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ABSTRACT

Fricker, J.M. 2006. Stand age structures o f single and mixed-species o f fire-origin boreal
stands in Central Canada. 77 pp.

Key Words: biodiversity, bimodal, boreal forest, cover type, developmental stage, old- 
growth, reverse-J, stand age structure, time since fire, wildlife habitat

Stand age structure has been linked to wildlife habitat and can affect biodiversity. 
Further, certain stand age structures (such as those associated with old-growth) are 
valuable from an aesthetic and fiber supply perspective. A review and synthesis of 
literature indicated that boreal forest stand age structure is influenced by time since stand 
replacing fire, stand composition, and disturbances such as spruce budworm 
('Choristoneura fumiferana) and wind. Silvicultural options and implications for 
managing age structure at the stand and landscape level are discussed. My objectives 
were to examine how stand age structure changes among stand developmental stages and 
stand cover types.

I sampled living trees in 32 stands representing typical conifer, mixedwood, and 
hardwood stand types in the central boreal forest region of North America representing 
the stem exclusion/canopy transition, canopy transition, canopy transition/gap dynamic, 
and gap dynamic stages o f stand development. Using a 400 m2 plot in each stand as the 
sampling unit, the diameter at breast height (DBH) of all canopy trees (DBH >10 cm) 
was measured. Five canopy trees in each diameter class ((1) 10-14.9 cm, (2) 15-19.9 cm, 
(3) 20-24.9 cm, (4) 25-29.9 cm, and (5) > 30 cm) for each species were randomly 
selected, and the height o f each tree was measured and an increment core was taken and

•y  *y

aged. Three circular 25 m subplots were then randomly established within each 400m 
plot and the diameter at root collar and height of all seedlings and saplings (DBH <10 
cm) were measured and recorded. A disk was then taken at root collar and aged for 5 
seedlings and saplings in each height class. Canopy trees and regeneration were then 
summed to the plot level and scaled to per hectare.

The results suggest that stand age structure is variable with stand developmental 
stages and stand cover type. Age distribution in conifer stands was bimodal in the stem 
exclusion/canopy transition, bimodal in the canopy transition, reverse-J in the canopy 
transition/gap dynamics, and finally bimodal in the gap dynamics. In the mixedwood 
stands, similar to the conifers, stand age structure was bimodal in all the stand 
developmental stages. In the hardwood stands, age structure was bimodal in the stem 
exclusion/canopy transition, unimodal in the canopy transition stage, reverse-J in the 
canopy transition/gap dynamics stage and finally bimodal in the gap dynamics stage.

Forest management activities such as partial harvesting, selection harvesting, and 
seed-tree systems may diversify stand age structures at the stand and landscape levels, 
benefiting wildlife and creating characteristics of old-growth. It is recommended that 
quantitative old-growth be defined. I suggest using the following criteria to determine 
old-growth in the boreal forest: (1) canopy breakdown of pioneering cohort is complete 
and the stand is dominated by later successional tree species (2) the age structure of the 
stand is bimodal, with dominating canopy trees that fall within a relatively narrow range 
o f age and height classes and a significant amount of understory regeneration.
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CHAPTER 1 GENERAL INTRODUCTION

The boreal forest is one of the largest biomes in the world, encompassing over 

twelve million square kilometers, and is the largest forested region in Canada (Weber and 

Stocks 1998). In North America, the boreal forest extends from Newfoundland, Canada 

in the east to Alaska, USA in the west (Weber and Stocks 1998). Climatically, the area 

ranges from dry and cold climates with a mean annual temperature o f -8°C to a warmer, 

moist climate with a mean annual temperature o f 6°C (Rowe 1972). Fire is the most 

common stand-replacing disturbance in the boreal forest (Johnson 1992; Weber and 

Stocks 1998) and the most important factor for controlling vegetation community 

assemblages and plant succession (Weber and Stocks 1998). The frequency of fire (or its 

inverse the fire cycle), defined as the “the number o f fires per unit area per year” 

(Bergeron 1991), varies tremendously based on regional climate differences (Johnson 

1992; Weber and Stocks 1998). In the western boreal forest, the fire cycle is relatively 

short, resulting in cyclic succession, where early successional species dominate until 

being replaced by the next fire due to the frequency of fire in that region (Dix and Swan 

1971; Johnson 1992). However, in the eastern boreal forest, the time between fires is 

relatively long, and succession is directional, leading to species replacement, where early 

successional species are replaced by later successional species over time (Bergeron and 

Dubuc 1989; Bergeron and Harvey 1997; Bergeron 2000).

Succession generally brings about changes in stand structure including age 

structures in the boreal forest (Oliver and Larson 1996; Smith et al. 1997; Chen and 

Popadiouk 2002). As time since stand-replacing fire increases, boreal forests change 

from an even-aged stand structure (where all trees are the same age), to a two-aged stand
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structure (having two age classes occurring within a stand), to an all-aged/uneven-aged 

stand structure (having three or more age classes) (Oliver and Larson 1996; Smith and 

Long 2001). While this change has been conceptualized in the literature, few studies to 

my knowledge have been done on how stand age structure changes with stand 

development and cover type. Therefore, the goal o f my study was to: (1) explore how 

stand age structure changes with stand development and (2) how stand age structure 

varies with stand composition (hereafter referred to as stand cover type).

Management decisions surrounding old-growth boreal forests are often hindered by 

unclear and largely unavailable definitions, as old-growth boreal forest definitions are 

sparse (Cogbill 1984; Barnard 2004). Due to their importance from an ecological, 

cultural, economic, and aesthetic perspective (Burton et al. 1999; Barnard 2004), research 

is needed to further describe old-growth forests. Thus, this thesis will describe boreal 

forest old-growth stand age structure, and investigate how stand age structure differs 

among stand cover types.
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CHAPTER 2 LITERATURE REVIEW

ABSTRACT

The age structure o f a stand provides an understanding of important ecological 

processes taking place during stand development. The age of trees has been estimated by 

various ageing techniques including historical records, ground level ring and root collar 

ring counts, dendrochronological cross dating and pithnode counting, and tree size. Each 

of these methods has inherent advantages and limitations. In the fire-driven boreal forest, 

stand age structure has been found to shift from a relatively even-aged structure, where 

all trees establish immediately after fire with a similar height and diameter, to one that is 

uneven-aged, where trees vary in height and diameter as time since fire increases. The 

dynamics o f age structure differ with stand species composition; however, research 

surrounding this issue is conflicting. Disturbance events such as spruce budworm 

outbreaks (Choristoneura fumiferana) and blowdown can significantly influence the age 

structure o f a stand. Traditional forest management can shift the age structure at both the 

stand and landscape level. However, some silvicultural systems and forest management 

planning techniques are available to mimic natural age structural patterns. Old-growth 

forests are characterized with uneven-age structure, but the direct influence of climate 

change and indirect affects through increasing insect outbreaks and the fire frequency on 

old-growth is poorly understood.

INTRODUCTION

Stand age structure, the distribution of trees by age cohort in a stand, is one of the 

key structural attributes of a forest stand (Oliver and Larson 1996). The age structure o f a
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stand allows an understanding of ecological processes such as regeneration and 

succession that are operating within the stand (Bergeron 2000; Outsell and Johnson 

2002).

In the boreal forest, stands generally proceed from an even- to uneven-aged 

structure along the successional gradient (Bergeron and Dubuc 1989; Oliver and Larson 

1996; Asselin et al. 2001; Bergeron 2004). Accordingly, stand structural attributes such 

as live trees and coarse woody debris (CWD) that are closely associated with stand age 

structure become more heterogeneous as stand age increases (Oliver and Larson 1996; 

Chen and Popadiouk 2002; Brassard and Chen 2006). In turn, with the links between the 

structure o f live trees and CWD and wildlife habitat and biodiversity (Payer and Harrison

2003), a better understanding of stand age structure will improve management decisions 

concerning the protection of wildlife habitat and sustaining biodiversity.

The general purpose o f this review is to synthesize the literature surrounding 

stand age structure, how it changes naturally over time, and how forest management 

practices may affect the age structure at both the stand and landscape level. More 

specifically, this review will (1) evaluate different tree ageing techniques, (2) determine 

how the age structure of stands change with time since fire (TSF), (3) explore how 

disturbances such as insect outbreaks and blowdown can shape forest stand age structure, 

and (4) discuss how management activities alter the age structure of a stand in the boreal 

forest.

AGEING TECHNIQUES

There are several techniques that have been used to age trees with different levels 

of accuracy. The purpose of this section is to investigate the usefulness and precision of
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the ageing techniques that are commonly used in literature, including historical records, 

using tree size to estimate age, pithnode ring counting at breast height, ground level stem 

and root collar ring counting, and dendrochronological cross dating and pithnode 

counting.

Historical records

Historical records of wildfires can be used to estimate stand age. This method can 

be accurate where detailed fire history information is available (Reed et al. 1998). For 

example, the history of wildfires for areas greater than 200 ha since 1920 is available in 

Ontario (Perera et al. 1998). However, this method can be unreliable when records are 

incomplete, are lacking needed information, or are collected in a way where the scientific 

validity is in question (Antos and Parish 2002). Further, historical records of individual 

tree establishment in natural stands are rarely available. Therefore, historical records are 

not valid for studying stand age structure of natural stands when the age of each tree 

within a stand needs to be determined.

Using tree size to estimate age

Tree size such as diameter at breast height (DBH) has often been used to estimate 

the age o f trees in a stand. Lorimer (1980), Takahashi et al. (2001), and Stewart et al. 

(2003) all found that tree DBH could be used to estimate tree age. Using tree size to 

estimate tree age is more advantageous than using increment core ring counts when the 

tree has heartrot, an accurate pith cannot be retrieved, inaccurate boring techniques are 

used, or equipment malfunctions or inaccuracies occur (Lorimer et al. 1999). However, 

this technique can produce quite inaccurate results for the following reasons. First, 

competition can result in different DBHs even though all stems are established
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simultaneously. Second, trees that are more susceptible to dying often show a decrease in 

growth rates (Bigler and Bugmann 2003). Third, some shade tolerant tree species can go 

through decades of low stationary growth when suppressed (Chen et al. 1996; Niklasson 

2002; Bigler and Bugmann 2003). The last two cases can result in a significant 

underestimation o f a tree’s age. While tree size can provide estimations of tree age under 

certain stand conditions (Lorimer 1980; Takahashi et al. 2001; Stewart et al. 2003), tree 

size as an estimate o f tree age can introduce significant errors of tree ages in complex, 

old-growth stands (Daniels et al. 1997).

Pithnode and root collar ring counting

Tree ring counting is a common method in estimating the ages of trees that grow 

in a climate with distinct seasons, where tree rings form different colors and densities 

coinciding with the seasonal growing conditions. Cores or disks can be taken for ring 

counts from tree stems at breast height (approximately 1.3 m from the root collar) 

(Vasiliauskas and Chen 2002), 30 cm above ground, ground level, or from the root collar 

(Gutsell and Johnson 2002). Ring counting at breast height or 30 cm above ground is 

most common for field foresters to estimate the age o f a tree. When a core or disk is 

taken at breast height, a certain number o f years can be added to account for the time the 

tree takes to grow up to breast height (Avery and Burkhart 2002). Vasiliauskas and Chen 

(2002) reported that it takes 6-7 years for shade intolerant jack pine, trembling aspen, and 

white birch to reach breast height, while black spruce needs an average of 18 years to 

grow up to 1.3 m in height after fire in northeastern Ontario. Similarly, Gutsell and 

Johnson (2002) found the differences in ring counts at 30 cm above ground and at root
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collar vary between 0-11 years for shade intolerant species versus 0-43 years for shade 

tolerant species in the boreal forest o f Saskatchewan.

Coring at breast height is convenient and efficient, and is often the only suitable 

means when heartrot occurs or an excessive butt flares up at lower positions of the stem. 

However, using ring counts at breast height or 30 cm above ground can result in 

inaccurate estimates o f tree ages (DesRochers and Gagnon 1997; Sano 1997; Wong and 

Lertzman 2001; Stewart et al. 2003) because o f the error associated with estimating the 

number o f years for the tree to reach breast height from ground level or 30 cm above 

ground. In addition, it is also prone to underestimation of tree age if  the pith is missed 

when coring a tree (Lorimer et al. 1999; Peters et al. 2002).

In comparison with ring counts at breast height or 30 cm above ground, ground 

level and root collar ring counts reduce the error associated with estimating years for the 

tree to grow up to 30 cm above ground or breast height. These methods can still result in 

an underestimation of tree age with root collar ring counts being less prone to 

underestimate tree age (Niklasson 2002). A majority of the error associated with this 

ageing technique is related to missing rings which can occur following environmental 

stress and suppression (DesRochers and Gagnon 1997).

Dendrochronological cross dating and pithnode counting

Dendrochronological cross dating has been shown to be an effective ageing 

technique when information surrounding historical climate and disturbance patterns are 

available to cross-reference with other ageing techniques. For example, in some studies 

dendrochronological cross dating has been found to be more accurate than tree ring 

counting alone (Niklasson 2002). However, DesRochers and Gagnon (1997) found that,
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to provide an exact age for some tree species (i.e., black spruce), tree excavation and 

serial sectioning is required to locate the root collar and detailed dendrochronological 

analysis o f above- and below-ground portions of the stem must be made. This can be 

quite time consuming and costly. Additionally, this method may not be appropriate for 

suppressed trees, as close growth rings can make ageing difficult. In turn, diseased trees 

can have considerable variation in growth ring development, creating conditions where 

dendrochronological cross dating and pithnode counting may be an inaccurate technique 

to use.

In conclusion, it is recommended that root collar ring counting be used to age the 

trees in forest stands. This technique is likely the most accurate ageing technique as the 

age of the tree from ground level to breast height does not need to be assumed. However, 

the drawback is that this technique is more time consuming for operational foresters and 

more destructive on ecosystems. Lieffers and Stadt (2003) state that depending on the 

nature o f the study, different ageing techniques are more accurate and therefore desirable, 

but acknowledge that cross-dating techniques are more accurate when determining 

germination ages of trees.

CONCEPTUAL STAND AGE STRUCTURE IN BOREAL FORESTS

The boreal forest is characterized as having large, intense crown fires as the 

primary stand-replacing disturbance mechanism (Johnson 1992; Groot and Horton 1994). 

These fires are responsible for resetting successional communities to an earlier stage of 

development (Flannigan et al. 1998). Consequently, stand age structure is largely a 

reflection of time since fire (Flannigan et al. 1998). Age structure can also be influenced 

by several post disturbance autogenic and allogenic processes that alter age structure such
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as individual tree mortality, blowdown, and spruce budworm outbreaks at both the stand 

and landscape level (Chen and Popadiouk 2002). In this way, tree mortality by natural or 

catastrophic events can significantly influence the age structure of a stand (Keenan and 

Kimmins 1993; Carleton and MacLellan 1994). In this section, age structural dynamics 

will be reviewed for fire origin boreal stands using Chen and Popadiouk’s (2002) model 

of stand development.

Stand initiation

A stand-replacing fire removes canopy and subcanopy trees, destroys advanced 

regeneration and herbaceous and shrub vegetation, and alters forest floor temperature and 

light levels (Bergeron and Dubuc 1989), initiating secondary succession and allowing the 

colonization of early-successional tree species. During the first stage of development 

called stand initiation, the forest is usually colonized by early-successional tree species if 

present before fire, such as trembling aspen (Populus tremuloides), jack pine (Pinus 

banksiana), and lodgepole pine {Pinus contorta), depending on site conditions and 

geographical location (Lieffers et al. 1996; Cumming et al. 2000). In some areas which 

are lowland and wet, black spruce (Picea mariana) can also colonize a stand shortly after 

fire (Antos and Parish 2002; Parisien and Sirois 2003). As a result of regeneration 

mechanisms (i.e., aspen reproducing by root suckering (Antos and Parish 2002; Kabzems 

and Garcia 2004) and jack pine and lodgepole pine by serotinous cones (White et al.

1985; Cumming et al. 2000; Delong and Kessler 2000)) and the rapid growth of 

colonizing species, young stands often develop with single or multiple species forming a 

single developing cohort (Bartemucci et al. 2002). As such, during the stand initiation
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stage, the majority o f the trees in the stand are developing at the same time, resulting in 

an age structure that is relatively even-aged (Figure 2.1a).

However, the unpredictability o f fire can create situations where some standing 

trees and even large patches of unbumed forest are left alive as fire bums in a very 

heterogeneous fashion (Day 1972; Delong and Kessler 2000). Trees that survive fire, 

mix with the postfire cohort and increase the heterogeneity o f the stand’s age structure 

(Oliver and Larson 1996; Smith and Long 2001; Chen and Popadiouk 2002).

Stem exclusion

As a stand continues to develop, all available growing space becomes occupied 

and intense competition between stems for site resources occurs in a process called self­

thinning. In this process, some stems survive and other stems die due to differences in 

the ability o f stems to utilize resources (Oliver and Larson 1996; Chen and Popadiouk 

2002). Self-thinning usually kills the weaker, suppressed trees which cannot compete as 

successfully (Groot and Horton 1994; Cumming et al. 2000; Pare et al. 2001; Antos and 

Parish 2002; Chen and Popadiouk 2002). During this stage, the age structure o f the stand 

remains relatively even-aged while the canopy height of trees continues to increase (Peng 

2000; Frey et al. 2003). This even-aged structure dominates through the end of the stem 

exclusion stage, until regenerating understory trees can begin to form an important 

component of the overall age structure o f the stand (Oliver and Larson 1996; Chen and 

Popadiouk 2002) (Figure 2.1b).
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A. Stand initiation and stem exclusion stages

Tree age

O"

Tree age

B. Stand re-initiation/Canopy transition

Tree age

<T

C. Old-growth/Gap dynamics

cr

Tree age

Figure 2.1. Age structural dynamics o f a boreal forest stand associated with stand 
developmental stages defined by Chen and Popadiouk (2004).
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The autogenic self-thinning processes that occur in a stand can be influenced by 

biotic and abiotic factors. For example, in stands where the density o f trees is relatively 

low prior to self-thinning, trees have less competition for resources. This is due to their 

wider spacing causing the self-thinning process to begin and end later, as vertical 

stratification of the canopy (indicating all growing space has been utilized) occurs later in 

less dense stands (Lieffers et al. 1996; Pothier et al. 2004; Hill et al. 2005). For example, 

White et al. (1985) and Johnson and Fryer (1989) found that self-thinning begins in 

lodgepole pine/Englemann spruce (Picea englemanni) forests around 10-30 years post 

fire. Environmental variables such as temperature, precipitation and topography can also 

influence the autogenic processes that occur within a stand.

Canopy transition

During canopy transition, overstory trees from the colonizing cohort begin to die 

as a result of age related factors (i.e., trembling aspen reaches an age o f maturity between 

60-80 years (Sano 1997; Cumming et al. 2000; Hill et al. 2005)), creating gaps in the 

canopy and freeing up growing space for understory trees to be released into the 

overstory (White et al. 1985; Groot and Horton 1994; Nappi et al. 2004; Hill et al. 2005).

The increase in light levels caused by canopy gaps promote a new layer of 

regeneration to occur (Groot and Horton 1994; Bergeron 2004). As a result, the forest 

stand age structure becomes more uneven and heterogeneous, as both the pioneering 

cohort of early-successional species and later establishing cohort(s) o f late successional 

species begin to contribute significantly to the age structure of the stand (Groot and 

Horton 1994; Sano 1997; Delong and Kessler 2000; Stewart et al. 2003; Desponts et al.

2004).
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Gap dynamics

When the time between stand-replacing fires is long, the pioneering cohort can 

completely disappear from the overstory due to the longevity of boreal tree species.

When this occurs, the stand develops into the gap dynamics stage (also referred to as old- 

growth) that is dominated by later established shade tolerant cohorts (Kneeshaw and 

Bergeron 1998; Takahashi et al. 2001; Bartemucci et al. 2002; Mori and Takeda 2004). 

During this stage, succession is driven by tree senescence and non-stand replacing 

disturbances (i.e., spruce budworm outbreaks and blowdown) that create canopy gaps 

(Bouchard et al. 2005). These canopy gaps are responsible for the self-perpetuation of 

the stand by creating conditions that are suitable for new seedlings and saplings to recruit 

by increasing light levels and opening up growing space (Takahashi et al. 2001; Mori and 

Takeda 2004). However, some disturbances including wind that are commonly thought 

of as non-stand replacing disturbances, can at times be stand-replacing (Hornberg et al. 

1995; Kneeshaw and Burton 1997; Linder and Ostlund 1998; Delong and Kessler 2000; 

Stewart et al. 2003), causing stand development to revert to a stand initiation phase of 

development. As such, the gap dynamics stage o f development is characterized as having 

a stand age structure that is quite heterogeneous and composed of various cohorts (Figure 

2.1c).

In the gap dynamics stage, it has been found that the trees growing in the stand 

show reverse-J height and DBH distributions, with many small trees and few large trees 

with a wide range of ages (Sano 1997). While some researchers have found that the 

reverse-J curve is relatively continuous (Delong and Kessler 2000; Stewart et al. 2003), 

Sano (1997) found that the age structure of a stand appears to be a discontinuous reverse-
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J. In turn, large, long-lived individuals surviving from the pioneering cohort can be fairly 

resistant to fire and contribute to the unevenness o f the stand age structure even at the 

old-growth state (Zhang et al. 1999).

The shape of the age class distribution curve appears to differ based on cover 

type. In old-growth conifer forests, the age distribution curve appears to be steeply 

reverse-J shaped (Homberg et al. 1995; Kneeshaw and Burton 1997; Linder and Ostlund 

1998), whereas in old hardwood forests, a multi-aged pattern is seen with trees spread out 

relatively evenly among age and diameter classes (Leak 1996). At the landscape level, 

Van Wagner (1978) and Johnson et al. (1995) found that the age class distribution of the 

boreal forest follows a negative exponential distribution with time since fire, where many 

stands are young and few stands are old.

Soils have been shown to shape successional pathways on various boreal site 

types. For example, Galipeau et al. (1997) has shown that white spruce favours 

regenerating on sandy to loamy soils. In contrast, black spruce has a competitive 

advantage regenerating and growing on hydric, nutrient poor soils. As such, successional 

dynamics and therefore stand age structure is likely to be influenced considerably by site 

type, climate, and soil composition.

THE EFFECT OF SPRUCE BUDWORM AND WIND AND THEIR EFFECTS ON 

STAND AGE STRUCTURE

While fire is the main disturbance mechanism in the boreal forest (Johnson 1992), 

non-stand replacing disturbances can shape the age structure of a stand beyond the initial 

stand-replacing disturbance (Fleming et al. 2000; Kellomaki 2000; Burleigh et al. 2002). 

However, with the great number of disturbances that can alter stand age structure, this
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review will focus on the effect of wind and spruce budworm exclusively, as there are 

many disturbances that can affect stand age structure and an overview of all of them 

would be a review in itself.

Spruce budworm

Outbreaks of spruce budworm can shape many aspects of forest structure and 

drive successional processes by causing significant mortality in a stand of host tree 

species including many spruces and firs (Blais 1981; MacLean and Ostaff 1989; Burleigh 

et al. 2002; Bouchard et al. 2005). In areas where spruce budworm outbreaks are 

common and fires infrequent, budworm outbreaks can create a multiple cohort stand by 

killing off dominant conifer trees. In turn, this can free up growing space and increase 

canopy openness while causing higher nutrient allocations and light levels by creating 

canopy gaps, and allowing the establishment of seedlings and saplings while permitting 

suppressed individuals to grow up into the canopy (Kneeshaw and Bergeron 1998). 

Mixedwood management could occur in areas with high incidence of spruce budworm 

activity, as spruce budworm outbreaks can kill off spruce and fir species and allow for the 

recruitment of early-successional hardwoods in canopy gaps (Bergeron and Leduc 1998; 

Kneeshaw and Bergeron 1999; D'Aoust et al. 2004).

The susceptibility o f trees to spruce budworm may depend on their size and 

species, as host species have different resistance to budworm outbreaks. For example, 

white spruce has been found to be less susceptible to budworm attacks than balsam fir 

(Antos and Parish 2002; Burleigh et al. 2002). This can cause the age class distribution 

of stands 68 years after fire to be bimodal in white spruce dominated forests in contrast to 

a unimodal stand age distribution in balsam fir stands (Galipeau et al. 1997). In turn,
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Blais (1958), Baskerville (1975), and Bergeron et al. (1995) reported that smaller trees 

are less prone to budworm damage than larger trees. However, MacLean and Ostaff 

(1989) reported that larger and smaller trees show similar levels of mortality.

Cover type and stand age appears to affect a stand’s susceptibility to spruce 

budworm outbreaks, as older, more conifer dominated stands tend to suffer greater spruce 

budworm defoliation than younger stands with a greater hardwood component. In many 

areas of the boreal forest, stands increase in conifer component as time since fire 

increases (Morin 1994; Bergeron 2000; Harvey et al. 2002). Higher spruce budworm 

susceptibility with time may be caused by many factors including an increase in host 

species, a decrease in tree vigour, and an increase in a tree’s susceptibility to disease 

(Galipeau et al. 1997).

If the conifer component of susceptible tree species in a stand is high, there tends 

to be an increase in mortality resulting in stand replacement and cyclical succession by 

killing most o f the canopy trees. This will cause the stand to be largely even-aged and 

dominated by a single cohort, reverting back to the stand initiation stage o f development. 

Recurrent budworm outbreaks in forests dominated by susceptible conifer species will 

therefore be relatively young and regenerate in a wave-like fashion (Bergeron et al. 1995; 

Galipeau et al. 1997). In this case, the seedling and sapling layer can remain, and will be 

free to grow up into the canopy and form the next cohort, rather than simply fdling 

available gaps (Morin 1994; Parent et al. 2001; Bouchard et al. 2005).

The extent of spruce budworm effects seem to differ by geographic and abiotic 

conditions. For example, some research has shown that abiotic conditions such as soils 

and temperature affect the susceptibility o f a stand to spruce budworm outbreaks
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(Burleigh et al. 2002; Bouchard et al. 2005). However, other research has shown that 

abiotic conditions have little effect on spruce budworm susceptibility (Bergeron et al. 

1995). They attributed this contradiction to the extreme severity o f the spruce budworm 

outbreak observed in their study in which even vigorous trees that normally would be 

more resistant to outbreaks were affected regardless o f site and cover types. As well, 

there appear to be differences in budworm outbreaks from one region of the boreal forest 

to the next. For example, in eastern Canada, budworm outbreaks are more widespread 

and occur at shorter intervals compared to the west (Blais 1983). This leads to cyclical 

patterns o f fir mortality in eastern boreal forests and patchy forest structure in the west 

(Kneeshaw and Bergeron 1999). At the stand level, spruce budworm outbreaks in the 

eastern boreal forest usually cause the majority of fir to die, and in a balsam fir 

dominated forest, this results in stand replacement. An entirely new cohort will then 

occupy the site and will grow until the next spruce budworm outbreak, maintaining a 

relatively even-aged structure (Kneeshaw and Bergeron 1999). In some parts of the west, 

however, budworm outbreaks usually do not cause stand replacement, and the death of 

balsam fir simply causes a patchy structure and leads to a more uneven-aged stand 

structure (Kneeshaw and Bergeron 1999).

Wind

Extreme wind events can create forces that overcome a tree root’s resistance and 

cause it to be blown over and uprooted or broken at the bole. Depending on the 

magnitude or intensity of the event, only a few trees can be blown over (non-stand 

replacing disturbance) or the entire stand can be blown over (stand-replacing). Non-stand 

replacing blowdown can increase the age structure heterogeneity of the stand by
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removing some canopy trees, releasing understory trees, promoting the growth of 

suppressed trees, and creating microsites that are needed for new regeneration to occur 

due to less competition from other vegetation, more light, and greater access to nutrients 

(Webb 1988; Kuuluvainen and Juntunen 1998; Kulakowski and Veblen 2003). In this 

way, blowdown can allow for the persistence and establishment o f many different age 

cohorts in the stand, thereby increasing age structural diversity. In contrast, severe 

blowdown can cause a stand-replacing event making the post-disturbance stand relatively 

even-aged and low in age structural diversity.

The physical characteristics of different tree species appear to affect their 

susceptibility to blowdown. For example, because they are more flexible, aspen trees are 

more susceptible to blowdown compared to conifer trees (Baker et al. 2002). Further, 

blowdown tends to affect taller trees more than smaller trees, and a lower tree density has 

been found to lead to lower levels of blowdown compared to high tree densities (Baker et 

al. 2002). Younger forests in turn are less susceptible to blowdown than older forests 

(Frelich and Lorimer 1991; Frelich and Graumlich 1994; Meilby et al. 2001). It is also 

important to note that management activities such as thinning and clearcutting can make 

a stand more likely to experience a blowdown event (Huggard et al. 1999; Meilby et al. 

2001). The effect of forest management on age stand structure will be discussed in 

greater detail below.

THE IMPLICATIONS OF FOREST MANAGEMENT ON FOREST STAND AGE 

STRUCTURE

In the boreal forest, clearcutting is the most common type of harvesting system 

employed. While clearcuting has been found to be better at emulating the patterns
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created by fire (Harvey et al. 2002; Hebert 2003), it appears that harvesting activities lack 

the ability to mimic many ecosystem aspects (Brumelis and Carleton 1988; Carleton and 

MacLellan 1994; Ruel et al. 2004). The goal of this chapter is to explore the effect of 

forest management on forest age structure (at the stand and landscape level) and review 

old-growth concerns and issues surrounding age structure.

Forest management and effect on stand and landscape age structure

At the stand level, clearcutting and stand-replacing fires create similar age 

structures soon after the disturbance and likely result in similar age successional 

dynamics (Bergeron et al. 2001; Bergeron et al. 2002). However, at the landscape level, 

forest harvesting is likely to create different age structural dynamics. In the boreal forest, 

stands could be harvested before the breakup of the pioneering cohort (rotation age 

between 70-120 years), as in this stage of development, stands have reached their 

maximum volume (Wardle et al. 2004). From an economic perspective focused 

exclusively on growth and yield, stands should be harvested at or before this time (Smith 

et al. 1997; Seymour and Kenefic 2002). When this occurs, there is the potential for the 

landscape to be composed of relatively young, even-aged stands (Figure 2.2a) (Frelich 

and Lorimer 1991; Bergeron et al. 2002; Bergeron 2004). However, fire alone usually 

creates a landscape with many young stands and few old stands following a negative 

exponential distribution (Bergeron et al. 2002; Bergeron 2004) (Figure 2.2b). Further, 

when a fire bums, it often leaves remnant patches of forest stands on the landscape, 

further increasing the age structural diversity of the landscape (Delong and Kessler 

2000).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 0

(a )

m
£<

o
CM

m
^  c ?  c \ ^

V  V

A ge o f stands
(b )

0 100 200 300 
Time since last 

fire

Figure 2.2. Age stand structural composition of the boreal forest (a) when the
rotation age is relatively short and (b) under natural conditions (Bergeron 2004).

Nyland (2003) describes silviculture as a long-term process to manage a stand in a 

way to sustain a set of values and interests that often vary by stand, landscape or region. 

These values and interests can be biologically, economically, or socially motivated 

(Smith et al. 1997). Traditional forestry has focused largely on extracting wood for its
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economic value, placing little value on social (i.e., recreation) or biological (i.e., wildlife 

habitat) values (Kellomaki 2000). With the increase o f public concern surrounding the 

negative impacts of forestry and the increase in research to understand ecosystem 

processes and services, the complexities surrounding the implementation o f economically 

viable and ecologically sustainable silvicultural systems are increasing and often 

conflicting (Kimmins 1997).

It has been suggested that forest management can be used to create a landscape 

age structure that resembles the natural landscape age structure of the boreal forest 

(Bergeron et al. 2002). Bergeron (2004) recommends using clearcutting to promote 

young stands, partial cutting to resemble intermediate aged stands, and selective cutting 

to mimic old stands (Figure 2.3). In turn, Asselin et al. (2001) suggests using a 

combination o f strip clearcutting and seed-tree systems to maintain a diverse age 

structure at the landscape level. Further, Nyland (2003) recommends promoting the 

development o f uneven-aged stands by using partial cutting to ensure an understory 

cohort of seedlings and saplings is allowed to develop in a stand or by using patch cutting 

systems to ensure that cutting occurs in a heterogeneous fashion to better represent the 

natural landscape patterns of the forest.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 2

10

9

8
Clearcutting

7

6

S

63%4 Partial cutting
3

2
23% .1.4%

0

300150 200 250

Figure 2.3. A proposed harvesting approach to emulate the natural age structural makeup 
of stands at the landscape level in the boreal forest (Bergeron 2004).

Old-growth forests: issues and concerns

While foresters agree that old-growth forests are relatively old, there is no 

consensus on the age at which a forest enters the old-growth state (Gordon 2004; Helms 

2004). Helms (2004) describes old-growth stands as “a contiguous group of trees 

forming a canopy characterized by old-growth trees and in the late successional stage o f 

development” . While an evaluation of old-growth characteristics is still largely 

incomplete for the boreal forest (Gordon 2004), some researchers have attempted to 

develop criteria to classify old-growth forests (Kneeshaw and Gauthier 2003). Presently, 

old-growth forests have been described as having (1) a heterogeneous spatial distribution 

of trees, (2) dominance o f late successional species, (3) multiple canopy layers, (4) a
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large CWD component, (5) a subcanopy/canopy ratio o f approximately 1.5, and (6) an 

uneven-aged structure (Lee et al. 2000; Stewart et al. 2003; Desponts et al. 2004;

Franklin and Van Pelt 2004).

Many old-growth stands are valuable to the forest industry. These stands are 

highly prized by the forest industry as they contain a high standing volume of commercial 

fibre, but are prone to disturbances (Burton et al. 1999). They are also valuable to 

society for many ecological, economical, cultural, religious, and aesthetic reasons 

(Barnard 2004). Further, they have important implications for biodiversity and wildlife 

habitat, and ecologists are pushing more and more for their protection (Burton et al.

1999; Barnard 2004). Old-growth forests have been found to support a variety of unique 

bird, mammal, epiphytic lichen, and invertebrate species (Linder and Ostlund 1998; 

Niemela 1999; Desponts et al. 2004). Timber harvesting that may alter the age structure 

o f the forest and reduce the amount of old-growth found on the landscape may harm 

these species and deplete biodiversity as a result o f habitat loss (Linder and Ostlund 

1998; Niemela 1999; Desponts et al. 2004). As well, human-induced disturbances (i.e., 

forest harvesting) and natural disturbances (i.e., spruce budworm attacks and blowdown) 

can set the forest back to a single cohort, even-age structure (Flarvey et al. 2002).

Some studies suggest that the percentage o f old-growth in some areas of the 

boreal forest is expected to expand as an increase in precipitation brought about by 

climate change will cause longer fire cycles (Johnson et al. 1995; Delong and Kessler 

2000). In other areas of the boreal forest, climate change is expected to make areas dryer, 

causing the fire cycle to shorten and less old-growth to be present (Johnson 1992; Stocks 

et al. 1998). It is likely that a greater percentage of the landscape will be covered by
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conifer forests as earlier successional, shade intolerant hardwoods are replaced by late 

successional, shade tolerant conifers as a part o f normal boreal succession (Lesieur et al. 

2002). However, other studies indicate that fire intensity and frequency will increase 

with climate change, thereby causing a greater percentage o f the landscape to be occupied 

by early-successional forests and decreasing the amount of old-growth present 

(Thompson et al. 1998).

CONCLUSIONS

(1) Numerous ageing techniques with varying levels of accuracy have been developed 

to age trees. Ageing techniques shall be chosen with consideration of the balance of 

affordability, sample size, and level o f tolerance to potential impreciseness.

(2) Stand age structure is largely a reflection of time since last stand-replacing fire in 

the boreal forest. In the long term absence of fire, succession leads to a shift in the 

tree layer, causing the forest stand age structure to shift from a single, even-aged 

structure to a multi-aged, uneven-aged structure over time.

(3) Disturbances such as spruce budworm outbreaks and wind influence successional 

processes and play an important role in shaping the age structure o f a stand.

(4) Traditional forest management can shift the age structure at both the stand and 

landscape levels. However, silvicultural systems and forest management planning 

techniques are available to mimic natural stand age structural patterns. Old-growth 

forests are characterized by uneven-age structure.
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CHAPTER 3 STAND AGE STRUCTURAL DYNAMICS OF CONIFER, 

MIXED WOOD, AND HARDWOOD STANDS IN THE BOREAL FOREST OF

CENTRAL CANADA

ABSTRACT

Stand age structure has been linked to wildlife habitat and can affect biodiversity. 

Further, certain stand age structures (such as those associated with old-growth) are 

valuable from an aesthetic and fibre supply perspective. My objectives were to examine 

how stand age structure changes among stand developmental stages and stand cover 

types.

I sampled living trees in 32 stands representing typical conifer, mixedwood, and 

hardwood stand types in the central boreal forest region o f North America representing 

the stem exclusion/canopy transition, canopy transition, canopy transition/gap dynamic, 

and gap dynamic stages of stand development. Using a 400 m plot in each stand as the 

sampling unit, the diameter at breast height (DBH) of all canopy trees (DBH >10 cm) 

was measured. Five canopy trees in each diameter class for each species were randomly 

selected, and the height o f each tree was measured and a single increment core was taken 

at breast height (1.3 m) and aged. Three circular 25 m subplots were then randomly 

established within each 400 m plot and the diameter at root collar and height of all 

seedlings and saplings (DBH <10 cm) were measured and recorded. A disk was then 

taken at root collar and aged for 5 seedlings and saplings in each height class. Canopy 

trees and regeneration were summed to the plot level and scaled to per hectare.

The results suggest stand age structure is variable with stand developmental 

stages and stand cover type. Age distribution in conifer stands was bimodal in the stem
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exclusion/canopy transition, bimodal in the canopy transition, reverse-J in the canopy 

transition/gap dynamics, and finally bimodal in the gap dynamics. In the mixedwood 

stands, similar to the conifers, stand age structure was bimodal in all stand developmental 

stages. In the hardwood stands, age structure was bimodal in the stem exclusion/canopy 

transition, unimodal in the canopy transition stage, reverse-J in the canopy transition/gap 

dynamics stage and finally bimodal in the gap dynamics stage.

Forest management activities such as partial harvesting, selection harvesting, and 

seed-tree systems may diversify stand age structures at the stand and landscape levels, 

benefiting wildlife and creating characteristics of old-growth. It is recommended that 

quantitative old-growth be defined. I suggest using the following to determine old- 

growth in the boreal forest: (1) canopy breakdown of pioneering cohort is complete and 

the stand is dominated by later successional tree species (2) the age structure of the stand 

is bimodal, with dominating canopy trees that fall within a relatively narrow range o f age 

and height classes and a significant amount of understory regeneration.

INTRODUCTION

Age structure of natural forest stands changes over time (Daniels et al. 1995;

Oliver and Larson 1996). Available research has found that forest stands change from an 

even-aged (all trees are the same age), relatively homogenous tree height structure to a 

two-aged (having two cohorts established within the stand), bimodal height structure to 

an all-aged/uneven-aged structure (having three or more age classes) where tree heights 

are relatively heterogeneous as time since fire (TSF) increases (Oliver and Larson 1996; 

Smith et al. 1997; Pothier et al. 2004; Brassard and Chen 2006). Young stands are
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primarily composed of early successional species that grow quickly in open areas in full 

light (Bergeron 2000). However, as stand age increases, stands become increasingly 

composed of later successional species that can establish under a closed canopy with 

limited light resources.

Age structure has been examined for conifer (DesRochers and Gagnon 1997), 

mixedwood (Bergeron 2000), and hardwood forest types (Sano 1997; Lee et al. 2000) in 

a specific successional state. However, few studies thus far have compared age structure 

for different boreal forest cover types with similar environmental characteristics (i.e., 

soils, topography, climate) along a successional gradient. As many stand characteristics 

have been found to differ with stand composition (i.e, productivity, coarse woody debris 

(CWD) types and amounts) (Hely et al. 2000; MacPherson et al. 2001; Pedlar et al. 2002; 

Legare et al. 2005), I hypothesize that the different stand cover types and stand 

developmental stages vary in stand age structural dynamics.

Old-growth forests have potential wildlife habitat and biodiversity benefits that 

warrant specific management planning. Old-growth forests have higher levels of plant 

and animal species biodiversity and have unique structural characteristics (i.e., larger 

trees, a multi-layered canopy, canopy gaps, and higher tree species richness) (Johnson et 

al. 1995) that provide specialized habitats for certain species (Potvin et al. 1999). 

However, few definitions exist to classify old-growth in the boreal forest, and this lack of 

information and confusion surrounding the old-growth condition is hindering 

management planning and implementation (OMNR 2003). Therefore, this study may 

provide meaningful information through age analysis concerning the species and age 

structure of forest stands in the old-growth state.
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Therefore, the goal of this study is to determine how stand age structure changes in 

the boreal forest over time on similar mesic sites. Specifically, it will address how stand 

age structure varies with cover type (conifer, mixedwood, and hardwood) and 

developmental stages (stem exclusion/canopy transition, canopy transition, canopy 

transition/gap dynamics, gap dynamics (Chen and Popadiouk 2002)).

MATERIALS AND METHODS 

Study area

This study was conducted in the northwestern Ontario boreal forests in an area 

north of Lake Superior in the Superior (B.9) Forest Region (Rowe 1972), approximately 

150 km north o f Thunder Bay, Ontario (48° 22’ N, 89° 19’ W, 199 m altitude) 

(Environment Canada 2005) in the Spruce River Forest (Appendix I). Climatically, the 

area is influenced by Lake Superior and has a moderately dry, cool climate with short 

summers. The average annual precipitation for Thunder Bay is 712 mm with an average 

annual temperature of 2.5 °C. Topographical features were formed during the retreat of 

the Laurentide Ice Sheet approximately 10,000 years ago (Environment Canada 2005).

The area is characterized as containing tree species of paper birch (Betula 

papyrifera Marsh.), trembling aspen (Populus tremuloides Michx.), balsam fir {Abies 

balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss), black spruce (Picea 

mariana (Mill.) BSP), jack pine (Pinus banksiana Lamb.), and eastern white cedar {Thuja 

occidentalis L.), with a small component of red and white pine {Pinus resinosa Ait. and 

Pinus strobus L.), yellow birch {Betula alleghaniensis Britt.), black ash {Fraxinus nigra 

Marsh.), and sugar maple {Acer saccharum Marsh.) on certain sites (Rowe 1972). 

Common shrubs and herbs found in this area were mountain maple {Acer spicatum
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Lam.), beaked hazel (Corylus cornuta Marsh.), labrador tea {Ledum groenlandicum 

Jacq.), Canada fly honeysuckle (Lonicera canadensis Bart. Ex Marsh.), northern star 

flower {Trientalis borealis Raf.), rose twisted stalk {Streptopus roseus Michx.), 

bunchberry (Cornus canadensis L.), and wild lily of the valley {Maianthemum canadense 

Desf.). The natural stand-initiating disturbance o f the area is predominately stand- 

replacing fire, which is the most common stand-replacing mechanism in the boreal forest 

(Johnson 1992).

Sampling design

Three forest types were studied: (1) conifer dominated by jack pine at early stages 

o f development with a mixture of black spruce, white spruce, and balsam fir at later 

stages o f stand development, (2) hardwood dominated by trembling aspen at early stages 

o f development and paper birch at later stages of stand development, and (3) mixedwood 

dominated by a mixture of jack pine and trembling aspen in early stages of development 

and a mixture o f black and white spruce, balsam fir, and paper birch in later stages of 

development. Stands were selected using random stratified sampling to represent four 

developmental stages (stem exclusion/canopy transition, canopy transition, canopy 

transition/gap dynamics, and gap dynamics (Chen and Popadiouk 2002)). Intermediate 

stand developmental stages (stem exclusion/canopy transition and canopy transition/gap 

dynamics) were defined to more accurately capture the effect of time since fire on stand 

age structure and are defined in Table 3.1.
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Table 3.1. Definitions of stand development stages (based upon Chen and Popadiouk 
(2002)).

Transitional stand development stage Criteria

While the overstory is still dominated by 
individuals from the colonizing cohort, 
some individuals from later cohorts are 
close to reaching the overstory 
Competition o f stems come to an end and 
trees begin to die because of longevity or 
damage from disturbances. As well, 
structural attributes such as canopy gaps 
and stratified canopies may be evident. 
Canopy trees begin to die and understory 
individuals start to take over the canopy 
Only a few individuals from the colonizing 
cohort remain alive. Several individuals 
from later cohorts have reached the 
overstory
Pioneering trees such as jack pine and 
aspen have died off and the overstory is 
dominated by late successional species.

Stand composition was determined through a modification of methods used by 

Greif and Archibold (2000). Stand types were assessed as belonging to a specific stand 

type based on the density (stems/plot) of conifer trees that dominated the overstory of the 

stand. Stands with greater than 75% conifer component were classified as “conifer type”, 

stands with 25-75% conifer component were classified as “mixedwood type”, and stands 

with less than 25% conifer component were classified as “hardwood type”

All sampled stands were fire-origin on prevailing mesic, upland sites in the region 

to be representative and to limit soil variability. Soil order and texture were determined 

by excavating one soil pit using methods outlined by British Columbia Ministry of

Stem exclusion / canopy transition 

Canopy transition

Canopy transition / gap dynamics 

Gap dynamics
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Environment and British Columbia Ministry o f Forests (1998). Soil assessment followed 

Sims et al. (1997) and Soil Classification Working Group (1998) to ensure that sites met 

the selection criteria described previously. For all sites, soil order was Brunisol while 

soil texture was sandy loam, sandy clay loam, or clay loam.

In total, 32 stands were sampled (Table 3.4). Despite various efforts, I was unable 

to find mixedwood stands in the canopy transition/gap dynamics stage o f development in 

the study area. I believe this to be caused by a limited sampling area and more frequent 

fires. The average fire cycle in northwestern Ontario is 65 years (Li 2000).

Field measurements

Within each stand, a 400 m2 circular plot was established to represent the stand. 

Within each plot, the diameter at breast height (DBH) (1.3m  above the root collar) and 

species o f all live trees (DBH >10 cm) were measured and recorded and grouped into 

DBH classes ((1) 10-14.9 cm, (2) 15-19.9 cm, (3) 20-24.9 cm, (4) 25-29.9 cm, and (5) > 

30 cm). Diameter at breast height classes were created for the sole purpose of 

determining which trees should be selected for height and age measurement. Further, 

five trees (if available) were randomly selected from each 5-cm DBH class. Their 

heights were measured using a clinometer, and an increment core at breast height using 

an increment borer was taken. Increment cores were placed in a freezer until they could 

be processed.

2 2 Three circular 25 m subplots were randomly selected within each 400 m plot to

evaluate natural regeneration. Only trees that were less then 10 cm DBH were

considered. This would also include trees that had not yet reached breast height. Within

each subplot, diameter at the root collar, height, and species of all trees were measured
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and recorded. Further, trees were grouped into height classes ((1) <0.29 m, (2) 0.3-0.99 

m, (3) 1.0-1.9 m, (4) 2.0-4.9 m, and (5) >5 m), and 5 trees were randomly selected from 

each height class (if available), and a disk was taken at the root collar.

Tree ring counting

In the lab, increment cores from trees DBH >10 cm were each mounted on a 

wood strip and sanded with grit sandpaper until the rings were visible. Growth rings 

were then counted using a hand-held magnifier. In order to estimate the age o f each tree 

from root collar to breast height, a species-specific number of years was added to each 

trees growth ring count as outlined by Vasiliauskas and Chen (2002) (jack pine = 8 years, 

trembling aspen and paper birch = 7 years, black and white spruce and balsam fir = 18 

years). This gave an estimation of tree age. Balsam fir and white spruce were based on a 

conservative estimate of the ages of trees using black spruce because it is more shade 

tolerant. For trees DBH <10 cm, the growth rings of each disk was counted using a hand­

held magnifier or under a microscope. As the disk was taken at the root collar, no ages 

had to be added.

Data and analysis

Tree heights for the remaining trees DBH >10 cm were estimated using species- 

specific non-linear regression models developed from the paired height and DBH 

measurements. The height-DBH models were developed by fitting the Chapman- 

Richards function (eq. 1) as outlined by Peng et al. (2001) and OMNR (2006):

c

[1] / /  = 1.3 + a(l -e ~ hDHH )

where H  is tree height (m), a is an asymptote parameter, b is a scale parameter, c is a 

shape parameter, and DBH  is diameter at breast-height (cm) (Table 3.2). Tree heights
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were divided into 5-m height classes as follows: (1) 0-4.9 m, (2) 5-9.9 m, (3) 10-14.9, (4) 

15-19.9 m, (5) 20-24.9 m, (6) 25-29.9 m, (8) >30 m.

Table 3.2. Species-specific parameter estimates o f non-linear height-diameter at breast- 
height models using the Chapman-Richards function ( H  = 1.3 + a(l - e ~ b mH )c) 
where H  is tree height (m), DBH  is tree diameter at breast-height (cm), a is an 
asymptote parameter, b is a scale parameter, c is a shape parameter.

Parameter

R2Species a b c M S (error)

Balsam fir 28.807 0.036 1.021 5.484 0.577

Paper birch 21.770 0.071 0.896 6.332 0.412

Jack pine 20.301 0.149 3.161 7.486 0.610

Trembling aspen 25.909 0.127 2.706 12.238 0.626

Black spruce 25.659 0.047 1.138 3.807 0.687

White spruce 20.461 0.114 2.669 5.103 0.743

Ages for the remaining trees were estimated using species-specific non-linear 

regression models developed from the (1) paired age and diameter measurements (for 

trees DBH >10 cm, DBH was used in the model; for trees DBH <10 cm, diameter at root 

collar was used in the model) as outlined by Daniels et al. (1995) (eq. 2), and (2) paired 

age and height measurements as outlined by Wang and Kimmins (2002) (eq. 3):

[2] Log]0A = a0 + a^Log ̂ {diameter))

where A is tree age (years), ao and a\ are parameters, and diameter is diameter at (a) 

breast height (if tree DBH >10 cm) or (b) root collar (if tree DBH <10 cm).
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[3] A = \3  + a ( \ - e - hMi*ht)c

where A is tree age (years), a, b, and c are parameters, and height is tree height (m). 

However, as age-diameter relationships were found to be more significant than age- 

height relationships, diameters were used to determine missing ages, and only the age- 

diameter models have been presented (Table 3.3).
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Table 3.3. Species-specific parameter estimates o f  non-linear age-diameter at breast
height models using Daniels et al. (1995) ( A - 10A (aO + al * Log10(diameter) ) ) 
where A is tree age (years), aO and a l  are parameters, and diameter is diameter at 
(a) breast height (if tree DBH >10 cm) or (b) root collar (if tree DBH <10 cm). 
For trees DBH <10 cm, no jack pine were sampled, while the sample size for 
trembling aspen was very small. Therefore, no age-diameter models for those 
species were developed.

Species

Parameter

ao ai MS(error) R2

Trees (D BH >10 cm): 

Balsam fir 1.7265 0.0958 71.6835 0.0496

Paper birch 1.4499 0.3034 101.1264 0.2529

Jack pine 1.4472 0.309 178.5015 0.1715

Trembling aspen 1.2813 0.4364 156.3646 0.3833

Black spruce 1.6816 0.1729 153.9571 0.1015

White spruce 1.5596 0.2406 116.9068 0.3256

Trees (DBH <10 cm) : 

Balsam fir 1.2965 0.459 48.4667 0.5297

Paper birch 1.1645 0.2477 57.9858 0.2668

Jack pine 

Trembling aspen 

Black spruce 1.3301 0.5539 24.2526 0.6614

White spruce 1.2944 0.4908 11.235 0.6537

Trees by species were then grouped into age classes as follows: (1) 0-9 years, (2) 

10-19 years, (3) 20-29 years, (4) 30-39 years, (5) 40-49 years, (6) 50-59 years, (7) 60-69
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years, (8) 70-79 years, (9) 80-89 years, (10) 90-99 years, (11) 100-109 years, (12) 110- 

119 years, and (13) > 120 years and a combined system of height classes: (1) 0-4.9 m, (2) 

5-9.9 m, (3) 10-14.9 m, (4) 15-19.9 m, (5) 20-24.9 m, (6) 25-29.9 m, and (7) >30 m and 

scaled up to per hectare. Bar charts were constructed to show the density o f trees 

(trees/ha) by (a) age class and species and (b) height class in each stand developmental 

stage and cover type.

RESULTS

Variation in stand age structure with stand developmental stage and cover type 

Conifer stands

During the stem exclusion/canopy transition stage of stand development in conifer 

stands, stand age structure was largely bimodal, having an initial peak in the 2nd and 3rd 

age classes (10-29 years TSF) and a second peak in the 7th and 8th age classes (60-79 

years TSF) (Figure 3.1a). The second peak represents largely jack pine canopy trees with 

some black spruce, balsam fir and paper birch that established shortly after the stand- 

replacing fire, therefore falling within a relatively narrow range of age classes. The first 

peak is attributed to black spruce and balsam fir that had established at various times after 

the stand-replacing fire (Figure 3.1a). Canopy tree density in this stage was 1217 

trees/ha, while regeneration density was 3956 trees/ha (Table 3.4).
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Table 3.4. Description of 32 sampled stands in northwestern Ontario.

Number 
of stands 
sampled

Stand
type*

Stage'
Density (trees/ha) 

Canopy trees* Regeneration*

3 C 2-3 1216.7 (253.4)s 3955.6(1142.7)
3 C 3 1208.3 (158.3) 3022.2 (387.5)
2 c 3-4 487.5 (62.5) 2666.7(133.3)
3 c 4 908.3 (260.3) 1288.9(437.7)
3 M 2-3 1083.3 (72.6) 2311.1 (823.1)
3 M 3 1108.3 (144.6) 2222.2 (898.8)
3 M 4 1066.7 (96.1) 3777.8 (1646.2)
3 H 2-3 1158.3 (375.4) 1111.1 (512.6)
3 H 675.0(14.4) 177.8 (117.6)
3 H 3-4 716.7(41.7) 2088.9 (270.3)
3

ic _

H 4 1025.0 (203.6) 2866.7(1404.8)

1 Stand developmental stage: 2-3 = stem exclusion/canopy transition, 3 = canopy
transition, 3-4 = canopy transition/gap dynamics, 4 = gap dynamics
C anopy trees are >10 cm diameter at breast height (DBH), regeneration are trees <10 cm
DBH
^Numbers in brackets equal one standard error of the mean

The age structure in the canopy transition stage of stand development was similar 

to the stem exclusion/canopy transition stage with a bimodal age structure as well (Figure 

3.1b). The second peak was composed of a mixture of jack pine, black and white spruce, 

balsam fir, and paper birch canopy trees that fall within the 6 to 9 age classes (50-89 

years TSF). The first peak represented regeneration of balsam fir and black spruce with 

minor components o f white spruce and paper birch that were in largely the 2nd and 3rd age 

classes (10-29 year TSF) (Figure 3.1b). I believe that birch seedlings seeded in to these 

stands, as the birch I sampled appeared to be distributed randomly throughout the stand 

and no canopy trees were present for birch seedlings to sprout from. Canopy tree and 

regeneration density decreased to 1208 trees/ha and 3022 trees/ha respectively (Table 

3.4).
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During the canopy transition/gap dynamics stage o f stand development, the age structure 

of the stand became largely uneven-aged and the distribution of trees resembles a 

reverse-J age structure (Figure 3.1c). All age classes from 1 to 13 (0 to >120 year TSF) 

were represented with the exception of trees being absent from age class 12 (110-119 

year TSF). In conifer stands, canopy trees were largely jack pine, white spruce, black 

spruce, and balsam fir with minor contributions o f paper birch while the understory was 

black spruce and balsam fir (Figure 3.1c). A few jack pine and paper birch trees are 

present in the largest age class (13 age class = > 120 years TSF), which may represent 

trees that survived the last stand-replacing fire (Figure 3.1c). Once again, canopy tree 

and understory tree density decreased in comparison to the canopy transition stage of 

conifers to 488 trees/ha and 2667 trees/ha respectively (Table 3.4).

During the gap dynamic stage o f stand development, age structure has become 

largely bimodal once again (Figure 3 .Id). There is a significant contribution to stand age 

structure of exclusively balsam fir regeneration forming the initial peak largely in the 1st 

and 2nd age classes (0-19 years TSF) while white spruce, balsam fir, and paper birch form 

the second peak in the 7th and 8th age classes (60-79 years TSF). However, there is a 

sparse number o f white and black spruce and paper birch in larger age classes 9 to 13 

(80- >120 years TSF) (Figure 3 .Id). Canopy tree density in this stage increased in 

comparison to the canopy transition/gap dynamic conifers to 908 trees/ha, while 

regeneration density decreased to 1289 trees/ha (Table 3.4).

Mixedwood stands

In mixedwood stands during the stem exclusion/canopy transition stage of stand 

development, stand age structure was bimodal, having a peak in the 2nd and 3rd age

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 0

classes (10-29 years TSF) and a second peak in the 6 to 9 age classes (50-89 years TSF). 

Like with the conifers, the first peak represents the regeneration occurring in the stand 

while the second peak represents canopy trees (Figure 3.2a). Canopy trees were 

predominately jack pine and trembling aspen, with some black spruce, paper birch, and 

balsam fir. Regeneration was mainly black spruce and balsam fir with small amounts of 

trembling aspen (Figure 3.2a). Canopy tree density during this stage was 1083 trees/ha, 

while being lower than the density o f trees in the conifer stem exclusion/canopy 

transitions (Table 3.4). Regeneration density was 2311 trees/ha, and also was less than 

the regeneration occurring in the stem exclusion/canopy transitions conifers (Table 3.4).
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The age structure in the canopy transition stage of stand development was very 

similar to the stem exclusion/canopy transition stage, showing a very pronounced 

bimodal age structure, with an initial peak representing largely balsam fir and black 

spruce regeneration with minor components o f white spruce and paper birch that are 

largely in the 2nd and 3rd age classes (10-29 year TSF), and a second peak of canopy jack 

pine, trembling aspen, black spruce, white spruce, balsam fir, and paper birch trees that 

fall within the 6 to 9 age classes (50-89 years TSF) (Figure 3.2b). The density o f canopy 

trees (1108 trees/ha) is higher than that occurring in the stem exclusion/canopy transition 

mixedwoods, while being lower than that occurring in the canopy transition conifers 

(Table 3.4). As well, the regeneration density was lower (2222 trees/ha) compared to 

both the stem exclusion/canopy transition mixedwoods and the conifer canopy transitions 

(Table 3.4).

Due to the limited sampling area and the frequent forest fires (Li 2000), I was 

unable to locate mixedwood stands in the canopy transition/gap dynamics stage of stand 

development to sample. During the gap dynamic stage of stand development, age 

structure was relatively bimodal (Figure 3.2c). There was a significant contribution to 

stand age structure of regeneration forming the initial peak in the 1st and 2nd age classes 

(0-29 years TSF) and canopy trees forming the second peak in the 7th and 8th age classes 

(60-79 years TSF) (Figure 3.2c). Canopy trees in the stand were a mixture of paper birch, 

balsam fir, and white and black spruce. The regeneration was predominantly balsam fir 

with a small component o f white spruce (Figure 3.2c). Canopy tree density decreased in 

comparison to canopy transition mixedwoods to 1067 trees/ha, while being higher than 

that in the gap dynamic conifers (Table 3.4). Regeneration density is 3778 trees/ha, and
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is lower than the density of regeneration in both the canopy transition mixedwoods and 

the gap dynamic conifers (Table 3.4).

Hardwood stands

During the stem exclusion/canopy transition stage o f stand development in the 

hardwoods, stand age structure was bimodal, having an initial peak in the 2nd and 3rd age 

classes (10-29 years TSF) and a second peak in the 6 to 9 age classes (50-89 years TSF). 

The canopy trees represent the second peak and were largely trembling aspen and black 

spruce, with some paper birch, and balsam fir, while the regeneration was black spruce 

and balsam fir (Figure 3.3a). Canopy tree density was 1158 trees/ha, and was higher tb n 

the canopy tree density in the stem exclusion/canopy transition mixedwoods but lower 

than the conifers of this stage (Table 3.4). Regeneration density was 1111 trees/ha, and 

was lower than both the conifer and mixedwood stem exclusion/canopy transition stands 

(Table 3.4).

Unlike the age structure in their conifer and mixedwood counterparts, the age 

structure in the canopy transition hardwoods was unimodal. The single peak represents 

canopy trees of largely trembling aspen that fell within the 7 to 10 age classes (60-99 

years TSF) (Figure 3.3b). Regeneration density was very low (178 trees/ha), thus causing 

age classes 1 to 5 to be poorly represented (Table 3.4, Figure 3.3b). Canopy tree density 

is 675 trees/ha, and is lower than the density of canopy trees in the stem exclusion/canopy 

transition hardwoods and the canopy transition conifers and mixedwoods (Table 3.4).
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During the canopy transition/gap dynamics stage o f stand development, the age 

structure of the stand appears to be weakly reverse-J to weakly bimodal, with large peaks 

in the 2nd and 3rd age classes (10-19 years TSF), minor peaks in the 7th and 8th (60-79 

years TSF), and all age classes from 1 to 13 (0 to >120 years TSF) being well represented 

(Figure 3.3c). The oldest canopy trees were mainly black spruce and trembling aspen, 

while the younger canopy trees were largely balsam fir with some white and black 

spruce, paper birch, and trembling aspen. Regeneration was largely balsam fir and black 

spruce (Figure 3.3c). Canopy tree density increased compared to the canopy transition 

hardwoods to 717 trees/ha, while being higher than their conifer counterparts (Table 3.4). 

Regeneration density also increased compared to the canopy transition hardwoods to 

2089 trees/ha, but was lower than their conifer counterparts (Table 3.4).

During the gap dynamic stage of stand development, age structure has become 

largely bimodal once again. There is a significant contribution to stand age structure o f 

white spruce dominated and balsam fir and paper birch regeneration forming the first 

peak in the 1 to 3 age classes (0-29 years TSF). Canopy trees were largely paper birch 

with minor components of balsam fir, white spruce, and trembling aspen forming the 

second peak in the 6 to 8 age classes (50-79 years TSF) (Figure 3.3d). Canopy tree and 

regeneration density both increased (1025 trees/ha and 2867 trees/ha respectively) 

compared to the canopy transition/gap dynamics hardwoods (Table 3.4). Canopy tree 

and regeneration density were both lower than their mixedwood but higher than their 

conifer respective counterparts (Table 3.4).
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Height distributions

In order to better understand stand age structure, height distributions were plotted 

for all trees, saplings and seedlings. Regardless o f stand developmental stage or cover 

type, the density o f trees in the smallest height class (0-4.9 m) was very high and ranged 

from 1000-4000 trees/ha, with the exception o f the canopy transition hardwoods where 

the density of trees was less than 200 trees/ha (Figure 3.4, 3.5, 3.6). From this point 

forward, my description of height distributions will not include height class 1 which is 

mainly understory regeneration. In the stem exclusion/canopy transition and canopy 

transition conifers, trees were normally distributed from height classes 2 to 5 (5-24.9 m) 

with a peak in height class 4 (15-19.9 m) (Figure 3.4a, b). Mixedwood stands in the stem 

exclusion/canopy transition and canopy transition stages o f stand development responded 

similar to the conifer stands, with the exception that the range o f the normal distributions 

extended from height classes 2 to 6 (Figure 3.5a, b). In the stem exclusion/canopy 

transition hardwoods, trees were represented from height classes 2 to 7 and formed a 

bimodal distribution with peaks in height class 3 (10-14.9 m) and 5 (20-24.9 m) (Figure 

3.6a). There were no trees in height classes 2 (5-9.9 m) and 3 (10-14.9 m) in the canopy 

transition hardwoods. However, there was an increase in tree density from height class 4 

to 6, while height class 7 (>30 m) had very low tree density (Figure 3.6b).

In the canopy transition/gap dynamics conifers, height classes 2 to 5 (5-24.9 m) 

were well represented while in the hardwoods, classes 2 to 6 (5-29.9 m) were well 

represented, though class 3 (10-14.9 m) was the highest (Figure 3.4c, 3.6c). In the gap 

dynamics conifers, trees were present in height classes 3 to 5 (10-24.9 m) with a peak in 

class 4 (15-19.9 m) (Figure 3.4d), while trees were normally distributed among height
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classes 2 to 5 with a peak in height class 4 in mixedwood and hardwood stands during 

this stage of stand development (Figure 3.5d, 3.6d).
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DISCUSSION

Variation in stand age structure with stand developmental stage and cover type

My findings suggest that a stand developmental stage and stand cover type effect 

existed in the study. Because of this, the development of stand age structure with stand 

developmental stage will be discussed separately for each of the three boreal forest cover 

types studied even though differences were minimal Diameter distributions were 

plotted, but were not significant (see Appendix II).

Stand age structural development in conifer stands proceeded from a bimodal 

structure in the stem exclusion/canopy transition and canopy transition stages to a 

reverse-J age structure in the canopy transition/gap dynamics stage to a bimodal structure 

once again in the gap dynamics stage. In the stem exclusion/canopy transition and 

canopy transition stages, the canopy is dominated by jack pine that had established 

immediately after the stand-replacing fire, as significant age-related mortality has not yet 

occurred. In turn, self-thinning that occurred in earlier stages o f development would have 

opened up growing space and freed up nutrients (Chen et al. 1996; Oliver and Larson 

1996), thus contributing to the significant regeneration of conifers that was occurring.

By the canopy transition/gap dynamics stage of stand development, most of the 

pioneer cohort has died off, as only one or two jack pine remain living per plot (average 

number of pioneering jack pine trees per hectare = 42), as the age of these stands (139 

years TSF) are beyond a jack pine’s average life span (Farrar 1995). As well, trees that 

were suppressed in earlier stages of development were released to undergo rapid growth 

and take position in the canopy and subcanopy. The dieing off of the pioneer cohort o f 

jack pine would free up additional space for further regeneration to establish. This
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resulted in a reverse-J age structure occurring in these stands, and is supported by 

Kneeshaw and Burton (1997), who found that old (>120 year-old) spruce stands in sub- 

boreal British Columbia show either a reverse-J or bimodal age structure.

By the gap dynamic stage o f stand development, the pioneering cohort of jack 

pine had completely died off, and the canopy is dominated by later successional conifers. 

These conifers were younger than the jack pine that dominated in the preceding stage, 

causing the largest age classes to disappear. As such, the age structure was bimodal, with 

a canopy dominated by later successional tree species and an understory with young 

regeneration of conifers, largely balsam fir. The very low density of balsam fir in age 

classes 3 to 6 (20-59 years) may have been caused by periodic spruce budworm outbreaks 

(the most recent one peaked in 1986 and collapsed approximately ten years later (Paul 

Poschmann (Abitibi-Consolidated), personal communication)), that would have killed a 

significant amount of host-specific balsam fir (and to a lesser extent white and black 

spruce) trees (MacLean and Ostaff 1989; Bergeron et al. 1995; Parent et al. 2001; 

Burleigh et al. 2002).

While differing from conifer stands in that their canopy was dominated by 

trembling aspen, hardwood stands in the stem exclusion/canopy transition stage o f stand 

development were also bimodal in age structure. The overstory was dominated by 

trembling aspen trees (with a small spruce component) that established with the stand- 

replacing fire, while the understory contained largely conifer regeneration. However, 

hardwoods differed from their conifer counterparts in the canopy transition stage. The 

stand age structure of these stands were weakly unimodal, dominated largely by a single 

cohort o f trembling aspen trees that established following stand replacing disturbance and
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with marginal amounts o f conifer regeneration. Stands dominated by trembling aspen 

often develop very dense shrub layers of mountain maple (Acer spicatum) (Bourgeois et 

al. 2004) and beaked hazel (Corylus cornuta) (Hill et al. 2005). A dense shrub layer was 

observed to occur in all sampled hardwood stands (except for those in the gap dynamic 

stage) due to the morphological characteristics of trembling aspen (Bums and Honkala 

1990; Farrar 1995) that allowed a substantial amount o f light to reach the forest floor. 

Further, dense shrub layers have been found to hinder regeneration (Wallenius et al. 

2002; Bourgeois et al. 2004; Hill et al. 2005), thus contributing to the unimodal age 

structure that occurred in the canopy transition hardwoods.

In contrast to the conifer stands, hardwood stands had more pioneering trees 

trembling aspen trees per 400 m plot still living in the canopy transition/gap dynamic 

stage of stand development (average number o f pioneering trembling aspen trees per 400 

m plot = 6-11; per hectare = 200), even though jack pine is generally a longer-lived tree 

species compared to trembling aspen (Farrar 1995). This may be due to the hardwood 

sites in the canopy transition/gap dynamic stage o f stand development being more 

productive than the conifer sites that were sampled. However, as in the conifer stands, 

hardwoods were also relatively reverse-J. I believe that the dense shrub layer (area 

coverage at shrub height (1-2 m) = 85%; Jennifer Fricker, personal observation) 

occurring in these stands likely developed recently indicated by a significant amount of 

later successional conifers and hardwoods in the subcanopy and regeneration in the 

understory that would have been hindered if a dense shrub layer would have developed 

earlier in succession.
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Paper birch dominated the hardwoods in the gap dynamic stage o f development. 

Paper birch has been shown to be able to live for well over 200 years (Bergeron 2000), 

and is the only hardwood species in this area o f the boreal forest that could form 

dominant stands by this stand age. Further, the ability of paper birch to allow light to 

pass through to the forest floor, and the sparse shrub layer that was found, would allow 

for a significant amount of regeneration to establish. It is possible that (a) the higher 

density o f trees in gap dynamic paper birch dominated stands compared to earlier 

developed hardwood stands that were dominated by trembling aspen or (b) differences in 

crown architecture between paper birch and trembling aspen may allow less light to 

penetrate to the forest floor and reduce the extent o f the shrub layer in paper birch 

dominated stands compared to trembling aspen dominated stands. Therefore, the age 

structure of gap dynamic hardwoods were similar to that occurring in the gap dynamic 

conifers, with a bimodal age stand structure caused by a canopy o f paper birch trees 

falling into the older age classes (though not as old as occurring in the canopy 

transition/gap dynamics hardwoods because of the very old trembling aspen trees) and 

regeneration of conifers forming the younger age classes.

With the exception of mixedwood stands having canopies composed of a mixture 

of conifers and hardwoods that met the sampling criteria (25-75% conifer component), 

and that I was missing mixedwoods in the canopy transition/gap dynamic stage of stand 

development, stand age structure developed very similar to that in conifer stands. I 

believe that this was caused by the conifer component limiting light to the forest floor 

and preventing a dense shrub layer from developing (Bourgeois et al. 2004). Without 

this dense shrub layer, regeneration would have responded similarly to what was
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occurring in conifer stands, thus causing a similar age structure to develop. I hypothesize 

that successional trajectories in mixedwood stands may be headed towards conifer 

dominance due to the composition, as indicated by the composition of the regeneration 

layer. However, budworm outbreaks tend to occur every 20 years, therefore making this 

uncertain Fleming et al. 2000). Spruce budworm outbreaks affect both tree layer and 

understory regeneration.

Regardless of stand cover type or developmental stage, regeneration in all the 

stands was almost exclusively balsam fir and spruce, indicating that successional 

trajectories in the study area are likely proceeding towards conifer dominance on most 

sites. This is likely a consequence o f the silvics of these species and the availability of a 

close seed source. Black spruce is shade tolerant (allowing it to establish under the cover 

of other trees), while also being able to reproduce by layering (Charron and Greene 

2002). Balsam fir is also a shade tolerant species, and has seeds that are readily dispersed 

by wind (Wang and Kemball 2005) and enter a stand from nearby areas.

Implications for old-growth management

As forest structure has been linked to biodiversity and wildlife habitat (Brassard 

and Chen 2006), and forest structure has been shown to be related to forest age structure 

(Moser 1972; Van wagner 1978; Bondarev 1997), it is likely that forest management 

activities that diversifies forest stand age structures at the landscape level may positively 

affect forest biodiversity and create specialized wildlife habitat for certain species. For 

example, Bergeron (2004) recommends using clearcutting in some parts o f the boreal 

forest, partial harvesting in other parts, and selective cutting in other parts to create a 

landscape that contains young, mature, and old forests. Nyland (2003) recommends
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using partial cutting to realize the benefits o f an uneven-aged, multi-species stand 

structure for wildlife habitat, while still benefiting from the economics o f fibre extraction. 

Further, Asselin (2001) recommends seed-tree systems to increase age structure 

heterogeneity by maintaining some large, older trees in a young developing stand. These 

large trees left following clearcutting can create wildlife habitat in younger post-clearcut 

stands for large raptors that need large trees and snags for nesting (Brassard and Chen 

2006) and can preserve the superior tree species genetics of that site.

Old-growth forests have been found to provide many values from an ecological, 

aesthetic/recreational, and economic perspective (Barnard 2004; Brassard and Chen 

2006). However, management decisions surrounding old-growth are hampered by the 

lack o f a clear definition on what old-growth is in the boreal forest (Cogbill 1984;

Barnard 2004). While some studies (including this study) use the disappearance of the 

pioneering cohort as the point at which an old-growth structure is reached (Chen and 

Popadiouk 2002; Brassard and Chen 2006), definitions of old-growth vary depending on 

the study (Franklin et al. 2002). I recommend that old-growth in this region of the boreal 

forest be considered when the following criteria are met: (1) canopy breakdown of 

pioneering cohort is complete and the stand is dominated by later successional tree 

species such as balsam fir and spruce and (2) the age structure o f the stand is bimodal, 

with dominating canopy trees that fall within a relatively narrow range o f age and height 

classes and a significant amount of understory regeneration.

Selection harvesting could be used to hasten the onset of old-growth and/or create 

a reverse-J stand age structure if applied to stands that are in approximately the stem 

exclusion/canopy transition stage o f stand development or even earlier in the stem
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exclusion stage. I suggest removing selective canopy trees that would (a) release 

suppressed trees to rapid growth, (b) allow canopy trees to grow even faster, and (c) 

allow trees to establish in gaps created by the removal of canopy trees, which would 

promote the movement of a unimodal or bimodal age structure into a reverse-J age 

structure while increasing the later successional component to the stand thereby hastening 

old-growth onset.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



58

LITERATURE CITED

Abitibi-Consolidated 2006. Map o f the Spruce River Forest, ON, Canada [online]. 
Available from
http://www.abicon.com/aciwebsitev3.nsf/Site/en/forest/certification/fw_map.html 
/ [cited 11 June 2006],

Antos, J.A. and R. Parish. 2002. Dynamics of an old-growth, fire-initiated, subalpine 
forest in southern interior British Columbia: tree size, age, and spatial structure. 
Canadian Journal o f Forest Research 32:1935-1946.

Asselin, H., M.J. Fortin and Y. Bergeron. 2001. Spatial distribution o f late-successional 
coniferous species regeneration following disturbance in southwestern Quebec 
boreal forest. Forest Ecology and Management 140:29-37.

Avery, T.E. and H.E. Burkhart. 2002. Forest Measurements. 5th ed. McGraw Hill, New 
York. 456 pp.

Baker, W.L., P.H. Flaherty, J.D. Lindemann, T.T. Veblen, K.S. Eisenhart and D.W.
Kulakowski. 2002. Effect o f vegetation on the impact o f a severe blowdown in 
the southern Rocky Mountains, USA. Forest Ecology and Management 168:63- 
75.

Barnard, E. 2004. Old-growth: some questions, truths, and consequences. Journal of 
Forestry 102:60.

Bartemucci, P., K.D. Coates, K.A. Harper and E.F. Wright. 2002. Gap disturbances in 
northern old-growth forests o f British Columbia, Canada. Journal of Vegetation 
Science 13:685-696.

Baskerville, G.L. 1975. Spruce budworm: Super Silviculturist. The Forestry Chronicle 
138-140.

Bergeron, Y. 1991. The influence o f island and mainland lakeshore landscapes on boreal 
forest fire regimes. Ecology 72:1980-1992.

Bergeron, Y. 2004. Is regulated even-aged management the right strategy for the 
Canadian boreal forest? Forestry Chronicle 80:458-462.

Bergeron, Y. 2000. Species and stand dynamics in the mixed woods o f Quebec's southern 
boreal forest. Ecology 81:1500-1516.

Bergeron, Y. and M. Dubuc. 1989. Succession in the southern part o f the Canadian boreal 
forest. Vegetation 79:51-63.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.abicon.com/aciwebsitev3.nsf/Site/en/forest/certification/fw_map.html


5 9

Bergeron, Y., S. Gauthier, V. Kafka, P. Lefort and D. Lesieur. 2001. Natural fire
frequency for the eastern Canadian boreal forest: consequences for sustainable 
forestry. Canadian Journal o f Forest Research 31:384-391.

Bergeron, Y. and B. Harvey. 1997. Basing silviculture on natural ecosystem dynamics:
An approach applied to the southern boreal mixedwood forest of Quebec. Forest 
Ecology and Management 92:235-242.

Bergeron, Y. and A. Leduc. 1998. Relationships between change in fire frequency and 
mortality due to spruce budworm outbreak in the southeastern Canadian boreal 
forest. Journal of Vegetation Science 9:493-500.

Bergeron, Y., A. Leduc, B.D. Harvey and S. Gauthier. 2002. Natural fire regime: A guide 
for sustainable management o f the Canadian boreal forest. Silva Fennica 36:81- 
95.

Bergeron, Y., A. Leduc, H. Morin and C. Joyal. 1995. Balsam fir mortality following the 
last spruce budworm outbreak in northwestern Quebec. Canadian Journal o f 
Forest Research 25:1375-1384.

Bigler, C. and H. Bugmann. 2003. Growth-dependent tree mortality models based on tree 
rings. Canadian Journal of Forest Research 33:210-221.

Blais, J.R. 1958. The vulnerability o f balsam fir to spruce budworm attack in
Northwestern Ontario, with special reference to the physiological age o f the tree. 
Forestry Chronicle 33:405-422.

Blais, J.R. 1981. Mortality of balsam fir and white spruce following a spruce budworm 
outbreak in the Ottawa River watershed in Quebec. Canadian Journal o f Forest 
Research 11:620-629.

Blais, J.R. 1983. Trends in the frequency, extent, and severity o f spruce budworm
outbreaks in eastern Canada. Canadian Journal o f Forest Research 13:539-547.

Bondarev, A. 1997. Age distribution patterns in open boreal Dahurican larch forests o f 
Central Siberia. Forest Ecology and Management 93:205-214.

Bouchard, M., D. Kneeshaw and Y. Bergeron. 2005. Mortality and stand renewal patterns 
following the last spruce budworm outbreak in mixed forests of western Quebec. 
Forest Ecology and Management 204:297-313.

Bourgeois, L., C. Messier and S. Brais. 2004. Mountain maple and balsam fir early 
response to partial and clear-cut harvesting under aspen stands of northern 
Quebec. Canadian Journal o f Forest Research 34:2049-2059.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 0

Brassard, B.W. and H.Y.H. Chen. 2006. Stand structural dynamics o f North American 
boreal forests. Critical Reviews in Plant Sciences 25:115-137.

British Columbia Ministry of Environment and British Columbia Ministry of Forests
1998. Field Manual for Describing Terrestrial Ecosystems. Land Manage. Handb. 
25.

Brumelis, G. and T.J. Carleton. 1988. The vegetation of postlogged black spruce
lowlands in central Canada. I. Trees and tall shrubs. Canadian Journal of Forest 
Research 18:1470-1478.

Burleigh, J.S., R.I. Alfaro, J.H. Borden and S. Taylor. 2002. Historical and spatial 
characteristics of spruce budworm Choristoneura fumiferana (Clem.)
(Lepidoptera : Tortricidae) outbreaks in northeastern British Columbia. Forest 
Ecology and Management 168:301-309.

Burns, R.M. and B.H. Honkala. 1990. Silvics of North America. USDA For. Serv., 
Washington, DC.

Burton, P.J., D.D. Kneeshaw and K.D. Coates. 1999. Managing forest harvesting to
maintain old growth in boreal and sub-boreal forests. Forestry Chronicle 75:623- 
631.

Carleton, T.J. and P. MacLellan. 1994. Woody vegetation responses to fire versus clear- 
cutting logging: A comparative survey in the central Canadian boreal forest. 
Ecoscience 1:141-152.

Charron, I. and D.F. Greene. 2002. Post-wildfire seedbeds and tree establishment in the 
southern mixedwood boreal forest. Canadian Journal of Forest Research 32:1607- 
1615.

Chen,H.Y.H., Klinka,K., and Kayahara,G.J. 1996. Effects of light on growth, crown 
architecture, and specific leaf area for naturally established Pinus contorta var 
latifolia and Pseudotsuga menziesii var glauca saplings. Canadian Journal of 
Forest Research 26: 1149-1157.

Chen, H.Y.H. and R.V. Popadiouk. 2002. Dynamics of North American boreal 
mixedwoods. Environmental Reviews 10:137-166.

Cogbill, C.V. 1984. Dynamics of the boreal forests o f the Laurentian Highlands, Canada. 
Canadian Journal of Forest Research 15:252-261.

Cumming, S.G., F.K.A. Schmiegelow and P.J. Burton. 2000. Gap dynamics in boreal 
aspen stands: Is the forest older than we think? Ecological Applications 10:744- 
759.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



61

D'Aoust, V., D. Kneeshaw and Y. Bergeron. 2004. Characterization of canopy openness 
before and after a spruce budworm outbreak in the southern boreal forest. 
Canadian Journal o f Forest Research 34:339-352.

Daniels, L.D., J. Dobry, K. Klinka and M.C. Feller. 1997. Determining year o f death of 
logs and snags o f Thuga plicata in southwestern coastal British Columbia. 
Canadian Journal o f Forest Research 27:1132-1141.

Daniels, L.D., P.L. Marshall, R.E. Carter and K. Klinka. 1995. Age structure of Thuja 
plicata in the tree layer of old-growth stands near Vancouver, British Columbia. 
Northwest Science 69:175-183.

Day, R.J. 1972. Stand structure, succession, and use o f Southern Alberta's Rocky 
Mountain Forest. Ecology 53:472-478.

Delong, S.C. and W.B. Kessler. 2000. Ecological characteristics o f mature forest 
remnants left by wildfire. Forest Ecology and Management 131:93-106.

Desponts, M., G. Brunet, L. Belanger and M. Bouchard. 2004. The eastern boreal old- 
growth balsam fir forest: a distinct ecosystem. Canadian Journal o f Botany 
82:830-849.

DesRochers, A. and R. Gagnon. 1997. Is ring count at ground level a good estimation of 
black spruce age? Canadian Journal of Forest Research 27:1263-1267.

Dix, R.L. and J.M.A. Swan. 1971. The roles of disturbance and succession in upland 
forest at Candle Lake, Saskatchewan. Canadian Journal o f Botany 49:657-676.

Environment Canada 2005. Climate normals for Thunder Bay, ON, Canada (1971-2000) 
[online]. Available from
http://www.climate.weatheroffice.ec.gc.ca/climate_normals/ [cited 16 September 
2005],

Farrar, J.L. 1995. Trees in Canada. Fitzhenry & Whiteside Ltd. and the Can. For. Serv., 
Toronto.

Flannigan, M.D., Y. Bergeron, O. Engelmark and B.M Wotton. 1998. Future wildfire in 
circumboreal forests in relation to global warming. Journal o f Vegetation Science 
9:469-476.

Fleming, R.A., A.A. Hopkin and J-N. Candau. 2000. Insect and disease disturbance 
regimes in Ontario's forests. In Ecology of a managed terrestrial landscape: 
Patterns and processes of forest landscapes in Ontario. Ontario Ministry of 
Natural Resources, Toronto, pp. 141-162.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.climate.weatheroffice.ec.gc.ca/climate_normals/


6 2

Franklin, J.F., T.A. Spies, R. Van Pelt, A.B. Carey, D.A. Thornburgh, D.R. Berg, D.B. 
Lindenmayer, M.E. Harmon, W.S. Keeton, D.C. Shaw, K. Bible and J. Chen. 
2002. Disturbances and structural development o f natural forest ecosystems with 
silvicultural implications, using Douglas-fir forests as an example. Forest Ecology 
and Management 155:399-423.

Franklin, J.F. and R. Van Pelt. 2004. Spatial aspects o f structural complexity in old- 
growth forests. Journal of Forestry 102:22-28.

Frelich, L.E. and L.J. Graumlich. 1994. Age-class distribution and spatial patterns in an 
old-growth hemlock hardwood forest. Canadian Journal o f Forest Research 24: 
1939-1947.

Frelich, L.E. and C.G. Lorimer. 1991. A simulation of landscape-level stand dynamics in 
the northern hardwood region. Journal of Ecology 79:223-233.

Frey, B.R., V.J. Lieffers, S.M Landhausser, P.G. Comeau and K.J. Greenway. 2003. An 
analysis o f sucker regeneration of trembling aspen. Canadian Journal o f Forest 
Research 33:169-1179.

Galipeau, C., D. Kneeshaw and Y. Bergeron. 1997. White spruce and balsam fir
colonization of a site in the southeastern boreal forest as observed 68 years after 
fire. Canadian Journal of Forest Research 27:139-147.

Gordon, J.C. 2004. Revisiting the old-growth question. Journal o f Forestry 102:6-7.

Greif, G.E. and O.W. Archibold. 2000. Standing-dead tree component of the boreal forest 
in central Saskatchewan. Forest Ecology and Management 131:37-46.

Groot, A. and B.J. Horton. 1994. Age and size structure of natural and second-growth
peatland Picea mariana stands. Canadian Journal of Forest Research 24:225-233.

Gutsell, S.L. and E.A. Johnson. 2002. Accurately ageing trees and examining their 
height-growth rates: Implications for interpreting forest dynamics. Journal of 
Ecology 90: 53-166.

Harvey, B.D., A. Leduc, S. Gauthier and Y. Bergeron. 2002. Stand-landscape integration 
in natural disturbance-based management o f the southern boreal forest. Forest 
Ecology and Management 155:369-385.

Hebert, R. 2003. Are clearcuts appropriate for the mixed forest o f Quebec? Forestry 
Chronicle 79:664-671.

Helms, J.A. 2004. Old-growth: What is it? Journal o f Forestry 102:8-12.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



63

Hely, C., Y. Bergeron and M.D. Flannigan. 2000. Effects of stand composition on fire 
hazard in mixed-wood Canadian boreal forest. Journal of Vegetation Science 
11:813-824.

Hill, S.B., A.U. Mallik and H.Y.H. Chen. 2005. Canopy gap disturbance and succession 
in trembling aspen dominated boreal forests in northeastern Ontario. Canadian 
Journal of Forest Research 35:1942-1951.

Homberg, G., M. Ohlson and O. Zackrisson. 1995. Stand dynamics, regeneration patterns 
and long-term continuity in boreal old-growth Picea abies swamp-forests. Journal 
of Vegetation Science 6:291-298.

Huggard, D.J., W. Klenner and A. Vyse. 1999. Windthrow following four harvest
treatments in an Engelmann spruce subalpine fir forest in southern interior British 
Columbia, Canada. Canadian Journal of Forest Research 29:1547-1556.

Johnson, E.A. 1992. Fire and Vegetation Dynamics. Cambridge University Press, New 
York. 129 pp.

Johnson, E.A. and G.I. Fryer. 1989. Population dynamics in lodgepole pine-Engelmann 
spruce forests. Ecology 70:1335-1345.

Johnson, E.A., K. Miyanishi and J.M.H. Weir. 1995. Old-growth, disturbance, and 
ecosystem management. Canadian Journal o f Botany 73:918-926.

Kabzems, R. and O. Garcia. 2004. Structure and dynamics of trembling aspen - white 
spruce mixed stands near Fort Nelson, BC. Canadian Journal of Forest Research 
34:384-395.

Keenan, R.J. and J.P. Kimmins. 1993. The ecological effects o f clear-cutting. 
Environmental Reviews 1:121-144.

Kellomaki, S. 2000. Forests of the boreal region: gaps in knowledge and research needs. 
Forest Ecology and Management 132:63-71.

Kimmins, J.P. 1997. Biodiversity and its relationship to ecosystem health and integrity. 
The Forestry Chronicle 73:229-232.

Kneeshaw, D.D. and Y. Bergeron. 1998. Canopy gap characteristics and tree replacement 
in the southeastern boreal forest. Ecology 79:783-794.

Kneeshaw, D.D. and Y. Bergeron. 1999. Spatial and temporal patterns of seedling and 
sapling recruitment within canopy gaps caused by spruce budworm. Ecoscience 
6:214-222.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 4

Kneeshaw, D.D. and P.J. Burton. 1997. Canopy and age structures of some old sub- 
boreal Picea stands in British Columbia. Journal of Vegetation Science 8:615- 
626.

Kneeshaw, D.D. and S. Gauthier. 2003. Old-growth in the boreal forest: A dynamic 
perspective at the stand and landscape level. Environmental Reviews 11 :S99.

Kulakowski, D. and T.T. Veblen. 2003. Subalpine forest development following a 
blowdown in the Mount Zirkel Wilderness, Colorado. Journal of Vegetation 
Science 14:653-660.

Kuuluvainen, T. and P. Juntunen. 1998. Seedling establishment in relation to
microhabitat variation in a windthrow gap in a boreal Pinus sylvestris forest. 
Journal of Vegetation Science 9:551-562.

Leak, W.B. 1996. Long-term structural change in uneven-aged northern hardwoods. 
Forest Science 42:160-165.

Lee, P., S. Hanus and B. Grover. 2000. Criteria for estimating old growth in boreal 
mixedwoods from standard timber inventory data. Forest Ecology and 
Management 129:25-30.

Legare, S., Y. Bergeron and D. Pare. 2005. Effect o f aspen (Populus tremuloid.es) as a 
companion species on the growth of black spruce (Picea mariana) in the 
southwestern boreal forest of Quebec. Forest Ecology and Management 208:211- 
222 .

Lesieur, D., S. Gauthier and Y. Bergeron. 2002. Fire frequency and vegetation dynamics 
for the south-central boreal forest o f Quebec, Canada. Canadian Journal o f Forest 
Research 32:1996-2009.

Li, C. 2000. Fire regimes and their simulation with reference to Ontario. In Ecology of a 
managed terrestrial landscape: Patterns and processes o f forest landscapes in 
Ontario. Ontario Ministry of Natural Resources, Toronto, pp.l 15-140.

Lieffers, V.J. and K.J. Stadt. 2003. Comment on "Aging discrepancies of white spruce 
affect the interpretation of static age structure in boreal mixedwoods". Canadian 
Journal of Forest Research 33:2280-2281.

Lieffers, V.J., K.J. Stadt and S. Navratil. 1996. Age structure and growth o f understory 
white spruce under aspen. Canadian Journal of Forest Research 26:1002-1007.

Linder, P. and L. Ostlund. 1998. Structural changes in three mid-boreal Swedish forest 
landscapes, 1885-1996. Biological Conservation 85:9-19.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



65

Lorimer, C.G. 1980. Age structure and disturbance history of a southern Appalachian 
virgin forest. Ecology 61:1169-1184.

Lorimer, C.G., S.E. Dahir and M.T. Singer. 1999. Frequency of partial and missing rings 
in Acer saccharum in relation to canopy position and growth rate. Plant Ecology 
143:89-202.

MacLean, D.A. and D.P. Ostaff. 1989. Patterns of balsam fir mortality caused by an 
uncontrolled spruce budworm outbreak. Canadian Journal of Forest Research 
19:1087-1095.

MacPherson, D.M., V.J. Lieffers and P.Y. Blenis. 2001. Productivity o f aspen stands with 
and without spruce understory in Alberta's boreal mixedwood forests. The 
Forestry Chronicle 77:351-356.

Meilby, H., N. Strange and B.J. Thorsen. 2001. Optimal spatial harvest planning under 
risk of windthrow. Forest Ecology and Management 149:15-31.

Mori, A. and H. Takeda. 2004. Effects o f mixedwood canopies on conifer advance
regeneration in a subalpine old-growth forest in central Japan. Ecoscience 11:36- 
44.

Morin, H. 1994. Dynamics of balsam fir forests in relation to spruce budworm outbreaks 
in the boreal zone o f Quebec. Canadian Journal of Forest Research 24:730-741.

Moser, J.W. 1972. Dynamics of an uneven-aged forest stand. Forest Science 18:184-191.

Nappi, A., P. Drapeau and J.P.L. Savard. 2004. Salvage logging after wildfire in the
boreal forest: Is it becoming a hot issue for wildlife? Forestry Chronicle 80:67-74.

Niemela, J. 1999. Management in relation to disturbance in the boreal forest. Forest 
Ecology and Management 115:127-134.

Niklasson, M. 2002. A comparison of three age determination methods for suppressed 
Norway spruce: implications for age structure analysis. Forest Ecology and 
Management 161:279-288.

Nyland, R.D. 2003. Even- to uneven-aged: the challenges of conversion. Forest Ecology 
and Management 172:291-300.

Oliver, C.D. and B.C. Larson. 1996. Forest Stand Dynamics. John Wiley and Sons, Inc., 
New York. 520 pp.

OMNR 2003. Old growth forest definitions for Ontario.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



66

OMNR 2006. Nonlinear Height-Diameter Models for nine boreal forest tree species in 
Ontario. Rep. 155.

Pare, D., Y. Bergeron and M.H. Longpre. 2001. Potential productivity of aspen cohorts 
originating from fire, harvesting, and tree-fall gaps on two deposit types in 
northwestern Quebec. Canadian Journal o f Forest Research 31:1067-1073.

Parent, S., H. Morin and C. Messier. 2001. Balsam fir (Abies balsamea) establishment 
dynamics during a spruce budworm (Choristoneura fumiferana) outbreak: an 
evaluation o f the impact of aging techniques. Canadian Journal of Forest Research 
31:373-376.

Parisien, M.A. and L. Sirois. 2003. Distribution and dynamics of tree species across a fire 
frequency gradient in the James Bay region o f Quebec. Canadian Journal of 
Forest Research 33:243-256.

Payer, D.A. and D.J. Harrison. 2003. Influence of forest structure on habitat use by 
American marten in an industrial forest. Forest Ecology and Management 
179:145-156.

Pedlar, J.H., J.L. Pearce, L.A. Venier and D.W. McKenney. 2002. Coarse woody debris 
in relation to disturbance and forest type in boreal Canada. Forest Ecology and 
Management 158:189-194.

Peng, C., L. Zhang and J. Liu. 2001. Developing and validating non-linear height- 
diameter models for major tree species of Ontario's boreal forests. Northern 
Journal of Applied Forestry 18:87-94.

Peng, C.H. 2000. Growth and yield models for uneven-aged stands: past, present and 
future. Forest Ecology and Management 132:259-279.

Perera, A.H., D.J.B. Baldwin, F. Schnekenburger, J.E. Osborne and R.E. Bae. 1998. 
Forest fires in Ontario: a spatio-temporal perspective. Rep. 147.

Peters, V.S., S.E. Macdonald and M.R.T. Dale. 2002. Aging discrepancies of white 
spruce affect the interpretation o f static age structure in boreal mixedwoods. 
Canadian Journal of Forest Research 32:1496-1501.

Pothier, D., F. Raulier and M. Riopel. 2004. Ageing and decline of trembling aspen 
stands in Quebec. Canadian Journal of Forest Research 34:1251-1258.

Potvin, F., R. Courtois and L. Belanger. 1999. Short-term response of wildlife to clear- 
cutting in Quebec boreal forest: multiscale effects and management implications. 
Canadian Journal of Forest Research 29:1120-1127.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 7

Reed, W.J., C.P.S. Larsen, E.A Johnson and G.M. MacDonald. 1998. Estimation of 
temporal variations in historical fire frequency from time-since-fire map data. 
Forest Science 44:465-475.

Rowe, J.S. 1972. Forest Regions of Canada. Can. For. Serv., Ottawa, Publ. 1300.

Ruel, J.C., R. Horvath, C.H. Ung and A. Munson. 2004. Comparing height growth and 
biomass production of black spruce trees in logged and burned stands. Forest 
Ecology and Management 193:371-384.

Sano, J. 1997. Age and size distribution in a long-term forest dynamics. Forest Ecology 
and Management 92:39-44.

Seymour, R.S. and L.S. Kenefic. 2002. Influence of age on growth efficiency o f Tsuga 
canadensis and Picea rubens trees in mixed-species, multiaged northern conifer 
stands. Canadian Journal of Forest Research 32:2032-2042.

Sims, R.A., W.D. Towill, K.A. Baldwin, P. Uhlig and G.M. Wickware. 1997. Field
Guide to the Forest Ecosystem Classification for Northwestern Ontario. Queen's 
Printer for Ontario, Toronto.

Smith, D.V., B.C. Larson, M.J. Kelty and P.M.S. Ashton. 1997. The Practice of 
Silviculture: Applied Forest Ecology, ninth ed. John Wiley and Sons, Inc.

Smith, F.W. and J.N. Long. 2001. Age-related decline in forest growth: an emergent 
property. Forest Ecology and Management 144:175-181.

Soil Classification Working Group 1998. The Canadian System of Soil Classification. 
Agric. Can., Publ. 1646.

Stewart, B.J., P.D. Neily, E.J. Quigley, A.P. Duke and L.K. Benjamin. 2003. Selected 
Nova Scotia old-growth forests: age, ecology, structure, scoring. Forestry 
Chronicle 79:632-644.

Stocks, B.J., M.A. Fosberg, T.J. Lynham, L. Mearns, B.M. Wotton, Q. Yang, J.Z. Jin, K. 
Lawrence, G.R. Hartley, J.A.Mason and D.W. McKenney. 1998. Climate change 
and forest fire potential in Russian and Canadian boreal forests. Climatic Change 
38:1-13.

Takahashi, K., K. Homma, V.P. Vetrova, S. Florenzev and T. Hara. 2001. Stand structure 
and regeneration in a Kamchatka mixed boreal forest. Journal of Vegetation 
Science 12:627-634.

Thompson, I.D., M.D. Flannigan, B.M. Wotton and R. Suffling. 1998. The effects of 
climate change on landscape diversity: An example in Ontario forests. 
Environmental Monitoring and Assessment 49:213-233.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



68

Van Wagner, C.E. 1978. Age-class distribution and the forest fire cycle. Canadian 
Journal o f Forest Research 8:220-227.

Vasiliauskas, S. and H.Y.H. Chen. 2002. How long do trees take to reach breast height 
after fire in northeastern Ontario? Canadian Journal of Forest Research 32:1889- 
1892.

Wallenius, T., T. Kuuluvainen, R. Heikkila and T. Lindholm. 2002. Spatial tree age
structure and fire history in two old-growth forests in eastern Fennoscandia. Silva 
Fennica 36:185-199.

Wang, G.G. and K.J. Kemball. 2005. Balsam fir and white spruce seedling recruitment in 
response to understory release, seedbed type, and litter exclusion in trembling 
aspen stands. Canadian Journal o f Forest Research 35:67-673.

Wang, J.R. and J.P. Kimmins. 2002. Height growth and competitive relationship between 
paper birch and Douglas-fir in coast and interior o f British Columbia. Forest 
Ecology and Management 165:285-293.

Wardle, D.A., L.R. Walker and R.D. Bardgett. 2004. Ecosystem properties and forest 
decline in contrasting long-term chronosequences. Science 305:509-513.

Webb, S.L. 1988. Windstorm damage and microsite colonization in two Minnesota 
forests. Canadian Journal of Forest Research 18:1186-1195.

Weber, M.G. and B.J. Stocks. 1998. Forest fires in the boreal forests o f Canada, pp 215- 
233 in Moreno, J.M. (ed.) Large Forest Fires. Backhuys Publishers, Leiden.

White, P.S., M.D. MacKenzie and R.T. Busing. 1985. Natural disturbance and gap phase 
dynamics in southern Appalachian spruce-fir forests. Canadian Journal o f Forest 
Research 233-240.

Wong, C.M. and K.P. Lertzman. 2001. Errors in estimating tree age: implications for 
studies o f stand dynamics. Canadian Journal of Forest Research 31:1262-1271.

Zhang, Q.B., R.I. Alfaro and R.J. Hebda. 1999. Dendroecological studies of tree growth, 
climate and spruce beetle outbreaks in Central British Columbia, Canada. Forest 
Ecology and Management 121:215-225.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDICES

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



MAP OF THE STUDY AREA IN NORTHWESTERN ONTARIO, CANADA.
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DIAMETER DISTRIBUTIONS
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Density of trees (trees/ha) by diameter class (1 = 0-4.9 m, 2 = 5-9.9 m, 3 = 10-14.9 m, 4 = 
15-19.9 m, 5 = 20-24.9m, 6 = 25-29.9 m, 7 = >30 m) in the (A) stem 
exclusion/canopy transition for conifer stands, (B) canopy transition for conifer 
stands, (C) canopy transition/gap dynamics for conifer stands,(D) gap dynamics 
for conifer stands, (E) stem exclusion/canopy transition for mixedwood stands,
(F) canopy transition for mixedwood stands, (G) gap dynamics for mixedwood 
stands, (H) stem exclusion/canopy transition for hardwood stands, (I) canopy 
transition for hardwood stands, (J) canopy transition/gap dynamics for hardwoods 
stands, and (K) gap dynamics for hardwood stands.
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