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ABSTRACT

Couling, K. 2006. Identification of wetlands on the Canadian Boreal Plain and their
contributions to stream water chemistry. 87 p.

Keywords: forest management, peatlands, wetland identification, aerial photography, 
Alberta Wetland Inventory, Wetland Inventory and Identification Tool, Canadian Boreal 
Plain, phosphorus, nutrient retention, phosphorus budget, water budget.

The Alberta Wetland Inventory (AWI), which is used in a variety of applications 
across the province to estimate wetland cover from aerial photographs, detected only 
34% of confirmed wetland field plots in boreal forest watersheds in the Swan Hills of 
Alberta. Given the association between wetland cover and runoff and surface water 
chemistry in western Canadian boreal forest (Boreal Plain) watersheds, accurate 
quantification of wetland cover is critical to efforts to model hydrologic processes and 
water quality. Therefore, as a component of the Forest Watershed and Riparian 
Disturbance (FORWARD) Project, the Wetland Inventory and Identification Tool (WIIT) 
was developed and successfully detected 81% of the wetland field plots. Application of 
both models across a variety of landscapes in the boreal forest of Alberta demonstrated 
that wetland cover estimates were 1.5 times higher with the new WIIT model than with 
the AWI. Also, the WIIT identified polygons that were both smaller and contained taller 
trees than those identified by the AWI, indicating that this computer model may be more 
effective than wetland identification methods that use only aerial photography. Results 
of this study show that careful interpretation of aerial photography at the 1:15 000 scale, 
coupled with ground truthing and computer models, can provide an accurate means of 
identifying wetlands on Boreal Plain landscapes.

A preliminary annual (November through October water year) water and 
phosphorus (P) budget was also constructed for a 3-ha peatland in the Swan Hills, to 
quantify some aspects of peatland water and P cycling. Understanding the relationship 
between wetlands, and water and nutrient (P) inputs and outputs from watersheds is 
central to models being developed for stream water quality and quantity. The study 
wetland in the FORWARD Willow watershed retained 27% of the water collected 
through rainfall and runoff, and evapotranspiration represented the dominant route for 
water loss from the wetland, constituting 63% of rainfall inputs. The wetland retained 
(within soils, vegetation and microbial pools) approximately 77% of P entering the 
wetland via wet and dry atmospheric deposition and runoff.
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CHAPTER I: GENERAL INTRODUCTION

It is expected that the southern boundary of the boreal forest may move 

northwards up to hundreds of kilometres in the next century due to global warming (Vitt 

et al. 2000, Environment Canada 2004). In the boreal and subarctic forests alone, the 

thawing of peatlands could potentially release 440 billion m3 of water (currently stored 

as ice), as well as the nutrients and contaminants stored therein, causing drastic 

changes to local water quality and hydrology (Tarnocai 2006).

Eutrophication, the nutrient enrichment of freshwater ecosystems (Wetzel 2001), 

is associated with deterioration of water quality, such as the formation of toxic algal 

blooms and the reduction of dissolved oxygen concentrations (Schindler 1974, 

Chambers et al. 2006). Due to the documented nutrient retention abilities of natural 

(Devito et al. 1989, Kellogg and Bridgham 2003) and constructed wetlands (Moustafa 

1999, White et al. 2004) the detrimental impacts of eutrophication highlight the need for 

wetland identification, as well as an understanding of their nutrient retention capabilities. 

Wetland nutrient cycling and retention processes are poorly documented for the 

nutrient-rich Boreal Plain of western Canada. Efforts to link landscape changes with 

dynamic modeling of surface water quality and quantity are currently hindered by the 

lack of accurate tools to remotely predict wetland presence and a weak understanding 

of vital wetland processes for sites on the Boreal Plain. Given the decreases in water 

storage in wetlands that are observed and predicted for the Boreal Plain, and the 

widespread distribution of wetlands therein, further investigation of patterns and 

processes in these wetlands was warranted.
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CHAPTER II: IMPROVED ESTIMATION OF WETLAND COVER IN WESTERN 

CANADIAN BOREAL FOREST WATERSHEDS1 

Introduction

Wetlands cover 14 to 18% of Canada’s land area (National Wetlands Working 

Group 1988, Conference on Canadian Wetlands Stewardship 2003), yet they are often 

ignored in resource management planning in the Canadian boreal forest. In addition to 

serving as wildlife habitat, wetlands sequester carbon and may moderate climate 

warming (Gorham 1991, Vitt et al. 2000, Wilson et al. 2001) and associated impacts on 

streams and lakes. Wetlands (i.e. rich fens) sequester phosphorus, reducing 

phosphorus inputs from watersheds to lakes and streams (Prepas et al. 2001 b). On the 

western Canadian Boreal Plain, peatland cover was positively associated with runoff 

(Gibson et al. 2002) and phosphorus and ammonium exports from small watersheds to 

streams (Prepas et al. 2006). On the central Canadian Boreal Shield, wetlands also had 

a positive relationship with phosphorus export to lakes (Paterson et al. 2006) and in 

general, surface waters were found to have elevated DOC concentrations in catchments 

with wetlands compared to those without wetlands (Marin et al. 1990, Dalva and Moore 

1991). This association has been attributed to prolonged periods of time for water in 

wetlands to interact with shallow organic-rich soils before this water is released to 

receiving waters (Schiff at al. 1998). Human activities such as peat harvesting, mining 

and agriculture have reduced the number of wetlands in Canada (Wilson et al. 2001,

1 A version of this manuscript, co-authored by E.E. Prepas and D.W. Smith, has been accepted by the 
journal, Lake and Reservoir Management.
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Conference on Canadian Wetlands Stewardship 2003). For this reason, an effective 

wetland classification and identification system is essential to quantify wetlands within 

managed boreal forest watersheds.

Accurate wetland identification is required for application of the Soil and Water 

Assessment Tool (SWAT) (Arnold et al. 1998) to boreal watersheds. This tool was 

originally developed to model water and nutrient movement in agricultural settings. It 

has been modified for use by researchers in the Forest Watershed and Riparian 

Disturbance (FORWARD) Project, a watershed-based experimental disturbance project 

on the Boreal Plain (Smith et al. 2003), to predict runoff and surface water quality in 

forested watersheds before and after harvest (Putz et al. 2003, McKeown et al. 2005). 

Application of the SWAT model to the boreal forest requires accurate estimates of 

wetland area within a watershed. More specifically, model adaptation requires accurate 

peatland projections, because peatlands influence runoff nutrient exports from 

FORWARD project watersheds (Prepas et al. 2006). Ground truthing is not feasible 

across large landscape areas (e.g., the FORWARD study area, in the Swan Hill in the 

province of Alberta, includes an area of 12 000 km2); therefore a wetland identification 

method that uses remotely accessed information was required.

Although remote sensing techniques (e.g., satellite imagery, light detection and 

ranging (LiDar) and aerial photograph interpretation) facilitate resource identification, 

their application can be difficult. For example, the optical sensors (e.g., Landsat MSS) 

used in satellite remote sensing have proven of limited usefulness in vegetated 

wetlands, because they cannot penetrate dense foliage (Saderet al. 1995). Radar 

sensors are useful at low and high frequencies for detecting wet areas under forest and
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shrub vegetation, respectively. A combination of these techniques, in association with 

digital elevation model (DEM) data was applied to three boreal forest wetland areas in 

Ontario, Quebec and Labrador (Li and Chen 2005). Similar to optical sensors, the low- 

frequency C-band Radarsat-1/SAR sensor applied in this study could not penetrate 

dense forest cover. Application of LiDar to produce DEMs of the ground and canopy in 

Boreal Plain wetlands tended to overestimate the ground surface where conditions were 

wet, therefore application of DEM data requires ground truthing to correct biases 

introduced by local vegetation characteristics (Hopkinson et al. 2005). Aerial 

photographs, though more costly to obtain than satellite-based data, provide information 

at a much higher spatial resolution (Franklin et al. 2002).

On the Boreal Plain, the Alberta Wetland Inventory (AWI) has been widely used 

to identify and classify wetlands based on aerial photograph interpretation. The AWI is 

ideally suited for the identification of large wetlands, including areas specified as caribou 

habitat (Anderson 1999). This focus on the large scale resulted in a system that missed 

information on the fine spatial scale that is mandatory for the development of hydrologic 

modeling. More recently, the AWI has been used to identify and classify wetlands within 

industrial footprints, identify vegetation patterns and thus wetland potential (e.g., Prepas 

et al. 2001a, Smith et al. 2003). However, ground truthing in the small (median 5 km2) 

FORWARD watersheds demonstrated that the AWI missed many wetlands important 

for hydrologic modeling (Prepas, unpubl. data) and a new improved wetland 

identification system was thought to be achievable. The goals of this project were to: 1) 

develop an alternative method to quantify and classify wetlands on the Boreal Plain with 

the same original database as the AWI (1:15 000 aerial photography), but revised

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

based on field data and adjusted parameter selection and 2) compare the accuracy of 

this alternative method to the AWI.

Methods 

Study Area

The FORWARD study area (UTM coordinates: X 540697 to 575474; Y 6009112 

to 6057501) in the Swan Hills of Alberta, Canada, occurs within the Forest Management 

Areas (FMAs) of Millar Western Forest Products Ltd., the FORWARD major industry 

partner, and Blue Ridge Lumber Inc., a Division of West Fraser Timber Company Ltd., a 

FORWARD industry partner (Figure 2.1).

Twelve small FORWARD project watersheds were used for this study. Nine 

inventory watersheds occur in a western portion of the Millar Western FMA (FMA-W) 

(976 km2) and 3 test watersheds occur in the Blue Ridge FMA (2700 km2) (Figure 2.1 

and Table 2.1). Part of the Millar Western FMA (1757 km2) to east of the Swan Hills 

(Millar Western FMA-E), although used for testing in this project, is not shown in Figure

2.1 for reasons of scale.

The study area lies within the Boreal Plain ecozone, which constitutes 

approximately 20% of the Canadian boreal forest and includes central portions of the 

provinces of Manitoba, Saskatchewan and most of northern and central Alberta (Figure

2.1). Elevations across the Boreal Plain are typically 300 to 600 m above sea level and 

mean annual precipitation is 450 mm (Canadian Council on Ecological Areas 2006). 

Compared to the Boreal Plain as whole, the Swan Hills contains special features 

including more topographic relief, higher elevations (775 to 1225 m), and greater annual
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precipitation (1975-2005 mean 551 mm; Environment Canada 2006). Internal drainage 

is slow within the fine-textured Luvisolic soils that dominate the study area (Ecological 

Stratification Working Group 1996), therefore peatland formation may occur in poorly 

drained areas. Peatlands with peat depths of several metres are common in the region 

(Ecological Stratification Working Group 1996). For example, using soil based methods, 

peatland cover was estimated to be as much as 29% of the area among the small 

FORWARD watersheds (Prepas et al. 2006).

Blue Ridge Lumber FMA

TestW atersheds

Millar W estern FM A  
(FM A-W )*

Inventory Watersheds

Town o f
- \  9  W hitecourt

Figure 2.1. The FORWARD study area in the Swan Hills, in the province of Alberta, 
Canada (inset), including the western portion of the Millar Western Forest Management 
Area (FMA-W) and Blue Ridge Forest Management Area. Project watersheds: 1 
Fireweed, 2 Burnt Pine, 3 1A, 4 Thistle, 5 Willow, 6 Millions, 7 Mosquito, 8 Cassidy, 9 
Toby, 10 Pierre, 11 Kashka, and 12 Sakwatamau B. * The eastern section of the Millar 
Western Forest Management Area (FMA-E), although used for testing, is not shown.
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In the study area, tree species such as black spruce (Picea mariana (Mill.) BSP) 

and larch (Larix laricina (Du Roi) K. Koch) dominate wet areas, whereas trembling 

aspen (Populus tremuloides Michx.), balsam poplar (P. balsamifera L.), white spruce 

(Picea glauca (Moench) Voss), and lodgepole pine (Pinus contorta Dougl. ex Loud. var. 

latifolia Engelm.) dominate in uplands. Common shrub species include willow (Salix 

spp.), alder (Alnus spp.), common Labrador tea (Ledum groenlandicum), and bracted 

honeysuckle (Lonicera involucrata). In wetlands, common Labrador tea, peat moss 

(Sphagnum spp.), bog cranberry (Vaccinium vitis-idaea), cloudberry (Rubus 

chamaemorus), three-leaved false Solomon’s seal (Smilacina trifolia) and sedges 

(Carex spp.) are the dominant cover species.

Alberta Vegetation and Wetland Inventories (AVI and AWI)

The Alberta Vegetation Inventory (AVI) was designed for use by forest managers 

in the 1990s (Nesby 1997). The AVI permits delineation of homogeneous areas of 

vegetation (polygons) using 1:15 000 to 1:20 000 aerial photographs and it can be used 

to gain information regarding topography, vegetation and anthropogenic features such 

as right-of-ways. AVI Version 2.1 is used in government and industry applications in 

Alberta, where it is applied to aerial photographs to generate polygonal shapefiles, 

including data on dominant tree species, anthropogenic alteration and year of origin of 

the forest.

In Alberta, Halsey and Vitt (1997) developed the AWI based upon work by the 

National Wetlands Working Group (1988). The AWI was designed for application in 

tandem with the AVI to reduce overlap and interpreter error. The AWI also uses features 

visible on aerial photographs to quantify and classify wetlands. The AWI divides
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wetlands into peatlands (fens, bogs) or non-peat forming wetlands (swamps, marshes 

and shallow open-water) based on water level, underlying substrate, vegetation species 

and distribution, and vegetation and frost patterns. In peatlands, organic matter 

accumulates to > 400 mm depth, whereas non-peat forming wetlands accumulate less 

organic matter (National Wetlands Working Group 1997).

In this study, the AWI was initially applied to the nine inventory watersheds 

covering an area of 49.6 km2 within the Millar Western FMA-W (Figure 2.1 and Table

2.1). Subsequently, the AWI was applied to all of Millar Western FMA-W. The AWI rules 

were applied to an AVI shapefile using 1:15 000 aerial photographs taken in 1994 and 

ESRI ArcView Geographic Information Systems (GIS) (v. 3.2., Environmental Systems 

Research Institute Inc., Redlands, CA). Once wet (hygric and subhydric soils) and 

mesic (submesic, mesic and subhygric soils) polygons were identified within the AVI, 

individual wetlands were classified using the AWI rules, which use vegetation structure 

(horizontal and vertical) and species composition as key features to identify wetlands 

and to distinguish among wetland classes. All wet areas were given wetland specific 

codes (e.g., FONS for open, non-patterned, shrub dominated fen), as specified by the 

AWI guidelines, whereas non-wetlands were given the code “Z”.

Wetland Inventory and Identification Tool Development

The Wetland Inventory and Identification Tool (WIIT) was developed to improve 

on wetland identification efforts in the FORWARD project area. The WIIT was created 

from a combination of the AVI and field confirmed plot data uploaded to ArcView. First, 

more detailed maps of the inventory watersheds indicated in Figure 2.1 were used to 

select 138 field plots (Table 2.1 and Figure 2.1). Field plots were then visited between
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July 2004 and August 2005 and marked with a Garmin eTrex Legend 360° Global 

Positioning System (GPS) unit. Once the plot center point was determined, a 2 m 

diameter lower vegetation plot, 6 m diameter shrub plot and 10 m diameter tree plot was 

established in concentric circles. Within the lower vegetation plot, all non-woody plant 

species were identified and percent cover values determined. The sum of these values 

sometimes exceeded 100%, because mosses can cover 100% of the area and 

vegetation occupying other strata can also cover a percentage of the area. In this case, 

bog cranberry and small bog cranberry (Oxycoccus microcarpus) were classified as a 

lower vegetation species because they do not attain vertical dominance, although they 

are considered woody shrubs (Johnson et al. 1995). The shrub plots were similarly 

quantified and again, percent cover values could exceed 100%. For tree plots, percent 

cover never exceeded 100%. For the three tallest trees, species was identified and 

height (m) was determined using a Suunto PM-5/1520 clinometer.

Within each 10 m diameter plot boundary, a peat auger was used to core into the 

peat, peat depth (mm) was measured and soil colour was determined using the Munsell 

Soil Colour Chart (Kollmorgen Corp., Baltimore, MD). Soil colour was only used to 

determine that the site was indeed a wetland site, as the areas sampled had already 

been evaluated for soil characteristics (Prepas et al. 2006). If the field plot was more 

representative of an upland site, litter depth was recorded rather than the peat depth. 

Also, a portable well was placed at a depth of 0.3 m in the peat or soil to collect soil 

pore water. If no water seeped into the well after 20 minutes, the field plot was deemed 

un-wetted. Since all measurements were taken during the summer months and within a 

10-year dry period for Alberta, false positive identifications of wetlands due to
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seasonably wet conditions in the field were reduced. Porewater pH was measured with 

an Accumet Model 1001 meter (Fisher Scientific, Nepean, ON). Photographs were 

taken at each field plot to illustrate the ground and canopy cover, as well as in the 

cardinal directions to give an accurate representation of the site.

Table 2.1. Watershed area, wetland cover, and number of field plots in twelve 
FORWARD watersheds, including the inventory watersheds in the western portion of 
the Millar Western Forest Management Area (FMA-W) and test watersheds in Blue 
Ridge Lumber Forest Management Area. Watershed areas were redigitized after 
Prepas et al. (2006).

Watershed Name Watershed area 
(ha)

Wetland cover 
(ha) No. field plots

Inventory Watersheds (Millar Western FMA-W)
Pierre 258 0.9 2
Cassidy 593 28.4 4
Mosquito 311 13.4 4
Kashka 398 21.1 8
Millions 335 40.1 13
Toby 263 58.3 15
Sakwatamau B 704 219.7 31
Thistle3 512 111.5 25
Willow 1562 201.4 36

Subtotal 4936 694.8 138

Test Watersheds (Blue Ridge Lumber FMA)
Thistle3 336 29.7 10
1A 510 128.6 24
Burnt Pine 766 121.7 9
Fireweed 569 157.7 13

Subtotal 2,181 437.7 56

Total 7117 1133 194
3Watershed straddles the two FMAs.
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A field plot was deemed a wetland if water entered the portable wells and the site 

possessed appropriate wetland vegetation such as three leaved false Solomon’s seal, 

cloudberry, bog cranberry and Sphagnum species (Johnson et al. 1995). A wetland field 

plot was deemed a peatland if the peat depth was > 400 mm. Peatlands were further 

characterized by pH: if the water that seeped into the wells was > pH 4.5, then the 

peatland was labelled a fen and if it was < pH 4.5, it was labelled a bog (Clymo 1987, 

Price et al. 2005). Following the field investigation, a computer model was created using 

ArcView. The WIIT classifies land areas based on tree species and percent species 

composition data from the AVI, in conjunction with peat depth and water presence data 

collected at each field plot. Field plot coordinates were labelled with a code: confirmed 

wetland, possible wetland or confirmed non-wetland. For the inventory watersheds, a 

query was written in ArcView to select as many polygons as possible containing 

‘wetland’ waypoints, and to avoid the capture of ‘non-wetland’ waypoints (Figure 2.2).

Waypoints designated as ‘possible wetland’ were only used as confirmation for 

other points in the development of the WIIT. Once a suitable query was written using 

overstory and understory tree species and non-tree vegetation, it was expanded to 

include the Swan Hills. Upon completion, the flowchart could be used with GIS software 

to identify wetlands at both the watershed and FMA level. In its final form, WIIT 

functions as a hierarchical decision-based rule set that identifies wetlands by utilizing 

polygon attribute information contained within the AVI, in conjunction with field data.
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Figure 2.2. Flow chart describing the ArcView GIS v. 3.2 query processes used to 
create the Wetland Inventory and Identification Tool (WIIT).

AWI and WIIT Accuracy Assessment

The AWI and WIIT were tested against three datasets. First, both the AWI and 

WIIT were compared in their abilities to identify the 138 field plots established in the 

nine inventory watersheds. An independent set of wetland plot data in the inventory 

watersheds was not available for further testing. Second, the wetland area predicted by 

the two systems was tested against wetland area estimates created using an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

independent soil dataset compiled from intensive field sampling in all twelve (both 

inventory and test) small FORWARD watersheds (71 km2) and Millar Western FMA-W 

(redigitized data from Prepas et al. 2006) (Figure 2.1). This soil dataset was initiated at 

the beginning of the FORWARD project in 2001 and new soil investigations are included 

in the database every field season. Soil plots have been established in the FORWARD 

project watersheds, as well as in the areas immediately surrounding the watersheds 

within Millar Western FMA-W and Blue Ridge FMA. Furthermore, a few plots were 

established in Millar Western FMA-E. While not as ideal as using wetland plots, the 

tests using the soil plots could still confirm wetland presence. Third, the AWI and WIIT 

were compared against the individual data plots from the soil survey mentioned 

previously. Organic soils generally accumulate in wetlands due to poorly drained 

conditions (Mitsch and Gosselink 2000), and gleysolic soils indicate long term or 

periodic flooding (Agriculture and Agri-Food Canada 1998). For these reasons, soil plots 

possessing organic and gleysolic soils were used as confirmation of wetland presence.

In addition to their abilities to identify wetlands, the AWI and WIIT models were 

compared in terms of their abilities to: 1) detect wetland polygons in Millar Western 

FMA-W in five size classes (<1 ha, 1 to 30 ha, 31 to 60 ha, 61 to 90 ha and 91 ha +) 

and 2) detect wetland polygons in Millar Western FMA-W belonging to four tree height 

classes (no trees, 1 to 5 m, 6 to 10 m and 11 m +). The chi-square goodness of fit test 

was used to compare modeled and observed wetland site distributions and distributions 

created by the two models based upon size class, tree height and soil type (Zar 1998).

The WIIT was further tested with two additional datasets. The WIIT was tested 

against the 56 ground truthed field plots in the Swan Hills test watersheds that are
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managed by Blue Ridge Lumber Inc. Different interpreters apply the AVI to the Blue 

Ridge FMA than in the Millar Western FMA-W, therefore an independent test of the 

WIIT could be conducted. The WIIT was also compared to the independent soil dataset 

(78 soil plots), after application to Millar Western FMA-E, to determine if the WIIT 

behaved similarly on a landscape with less topographic relief. The inventory watersheds 

occur in an area of greater relief (6% slope) whereas the remainder of the Boreal Plain 

possesses less relief (Prepas unpubl. data, Putz et al. 2003). Surface analysis with 

ESRI ArcGIS (v. 8.3) confirms that the three-dimensional area in Millar Western FMA-E 

exceeded two-dimensional area by only 0.06%, compared to 0.31% for the Swan Hills.

Results

Among the initial 138 field plots established in the inventory watersheds, ground 

truthing demonstrated that 106 were in confirmed wetland areas; 8 were within a 

potential wetland areas and the remaining field plots were non-wetlands (Table 2.2).

Table 2.2. Number of field plots confirmed as wetland sites by ground truthing and 
percentage predicted by the Wetland Inventory and Identification Tool (WIIT) and 
Alberta Wetland Inventory (AWI) in the inventory watersheds in the western portion of 
the Millar Western Forest Management Area (FMA-W).

Type of Wetland Confirmed % Predicted by WIIT % Predicted by AWI
Fen 69 91% 39%
Swamp 19 47% 5%
Bog 7 86% 71%
Un-wetted 4 75% 25%
Marsh 3 67% 67%
Peatland 3 67% 0%
Open Water 1 100% 0%
Total 106 81% 34%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

The WIIT and AWI detected 81 and 34% of the 138 inventory watershed wetland 

plots, respectively (Table 2.2). Of all sites (wetland and non-wetland), the omission error 

rate (confirmed wetlands that were not identified by the model) for the WIIT within the 

watersheds was only 15%, compared to 55% for the AWI (Figure 2.3).

WIIT AWI

W etland Identification System

Figure 2.3. Comparison of the Wetland Inventory and Identification Tool (WIIT) and 
Alberta Wetland Inventory (AWI) methods to correctly identify wetland and non-wetland 
sites in the western portion of the Millar Western Forest Management Area (FMA-W), 
including omission and commission errors.

The overall correct identification rate for the AWI was 45% (including correct 

upland identification) (Figure 2.3). The improved ability of the WIIT to detect wetland 

plots was accompanied by a slightly higher commission error (5% of non-wetland plots
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were identified as wetlands) compared to the AWI (1%) (Figure 2.3). The WIIT captured 

approximately 1.5 times the wetland area as the AWI (e.g., Figure 2.4).

WIIT

AWI

400 400 800 Meters

Figure 2.4. Wetlands identified using the Wetland Inventory and Identification Tool 
(WIIT) and Alberta Wetland Inventory (AWI) in the Toby and Pierre watersheds in the 
western portion of the Millar Western Forest Management Area (FMA-W). All wetlands 
identified by the AWI were also identified by the WIIT.

Compared to soil-based wetland areal estimates in the inventory watersheds, the 

WIIT captured 71% (492 ha) of the wetland area within the inventory watersheds. By 

comparison, the AWI identified only 46% of the wetland area (322 ha) within the 

inventory watersheds. The WIIT predicted 10% wetland cover for the test watersheds, 

while the AWI predicted 7% wetland cover. Application of the WIIT to Millar Western
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FMA-W predicted 24% wetland cover, whereas application of the AWI rules predicted 

12% wetland cover.

In the inventory watersheds, the WIIT and AWI differed in terms of their ability to 

identify wetland soil plots. The AWI did not identify as many wetland soils as the WIIT. It 

detected only 27% of confirmed organic soil plots and 3% of confirmed gleysolic soil 

plots, whereas the WIIT detected 73% of organic soil plots and 27% of gleysolic soil 

plots. The relative proportions of the soils identified differed between the two methods 

as well (x2=4.7, P < 0.10; df = 2) (Appendix A). Of all the wetland plots identified by the 

AWI, 91% were organic soils while 6% were gleysolic soils. These values were 63% 

and 27% for the WIIT. As opposed to the soil identification within the inventory 

watersheds, the number of wetland soil plots identified by the WIIT and the AWI did not 

differ when tested across Millar Western FMA-W (x2=1.3, P>  0.25; df=  2).

However, across Millar Western FMA-W, the wetland prediction models differed 

in terms of the size of wetland polygons detected. The WIIT identified more (12%) 

polygons of a smaller size than the AWI (7%) (x2=45, P «  0.001, df = 4) (Figure 2.5). 

Although the frequency distribution suggests that the two wetland identification systems 

detect a similar number of wetland polygons across the five size categories, there was 

sufficient weight in the < 1 ha category to allow the the chi square analysis to detect a 

difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Polygon Size (ha)

Figure 2.5. Percentage of polygons of five size classes identified by the Wetland 
Inventory and Identification Tool (WIIT) and Alberta Wetland Inventory (AWI) in the 
western portion of the Millar Western Forest Management Area (FMA-W).

Tree heights within the wetland polygons identified by the WIIT were taller than 

those identified by the AWI {%2=75, P «  0.001 , df=  3) (Figure 2.6). Using the WIIT, 

36% of the wetland polygons identified had a tree height > 11 m, compared to 24% for 

the AWI. Conversely, the WIIT only identified 28% of the wetland polygons as having 

tree heights between 1 and 5 m, while the AWI placed 36% of the polygons in this 

category.
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Tree Height Class (m)

Figure 2.6. Percentage of polygons of four tree height classes identified by the 
Wetland Inventory and Identification Tool (WIIT) and Alberta Wetland Inventory (AWI) in 
the western portion of the Millar Western Forest Management Area (FMA-W).

Of the 56 plots ground truthed in the test watersheds, 31 were in confirmed 

wetland areas, 13 were in potential wetland areas and 12 were in confirmed upland 

areas. When applied to these test watersheds, the WIIT correctly identified 84% of the 

field plots as wetlands, or correctly excluded upland field plots as non-wetlands. 

Commission and omission field plot identifications were 7% and 9%, respectively. Of the 

78 soil sites established in Millar Western FMA-E, 22 plots had organic soils and 15 

plots had gleysolic soils. The WIIT identified 77% of the organic soils and 20% of the 

gleysolic soils.
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Discussion

The newly developed WIIT was better able to detect ground truthed wetland field 

plots than the AWI, largely due to its ability to identify wetland areas with taller trees.

The Swan Hills appears to contain many treed wetlands that were not detected using 

the AWI, possibly because the trees were considered too tall to occur in wetlands by the 

AWI rules. Conversely, the WIIT lacks strict rules relating to tree height. Given the 

greater relief in the Swan Hills, and thus greater drainage, trees can attain greater 

heights. The AWI may be better suited to identify bogs and marshes in areas outside of 

the Swan Hills, which possess short trees, and grasses and sedges, respectively.

In the future, trees in wetland areas in the Swan Hills could possibly be slated for 

harvest, having implications for the amount of runoff and quality of water draining these 

watersheds. In the boreal forest of Alberta, wet and fine-textured soils are prone to soil 

compaction during harvesting operations (McNabb et al. 2001, Whitson et al. 2003) and 

after tree removal, soils are vulnerable to raindrop impact. These factors are associated 

with lower infiltration rates, higher runoff and more overland flow, which can exacerbate 

erosion. One year after forest harvest, runoff from small watersheds in the Swan Hills 

increased by approximately 60% (Prepas unpubl. data). In Alberta, soils are 

phosphorus-rich, therefore harvesting in treed wetlands could enhance eutrophication in 

receiving waters. Knowledge of the location of treed wetlands in this region can 

enhance planning and management that try to limit hydrologic impacts of forest harvest.

The newly developed WIIT was also better able to identify smaller wetland 

polygons. A potential source of error with the AWI method could stem from its 

dependence on aerial photograph interpretation of larger areas and local features.
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Application of the AWI rules to aerial photographs at a larger scale (e.g., 1:5000) could 

potentially detect smaller wetlands on the landscape, but the general landscape 

features, on which some of the AWI rules are based, could be missed (O. Bakowsky, 21 

Nov 2005, Edmonton, AB., pers. comm.). Conversely, the WIIT is entirely based on the 

AVI and field confirmation, and selects polygons regardless of polygon area. The AWI 

did not identify some wetland polygons because of their small size, though this was not 

a consistent error in the method. The FORWARD watersheds may fall in areas where 

the general landscape characteristics suggest uplands rather than lowlands. It appears 

that the AWI rules are too exclusive for use in this part of Alberta; the WIIT is a more 

encompassing wetland identification model than the AWI.

The AWI was created and tested in portions of Alberta possessing lower relief, 

which could explain why it does not work well in areas of higher relief, such as the Swan 

Hills. Furthermore, while AWI rules result in a high degree of precision of wetland 

identification, in this situation the process was too exclusionary and confirmed wetlands 

were not identified. A process using more relaxed rules is therefore ideal. While the 

WIIT is an improvement on the AWI wetland identification in this area, it may not be 

applicable elsewhere in the province. It is understood that wetland hydrology faces a 

challenge when using generalized site-specific studies and scaling up to apply the 

model to larger landscape (Sophocleous 2002). Although the WIIT is most suitable to 

the Swan Hills, it may be successfully applied in other high-relief areas on the Boreal 

Plain, such as the Caribou and Birch Mountains. It must be emphasized, however, that 

while the WIIT was developed for and within areas of greater relief, the process did 

identify 77% of organic soil points established in areas of lesser relief.
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The resolution of aerial photographs is more detailed relative to other remote 

sensing techniques and smaller wetlands are captured, as was the case with the WIIT. 

Whereas optical and radar-based remote sensing offers advancement towards 

landscape-scale wetland identification, particularly in areas where aerial photographs 

have not been taken (Wulder et al. 2003), the WIIT or other field based predictions 

could be integrated with remote sensing to provide a more detailed landscape-based 

confirmation for satellite based estimations.

The WIIT was applied successfully to a variety of landscapes in and adjacent to 

the FORWARD study watersheds. With improved wetland identification, the FORWARD 

project can now more accurately model the hydrology of the individual watersheds. At 

this point, the limitations of the WIIT method relate to potential inaccuracies within the 

AVI, upon which the WIIT is based, as well as the resolution of the mapping procedure. 

Some non-wetland polygons were captured and some wetland polygons were not 

captured, mostly due to projection errors (i.e. inaccuracies when GPS reading was 

taken) or potential AVI inaccuracies. Existing methods may have also underestimated 

very small wetland areas, because there appear to be numerous very small wetlands in 

the FORWARD study area. Some wetted areas may be too small to be assigned a 

polygon, based on aerial photograph interpretation, but they could be important 

hydrologically. Logistically, it may be difficult for field operators to avoid these small 

wetlands during harvest operations. The WIIT has been tested most extensively in the 

Swan Hills, and to some degree in Millar Western FMA-E. Although there is 

confirmation of the abilities of the WIIT within the project watersheds, the wetland 

coverage estimates outside of the watersheds is, at this time, based on fewer tests. The
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Swan Hills and related area tests (12 000 km2) were successful based on ground 

truthed soil plots. With testing on more landscapes in the boreal forest, this simplified 

process should be widely applicable.

The simplified techniques used to test the WIIT, using tree species and soil 

types, are easily applied. Furthermore, testing of the process can be conducted 

elsewhere in the boreal forest. Given that black spruce is widespread across the boreal 

forest, and that jack pine (Pinus banksiana Lamb.) can be supplemented for lodgepole 

pine in the WIIT rules, testing of the WIIT could easily be conducted in other boreal 

forest regions in Canada. Testing of the WIIT is slated for Boreal Shield forests in 

northwestern Ontario; at this time the challenge of upland black spruce will be 

addressed.

The WIIT identified 81% of wetland field plots in inventory watersheds, whereas 

the AWI identified 34% of the same plots. Similarly, the WIIT outperformed the AWI by 

identifying 73 versus 27% of organic soil plots within the inventory watersheds. While 

inaccuracies are still present with both systems, the WIIT is easier to apply, less 

susceptible to interpreter error and more economically feasible, because it is applied by 

a computer system rather than an interpreter. The improved process used in the WIIT 

can be applied within the context of resource extraction, road and municipal planning 

and watershed management. More specifically, the WIIT could be used by conservation 

authorities, other watershed managers and lake associations to identify wetlands and 

the hydrological and chemical storage capacity benefit stored therein. In addition, the 

WIIT could be used by conservation groups and provincial governments to identify 

natural areas of interest to establish priorities for protection.
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CHAPTER III: PEATLAND PHOSPHORUS AND WATER BUDGET IN THE 

BOREAL PLAIN OF ALBERTA, CANADA, AND THE IMPLICATIONS FOR

SMALL STREAM CHEMISTRY2.

Introduction

Wetlands cover approximately 20% of the boreal forest across the globe (Zoltai 

and Pollett 1983), and approximately 14 to 18% of the landbase in Canada (National 

Wetlands Working Group 1988, Conference on Canadian Wetlands Stewardship 2003). 

In Canada, 85% of wetlands are peatlands, which are wetlands with at least 400 mm of 

accumulated peat. On the western Canadian Boreal Plain, fens and bogs are the most 

dominant wetland types (National Wetlands Working Group 1988). Fens are peatlands 

with water at pH greater than or equal to 4.5, and bogs are peatlands with water at pH 

less than 4.5 (National Wetlands Working Group 1997). Wetlands in Canada develop 

based on the north-south temperature gradient and the east-west precipitation gradient. 

These gradients were used to establish 20 wetland regions across the country (National 

Wetlands Working Group 1986).

The role of wetlands in hydrological networks in boreal forests depends upon

wetland position in the network and wetland type. For example, the residence time of

water in riparian wetlands (wetlands adjacent to streams) is shorter than in wetlands

surrounded by upland, containing a single outlet (Mitsch and Gosselink 2000). Water

table levels and outflow rates remain relatively uniform in fens and swamps because

2 Specifics detailed in this chapter will be integrated into a manuscript, co-authored by D. Pelster, S. Luke, 
J. Burke and E. Prepas, to be published in a special issue of Journal o f Environmental Engineering and 
Science in 2008.
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they are connected to groundwater. Bogs, however, are not connected to groundwater 

networks, and therefore water tables fluctuate in response to precipitation events 

(Devito et al. 1996). In one central Ontario study, sedge fens (peatland), beaver ponds 

(non-peatland) and treed swamps (non-peatland) in close proximity to each other 

retained 2, 5 and 8% of yearly water inputs (2 year study mean), respectively (Devito et 

al. 1989).

In addition to influencing local hydrology, wetlands influence phosphorus (P) 

movement through watersheds to varying degrees, based upon the amount of contact 

between water and the mineral soil (Richardson 1985). As an essential nutrient for all 

living organisms, P is a component of ATP and DNA (Emsley and Hall 1976). In aquatic 

systems, P takes on additional importance because P is often the limiting nutrient, 

having no gaseous form and thus unable to be replenished from the atmosphere like 

nitrogen and carbon. Because P is also expensive to remove from many point sources 

(e. g. sewage, industrial effluents) it is often a cause of anthropogenic eutrophication, or 

nutrient enrichment resulting in increased primary productivity. A lake is considered 

eutrophic if the P concentration is 75 pg/L or greater (Wetzel 2001). In a Boreal Shield 

lake in northern Ontario, carbon and nitrogen amendments to one half of an 

experimentally divided lake did not cause eutrophication, but augmented with P, these 

treatments resulted in rapid growth of cyanobacteria (Schindler 1974). Recovery of the 

lake was swift following the removal of the P source. In another classic North American 

study, eutrophication was also associated with P inputs from the drainage basin to Lake 

Washington, including significant phytoplankton population changes and hypolimnetic 

oxygen deficits (Edmondson et al. 1956).
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Among wetlands, peatlands appear to retain P, that is, they remove P from the 

water column through biological, physical and chemical means, while not releasing it 

under unexceptional hydrological conditions (e.g., mean rainfall) (Reddy et al. 1999). 

The retention of P results from uptake by plants and microbes (Richardson 1985), 

adsorption to metals such as aluminum and iron (Hansen et al. 2003), adsorption to 

non-metal ions like calcium, and adsorption to sediments and organic matter, which are 

buried and become essentially unavailable. In a three-year study, peatlands in 

Minnesota retained 56% of P (Verry and Timmons 1982), most likely due to 

geochemical sorption of P from the water column (Bridgham et al. 1998). In northern 

Michigan, peatlands retained 90 to 100% of a radioactive P tracer within the first 24 

hours after application (Kellogg and Bridgham 2003). On the basis of this ability to retain 

P, treatment wetlands have been established in places such as Florida to remove P 

from agricultural wastewater with high P concentrations (Moustafa 1999). The 

understanding of wetland functioning on the Boreal Plain is of importance given that the 

wetland loss in Alberta can potentially accelerate due to increased economic growth 

(Wilson et al. 2001)

The perception that peatlands function as P sinks may not apply across all 

regions. For example, peatland cover and P export in streams draining experimental 

watersheds in the Swan Hills, Alberta, on the Canadian Boreal Plain were positively 

correlated (Prepas et al. 2006). Soil parent materials in this region are P-rich (Mitchell 

and Prepas 1990, Cooke and Prepas 1998). Wetland cover ranged from 1 to >30% of 

the landbase in the 12 small (258 to 1562 ha) Forest Watershed and Riparian 

Disturbance (FORWARD) project watersheds. Although fens, bogs, swamps, marshes
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and shallow open water are all represented among wetlands in the FORWARD 

watersheds, fens comprised the majority of established field plots (Chapter 1, this 

thesis, Table 2.2). As part of the FORWARD project, key watershed features that 

influence streamflow and water quality are being quantified in an effort to model these 

variables, so that water and associated nutrients can be included as a constraint in 

forest management planning (Smith et al. 2003). Given the importance of wetlands in 

terms of runoff and water quality, the importance of fens among the wetland types in the 

Swan Hills and the importance of P in defining surface water quality (Schindler 1974, 

Prepas and Trew 1983), knowledge of fen water and P budgets is essential to 

FORWARD modelling efforts. The goal of this project was to construct an annual 

(November 2004 to October 2005) water and P budget for a small boreal peatland, to 

relate wetland cycling of water and P to the surrounding upland.

Methods 

Project Area

The study wetland, in the Swan Hills of Alberta, is located at UTM coordinates 

X 555283 to 554795 and Y 6024962 to 6025329, and at a mean elevation of 1025 m 

above sea level. The long-term (1975-2005) mean annual precipitation measured at 

Whitecourt, Alberta (35 km to the southeast of the wetland) is 551 mm, of which 76% is 

rainfall, and the long-term mean annual temperature is 2.7°C, a degree cooler than the 

annual mean temperature for 2005 (Environment Canada 2006). The study wetland is 

within the small (1562 ha), relatively undisturbed Willow watershed (Figure 3.1).
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Study wetland

Wetland micro 
watershed

Streams

Cassidy
W eather Station

Cassidy W atershed

1600 Metres

Figure 3.1. Study wetland location (indicated by the arrow) within FORWARD Willow 
watershed, Swan Hills, Alberta, Canada (inset). Cassidy watershed is shown adjacent 
to Willow watershed.

The position, size and other characteristics of the wetland and the land area 

draining directly into the wetland were determined from ground surveys, aerial 

photograph interpretation and topographic data from a recently flown LiDar layer (11 

May 2005 at 800 m, Airborne Imaging Inc., Calgary, AB) (Brooks et al. 2003) (Figure 

3.2). The 3 ha wetland is surrounded by a 6.2 ha micro-watershed, which based upon 

surface topography, contributes runoff to the wetland (Figure 3.3). The wetland was 

predominantly populated by black spruce (Picea mariana (Mill.) BSP), but also present 

were a few lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) trees.
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Figure 3.2. Study wetland including peatland, treed peatland margin (wetland complex) 
and surrounding micro-watershed, situated within the Willow watershed.

Peat depth ranges from 100 mm at the peatland margin to 810 mm (mean = 316 

mm), creating a connected two-lobed wetland complex. The dominant tree species in 

the micro-watershed surrounding the project wetland is trembling aspen (Populus 

tremuloides Michx.). The surface topography is flat to very slightly northeast sloping. A 

single, clearly defined outlet was identified northeast of the wetland, and there was no 

evident obstacle to water passage.
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Figure 3.3. Cross section of a wetland and micro-watershed showing water routes 
(Verry and Timmons 1982). Used by permission from Ecological Society of America.

Field Methods

Inputs

Atmospheric Deposition and Throughfall

Precipitation input volumes (Figure 3.3) were estimated for the November 2004 

to October 2005 water year using three sources. First, a rain gauge was erected in the 

study wetland to collect rainwater for the month of August. For the remainder of the 01 

April to 31 October 2005 period, data from a rain gauge located 6.5 km east of the 

wetland in Cassidy watershed (Figure 3.1) were used to estimate rainfall over the 

project wetland. The Cassidy watershed is approximately one third of the area of the
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Willow watershed, and it is similar to the Willow watershed in that it drains towards the 

northeast and into the Sakwatamau River. To estimate 01 November 2004 to 31 March 

2005 rain and snowfall, a regression equation was developed (Microsoft Excel, 

Microsoft Corporation, Redmond, WA) based upon weekly total rainfall data from the 

Cassidy rain gauge (dependent variable) and from the Whitecourt A station 

(independent variable), a year-round meteorological station located 35 km southeast of 

the wetland (Environment Canada 2006) (Appendix B).

Bulk (wet plus dry) deposition samples were collected from 02 July to 22 August 

2005 to determine atmospheric P deposition rates. Four atmospheric deposition and 

rain collectors were erected in natural clearings within the wetland. Each collector was 

constructed of two 3 m lengths of Schedule 40 polyvinylchloride (PVC) pipe (Rice 

Engineering, Edmonton, AB), a 210 mm inner diameter plastic funnel, glass wool (in the 

neck of the funnel to prevent debris from entering containment vessel), clear PVC 

tubing (Greenline Tubing, Edmonton, AB) and a 3.8 L brown opaque polypropylene 

collection bottle (Figure 3.4).

Deposition samples were collected every third day. If it had rained since the last 

collection date, the rainwater volume was measured and poured into a 300 mL acid- 

washed clear polypropylene bottle, which had been rinsed with a small amount of the 

sample. Any P remaining in the funnel was assumed negligible, and was washed into 

the collection bottle with distilled deionized water (DDW) and discarded. If no rain was 

collected, 300 mL of DDW was washed down the funnel to collect any dry-only 

deposition that had accumulated. The 3.8 L brown opaque polypropylene collection 

bottles, funnels, tubing and graduated cylinder were rinsed with DDW between
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collection periods, and glass wool was replaced to prevent contamination. Some P may 

have sorbed into the plastic and onto glassware, and therefore our final P estimates 

may be underestimates.

Figure 3.4. Schematic diagram of atmospheric and throughfall collectors used in the 
study wetland and its micro-watershed.

Throughfall samplers were constructed in the same manner as atmospheric 

collectors, but they did not sit atop PVC pipe (Figure 3.4). Five collectors were placed 

under black spruce canopy within the wetland and two were placed under trembling 

aspen in the wetland micro-watershed. Bulk and dry-only deposition samples were 

collected and analyzed with the same frequency and methods as atmospheric 

collectors.
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Runoff

Runoff volume and P export for the micro-watershed surrounding the wetland 

were calculated using areal runoff and P export values from the Willow watershed, 

measured with the same protocols employed in this study (FORWARD core data). The 

amount of water and P contributed to the wetland through runoff includes both surface 

and subsurface (interflow) sources (Figure 3.3). Deep seepage from upland areas to the 

regional water table was assumed to bypass the wetland and was ignored in the budget 

(Figure 3.3).

Groundwater

Groundwater wells were installed in the peatland (n = 5), peatland margin (n = 5) 

and upland soil (n = 2). These wells were constructed from PVC pipe (Schedule 40, 

inner diameter 63 mm) with 1 mm slots 6 mm apart, washed with DDW and wrapped in 

spunbond polyester fabric (NILEX MD7407, opening size <100 pm) to prevent large 

particulates from entering them. The base of the well rested on mineral soil in wetlands, 

whereas in the upland soils, wells were installed deep enough into the mineral soil so 

that the water table was reached. Groundwater samples were collected every six days 

by emptying the wells using a Nalgene hand pump, allowing them to recharge and then 

pumping water into acid-washed sample bottles using the hand pump, an Erlenmeyer 

flask and two lengths of clear PVC tubing (Greenline Tubing, Edmonton, AB). Upon 

collection, the samples were analyzed for pH.
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Outflow

Water from the wetland flowed through a well defined, well sloping ravine toward 

the Willow stream channel (Figure 3.3). A 90° v-notch weir and staff gauge were 

established and surveyed before and after sample periods to ensure that they did not 

shift. Outflow measurements and water samples were taken every three days during the 

July through August sampling period.

Phosphorus Analyses

All water samples were kept cool until analysis could take place (within one 

week). Analysis for total P (TP) and total dissolved P (TDP) (< 0.45 pm) concentration in 

water were conducted using the potassium persulfate digestion method (Menzel and 

Corwin 1965, Prepas and Rigler 1982) at the University of Alberta’s Meanook Biological 

Research Station. The detection limits of this analysis are less than 1 pg/L (Stainton et 

al. 1977). Particulate P (PP) concentration was calculated as the difference between TP 

and TDP concentration.

Data Analysis

Inputs

Atmospheric Deposition and Throughfall

For April to October 2005, measured rain gauge values were used for 

precipitation calculations. For November 2004 to March 2005, the following relationship 

between the rain gauge in Cassidy watershed and the Whitecourt A meteorological 

station was used (r2 = 0.66, P < 0.0001, n = 23; Equation 1):
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Rwa = Q.6(A(RE£an) + 3.890 (1)

w here:
Rwet = rainwater depth estimated at Cassidy watershed rain gauge in mm 
RE.can = rainwater depth at Whitecourt A meteorological station in mm

Spruce throughfall, aspen throughfall and atmospheric deposition water volumes 

and P concentrations were compared with a one-way Analysis of Variance (ANOVA). All 

statistical analyses were conducted using Data Desk 6.0 (Data Description, Inc. Ithaca, 

NY). Where differences were found, a Tukey’s honest significant difference (HSD) test 

was performed.

Atmospheric and throughfall P loading rates were calculated for July and August 

from the bulk and dry-only deposition atmospheric and throughfall collectors, using the 

following equation from Shaw et al. (1989) (Equation 2):

w here:
Pa = atmospheric or throughfall P loading rate in mg/m2/d 
[P] = P concentration in sample water in mg/m3 
VSampie = volume of sample in m3 
SAfunnei = surface area of funnel in m2 
D = period of time exposed in days

Mean monthly TP and TDP loading rates were calculated by determining the 

deposition totals for the exposure periods and summing the values. For the months of

S A f a n n e l  X  D

(2)
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July and August, the monthly mean was used as a substitute for periods when sample 

collection did not occur. Throughfall estimations were only made for July and August, 

the period of sample collection. Given that the investigation of P concentrations and 

amounts deposited via throughfall were preliminary, their contributions were not 

included in the annual P budget.

For atmospheric bulk deposition alone, the remaining 10 months of the year, 

when sample collection did not take place, supplemental deposition values from Shaw 

et al. (1989) were used, the only published regional atmospheric study to date,

Groundwater

The P concentrations measured among the groundwater wells in the peatland 

margin, peatland and upland soils were compared using a single factor ANOVA. Where 

differences were found, a Tukey’s HSD test was performed.

Output

Outflow

The outflow rate over the weir was measured from 02 July 2005 to 22 August 

2005 and determined using equations from Grant and Dawson (1997) (Equation 3):

4969H 25 
O  =    O)

3600

w here:
Q = dis
H = height of water flowing over weir in m
Q = discharge in m3/s
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For the remainder of the open-water season (01 April to 31 October), when outflow was 

not monitored, outflow volume was estimated based upon the positive relationship 

between daily wetland outflow (Q) and daily outflow for the Willow watershed, which 

was monitored during the entire open water season (r2 = 0.58, P = 0.006, n = 11; 

Equation 4):

log Qm: =  0.573(log Q y  )  -  7.124 (4)

w here:
Qwet = discharge (m3/s) from wetland
Qw = discharge (m3/s) from the Willow watershed

For months when no outflow water was collected, P concentrations were derived from 

negative relationships for TP (r2 -  0.37, P = 0.02) and TDP concentration (r2 = 0.42, P = 

0.009) (n = 15; Equations 5 and 6) versus wetland discharge, using Microsoft Excel:

log [TPm  ] = -0.217(log Q J  + 2.126 <s>

log [TDPm ] = -O.21O(log0J + 1.761 (6,

w here:
TPwetiand = total P concentration (ng/L) in water leaving wetland 
TDPWetiand = total dissolved P concentration (fig/L) in water leaving wetland 
Qw = flow leaving wetland

Seepage and Evapotranspiration

Shallow seepage from the wetland to the stream channel and evapotranspiration 

(ET) from the wetland soil, water and vegetation surfaces are potentially important 

output routes (Brooks 2003) that were not directly measured in the field.
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To include seepage and ET in the wetland budget, values from a study 

conducted in north-central Minnesota by Verry and Timmons (1982) were used as 

surrogates. The wetland and surrounding micro-watershed areas in that study are 

similar (3.24 ha and 6.48 ha, respectively) to this study. Tree species included black 

spruce in the peatland and trembling aspen and paper birch (Betula papyrifera Marsh.) 

in the uplands. The underlying bedrock is Precambrian Ely Greenstone and is overlain 

by Warba mineral soils in the upland and glacial sediments in the wetland. The annual 

mean temperature was 4°C and the area received an average of 762 mm of 

precipitation each year, of which 75% occurred as rainfall (Verry and Timmons 1982). 

Although mean annual precipitation and temperature were 38 and 5% greater, 

respectively, in the Minnesota study area, this was the most comparable study to use as 

a surrogate for this study.

Budget Calculation

Water and P budgets were completed for the study wetland for the November 

2004 through October 2005 water year by using field values for the months of July and 

August and supplemental data from Verry and Timmons (1982) and Shaw et al. (1989). 

The P budget was conducted as per Likens et al. (1977) (Equations 7 and 8):

W -W . - W  - W  - Wbal input outflow seepage ET (7)

w here:
Wbai = amount of water retained or released by wetland mm
Winput = amount of water entering the wetland through runoff and direct rainfall in mm
Woutfiow = amount of water leaving the wetland through outflow in mm
Wseepage = amount of water leaving the wetland through shallow seepage in mm
Wet = amount of water leaving the wetland through evapotranspiration in mm
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bal input outflow seepage (8)

where:
Pbai = mass of P accumulated or released during the year in g
Pmput = mass of phosphorus accumulated by the wetland through rainfall and runoff in g
Poutflow = mass of phosphorus released by the wetland through outflow in g
Pseepage = mass of phosphorus released by the wetland through shallow seepage in g

A negative Wbai or Pbai value incomeates that the wetland lost water or P (wetland 

as a water or P source to the stream network) and a positive balance indicate that the 

wetland gained water or P (wetland as a water or P sink), during the November 2004 to 

October 2005 water year.

Results

Inputs

Atmospheric Deposition and Throughfall

The annual precipitation received by the 3 ha project wetland in Willow 

watershed was 403 mm. It was estimated that 45 mm of precipitation was deposited as 

rain or snow during the November 2004 through March 2005 period; 127 mm was 

measured directly as rain during July and August 2005. For the remainder of the April- 

October period, it was estimated that 231 mm of rain fell on the wetland surface. In total, 

precipitation represents approximately two thirds of the total water input to the wetland.

During July and August, 13 and 16% of the annual atmospheric bulk TP 

deposition occurred, respectively, based on an annual TP bulk deposition loading rate 

of 19.6 mg/m2/y, determined from these data and data from Shaw et al. (1989) (Table
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3.1). Bulk atmospheric TP contributions to the wetland were 80 g for July, of which 60% 

occurred as wet deposition at a rate of 2.61 mg/m2/mo, and 100 g for August, of which 

84% occurred as wet deposition at a rate of 3.19 mg/m2/mo (Table 3.1). For the months 

of July and August, TDP constituted 44.7 and 58.7% to the TP deposition, respectively. 

The TDP fraction constituted 41.7 ± 5.5% of wet deposition and 62.2± 7.0% of dry-only 

deposition. The TP and TDP mass did not differ detectably in bulk and dry-only 

deposition (P = 0.23 and 0.32, respectively). During one storm on 06 August 2005, a 

large amount of hail was deposited onto the wetland. Bulk atmospheric samples 

collected the following day indicate that 39 g or approximately 6% of the annual 

atmospheric TP load occurred during this event.

Table 3.1. Atmospheric phosphorus contributions for the study wetland in the Willow 
watershed, Swan Hills, Alberta.

Period*
Atmospheric 
loading rate 
(mg P/m2)

P deposited on 
wetland

(g)
November - April 0.8 25

May 7.4 228

June 4.3 133

July 2.6 80

August 3.2 98

September 1.1 34

October 0.2 7

Total Annual 19.6 605

‘ data from periods other than July and August from Shaw et al. (1989).
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Aspen throughfall volume measured during July and August 2005 was similar to 

rainfall volume, and these values exceeded spruce throughfall volume by 100 and 

159%, respectively (P = 0.001) (Table 3.2) (Appendix C).

Table 3.2. Mean July though August water volume, total phosphorus (TP) and total 
dissolved phosphorus (TDP) concentrations and phosphorus mass in bulk atmospheric 
deposition and throughfall from two different canopy types in the study wetland micro­
watershed (July -  August 2005).

Collector
Type

Volume
(mL)

TP concentration
(pg/L)

TDP concentration
(pg/L)

TP mass 
(mg)

TDP mass 
(mg)

Bulk 74.3 165.3 65.7 0.014 0.008

Spruce 28.7 668.4 378.6 0.016 0.008

Aspen 57.6 265.5 165.8 0.012 0.007

The mean bulk TP and TDP concentration in spruce throughfall was 4 and 6 

times higher, respectively, than in rainfall (P = 0.01 and 0.04, respectively). The mean 

bulk TP concentration in aspen throughfall was similar to rainfall, but only 40% of bulk 

TP concentration in spruce throughfall (P = 0.56 and 0.03, respectively), and the bulk 

TDP concentration did not differ from either spruce throughfall or atmospheric 

deposition (P = 0.12 and 0.46, respectively) (Table 3.2.).

The net effect of differences in water volume and P concentration was that the 

total mass of TP and TDP deposited was the same for aspen and spruce throughfall, 

and bulk deposition (P = 0.67 and 0.80, respectively). The concentration and mass of 

dry-only TP and TDP deposition was also similar (TP: P = 0.70 for both; TDP: P = 0.37 

and 0.41, respectively).
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Runoff

The 6.2 ha micro-watershed contributed 105 mm of water and 389 g of P (6.3 

mg/m2) to the 3 ha wetland for the November 2004 to October 2005 water year. The 

micro-watershed contributed approximately 33 and 40%, respectively, of the total 

annual water and P input to the wetland.

Groundwater

The TP concentrations in groundwater in the peatland margin wells and peat 

wells differed from each other and were 8.4 and 3.3 times greater than in upland wells, 

respectively (P < 0.001) (Table 3.3). The TDP concentrations in groundwater were 

similar between the peatland and peatland margin wells, however, they were 4.7 and

3.4 times greater than in the upland wells, respectively. (P = 0.07; P < 0.001).

Table 3.3. Mean (± Standard Error) particulate phosphorus (PP) and total dissolved 
phosphorus (TDP) concentrations for peatland, peatland margin and micro-watershed 
groundwater wells in the study wetland and micro-watershed.

Peatland Peatland margin Upland
PP TDP PP TDP PP TDP

(mq/l) (pg/L) (pg/L) (pg/L) (pg/L) (pg/L)

July 98 ±20 69 ±4 288 ±46 80 ±8 27 ±3 13 ± 4

August 78 ± 17 117 ± 8 370 ± 68 53 ± 15 24 ±2 19 ± 3

As the summer progressed, there was a trend for the proportion of TDP in TP to 

increase in the peatland section of the wetland and in the wells in the upland section of 

the micro-watershed (Figure 3.5). Conversely, the proportion of TDP in TP decreased in 

the peatland margin sections of the wetland during progression of the summer.
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Figure 3.5. Total dissolved phosphorus (TDP):total phosphorus (TP) relationship in 
peatland, peatland margin and upland locations in the study wetland for the months of 
July and August 2005.

The mean pH for the four peatland wells for the duration of the study period was

4.4 ± 0.05.

Output

Outflow

A total of 98 mm of water (Figure 3.6) and 158 g of P were exported from the 

wetland from 01 November 2004 to 31 October 2005). These values represent 84 and 

68%, respectively, of the total outflow of water and P from the wetland. Given that the
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majority of the analyses used to derive water and P exports were based on regression 

relationships, the values are estimates.
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Figure 3.6. The Willow watershed and gauged and predicted wetland outflow (Q).

The export of P during the months of April and May was almost half of the annual 

outflow export (Table 3.4). Also, both TP and TDP concentrations decreased in water as 

the flow leaving the wetland increased. The proportion of TDP in TP ranged from 32 to 

91% among individual samples.
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Table 3.4. Monthly stream outflow export and flow-weighted phosphorus (total 
phosphorus (TP), total dissolved phosphorus (TDP) and particulate phosphorus (PP)) 
concentrations for the study wetland in the Willow watershed.

Concentration (pg/L) Export (g)

Month Water export 
(mm) TP TDP PP TP TDP PP

April 25 52.8 34.6 18.2 36.2 23.8 12.4

May 28 49.1 32.3 16.8 41.0 27.0 14.0

June 10 73.6 47.4 26.2 17.5 11.1 6.4

July 12 71.3 46.4 24.9 18.7 12.8 5.9

August 7 65.4 42.6 22.8 14.4 9.4 5.0

September 10 60.6 39.6 21.0 17.5 11.4 6.1

October 6 67.1 43.7 23.4 12.9 8.4 4.5

Total 98 158 104 54

Seepage

Water loss to shallow seepage from the wetland was estimated at 19% of the 

total volume of water lost to outflow and the mass of P lost to seepage was 

approximated at half of the P lost to outflow (Verry and Timmons 1982). Using these 

proportions in the project area resulted in a loss of 18 mm of water and 74 g of P to 

seepage from the wetland.
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Evapotranspiration

Similar to seepage, ET values from the water and nutrient budget conducted in 

Minnesota were used to estimate ET from the study wetland. In the Verry and Timmons 

(1982) study, ET from the wetland was calculated using the water balance method 

(water input less water output) and estimated at approximately 63% of the inputs 

directly to the wetland (Verry and Timmons 1982). Applying this ET value to the study 

peatland, the wetland lost 255 mm of water, or 41% of the direct inputs to the wetland.

Water Budget

Of the 508 mm that entered the wetland during the water year, it was estimated 

that 255 mm was lost to ET from the wetland surface, 98 mm was lost to surface outflow 

and 18 mm was lost to wetland seepage. The wetland retained 27% of the input water.

Phosphorus Budget

Given the bulk atmospheric P loading rate of 19.6 mg/m2/y, and the runoff P 

loading rate of 6 mg/m2/y, the TP input to the wetland was 994 g for the November 2004 

to October 2005 water year (Table 3.5).

The TP export from the wetland via streamflow and from seepage is estimated at 

158 g and 74 g, respectively, resulting in a total P export of 232 g during the study year. 

The small wetland in the Willow watershed retained 762 g of P, or 77% of the P 

deposited from the atmosphere and through runoff and seepage (Table 3.5).
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Table 3.5. Monthly total phosphorus (TP) inputs and outputs for the study wetland.

Period Inputs (g P) Outputs (g P)

Atmosphere Runoff Total Outflow Seepage* Total

Nov - April 25 - 25 - - -

April** - 31 31 36 17 53

May 228 192 420 41 19 60

June 133 101 234 18 8 26

July 80 30 110 19 9 28

August 98 13 111 14 7 21

September 34 14 48 17 8 25

October 7 8 15 13 6 19

Total 605 389 994 158 74 232
* Yearly total calculated from Verry and Timmons (1982)
** Atmospheric contributions are considered a part of the winter contributions

Discussion

This 3 ha study wetland on the Canadian Boreal Plain was a water and P sink 

during the November 2004 to October 2005 water year. It retained a maximum of 27% 

water and a maximum of 77% of the TP from atmospheric and terrestrial sources.

Inputs

Atmospheric Deposition and Throughfall

For the November 2004 to October 2005 water year, the measurement of 

precipitation for the wetland was 403 mm, 73% of the 25 year average, confirming that 

the study occurred within a dry period. For the months of July and August respectively,
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atmospheric P deposition rates were 23% lower and 6% higher than those reported by 

Shaw et al. (1989) for a forest 170 km east of the study wetland. The annual 

atmospheric P deposition rate of 19.6 mg/m2/y is less than values reported for the 

boreal forest on the Boreal Shield of northwestern Ontario (24 to 53 mg/m2/y) (Schindler 

et al. 1976) and only 53% of rates estimated for the Great Lakes -  St. Lawrence forest 

(Gomolka 1975). Similarly, atmospheric P loading rates in south Florida were 

approximately 31.3 mg/m2/yr, of which 13% was estimated to originate from 

anthropogenic sources (Ahn and James 1999). The western Boreal Plain may be less 

impacted by anthropogenic atmospheric input of P than more eastern and southern 

forests (Shaw et al. 1989).

The proportion of PP in TP in both the bulk and dry-only atmospheric samples 

varied greatly, and only microscopic analysis of the samples would indicate the source 

of the PP. High variability in P concentration in rain water is common, even between 

replicate collectors (Welch and Legault 1986, Shaw et al. 1989, Pollman et al. 2002). 

The weathering of rock, smoke release from forest fires (which can travel several 

thousand kilometres) and release of plant biomass, such as pollen (Newman 1995), can 

all potentially contribute to particulates to the atmosphere, and they all vary spatially and 

with season. In central Ontario, pollen contributions to particulate P in dry-only fallout 

was high in the spring, and was replaced by silica and humic plus organic matter later in 

the growing season (Gomolka 1975).

In both Alberta and north-western Ontario, the general pattern of atmospheric P 

deposition in rainfall is for maxima to occur in the spring, followed by a decrease from 

May to October, and minima to occur in the winter months (Linsey et al.1987, Shaw et
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al. 1989). Without the single storm event on 06 August 2005, which increased the mean 

August deposition rate by 70%, the pattern observed in this study during the 2 month 

data collection period followed the July to August decrease. In Florida, summer P 

deposition rates were also found to be higher than in winter months (Pollman et al. 

2002). It has been suggested that the decrease in P deposition throughout the summer 

could be due to changes in meteorological processes (less rainfall) or in biological 

processes that alter the release of mineral dust (Shaw et al. 1989). In a two-year study 

in different locations in New Jersey, however, there were no seasonal P deposition 

trends (Koelliker et al. 2004). It is possible that anthropogenic deposition confounded 

detection of seasonal patterns in this urban and industrial area.

Because bulk and dry-only sample collections were not collected simultaneously 

(i.e. dry deposition collected only during dry periods), it was not possible to determine 

the contribution made solely by dry or wet deposition. Due to the collection design, any 

dry fallout occurring earlier in the period would have been washed down into the 

collector with any rainfall, incorporating the value of the dry fallout into the bulk total. 

Although the amounts deposited per collection period were similar for both TP and TDP, 

only through using wet-only and dry-only collectors would the true proportion of wet and 

dry deposition be known. In central Alberta, dry deposition contributed approximately 

50% of the yearly total atmospheric P deposition (Shaw et al. 1989).

Aspen throughfall volume exceeded spruce throughfall volume, but the P 

concentration in aspen throughfall was found to be similar to rainfall. The net effect of 

these differences was that the mass of P reaching the ground did not differ for these two 

canopy types, nor did these values differ from bulk atmospheric deposition. The spruce
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canopy retained water, increased the P concentration in throughfall and did not affect 

the mass of P reaching the forest floor, relative to bulk deposition. The aspen canopy 

did not appear to affect the volume nor P concentration in throughfall, therefore also did 

not affect the mass of P reaching the forest floor, relative to bulk deposition. These 

findings contradict studies in central and north-western Ontario that found that black 

spruce reduced the P loading to the forest floor to 75 and 35% of direct atmospheric 

deposition, respectively (Gordon et al. 2000, Morris et al. 2002). Conversely, in north- 

central Minnesota, black spruce increased the amount of P reaching the forest floor by 

1.3 times compared to open areas (Verry and Timmons 1977). Aspen throughfall 

exceeded bulk deposition by 3 times in north-central Minnesota and by 1.4 times in 

Saskatchewan (Verry and Timmons 1977, Huang and Schoenau 1997). It is possible 

that the atmospheric collectors in this study were not tall enough to sample only rain 

water. Although the collectors were taller than the surrounding wetland trees, 

contamination from taller upland trees could have occurred. Also, the variation in P 

concentration among all collector types was high, which combined with a relatively small 

sample size may have prevented detection of treatment effects. A high degree of 

variation among sites was noted by Shaw et al. (1989) and was attributed to greater 

amounts of particulate fallout in sites on land versus sites on the water.

Runoff

Runoff from the micro-watershed surrounding the wetland contributed almost 

40% of the P to the wetland, of which 73% was PP. The P export values were twice the 

greatest values found in central Ontario (9.5 to 29.5 g/ha/y, 1980-1992 mean) (Dillon 

and Molot 1997). Due to the P-rich nature of the soils of the micro-watershed (Cooke
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and Prepas 1998), the runoff P contribution results could have been elevated. Water 

pulses during storm events could have mobilized large amounts of particulates from the 

forest floor or stream channel, although the slope of the micro-watershed is gentle 

(Munn and Prepas 1986, Prepas et al. 2003). Low infiltration rates in the Gray Luvisolic 

soils that dominate the study area (Whitson et al. 2003) could have enhanced overland 

flow and erosion.

Groundwater

For the most part, the proportion of TDP in TP increased in groundwater as the 

sampling period progressed. Because the wetland received less rain in July and August 

than it did earlier in the season, the wetland water level decreased. In a boreal bog in 

Alberta, water levels were correlated negatively with TDP concentration, which was 

attributed to concentration of TDP when groundwater inputs decreased during dry 

periods (Thormann et al. 1998).

During the sampling period, the relative proportion of TDP increased in the 

peatland and micro-watershed groundwater, but decreased in peatland margin 

groundwater. This may be attributable to low water levels in the peatland margin areas 

of the wetland that made it difficult to exclude particulates from samples. Another 

possible cause could be that towards the end of the sampling season, on the two 

occasions when the TDP values were lower, rain had fallen within two days prior to 

sampling. One such event is the 06 August 2005 hail storm, during which increased P 

concentrations were noted. Since the peatland margin wells were shallower than the 

peatland and upland wells, it is possible that the new precipitation contribution could 

have had a stronger effect on the peatland margin TDP concentration.
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Output

Outflow

The TP concentration in the outflow from the peatland complex decreased with 

increasing discharge rate, which is attributable to dilution and also largely attributable to 

decreases in the TDP fraction. As the summer progresses, normal daily temperatures 

decrease from approximately 15.5 to 14.5 °C between July and August (Environment 

Canada 2006) causing a decrease in decomposition rates in wetlands (Thormann et al. 

2001), thus slowing the release of P bound to organic material. Furthermore, the limited 

oxygen diffusion into the peat causes anoxic conditions, minimizing decomposition as a 

result of reducing conditions (Clymo 1992). Dissolved P that was flushed from the 

wetland with rainfall is not replaced by decomposition within the wetland under these 

relatively cool, reducing and acidic conditions.

A second factor that could account for the negative association between TDP 

concentrations in wetland outflow and discharge rate is the relative increase in PP 

concentration with increasing discharge rate. In streams draining Boreal Plain 

watersheds, P concentration increased with discharge rate, a phenomenon that was 

attributed to PP loading caused by erosion of P-rich watershed soils and channel banks 

(Prepas et al. 2003). This pattern has also been noted in streams in the Hubbard Brook 

where particulate concentrations increased exponentially as flow increased (Hobbie and 

Likens 1973). When water enters the peatland, the slowing in velocity allows P-rich 

particulates to settle out. During high flow events, some of this PP may be mobilized 

and carried to the wetland outflow.
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Seepage

Seepage P losses from the wetland were estimated at 74 g, approximately 7% of 

the amount deposited on the wetland, indicating that water loss to seepage was only 

half of the results found in north-central Minnesota (Verry and Timmons 1982). Given 

that nearly every wetland differs, based on physical, chemical and biological attributes, 

this seepage estimate is simply a guideline. In a forested watershed in central New 

England, water and P loss to seepage was deemed negligible, while in a wetland 

nutrient budget in central Ontario, loss to seepage was simply addressed as a balance 

to water and P inputs from seepage (Devito et al. 1989, Hornbeck et al. 1997). That 

water pathways through the wetland include water exchanges with upland systems 

(Branfireun and Roulet 1998) is challenged by statements that wetland recharge by 

groundwater or to groundwater is limited (Brooks et al. 2003). Although seepage was 

not directly measured in this study, and although loss of P to seepage is estimated as 

being lower than other investigations, seepage to groundwater is most likely occurring 

and worthy of further investigation.

E vapotranspiration

The wetland surface released 41 % of the water it received through rainfall and 

runoff, to ET. Conversely, it can be expressed that total annual precipitation exceeded 

ET by 1.58 times. In a bog in southeastern Ontario, it was found that mean total annual 

precipitation exceeded ET from the wetland surface by 1.55 to 1.94 times (Lafleur et al. 

2005). Although the amount of water lost to ET was estimated for this study, the amount 

is within the range found by others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

Water Budget

The results suggest that the wetland retained 27% of the water it received 

through precipitation and runoff during the November 2004 to October 2005 water year. 

Since seepage and ET were not measured in this study and because of the difference 

in annual average precipitation and annual average temperature between the two study 

areas, the proportions from the investigation in Minnesota may not translate exactly to 

this study. Also, because of the in situ investigation of seepage, the P and water budget 

results obtained by Verry and Timmons (1982) may be more representative of typical 

peatland water retention.

Phosphorus Budget

The relationships between precipitation chemistry and outflow indicates that 

transformation of P occurred while the rainwater resided in the wetland. At times TDP 

concentrations in precipitation accounted for as little as 20% of TP, and as much as 

60% of the TP in outflow, supporting the concept of piston flow. Piston flow, or 

translatory flow, occurs when the resident water in a wetland is replaced by precipitation 

and/or runoff, and is therefore forced out via the outflow (Hewlett and Hibbert 1967). In 

subarctic peatlands, rainwater chemistry was only similar to outflow water chemistry 

when the water table was at the surface (McEachern et al. 2006). When the water table 

is not at or near the surface, rainwater comes in contact with soils and organics for a 

longer period of time, altering the water chemistry. Peatlands have also been shown to 

demonstrate quick response times for spring runoff when the water table is above the 

storage capacity elevation of the basin, while during drier seasons they can become 

partially disconnected from nearby hydrological systems (Glenn and Woo 1997, Quinton
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and Roulet 1998). Furthermore, the path of water through in wetlands is complex, and 

does not necessarily follow a horizontal path, but can move vertically or as sheetflow 

and channel flow on the surface (Taylor 1997). The response to a single rain event can 

be extremely varied (McKillop et al. 1999) among wetlands and within a given wetland.

The study wetland in the Willow watershed retained 77% of the P in atmospheric 

deposition and runoff, 350% greater than retention in a Boreal Shield rich fen (Devito et 

al. 1989), and 26% greater than the three year mean for a peatland in north-central 

Minnesota (Verry and Timmons 1982). The retention values obtained by Devito et al. 

(1989), however, were lower than expected. Alternately, another Boreal Shield micro­

watershed (12.4 ha, wetland comprising 30% of the basin) retained 17% more P than 

the study wetland (Bayley et al. 1992).

If 762 g of P was retained by the wetland, how and where was it retained? This 

question cannot be immediately answered because of the limited data presented here. 

However, several processes occur within wetlands that are known to reduce the amount 

of P in groundwater. Firstly, aquatic plants and microbial activity remove P from wetland 

water (Richardson 1985). This removal of P by wetland plants is significant enough that 

emergent and submergent plants are being used in constructed wetlands to remove P 

and other nutrients from highly P enriched water (White et al. 2005). Furthermore, 

Chapin et al. (1987) found that wetland mosses had a greater ability to absorb P than 

the fine roots of black spruce and that the overstory is actually competing with the 

underlying mosses for nutrients, like P. Trees in treed and forested wetlands, however, 

provide longer term storage for P than other vegetation (Reddy and DeBrusk 1987). 

Understandably, any P retained by plant matter or microbial biomass is released upon
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the death of that plant via decomposition, and made available to other processes, most 

likely adsorption to soil particles (Reddy et al. 1999). Plants, therefore, provide only 

temporary P storage (Richardson 1985). Secondly, P adsorbs to elements such as 

aluminum, causing a precipitate to develop, and for this reason the addition of alum to 

lakes has been used to internally reduce the P concentration in lake water columns 

(Hansen et al. 2003). The success of removing P from watercourses by providing it with 

an adsorptive surface has furthered the development of a lightweight aggregate which 

causes the precipitation of calcium, aluminum and iron phosphates, depending on the 

pH (Jenssen and Krogstad 2003). Lastly, P adsorbs to sediments and organic matter, 

which settle out and become compressed peat (catotelm). Because of the compression, 

any water flowing through the wetland will flow above these layers (within the acrotelm), 

meaning that any nutrients stored within the catotelm become essentially unavailable 

(Brooks et al. 2003). Wetland soils provide a better and longer term storage location 

compared to P storage in plant biomass (Richardson and Marshall 1986, Walbridge and 

Struthers 1993).

There has been much discussion regarding how wetlands can be used reduce 

the amount of nutrients in surface waters. It would seem that naturally, wetlands provide 

such a service, but only to a point. Wetlands have a finite ability to retain nutrients such 

as P. At a point when a wetland becomes saturated, it then becomes a source of 

nutrients to connected water bodies (Richardson 1985, Brooks et al. 2003). In Florida, 

top sediments and plants were removed from treatments wetlands to ensure efficient P 

removal (Wang et al. 2005). Without this intervention the carrying capacity appeared to 

be reached, meaning that the wetland was physically, chemically and biologically
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unable to store any more P due to the increased P inputs. For this reason, the 

relationship between precipitation and wetland outflow should be investigated under 

natural conditions over lengthy periods of time. While a wetland may retain P now, 

through physical, chemical and biological means, it may possibly be approaching its 

carrying capacity and may release more P than it receives in the near future. This 

transition could go unnoticed and a large flush of P and other nutrients could enter 

watercourses, causing eutrophication. This study in particular, was conducted during a 

dry year within a drought, relative to the long term mean. Although year to year variation 

is expected, this prolonged dry period most likely influenced the P and water retention of 

peatlands, and therefore lead to non-indicative results.

It has been documented that the P export in the FORWARD project watersheds 

is positively related to peatland cover (Prepas et al. 2006); however, my results differ 

from these findings. In this study, 77% of the P input into the wetland was retained; the 

wetland retained more P relative to the surrounding landscape. A possible explanation 

for the differing results could be that the study wetland was a bog, while it has been 

reported that fens dominate in the FORWARD project area (Prepas et al. 2006). Bogs in 

north-central Minnesota are nutrient sinks (Verry and Timmons 1982). In the 

Netherlands, bogs were found to mineralize P much more quickly than fens, indicating 

that there is less P in the water column to export. Furthermore, because of the reduced 

decomposition rates in bogs, any P sequestered through plant uptake will be retained 

for a longer period of time (Verhoeven et al. 1990).
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Future Work

Because this work was a pilot study, the sample design was simple. Certainly 

compounded errors could have occurred due to the reliance on data from other sources, 

not related to this study. Although values and relationships were used from other 

sources (e.g., Verry and Timmons 1982 and Shaw et al. 1989), the results remain 

unexceptional when compared to other wetland P and water budgets. It is important that 

long term wetland water and nutrient studies be conducted in order to understand 

wetland water and P cycling. Prolonged wet or dry periods will undoubtedly skew 

results, and only by observing long term trends will the true relationships be understood. 

In this study, several processes were not examined. Firstly, stemflow was not 

investigated. Gordon et al. (2000) note that although the volume of stemflow was only 

5% of the volume for throughfall, it was still an important part of the nutrient cycle. 

Secondly, ET is a very important route of water loss, and the process should be 

considered in wetland water budgets. In Minnesota, 65% of all water inputs were lost to 

ET, a value which is very close to potential ET estimates (Verry and Timmons 1982). 

Thirdly, sublimation of snow was not investigated during winter months. In central 

Saskatchewan, loss of water due to the sublimation of snow captured by spruce 

canopies was up to 40% of the annual accumulation (Pomeroy et al. 1998), indicating 

that the input volumes estimated for this study may be much greater than in actuality. 

Lastly, although seepage values from other works have been cited as replacement for 

actual experimentation, field investigation is superior and this likely source of water loss 

from the wetland should be monitored. A lack of investigation of these water loss and 

water cycling processes are causing inaccuracies in the budgets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

A change in atmospheric deposition collection methods could also be 

investigated seeing as high variation between collectors has been observed in this 

project as well as in other investigations (Welch and Legault 1986, Shaw et al. 1989). It 

has also been proposed that local P sources contribute more to atmospheric P loading 

than actual atmospheric sources (Tsukuda et al. 2004) and that these sources should 

be considered as sources of contamination (Ahn and James 1999).

P speciation was also not investigated during this study. Future work could 

include studies to estimate P fractionations (e.g., soluble, insoluble, organic, inorganic) 

in the wetland. These investigations would be beneficial as the type and origins of the P 

would lead to a greater understanding of wetland P cycling.
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CHAPTER IV: GENERAL CONCLUSIONS

Identifying wetlands on the landscape is a crucial step in determining their 

relationship to nearby waterbodies and local hydrology. By creating wetland 

identification systems with improved accuracy, such as the Wetland Inventory and 

Identification Tool (WIIT), wetlands can be linked with small scale landscape modeling 

tools. By pairing the WIIT with knowledge regarding wetland impacts on streamwater 

quantity and quality, planning for landscape changes has improved possibilities.

A wetland water and phosphorus budget was constructed to improve 

understanding of wetland functioning on the nutrient-rich and water-short Boreal Plain 

and to contribute to hydrologic modeling. Although my wetland budget results are 

preliminary, a 3 ha wetland in the Canadian Boreal Plain retained 762 g of P inputs for 

the time period of one year. This wetland retention of P is important in gaining 

knowledge on eutrophication management. The results from my wetland budget will be 

used directly, and as input information, to further studies linking wetlands, and 

peatlands in particular, to stream water quality on the Canadian Boreal Plain. Follow-up 

from my study includes construction of a nitrogen budget for the 16 km2 Willow 

watershed (including the study wetland).

As suggested by Environment Canada (2004), most Canadians associate the 

word “wetland” with urbanized wetlands that function as stormwater retention pools. 

Given that global warming will impact all surface waters, including peatlands, which 

comprise 85% of all wetlands in Canada, it is time to focus more attention and 

resources on these vast boreal peatlands.
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TABLE A.1. WIIT and AWI abilities to identify soil types within watersheds
Observed Expected* Obs-Exp (Obs-Exp)2 (Obs-Exp)2/Exp

WIIT AWI WIIT AWI WIIT AWI WIIT AWI WIIT AWI
Organic 35 13 39 9 -4 4 14 14 0.36 1.52
Gleysolic 27 3 24 6 3 -3 8 8 0.31 1.34
Other 5 0 4 1 1 -1 1 1 0.23 0.96

4.73

TABLE A.2. WIIT and AWI abilities to identify soil types in Millar Western FMA

Observed Expected* Obs-Exp (Obs-Exp)2 (Obs-Exp)z/Exp
WIIT AWI WIIT AWI WIIT AWI WIIT AWI WIIT AWI

Organic 36 18 38 16 -2 2 3 3 0.07 0.16
Gleysolic 4 1 4 2 0.5 -0.5 0.3 0.3 0.08 0.18
Other 6 1 5 2 1 -1 1 1 0.26 0.59

1.33
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TABLE A.3. WIIT and AWI abilities to identify polygon areas in Millar Western FMA

Observed Expected* Obs-Exp (Obs-Exp)2 (Obs-Exp)2/Exp
WIIT AWI WIIT AWI WIIT AWI WIIT AWI WIIT AWI

< 1 ha 436 99 386 149 50 i cn o 2482 2482 6.43 16.68
1-30 ha 3047 1205 3069 1183 -22 22 494 494 0.16 0.42
31-60 ha 75 49 90 35 -15 15 211 211 2.35 6.10
61-90 ha 21 19 29 11 -8 8 62 62 2.15 5.57
91 ha + 15 13 20 8 -5 5 27 27 1.34 3.49

44.7

TABLE A.4. WIIT and AWI abilities to identify tree heights in Millar Western FMA

Observed Expected* Obs-Exp (Obs-Exp)2 (Obs-Exp)2/Exp
WIIT AWI WIIT AWI WIIT AWI WIIT AWI WIIT AWI

No trees 377 187 407 157 -30 30 907 907 2.23 5.78
1-5 m 1012 498 1090 420 -78 78 6078 6078 5.58 14.47
6-10 m 912 371 926 357 -14 14 199 199 0.21 0.56
11 m + 1293 329 1171 451 122 -122 14930 14930 12.75 33.09

74.6
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REGRESSION ANALYSIS
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TABLE B.1. Deriving precipitation values for wetland using Environment Canada Data 
(Equation 2)

Regression Statistics
R Square 0.655772
Standard Error 6.982061

Observations 23

ANOVA
df SS MS F Significance F

Regression 1 1950.265 1950.265 40.0061 0.000003
Residual 21 1023.733 48.74918
Total 22 2973.997

TABLE B.2. Deriving wetland outflow using Willow outflow prior to log transformation 
(Equation 4).

Regression Statistics
R Square 0.584581
Standard Error 0.836712  
Observations 11

ANOVA
df SS MS F Significance F

Regression 1 8.866519 8.866519 12.66487 0.006131
Residual 9 6.300789 0.700088
Total 10 15.16731
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TABLE B.3. Deriving TP concentration leaving wetland from wetland outflow rate 
(Equation 5).

Regression Statistics
R Square 0.37
Standard Error 0.307999  
Observations 15

ANOVA
df SS MS F Significance F

Regression 1 0.733861 0.733861 7.736056 0.016
Residual 13 1.233212 0.094862
Total 14 1.967074

TABLE B.4. Deriving TP concentration leaving wetland from wetland outflow rate 
(Equation 6).

Regression Statistics
R Square 0.42
Standard Error 0.269016  
Observations 15

ANOVA
df SS MS F Significance F

Regression 1 0.689398 0.689398 9.526090 0.009
Residual 13 0.940803 0.072369
Total 14 1.630201
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TABLE C.1. Volume of water reaching the ground under open, coniferous and 
deciduous canopies.
ANOVA

Groups Count Average
Open 4 74.34
Coniferous 5 28.73
Deciduous 2 57.58

Source SS df MS F  P-value
Between Groups 4743.43 2 2371.72 17.864 0.0011
Within Groups 1062.12 8 132.765

Total 5805.55 10

TUKEY

Groups Difference
Standard

Error Probability
Deciduous -  Coniferous 28.8537 9.64 0.01725
Open -  Coniferous 45.6104 7.729 0.00036
Open -  Deciduous 16.7566 9.979 0.13162
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TABLE C.2. Wet TP concentrations deposited beneath deciduous, coniferous and open
canopies.

ANOVA

Groups Count Average
Open 4 165.3
Coniferous 5 668.4
Deciduous 2 265.5

Source SS d f MS F P-value
Between Groups 615065 2 307532 8.5215 0.0104
Within Groups 288710 8 36088.8

Total 903775 10

TUKEY

Groups Difference
Standard

Error Probability
Deciduous -  Coniferous -402.915 158.9 0.03498
Open -  Coniferous -503.092 127.4 0.00424
Open -  Deciduous -100.177 164.5 0.55948

TABLE C.3. Wet TDP concentrations deposited beneath deciduous, coniferous and 
open canopies.

ANOVA

Groups Count Average
Open 4 65.65
Coniferous 5 378.6
Deciduous 2 165.8

Source SS df MS F P-value
Between Groups 226506 2 113253 5.1892 0.0359
Within Groups 174599 8 21824.9

Total 401105 10

TUKEY

Groups Difference
Standard

Error Probability
Deciduous -  Coniferous -212.824 123.6 0.12339
Open -  Coniferous -312.927 99.1 0.01344
Open -  Deciduous -100.102 127.9 0.45650
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TABLE C.4. Total amount of wet TP deposited beneath deciduous, coniferous and
open canopies.

ANOVA

Groups Count Average
Open 4 13.94
Coniferous 5 15.58
Deciduous 2 11.85

Source SS d f MS F P-value
Between Groups 20.6505 2 10.3253 0.42714 0.6664
Within Groups 193.386 8 24.1732

Total 214.036 10

TABLE C.5. Total amount of wet TDP deposited beneath deciduous, coniferous and 
open canopies.

ANOVA

Groups Count Average
Open 4 8.514
Coniferous 5 8.149
Deciduous 2 6.907

Source SS df MS F P-value
Between Groups 3.52412 2 1.76206 0.23245 0.7978
Within Groups 60.6419 8 7.58204

Total 64.1661 10
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TABLE C.6. Dry TP concentrations deposited beneath deciduous, coniferous and open
canopies.

ANOVA

Groups Count Average
Open 4 37.5
Coniferous 5 41.72
Deciduous 2 39.12

Source SS df MS F  P-value
Between Groups 40.3596 2 20.1798 0.37545 0.6985
Within Groups 429.989 8 53.7487

Total 470.349 10

TABLE C.7. Dry TDP concentrations deposited beneath deciduous, coniferous and 
open canopies.

ANOVA

Groups Count Average
Open 4 22.11
Coniferous 5 26.25
Deciduous 2 28.05

Source SS D f MS F  P-value
Between Groups 59.6313 2 29.8157 1.1241 0.3713
Within Groups 212.2 8 26.525

Total 271.831 10
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TABLE C.8. Total amount of dry TP deposited beneath deciduous, coniferous and open
canopies.

ANOVA

Groups Count Average
Open 4 11.25
Coniferous 5 12.51
Deciduous 2 11.74

Source SS d f MS F P-value
Between Groups 3.63236 2 1.81618 0.37545 0.6985
Within Groups 38.699 8 4.83738

Total 42.3314 10

TABLE C.9. Total amount of dry TDP deposited beneath deciduous, coniferous and 
open canopies.

ANOVA

Groups Count Average
Open 4 6.634
Coniferous 5 7.721
Deciduous 2 8.415

Source SS d f MS F P-value
Between Groups 4.88862 2 2.44431 0.98533 0.4144
Within Groups 19.8456 8 2.4807

Total 24.7343 10
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TABLE C.10. Difference in concentration of TP in wet and dry deposition in open 
collectors.

ANOVA

Groups Count Average
W et 4 13.93
Dry 4 11.25

Source SS d f MS F P-value
Between Groups 14.4522 2 14.4521 1.75949 0.2329
Within Groups 49.2831 8 8.21386

Total 63.7353 10

TABLE C.11. Difference in concentration of TDP in wet and dry deposition in open 
collectors.

ANOVA

Groups Count Average
Wet 4 8.514
Dry 4 6.635

Source SS d f MS F P-value
Between Groups 7.06516 2 7.06516 1.15978 0.3229
Within Groups 36.5508 8 6.09180

Total 10
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TABLE C.12. TP concentrations in peatland, peatland margin and upland wells.

ANOVA

Groups Count Average
Peatland 5 179.3
Peatland margin 5 389.1
Upland 2 41.53

Source SS d f MS F  P-value
Between Groups 515563 2 237782 82.713 <0.0001
Within Groups 71680.9 23 3116.56

Total 587244 25

TUKEY

Groups Difference
Standard

Error Probability
Peatland margin -  Peatland 209.844 27.13 « 0 .0 0 0 1
Upland -  Peatland -137.722 26.32 « 0 .0 0 0 1
Upland -  Peatland Margin -347.567 27.13 « 0 .0 0 0 1

TABLE C.13. TDP concentrations in peatland, peatland margin and upland wells.

ANOVA

Groups Count Average
Peatland 5 90.22
Peatland margin 5 70.18
Upland 2 15.83

Source SS d f MS F P-value
Between Groups 26530.1 2 88382.8 189.01 <0.0001
Within Groups 10755.2 23 13265.1

Total 37285.3 25

TUKEY

Groups Difference
Standard

Error Probability
Peatland margin -  Peatland -20.0472 10.51 0.068982
Upland -  Peatland -74.3889 10.19 « 0 .0 0 0 1
Upland -  Peatland Margin -54.3417 10.51 « 0 .0 0 0 1
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