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Abstract

Let {X, X,; n > 1} be a sequence of i.i.d. random variables with com-
mon distribution function F(z). For each positive integer n, let X, <
Xop < --- £ X, be the order statistics of X;, X5, -+, X,,. Let H(-) be
a real Borel-measurable function defined on R such that E|H(X)| < oo
and let J(-) be a Lipschitz function of order one defined on [0, 1]. Write
p=u(F,J,H) =E(JU)H(F~(U))) and La(F,J, H) =237, J (£)
H(X;.,), n>1, where U is a random variable with uniform (0,1) dis-
tribution and F(t) = inf{z; F(z) > t}, 0 < ¢t < 1. In this thesis,
the Chung-Smirnov LIL for empirical processes and the Einmahl-Li LIL
for partial sums of i.i.d. random variables without variance are used
to establish necessary and sufficient conditions for having with proba-
bility 1: 0 < limsup,_,., v/n/@(n) [La(F, J, H) — u| < oo, where (-
is from a suitable subclass of the positive, nondecreasing, and slowly
varying functions defined on [0, o). The almost sure value of the lim-
sup is identified under suitable conditions. Specializing our result to
o(z) = 2(loglogz)?,p > 1 and to p(z) = 2(logz)",r > 0, we obtain

an analog of the Hartman-Wintner-Strassen LIL for L-statistics in the

1l
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infinite variance case. A stability result for L-statistics in the infinite

variance case is also obtained.
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Chapter 1

Historical Review

In this thesis we study the strong limit theorems for linear combina-
tions of order statistics (in short, L—statistics). The asymptotic theory
of order statistics is concerned with the distribution of X,.,, suitably
standardized, as n approaches co. We usually assume that X,., is the
rth order statistic in a random sample of n from some population with
cdf (cumulative distribution function) F(z). If r/n — p as n — oo,
fundamentally different results are obtained according as (a) 0 < p < 1
(central or quantile case) or (b) 7 or n — r is held fixed (extreme case),
or (c) p=0or 1, with r or n — r being a function of n (intermediate
case).

The class of L—statistics appears to have been first studied in 1920
and such statistics have received growing attention since the 1960s since
some of the robust estimators of location (e.g., the trimmed and Win-

sorized means) are examples of such statistics. Another L—statistic,
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CHAPTER 1. HISTORICAL REVIEW 2

placing more weight on the extremes, is the Gini (1912) mean differ-
ence.

The asymptotic normality of L, = 237 cinH(Xin), n > 1,
requires suitable conditions on both the ¢;, and the form of the cdf
F(z). Some authors discussed the ¢;,, and weak on F(z), others the
reverse. Lots of the notable contributions in this area appeared from the
1960s till mid-1980s. such as Chernoff et al. (1967), van Zwet (1983),
Chernoff and Savage (1958), Chemoff et al. (1967), Shorack (1969),
Stigler (1969, 1974), Héjek’s (1968), Sen (1978), Boos (1979), Serfling
(1980), Shorack and Wellner (1986) and Helmers (1977, 1980, 1982).

Some authors have established rates of convergence to normal-
ity. Beginning with Rosenkrantz and O’Reilly (1972), Bjerve (1977)
obtained a Berry-Esséen type bound of order n!/? for trimmed linear
combinations of order statistics using the representation of Chernoff et
al. (1967). Helmers (1977, 1982) provided a Berry-Esséen-type bound
of order n'/? between ®(x), the standard normal cdf, and the cdf of
L, L0, and Lz. Similar results for unbounded weight functions was ob-
tained by Helmers and Huskova (1984). Singh (1981) obtained some
nonuniform rates of convergence to normality that are helpful in the
study of moment convergence. Helmers et al. (1990) established Berry-
Esséen-type results for L—statistics based on generalized order statis-
tics, as defined by Choudhury and Serfling (1988). Putt and Chinchilli

(1999) corrected their expression for the variance of the limiting normal
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CHAPTER 1. HISTORICAL REVIEW 3

distribution. See also Putt and Chinchilli (2002).

Weiss (1969b), Shorack (1973), Stigler (1974), and Ruymgaart and
van Zuijlen (1978) discussed the asymptotic normality of L—statistics
obtained from independent nonidentically distributed rv’s, and Xiang
(1994) obtained Berry-Esséen bounds. Mehra and Rao (1975), Gast-
wirth and Rubin (1975), Sotres and Ghosh (1979), and Singh (1983) es-
tablished the asymptotic normality under weak dependence. Puri and
Ruymgaart (1993) established asymptotic normality for a large class
of time series data that includes dependent nonidentically distributed
sequences of variates. Shao (1994) obtained several limit results for
L—statistics and sample quantiles for the survey data arising from a
stratified multistage sampling design.

The asymptotic joint distribution of L—statistics from multivariate
populations has been studied by Siddiqui and Butler (1969). Numerous

references on L—statistics were listed in H.A. David et al. (2003).
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Chapter 2

Purpose of This Thesis

Let {X,X,; n > 1} be a sequence of independent and identically
distributed (i.i.d.) real random variables with distribution function
F(z) = P(X <z), z € R = (—0,00) and let {U,U,; n > 1} be a
sequence of i.i.d. random variables with the uniform (0, 1) distribution.
For each positive integer n, let X, < X5, < --- < X,,., be the order
statistics of Xi, Xa, - -, X,,. Let H(-) be a real-valued Borel-measurable
function defined on R. A linear combination of order statistics (in short,

an L-statistic) is a statistic of the form

1<
ILn = —'I’_L- ; Ci,nH(Xi:n)

where the weights ¢;,,1 < 7 < n are real numbers and n > 1. Define

Lt = log, max{e,t} and LLt = L(Lt) for t € R. The classical Hartman-

Wintner-Strassen law of the iterated logarithm (LIL) states that
limsup(liminf)w =(—) o almost surely (a.s.) (2.1)

n—oo  H00 V2nLLn
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CHAPTER 2. PURPOSE OF THIS THESIS ~ 5

if and only if
EH(X)=0 and o?=EH*(X) < oo. (2.2)

Moreover, if (2.2) holds, then

C ({i H(X))/V2nLLn; n > 1}) = [~0,0] as., (2.3)

where C ({z,; n > 1}) stands for the cluster set (i.e., the set of limit
points) of the numerical sequence {z,; n > 1}. See Hartman and
Wintner (1941) for the “if” part and Strassen (1966) for the converse.
The conclusion (2.3) is due to Strassen (1964).

Alternative proofs of the Hartman-Wintner (1941) LIL were discov-
ered by Strassen (1964), Heyde (1969), Egorov (1971), Teicher (1974),
Csorgd and Révész (1981, p. 119), and de Acosta (1983). Substantially
simpler proofs of Strassen’s (1966) converse were obtained by Feller
(1968), Heyde (1968), and Steiger and Zaremba (1972). Martikainen
(1980), Rosalsky (1980), and Pruitt (1981) simultaneously and indepen-
dently obtained a “one-sided” converse to the Hartman-Wintner (1941)
LIL. Specifically, they proved that each part of (2.1) individually implies
(2.2). |

Many authors, including Helmers (1977), Helmers, Janssen, and Ser-
fling (1988), Li, Rao, and Tomkins (2001), Mason (1982), Sen (1978),
van Zwet (1980), and Wellner (1977a,b), have investigated the strong
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CHAPTER 2. PURPOSE OF THIS THESIS 6

limiting behavior for a class of L-statistics of the form
]L(FJH)~—ZJ( )H(Xm) n>1 (2.4)

where J(-) is a real-valued function, often called a score function, de-
fined on [0,1]. Helmers (1977), Mason (1982), Sen (1978), van Zwet
(1980), and Wellner (1977a) have studied the strong law of large num-
bers (SLLN) for L,, n > 1 and have shown that under a variety of
conditions on J(-) and H(-)

lim L,(Fy,J, H) = lim — ZJ( ) Uin) = /01 J(t)H(t)dt (finite) a.s

nN-—00 n—oo0 11 1
G

where Fp is the distribution function of the random variable U and
U;n, 1 <1 < n, are the order statistics of the U;, 1 <i<n, n> 1.
If J(-) is a Lipschitz function of order one defined on [0, 1] and

E|H(X)| < oo, (2.5)

let us write

7 = JOHF-(), 25)
Y =—Z+p~ [y (IU < t) —t) JOHF(1))dt, '
where F(t) is the quantile function
F7(t) =inf{s; F(s) >t}, 0<t<1,
and
u=w(F,J,H) =EZ = E (JU)HE (U))). (2.7)
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CHAPTER 2. PURPOSE OF THIS THESIS 7

Then u exists and is finite and ¥ and Z are both well-defined random

variables under (2.5). Moreover,
oy = Var(Y) = EY?. (2.8)

To see this, note that (2.8) is equivalent to

EY = -E ( / : (U <t) - 1) J’(t)H(F*‘(t))dt) 0 (2.9)

Since E (I(U <t) —t) = 0, (2.9) follows from an application of Fubini’s

theorem, subject to the existence of the integral

1 1
I= / T (&) H(F=(£))dt = / H(F(£))dJ(t) = E (J(U)H(F-(U))).
0 0

But the score function J(-) has an almost everywhere (with respect to
Lebesgue measure) bounded derivative J'(-). From this fact and the
equality E|H(X)| = E|H(G(U))| < oo, it follows that I exists and is

finite; clearly, 012, < oo if and only if
EZ? < 0. (2.10)

Recall that a sequence of random variables {£,; n > 1} is said to be

bounded in probability if

lim sup P (|§,| > z) = 0.

T—00 n>1

Combining the Chung-Smirnov LIL (see Chung (1949) and Smirnov
(1944)) and the Finkelstein functional LIL (see Finkelstein (1971)) for
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CHAPTER 2. PURPOSE OF THIS THESIS 8

empirical processes, Li, Rao, and Tomkins (2001, Theorem 2.1) proved

that the following three statements are equivalent:

(2.10) holds;

limsup/n/(2LLn) |L,(F,J, H) — u] < cc as,;
n—00

{vn(L.(F,J,H) —p); n>1} isbounded in probability.

Moreover, if any of the three statements above holds, then

lim sup(liﬂioglf)\/n/(QLLn) (L,(F,J,H) — p) :(i) oy as., (2.11)

n—00

C ({ n/(2LLn) (L, (F,J,H) — p); n > 1}) = [~oy, oy] as,

(2.12)

and
Vv (Ln(F, J,H) — 1) = N(0, 0%), (2.13)
where “~%+” denotes convergence in distribution. This powerful result

contains many previous results obtained under more restrictive condi-
tions, although it is still not the last word as the authors mention in an
open problem (to weaken the conditions on J(-)). The authors illustrate
with examples that their result can handle some cases that previous re-
sults could not; for example, the Gini mean-difference statistic.

The main purpose of the thesis is to find necessary and sufficient
conditions for

0 < limsup y/n/o(n) |Ln(F,J,H) — p] < oo a.s.,

n—oo0
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CHAPTER 2. PURPOSE OF THIS THESIS 9

where (-) is from a suitable subclass of the positive, nondecreasing,
and slowly varying functions. But we also treat the case where the
limit is 0 a.s. We emphasize that we are not assuming that EZ? < oo
where Z is as in (2.6).

The plan of this thesis is as follows. Our main results, Theorems
3.1 and 3.2 and their proof and corollaries are presented in Chapter 3.
The proof is obtained via a nice application of the Chung-Smirnov LIL
(see Chung (1949) and Smirnov (1944)) for empirical processes and
the Einmahl-Li LIL (see Einmahl and Li (2005)) for partial sums of
i.i.d. random variables without variance. In Chapter 4, we provide an

interesting example to illustrate our results.
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Chapter 3

Main Results

Let H be the set of continuous, nondecreasing functions p(-) : [0, co) —
(0, 00), which are slowly varying at infinity. By monotonicity, the
slow variation of o(-) is equivalent to lim; . (et)/p(t) = 1. Very
often one can even show that lim; .., @(tf(t))/p(t) = 1, where f(-)
is a nondecreasing function such that lim; , f(t) = co. Set f,(t) =
exp((Lt)"),0 < 7 < 1. Given 0 < ¢ < 1, let H, C H the class of

functions ¢(-) such that

e ()

1, 0<7<1—q

and set H; = H.

We consider g to be a measure for how slow is the slow variation.
So functions in Hy are the “slowest” and it will turn out that this
class is particulary interesting for LIL type results (see Theorem 3.2

below). Examples of functions in Hy are ¢(t) = (Lt)", r > 0 and
p(t) = (LLt)*, p > 0.

10
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CHAPTER 3. MAIN RESULTS 11

The following Theorem 3.1 gives LIL type results when A > 0 and
stability results when A = 0 with respect to a large class of normalizing

sequences, without assuming that EZ? < oo, where Z is defined in

(2.6).

THEOREM 3.1. Let {X,X,; n > 1} be a sequence of i.i.d. random
variables with distribution function F(z) = P(X < z), x € R and let
H(-) be a real-valued Borel-measurable function defined on R satisfying
(2.5). Let J(-) be a Lipschitz function of order one defined on [0, 1]
and let L,(F,J,H), n > 1, Z, and p be defined by (2.4), (2.6), and
(2.7), respectively. Given a function ¢(-) € Hy where 0 < g < 1, set
U(z) = /zp(z), € R. If

loglogz

lim

P — (3.1)

and

E(Z21{|Z] < =}),
(3.2)

- : U-Y(zLLx)
1 i
Ev—(|Z]) < o0 and)\—\/Qhﬁs;ipW

then when A < oo we have

(1 —¢)¥2X < limsup v/n/on) [Ln(F, J,H) —p| <X as.  (3.3)
Conversely, if ¢ < 1, then the relation

lim sup v/n/@(n) |L,(F,J,H) — pl < oo a.s. (3.4)

n—o00

implies that (3.2) holds with A < 0.
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CHAPTER 3. MAIN RESULTS 12

Moreover, the limsup in (8.8) is positive and finite if and only if
(3.2) holds with 0 < A < oo.

For slowly varying functions ¢(-) € Hp and A as in (3.2) with 0 <
A < oo, we obtain for L-statistics {L,(F, J, H), n > 1} the following
complete analogue of the Hartman-Wintner-Strassen LIL. Of course,
(3.5) follows from (3.6) but nevertheless it is worthwhile to label them

separately.

THEOREM 3.2. Assume that H(-) is a real-valued Borel-measurable
function defined on R satisfying (2.5) and that o(-) € Hy satisfies (3.1).
Assume that {X, X,; n > 1}, J(), L,(F,J,H), Z, u, and ¥(-) are as
wn Theorem 3.1. Let 0 < XA < oo. Then

lim sup hmmf)\/n/go(n n(FyJ, H) — p) ———(i) A as (3.5)

n—00

and

({\/n/cp La(F, J, H) — ) ; n/1}) =[-)\ A as  (3.6)
if and only if condition (8.2) holds.

REMARK 3.1. Due to condition (3.1), Theorems 3.1 and 3.2 do not
include as a special case the classical Hartman-Wintner-Strassen LIL
for L-statistics obtained by Li, Rao, and Tomkins (2001, Theorem 2.1).
It is interesting to note that, under the condition (3.1), the limiting

behavior in Theorems 3.1 and 3.2 is determined by the distribution of
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CHAPTER 3. MAIN RESULTS 13

Z, whereas, by contrast, the three conclusions (2.11), (2.12), and (2.13)
depend on the distribution of Y, where Y is defined in (2.6).

REMARK 3.2. In general, it is not easy to find F*(¢),0 < t < 1.
However, if the distribution function F(-) of the random variable X is

continuous, then
- d
Z = JU)H(F~(U)) = J(F(X))H(X)
where “%£” denotes “equal in distribution”.

REMARK 3.3. We conjecture that Theorems 3.1 and 3.2 are still true
without condition (2.5).

REMARK 3.4. We note that if EZ% < oo, then the constant \ in
Theorems 3.1 and 3.2 is simply

U-Y(zLLx)
= 2) 1 N St
A \/ 2(EZ )11?—?01.}1) TSP

We shall illustrate Theorem 3.2 by considering the following two
special cases:
Case 1. Choose ¢(z) = 2(LLz)P where p > 1. Then one can check

that

U~YzLLz)/(x®LLz) _

lim = 1.

1L L)
Case II. Take p(z) = 2(Lz)" where r > 0. Then one also easily sees

that

tim U~YzLLz)/(z*LLx) _

1.
oo LLz/(Lz)
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CHAPTER 3. MAIN RESULTS 14

Thus, Theorem 3.2 yields the following two results.

COROLLARY 3.1. Assume that H(-) is a real-valued Borel-measurable
function defined on R satisfying (2.5). Let p > 1. For any constant
0 < X < oo, we have:

. . n +
llinﬁsol.}p(lyrrlrig}f)1 /2(LLn)P (Ln(F, J,H) = p) =(—) A a.s.
and

C ({‘ /5(—L%n—)z—)(1[4n(F, JH)—p); n> 1}) =[-A A as

if and only if

Z? ) >
E (m) <oo and A= \/hin_,sol.}p(LLx)l E(Z21{|Z]| £ z}).

COROLLARY 3.2. Assume that H(-) is a real-valued Borel-measurable
function defined on R satisfying (2.5). Let r > 0. For any constant
0 < A< oo, we have:

4

(Lo(F,J,H) — p) =(=) A a.s.

2
lim sup(lim inf
m sup(imind), /Ty
and

o({\/%(mn(p, JH)—p): n> 1}) — -\ A as

iof and only if

zZ? e LLx
E (m;) <oo and A= \/2 hzn_ﬁsolip (La:)"‘lE (Z2I{|Z| < z}).
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CHAPTER 3. MAIN RESULTS 15

If condition (3.2) is satisfied with A = 0, we obtain the following
stability result for L-statistics.

COROLLARY 3.3. Assume that H(-) is a real-valued Borel-measurable
function defined on R satisfying (2.5). Let o(-) € H and let ¥(-) be as
i Theorem 3.1. If

-1
EVY(|Z]) <0 and lim W

then

lim v/n/o(n) (L, (F,J,H)—p)=0 a.s. (3.8)
Moreover, if o(-) € H, for some 0 < g < 1, then condition (3.7) is
necessary and sufficient for (3.8) to hold.

PROOF OF THEOREMS 3.1 AND 3.2. Let {U, U,; n > 1} represent a
sequence of i.i.d. random variables with the uniform (0, 1) distribution.

Then it is well known that
(X, Xn; n>1} 2 {F-(U), F~(U,); n>1}.
It now follows that
Xy 1<i<nn> 1} 2 {F(Uin); 1<i<n,n> 1}

where U.,, 1 < i < n, are the order statistics of U;, 1 < i < n.

Thus, one may set without loss of generality X,, = F(U,) and X,., =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. MAIN RESULTS 16

F(Upp) for 1 <i<nandn > 1 Note that
PU#Ujforalll1 <i<j<oo)=1.

So we have that
Z J()H (Xi)
_ Z I H (F= ()
- Z T(Uin)H (F~(Uin)
A Z ( - m>) (F~(Uin)) (3.9)

+ Y (JDa(Uin)) = JUin)) H (F* (Usn)

=> " J(U)H (F~(U;)) + R, (say), n>1

i=1

where D,,(t) = n~ 1Y, I{U; < t} is the empirical distribution function
of Uy, Uy, ..., U,. Since J(-) is a Lipschitz function of order one defined
on [0, 1], there exists a constant 0 < C' < oo, depending on J(-) only,
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CHAPTER 3. MAIN RESULTS 17

such that [J(¢1) — J(t2)| < Clty — 3] uniformly for 1, ¢ € [0, 1]. Hence

1<i<n

< C'Os<1t1£1[Dn(t)—t]Z]H(F‘_(UZ-))], n>1.

i=1
Since (2.5) holds, i.e., E(H(F—(U))| = E|H(X)| < oo, by the Kol-
mogorov SLLN, we have

n—oo n

Note that the Chung-Smirnov LIL for empirical processes (see Chung
(1949) and Smirnov (1944)) states that

n 1
li Dn(t) —t| =z as.
TP\ LIy (2, P~ =g e

Thus, for any given ¢(-) € H satisfying (3.1), since

2LLn Y 4 |H(F(Uy))]

n
C sup |D,(t) — t|x , n>1,
Vnp(n) ~ 2LLn ogt%‘ () =1 o(n) n n
we have
lim —— =0 as. (3.10)

n—o0 y/np(n)

It then follows from (3.9) and (3.10) that, for any given () € H
satisfying (3.1),

nlinolo n/p(n) (Ln(F, J,H)~n"t Z J(Ui)H(F*‘(Ui))) =0 as.
= (3.11)
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CHAPTER 3. MAIN RESULTS 18
- . U (zLLx) .

It is easy to see that ¢(-) € Hy and (3.1) imply that —777~ is slowly

varying at infinity with

U-Y(zLLx)

Jm, 2’ Llz 0.
Thus (3.2) with A < oo is equivalent to
U~ (zLLx) 22
-1 . 2 —

(3.12)
where V = J(U)H(F~(U)) — p = Z — p. Then, by Theorem 1 of
Einmahl and Li (2005), (3.12) implies that

(1 — @)¥%) < limsup v/n/@(n) Di1 J(Ui):I(F (@) _ ul <A as.

(3.13)

and (3.3) follows from (3.11) and (3.13).
Conversely, by Theorem 1 of Einmahl and Li (2005), if 0 < ¢ < 1,

then the relation

lim sup v/n/¢(n)

n—00

<00 as. (3.14)

2im JW)HF (W) y

implies that (3.12) holds with A < oo and, moreover, the limsup in
(3.14) is positive if and only if (3.12) holds with 0 < A < oco. Thus
combining (3.4) and (3.11) yields (3.14) and hence (3.12) holds with
A < 00. As was noted above, (3.2) with A < 0o is equivalent to (3.12),
and the last assertion in Theorem 3.1 is now immediate.

Similarly, if ¢(-) € Hp and (3.1) holds then by combining Theorem 2
of Einmahl and Li (2005) and (3.11), the proof of Theorem 3.2 follows. (J
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Chapter 4

An Interesting Example

In this chapter, we shall provide an example to illustrate our results.
EXAMPLE. Take J(t) =4t —-2, 0 <t <1,and H(z) =z, z € R.
Then the L-statistic

1 i
nF7J7H = 4.-——2 n
(g m) =03 (47 -2) X
is related to Gini's mean difference,

2 1 — i—1
n(n —1) Z | Xil n§(4 n—1 2>X'

1<i<g<n

which is a well-known U-statistic for unbiased estimation of the disper-

sion parameter
0 = E(| X1 — Xs);

see, e.g., Serfling (1980, p. 263) or Shorack and Wellner (1986, p.
676). Li, Rao, and Tomkins (2001, Theorem 3.3) established analogues

19
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of the classical SLLN, LIL, and central limit theorem for Gini’s mean
difference. Given a function ¢(-) € H, satisfying (3.1) where 0 < ¢ <
1, let ¥(-) be as in Theorem 3.1. Then it is easy to check that, for
any constant 0 < A < oo, (3.2) holding with Z = (4U — 2)F(U) is

equivalent to

E¥(|X|) <oo and limsup %E (sz{|Z| <z}) = _Aé_
(4.1)
Note that p = EZ = E|X; — X3| = 6 and that
2
lim sup ———— 1Xi — X;] <0 as.

n—oo (N —1) 13;@ il

if and only if
E|X| < oo;

see Li, Rao, and Tomkins (2001, Theorem 3.3(i)). So, under (4.1), we

have

2
n(n —1)

(1—¢q)Y2\ < limsup n

<\ as..
n—00 w(n)

> IXi- X -6

1<i<j<n

Conversely, if ¢ < 1, then the relation

n(n2— 5 Z X, — X;| -6

1<i<j<n

n

lim sup <00 a.s. (4.2)

n—0a ©(n)

implies that (4.1) holds with A < co. Moreover, the limsup in (4.2) is
positive if and only if (4.1) holds with 0 < A < co. If ¢ = 0, then for
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any constant 0 < A < oo,

lim sup(lim inf) 2 Y x-x-0) =)
im sup(lim in i — X -0 =(— 8.
e A COITCEIR Tt

and

n 2
. ({ o (n) (n(n - 1) 1ZJ il 9) " 1}) =[=A A as.

if and only if condition (4.1) holds.
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