in detail in the next section.

4.3.3. Collaborative Filtering

When the user searches with a book title, WSSearch does everything as mentioned in
section 4.3.2 and then it does the followings:

<=> See i f there is a similarity computed record file exists in the “similarity” folder for the
searched book title (Figure 4.12 shows a sample similarity computed record file for
book “Angel and Demon” and Figure 4.14 shows the collaborative filtering algorithm
based recommendations while the user searched with the same book title);

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4; SYSTEM PROTOTYPE IMPLEMENTATION

o I f yes, then do the following for each i te m tag:
O Get the “title”, “author's name” and the “similarity” (that is a number

between 1 to 5);
■=> Start the prediction computation (the result will be a number between 1 to

5);
<=> I f the prediction is greater than or equal to 3:

^ Recommend the item.
I f the prediction is less than 3;

Skip to the next tag.

<?xml version-'l.O" encoding-'UTF-8" ?>
- <similar>

<item title= Deception Point author-'Dan Brown" s="4" />
<item title -D ig ita l Fortress" author-'Dan Brown" s="4" />
<item title="The Da Vinci Code" author-'Dan Brown" s="5" />
<item title-T h e Broker" author="John Grisham" s="3“ />

</sim ilar>

Figure 4.12: Similarity computed record file. Here each item tag represents a similar item.
Attribute title denotes book title; author the author's name; and s the similarity.

Figure 4.13 shows the UML sequence diagram for the collaborative filtering process.

1: Keyword Search
1.1: P a rse similarity computed record fiies

I Similar item found
Return the similar item

Predictable item found
V iew recommendation

User WSSearch Local Directory

Figure 4.13: Sequence diagram for collaborative filtering (recommender).

In the CFRecommender class we assume that the item an active user is looking for is
h is /h e r favorite. So we calculate the prediction assuming the user rating for that
specific item is 5 /5 (5 out of 5).

Figure 4.11 shows the screenshot of the WSSearch application after the user searches
w ith the book name keyword “Angels and Demons”.

64 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

□ WSSearch n-' B

'iy Search ; ^ Match & Edit About

... Search for all the Book related Web services av a ilab le Search

; Search with an a u th o r

K Search with a title CF A ctivated.....

Search with a central c h a rac te r _ ______

Search A nd Collaboration Result

d a tab ase http;//1ocaThûSt:3080/a>:is/MYWSi/bool;st:ôrë”xml
Total 1 hits for angels and demons i

In da tabase hctp://localhost:8080/axis/MVWS2ybookdatabase.xml
Total 1 hits for angels and demons !

In d a tab ase http;//localhost:8080/axis/MYWS3/bookstore.xml
Total 1 hits for angels and demons \

If you like "ANGELS AND DEMONS" we predict th a t
you might like the following Items:

> "DECEPTION POINT" by Dan Brown
> "DIGITAL FORTRESS" by Dan Brown
> "THE DA VINCI CODE" by Dan Brown

"THE BROKER" by John Grisham_______________

Search Result

Recommendations

Figure 4.14: Recommender in WSSearch screenshot. This screenshot is taken after the user
searched with the keyword, book title, "Angel's and Demons."

4.3.4. Editing and Validating XML-type Files

In the second tab, along w ith the “Schema Matching” and “Ontology Merging”
buttons we have three more buttons called “Open”, “Save” and “Validate”. These
three buttons are for editing and validating XML type documents which are done in
a simple class named EditorClass. When the user presses the “Open” button a
JFileChooser pops up. Form there h e /sh e can select an XML type file (Uke, XML
Schema, RDF etc.) and can edit in the edit area (see Figure 4.15 (a)). After editing is
done, the user can save and vaHdate the document by clicking on the “Save” and
“Vahdate” button (see Figure 4.15 (b)).

- 65 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: SYSTEM PROTOTYPE IMPLEMENTATION

o' b' 0
Search | Match & Edt ; ^ About

Schema Mat dang Onttrtoar Merging Open VaMate

<?xml version-'1.0' encoding*'UTF-€'?>
<Search>
i <book ld«"l" db*"bookstore.xmi" a u - "author " bk-"btle" cr»"character" g
<book ld-"2" db-"bookdatabase.xm l" a u - "writer " bk-"bookName" cr- 'd -
ebook id-"3" db-"bookstore,xml" au»'"author"" bk-"tFtie"' cr-"character" g

</Search>

(a)

IlL
H

C' WSSearcIi ' o'cf" B
[i ^ S e a r c h | ^ M a lc h tE ill l j ADoul

Schema Matching Ont otogy Merging Open Save Validate

<?xml vers io n -1 ,0 ' encoding-'UTF-8‘?>
<Search>
j <book id -" l" db-"bookstore xml" au -"au thor" bk-"btle" cr-"character" g'
I <book id-"'2" db*"bookdatabase.xm r au-"writer'" bk-""bookName" cr»""ck

I ! <book id -"3 " db-"bookstore xml" a u - 'author" bk-"btle" ct- " character" g
;</Seardi>

The xml document: (SearchHe#ier.xmi)

(b)

Igure 4.15: (a). Document editing in WSSearch screenshot. This screenshot is taken after a
user opened an XML document by clicking on the "Open" button, and made some changes in
the code, (b) Document validating in WSSearch screenshot. This screenshot is taken after
the user saved the edited document and tried to validate it by clicking on the "Validate"
button. A JOptionPane information message window pops up and tells the user, the
document is well formed.

Editing text documents like endpoints . txt, webservices . txt or readme . txt
are also possible using the same editing tool. The validating is done w ith SAX API.

4.3.5. About Tab

The about tab contains readme information for the users. This is done w ith a very
simple strategy. The system reads the readme. txt file from the “locations” folder
and shows the file content in the about JTextArea (see Figure 4.5 (c)).

4.4. Source Codes
The source codes for the Web Services, WSSearch and RDFGenerator applications
can be made available upon request. Please contact Ahmed Sabbir Arif (email:
asarif@lakeheadu.ca) or Dr. Jinem Fiaidhi (email: jfiaidhi@lakeheadu.ca).

- 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:asarif@lakeheadu.ca
mailto:jfiaidhi@lakeheadu.ca

CHAPTER 5: CONCLUSION & FUTURE RESEARCH

CHAPTER 5
CONCLUSION AND FUTURE RESEARCH

I n this thesis we focused on issues of Web Service searching w ith multiple
datasources within a particular domain of knowledge.

A main problem of the current strategy of Web Service searching (UDDI discovery)
is that it is based on tM odel. The search depends on UDDI service description and
tries to discover services on the search keywords. If the service description doesn't
have that particular keyword in it then the searcher wül faü to discover it. Another
problem is that the current searching strategy doesn't provide any value-added
services like a recommender system. Moreover searching in service datasources is
not possible. Our strategy, which is based on Web Service datasource schema
matching and service description ontology merging, tries to solve these problems. In
our model a searcher can search for items in the service datasources and can filter
out the services that don't have the items the searchers is looking for. This increases
the possibility of discovering only the services the users really interested in. As well,
our system adds value added services like collaborative filtering recommender
system. Depending on the user-rating and the search keywords, this recommender
system recommends similar items.

In summery we have discussed in the previous four chapters:

In Chapter 1 we described the architecture of the Web Service and why we might
w ant to use it. We showed that the main attraction of Web Service is the
interoperability and how standards like WSDL, XML, SOAP helps Web Service to
maintain it. We showed SOAP is not the only way to create Web Service; we can also
do it w ith REST. We also explained why UDDI is not considered as a mandatory
standard for service implementation. Finally we pointed out some drawbacks of
current UDDI dependent service discovery and demonstrated how we intend to
solve those w ith our proposed architecture.

In the second chapter we explained the Service Oriented Architecture (SOA) in
depth and explained why Web Service and SOA are meant to be together. We
demonstrated and compared two popular ways (ASP.NET, Apache Axis) and
languages (Java, C#) of creating Web Services and made our points of why creating
Web Services in Apache Axis is a better choice. We also showed the architectural
view of Apache Axis.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5: CONCLUSION & FUTURE RESEARCH

Chapter 3 was focused on Web Service search and discovery. We showed how UDDI
search is dependent on tModel and how that makes the service discovery strictly
keyword-bases (taxonomy-based). We also pointed out that UDDI based search
doesn't provide any value-added services and searching in service datasources w ith
UDDI is not possible. We explained how our model can solves these problems w ith
the help of XML Schema and RDF Ontology w ith examples. We provided the RDF
syntax supported by our architecture and also showed how our tool, RDFGenerator,
can help the providers w ith creating service descriptions in the supported syntax.
We explained the role of global SearchHelper füe in our architecture and after that
we provided an elaborated demonstration of the Matching strategy used to match
service datasource's schemas (with the help of dictionary) to create that file. We also
provided elaborated demonstration of how we can use RDF ontologies merging
strategy to do the same task. At last we discussed in depth how we adopted
collaborative filtering based recommender system with our architecture.

In Chapter 4 we discussed how we have implemented the prototype for Schema-
ontology based searching architecture. This chapter starts with the demonstration of
the creation process of Web Services. Then we compare the XML infoset APIs
currently available and showed why stream-based APIs fits well w ith our
architecture. We compare push emd puU parsers for stream-based APIs. We showed
which API is good for which part of our system. Then we discuss the
implementation of our prototype in detail w ith the help of pseudocodes and UML
structures like class diagram and sequence diagram. We also talked about the
implementation of the RDFGenerator tool in this chapter.

5.1. Future Research
The taxonomy and tModel of UDDI based search is limited in its search services by
its inability to extend beyond the keyword-based matches, which stands as a barrier
in Web Services composition where applications are to be assembled from a set of
appropriate Web Services. To composite Web Services into new application, it is
often inside a domain (a specific area) to search related Web Services (Shen Derong,
Yu Ge et al. 2005). With our searching strategy we can search for services inside a
domain; in our future research we would like to make use of this advantage to
provide facilities for Web Service compositions.

W e w o u ld like exp lore the op tio n s o f m ak ing th e collaborative filtering m ore
personalized. Use of a user login, item-rating service and maintaining separate
similarity database for each user might help us in that direction. We would also like
to find if sharing similarity databases of commercial services is possible (e.g.,
Amazon.com) (Linden, Smith et al. 2003).

- 68 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5: CONCLUSION & FUTURE RESEARCH

We would like to extend our research to make the architecture compatible w ith
current service registries (e.g., UDDI, ebXML, etc.). This would be an important add
on to our research as this wül make sure the providers don't have to register their
services in various registries (Colgrave, Akkiraju et al. 2004, Mahmoud 2002,
Pautasso 2005, Xu Bin, Wang Yan et al. 2005). The combination of UDDI tM odel
search and our schema-ontology based search also might prove useful w hüe
searching outside the domain.

We wish to examine more advanced matching strategies to do the Match and Merge
operation. Our name-matching strategy works great but it depends on dictionary
and service descriptions. To eliminate this dependency we would like to go though
the artificial intelligence approach to natural language understanding, etc. (Breese,
Heckerman et cd. 1998, MelviUe, Mooney et al. 2002).

How to add more value-added services w ith our architecture is another field we
wish to continue our research with. One of the services we are currently thinking of
is a user notifier. For example, the user is interested in Harry Potter books. This user
notifier wül look for updates in Harry Potter books, and if there is any Harry Potter
related new service has created or entry in service database has made, the notifier
wül notify the user about this change. XML-diff algorithms might help us in this
direction.

- 69 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Bibliography

The Java web services tutorial, 06/14/2005, 2005-last update [Homepage of Sun
Microsystems], [Online]. Available: http://java.sun.com/webservices/tutorial.html [03/12,
2006].

ALMAER, D., 05/22/2002, 2002-last update, creating web services with apache axis
[Homepage of O'Reilly Media, Inc.], [Online]. Available:
http://www.onjava.eom/pub/a/onjava/2002/06/05/axis.html [02/22, 2006].

AN AND, S., PADMANABHUNI, S. and GANESH, J., 2005. Perspectives On Service Oriented
Architecture, 2005, ppxvii vol.2.

ANTONIOU, G. and HARMELEN, F.V., 2003. Web Ontology Language: OWL, S. STAAB and R.
STUDER, eds. In: Handbook on Ontologies in Information Systems, 2003.

APACHE AXIS, 06/15/2005, 2005-last update, apache axis documentation [Homepage of The
Apache Software Foundation], [Online]. Available: http://ws.apache.org/axis/java/index.html
[02/22, 2006].

BASU, C., HIRSH, H. and COHEN, W.W., 1998. Recommendation as Classification: Using
Social and Content-Based Information in Recommendation, AAAI/IAAI, 1998, pp714-720.

BATINI, C., LENZERINI, M. and NAVATHE, S.B., 1986. A Comparative Analysis of
Methodologies for Database Schema Integration. Computing Surveys, 18(4), pp. 323-64.

BELLWOOD, T., 07/01/2002, 2002-last update, understanding UDDI: tracking the evolving
specification [Homepage of IBM], [Online]. Available: http://www-
128.ibm.com/developerworks/webservices/library/ws-featuddi/ [02/13, 2006].

BERGAMASCHI, S., CASTANO, S. and VINCINI, M., 1999. Semantic Integration of
Semistructured and Structured Data Sources. SIGMOD Reœrd, 28(1), pp. 54-9.

BONSTROM, V., HINZE, A. and SCHWEPPE, H., 2003. Storing RDF as a Graph, 2003, pp27-
36.

BOOTH, D., HAAS, H., MCCABE, F., NEWCOMER, E., CHAMPION, M., FERRIS, C. and
ORCHARD, D., 02/11/2004, 2004-last update, web services architecture [Homepage of The
World Wide Web Consortium], [Online]. Available: http://www.w3.org/T^ws-arch/ [06/02,
2006].

BOX, D., EHNEBUSKE, D., KAKIVAYA, G., LAYMAN, A., MENDELSOHN, N., NIELSEN, H.F.,
THATTE, S. and WINER, D., 05/08/2000, 2000-last update, simple object access protocol
(SOAP) 1.1 [Homepage of World Wide Web Consortium], [Online]. Available:
http://www.w3.Org/TR/2000/NOTE-SOAP-20000508/2006].

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/webservices/tutorial.html
http://www.onjava.eom/pub/a/onjava/2002/06/05/axis.html
http://ws.apache.org/axis/java/index.html
http://www-
http://www.w3.org/T%5ews-arch/
http://www.w3.Org/TR/2000/NOTE-SOAP-20000508/2006

BIBLIOGRAPHY

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C.M., MALER, E. and YERGEAU, F., 01/04/2004,
2004-last update, extensible markup language (XML) 1.0 (third edition) [Homepage of The
World Wide Web Consortium], [Online]. Available: http://www.w3.org/TR/REC-xml/ [02/06,
2005].

BREESE, J.S., HECKERMAN, D. and KADIE, C., 1998. Empirical Analysis of Predictive
Algorithms for Collaborative Filtering, Proceedings 14th Conference on Uncertainty in Artificiai
Inteiiigence, 1998, pp43-52.

BRICKLEY, D., GUHA, R.V. and MCBRIDE, B., 2/10/2004, 2004-last update, RDF vocabulary
description language 1.0: RDF schema [Homepage of The World Wide Web Consortium],
[Online]. Available: http://www.w3.org/TR/rdf-schema/2006].

CASTANO, S. and DE ANTONELUS, V., 2001. Global Viewing of Heterogeneous Data Sources.
IEEE Transactions on Knowledge and Data Engineering, 13(2), pp. 277-97.

CHANNABASAVAIAH, K., HOLLEY, K. and TUGGLE JR., E., 12/16/2003, 2003-last update,
migrating to a service-oriented architecture, part 1
introduction and overview [Homegage of IBM], [Online]. Available: http://www-
128.ibm.com/developerworks/webservices/library/ws-migratesoa/ [02/22, 2006].

CHAPPELL, D., 07/12/2002, 2002-last update, REST: another way of looking at web services
[Homepage of Addison Wesley], [Online]. Available:
http://www.awprofessional.com/articles/article.asp?p=276458iseqNum=1 [02/14, 2006].

CHRISTENSEN, E., CURBERA, F., MEREDITH, G. and WEERAWARANA, S., 03/15/2001,
2001-last update, web services description language (WSDL) 1.1 [Homepage of The World
Wide Web Consortium], [Online]. Available: http://www.w3.org/TR/wsdl [02/06, 2006].

CLARK, K.G., 06/18/2003, 2003-last update, A tour of the web services architecture
[Homepage of O'Reilly Media, Inc.], [Online]. Available:
http://www.xml.eom/pub/a/2003/06/18/ws-arch.html [02/14, 2006].

CLEMENT, L, HATELY, A., RIEGEN, C.V. and ROGERS, T., 10/19/2000, 2000-last update,
UDDI version 3.0.2 specification [Homepage of OASIS Open], [Online]. Available:
http://uddi.Org/pubs/uddi-v3.0.2-20041019.htm [02/13, 2006].

COLGRAVE, J., AKKIRAJU, R. and GOODWIN, R., 2004. External Matching in UDDI, 2004,
PP226-233.

DENNY, M., 07/14/2004, 2004-last update, ontology tools survey, revisited [Homepage of
O'Reilly Media, Inc.], [Online]. Available: http://www.xml.eom/pub/a/2004/07/14/onto.html
[02/28, 2006].

DESHPANDE, M. and KARYPIS, G., 2004. Item-based top-N recommendation algorithms.
ACM Trans.InfSyst, 22(1), pp. 143-177.

DIETZEN, S., 05/24/2004, 2004-last update, standards for service-oriented architecture
[Homepage of dev2dev], [Online]. Available:
http://dev2dev.bea.eom/pub/a/2004/05/soa_dietzen.html [03/07, 2006].

- 71 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/rdf-schema/2006
http://www-
http://www.awprofessional.com/articles/article.asp?p=276458iseqNum=1
http://www.w3.org/TR/wsdl
http://www.xml.eom/pub/a/2003/06/18/ws-arch.html
http://uddi.Org/pubs/uddi-v3.0.2-20041019.htm
http://www.xml.eom/pub/a/2004/07/14/onto.html
http://dev2dev.bea.eom/pub/a/2004/05/soa_dietzen.html

BIBLIOGRAPHY

DOAN, A., DOMINGOS, P. and HALEVY, A., 2003. Learning to Match the Schemas of Data
Sources: A Multistrategy Approach. Mach.Learn., 50(3), pp. 279-301.

DOAN, A., DOMINGOS, P. and LEVY, A.Y., 2000. Learning Source Description for Data
Integration, WebDB (Informal Proceedings), 2000, pp86.

DOAN, A., MADHAVAN, J., DOMINGOS, P. and HALEVY, A., 2002. Learning to Map Between
Ontologies on the Semantic Web, WWW '02: Proceedings of die 11th international
conference on Worid Wide Web, 2002, ACM Press pp662-673.

FENSEL, D., 2003. Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

FERRARA, A. and MACDONALD, M., 2002. Programming .NET Web Services. USA: O'Reilly
Media, Inc.

FIAIDHI, J., PASSI, K. and MOHAMMED, S., 2004. Developing a Framework for Learning
Objects Search Engine, 2004.

GIBBS, K., GOODMAN, B. and TORRES, E., 09/30/2003, 2003-last update, create web
services using apache axis and castor
how to integrate axis and castor in a document-styie web service dient and server
[Homepage of IBM], [Online]. Available: http://www-
128.ibm.com/developerworks/webservices/library/ws-castor [02/22, 2006].

GOVERT, N., KAZAI, G., FUHR, N. and LALMAS, M., 2003. Evaluating the Effectiveness of
Content-oriented XML Retrieval. University of Dortmund, Computer Science 6.

GRAUPMANN, J., BIWER, M. and ZIMMER, P., 2003. Towards Federated Search Based on
Web Services, 02/26/2003 2003, pp384-384-393.

HAKIMPOUR, F. and GEPPERT, A., 2002. Global Schema Generation Using Formal Ontologies,
ER '02: Proceedings of the 21st International Conference on Conceptual Modeling, 2002,
Springer-Verlag pp307-321.

HANSEN, K.H.,, web services with axis [Homepage of Java Boutique], [Online]. Available:
http://javaboutique.internet.com/tutorials/Axis [02/22, 2006].

HASHIMI, S., 08/18/2003, 2003-last update, service-oriented architecture explained
[Homepage of O'Reilly Media, Inc.], [Online]. Availabie:
http://www.ondotnet.eom/pub/a/dotnet/2003/08/18/soa_explained. html [03/07, 2006].

HE, H., 09/30/2003, 2003-last update, what is service-oriented architecture [Homepage of
O'Reilly Media, Inc.], [Online]. Available:
http://webservices.xml.eom/lpt/a/ws/2003/09/30/soa.htmi [02/22, 2006].

HEYLIGHEN, P., 01/31/2001, 2001-last update, collaborative filtering [Homepage of Principia
Cybernetica], [Online]. Available: http://pespmcl.vub.ac.be/COLLFILT.html [03/09, 2006].

- 72 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://javaboutique.internet.com/tutorials/Axis
http://www.ondotnet.eom/pub/a/dotnet/2003/08/18/soa_explained
http://webservices.xml.eom/lpt/a/ws/2003/09/30/soa.htmi
http://pespmcl.vub.ac.be/COLLFILT.html

BIBLIOGRAPHY

JONES, S., 2005. Toward An Acceptable Definition of Service [Service-oriented Architecture].
Software, IEEE, 22(3), pp. 87-93.

KONSTAN, J.A., MILLER, B.N., MALTZ, D., HERLOCKER, J.L., GORDON, L.R. and RIEDL, J.,
1997. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the
ACM, 40(3), pp. 77-87.

LI, J.B. and MILLER, J., 2005. Testing the Semantics of W3C XML Schema, 2005, pp443-448
Vol. 2.

LINDEN, G., SMITH, B. and YORK, J., 2003. Amazon.com Recommendations: Item-to-Item
Collaborative Filtering, IEEE Internet Computing, voi. 07, 2003, pp76-80.

LOMOW, G. and NEWCOMER, E., 2004. Understanding SOA with Web Services. 1st edn. UK:
Addison Wesley Professional.

MAHMOUD, Q.H., 06/01/2002, 2002-last update, registration and discovery of web services
using JAXR with XML registries such as UDDI and ebXML [Homepage of Sun Microsystems],
[Online]. Available: http://java.sun.com/developer/technicalArticles/WebServices/jaxrws/
[02/13, 2006].

MANOLA, F., MILLER, E. and MCBRIDE, B., 2004, 2005-last update, RDF primer [Homepage
of The World Wide Web Consortium], [Online]. Available: http://www.w3.org/TR/rdf-primer/
[02/03, 2006].

MCGUINNESS, D.L and HARMELEN, F.V., 02/10/2004, 2004-last update, OWL web ontology
language overview [Homepage of The World Wide Web Consortium], [Online]. Available:
http://www.w3.org/TR/owl-features/ [02/05, 2006].

MELVILLE, P., MOONEY, R.J. and NAGARAJAN, R., 2002. Content-boosted Collaborative
Filtering for Improved Recommendations, Eighteenth national conference on Artificiai
inteiiigence, 2002, American Association for Artificial Intelligence pp187-192.

MILLER, R.J., lOANNIDIS, Y.E. and RAMAKRISHNAN, R., 1994. Schema Equivalence in
Heterogeneous Systems: Bridging Theory and Practice, 4th International Conference on
Extending Database Technology, 28-31 March 1994, / 1994, Springer-Verlag pp73-80.

MILO, T. and ZOHAR, S., 1998. Using Schema Matching to Simplify Heterogeneous Data
Translation, Proceedings of 24th Annual International Conference on Very Large Data Bases
(VLDB'98), 24-27Aug. 1998, / 1998, Morgan Kaufmann Publishers Inc ppl22-33.

OASIS OPEN, 02/13/2006, 2006-last update, ebXML home [Homepage of OASIS Open],
[Online]. Available: http://www.ebxml.org/ [02/13, 2006].

PAUTASSO, C., 2005. Distributed Systems UDDI and Beyond. 1. Information and
Communication Systems Research Group: Swiss Federal Institute of Technology.

PEIRIS, C., 30/04/2001, 2001-last update, creating a .NET web service [Homepage of
Jupitermedia Corp.], [Online]. Available: http://www.15seconds.eom/Issue/010430.htm
[02/22, 2006].

- 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/developer/technicalArticles/WebServices/jaxrws/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.ebxml.org/
http://www.15seconds.eom/Issue/010430.htm

BIBLIOGRAPHY

RAHM, E. and BERNSTEIN, P.A., 2001. A Survey of Approaches to Automatic Schema
Matching. The Very Large Data Bases Journal 10,10, pp. 334-334-350.

RESNICK, P., lACOVOU, N., SUCHAK, M., BERGSTORM, P. and RIEDL, J., 1994. GroupLens:
An Open Architecture for Collaborative Filtering of Netnews, Proceedings of ACM 1994
Conference on Computer Supported Cooperative Work, 1994, ppl86.

ROY, J. and RAMANUJAN, A., 2001. XML Schema Language: Taking XML to the Next Level.
IT Professional, 3(2), pp. 37-40.

SAKAMURI, B.C., MADRIA, S.K., PASSI, K., CHAUDHRY, E., MOHANIA, M.K. and S., S., 2003.
AXIS: A XML Schema Integration System, Proceedings of the 22nd International Conference
on Conceptual Modeling, 2003, pp576-578.

SARWAR, B.M., KARYPIS, G., KONSTAN, J.A. and REIDL, J., 2001. Item-based Collaborative
Filtering Recommendation Algorithms, Worid Wide Web, 2001, pp285-295.

SARWAR, B.M., KARYPIS, G., KONSTAN, J.A. and RIEDL, J., 2000. Analysis of
Recommendation Algorithms for E-commerce, ACM Conference on Electronic Commerce,
2000, PP158-167.

SHARDANAND, U. and MAES, P., 1995. Social Information Filtering: Algorithms for
Automating "Word of Mouth", Proceedings of ACM CHI'95 Conference on Human Factors in
Computing Systems, 1995, pp210-217.

SHEN DERONG, YU GE, CAO YU, KOU YUE and NIE TIEZHENG, 2005. An Effective Web
Services Discovery Strategy for Web Services Composition, 2005, pp257-263.

SHETH, A.P. and LARSON, J.A., 1990. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. Computing Surveys, 22(3), pp. 183-236.

SIBLINI, R. and MANSOUR, N., 2005. Testing Web Services, 2005, ppl35.

SMITH, M.K., WELTY, C. and MCGUINNESS, D.L, 02/10, 2004-last update, OWL web
ontology language guide [Homepage of The World Wide Web Consortium], [Online].
Available: http://www.w3.org/TR/owl-guide/ [02/14, 2006].

STRAHL, R., 03/07/2002, 2002-last update, creating and using web services with the .NET
framework and visual studio.NET [Homepage of West Wind Technologies], [Online].
Available: http://www.west-
wind.com/presentations/dotnetwebservices/DotNetWebServices.asp [02/22, 2006].

SUN, C., LIN, Y. and KEMME, B., 2004. Comparison of UDDI Registry Replication Strategies,
2004, PP218-225.

SYSnNET CORPORATION, 2005. SOA Simplified, Systinet Server for Java 6.5 Systinet Primer
Tutorials and White Pages. Tutorials and White Pages.

TERVEEN, L, HILL, W., AMENTO, B., MCDONALD, D. and CRETER, J., 1997. PHOAKS: A
System for Sharing Recommendations.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/owl-guide/
http://www.west-

BIBLIOGRAPHY

THOMPSON, H., BEECH, D., MALONEY, M. and MENDELSOHN, N., 28 October 2004, 2004-
last update, XML schema part 1: structures second edition [Homepage of The World Wide
Web Consortium], [Online]. Available: http://www.w3.org/TR/2004/REC-xmlschema-l-
20041028 [01/26, 2006].

UNGAR, L. and FOSTER, D., 1998. Clustering Methods for Collaborative Filtering, Proceedings
of the Workshop on Recommendation Systems, 1998.

VASUDEVAN, V., 04/04/2001, 2001-last update, A web services primer [Homepage of O'Reilly
Media, Inc.], [Online]. Available:
http://webservices.xml.eom/pub/a/ws/2001/04/04/webservices/index.html [02/22, 2006].

WANG, J., VRIES, ARJEN P. DE and REINDERS, M.J.T., 2006. A User-Item Relevance Model
for Log-based Collaborative Filtering, European Conference on Information Retrieval (EŒR
2006), 2006.

XIAO, H., CRUZ, I.F. and HSU, F., Semantic Mappings for the Integration of XML and RDF
Sources, "Workshop on Information Integration on the Web (IlWeb 2004)".

XU BIN, WANG YAN, ZHANG PO and LI JUANZI, 2005. Web Services Searching based on
Domain Ontology, 2005, pp51-58.

ZHIHONG, Z. and MINGTIAN, Z., 2003. Web Ontology Language OWL and Its Description
Logic Foundation, 2003, ppl57-160.

- 75 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/2004/REC-xmlschema-l-
http://webservices.xml.eom/pub/a/ws/2001/04/04/webservices/index.html

