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A bstract

Let {X , Xn, n >  1} be a sequence of i.i.d . random variables w ith  com­

mon d is trib u tio n  function F {x ) .  For each positive integer n, le t Xi-,n <  

^ 2-.n <  < Xn:n be the order sta tistics o f Xx, X 2, ■ • •, Let H{-)  be

a real Borel-measurable function defined on 1Z such th a t E |/I(X ) | <  00 

and le t J (-) be a Lipschitz function  o f order one defined on [0,1]. W rite

M =  KF, I H )  = E{J{U)H{F^{U)))  and L .(F , J,H) = ^ E i i  J (S
H{Xi-r)), M >  1, where U is a, random variable w ith  un iform  (0 ,1) dis­

trib u tio n  and =  in f jz ;  F {x )  >  t } ,  0 <  t  <  1. In  th is  thesis,

the Chung-Smirnov L IL  fo r em pirical processes and the E inm ahl-L i L IL  

for p a rtia l sums o f i.i.d . random variables w ithou t variance are used 

to  establish necessary and sufficient conditions for having w ith  proba­

b ility  1: 0 <  limsup^_oo y^n/(/?(n) |L „(F , J, H ) -  fj.\ <  00, where y?( ) 

is from  a suitable subclass o f the positive, nondecreasing, and slow ly 

varying functions defined on [0, 00). The almost sure value o f the lim - 

sup is identified under suitable conditions. Specializing our result to  

ip{x) =  2 (lo g lo g x )^ ,p  >  1 and to  (p{x) =  2 (lo g x)'’, r  >  0, we obta in 

an analog o f the Hartm an-W intner-Strassen L IL  for L-sta tistics in  the

111
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in fin ite  variance case. A  s ta b ility  result for L-statistics in  the in fin ite  

variance case is also obtained.

IV
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C hapter 1

H istorical R eview

In  th is  thesis we study the strong lim it theorems for linear combina­

tions o f order statistics (in  short, L —statistics). The asym ptotic theory 

o f order statistics is concerned w ith  the d is trib u tio n  of Xr-.n, su itab ly 

standardized, as n  approaches oo. We usually assume th a t Xr-.n is the 

r th  order s ta tis tic  in  a random sample o f n from  some population w ith  

cdf (cum ulative d is trib u tio n  function) F {x ) .  l i  r / n  —>■ p as n oo, 

fundam entally different results are obtained according as (a) 0 <  p <  1 

(central or quantile case) or (b) r  or n  — r  is held fixed (extreme case), 

or (c) p =  0 or 1, w ith  r  ox n ~  r  being a function of n  (interm ediate 

case).

The class of L —statistics appears to  have been firs t studied in  1920 

and such statistics have received growing attention since the 1960s since 

some o f the robust estim ators o f location (e.g., the trim m ed and W in - 

sorized means) are examples o f such statistics. Another L —sta tis tic .
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CHAPTEE. 1. HISTORICAL REVIEW  2

placing more weight on the extremes, is the G in i (1912) mean d iffe r­

ence.

The asym ptotic no rm a lity  o f ^ Z lIL i Ci,niT(Xi:n), n  >  1,

requires suitable conditions on bo th  the Q ^ and the form  o f the cdf 

F {x ) .  Some authors discussed the Ci „  and weak on F {x ) ,  others the 

reverse. Lots of the notable contributions in  th is area appeared from  the 

1960s t i l l  mid-1980s, such as Chernoff et al. (1967), van Zwet (1983), 

Chernoff and Savage (1958), Chemoff et al. (1967), Shorack (1969), 

S tigler (1969, 1974), Hajek’s (1968), Sen (1978), Boos (1979), Serfling 

(1980), Shorack and W ellner (1986) and Helmers (1977, 1980, 1982).

Some authors have established rates o f convergence to  norm al­

ity . Beginning w ith  Rosenkrantz and O ’R eilly  (1972), Bjerve (1977) 

obtained a Berry-Esséen type bound o f order fo r trim m ed linear 

combinations o f order statistics using the representation o f Chernoff et 

al. (1967). Helmers (1977, 1982) provided a Berry-Esséen-type bound 

of order between 4»(æ), the standard norm al cdf, and the cdf o f 

and L *. S im ilar results fo r unbounded weight functions was ob­

tained by Helmers and Huskova (1984). Singh (1981) obtained some 

nonuniform  rates o f convergence to  norm ality th a t are helpful in  the 

study of moment convergence. Helmers et al. (1990) established B erry- 

Esséen-type results fo r L —statistics based on generalized order sta tis­

tics, as defined by Choudhury and Serfling (1988). P u tt and C h inch illi 

(1999) corrected th e ir expression for the variance o f the lim itin g  norm al

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. HISTORICAL REVIEW  3

d is tribu tion . See also P u tt and C h inch illi (2002).

Weiss (1969b), Shorack (1973), S tig ler (1974), and Ruym gaart and 

van Zuijlen (1978) discussed the asym ptotic norm ality of L —statistics 

obtained from  independent nonidentically d istributed rv ’s, and X iang 

(1994) obtained Berry-Esséen bounds. Mehra and Rao (1975), Cast- 

w irth  and Rubin (1975), Sotres and Chosh (1979), and Singh (1983) es­

tablished the asym ptotic no rm a lity  under weak dependence. P u ri and 

Ruym gaart (1993) established asym ptotic norm ality fo r a large class 

o f tim e series data th a t includes dependent nonidentically d is tribu ted  

sequences of variâtes. Shao (1994) obtained several lim it results fo r 

L —statistics and sample quantiles fo r the survey data arising from  a 

s tra tified  m ultistage sam pling design.

The asym ptotic jo in t d is trib u tio n  o f L —statistics from  m u ltiva ria te  

populations has been studied by S iddiqui and B utle r (1969). Numerous 

references on T —statistics were listed in  H .A . David et al. (2003).
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C hapter 2 

P urpose o f T his T hesis

Let {X ,X n ,  n >  1} be a sequence o f independent and iden tica lly  

d istribu ted (i.i.d .) real random variables w ith  d is trib u tio n  function  

F {x )  =  P { X  <  x), X C 1Z =  (—00, 00) and le t {U,Un; n  >  1} be a 

sequence o f i.i.d . random variables w ith  the uniform  (0 ,1) d is trib u tio n . 

For each positive integer n, le t Xim  <  X 2-.n <  <  Xnm be the order

statistics o f X i, X 2, • • •, X „. Let L f(-) be a real-valued Borel-measurable 

function defined on TZ. A  linear com bination of order statistics (in  short, 

an L -s ta tis tic ) is a s ta tis tic  o f the form

1
E n  =  -  ^  C i^n H ( X i :n )

^  i= l
where the weights Q_n, 1 <  i  <  n  are real numbers and n >  1. Define 

L t  — logg m ax{e, t }  and L L t  =  L {L t )  for t  C lZ. The classical H artm an- 

W intner-Strassen law o f the iterated logarithm  (L IL ) states th a t

l i msup(l i mi nf ) = ( —) a almost surely (a.s.) (2.1)
n —> 0 0  n — KX> ' s / ‘l n I j L n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. PURPOSE OF THIS THESIS 5

i f  and only i f

E T f(X )= 0  and ( r ^ = E If^ ( X ) < o o . (2.2)

Moreover, i f  (2.2) holds, then

C ^ j^ R ( X i) /V 2 n I ,L m ;  n  >  1 =  [- r r , , ; ]  a.s., (2.3)

where C  n  >  1 }) stands for the cluster set (i.e., the set o f lim it

points) o f the numerical sequence {xn, n >  1}. See H artm an and

W intner (1941) for the “ i f ” pa rt and Strassen (1966) fo r the converse. 

The conclusion (2.3) is due to  Strassen (1964).

A lte rna tive  proofs o f the H artm an-W intner (1941) L IL  were discov­

ered by Strassen (1964), Heyde (1969), Egorov (1971), Teicher (1974), 

Csorgo and Révész (1981, p. 119), and de Acosta (1983). S ubstantia lly 

sim pler proofs o f Strassen's (1966) converse were obtained by Feller 

(1968), Heyde (1968), and Steiger and Zaremba (1972). M artika inen 

(1980), Rosalsky (1980), and P ru itt (1981) sim ultaneously and indepen­

dently obtained a “one-sided” converse to  the H artm an-W intner (1941) 

L IL . Specifically, they proved th a t each part of (2.1) individually im plies 

(2.2).
M any authors, including Helmers (1977), Helmers, Janssen, and Ser- 

fiing  (1988), L i, Rao, and Tom kins (2001), Mason (1982), Sen (1978), 

van Zwet (1980), and W ellner (1977a,b), have investigated the strong
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CHAPTER 2. PURPOSE OF THIS THESIS 6

lim itin g  behavior fo r a class o f L-sta tistics o f the form

L „ ( F , J , H )  =  l f 2 j ( - ) H ( X i . . „ ) ,  n > l  ( 2 .4 )

where J (-) is a real-valued function, often called a score function, de­

fined on [0,1]. Helmers (1977), Mason (1982), Sen (1978), van Zwet 

(1980), and W ellner (1977a) have studied the strong law o f large num­

bers (SLLN) fo r L „ , n  >  1 and have shown th a t under a varie ty o f 

conditions on J (-) and H {-)

lim  L n {F u ,J ,H )  =  lim  J  H{Ui-n) =  [  J { t )H { t )d t  (fin ite ) a.s.,
n-*oo n~*oo n  \ n  J  J q

where Fu  is the d is trib u tio n  function of the random variable U  and 

Ui:n, i- < i  <  n, are the order sta tistics o f the Ui, 1 < i  < n ,  n > l .

I f  J (-) is a L ipschitz function o f order one defined on [0,1] and

E |^ (X ) | <  oo, (2.5)

le t us w rite

Z = J{U)H{F~{U)),
r  = - Z  + / j - f „ ^  (I(U < t ) - t )  J'(t)H(F-{t))dt, 

where F*~{t) is the quantile function

F*~{t) — in f{s ; F {s) > t } ,  0 < t  < 1 ,

and

p  =  p ( F ,  J ,  R )  =  E %  =  E  ( J ( [ / ) R ( F " - ( C f ) ) ) . ( 2 .7 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. PURPOSE OF THIS THESIS 7

Then p  exists and is fin ite  and Y  and Z  are both well-defined random 

variables under (2.5). Moreover,

=  Var(y) =  Ey^. (2.8)

To see th is, note th a t (2.8) is equivalent to

E y  =  - E  ^ ( i(F  <  t) -  () /(t)R (F "-(t))d (^  =  0. (2.9)

Since E { I {U  <  t) — t) =  0, (2.9) follows from  an application o f F ub in i’s 

theorem, subject to  the existence o f the integral

7 =  /  /(()7 f(F^(())(ft=  /  7f(F"-(())(fJ(t) = E (/(f/)77(F^(F ))).
Jo Jo

B ut the score function J (-) has an almost everywhere (w ith  respect to  

Lebesgue measure) bounded derivative From th is fact and the

equality E |i7 (X )| =  E \H {G {U )) \  <  oo, i t  follows th a t /  exists and is 

fin ite ; clearly, cry <  oo i f  and on ly i f

EZ^ <  00. (2.10)

Recall th a t a sequence o f random variables {<$a; n >  1} is said to  be 

bounded in  probability i f

lim  s u p F (|(n | >  t ) =  0.
n > l

Com bining the Chung-Smirnov L IL  (see Chung (1949) and Sm irnov 

(1944)) and the Finkelstein functiona l L IL  (see Finkelstein (1971)) fo r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER. 2. PURPOSE OF THIS THESIS 8

em pirical processes, L i, Rao, and Tomkins (2001, Theorem 2.1) proved 

th a t the follow ing three statements are equivalent:

(2.10) holds; 

lim  sup \ / n / { 2 L L n )  jL „(F , J, i7 ) -  /rj <  oo a.s.;

{ \ /n  (L „(F , J ,H )  -  fj.); n  >  1 } is bounded in  probability. 

Moreover, i f  any o f the three statements above holds, then

lim s u p (lim in f)y /n /{2 L L n )  (L.n,(F, J ,H )  — //) = ( —) cry a.s., (2.11)
n —>cxD n —> c o

C  ( I  V n j (2 L L n )  (L „(F , J , H ) ~  fj,); n  >  l | j  =  [-c ry , cry] a.s.,

(2.12)

and

(L „(F , J, N{0, 4 ) ,  (2.13)

where “ -E>” denotes convergence in  d is tribu tion . This powerful result 

contains many previous results obtained under more restrictive condi­

tions, although it  is s till not the last word as the authors m ention in  an 

open problem (to  weaken the conditions on J (-)). The authors illu s tra te  

w ith  examples th a t th e ir result can handle some cases th a t previous re­

sults could not; for example, the G in i mean-difference sta tistic.

The m ain purpose o f the thesis is to  find necessary and sufficient 

conditions for

0 <  lim  sup ^Jn|^p{rl) |IL,rj(F, J, i7 ) — p| <  oo a.s..
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CHAPTER 2. PURPOSE OF THIS THESIS 9

where p (-) is from  a suitable subclass o f the positive, nondecreasing, 

and slowly varying functions. B u t we also trea t the case where the 

lim it is 0 a.s. We emphasize th a t we are not assuming th a t EZ^ <  oo 

where Z  is as in  (2.6).

The plan o f th is  thesis is as follows. O ur m ain results. Theorems 

3.1 and 3.2 and th e ir proof and corollaries are presented in  Chapter 3. 

The proof is obtained v ia  a nice application o f the Chung-Smirnov L IL  

(see Chung (1949) and Sm irnov (1944)) fo r em pirical processes and 

the E inm ahl-L i L IL  (see E inm ahl and L i (2005)) fo r p a rtia l sums o f 

i.i.d . random variables w itho u t variance. In  Chapter 4, we provide an 

interesting example to  illu s tra te  our results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 3

M ain R esu lts

Let be the set of continuous, nondecreasing functions (p(-) ; [0, oo) —> 

(0, oo), which are slowly varying at infin ity. By monotonicity, the 

slow variation of <p(-) is equivalent to  Wmt^oo p {e t)/ p {t)  =  1. Very 

often one can even show tha t lim^_oo p ( t / ( t ) ) /p ( t )  =  1, where / ( • )  

is a nondecreasing function such th a t limi_>oo/(f) =  oo. Set f r { t )  =  

exp ((L t)^ ),0  <  r  <  1. Given 0 <  ç <  1, let 77̂ , C 77 the class of 

functions <p(-) such tha t

=  0 < r < l - 9
f-^oo y,(t) -

and set 77i =  77.

We consider g to  be a measure for how slow is the slow variation. 

So functions in  77q are the “slowest” and it  w ill tu rn  out tha t th is 

class is particulary interesting for L IL  type results (see Theorem 3.2 

below). Examples of functions in  77q are (/?(£) =  { L t y , r  >  0 and 

y,(t) =  (LLt)P, p >  0.

10
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CHAPTERS. M AIN  RESULTS 11

The following Theorem 3.1 gives L IL  type results when A >  0 and 

s tab ility  results when A =  0 w ith  respect to a large class of normalizing 

sequences, w ithou t assuming tha t EZ^ <  oo, where Z  is defined in  

(2.6).

T h eo rem  3.1. Let {X , n >  1} 6e o sequence of i.i.d . random  

variables with distribution function F {x )  =  P (X  <  x), x  C TZ and let 

H {-) be a real-valued Borel-measurable function defined on TZ satisfying

(2.5). Let J(-) be a Lipschitz function o f order one defined on [0,1] 

and let L „ (F , J, 77), n >  1, Z , and pL be defined by (2 .f), (2.6), and 

(2.7), respectively. Given a function  p(-) G Tig where 0 <  g <  1, set 

^ ( x )  =  y /x (f{x ), X CTZ. I f

lim  =  oo (3.1)
x-*oo  (p(x)

and

E $ -X |Z |)  <  oo nW  A =  J21 im sup  -  - j ^ y - - ) E (Z 2 7 {|Z | <  x } ) ,
y x —̂oo ^  L/L/X

(3.2)

then when X <  oo we have

(1 — g)^/^A <  lim  sup ^/n /(p {n ) |Ln(F, J, H ) — p\ <  X a.s. (3.3)
n —>-oo

Conversely, i f  q < 1 ,  then the relation

lim  sup \/n /fp (n ) 1L„(F, J ,H )  — p\ <  oo a.s. (3.4)
n —>oo

implies that (3.2) holds w ith  A <  oo.
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CHAPTER 3. M AIN  RESULTS 12

Moreover, the limsup in  (3.3) is positive and fin ite  i f  and only i f

(3.2) holds with 0 <  A <  oo.

For slowly varying functions p(-) G H q and A as in (3.2) w ith  0 <  

A <  oo, we obtain for L-statistics {L „ (F ,  J, 77), n  >  1} the following 

complete analogue of the Hartman-Wintner-Strassen L IL . O f course,

(3.5) follows from (3.6) but nevertheless it  is worthwhile to  label them 

separately.

Th eo rem  3.2. Assume that 77( ) is a real-valued Borel-measurable 

function defined onTZ satisfying (2.5) and tha tp {-) G 77o satisfies (3.1). 

Assume that {X ,  X „ ; n  >  1}, J(-), L „ (F , J, 77), Z , p, and ^ ( - )  are as 

in  Theorem 3.1. Let 0 <  A <  oo. Then

lim  sup (lim  in f) y/n /(p {n ) (L^(F , J, 77) — fi) = ( —) A a.s. (3.5)
n—>00 7i-~>oo

and

C  ( { \ A V F 5 ( L « ( F ,  J ,F )  -  ; n >  l } )  =  [-A , A] a.s. (3.6)

i f  and only i f  condition (3.2) holds.

R e m a r k  3.1. Due to  condition (3.1), Theorems 3.1 and 3.2 do not 

include as a special case the classical Hartman-Wintner-Strassen L IL  

for L-statistics obtained by L i, Rao, and Tomkins (2001, Theorem 2.1). 

I t  is interesting to  note tha t, under the condition (3.1), the lim iting  

behavior in  Theorems 3.1 and 3.2 is determined by the d istribu tion  of
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CHAPTER 3. M AIN  RESULTS 13

Z, whereas, by contrast, the three conclusions (2.11), (2.12), and (2.13) 

depend on the d istribution of Y , where Y  is defined in  (2.6).

R em a rk  3.2. In  general, i t  is not easy to  find <  t <  1.

However, i f  the d istribution function F (-) of the random variable X  is 

continuous, then

Z  =  J (P )7 7 (F '-(P ))  =  J ( F ( X ) ) ^ ( X )

where “ = ” denotes “equal in  d is tribu tion” .

R em ark  3.3. We conjecture tha t Theorems 3.1 and 3.2 are s till true 

w ithou t condition (2.5).

R e m a r k  3.4. We note th a t i f  EZ^ <  oo, then the constant A in  

Theorems 3.1 and 3.2 is simply

A =  , / 2( E Z ^ ) l i m j m p î A l ^ .

We shall illustra te Theorem 3.2 by considering the following two 

special cases;

Case I. Choose p (x ) =  2 {L L x Y  where p >  1. Then one can check 

tha t
'^ ~ ^ {x L L x ) / [x ‘̂ LLx)

T™ l / ( 2(L L x )P -i) '  '

Case II. Take p (x ) =  2 {L xY  where r  >  0. Then one also easily sees

tha t
'^~ ^ {x L L x )/{x ^ L L x )

hm------------------------------- - ==== 1.a:-*00 L L x / [L x y
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Thus, Theorem 3.2 yields the following two results.

C o r o l la r y  3.1. Assume that H (-) is a real-valued Borel-measurable 

function  defined on TZ satisfying (2.5). Let p >  1. For any constant 

0 <  A <  oo, we have:

+
l i m s u p ( h m i n f ) . ( L „ ( F ,  J, H ) -  p) = ( - )  A a.s.

71—̂00  ̂ y

and

n  >  l | ]  =  [-A , A] a.».

i f  and only i f

E
XLL\z\y

j  <  OO and A =  /lim su p (LL x )^ “ f’E (Z 2 /{ |Z | <  x }) .
/  y x-»oo

C o r o l la r y  3.2. Assume that H {-) is a real-valued Borel-measurable 

function  defined on TZ satisfying (2.5). Let r  >  0. For any constant 

0 <  A <  oo, we have:

/ n  +
lim s u p (lim in f) . / _   _ (Ln(F, J, H )  -  p) = ( - )  A a.s.

n—>00 n—+00 2(Z,n)'

and

n > l | ) = h A ,  A] a.5,

i f  and only i f

E
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I f  condition (3.2) is satisfied w ith  A =  0, we obtain the following 

s tab ility  result for L-statistics.

C o r o l l a r y  3 .3 . Assume that is a real-valued Borel-measurable 

function  defined on TZ satisfying (2.5). Let <p( ) G Ti and let ^ (  ) be as 

in  Theorem 3.1. I f

E ^ - i ( | Z | ) < o o  ond (3.7)

then

l im  y jn jp in )  (L .„(F , J ,H )  — p) — Q a.s. (3.8)
n —>oo

Moreover, i f  G TLq fo r  some 0 <  q <  1, then condition (3.7) is 

necessary and sufficient fo r  (3.8) to hold.

P r o o f  o f  T h e o re m s  3 .1  a n d  3 .2 . L e t {U, Un, n  >  1 } represent a 

sequence o f i. i.d . random  variab les w ith  the  u n ifo rm  (0 ,1 ) d is tr ib u tio n . 

T he n  i t  is w e ll know n th a t

{X ,  V„; n > l } i  {F^(U), F-(U„y, n >  1}.

I t  now follows tha t

I  <  i  < n , n >  1} =  {F"~{Ui:n)] 1 < i  < n , u > l } ,

where Ui,n, 1 <  % <  are the order statistics of Pi, 1 <  i  <  n. 

Thus, one may set w ithou t loss o f generality Xn =  F ^ (U n )  and Xi-,n =
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F ^{U i:n ) for 1 <  2 <  n and n >  1. Note tha t

P  {Ui Y  Uj for all 1 <  2 <  j  <  oo) =  1.

So we have tha t
n

Y , j U ) h {x , „ )

„

2 = 1
n

=  E  ( F - ( G „ ) )

+  è  ( ; ( ^ )  -  J { U i , n )  H  (F -(C /i:„)) (3.9)

% - ^ J ( G ) r f ( F - ( G ) )
2 = 1

n

+  5 3  (J(D„(t/i,„)) -  J (% .) )  H (F^(U,.„))
2 = 1

n

=  y ] j ( G ) i f ( F - ( C / i ) )  +  i L  ( s a y ) , n > l
i= l

where © ^(t) =  n~^ Y ^= i <  7} is the empirical d is tribution function 

o f U i , U 2 ,  ■■■, Un-  Since J(-) is a Lipschitz function of order one defined 

on [0, 1], there exists a constant 0 <  C  <  oo, depending on J(-) only.
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such th a t  I J ( i i )  — J ( t 2)| <  C \ t i —t 2\ u n ifo rm ly  fo r p ,  t 2 G [0, 1]. Hence

n
|B„| < Cm iK|D„(C/i„)-C/i,„| Y | / / (F - (C / i„ ) ) |

l<'i<n *' ' ^
n

< C sup |D^(t) - 1| |7 7 (F -(P i)) |, n >  1.
o<f<i

Since (2.5) holds, i.e., E |P (F "- (P )) | =  E |77(X)| <  oo, by the K o l-

mogorov SLLN, we have

lim  = E |7 7 (X )| a.s.
T1-+00 n

Note tha t the Chung-Smirnov L IL  for empirical processes (see Chung 

(1949) and Smirnov (1944)) states tha t

I Th 1
lim sup W — y -  sup |Bn(7) -  % a.s.

„_oo V 2,LLn 0<t<l 2

Thus, for any given p (-)  G 77 satisfying (3.1), since

we have

lim   — 0 a.s. (3.10)
\Jnp>{n)

I t  then follows from (3.9) and (3.10) tha t, for any given p(-) G 77 

satisfying (3.1),

lim \/n /(p(n) | L,,(F, J, 77) -  T  J(Pi)77 (F "(P i)) | = 0  a.s.Tl.—>DD I I

(3.11)
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I t  is easy to  see tha t (/?(•) G Tiq and (3.1) im ply tha t ^ is slowly

varying at in fin ity  w ith

x-̂ oo x^L L x  

Thus (3.2) w ith  A <  oo is equivalent to

E ^ “ ^(|V |) <  00 and lim  sup —— y — ■■■E (y ^ 7 {|Z | <  x } )  =  ^
z —>oo ^  I jIjX à

(3.12)

where V  =  J {U )H {F ^ {U ) )  — p =  Z  — p. Then, by Theorem 1 of 

E inm ahl and L i (2005), (3.12) implies tha t

E L  J ( [/ f)7 7 (F -(P ,))
n

-  p <  A a.s.

(3.13)

and (3.3) follows from  (3.11) and (3.13).

Conversely, by Theorem 1 of E inmahl and L i (2005), i f  0 <  g <  1, 

then the relation

E i i  j m H ( F ^ m )lim  sup y/n /(p{n)
n —>00

p <  oo a.s. (3.14)

implies tha t (3.12) holds w ith  A <  oo and, moreover, the lim sup in

(3.14) is positive i f  and only i f  (3.12) holds w ith  0 <  A <  oo. Thus 

combining (3.4) and (3.11) yields (3.14) and hence (3.12) holds w ith  

A <  oo. As was noted above, (3.2) w ith  A <  oo is equivalent to  (3.12), 

and the last assertion in  Theorem 3.1 is now immediate.

Similarly, i f  p(-) G H q and (3.1) holds then by combining Theorem 2 

of E inmahl and L i (2005) and (3.11), the proof of Theorem 3.2 follows. □
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C hapter 4 

A n Interesting Exam ple

In  th is chapter, we shall provide an example to  illustra te  our results.

E x a m p le .  Take J{ t )  =  4t  — 2, 0 <  t  <  1, and H { x )  — x, x  £ 71. 

Then the L-statistic

L „ (F ,  = " t r V  «  J
is related to  G in i’s mean difference,

2

which is a well-known [/-statistic for unbiased estimation of the disper­

sion parameter

g =  E ( | X i - X 2|);

see, e.g., Serffing (1980, p. 263) or Shorack and Wellner (1986, p. 

676). L i, Rao, and Tomkins (2001, Theorem 3.3) established analogues

19
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of the classical SLLN, L IL , and central lim it theorem for G in i’s mean 

difference. Given a function (/?(•) € Hq satisfying (3.1) where 0 <  g <  

1, let i) (  ) be as in  Theorem 3.1. Then it  is easy to check tha t, for 

any constant 0 <  A <  oo, (3.2) holding w ith  Z  =  {4U  — 2)F"~'{U) is 

equivalent to

x^L L x

Note tha t // =  E Z  =  E |X i —• X 2I = 6  and tha t

2

2 ■ 
(4.1)

lim  sup
n(n  — 1)

<00  a.s.

i f  and only i f

E |% | <  00;

see L i, Rao, and Tomkins (2001, Theorem 3.3(i)). So, under (4.1), we 

have

(1 — g)^/^A <  lim  sup
n

y(7l) n (n  — 1) l<î<j<n

Conversely, i f  g <  1, then the relation

2

<  A a.s..

lim  sup . /  —7̂
n—*oQ V ¥̂ (11) n {n  — 1) E e <  00 a.s. (4.2)

implies tha t (4.1) holds w ith  A <  00. Moreover, the lim  sup in (4.2) is 

positive i f  and only i f  (4.1) holds w ith  0 <  A <  00. I f  g =  0, then for
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any constant 0 <  A <  oo,

lim su p (lim in f) ^  ^

and

¥>(n) \^n(n -  1) 

i f  and only i f  condition (4.1) holds.

-  <9 J ; n >  1 1  j  =  [ -A ,  A] a.s.
4<i<n )  J /
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