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A bstract

The purpose o f  this study was to exam ine the effect o f  low -frequency 

neurom uscular electrical stim ulation (NM ES) on glucose regulation in individuals w ith 

type 2 diabetes. Eight individuals w ith type 2 diabetes betw een 41 to 65 years o f age 

volunteered for this study. Participants com pleted  two experim ental sessions in a 

random ized order, a control session and an N M ES session. D uring  both sessions, an 

initial blood sam ple was collected at rest, a beverage containing 75 g o f  glucose was then 

consumed, and further b lood sam ples were draw n at 60 and 120 m inutes. On the NM ES 

day, participants com pleted one hour o f  low  frequency (8 H z) N M ES im m ediately 

following the glucose ingestion. Participants regulated  the intensity  o f  the N M ES to their 

m axim um  tolerable level. A significant increase {p < 0.01) from  7.59 ± 2.06 to l6 .1 1 ± 

3.73 and from  7.75 ± 2.29 to 15.9 ± 3.01 mmol/1 in  blood glucose was observed after 60 

m inutes o f  the N M ES and the control sessions, respectively. This was follow ed by a 

significant {p < 0.01) decrease from  16.11 ± 3.73 to 13.3 ± 3.16 and from  15.9 ± 3.01 to 

14.5 ± 3 .1  mmol/1 after 120 m inutes o f  the N M ES and the control sessions, respectively. 

The changes in blood glucose levels were not different betw een the NM ES and control 

conditions. A  positive correlation was found betw een the delta  difference in blood 

glucose at tim e 60 and the intensity o f the low -frequency '  (r^ = 0.89, P < 0 .0 Ij.

The positive correlation betw een glucose concentration and the inteutib' o f  die Ic 

frequency NM ES may indicate a dose re- .unse to NM ES in individuals w ith type 2 

diabetes. Overall, low  frequeivy, NM ES had no im pact upon plasm a glucose 

concentration in individu Is w ith type 2 diabetes following acute glucose ingestion.

K; - ords; elertricai stim ulation, diabetes, glucose regulation
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Introduction

Diabetes is the m ost prevalent m etabolic d isorder in the w orld and it is reaching 

epidem ic dimensions. The global im pact o f  diabetes in 2000, estim ated by the W orld 

Health O rganization (W H O), was over 171 m illion people. This num ber is expected to 

increase to 366 m illion in 2030 (W ild, Roglic, Green, Sicree, and K ing, 2004). 

Nationally, the num ber o f  Canadians w ho are currently diagnosed w ith diabetes is 1.7 

m illion and its prevalence continues to increase at an alarm ing rate (Health Canada,

2005). The highest prevalence recorded in Canada w as observed in a First N ations 

population in 1997, reporting 26 % (H arris et ah, 1997). The econom ic burden o f 

diabetes and its com plications on the C anadian H ealth Care System  is estim ated to be

13.2 billion dollars every year, and is expected to increase to 15.1 billion in 2010 and

19.2 billion in 2020 (Hogan, Dali, and N ikolov, 2003).

The three m ajor types o f  diabetes are type 1, type 2 and gestational diabetes. 

Exercise is an essential com ponent o f  m anagem ent and treatm ent o f  all form s o f  diabetes. 

Glucose uptake can be increased by tw o separate m echanism s; one insulin-dependent 

pathw ay and one insulin-independent or contraction/exercise induced pathway. In type 1 

diabetes or insulin-deficient individuals, exercise im proves insulin sensitivity, (Koivisto 

et ah, 1986; Wallberg-Henriksson et ah, 1982) but not glucose control (W allberg- 

H enriksson et ah, 1982; Zinm an et ah, 1984). Individuals w ith type 1 diabetes som etim es 

have blunted or im paired ability to increase glucose uptake via the contraction/exercise 

pathway. N onetheless, exercise training, in individuals w ith type 1 diabetes, can im prove 

cardiovascular fitness, blood lipid profiles and reduce insulin  requirem ents.
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Type 2 diabetes is the m ost prevalent and accounts for 90-95 % of all diabetes 

cases in the world. Individuals with type 2 diabetes individuals are know n to have defects 

in the insulin-signaling cascade that include decreases in insu lin  receptor substrate 1 

(IRS-1), tyrosine phosphorylation, IRS-1 association w ith PI 3-kinase, and PI 3-kinase 

activity (Patti et ah, 1999). This results in a greater difficulty absorb ing  plasm a glucose 

into their skeletal m uscles. G lucose uptake in skeletal m uscles m ay  occur by insulin- 

dependent or insulin-independent (contraction-induced) m echanism . Exercise increases 

insulin-stim ulated glucose disposal in individuals w ith  type 2 d iabetes (Trovati et al., 

1984). Exercise in type 2 diabetes can not only increase insulin  sensitivity but also 

increase rates o f  whole-body glucose uptake (D evlin JT, 1987; Z ierath  JR ., 1995).

Both endurance training and strength training are beneficial in  the treatm ent o f 

type 2 diabetes. The C anadian D iabetes A ssociation (CDA) recom m ends that persons 

w ith type 2 diabetes exercise for at least 150 m inutes per week, at a m oderate intensity. In 

addition, these recom m endations also include three sessions o f  resistance training per 

week. Recently, a study com paring strength training (ST) to aerobic endurance training 

(ET) in individuals w ith type 2 diabetes found that blood glucose and insulin resistance 

im proved more in the ST then  the ED group. ST was found to be m ore effective then  ET 

in improving glycém ie control (Cauza et ah, 2005). Resistance train ing  has also been 

found to im prove glycém ie control and insulin sensitivity independently  o f an increase in 

muscle mass (Y aspelkis et ah, 2006). This im provem ent in insulin action  could be due to 

an increase in GLUT-4 content in skeletal m uscles, and to insu lin  signaling protein  

expression or biochem ical adaptations to resistance training (H olten et ah, 2004). B oth 

acute (Fenicchia et ah, 2004) and chronic (Castaneda et ah, 2002) resistance exercise are
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helpful in glucose control. Tw o prolonged session o f  resistance training per week, at 

intensities o f 50-80% , can increase m uscle strength, decrease abdom inal fat, and im prove 

insulin sensitivity. E ven i f  exercise has been postulated to be beneficial and essential in 

the treatm ent o f  type 2 diabetes, most persons w ith type 2 diabetes do not follow  the 

recom m ended guidelines for exercise. In a study o f  1480 individuals w ith type 2 

diabetes, about one third o f these individuals were found to be com pletely sedentary and 

another third reported less than  recom m ended levels o f  physical activity  (Nelson, Reiber, 

and Boyko, 2002). Several factors can explain the lack o f exercise by this population, 

including age, technology, obesity, high blood pressure and hypertension. In addition, 

chronic com plications like retinopathy, neuropathy, and heart problem s can lim it their 

ability to perform  some types o f exercise.

N ovel approaches that take advantage o f the contraction-induced response m ight 

benefit individuals w ith type 2 diabetes. Chronic electrical m uscle stim ulation (EM S) has 

been used in sedentary individuals to im prove physical fitness (B anerjee et ah, 2005). To 

date, electrical stim ulation (ES) has few  studies w hich have exam ined glucose regulation 

and ES in type 2 diabetes. In the past decade, m ost o f  the research on glucose regulation 

and electrical stim ulation has been done on individuals w ith spinal cord injuries (SCI). 

Previous research on glucose regulation and functional electrical stim ulation (FES) has 

shown favorable results in  individuals w ith SCI (M ohr et ah, 2001).

W hen individuals w ith SCI are com pared to able-bodied, they are more likely to 

have oral carbohydrate intolerance, insulin resistance, elevated low -density lipoprotein 

cholesterol, reduced high-density  lipoprotein cholesterol (Baum an, and Spungen, 2001), 

and they have higher risk  o f  developing type 2 diabetes (Jeon et al., 2003). These
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individuals also have a h igher incidence o f  cardiovascular diseases, im paired insulin 

action and are lim ited or restricted from  voluntary exercise. Functional electrical 

stim ulation is the application o f  low -voltage currents to enhance function o f paralyzed 

muscles. This m odality  to elicit involuntary m uscle contraction w as found to im prove 

glucose tolerance and insulin  sensitivity chronically in diabetic individuals w ith SCI 

(M ohr et al., 2001). A nother m ethod that can assist involuntary m uscle contraction is 

neurom uscular electrical stim ulation (NM ES). During N M ES an electrical im pulse is 

passed from  a device to electrodes p laced on the skin over a targeted m uscle or m uscle 

group. The stim ulation causes the m uscles to contract. Clinically, N M ES could be a 

useful m odality to elicit involuntary m uscle contraction and increase glucose uptake in 

skeletal m uscles o f  diabetic individuals who have difficulties perform ing physical 

activity.
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R esearch Q uestion

The potential role o f  low -frequency N M ES in non spinal injured diabetics has yet 

to be exam ined. The purpose o f  this study is to determ ine the acute perturbation o f low- 

frequency N M ES on glucose m etabolism  in patients w ith type 2 diabetes. The plasm a 

glucose response to the oral glucose to lerance test is well docum ented, and it is sim ple to 

adm inister; therefore, it was the choice for this study.

Glucose uptake in skeletal m uscles can be increased despite decreased insulin 

secretion, since exercise causes the translocation o f  the G LU T-4 from  a different pool 

than insulin, A  single bout o f  exercise can not only m arkedly increase rates o f whole- 

body glucose uptake, but also increase the sensitivity o f  skeletal m uscle glucose uptake 

by insulin. The most im portant tissue for glucose uptake follow ing a glucose tolerance 

test is skeletal m uscles, w hich account for 70-90 % o f  the observed uptake (D ePronzo et 

ah, 1981). It is therefore hypothesized that blood glucose concentration follow ing a 

glucose tolerance test w ill decrease during and following the N M ES protocol com pared 

to a control day.
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Literature review

The four m ain substrates during prolonged exercise in active people can com e 

from any o f the follow ing sources: m uscle triglycerides, blood glucose, m uscle glycogen, 

and plasm a free fatty acids (FFA), A t low -intensities com parable to walking (25%  

m axim um  oxygen uptake), alm ost all o f  the energy is derived from  p lasm a fatty acids and 

a small contribution from  blood glucose when perform ed in the fasted state. As exercise 

intensity increases from  25%  to 65%, com parable to running, the to tal fat oxidation 

increases. Plasm a fatty acid and m uscles triglycerides account equally  to total fat 

oxidation; however, carbohydrate oxidation (m uscles glycogen and blood glucose) 

provides one-half o f  total energy, since the rate o f  fat oxidation is lim ited  (M artin et ah, 

1993). A t higher intensities (85%  V O 2 m ax), carbohydrate oxidation provides m ore than  

tw o-thirds o f the total energy and the rem aining contribution com es from  plasm a free 

fatty acids and m uscles triglycerides. Despite the large am ount o f  po ten tia l energy by the 

plasm a free fatty acids and m uscles triglycerides, their rate o f ox idation  is lim ited; 

therefore, the glycogen stored in the m uscles and liver and blood glucose is needed to 

provide the additional substrates for oxidation as the intensity o f exercise is increased.

Glucose transport across the cell surface is a key regulatory step for glucose 

m etabolism  in skeletal m uscle (Goodyear, and Kahn, 1998a). G lucose transport in the 

skeletal m uscle occurs prim arily by facilitated diffusion and utilizes a fam ily o f  transport 

carriers. In hum an skeletal m uscles, the prim ary glucose transporter is called GLUT-4 

(K lip, and Paquet, 1990). The m ajor m echanism  by w hich exercise increases glucose 

uptake in skeletal m uscles is through the translocation o f GLUT-4 from  an intracellular
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location to the p lasm a m em brane in skeletal m uscles. Tw o separate pools o f GLUT-4 

have been identified, one that is insulin dependent and the other w hich is exercise- 

induced (G oodyear, and Kahn, 1998a). In the insulin-dependent m echanism , insulin first 

binds w ith the extracellular a-subunit o f  the insulin  receptor, then there is 

autophosphorylation o f  tyrosine residues in the receptor P-subunit, tyrosine 

phosphorylation o f  the insulin  receptor 1 (IRS-1) and insulin  receptor 2 (lRS-2), and 

activation o f phosphatidylinositol 3-kinase (Pl-3 kinase) (Clarke, Young, Yonezawa, 

Kasuga, and H olm an, 1994). In the exercise induced or insulin-independent m echanism , 

the signaling steps are not the same since contraction does not stim ulate 

autophosphorylation o f  isolated insulin receptors (Treadw ay, Jam es, Burcel, and 

Ruderm an, 1989), receptors o f  1RS tyrosine phosphorylation (G oodyear, Giorgino, 

Balon, Condorelli, and Sm ith, 1995; W ojtaszew ski, H ansen, Urso, and Richter, 1996), or 

PI 3- kinase activity (Goodyear, Giorgino, Balon, Condorelli, and Smith, 1995; 

W ojtaszew ski, H ansen, Urso, and Richter, 1996). These tw o m echanism s have also been 

found to be additive w hen com bined (W allberg-H enriksson, Constable, Young, and 

Holloszy, 1988).

G lucose is the only type o f carbohydrate that skeletal m uscles can m etabolize for 

energy and that can be stored as glycogen. D uring exercise, glucose uptake is know n to 

increase in w orking skeletal muscles. A num ber o f  factors im pact upon glucose 

m etabolism  during exercise. The entry o f glucose in skeletal m uscles has been found to 

be relative to the intensity o f  exercise (W ilkinson, and Liebm an, 1998; H argreaves, 

1995). A t rest, skeletal m uscles only account for 15-20% o f  total glucose uptake in the 

body. A  study using a cycling bout o f 55-60%  V O im ax, dem onstrated that skeletal
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muscle glucose uptake was responsible for as m uch as 80-85%  o f glucose utilized in the 

body (Kjaer, K iens, H argreaves, and Richter, 1991). A m atch betw een glucose uptake 

and hepatic production (gluconeogenesis, glycogenolysis) usually  m aintains euglycem ia 

hom eostais in non-diabetic individuals exercising. The am ount o f gluconeogenesis that 

occurs during exercise depends on the glycogen reserve prior to exercise, and the 

intensity and duration o f the exercise. In the first 30 m inutes o f m oderate to intense 

exercise, m ost o f the glucose output from  the liver is derived from  glycogen stores 

(glycogenolysis) and not gluconeogenesis (W ahren, Felig, A hlborg, and Jorfeldt, 1971). 

After one hour o f  m oderate exercise, the proportion o f gluconeogenesis used is less than  

15 % o f total glucose output (Kjaer, 1995).

N utritional status is another im portant factor that effect glucose m etabolism  

during exercise. In a significant fasted state (a day or tw o) during an exercise bout, a 

large proportion o f  glucose released from  the liver is from  gluconeogenesis (B jorkm an, 

and Eriksson, 1983). In a fed state, glucose production and release from  the liver is not 

necessary. Previous research has found lower plasm a glucose levels after exercise in the 

fed state com pared to the fasted state. This m ay be explained by the fact that p lasm a 

insulin levels were higher in the fed state, and this probably blunted hepatic glucose  

production, w hich resulted in higher glucose utilization than  production (Poirier et ah, 

2001).

Glucose m etabolism  during exercise is also influenced horm onally. A  number o f  

horm onal changes occur during exercise that signal the body to breakdow n stored 

glycogen for fuel, and then can be used by the skeletal m uscles for energy. Insulin, w hich 

is secreted by the P-cells o f the islet o f  Tangerhans in the pancreas, is usually at a low
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level during exercise or is m aintained at a low concentration, w hile glucagon levels 

increase. G lucagon, w hich is secreted by the a-cells o f the pancreas, responds to low 

blood glucose by activating cyclic A M P in the liver, stim ulating bo th  gluconeogenesis 

and glycogenolysis. W ithin the first few  seconds o f  exercise, levels o f  epinephrine and 

norepinephrine rise dram atically. These horm ones stim ulate the breakdow n o f  stored fat 

in both skeletal m uscles and adipose tissues, and the breakdow n o f  glycogen in the liver 

and in skeletal muscles. Glucose production by the liver is either increased by decreased 

insulin and unchanged or increased by sensitizing it to glucagons. (W asserm an, W illiam s, 

Lacy, Goldstein, and Cherrington, 1989; W asserm an et ah, 1989).

Skeletal m uscle uptake can how ever be increased despite decreased insulin 

secretion, because exercise causes translocation o f the GLU T-4 from  a different pool than  

insulin (Douen et ah, 1989; Coderre, K andror, Vallega, and Pilch, 1995). A  single bout 

o f exercise can not only m arkedly increase rates o f whole-body glucose uptake, but also 

increase the sensitivity o f  skeletal m uscle glucose uptake by insulin  (D evlin  JT, 1987; 

Zierath JR., 1995). These effects can persist for several hours after the exercise ends. 

Exercise training can also increase peripheral insulin action on diabetic individuals 

(Hughes et ah, 1993). Insulin action im provem ent can be explained  by an increase in 

GLUT-4 levels, oxidative enzym es activity, type I skeletal m uscles fibres, and capillary 

density (Ivy, 1997). The contraction-induced m echanism  and the enhanced insulin 

sensitivity m echanism  explain the utility o f  exercise in the m anagem ent o f type 2 

diabetes.
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Type 2 diabetes is characterized by a defect in the insulin-dependent signaling 

pathway that contributes to insulin resistance. Insulin resistance can be defined as the 

inability o f  the body to respond appropriately to insulin. Therefore, to m aintain 

euglycemia, the pancreas com pensates by secreting an increase am ount o f  insulin. The 

following period o f com pensation is called im paired glucose tolerance, w hich results 

despite an elevated insulin  concentration as insulin resistance increases. Then, the failure 

o f  the pancreatic (3-cells to respond adequately results in a decrease insulin  secretion. 

Clinical diabetes can be diagnosed w hen im paired (3-cell function  and insulin  resistance 

occurs sim ultaneously (DeFronzo, 2004). Im paired insulin action influences the am ount 

o f glucose uptake by the skeletal m uscles o f diabetic individuals.

W hen whole body glucose regulation is altered, individuals w ith type 2 diabetes 

have difficulties absorbing plasma glucose, w hich results in  excess glucose circulating in 

the bloodstream . Individuals w ith type 2 diabetes have altered  m uscle fiber com position 

compared to norm al healthy subjects (H ickey et al., 1995; M arin  et al., 1994). Sensitivity 

o f whole-body glucose disposal to insulin, in hum an skeletal m uscles is positively 

correlated w ith the percentage o f  type I fibers and negatively  correlated  w ith the 

percentage o f type IIB fibers in the vastus lateralis m uscle (L illio ja et ah, 1987). Type II 

B fibers include a reduced oxidative enzyme activity and an increased glycolytic enzym e 

activity in com parison w ith type I fibers. Individuals w ith  type 2 diabetes have been 

found to have a low  percentage o f type I fibers, elevated type IIB fibers, and a low  

capillary density (M arin P., et 1994). Reduced oxidative enzym e activity in skeletal

10
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muscle o f individuals w ith type 2 diabetes is m ost likely due to a reduction in the 

proportion o f  type 1 fibers (O berbach et ah, 2006).

H ow ever, it is believed that the GLUT-4 translocation is functioning properly in 

diabetic individuals and exercise training can positively affect the G LU T-4 protein in 

skeletal m uscles (K ennedy et ah, 1999). G LU T-4 content w as m easured in individuals 

with type 2 diabetes com pared to asym ptom atic individuals after an acute bout o f 

exercise. The investigators dem onstrated that the total m uscle content o f  G LU T-4 after 

acute exercise was not different betw een non-diabetic  individuals and individuals w ith 

type 2 diabetes. Two m uscle biopsies were taken  from  five individuals w ith  type 2 

diabetes and five norm al control individuals. The first biopsies w ere collected on one leg 

at rest and the second on the opposite leg 3-6 w eeks after 45-60 m inutes o f  cycle exercise 

at 60-70 % V O 2 max. P lasm a m em brane G LU T-4 increased in  both  groups after acute 

exercise (K ennedy et al., 1999).

H enriksen et al. (1990) demonstrated the correlation betw een G LU T-4 content, 

different m uscle fiber types and glucose transport in  an anim al study w ith m ale W istar 

rats. They found that glucose transport was h ighest in the soleus m uscles (80%  type 1 

fiber) and had a higher GLUT-4 content than  in the epitrochlearis (65%  type IIB fibers) 

muscles which had a lower GLUT-4 content (H enriksen et ah, 1990). Increasing GLUT-4 

levels can benefit glucose transport in diabetic individuals since oxidative type I and type 

IIA m uscles fibers are m ore insulin sensitive. These oxidative m uscles fibers have a 

higher GLUT-4 content than the glycolytic m uscles fibers (M acLean, Zheng, and Dohm , 

2000).

11
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A single bout o f exercise increase rates o f  w hole-body glucose uptake, and the 

sensitivity o f skeletal m uscle glucose uptake by insulin (D evlin  JT, 1987; Z ierath JR., 

1995). Exercise training im proves insulin  action in skeletal m uscles tissue (D ela et ah, 

1992; Holten et ah, 2004) in both healthy and individuals w ith  type 2 diabetes. A  change 

in protein expression in the insulin  signaling cascade as w ell as proteins involved in 

glucose uptake and storage in skeletal m uscles is responsible for this im provem ent (Dela 

et al., 1992; H olten et al., 2004). Chronic resistance training in  rats, has been found to 

increase the activation o f  PI 3-kinase, a PKC, and Akt, and increasing total GLUT-4 

protein concentration (Y aspelkis et al., 2006). In individuals w ith type 2 diabetes, 

resistance training has been found to change protein content in PBK , G LU T-4 and GS 

(Holten et al., 2004).

Electrical Stim ulation

During N M ES, contractions are triggered by eliciting action potentials o f the 

motor nerves. M otor units w ith sm aller m otor neurons are recru ited  first and then m otor 

units w ith larger m otor neurons are recruited as the intensity increases (H ennem an, and 

Olson, 1965). How ever, the reverse recruitm ent procedure w ith  electrical stim ulation is 

controversial, and determ ined partly  by the stim ulation param eters (Lertm anorat et ah,

2006). A narrow  pulse w idth (50 micros) has been show n to reverse the recruitm ent 

procedure o f  peripheral nerve stim ulation by recruiting the sm all axons before the large 

axons (Lertm anorat et ah, 2006). V oluntary exercise m ay have m ore difficulties 

activating faster contracting m otor units than  NM ES, because these sm aller m otor units 

may only be activated at higher intensities. Research regard ing  the effect o f  electrical 

stim ulation on skeletal m uscles found that N M ES in com plem ent w ith voluntary exercise
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may provide a m ore successful training m odality  for high thresho ld  m otor units (Trim ble, 

and Enoka, 1991). H igh-frequency and low -frequency ES are tw o com m only used types 

o f electrical stim ulation. N M ES can induce significant levels o f  both  high frequency 

(HFF) and low frequency fatigue (LFF). HFF is characterized by an extrem e loss o f force 

at high frequencies o f  stim ulation and LFF is characterized by a less significant loss o f  

force at low frequencies o f stim ulation (Jones, 1996).

In the early 1990 's the m ajority  o f  research on glucose regulation and electrical 

stim ulation was perform ed on rodents. G lucose transport in skeletal m uscles o f  rodents 

was examined following electrical stim ulation o f  the sciatic nerve (Etgen, Farrar, and Ivy, 

1993). This study indicated an increase in the num ber o f the glucose transporters GLUT- 

4 translocated to the plasm a m em brane. Studies on glucose uptake and the intensity o f  

electrical stim ulation in  rat m uscles typically found that glucose uptake increases w ith 

increasing stim ulus intensities (Johannsson, Jensen, G underson, Dahl, and Bonen, 1996).

In hum ans, glucose uptake and electrical stim ulation w as exam ined on individuals 

with spinal cord injuries. Individuals w ith type 2 diabetes and spinal cord injuries were 

treated three tim es per w eek w ith electrical stim ulation and im proved glucose regulation 

(Mohr et ah, 2001). The frequency used was 30 Hz w ith a preset m axim al intensity o f  

120 mA. This study exam ined individuals w ith SCI and FES for one year, in order to 

examine insulin sensitivity, glucose tolerance, and glucose transporter (G LU T-4) content. 

Individuals w ith SCI perform ed 30 m inutes o f  com puter-controlled  FES exercise 

ergometer, three tim es per w eek for a year. The training w as then  reduced to 30 m inutes 

once a week for the follow ing 6 m onths. This study dem onstrated that one year o f FES 

enhanced w hole-body insulin sensitivity and GLUT-4 content in subjects w ith SCI.
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Glucose transport was m easured by com paring the G LU T-4 content before and after the 

FES protocol, w hich increased by 105 %  after 1 years o f  FES, (M ohr et ah, 2001)

Similarly, a study using healthy adults dem onstrated a positive relationship 

regarding glucose regulation through electrical stim ulation (ES) (Ham ada, Sasaki, 

Hayashi, M oritani, and N akao, 2003). H am ada et al. (2003) exam ined w hether 

involuntary contraction induced by low -frequency electrical stim ulation could enhance 

glucose uptake in healthy adults. A  stim ulation pattern w ith 0.2-m s biphasic square 

pulses at 20 Hz and a 1-s on-off duty cycle w as used. W hole-body glucose uptake was 

determ ined by the glucose disposal rate m easured using a euglycem ic clam p. G lycém ie 

clam p was acutely increased by 2.5 m g -k g - 'm in - ' in  response to electrical stim ulation, 

and rem ained elevated by 3-4 m g kg -'m in -^  for at least 90 m inutes after cessation o f 

stim ulation on skeletal m uscles o f  healthy subjects. (H am ada et ah, 2003)

Only one study has exam ined the effect o f  high-frequency electrical m uscle 

stim ulation (EM S) on glucose uptake in neurologically  intact individuals w ith type 2 

diabetes (Poole, Harrold, Burridge, Byrne, H olt et ah, 2004). Their h igh-frequency EM S 

protocol consisted o f  a 30 m inutes control period; then a current o f  30 m A  w as used for 

30 m inutes and then increased to 40m A  for a further 30 m inutes. Three out o f the five 

subjects increased their glucose uptake; how ever, no statistical significance was found, 

and an allergic response to the EM S was found in 25 % of participants. These participants 

had to stop the EM S protocol and could no longer participate in the study.

Low -frequency electrical stim ulation w ith a frequency o f  8 Hz is tolerated 

com fortably and safely by individuals. A  low -frequency electrical stim ulation protocol 

m ight benefit participants by increasing their ability to tolerate longer periods o f  tim e and
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by decreasing the drop-out rate due to allergic responses. N onetheless, individuals w ith 

type 2 diabetes m ight be im pacted by hypoglycem ia i f  they are taking sulfonylureas and 

perform ing exercise. Previously, post absorptive individuals w ith type 2 diabetes patients 

taking sulfonylureas w ere found to have an enhanced plasm a glucose- low ering effect 

because o f the in teraction o f  the m edication and exercise. H ow ever, none o f these 

participants developed hypoglycem ia during exercise after taking the sulfonylureas. Both 

sulfonylureas and exercise are know n to decrease plasm a glucose; the risk o f 

hypoglycem ia is therefore increased w hen they are com bined. W hen extensive exercise 

is performed in the fasting state, individuals w ith  type 2 diabetes treated with 

sulfonylureas need to be cautious (Larsen, Dela, M adsbads, V ibe-Petersen, and Galbo, 

1999). The risk o f  developing hypoglycem ia is associated w ith the energy expenditure in 

response to exercise (Larsen, Dela, K jaer, and G albo, 1997). H ow ever, an hour o f low- 

frequency electrical stim ulation w ith  a frequency o f  8 H z should not cause extensive 

energy expenditure.

Regulation o f  glucose uptake, in skeletal m uscles during and after electrical 

stim ulation or exercise, can be explained by two m ain phases. The first phase, an insulin- 

independent effect o f  m uscle contraction is apparent during and for a short period after 

the electrical stim ulation. Phase two, the insulin-dependent m echanism , occurs m ostly 

during the latter part o f  the post-stim ulation period (H am ada et al., 2003). These two 

distinct m echanism s o f  glucose uptake by electrical stim ulation, insulin-dependent and 

independent, h ighlight the possibility  o f  a novel modality to treat individuals w ith type 2 

diabetes.
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M ethods

Participants

Eight participants w ith  type 2 diabetes volunteered for this study. Five m en and 

three w om en were included, and the average age was 52 ± 13 years. These participants 

were identified by a physician  as having m et the current diagnosis o f  type 2 diabetes 

(Canadian D iabetes A ssociation  2003 Clinical Practice G uidelines for the Prevention and 

M anagem ent o f  D iabetes in Canada) w ith  m ean diabetes duration o f  6.25 ± 8 . 7 5  years. 

Exclusion criteria were: insulin  use, anginal sym ptom s, hepatic or renal insufficiency, 

progressive ventricular dysrhythm ia, chronic lung disease, in term ittent claudication, 

sym ptom atic low er lim b osteoarthritis, surgically im planted electronic devices (i.e. 

cardiac pacem akers), and lower lim b am putation. Five participants reported none or very 

little exercise on a w eekly basis, and three participants reported they walked, hiked or 

played leisure activities two to three tim es a week. They all continued their hypoglycem ic 

m edications as prescribed for all testing and exercise days. E xcept for one subject treated 

w ith  diet alone all other subjects (n= 7) were treated w ith d iet plus oral hypoglycem ic 

agents (G lyburide, and/or M etform in, and/or Gluconorm, and/or A vandia and/or Actos). 

Tw o subjects w ere only taking M etform in, one subject was taking A vandia alone, and the 

other four subjects w ere taking a com bination o f these agents; M etform in and Glyburide; 

M etform in and G luconorm ; M etform in, Glyburide, and A vandia; M etform in, A ctos, and 

G lyburide. This study was approved by the Ethics Review  C om m ittee o f  Lakehead 

University.
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Participants w ere asked to com plete three sessions over a tw o-w eek period. Each 

session could last up to three hours. The first session was a screening session that gave 

participants the opportunity  to fam iliarize them selves w ith the low -frequency NM ES 

protocol which w ould  be used. In the course o f  the second and th ird  sessions, a glucose 

tolerance test (G TT) was perform ed. D uring one o f these two sessions, participants also 

com pleted 1-hour protocol o f  N M ES along w ith the GTT. The participants (N = 8) were 

random ly assigned to either the N M ES session or the control session on two separate 

days. The N M ES w as alw ays com pleted during the first hour o f  the protocol.

G/wcoj'g To/gmncg Tejt

Subjects underw ent a 2-h glucose tolerance test. This test is the m ost used m ethod 

for accessing w hole-body glucose tolerance (Soonthornpun et al, 2003). After an 

overnight fast (12 hours), the GTTs w ere perform ed at 07: 30 A M  for both conditions. 

Fasting blood sam ple was collected upon arrival (tim e 0). This fasting blood glucose 

value provided a baseline for com paring other glucose values. The subjects were then 

asked to drink a solution containing a know n am ount o f  glucose (75g) w ithin 5 m inutes. 

In total, three b lood sam ples were collected, at rest and at 60, and 120 m inutes after 

consum ption o f  glucose load. Blood was drawn from a vein (venipuncture), usually from  

the inside o f  the elbow  or the back o f  the hand.

Aguro/MWj'cw/az' EiZectr'Zca/ S'hTMwWzoM

The electrical stim ulation was delivered to the knee extensor m uscles o f the right 

and left legs by a portable battery-pow ered stim ulator (Respond Select, Em pi Inc; 300 g 

approxim ate weight) and two 7.5-cm  diam eters round reusable adhesive electrodes (Pals 

Plus, Em pi). The current used was a balanced sym m etrical biphasic, w ith a frequency o f
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8 Hz for a period o f  one hour, the pulse duration was set at 200 ps, and w ithin the first 

two minutes, participants regulated the intensity o f  the contraction to the m axim um  

tolerable level (The portable stim ulator ranged from  0m A to 120m A, but our participants 

could tolerate from  30m A  to 60mA). The electrodes were placed on the extensor m uscles 

o f the legs and produced a rhythm ic contraction. This protocol is w ell tolerated for long 

periods o f tim e (T heriault et al., 1994b).

Statistical comparisons were m ade using a 2 (condition: N M ES or Control) by 3 

(time: 0, 60, 120 m inutes) repeated m easures A N O V A  to determ ine w hether significant 

changes in absolute glucose levels occur w ith tim e or groups. The Student-N ew m an- 

Keuls M ethod test w as used to m ake m ultiple comparisons w hen appropriate. V alues are 

presented as m eans ±  standard error. Level o f significance was set at p<0.05. Relative 

changes in plasm a glucose were determ ined by calculating the difference betw een the 

participants’ values at 0 and 60 m inutes, as well as betw een 60 and 120 m inutes. A  paired 

t-test was used to statistically  assess relative changes.
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Results

A significant increase {p < 0.01) from  7.59 ± 2.06 to 16.11 ± 3 .7 3  and from  7.75 ± 

2.29 to 15.9 ± 3.01 mmol/1 in blood glucose was observed after 60 m inutes o f the NM ES 

and the control sessions, respectively. This was follow ed by a significant {p < 0.01) 

decrease from  16.11 ± 3.73 to l3 .3  ± 3.16 and from  15.9 ± 3.01 to 14.5 ±  3.1 mmol/1 after 

120 m inutes o f  the N M ES and the control sessions, respectively. The results o f the 2 

(condition: control and N M ES) x 3 (time: 0, 60, and 120 m inutes) repeated m easures 

A N O V A  indicated that there was a significant m ain effect for tim e, F  (2) = 52.339, p  < 

0.01. The m ain effect for condition was not significant, F  (1), = 0.441, p  > 0.05. The 

condition by tim e in teraction was also not significant, F  (2) = 1.56, jo > 0.05.
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Figure 1. Absolute p lasm a glucose concentrations at tim es 0, 60, and 120 m inutes during 

NM ES and control conditions. Values are m eans ± SE.

No difference was observed in the relative glucose change from  0 to 60 m inutes 

betw een the control (8.15 ± 3.05 m m ofl) and N M ES (8.53 ± 2.95 m m old) conditions. A 

positive correlation was found betw een the relative difference in b lood  glucose at tim e 60 

and the intensity o f  N M ES (r^ = 0.89, P < 0.01; all participants) (Fig 2). No difference 

was observed in the relative glucose change from  60 to 120 m inutes betw een the control 

(-1.85 ± 1.78 mmoFl) and N M ES (-2.81 ± 1.57 mmoFl) conditions (p = 0.145).
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Figure 2. Relationship Betw een Glucose D elta  D ifference nuu NM ES Intensity Level at 

60 m inutes in Individuals w ith type 2 diabetes, fy = 2 .9 3 19x + 16.256)
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Discussion

To our know ledge, this is the first study to exam ine low -frequency N M ES and 

glucose m etabolism  in individuals w ith type 2 diabetes w ithout spinal cord injuries. The 

present study did not find any significant im pact on plasm a glucose concentration in 

response to the N M ES protocol. However, w e did observe a significant positive 

correlation betw een the increase in blood glucose concentration and the intensity o f  the 

NMES. Inform ation regarding the im pact o f N M ES on glucose regulation  in diabetics is 

sparse. Only one other study has exam ined the effect o f  acute electrical m uscles 

stim ulation (EM S) in neurologically  intact individuals w ith type 2 d iabetes (Poole et al., 

2004). Their high-frequency EM S protocol consisted o f  a 30 m inutes control period; then 

a current o f 30 m A  was used for 30 m inutes and then increased to 40m A  for a further 30 

minutes. The participants were all individuals w ith type 2 diabetes, and were in a post- 

absorptive state. Acute glucose uptake was evaluated using a 5 h hyperinsulinaem ic, 

euglycaemic clam p during ES. The uptake increased m arkedly in  three o f  the five 

volunteers, but did not reach statistical significance (p=0.089). Chronically, no 

significant differences were found in glucose concentration during the OGTT. The 

stim ulation frequency was higher (50H z vs. 8 Hz) than  the one chosen in our study, and 

they utilized a stim ulation current o f  30m A to 40m A. Our pro tocol encouraged the 

subjects to find the h ighest current level that could be tolerated com fortably for an hour, 

which ranged from  30m A  to 60mA.

Along w ith Poole et al., our study supports the overall finding that acute electrical 

stim ulation is insufficient to m odulate glucose m etabolism  in individuals w ith  type 2 

diabetes. This m ay be explained by the fitness level o f the participants. Poole et al.
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(2004) noted that the individuals w ith  a low  response to N M ES were thinner, had low er 

fasting insulin, fasting glucose, and H b A lC  levels than the three individuals who 

responded better to EM S (Poole et ah, 2004). This m ay indicate that health ier individuals 

with type 2 diabetes m ay benefit less from  N M ES com pared to less fit individuals. It is 

therefore possible that overall finding o f  our study is due to the fact that the participants 

were fitter participants not in a severe diabetic condition. A lthough w e did not assess 

fitness levels directly, our exclusion criteria, length o f disease, and resting glucose levels 

suggests a fitter group o f  participants. N onetheless, bo th  studies identified responders 

and non-responders to N M ES. A positive correlation betw een glucose concentration and 

the intensity o f the low -frequency N M ES in our study indicated  a dose response to 

NM ES. A  num ber o f factors m ight explain this finding: i) stim ulation intensity, ii) 

counter-regulatory horm one response, and hi) tim ing o f  glucose ingestion and NM ES.

Firstly, although individuals w ithout type 2 diabetes tolerate low -frequency 

NM ES com fortably for up to eight hours (Theriault et ah, 1994), one hour o f N M ES for 

some individuals w ith type 2 diabetes m ight represent an intense m uscular activity. 

During intense exercise, glucose production increases m ore then glucose u tilization 

(M arliss and V ranic, 2002). ES is a unique type o f  m uscular contraction, very different 

from voluntary exercise (VE). One potential difference betw een both  m odalities is the 

reverse size principle. In ES, the fast tw itch  m uscles are usually  activated along w ith the 

slow twitch. Also, glycogen depletion has been found to be m ore pronounced in electrical 

stim ulation than voluntary contractions at identical low intensities (30 W ), and both types 

1 and type 11 fibers are recruited (Kim, Bangsbo, Strange, K arpakka, and&  Saltin, 1995). 

M oreover, carbohydrate utilization has been com pared betw een ES and VE. W hen
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individuals perform ed at identical intensities and duration exercises, a single bout o f  ES 

to lower limb m uscles stim ulated greater carbohydrate u tilization than VE. These 

differences could be due to larger activation o f  type 11 fibers in  ES com pared w ith V E at 

the same intensity level. As for fiber type differences in ES, rates o f  glycogenolysis have 

been found to be higher in type 11 fibers, or fast tw itch m uscles, than  in type 1 fibers or 

slow tw itch m uscles (G reem haff, Soderlund, Ren, and H ultm an, 1993). A lso, studies in 

anim als have shown that glucose transport is higher in type 11 fibers than in type 1 fibers 

w hen electrical stim ulation is used (Johannsson, Jensen, Gundersen, Dahl., and Bonen, 

1996; Roy, Johannsson, Bonen, and M arrette, 1997). A  com bination  o f the unique 

characteristics o f  ES and altered m etabolic profile o f  skeletal m uscles in individuals o f  

type 2 diabetes (Sim oneau, and K elley, 1997) m ight result in a particularly  intense 

activity and could explain the increased blood glucose concentration noted during the 

NM ES protocol. Studies evaluating m uscles strength and fatigue in individuals w ith  type 

2 diabetes are very lim ited. R ecent data suggest that individuals w ith type 2 diabetes have 

sim ilar contractile function com pared w ith age, gender, and activity  m atched control 

(Singh-Peters et ah, 2006). This study exam ined the M -w ave, isom etric contractile 

properties and central activation o f  the tibialis anterior in individuals w ith non- 

neuropathic type 2 diabetes. H ow ever, another study found a relationship  betw een raised 

glucose levels, and w eaker grip m uscles strength in individuals w ith  type 2 diabetes 

(Sayer- Aihie et al., 2004). To our know ledge, there are no studies quantifying m uscle 

strength and fatigue in the extensor m uscles o f  the legs in individuals w ith type 2 

diabetes. Secondly, the increase in blood glucose concentration m ight also have been due 

to an altered counter-regulatory horm onal response. Plasm a epinephrine and glucagon
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responses to exercise are h igher in individuals w ith  type 2 diabetes than  in the control 

subjects (Kjaer et ah, 1990), and longer hyperglycem ia periods m ay occur because o f  

glucose uptake increases less than  glucose production. Thirdly, tim ing  betw een the GTT, 

NM ES protocol, and m easurem ent o f glucose to lerance m ay also have affected our 

results. W e evaluated our subjects im m ediately after the one-hour N M E S protocol. B lood 

glucose concentration m ay have drop during the N M ES protocol. O ne study found that 

blood glucose concentration decreased rapidly fifteen m inutes after the beginning o f 

exercise, and then as exercise continued, blood glucose concentration  increased 

(Tokmakidis et ah, 1999). Therefore, it is possible that blood glucose concentration m ay 

have drop during the initial phase o f the N M ES protocol, and then  increased when we 

m easured blood glucose concentration at tim e 60 and 120. A lso, it is possible that the 

second phase o f glucose regulation, the insulin dependent effect, peaked after we 

m easured the last b lood  sam pling at 120 m inutes. A t 60 m inutes, three individuals 

showed higher delta d ifference on the control day compared to the N M E S day. After 120 

minutes, we observed that six individuals had higher delta differences on the control day. 

This m ight indicate that the N M ES had m ore o f a post-exercise effect and lowered blood 

glucose concentration in subjects with type 2 diabetes. In addition, the subjects in our 

study arrived in a fasted state, and consum ed a glucose load o f  75g glucose. This m ethod 

was chosen because it w ould  be sim ilar to evaluating electrical stim ulation  as a m ean o f  

regulating acute m eal im pact on blood glucose. Poirier et al. (2000) com pared diabetic 

individuals in the fasted  and fed state to evaluate the low ering affect o f  exercise and the 

tim ing o f meals. A fter exercise, plasm a glucose levels were m uch low er in the fed state 

compared to the fasted state. This may be explained by the fact that p lasm a insulin levels
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were higher in the fed state, and this probably blunted hepatic glucose production, which 

resulted in higher glucose utilization than production. Therefore, a greater decrease in 

p lasm a glucose levels was seen in  individuals in the fed state com pared w ith the fasted 

state (Poirier et ah, 2000; Poirier et ah, 2001). Exercise o f  m oderate intensity is usually 

associated w ith a decreased in plasm a insulin (W asserm an, W illiam s, Lacy, Goldstein, 

and Cherrington, 1989), an increase in glucagon (B ottger, Schlein, Faloona, K nochel, and 

Unger, 1972) and in p lasm a catecholam ines (C hristensen, and Galbo, 1983). How ever, in 

our study, insulin levels m ight have increased follow ing the glucose load and it has been 

shown that a decrease in insulin concentration m ay not be essential for the increase in 

glyconeogenesis during exercise (Z inm an, V ranic, A lbisser, Leibel, and M arliss, 1979). 

It is possible that the increased dem and for energy w as m et by glyconeogenesis by the 

liver; therefore, increasing blood glucose concentration at tim e 60. It is also feasible that 

an hour o f  low -frequency N M ES m anaged to activate and recruit both type 1 and type 11 

fibers, and significantly dim inish m uscles glycogen. N M E S is typically associated w ith  

an increased fatigue rate in com parison to volitional exercise due to m otor unit 

recruitm ent. The possible reduction in m uscles g lycogen and hyperglycem ic response 

m ight have favored an optim al setting for restoration o f  m uscles glycogen. We m ight 

have observed decreased blood glucose concentration after the N M ES protocol if  the 

post-exercise GTT w ould have been perform ed at a later tim e.

A lthough we did not investigate chronic im pact, the GTT m ight also have been 

used to study the delayed im pact o f  ES on glucose m etabolism . Fenicchia et al. (2004) 

perform ed their O G TT 12 to 24 hours after the first exercise session, in w om en w ith type 

2 diabetes in a fasting state. Their exercise protocol consisted  o f 50 m inutes o f resistance
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training, 3 nonconsecutive days per week, for a period o f  6 weeks. They found that 

glucose concentration im proved 12-24 hours after the first resistance training exercise 

session.

This study was delim ited  to the use o f low -frequency electrical stim ulation on 

glucose regulation in  type 2 diabetes. Individuals w ith type 2 diabetes were chosen 

because o f  the w ell docum ented role o f  contraction induced glucose uptake. Low - 

frequency electrical stim ulation is w ell tolerated and easily adm inistered by a portable 

device. Since we w anted to complete the study in a safe and supervised environm ent, the 

portability o f the unit enabled us to collect data locally in  a clinical facility.

Lim itations

A lthough we received excellent support from  the local fam ily physician, total 

recruitm ent over a six-m onth period w as lim ited to eight participants. Due to this sm all 

sam pling size, we were unable to  create subgroups to investigate the role o f m etabolic 

and lifestyle issues involved in glucose regulation. These issues include physical fitness 

levels, dietary habits, length o f  disease, and drug regim ens. D ue to funding lim itations for 

this initial study, a m uscle glucose uptake level was not directly m easured and a glucose 

tolerance test was used to quantify glucose m etabolism . The euglycem ic clamp m ethod, 

w hich would have directly m easured peripheral glucose u tilization and not hepatic 

glucose production, would have been favorable.
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Sum m ary

To date, few  studies have exam ined N M ES in individuals w ith  type 2 diabetes. 

These studies have found that some individuals respond to electrical stim ulation, while 

other do not, or have a less pronounced response. Based on studies on rodents, it is 

believed that a positive correlation betw een glucose uptake and intensity levels o f  

electrical stim ulation is to be expected. H ow ever, we found a trend tow ard increased 

glucose concentration during N M ES, in five participants, w hich correlated  positively 

with increasing in tensity  levels o f  N M ES. The positive correlation found in this study 

betw een blood glucose concentration and intensity levels o f N M ES are in disagreem ent 

with previous studies perform ed on rodents. These studies typically  found that glucose 

uptake increases w ith increasing stim ulus intensities (Johannsson, Jensen, Gunderson, 

Dahl, and Bonen, 1996; Lund, Holm an, Schm itz, and Pedersen, 1995; N esher, Karl, and 

Kipnis, 1985). E lectrical stim ulation and glucose regulation has been studied m ostly on 

SCI individuals. These individuals have sensory im pairm ent w hich  allows them  to 

tolerate m uch higher current than in the present study (120m A  vs. 30-60 mA). The 

positive correlation betw een glucose concentration and the intensity o f  low -frequency 

NM ES found in our study m ight be explained by fatigue m echanism , horm onal response, 

and/or m ethodological procedures. In the present study it could not be ascertained 

whether glucose uptake or hepatic glucose release was changed, resulting  in increased 

glucose concentration in some participants at tim e 60. It is possib le that overall the 

individuals with type 2 diabetes in our study w ere too healthy to benefit from  N M ES. 

Individuals w ith m ore severe diabetes condition or a m ore controlled  stim ulation 

paradigm  for a longer duration w ould be necessary to induce an effect. A continuous
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glucose m onitoring system  before, during and after exercise m ight be useful for recording 

glucose for a lo n g e r . period. In addition, evaluating lactate concentrations and the 

percentage o f m axim al contraction voluntary (M CV) during N M ES m ight help 

understand the unique fatigue in N M ES in individuals w ith type 2 diabetes.
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