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A bstract

AN ADAPTIVE TIME-STEP CONTROL ALGORITHM FOR NON LINEAR TIME-DOMAIN 

ENVELOPE TRANSIENT (Under the supervision of Dr. Carlos Christoffersen)

This thesis outlines a general method to analyze circuits with several time variables using 

a technique known as Multi Partial Differential Equation, MPDE. The key idea of MPDE is 

to convert the system of ordinary differential equations that describes a circuit into a system 

of partial differential equations using multiple time dimensions. Multivariate Finite Difference 

Time Domain (MFDTD) and Time Domain Envelope following (TD-ENV) methods are based 

on the MPDE and give faster simulation time and reduce the memory requirements for a system 

with widely separated time scales.

In this research, a novel time-step control method in one of the time dimensions is proposed. 

The algorithm uses two models: the first is the set of differential algebraic equations tha t 

represent the circuit. The second is a ‘coarse’ model that is cheap to evaluate. The main 

difference between the traditional and the proposed method is the dynamic tolerance changes 

and coarse model representation. The optimum time step is estimated from an error term  

obtained from the coarse model. An estimation of the Local Truncation Error (LTE) is used to 

optimize the time step size. The simulations show tha t fewer time steps are rejected, i.e. faster 

computation, compared with a traditional time step control algorithm.

A rectifier circuit is simulated to show the difference between the conventional method and 

the MFDTD method for steady state analysis. The MFDTD method is used in steady state 

analysis and the TD-ENV method is used in transient simulations. A DC-DC converter circuit 

simulation using adaptive TD-ENV and its advantages are presented. Simulations of a switched 

rectifier circuit and DC-DC converter circuit with different controllers (P and PI) are presented. 

The PI controller circuit experiences a duty cycle oscillation and higher LTE, which increases 

the simulation time with the proposed model. The FDTD method is used to solve the problem 

in one of the dimensions (fast time axis) and the Backward Euler (BE) method is used on the 

other dimension (slow time axis).
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Chapter 1

Introduction

Circuit simulations are widely used. The overwhelming use of circuit abstraction in electronic 

engineering has enabled the design of complex systems [5]. Circuit simulations are important 

to understand the dynamics of complex systems of interacting elements, to test new concepts, 

and to optimize the designs [5]. It is a very economical way to test complex designs. In 

integrated circuits (ICs), it is important to verify the design’s accuracy before fabrication to 

avoid unnecessary prototypes. IC development and simulation are interconnected to each other, 

if better simulation methods are used, they will indirectly improve IC development. Also 

the circuit designs can be optimized using circuit simulations. Millimeter-wave circuits are 

becoming more popular and coupled with large scale production, require more sophisticated 

design techniques than before.

There are three main circuit simulation techniques: frequency domain techniques, time 

domain techniques, and mixed (time and frequency) domain techniques. The most widespread 

method of nonlinear circuit analysis is time-domain analysis (transient analysis) using programs 

like SPICE [33]. This is a well known time domain circuit simulator. It was originally developed 

to assist the design of integrated circuits, where timing and waveform shape are important. 

SPICE use numerical integration to determine the circuit response at one instance of time, 

given the circuit’s response at a previous instance of time.
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Harmonic Balance (HB) analysis is mainly used in RF and microwave circuits. The difference 

between HB and other traditional time domain methods is tha t in time domain methods, 

waveforms are represented as a collection of samples, whereas in harmonic balance they are 

represented using the coefficients of sinusoids [3]. Thus, it approximates naturally the periodic 

and quasi-periodic signals found in a steady-state responses.

When simulating a circuit with a transient analysis, a set of differential equations are formed 

and solved. The differential equations have infinite number of solutions and it is necessary to 

specify a complete set of boundary conditions in order to identify the desired solution [5]. Most 

simulators require user-defined initial conditions. If the initial conditions are not specified, then 

the simulators use the DC solutions as initial conditions.

1.1 Circuit Sim ulators

A circuit simulator numerically computes the response of the particular circuit to a particu­

lar stimulus. To calculate the response, the simulator has to formulate the circuit equations 

and then solve them numerically. In a linear circuit with energy storage elements, voltages 

and currents are the solutions to linear, constant coefficient differential equations. Simulation 

techniques vary in the way of solving the differential equations.

Circuit simulators first began to appear in late 1960’s [34], Two groups contributed signif­

icantly to the development of the modern circuit simulators. First is ASTAP group at IBM, 

which developed many numerical methods [9], Second is SPICE group at the University of Cal­

ifornia, Berkeley. SPICE started as a class project of Dr. Ron Rohrer. It was first released in 

1972 and then in 1975 [34], SPICE was written by Dr. Larry Nagel, under the guidance of Dr. 

Don Pederson. SPICE became very popular at that time because it had all the device models 

built in it to simulate ICs, the source code was very affordable and the graduates encouraged 

SPICE in their companies.

15
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In late 80’s Berkeley also released a new type of circuit simulator called SPECTRE [33]. 

SPECTRE used harmonic balance to directly compute the steady-state solution of nonlinear 

circuits in the frequency domain. SPECTRE was picked up by Hewlett-Packard, where it was 

known as Microwave Nonlinear Simulator (MNS).

Recently another simulator called Freeda was developed by Dr. Carlos E Christoffersen 

and Dr. Michael B. Steer at North Carolina State University. Freeda has various simulation 

techniques such as HB, transient algorithms, AC and DC. It provides flexibility to add new 

device models and circuit analysis algorithms. It also supports the local reference concept [7], 

which is fundamental to the analysis of spatially distributed circuits and also to simultaneous 

thermal-electrical simulations [5].

Commercial advanced simulators, implementing most of the simulation methods are also 

available in the current market. For example, Agilent ADS(former HP) implements circuit 

envelope method [10], SPECTRE RF implements envelope method, and Aplac implements 

MPDE [16], where MPDE has advantage on computation time and memory saving.

1.2 Im portance O f T im e-Step  Control

In traditional time domain methods, numerical integration is used to determine the circuit 

response at each time instance using previous responses. As a result, these simulation techniques 

heavily depend on the time step size.

Stiff circuits have extreme range of operating frequencies or time scales and are difficult 

to simulate. Time step control is very important on stiff circuits. RF circuits have extreme 

range of operating frequencies or time scales. The main challenge of this research is to develop 

an adaptive time step control algorithm to simulate stiff circuits. First the system of ordi­

nary differential equations(ODEs) of a circuit is converted into a system of partial differential 

equations(PDEs) using multiple time variables. The PDEs are solved using method called mul-
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tivariate finite difference time domain method (MFDTD) and time-domain envelope following 

method (TD-ENV).

Time-step control for the numerical solution of ordinary differential equations(ODEs) is 

used in various applications [32]. MATLAB has various methods for solving ODEs, such as 

Runge-Kutta method [11],[12]. Time-step schemes are also used in to differential algebraic 

equations(DAEs). DAEs are systems consisting of ODEs with algebraic equations. Due to the 

long simulation time in stiff circuits, it is necessary to develop a time-step control method. In 

this research the focus is to develop a time-step control algorithm using MPDE formulation in 

one the dimensions of PDE.

1.2.1 T im e D om ain  M eth od s

In this thesis two time domain methods are studied:

1. MFDTD : Multivariate Finite Difference Time Domain method

2. TD-ENV: Time domain ENVelope transient method

Some time domain solutions are often computationally slow since the results are determined 

by small time step increments. Therefore, an adaptive time step control for MPDE is proposed. 

TD-ENV with adaptive time step gives significant speed advantage over TD-ENV with fixed 

time step. For example, the MPDE method uses a bi-dimensional representation to represent 

fast and slow axis separately. When time step control is applied in the slow axis the simulation 

speed is increased.

1.3 T hesis O utline

This chapter introduced circuit simulators and simulation techniques. The MPDE and the 

importance of time stepping were introduced. The following chapters are organized as follows:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 gives the literature review and gives details of basic integration, interpolation, state 

variable representation, MPDE, MFDTD and envelope following methods. Chapter 3 explains 

stiff circuits and an adaptive time step control algorithm. Chapter 4 presents case studies for 

MFDTD and TD-ENV methods and simulation results. Chapter 5 presents the conclusions of 

this research and recommendations for future work.
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Chapter 2

Literature R eview

The main focus of this chapter is to review the concepts and techniques that will be applied to 

the work described in later chapters. This chapter is organized as follows: Section 2.1 describes 

the interpolation methods. Section 2.2 briefly presents a review of time marching integration 

methods MPDE, MFDTD and TD-ENV. Section 2.3 explains the Newton-Raphson method. 

Section 2.4 describes the stiff differential equations. Section 2.5 describes the local truncation 

error. Section 2.6 gives the stability analysis of the system. Section 2.7 introduces basic circuit 

analysis techniques and their literature reviews. Section 2.8 describes the widely separated 

time scales to form MPDE. Section 2.9 explains the Multi-time simulation of nonlinear circuits. 

Section 2.10 describes the MPDE representations. Section 2.11 explains the Finite difference 

and the multi-finite difference time domain methods. Section 2.12 explains the MPDE envelope 

following method. Section 2.13 explains the time-step control in SPICE and SPECTRE. Section

2.14 presents the state variable approach to analyze nonlinear circuits. Section 2.15 is a brief 

summary of the chapter.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Interpolation M ethods

Often a function is represented by discrete points such as (x0, y0), (xx,yi),  ..., (xn, yn) as shown 

in Figure 2.1. Finding the value of y for x  within the interval of (xo,yo) to (xn,yn) is called

Y

x

Figure 2.1: Discretized function representation

interpolation. Interpolation uses the data to approximate a function, which will fit all the data 

points. The data is used to approximate the values of the function inside the bounds of the 

data. The value of y can be found for any x  if a continuous function y =  f ( x )  is given by 

yi =  f (xi) ,  where i — 1, ...n. If x  falls outside the range of x n, it is no longer interpolation but 

instead it is called extrapolation.

2 .1 .1  P o lyn om ia l In terp o la tion

Polynomial interpolation is the most common choice of interpolants because they are easy to 

evaluate, differentiate, and integrate. From Figure 2.1, for given data (x0,2/o), (x i>yi)> • ••> 

(xn, y-n) a polynomial of order n can be obtained as

y — a0 +  aix  +  a2x 2 + ■ ■ ■ + anx n (2.1)

where a0, ai, ■ • • , an are real constants. Then Gaussian elimination can be used to set up n  +  1 

equations to find n +  1 constants. Depending on the order of x, this polynomial interpolation 

can be categorized as linear (1st order), quadratic (2nd order), cubic (3rd order) and so on.

20
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2.2 T im e M arching N um erical Integration

Numerical integration is performed if an analytical integration is infeasible and if a tabulated 

data is to be integrated rather than a known function. Time marching integration means, the 

integration is performed sequentially for each time point. The Euler method is used to perform 

this integration.

2.2 .1  E uler m eth od

The Euler method was invented by 18th century Swiss mathematician Leonhard Euler [34]. 

This method can be explained using a 15< order ODE

x ' = f ( t , x ) ,  x( t0) - x 0 (2.2)

where x  is unknown function and t is time. The numerical solution to a differential equation 

is an approximation to the actual solution. The solution x n is a continuous function of a 

continuous variable tn, where n  =  0,1,2, • - • and tn < tn+1.

If equally spaced grid points with a time step h is considered as in Figure 2.2, the curve 

x(t) is approximated as a straight line between the neighboring grid points tn and tn+x. Where

x( t )

Ttt t0 1

Figure 2.2: Illustration of Euler’s method.
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in+i — tn 7i h
(2.3)

^n+i — *£n T x n h.

Equation (2.3) is the essence of Euler’s method and x n can be found, given the initial values 

xq and to.

The integration of differential equations can be performed using explicit integration or im­

plicit integration. The main difference between explicit predictors and implicit corrector is the 

use of current time step tn in interpolation. Explicit integration is not very stable compared to 

implicit integration. Implicit methods also have an advantage of being faster to process due to 

larger time steps, especially in stiff circuits.

Explicit Forward Euler:

The solution xn is approximated by assuming that a tangent straight line with slope x'n_x 

connects the point x n from the point xn_i. Forward Euler (FE) formulation can be written as, 

xn ~  x n- i  +  x'n_xhn_i. There hn_x represents the step time during n — 1 time point. The step 

size /i„_i can be either constant or variable. However Figure (2.2) shows a constant step size.

Im plicit Backward Euler:

This is an implicit representation and x n, x'n are all unknown. We may assume some initial 

value for xn and iterate to approximate the solution x n and x„_i. The Backward Euler (BE) 

formulation can be written as, x n «  x„_i -+■ x'nhn- 1 .

2 .2 .2  T rapezoidal R u le

The trapezoidal rule is a simple average of the Forward-Euler and Backward-Euler schemes. 

The current value can be evaluated using the previous point, previous and current differentials 

and the time step as shown in Figure (2.2):

■ L(Xn +  Xn+l) f o  A \
2-n+l x n T  h  ^ 1^*^)
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2.3 N ew ton-R aphson  m ethod

Newton-Raphson method is used to find the roots of complicated functions. Consider the Taylor 

Series expansion of /(x )  from x0 to x:

f ( x )  =  / ( x 0) +  (x -  x0) / '(x 0) +  ” (x -  x0) 2/ //(x 0) +  • • (2.5)

Setting the quadratic and higher terms to zero and solving the linear approximation gives:

f ( x  +  h) ~  /(x )  +  f ' {x)h

where h = x o — x. This linear function of /i that approximates /  near a given x. Therefore the 

nonlinear function /  can be replaced by a linear function, whose zero is easily determined to 

be h — — / ( x ) / / '( x ) ,  assuming tha t f '{x)  ^  0.

The iteration scheme for Newton’s method from [45] is as follows:

f ' f a Y
(2 .6 )

Geometrically, xi+1 can be interpreted as the value of x at which a line, passing through the 

point (xj, f{xi))  and tangent to the curve /(x )  at that point, crosses the y axis. Figure 2.3 

provides a graphical interpretation for Newton-Raphson method.

fW

x

Figure 2.3: Graphical interpretation of Newton Raphson method.

Prom the above one-dimensional Newton’s method, the iteration Equation (2.6) can be 

generalized for a vector input of n dimensions. If a vector input of n  dimensions is used, a
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vector function /(x*,), and f '{xk)  will produce Jacobian matrix elements:

T _  d / i ( x )  J (z SO ( 9  7 \

where i and j  are row and column indexes respectively.

The derived Newton iteration equation for a vector function [23] is as follows:

x k+i = x k -  J f“(xk)f(x k) (2.8)

Equation (2.8) is a vector form of Equation (2.6), where real quantities are replaced by 

vector using bold letters. The non-linear equation solver f solve in Octave uses the minpack 

hybrd routine, where a Quasi-Newton method is used. If a close initial guess is chosen for the 

solution, then the Newton method will converge fast. However depending on the initial guess 

xq of the coefficients, the scheme may not converge at all [23].

2.4 Stiff D ifferential Equations

Standard numerical techniques can give significant difficulties when applied to approximate the 

solution of a differential equation. When the exact solution contains terms of the form eXt with 

A is a complex number with negative real part, it will decay to zero with increasing time. On 

the other hand, generally the approximation for eXt will not show the decaying property, unless 

a restriction is placed on the step size (h) of the method. This problem is particularly acute 

when the exact solution contains widely separated time scales on it, such as a steady-state term 

tha t does not grow significantly with t, together with a transient term  tha t decays rapidly to 

zero.

A wide range of applications have rapidly decaying transient solutions tha t occur naturally, 

such as in DC-DC converter circuits, study of spring and damping systems, the analysis of con­

trol system and problems in chemical kinetics. These are examples of stiff system of differential
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equations. The following initial-value example problem [42] shows the stiff properties.

u\ — 9 tti +  24 u2 +  5 cos t -  ^ sin t
O

u2 =  —24 ui +  51 u2 — 9 cos t +  -  sin t
3

with initial condition of u1(0) =  |  and u2(0) =  |  has the unique solution as follows:

ui(t) — 2 e~3t — e~39£ +  ^  cos t
o

ui(t) =  —1 e_3t +  2 e_39t — -  cos t.
3

In this solution, the transient term e~39t causes this system to be stiff. Figure 2.4 shows the 

simulation results for L\ and for U2-

0.5
o

o

-0.5

0 0.2 0.4 0.6 1.20 9

Tim© (s)

Figure 2.4: Stiff system simulation using adaptive time step

A 4th order Runge-Kutta method for time stepping gives disastrous results for h =  0.1, but 

gives accurate approximation for when h — 0.05 as evidenced in Table A .l as referenced in [42].

2.4 .1  S tiff sy stem s

Time constants for stiff circuits differ by many orders of magnitude. A converter circuit is a 

good example of a stiff circuit. The time-step limitation is a computational problem when the
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circuit equations are stiff, tha t is when the ratio !̂ mai! is several orders of magnitude, where \ max 

is the eigenvalue of largest magnitude, and Amin is the eigenvalue of smallest magnitude. The 

linear time invariant (LTI) system shown in Figure 2.5 is a stiff system and it can be considered 

to analyze the stiff properties. It contains small time constants tha t are due to  parasitic

dv

Figure 2.5: Circuit with widely separated A12

components such as capacitor (C) and voltage controlled current source (C ^ -) , and large time 

constants that are due to coupling or bypass elements [43]. This circuit is a combination of 

voltage source-Vj(f), resistor-/?, current source-C ^-, and capacitor-C. A nodal analysis for the 

above circuit gives:

1 dV
=  +  (2'9)

where Vs(t) = 1 — e~X2t and initial condition y(0) =  2. The solution y(t) for the circuit becomes

y(t) =  y0e~Alt +  (1 -  e~A2‘). (2.10)

In Equation (2.10), if Ax =  106 and A2  =  1, then the first part dies out in about 5 fis bu t the

second part has a time constant of 1 sec.

2e~Al< and 1 — e~X2t terms have a major contribution to the transient behavior and on

the other hand 1 — e~X2t term has a major contribution to the steady state behavior, as time

increases the transient behavior dies out and end-up with only the steady state behavior. The 

simulation step size for this circuit in Figure (2.5) depends on both A12, but we can not just 

take | l/Xmaximum I as the time step, due to longer computation time for smaller time step. The 

step size has to be adjusted to tradeoff between accuracy and computation speed. On the above

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Stiff C ircuit S im ulation
2 f-o — y0 e « -Kl-e a )

1.4

>
>-

0.8

0.6

0.4

0.2

2.5 
Time (Sec)

3.5 4.50.5

Figure 2.6: Solution for widely separated Aij2-

example circuit in Figure (2.5), if we use FE algorithm with variable time step method, such 

as 4 initial steps of h =  10-6 sec and the rest with h = 1 sec, then the results are as shown in 

the Table 2.1. Variable time-step control on this example give efficient and faster computation.
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Table 2.1: Stiff circuit simulated time and Output voltages Y(V)

Time (sec) 2 e~Xlt l-e“A2t Y(V)

0 2 0 2

lx K T 6 0.73576 lx lO -6 0.735761

2xlCT6 0.27067 2 x l0 ~ 5 0.270672

3 x l0 -6 0.099574 3x l0 ~ 4 0.202574

3 x l0 -6 +  1 0 0.63212 0.63212

3x l0~ 6 +  2 0 0.86466 0.86466

3 x l0 -6 +  3 0 0.95021 0.95021

3 x l0 ~ 6 +  4 0 0.98168 0.98168

3xlCT6 + 5 0 0.99326 0.99326

2.5 Local Truncation Error

The local truncation error (LTE) measures the error introduced in taking one time-step of any 

method assuming tha t all the values computed at previous time points are exact as shown in 

Figure 2.7. For a fixed-step method, the local truncation error only depends on the last step- 

size, but for a variable-step method, the error depends on previous step-sizes in a nonlinear way 

as well.

The algorithm uses a straight line interpolation to calculate the value of the state vari­

able at the next time step. For example, a time series of fn_i, tn, tn+\ with state values of 

xn_i, x n, x n+i and time derivatives of x'n_u x'n, x'n+l is considered. The LTE of any interpo­

lation method is the difference between x n+l and the exact solution at £n+i> given tha t the past 

solutions (zn_ i , i n, ...) are exact. The LTE, can be measured either by the error in x  or by the
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Figure 2.7: Truncation Error

error in x'. From BE algorithm:

*̂71+1 --
, h\d?x  

x n + hnx n + —  —  (£)

‘' n + l =  X r
rp’X  

h ^
( 2 .11 )

where xn+i =  x( tn+1 ), x'n+1 = x'(tn+1 ), x n = x(tn), x'n =  x ’{tn), and tn < £ <  tn+i. 

From Equation (2.11), the BE formula is obtained to be

, h^dPx 
X n + 1 —  % n  h “n % n + 1 2~  d t 2. (2 .12)

where the LTE estimation is expressed as (0  and (xn+i — x n) jhn — x ’n+1 =  0. The LTE 

(sx) of the BE algorithm is the 2nd derivative term in Equation (2.12). In a circuit, ex is due 

to elements such as capacitors and inductors with units of charge and units of flux respectively. 

A stable integration algorithm will obey the following inequality

Ex(tn+i) |<  | £X{U) (2.13)

where Ex(tn+i) is the total error at time point tn+1 . If E t  is the total absolute error within T 

time, the error at each time point can be written as

sx(tn+l) \< ^ Et (2.14)
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Using Equations (2.12) and (2.14) yield the time step constant hn as

I S ®  < ±Br (2.15)

5  Y m r i  (216)

If £xi is the LTE estimation in terms of x'n+1, and the absolute value of error ( E d ) is allowed 

per time point, then the LTE constraint will satisfy such that

I £x' |<  E d . (2-17)

Using BE integration Equation () for | exi | yields the time step constraint to be

K<~ W W \  (218)

The estimated ex and hn from Equation (2.16), and the estimated ex> and hn from Equation 

(2.18) are equivalent if E d = For implicit polynomial methods, ex and ex> are related by

ex, =  po£x. For most polynomial methods, /?0 < hn. Therefore, Equation (2.18) requires a

smaller time step than Equation (2.16).

The relative tolerance to Equation (2.16) is more relevant in terms of ex<. Adding relative 

tolerance (er) and absolute tolerance (ea) to Equation (2.16) gives

h <  I <+1 1 + £a] (2 19)
"  I & ( 0  I

The exact value of £ is required to find the differential term in Equation 2.12. Because the 

exact value of £ is unknown and only the range of £ which is tn < £ <  tn+x is known, it is 

difficult to find LTE. To eliminate this problem the proposed method in [47] is used. From 

the Equation (2.11), it can be concluded tha t the difference between nonlinear solution (xn+i) 

and the extrapolated solution (xn +  hn x'n) is proportional to the LTE of the system. Which 

can be written as, L T E  =  Extrapolated value - Nonlinear solution. Stability is guaranteed 

for adaptive step control algorithm, when the BE method is used. Stability will be shown in 

Section 2.6.
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2.6 Stab ility

The LTE of any integration method is the difference between zn+1 and the exact solution at 

tn+x, given tha t the past solutions (xn, xn_i, ...) are exact. If x n is exact, then the error of xn+1 

is due to the LTE in computing the solution at fn+1. However, if x n+\ is used to determine 

x n+2 , the error of x n+2 will depend on the LTE that occurred both at tn+2 and tn+\. Therefore 

it can be concluded tha t xn error depends on all of the time points 1i, t2, ■■■, tn.

An integration method is said to be stable, if the contribution of the LTE at time point tk 

to the total error at tn, where n < k, decreases as n  increases. On the other hand a method is 

unstable, if the contribution of the LTE at a time point tk increases without bound. The choice 

of an integration method usually involves a tradeoff between LTE and stability. Dahlquist [43] 

has defined an integration algorithm to be A-Stable if it results in a stable difference equation 

approximation to a stable differential equation. A numerical integration method is A-Stable 

for the following test Equation (2.20) if all numerical approximations tend to zero, as n —> oo 

in the time axis.

x \ t )  — X x  (2.20)

for a fixed positive time step (h ) and an eigenvalue (A) in the left-half plane.

2 .6 .1  S ta b ility  A n a lysis for num erical in tegration s

Stability is a global property related to the growth or decay of errors introduced at each time 

point and propagated to successive time points. Nonlinear circuit simulation is an iterative 

process, where the stability and convergence properties of numerical integration have to be 

considered during time domain simulation. Generally large time steps result in instability but 

small time steps can result in excessive computation and large errors due to numerical rounding 

error. Some integration methods are stable regardless of the time step tha t is used, whereas 

other methods are stable only for a certain range of time step values. Since the general stability
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analysis problem is difficult, in this thesis the stability of different methods will be compared 

for the test differential Equation (2.20). The exact solution for this equation is

x(t)  =  x 0 eXx (2.21)

where x 0 is the initial condition. The FE and BE methods contain equal magnitude of LTE term. 

However, these two algorithms have different stability properties when applied to Equation 

(2 .20).

• FE Formula:

Applying FE method to Equation (2.20) without LTE gives

Xn+1~ Xn =  A x„. (2.22)
H'n

The iterations steps are as follows: 

step 1: Xi — (1 +  Xh)x0

step 2: x 2 — (1 +  Xh)xi =  (1 +  Xh)2x 0

x n — (1 +  Xh)nXo

For x n to be stable after an infinite number of time steps, the following condition 

must be satisfied:

| (1 +  Xh) |<  1 (2.23)

If the eigenvalue (A) is real and positive, Equation (2.21) is unstable in the sense tha t x  

increases without limit as t approaches infinity. Figure 2.8 shows the stable condition on 

complex plane. If Xh is within this circle the integration scheme will be stable. For the

case of a negative real A, the FE solution is stable only if the time step is in the range of

- 2  <  Re(hX) <  0.
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Figure 2.8: Region of stability for FE algorithm

• BE Formula:

Applying BE method to Equation (2.20) gives the following iteration steps:

step 1: Xi = _£2_(1 —A/*)

step 2: x 2 =  7t£^ _£0_
( 1 - A h) ~  ( 1 —Xh)2

Xn = (1—Ah.)"

For x n to be stable after an infinite number of time steps, the following condition

1
> 1 (2.24)

(1 -  Xh)

must be satisfied, BE solution will have better stability properties since Equation (2.24) 

is stable for any time step for A <  0. Figure 2.9 shows the stable condition for BE method 

on complex plane. For FE method, the stability region in complex plane is shown inside 

the left unit circle, but in BE method the stability region is outside the right unit circle, 

which is a much larger region than tha t of FE.
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• T rap ezo id a l R ule :

Consider y =  f ( x ) over [x0, xx], where x x = X 0 + h. The trapezoidal rule is To determine 

stability and accuracy for this method, it is applied to the linear ODE

/(x ) ' =  A/(x) (2.25)

and iterating n times leads to

x x =  Xq + ^ ( X q + Xi )

(2.26)

r  — n — \2-Xh)

To be numerically stable, h has to satisfy the following condition:

2 +  Xh
2 — Xh

< 1 (2.27)

In Equation (2.26), approaches zero as n approaches infinity if the real part of

(Ah) is negative. Therefore the trapezoidal method is A-stable. This method is stable if 

the exact solution is stable and is unstable if the exact solution is unstable. The stability 

region for the trapezoidal rule is shown in Figure 2.10. Stable solution of a differential 

equation model will only be obtained if Re(Xh) < 0 condition is true.
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Figure 2.10: Region of stability for trapezoidal rule integration.

2.7 Circuit A nalysis Techniques

Due to technical development, more and more complicated circuits have been introduced and the 

number of nonlinear components has increased, which emphasizes the importance of m athem at­

ics in circuit analysis techniques. Most simulators implement time-domain transient analysis, 

DC analysis and small signal AC analysis. The steady-state behavior of an analog circuit is 

typically of primary interest to a designer. Examples of quantities tha t are best measured when 

a circuit is in steady state include frequency, distortion, power, noise, and transfer character­

istics such as gain and impedance. Many of these can only be measured accurately when the 

circuit is in the steady state.

2.7 .1  T ransient A n alysis (TA )

TA computes the response of a circuit as function of time and solves the operation of a circuit 

in the time domain. The solution gives the node voltages and branch currents in the circuit 

with all transients [9]. The steady-state solution of a differential equation will asymptotically 

be reached when the transient phenomena die out. In fact, the inability to directly capture the 

steady-state response of systems is the most notable shortcoming of conventional TA.

There is no known method to directly solve the circuit equations during TA. The best
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one can hope for is to solve for a finite-difference approximation to the actual solution, such as 

finite sequence of points. Time is discretized and the solution is computed piecewise. The time- 

derivative operator is replaced with a finite difference approximation to compute the simulation. 

A set of Differential Algebraic Equations (DAE) can be formed from the ODE using the BE 

rule given by

M t i )  _  q(tj) -  q{U-1) (2 28]
dt ti -

Where q(t) is a variable depending of time and the simulation interval is broken into small 

individual time steps. The approximation in Equation (2.28) is made in order to evaluate the 

time domain derivative and the differential equation is solved over the span of one time step at a 

time. Another important aspect of transient analysis is that there is history in the calculations, 

i.e. the solution at every time point is built from the solution at the previous time point. As a 

result, an error made at one time point can degrade the accuracy of future time points. Error 

accumulates or dissipates depending on the type of circuit being simulated. Stiff circuits are 

very sensitive to error build-up in transient analysis. Stiff circuits will be discussed in detail in 

Chapter 3.

2.7 .2  D C  A n alysis

DC Analysis is used to find equilibrium points, i.e., operating points tha t do not change with 

time. To find the solution of a nonlinear system of equations, simulators formulate and solve a 

sequence of linear systems of equations using Newton’s method. This is discussed Chapter 3.

2.7 .3  A C  A n alysis

In AC analysis the circuit is driven with ’small’ sinusoidal signals and the steady-state solution 

is calculated. AC analysis are a family of frequency domain analysis which includes transfer 

function analysis, scattering parameter (SP), time domain reflectrometry (TDR) analysis, and
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noise analysis. All of the above analysis are based on the phasor mathematical technique [46].

2.7 .4  H arm onic B alance (H B )

The HB technique is used to find the steady-state solution in the frequency domain [42]. HB is 

good to analyze RF amplifiers, mixers, and oscillators. Harmonic balance was given its name 

because it was viewed as a method for balancing currents between the linear and nonlinear sub 

circuits. Furthermore, harmonic balance is usually considered a mixed-domain method, because 

the nonlinear devices are evaluated in the time domain while the linear devices are evaluated 

in the frequency domain. However, evaluating the nonlinear devices in the time domain is not 

a fundamental part of the algorithm.

Currently, the standard method for the periodic steady-state analysis of non-linear RF and 

microwave circuits is the HB technique. It solves the Fourier coefficients and yields the steady- 

state response of a circuit as
n

vT(t) *  y , VkejUkt (2.29)
fc=o

where vr(t) is the steady-state response at r th node, k is the harmonic number, Vk is the voltage 

at kth harmonic and uik is the kth natural frequency.

HB is an accurate and efficient method when the solution can be represented with relatively 

few periodic steady-state sinusoids. This technique cannot be applied accurately and efficiently 

to analyze mixers, nonlinear amplifiers, samplers, etc., because they contain signals tha t are far 

from sinusoidal.

Krylov-subspace methods are techniques available to reduce the memory requirements and 

increase the speed of HB solution [11]. This option is useful in designing large RF integrated 

circuits or R F /IF  subsystems, where a large number of devices or large numbers of harmonics 

and inter modulation products are involved.

Waveforms of a nonlinear circuit can be represented by Fourier coefficients. When these
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waveforms have sharp transitions, more Fourier coefficients must be introduced to get accurate 

representations.

2.8 M ethods for circuits w ith  w idely separated tim e scales

Widely separated time scales cause difficulties to existing time-domain methods, because the 

time step has to be chosen according to a high frequency signal which cause a long computation 

time. When a circuit is driven by a source with widely separated time scales or with more than 

one frequency variation, the multi dimensional time representation can be used to simulate the 

circuit. To simulate the steady-state solution, it takes long simulation time and integration 

over an excessive number of periods. In stiff circuits, the transients take thousands of periods 

to die out. This makes the simulation consume a very long CPU-time. Very large number of 

integration steps means also a loss of accuracy. Therefore TA is expensive when it is necessary 

to resolve low modulation frequencies in the presence of a high carrier frequency. There are two 

major conventional classifications to simulate these circuits with widely separated time scales:

• Envelope methods

• Steady-state methods: There are two main techniques used in steady state analysis, one 

is Multi tone Harmonic Balance (Frequency domain) [33] and the other is Multi-Finite 

Difference Time Domain methods (MFDTD). MFDTD are discussed in detail in Section 

2 . 11 .

2.8 .1  E n velop e  m eth od s

Envelope method efficiently handles transient and steady-state analysis of microwave circuits 

for arbitrary modulated carrier excitation, without excessive computation overhead [12]. This 

method can be divided into two parts:
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(1) Sam ple-envelope m e th o d s

These methods operate in time-domain [5], and they are based on shooting methods. The enve­

lope is represented by a slowly varying sampled version of the waveform. Sample-envelope meth­

ods can be classified as Envelope following method and Quasi-periodic shooting method[15].

E nvelope following m e th o d : This method uses a time-domain integration method in 

order to predict the sample envelope evolution without sweeping the fast carrier cycles. The 

envelope is approximated with a piecewise polynomial [47],

B asic Id ea  For E nvelope Follow ing M e th o d  For traditional envelope following method 

in one dimensional grid with one time variable, assume the following nonlinear circuit equation 

described by

m  -  = 0 (2.30)

where y(t), y( t) € R N with N  state variables.If the initial state variables are known, y(t) can 

be found in subsequent time instants by integrating Equation (2.30).

Yn

Y m +r

Ym

t(m +l)t(m)

Figure 2.11: Envelope Following Method

In switched circuits given in Section 4.1, at least one of the input functions is periodic and 

it is assumed the period is T.  If an accurate solution has been computed with conventional
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integration in the m th clock cycle [mT, (vn +  1)T], the initial state at the beginning of the 

subsequent nth cycle [n T , (n + 1)T] can be explicitly predicted through linear extrapolation:

Vn =  2/m+l 4" T p i V m + l  Vm)  (2-31)

where H  =  (n — m  — 1 )T  is jump length , T  is period of a following envelope excitation as 

shown in Figure 2.11. For simplicity the following terminologies are used: yn — y(tn), yn+i — 

y(tn+1) ,  Vm = 2/ m + i  =  y(tm+1) ,  and H  is jump length of envelope integration.

Generally the envelope following method is based on a time domain shooting scheme, in 

which the nonlinearities are resolved by the time domain integration rather than explicitly 

being expressed as harmonics of fundamental frequencies.

• Shooting M ethod:

Shooting method initially guesses the past differential and shoots to get the present value. 

Until it gets the proper present value, it will iteratively have various past differential 

guesses and shoot for the present value. To solve a second order equation of the form 

y =  f ( t , y , y )  subject to y(0) =  cq and y( 1) =  Ci using shooting method, the boundary 

condition y(0) — Co is applied and an initial guess is made to be y(0) =  a0. Through 

calculations the initial conditions are achieved back to prove the guess is correct. The 

calculation proceeds until a value for y(l) is achieved. Within some acceptable tolerance, 

the guess is revised for y(0) to some value an, and the time integration is repeated to 

obtain a new value for y(l). This iteration is continued until 1/(1) =  ci is within acceptable 

tolerance.

Achieving an acceptable tolerance solution depends on the choice of a. A good 

refinement algorithm for a will give a small number of iterations. For such cases a root 

finding method such as Newton-Raphson method can be chosen. For higher order-n 

systems with m-boundary conditions at t =  t0 and (n — m ) boundary conditions at t = t\, 

it will require guesses for (n — m) initial conditions. The computational cost of refining
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these (n — m)  guesses will rapidly become large as the dimensions of the matrix increase, 

such as Jacobian matrix in Newton method. Sparse matrix techniques can be used to 

improve the computation time. The following references from Brambilla [27], and Furse 

[32] propose improving the shooting method through Envelope Following Method.

(2) F ourier-envelope m e th o d s

These methods operate in frequency domain [5] and they are transient envelope methods based 

on HB. Fourier-envelope methods can be classified as

• C ircu it envelope m e th o d : This technique was developed to simulate modern wireless 

circuits with complex digitally modulated RF signals [?], [35], Circuit Envelope (CE) 

method can be considered as a type of time-varying Harmonic Balance (HB) simulation. 

This technique not used for steady state analysis.

• T ran sien t envelope m e th o d : This method uses time domain method, such as FDTD, 

instead of HB during simulation. This technique handles the transient and the steady 

state analysis of a communication circuit [12],[4].

Modifications of HB are not usually called envelope methods, but it can be included in 

envelope methods as they do follow the shape of the signal instead of the signal itself. HB 

based envelope methods are inefficient for strong nonlinear circuits, as they are based on Fourier 

coefficients.

2.9 M ultivariate sim ulation

In conventional time domain methods, if there are widely separated frequencies in a circuit, the 

time step h is determined by the highest frequency of the circuit. A large number of periods of 

the high frequency components is required to reach the steady state response.
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Quasi periodic signals are difficult to simulate due to the widely separated compound fre­

quencies. Therefore they are non-periodic signals. Consider the signal from [2]:

B (t) =  sin (^ r ^ J  sin  (2-32)

If ^  is a rational number, the signal is a periodic signal. If the ratio ^  is irrational, the signal 

is a true quasi periodic signal. However, if ^  is either very large or very small, the signal can 

be treated as the 2-tone quasi periodic signal.

Figure 2.12 shows a single time variable plot for a 2-tone quasi periodic signal. On this 

figure, the ratio ^  =  100. If n =  20 samples are chosen in a time period of T2 , there will be 

2000 samples in the completed period of T\ signal.

S ing le  T im e V ariab le

-■I ------------ '------------1------------ 1------------ '------------
0 0.0002 0.0004 0.0006 0.0008 0.001

Figure 2.12: Single time variable 2-tone quasi periodic signal

For a multi-variable 2-tone quasi periodic signal shown in Figure 2.13, two time variables 11 

and £ 2  are introduced to Equation (2.32) and the bi-variate form is given such that

B ( t u  £2) =  sin sin  ■ (2-33)

On this figure, each period is sampled at n points, and results in a n x n grid. If a 20 x 20 grid 

is used to represent Equation (2.33), a total of 400 points will be required, which is less than 

2000 points needed in single variable time step method or traditional method. The advantage
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of multi-variate method is that it takes less storage and computation time to represent the 

signal. The multi-variate method contains all the information needed to recover the original 

signal completely.

0.5

- 0.5

1.2

0.8
0.6

x 10"5 0.6
0.4 0.4 x 10"30.2 0.2

Slow time axis (s) Fast time axis (s)

Figure 2.13: Multi-time variable 2-tone quasi periodic signal

2.10 O D E to  M P D E  representation

PDE with multi time variables are called MPDE. The traditional ODE form of a circuit is given 

by the Differential Algebraic Equation (DAE)

q(x) = f ( x ) + b ( t ) .  (2.34)

Where q is the charge, /  is the resistive terms [2, 13], b is the excitation produced by the 

independent voltages and current sources, and x(t)  is the vector of the unknown voltages and 

currents of the circuit.

Circuits with widely separated time scales are more difficult to simulate because they have 

fast varying signal, and long simulation time due to the low frequency signal. Nevertheless,
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when the circuit is characterized by multi-rate behavior, its variables can often be represented

efficiently using multiple time variables. By denoting the new multivariate forms to x(t)  and

b(t) in Equation (2.34) by x ( t i , t m) and b (fi,...,fm) respectively, the DAE (2.34) can be

transformed into

d q i x i h , . . . , ^ ) )  dq{x(t\ , ..., tm)) .
 ---------- h .. H----------—----------=  f {x ( t i , . . . , tm)) + b(ti....tm) (2.35)

An extended discussion on differential equation solution can be found in the Appendix A.3. 

The existence and uniqueness of an MPDE solution can not be guaranteed, because the DAE 

does not necessarily have a solution. However, it has been proved [2] that a periodic solution of 

the MPDE generates a quasi periodic one for the DAE, and if the original problem has a quasi 

periodic solution, then the MPDE also has a corresponding solution. Note, that if the value of 

6(ti, ...,tm) is known, the value of b(t) is easy to calculate at any time moment be substituting 

t\ = t2 = ... =  tm = t. In this thesis, a widely separated time scales system is simulated 

using bi-dimensional MPDE, and transformed into traditional one time step solution. This is 

presented in Chapter 4 in detail.

Bi-dimensional GRID

V [0..N]

3O)§k$ a / a t

a / a t

Fast Time Axis T, V [0..N]

Figure 2.14: Grid representation of MPDE

Figure 2.14 shows the grid used for the numerical solution of the MPDE. For simplicity 

Figure 2.14 shows a bi-dimensional representation, where hL is the fast axis differential and ^
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is the slow axis differential form.

Theorem 1 (MPDE-DAE Relation): If x(ti,  and b(ti, ...,tm) satisfy the MPDE in

Equation (2.35), then x(t) = x(t  +  cq, £ 4- c2, ...., t +  cm) and b(t) =  b(t + Ci,t +  c2, +  c„)

satisfy the circuit’s DAE in Equation (2.34), for any fixed c1;

The following proof of Theorem 1 [2] gives the relationship between MPDE and DAE. Proof: 

Prom Equation (2.34) and Equation (2.35), q(x(t)) can be written in the form of widely sepa­

rated time scales in DAE such that

q(x(t)) =  q{x[t +  Ci, t +  c2, +  cn)) (2.36)

where c\ =  t\ — t, cc = t2 — t   cn — tn — t. A bivariate function is assumed to be

x(t) = x ( t1(t) , t2(t)) (2.37)

and the ODE ^  becomes

dx dx dti dx  <9f2
dt  = df1' d t + W 2~dt' 2̂ '38^

Where ^  and ^  are equal to 1, as tn =  t +  cn. Which implies, ^  =  J p  +  If3- —»■ -§{-■ 

Substituting H2 with to get an MPDE form:

dx dx dx ,
at = ST+ sS (2 39)

dqjxjt))  _  gg(x(f +  ci,-~- ,£ +  cm)) dq(x(t +  Ci, ■ • • , t  +  c^,))
<9£ <9tm

=  /(x (f  +  Cl ,  • • • , t  +  cm)) +  S (t  +  ci,--- ,f +  cm) from (2.35)

=  /( z ( 0 )  +  K 0

end of Proof.

2.11 F in ite D ifference and M ulti-F in ite D ifference T im e  
D om ain (F D T D  and M F D T D )

The FDTD method is used in time domain circuit simulation. The algorithm begins by dis­

cretizing differential equations using previous time points, resulting in a set of explicit finite
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difference equations. These finite difference equations are solved using root finding algorithms, 

such as Newton-Raphson method. Detailed explanation of FDTD method is found in [38]. 

Efficient approaches have been proposed by researchers [32, 31] to obtain frequency responses 

using FDTD. A bi-dimensional simulation method can be categorized into three types. The 

main difference in these types are periodicity of the excitation signals. First type is non-periodic 

in both directions, second type is periodic in both directions and the third type is periodic in 

one and non-periodic in other direction. If non-periodic signals are considered for both  di­

rections of a circuit, then traditional method(one time dimension) will be used. If periodic 

excitation is considered for both directions, the circuit is analyzed using MFDTD method. The 

n-dimensional grid is created by approximating the differential operators with a numerical dif­

ferentiation formula. That is replacing the original differential equation by a finite difference 

approximation at each of the grid points. If there are periodic and non-periodic excitations in 

the circuit, it is analyzed using Time Domain Envelope following method (TD-ENV). There, 

the adaptive time step control is used in one time direction [2].

One of the most important open problems in circuit simulation is the prediction of strong 

nonlinear regimes when the input signal is composed of widely separated time constants. Multi- 

tone time domain is a mature technique. The previous section discussed several methods 

developed to analyze signals with more than one tone. Most of these methods can be formulated 

with a multi-time partial differential equation (MPDE) and be processed as this equation in 

different ways, using time domain and frequency domain. MPDE formulation was published by 

Roychowdhury in [2] and [13], where the derivation and assumptions of the MPDE formulation 

are given in detail, and the numerical methods presented are compared.

The FDTD method has rapidly become an attractive choice due to its robustness, pro­

gramming simplicity and flexibility in the analysis of a wide range of structures. However, this 

technique has the drawback of high memory resources and computational power, especially 

when dealing with large grid size N  as shown in Figure 2.14.
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If a 2-dimensional circuit is considered, Equation (2.35) becomes

^ ^  + M M  =  / ( i (t l , t2 ) ) + i ( t l , t2). (2.40)
O t \  O t  2

In this case, x ( ti ,f2) and b(ti , t2) are bi-periodic and the grids repeat over the whole ( t i , t2) 

plane. The problem is solved using a 2-dimensional grid at every time point ( i i ,f2) found on 

the plane shown in Figure 2.14. Therefore, x((ti  +  T)), (t2 +  T2)) =  x(fi, t2). If a grid size of 

N  x N  is considered with N 2 points {Uj }  =  (fl t , t 2j). Here t ii =  (i — l )hi  and t2. =  (j — 1 )h2, 

l < i < N , l < j < N .  The grid spacings in ti and t2 directions are hi — and h2 = j*- 

respectively.

In MFDTD method, the n-dimensional grid is created by approximating the differential 

operators with a numerical differentiation formula. The original differential equation is replaced 

by a finite difference approximation at each of the grid points. Discretizing the differential 

operators in Equation (2.35) using BE method gives

dQi.j  _ _  7 — <?I —1 . 7

atl hl (2.41)
@4i,j  _  — 1

dt2 h-2

where qhj = q(x(tij)).  This leads to a set of nonlinear algebraic equations, F(x). If Equation 

(2.35) is represented using the discretization (Equation (2.41)), this large system of equations 

can be written in matrix form

Fi:, =  ^  ~  +  k l  ~  j ” - 1 -  k ,  - k ,  = 0 i , j  e [1......N], (2.42)

where f hJ = f ( x ( i hJ)) and bltJ =  b(titj). Equation (2.42) contains more unknowns than number 

of equations due to discretized differential operators on the fi=0 and f2=0 lines respectively. The 

bi-periodic boundary conditions are used to eliminate additional unknowns. These boundary 

conditions provide relations between the unknowns at the boundaries, and they are seen as 

corner blocks in the Jacobian matrix. Then the problem can be solved numerically by means 

of the Newton-Raphson method.
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For example if a N  x N  grid is used, then N 2 non-linear equations with N 2 unknowns are 

produced in the simulation. The size of the Jacobian Matrix in Equation (2.7) is N 2 x N 2.

The MFDTD technique is well known to find the steady state solution of circuits. If the 

MFDTD technique is analyzed in m-dimensions instead of two, the Jacobian matrix will have 

(N mr )2 elements, where r  and N  are number of variables and grid size respectively.

2.12 M P D E  Envelope Following M ethod

Envelope following analysis is a need for efficient simulation of stiff and highly oscillatory 

circuits. This method reduces the simulation time without compromising accuracy by exploiting 

the property tha t the behavior of the circuits in a given high frequency clock cycle is similar, but 

not identical, to the behavior in the preceding and following cycles. The ‘envelope’ of the high 

frequency clock can be followed by accurately computing the circuit behavior over occasional 

cycles, which accurately capture the fast transient behavior.

P ro p o sitio n : To obtain faster simulation time and accurate results in Envelope Following 

Method (EFM), the high frequency component (small time period signal - small axis) should 

be greater than the highest natural frequency of the circuit. If this condition is not considered, 

the simulation will have some numerical problems as discussed in Section 2.4.

Time Domain Envelope following method (TD-ENV) uses a multi-tone (Fast and slow 

time axis) algorithm, which is an extension to a method introduced by Kundert, W hite and 

Sangiovanni-Vincentelli in [47] and [9], A similar TD-ENV method for transient simulation is 

proposed by Brambilla and Maffezzoni in [6]. Details and application of TD-ENV method on 

transient simulation will be discussed in Chapter 3.

2.13 T im e Step C ontrol o f SPIC E and Spectre

SPICE has two time step control algorithms. One is based on LTE to choose the optimal time 

step. SPICE estimate the LTE made on every capacitor and inductor in the circuit, then chooses
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the time step small enough to assure tha t the largest LTE remains within absolute tolerance. 

The second control algorithm is based on number of iterations required for convergence at a 

step to decide how big to make the next time step. This second method is not commonly used 

due to lack of reliability.

In Spectre, to control the truncation error, the local truncation error has to be measured. 

It is the truncation error made on each step. The standard measure of LTE is the difference 

between the computed solution and the extrapolation from the previous few steps. It is assumed 

that the previous solutions are exact.

The following steps describe how simulators operate and control the time steps [36]:

• The user specifies a total time range, tolerances, and iteration limits.

• Compute DC analysis solution at zero time, with initial conditions.

• Some simulators have predefined breakpoint table to deal with nonlinear devices. Such is 

the case with the piecewise linear sources. The breakpoint table contains a sorted list of 

all the transition points of the independent sources. During the simulation, whenever the 

next time point is sufficiently close to one of the breakpoints, the time step is adjusted to 

land exactly on the breakpoint. This prevents unnecessary calculations.

• An internal time step control variable updates the current time, and the values of the 

independent sources are calculated at tha t time.

• Solve the system of equations through numerical integration and a finite number of root 

finding solver (Newton-Raphson) iterations. If the number of iterations exceeds the user 

defined maximum iterations per time point, then the time step is reduced by some factor. 

If this new time step is acceptable, then recalculate independent sources.

• Following convergence, the local truncation error is calculated, where the Trapezoidal 

integration method is used to estimate the error. LTE is the difference between the
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computed solution and the extrapolation from the previous few steps.

• The error tolerance is compared with the value in the Local Truncation Error. If the error 

is within acceptable limits, the results are stored and the analysis continues at the next 

time point. Otherwise, the analysis is repeated with a smaller time step. This process 

continues to the end of total simulation time.

In SPICE the LTE is estimated at each time point and the time step is adjusted such that 

the LTE is maintained within reasonable bounds. Error check and Convergence check routines 

is incorporated and the matrices are re-calculated when the time step is changed. This is used 

in SPICE2 by using the time step formula

where er is the relative tolerance, ea is the absolute tolerance, and D D 3(tn+1) is the third 

differential term. This time step derivation will be discussed in detail in Chapter 3.

2.14 S tate  Variable R epresentation  Of D iode M odel

The state variable representation of the diode model improves the convergence of the system. 

The current equation for the diode is given by

where id is the diode current, I s is the reverse saturation current, Vd is the voltage applied to 

diode and VT is thermal voltage.

causes convergence problems when the voltage is updated during nonlinear iterations in circuit 

simulation as shown in Figure 2.15. At voltages greater than the threshold, small voltage 

increments can result in large current changes. To reduce the convergence problems a state

(2.43)

(2.44)

In Equation (2.44) the diode current has an exponential dependence on voltage. This

variable x is introduced as proposed by Rizzoli [14]. This model for diode returns outputs of

Vd and id for an input state variable x  and is equivalent to Equation (2.44).
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Figure 2.15: Relation between v and i in a diode.

The proposed state variable approach [14] in the HB simulation context provides great 

flexibility for the design of nonlinear device models. The state variables can be chosen to 

achieve robust numerical characteristics.

v{t) =

i(t)

(2.45)

(2.46)

x ( t ) if x(f) < Vi

vi +  £ Is (1 +  a (x{t) -  ui)) if x(t) > vl

/ s ( e a x ( t )  _  ^  i f  x ( t )  <  V i

Is{eavi{ 1 +  a(x(t)  — vl)) — I s if x(t) > vi

where the threshold voltage vi =  0.65 V, a = and V? = 0.026 V  at T  = 300 K . This 

diode model can be refined to include capacitive effects and the resistance of N and P regions. 

Figure 2.15 shows an exponential behavior after the threshold voltage Vi. The effect of the 

parameterised model is shown in Figures 2.16 and 2.17. These figures illustrate the improvement 

in the regular nonlinear behavior of the model for the state variable approach.

The possibility of large changes is eliminated through the use of parameterizations which 

ensures a smooth, well behaved current, voltage and error function variations when the state 

variable is updated. Thus the i - x and v - x functions are well behaved and thus circuit analysis 

via nonlinear iterations is also well behaved as shown in Figures 2.16 and 2.17.
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Figure 2.16: Relation between x  and i in a diode.
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F ig u re  2.17: R e la tio n  b e tw een  x  a n d  v  in  a  d iode .
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2.15 Sum m ary

This chapter described the concepts and techniques that will be applied in Chapter 3 and 

Chapter 4. Basic concepts such as interpolation methods, integration, Newton-Rapson method, 

LTE and stability. The details of TD-ENV method and its use for transient simulations, and 

the details of MFDTD method and its use for steady state simulations were explained. It 

was shown that the diode state variable representation improves the diode model numerical 

behaviour. Local Truncation Errors and stability of the numerical methods were discussed.
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Chapter 3 

Stiff Circuit Tim e Step Control

Generally widely separated time scale circuits are called stiff circuits. Any of the following 

can be widely separated in a stiff circuit: natural time constants, source time constants, and 

interval of interest. The main focus of this chapter is to develop an adaptive time step control for 

envelope transient analysis to improve simulation constrains such as memory and computation 

time. This chapter is organized as follows: Section 3.1 gives a brief introduction to stiff circuits 

and explains the importance of adaptive time step algorithm. Section 3.2 explains the envelope 

following algorithm. Section 3.3 describes the time step control algorithm for TD-ENV method. 

Section 3.4 is a brief summary of the chapter.

3.1 Introduction

In any transient simulation, the computation time will be proportional to the number of time 

steps used in the simulation plus the rejected time points. The rejected time points are due to 

the convergence and the acceptable LTE. A root finding algorithm, such as Newton-Raphson 

method, can choose a time step and try  to find the root but if the root is not found then the 

algorithm need to reduce the step size and attem pt to find the root again.

Typically, the simulation time is a multiple of the large time constant (smallest eigenvalue) 

associated with the linearized circuit. On the other hand, a limitation of the time step(/i) 

depends on the smallest time constant (largest eigenvalue) of the linearized circuit. Due to the 

conflicts between small and large eigenvalues, a simulation will continue with small time step,
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which leads to a large computation time. Many literatures classified circuits with the above 

properties as stiff circuits [36],

When MPDE is used in this case study, an adaptive time step will be a suitable solution to 

overcome any sharp or smooth transition in real time ( t ^  axis. MPDE will lead to have more 

than one time step variable in the system. For example if a two tone signal is chosen, there 

will be two different time axis such as fast and slow axis accordingly. Generally Runge-Kutta 

methods are not used in circuit simulation to solve their differential equations due to its stiff 

properties [42].

A dynamically changing time step increases the accuracy of simulation and reduces the 

simulation time by varying the value of the time step over the transient analysis sweep depending 

upon the rate of change of the output. An adaptive time step algorithm increases the time step 

value when internal nodal voltages are stable and decrease the time step value when nodal 

voltages are changing quickly. Another advantage of adaptive time step is tha t it eliminates 

the non-convergence problem during the transient analysis. If non-convergence occurs, the time 

step is reduced until the solution converges. If the number of iterations at a time point is less 

than the present value, then the time step is increased. However, the user has control over the 

maximum allowed time step, therefore the accuracy. The simulator chooses the time step to 

control the truncation error made at each step.

In the TD-ENV method, there is a fast axis with periodic excitation function and there is 

a slow axis with non-periodic excitation function. It has been reported in the literature [2, 6] 

tha t the differential equations in the real axis (slow axis fi), which is the total simulation time, 

are stiff and at times present fast variations, as a result an adaptive time step is chosen. A new 

time step is adapted in each consequent time point in the slow axis, where adaptation is needed 

due to long simulation time. A future study can be done of an adaptive time step algorithm in 

both directions simultaneously.
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3.2 Tim e D om ain Envelope Following A lgorithm  (T D - 
E N V )

The traditional envelope following method is explained in the literature review Chapter 2. Time 

domain envelope transient (TD-ENV) is an envelope following method based on a bi- dimen­

sional (or in general, multi-dimensional) representation of the time domain [2], Circuits can be 

described by a system of differential equations of the form described in Equation (2.34). It has 

been proved in Section 2.11, if x ( tX) t2) is the solution of Equation (2.40), then x(t) = x ( t i , t 2) 

is the solution of the system of Equation (2.34). For the TD-ENV problem, the boundary 

conditions are:

Z {h M )  =  + T2), (3.1)

where T2 is the period of the oscillatory excitation and in this case study, DC-DC converter 

switching frequency is jr. Now there are two problems to be solved:

• A boundary value problem in the direction of t2.

• An initial condition problem in the direction of t \ .

As in [2], the solution for the first problem can be obtained in several ways, one of them is 

with the harmonic balance technique [3] and another one is FDTD. In this research, a FDTD 

approach is chosen. The second problem can be solved with standard integration techniques 

such as backward Euler (BE) and trapezoidal integration. At the beginning of the simulation 

the initial conditions are chosen to be array of zeros. Any initial conditions can be chosen 

by extrapolating the past time point initial conditions. The differential equations in the 

direction are stiff [4], [32]. A variable time step is then necessary for an efficient simulation.

As each step in the direction of tj involves the (relatively expensive) solution of a FDTD 

problem, it is practically important to minimize the number of time steps in the direction of 

ti. Section 3.3.1 will provide an outline of proposed time step control algorithm tha t attempts 

to minimize the number of rejections.
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Figure 3.1: TD-ENVelope following method using MFDTD

If the MPDE Equation (2.39) is considered as an ordinary differential equation with two 

variables handled one at a time, and ti is assumed to be constant, then the differential equation 

will only depend on the remaining argument t2. If an adaptive time step h is used in the t\ 

direction, every value of the variable t1 corresponds to a set of equations that are functions 

of t2. The MPDE Equation (2.39) can then be written formally as a DAE in vector valued 

variables, using operator notation:

dQ(X)
dti

= F (X )  + B ( t l ) - D t2[Q(X)}, (3.2)

where is the differential of the function Q (X )  in the t L axis, and Dt2 is the operator that 

numerically differentiates the function with respect to t2. F (X )  is the vector of t2 points as 

shown in Figure 3.1 f ( x ( t i , .)). fi(tj) is the source signal with function of with values that 

are function of t2. In the proposed model, an adaptive time step h is used to solve in

Equation (3.2). Also the time domain FDTD method along the fast time scale t2 is used to 

solve Dt2[Q{X)\ in Equation (3.2). Instead of FDTD method in T2 direction, shooting method 

or any other method could be used.

For the DC-DC converter circuit simulation, a fixed interval in the fast time axis and an 

adaptive time step in the slow time axis are considered. Reducing the number of Newton
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iterations is particularly important with TD-ENV simulations because, each step in the slow 

direction involves a relatively expensive solution of a nonlinear boundary type problem (FDTD) 

in the fast time dimension.

3.3 T im e Step Control A lgorithm  For T D -E N V  M ethod

In this research time step control algorithm is used in TD-ENV method. It is important to use 

an adaptive time step control to improve computation time and memory requirements. The 

procedure for the adaptive time step control algorithm using TD-ENV method is as follows:

1. The tolerance, number of points, simulation time and other simulation parameters are 

defined by the user. In this research extrapolation is used as an initial guess for the 

nonlinear equation solver.

2. The time step control algorithm uses two models for error calculations. First one is a 

‘coarse model’ and the second one is a ‘fine model’. Therefore a suitable model is chosen 

for the simulation at each instant. Initially the ‘coarse model’ is chosen, because it is 

cheaper (less computation time) to calculate. An initial residual F(xn) is estimated in 

Newton method using the ‘coarse model’. Which will also give an idea how close the 

solution is.

3. An error function is used to determine if the trial time step is acceptable or not. An error 

function is defined by

in = || F (xn) || —tolerance (3.3)

where F (x n) is the vector of nonlinear equation values with extrapolated initial guess, and 

tolerance is the absolute tolerance defined by user. If en is in an acceptable range (close to 

zero), then the FDTD problem is solved. If not, the optimal hn is found using dichotomy 

[42] to bring the time step to an acceptable range and solve the FDTD problem.
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4. Then truncation error is estimated and tolerance is changed accordingly. Depending on 

the norm of LTE, the algorithm dynamically change tolerance and can accept or reject 

the calculated time step hn.

5. The process is continued all the way to the end of the simulation time t = tn + hn.

The basic idea of the algorithm is to use a coarse model of the system to predict the optimum 

time step for acceptable LTE and tolerance before solving the actual FDTD problem. The error 

function (en), uses current time step value - hn and linear extrapolated value - x n to calculate 

the residual. The extrapolated initial guess is found as follows:

% n  3Cn—1 “b  T  { p ^ n —1 ^ n —2 )  ( ^ ' ^ )
Tl — 1

By testing extrapolated values in the nonlinear differential equations, it can be calculated to 

see how close the actual solution is.

3.3 .1  S tep  C ontrol P seu d o  C od e

The pseudo-code of the time step control algorithm follows:

1. h hlast

2. if |en(^)| > 0.2 x tolerance then

(a) if en(hmin) > 0 then h = hmm

(b) if en(hmax) < 0 then h = hmax

(c) otherwise use dichotomy to find h such that |e„(/i)| < 0.1 x toll

If the absolute value of en(h) is less than 20% of the tolerance, then the optimal time 

step size h is found as follows. If in(hmin) is a positive value then h is set to be hmin. If 

£n(h-max) is negative, which means the time step could be larger and therefore h is set to 

be hmax. In case tha t the above conditions both fails (in(h)=0), then an optimal h should
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be found through dichotomy by checking absolute value of en(h) function such tha t it is 

less than 10% of the tolerance. All of these '%’ values can be chosen properly to tighten 

or loosen the time step control algorithm.

3. solve FDTD problem Once the time step size is determined, the actual set of equations 

that represent the circuit are used to solve the FDTD problem.

4. estimate norm of truncation error (e) using the following equation:

e = || X n(:,i) -  xn(:,i) IU, (3.5)

where the solution is X n and (xn) is the extrapolated function.

5. normalized truncation error, ejv using norm of solution, X n:

The infinity norm is used to find the truncation error, which is the norm of the difference 

between the solution (X n), and the extrapolated function (x„).

6. Calculate 8 =  e /E max, to change tolerance dynamically

One of the key ideas about this algorithm is dynamic tolerance changes.

7. if <5 < 30%, then increase tolerance = 3 /2*  tolerance

8. if 8 > 50%, then decrease tolerance =  1/2 * tolerance

The parameter tolerance is also updated at each time step according to the estimation 

of the truncation error. The truncation error can be normalized by dividing the norm of 

the solution, || X n(:,i) ||oo. 8 is the ratio between normalized truncation error (e#) and 

maximum acceptable error (E max). If the ratio is relatively small, or less than 30%, then 

the tolerance can be increased by one and a half times of the original tolerance. If the 

ratio is relatively large or greater than 50%, then the tolerance can be decreased by half.
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9. if h —— hmin then 5 = 1

10. if 5 > 1 then reject point and go back to step 2

11- klast h

12. ti = ti + h

13. if not finished go to 1

The value of tolerance can be adjusted to always provide a good initial guess to the sub­

routine that solves the FDTD problem. This is important to minimize the number of iterations

to solve each nonlinear FDTD problem. This algorithm checks for error, non-convergence and 

varies the time step using a coarse model.

The parametric diode model is described in Chapter 2 improved the convergence of the 

algorithm. A linearized model is used in this case as the coarse model. In this thesis the 

jdiode.m  function estimates the Jacobian matrix. The coarse model for index n  is made by 

linearising the diode model a t all grid points m  in the periodic direction around the solution 

points at the previous point in the t 1 direction (n — 1):

l dn ,m ~  l dn - l ,m +  L \ X n r n

. d v dn - i ,m a 
~  ^ d „ - l iTn T  t \ X n  Jn,

where Axn>m is the increment in the value of the state variable. Here is diode current and Vd 

is voltage drop across voltage. The required derivatives are already available from the nonlinear 

solution of the previous point. From diode state space representation model Equation (2.14):

dvdu n _

dx

1 X <  V i

b=̂ r x > v x
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This algorithm checks for error, non-convergence and varies the time step using coarse 

model. This algorithm can follow curves better than the conventional method and have a high 

accuracy. However, when sharp or steep changes occur on curves, it experiences more time 

steps while following curves as the time-step is reduced. The other concern is the straight line 

interpolation does not make an accurate guess for the next time-step.

Time step and approximation error do not always have an inverse proportional relationship. 

Decreasing time step will not always make approximation error small. Generally small time 

step will results better results, but tha t is not always true. There is an optimum value, which 

will give good results. Appendix A.5 will discuss about optimum time step using Lipschitz 

theorem.

3.4 C onclusion

This chapter explained the details of adaptive time step algorithm. The application of TD- 

ENV and MFDTD methods to the simulations in this research are also discussed. MFDTD 

method is good for periodic excitation signals, and generally used for Steady state response. An 

adaptive TD-ENV technique is suitable for any circuits which has a periodic switching in one 

axis and non-periodic in other axis, that are difficult to simulate with traditional techniques. 

The techniques are further expanded in Chapter 4. The errors and stability of the systems are 

discussed. It is also shown how the TD-ENV method is used for transient simulation in DC-DC 

converter circuit and MFDTD method is used for steady state simulation in rectifier circuit.
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Chapter 4 

Case Study

Rectifier circuits with a low pass filter and a DC-DC converter circuit with a P and/or PI 

controllers are used to demonstrate the MFDTD and TD-ENV methods. In this chapter, the 

results of the MFDTD and TD-ENV methods are compared with the ODE results. Properties 

of a converter switch are studied and the simulation examples are used to verify and compare 

the properties of the methods. In the simulation, a DC-DC converter circuit with a PI controller 

is simulated using SPICE3, MATLAB and OCTAVE.

This chapter is organized as follows: Section 4.1 describes a case study of MFDTD method, 

where an RC circuit is used for simulations and a transformation from MPDE to ODE is also 

discussed. Section 4.2 gives the case study of TD-ENV method. Section 4.2 also compares the 

difference between the adaptive time step control algorithm and the traditional MPDE method. 

Section 4.3 discuss about components of DC-DC converter circuit. Nodal analysis for a DC-DC 

converter circuit with discritization is formulated in Section 4.4. Simulation results are shown 

and discussed in the Section 4.5. Fixed load and variable load simulations are performed in a 

P controller converter circuit in the Section 4.6.1 and Section 4.6.2 respectively. Section 4.8 is 

a brief summary of this Chapter.
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4.1 M F D T D  Case study

Switched circuits are used in the computer industry as power supplies. A regular diode is a 

PN junction semiconductor, which has various application usages, such as rectification, AM 

detector, Zener regulator, FM detector, tunnel diode oscillator and voltage doubler [33], An 

input sinusoidal waveform for a forward biased diode will produce a half wave rectifier output. 

Using a RC filter circuit to the half wave rectifier output gives an output converter circuit 

shown in Figure 4.1.

Figure 4.1: Converter Circuit

In this research, using a simple rectifier circuit, it is shown that the MPDE formulation uses 

less computation memory storage than the ODE formulation. Also the steady state is obtained 

from the MPDE results and compared with a time-marching simulation. For simulation, a pulse 

source is used instead of a sinusoidal input source.

The Pulse  function act as switch with output of 1 V and 0 V. This function takes two 

arguments. The first is the time point at any specified switching cycle and the other is the duty 

cycle. The Pulse  function has a period of T2  and its duty cycle changes with a period Tj. It 

has a fall time and rise time equal to 10% of the period. It is a fast varying excitation (T2 ) 

with slowly varying duty cycle (Ti). The Pulse  function can be represented as

B{t) = pulse(-^-,0.2> +  0.2 s m { ^ ) )  (4.1)
-12 4 1

where the ratio ^ = 2 0  and B{t) is a train of fast pulses where duty cycle is being modulated 

at a much slower rate. This circuit is shown in Figure 4.2. To obtain a faster rate, the MPDE
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representation of B ( t i , t 2) can be used to solve the problem. The current through diode in

Id

Pulse Source 
B(tl, t2) © Vo

Output

Figure 4.2: Rectifier Circuit with B{t)

Figure 4.2 is given by

V dV
id(pulse(t) -  V0) = +  C — ° (4.2)

K dt

and form the nonlinear differential equation given by

V  dV
F = id(Pulse(t) - V 0) - - £ -  C - f -  = 0 (4.3)

I I  a t

For the simulation, the circuit parameters are chosen to be Ti =  1 ms, T2 =  50 , R =  5

kD and C =  1 nF.

The conventional BE method is used to formulate a set of non-linear equations tha t are 

solved using the Newton method. The discretized form of Equation (4.3) is given by

Voi + 75
id{Pulse{ti ) -  !/0i+1) -  ^ -  K,1+1 =  0. (4.4)

For the circuit given in Figure 4.2, a set of equations is derived using nodal analysis. These 

equations are discretized using the BE algorithm to form Equation (4.4). The simulated output 

V0 is shown in the Figure 4.3, where ODE is used for B(t): Pulse function. The duty cycle 

of the Pulse function is being modulated at a much slower rate than the switching period T2. 

The Pulse function in Equation (4.4) can be represented in bivariate form and the differential 

part with MPDE representation as discussed in Chapter 3. The ordinary differential form ^
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Figure 4.4: Va: MFDTD B ( t i , t2)

can be replaced by partial differential form ^  The discretized MPDE representation of

Equation (4.3) becomes

C
id(Pulse(tu t2.) -  VQij)

V„,
R

V  —V  \  ( V  -  VV° i , j  \  / V ° i , j

hi
= 0. (4.5)

Figure 4.4 shows the duty cycle change of the sinusoidal signal. There the fast varying 

excitation (T2) along with R C  effects are shown in the Fast axis and the slowly varying sinusoidal 

duty cycle (Ti) is shown in the Slow axis.

Figure 4.5 shows a comparison of both simulation results. A linear interpolation method is
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used on MPDE as shown in Figure 4.6 to obtain the results. ODE simulation result contains 

the transient information, where the simulation time step is smaller than the time step used in 

MFDTD simulation. The MFDTD result contains steady state information, where a large time 

step used(1000 times as ODE time step). Increasing the grid size on Fast axis will improve 

the accuracy on Figure 4.5, which will lead these two graphs to super impose on each other. 

To reduce the discrepancies between these methods, one can use a higher order interpolation 

method instead of linear interpolation on Figure 4.6. On Figure 4.6 the box point represents 

the ‘ODE’ result and the circle point represents the ‘M PDE’ result.

0 3

V (V)

& * $ * & $ X
U n v u

oODE-UPOypOQE

m
0  0  0001 0 .0 0 0 2  0 .0003  0 .0 0 0 4  0 .0 0 0 5  0  0006 0 .0007  0  0008 0 .0 0 0 9  0.001Time (s)

Figure 4.5: V0: MPDE to Conventional

® ® ® ® ® ® ® ® ®  ® \

T, /T2 periods o f  tJ  
w ill be sw eeped  
during this tim e  
interval T, I

2T,
Interpolation 
between 
2 points

g v g r ®  ®  ®  ®  ®  ®  ®  ®
J

Figure 4.6: Saw tooth path
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4.2 T D -E N V  Case study

The TD-ENV method is commonly used to simulate communication system circuits, because 

it produces a more efficient and accurate prediction of envelope transient. This technique is 

capable of handling circuits with nonlinearities on a fast time scale such as power converters, 

switched capacitor filters and switching mixers. Also it is used to predict the spectral re-growth 

of a mixer or the transient behavior of DC-DC converter circuit.

In this research, a rectifier circuit is simulated to show the comparison between the adaptive 

time step control algorithm and the traditional MPDE method. The circuit is given in Figure 

4.7. There are two unknown variables ( x  and v L ) in this circuit. Here, x  represents the diode 

state variable and v i  represents the output voltage. The equations of the circuit are given by

(C
Vp(t)

+

R < vL

Figure 4.7: TD-ENV simulation

) =  v p ( t )  -  v d ( x )  -  VL =  0
(4.6)

f 2 ( v L , x )  =  i d ( x ) - ^ - C ^  =  0

where Vd(x) is diode voltage, v p  is the pulse function with 2 V or 0 V output, and i d i x )  is diode 

current. The PDE derived from Equation 4.6 is given by

V p ( t i , t 2 ) -  Vd ( x )  -  v L =  0

+  & )  = 0.

Applying the BE rule to Equation (4.7) gives the following discretization

(4.7)

(4.8)
^ p ( ^ l i )  ^2i )  V d iJ  VLi,j  6

_ v t i . j  _  (-1 ( ( v L i , i - V L i - l , . i )  , ( v L i , . i - V L i , . j - l ) \  _  n 
ld i , j  R  ^ \  hi h i  J ~

where i  and j  represent the index value in the and t 2 directions, respectively. The number 

of grid points used in the t 2 axis is represented by j m a x - The periodic boundary conditions for
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the circuit are

VL i , - l  VLi,jmax

% i , - 1 X l,jma.x

These boundary conditions are used for non linear Equation (4.8) to find the root using Newton 

method.

Figures 4.8 and 4.9 show the simulation results of the output voltage response and the diode 

state variable response respectively. It can be observed that the diode state variable presents 

large variations in both time scales.

Output Voltage (vL)

1.2 

1

0.8 
0.6 
0 .4

0.2 
0

Figure 4.8: Load voltage vs. Time
Diode parameter (x)

Figure 4.9: Diode state variable vs. Time

The traditional time step control method used only the MPDE formulation and LTE [37], 

however the proposed model used the adaptive time step control with MPDE formulation and
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‘coarse’ model. Traditional step control uses only the truncation error to determine the next 

time step.

The comparison between traditional MPDE simulation and the proposed time step control 

algorithm is as follows: Accepted time point means, that the LTE is acceptable. The proposed

Table 4.1: Traditional vs. Proposed model computation time points

Accepted Rejected Total

Proposed time step control algorithm 354 76 430

Traditional MPDE 581 324 905

method have less than half FDTD computations than the traditional method. The simulations 

also show that few time steps are rejected when compared to traditional time step control 

algorithm.
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4.3 The Converter C ircuit as a Controlled System

A boost converter is an electronic power supply that adjusts the voltage level from a given 

DC source to provide power to a variable load at a higher (fixed) DC level. Coupled with 

this basic operation is other functionality involving regulation and ripple control. Switching 

regulators offer higher efficiency than linear regulators. A switching regulator is a circuit tha t 

uses an inductor, a transformer or a capacitor as an energy storage element to transfer energy 

from input to output in discrete packets. Feedback circuitry regulates the energy transfer to 

maintain a constant voltage within the load limits of the circuit. The basic circuit can be 

configured to step up (boost), step down (buck), or invert output voltage with respect to input 

voltage.

&
Unregulated

Boost
Converter Regulated

Duty cycle 
contro 1-Switch PI

Controller

Comparator / /
t

!
f

/
// t/ /

/

//
Switching
frequency

Min,

Load

ref

Figure 4.10: Converter Circuit Block Diagram

In order to maintain a constant output voltage under varying load conditions, feedback must 

be introduced as shown in Figure 4.10. This feedback must ultimately be able to directly affect 

the pulse width of the signal fed into the switching control signal Dcon. By varying this pulse 

width, the switch can adjust to the load conditions providing more power for a larger load and
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vice versa. The primary components of the converter circuit are shown in Figure 4.10.

• B oost C onverter: The boost converter converts an input voltage to a higher output 

voltage. Boost converters are used in battery powered devices, where the electronic circuit 

requires a higher operating voltage than the battery can supply, e.g. notebooks, mobile 

phones and camera flashes. It is important to first provide a general description of how it 

works. In Figure 4.11, when the switch closes, the voltage across the inductor is Vin. In 

this research, since an ideal switch and an inductor are not available, there will be some 

voltage drop present in the inductor internal resistance and the switch. The inductor 

current will ramp up linearly when the switch is closed. When the switch opens, the

Figure 4.11: Boost converter

current flows through the diode into the capacitor and the load. When switch is open 

and the capacitor is charged, it will supply current to the load.

In a steady-state operating condition the average voltage across the inductor over the 

entire switching cycle is zero. This implies tha t the average current through the inductor 

is also in steady state, as shown in Figure 4.12 for continuous mode. When the switch is 

‘ON’, VL =  VIN and when the switch is ‘O FF’, Vl = Vin — Vo for a constant VQ. The 

average  in d u c to r v o ltag e  in s te a d y  s ta te  m u s t e q u a l zero,

ViNton — —{Vin  — Vo)t0f f  (4.9)
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kVj, D i s c o n t i n u o u s  M o d e C o n t i n u o u s  M o d e
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max max_
out- U-------1
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Figure 4.12: Discontinuous and Continuous mode boost converter

For the continuous mode steady state condition, the following equation

V0 = [1/(1 -  dutycycle)]VIN, (4.10)

applies if there are no internal resistances present in L, C, switch and diode. Also the 

dutycycle = is considered to formulate Equation (4.9) with switch ON time ton and 

switching period Ts.

If an ideal situation with continuous conduction mode is considered and Vin is chosen to 

be 6 V  to achieve the 12 V  output, a duty cycle equal to 4 is required. For the simulation, 

a switching frequency of 100 KHz is used. In this research, this duty cycle is regulated 

to obtain the appropriate output voltage on the load side to minimize the error through 

feedback.

A distinction is drawn between discontinuous and continuous mode depending on whether 

the inductor current I i  reduces to zero during the off-time or not. In discontinuous mode,
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the inductor current I i  will go to zero every period. When the inductor current becomes 

zero at t2 in Figure 4.12, the voltage Vds jumps to the value of Vin. This is because 

in this case VL =  0. The drain-source capacitance is in parallel with the diode-junction 

capacitance and forms a resonant circuit with the inductance L. This is stimulated by the 

voltage jump across the diode. The voltage Vds then oscillates and fades away. However 

in this research the equation formulation is not separated as continuous nor discontinuous 

modes. For the simulation, general formulas for switch ‘ON’ and ‘O FF’ conditions are 

produced and the difference equations are solved using nonlinear equation solver.

For the simulation, the larger the value of the inductor L, the smaller the current ripple 

SIl • Therefore L  should be chosen to achieve an adequately small 61^. With a larger 5Il , 

the voltage ripple of the output voltage Va becomes clearly larger while the physical size 

of the inductor decreases marginally. The switching losses of the transistor also become 

larger as Fs increases.

• C o m p a ra to r: The output voltage from the boost converter is compared with a set 

reference voltage Vref  by means of a differential amplifier to produce an error voltage 

Verr = Vref  — Va. Here the output voltage Va across the boost converter load is fed into 

the inverting side of the differential amplifier shown as XI on Figure 4.13. The non­

inverting side of the differential amplifier is fed by a 12 V DC reference voltage Vref as 

shown in Figure 4.13. An ideal op-amp input difference voltage is zero, V_ = V+, and the 

inputs draw no current.
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Ru 10 FQ

X1

Figure 4.13: Differential Amplifier

• P I  C on tro lle r: The error voltage VeTr from the differential amp is fed to a PI controller. 

The steady state error cannot be eliminated by a P controller alone. The purpose of 

the integral gain is to eliminate the steady state error. The main concept of the PI 

controller algorithm is to cancel the largest time constant of the circuit, and to introduce 

an integrating effect to the circuit. The controller will respond proportionally to any 

change in Verr by producing an output signal that reflects the rate of change of the input 

signal. From the reference model shown in Figure 4.14, the transfer function for the PI

§rr

C=^>

lOOlrfl 
—W v -------

■ f t , ,

10
- V A r -

* 3 1
14

c 2l 1 0 0  nF

HI—
R22 10 f q

- V v V

Ki

S77 R-z l£ Q  
 W V -------

*41 10 K l
-AW—

A43 5
—w \ - - - - -

10
11

V9 = - ^ V m V„ = - - ^ — )v„dz+V„(Q)  
* 2 1  21 0

can -q v n 1/
v42

Kp

Figure 4.14: PI Controller Circuit with Summing Amplifier

controller can be derived using a proportional gain K p from X3 and an integral gain K t
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from X2. K p and K z are

k ,  = t t  (411)■0-31

Ki = 1T c - -  <412)

Applying Verr into the proportional controller gives the output Vg

K9 =  - K pVerr. (4.13)

Applying Verr into the integral controller gives the output Vl7

ft2 

'tl

The outputs Vg from Equation (4.13) and V17 from Equation (4.14) are fed into the 

summing amplifier to produce,

v 17 =  - K i  r  Verr dr  +  y17(ti). (4.14)
Jt\

Vam = " (iiO ' ̂ ~K r>V^  -  ) ■ ( ~ Ki / 2 V*"dT + V17̂ ) (4-15)
where was chosen to be k- A new state variable U is introduced such thatK41 2

u  = J \err dr ^  = VtrT. (4.16)

Substituting Equation (4.16) into Equation (4.15) gives

Vcon = ^ V err + * U .  (4.17)

The state variable U can be solved by including it to the nonlinear equations. This will 

be discussed in Section 4.4.

The duty cycle controller parameter D con can be written as a function of Vcon as follows

D— k +  (  M «zs J -  Minsw  )  ' ~ K)  +  T U)  ( 4 ‘ 8 )

where Max$w  and M in Sw are the maximum value and the minimum value of the saw­

tooth wave form used in comparator circuit in shown in Figure 4.10. This duty cycle 

controller parameter Dcon in Equation (4.18) will be discussed in detail in Section 4.4.
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• Sw itch  - P u lse  function : Generally two sets of equations are used in a DC-DC converter 

circuit formulation, they are Diode/Switch ON state and OFF state model equations. 

Instead of two sets of equations, this study uses a switch function (Pulse) to have one 

set of equations for the converter circuit. This switch function takes an im portant roll 

in convergence. The switch transition is defined using one resistor which varies from 10 

to 10 MQ. This steep transition on the resistor value gives convergence problems 

during the simulation time. To improve convergence, the following exponential behavior 

is introduced in the switch function instead of a linear rise time form Ron to R0/f.

ek^  -  1 
ek — 1y  = s —r- (4.W)

where tr is rise time, y varies from 0 to 1, k > 1 and for the simulation it is chosen to be 

k =  20. Then Rs is calculated by summing the Ron and (Raff — R0n)y- Rs is the output 

resistor which varies from 10 mQ. (Ron) to 10 M fl (R0/f).  The exponential behavior in 

the switch function improves convergence because it produces a continues smooth change 

in the switch resistor. As a results this exponential behavior is also introduced during the 

fall time, that can be seen at the initial time of the Figure 4.15.

Figure 4.15 shows a complete switching cycle when the constant duty cycle is On 

this figure, the Y  axis is in semi logarithmic scale to show the clear difference from Rm 

to Raff  transition for Rs. The switch function without the exponential behavior gives 

convergence problems starting from the beginning of Ron transition.
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Figure 4.15: Switch with a duty cycle of |  for a period of T2

4.4 T D -E N V  and ODE C icuit Form ulations for th e B oost  

Converter

The TD-ENV is based on a time domain scheme, in which the nonlinearity is caused by the 

switch and the diode and it is resolved by time domain integration. In this research, the set of 

nonlinear equations are solved using the t2 time axis for every time point in the t 1 time axis. 

The converter circuit given in Figure 4.16 is considered to formulate the circuit equations,

• application of KVL in loop 1 gives

F\ =  -  iLrSL - V d - V 0 -  = 0 (4.20)at

• application of KCL in Node 2 gives

F2 = -^-{Vd +  v 0) ~\~ id ~  iL = 0 (4-21)J~is
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Loop

Node 3Node 2

Duty Cycle 
Control

0—

Switch

j  Loop 4

Figure 4.16: Converter Circuit

where R s depends on the switch function. The switch function takes two arguments; D con 

and current time point in f2 (* x h2, z € (1 ..N), where N is grid size). The duty cycle 

Dcon is given by

D con =  ^  KpV'e,.,. +  Kj J  Verrd,T (4.22)

where Kp is the proportional gain (Kp =  2(Maxs* lMinsw)) and K; is integral gain (K; = 

2(Maxstf-Mmstv)) “  discussed in Equation (4.18).

application of KCL in Node 3 gives

J? -  ' -  V —  -  -  n3  ' o  J j .r L d t
(4.23)

application of KCL in Loop 4 gives

rsc  at
(4.24)
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Equation (4.16) for the set of nonlinear equations gives

F$ — — —  Vref  +  14 — 0 (4 -25)

where 14rr =  Vref  — VQ and U =  J  Verrdr.

The discretizations used in the ODE formulation are given by

diLj _
dt h-2

dV-i =  (4.26)
dt ht“2

dU± _  (Uj-Vi-i) 
dt h.2

where h2 is the time step, Ut, iLi and Vc. are current state values and £/»_!, and V4i—1 are 

previous time point state values.

The discretizations of MPDE on slow axis t\ and fast axis t2 are as follows:

• On slow axis t i :

d t \  h i

=  ( + ,- + ,-0  (4 .27)
d t \  h i

d U3 =  (U j - U j - i )
d t \  h i

• On fast axis t2 using BE:

&t2 ^ 2

avCJ_ = (+-+,_!) (4 2 8 )
d t 2  / l 2

dU% ^  (U i-U x-i)
&ti  h i

• On fast axis t2 using 3-point rule:

diLj (+,+i
dt2 2 /l2
Wei _  (vcj+1- v -ci _ 1) ( 4  2 9 )
d t2 2 h2 x '

dUi  _  (Ut+i - U i - i )
dt2 2 /l2

The above ODE and MPDE formulations (Equations (4.26 - 4.29)) are used to simulate the 

circuits in this research. In MPDE formulation, BE is used on ti axis and the 3-point rule is

used to formulate the nonlinear equations in FDTD technique on t2 axis. The 3-point center

differential formulation gives more accurate results than the regular BE rule.
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4.5 T im e M arching Sim ulation o f the B oost C onverter

In this research, the simulations of converter circuit are performed as follows:

1. M atlab -S im ulink : In Matlab, variable time step with ODE15S(STIFF/NDF) integra­

tion method is used for the simulation. All other available integration methods in Matlab 

couldn’t simulate this circuit due to the stiffness of the circuit. The disadvantage in 

Matlab simulation is that it takes high storage. The simulation results are given in the 

Appendix A.6 .

2. S P IC E : In SPICE, the gear integration method is used. SPICE does not accept any step 

size larger than 20 ns. This leads to many disadvantages on SPICE. One of them is high 

memory requirements. Therefore, the spice code is simulated on a large memory system. 

Figures 4.17 and 4.18 show the output voltage (V0) and error voltage {Va — Vref ) for the 

SPICE simulation. From Figure 4.17 it can be observed that the peak value of VQ is at 

15.93 V. The rise time of the pulse function is 3% of T2. However the pulse function gives 

16.38 V for the same circuit and for the same rise time.

3. O D E in O ctave: The Euler method with the ODE technique is used for the simulation in 

Octave. The root finding algorithm in Newton-Raphson method re tries many time steps 

to get the most accurate solution. All these trial time steps are considered as rejected 

time points. The number of rejected time points play a vital roll in convergence rate. The 

convergence rate is defined as the reciprocal of the number of rejected time points. Faster 

convergence means, tha t number of rejected points are less. The convergence rate of the 

Euler method is smaller than the convergence rate of the trapezoidal method. To achieve 

a good approximation tolerance of 1% in the BE and trapezoidal methods the following 

time steps can be used:

• h ■ —"'mm  (n)220
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• h -  12"■mm — (n)2i5

where n  is number of time points used in periodic t2 axis. This is observed through trial 

and error. From the hmin differences, it can be concluded tha t the Trapezoidal method 

gives better and faster convergence for the proposed DC-DC converter circuit. This hmin 

is not acceptable because it is too small. If a small time step is chosen, the simulation 

will take too long to finish. As a result, the acceptable LTE tolerance is increased to 

5%. Figures 4.19 and 4.20 show the output voltage (V0) and error voltage (Va — VTef)  for 

Octave code ODE simulation. The peak value of V0 for ODE in Octave varies with the 

rise time of the switch function. It can be observed in Figure 4.19 that the variations in 

Va during 0 - 1  ms require a smaller time step than during 1  ms - 50 ms.

Table 4.2 gives the peak values and the convergence rates of V0 for various rise times of 

the switch function. The acceptable LTE of 5% and simulation time are the same for all 

rise times. When the rise time is reduced, the LTE gets larger and the convergence rate 

Table 4.2: Peak values and Convergence rates of Va for various switch function rise times.

3% of T2 5% of T2 7.5% of T2

peak value 16.38 16.08 15.62

Time taken (convergence rate) 12674 s (79 (jt) 10361 s(97 n) 9452 s (106 fi)

gets smaller or the nonlinear equations need extremely small time step to converge with 

an acceptable LTE. This behavior is due to the abrupt switching transitions from 1  Mf2 

to 0.01 mfi. At the boundaries of this transition time, the simulation requires extremely 

small time step such as ôr convergence-

Figures 4.21 and 4.22 show the inductor current (ii)  and the diode state variable x  

output for Octave simulation. It can be observed tha t during the start time (0 to 1  ms) 

the inductor current becomes zero and the diode state variable: X experiences an abrupt 

variation.
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In the simulation, the DC-DC converter circuit is investigated using different state vari­

ables. When the number of state variables are reduced to four from five, such as [ii, X ,  

V0, Vc] from [ii, X , V0, Vc, U], the computation time is reduced as well. For the four state 

variable representation, the trapezoidal integration method is used to obtain the response 

of the integral controller. The integral state variable U is an important unknown state 

variable, because it depends on the time step. There are some computation time difference 

between Euler and Trapezoidal integration methods, but they are not significant.
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Figure 4.17: VQ vs. Time
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F ig u re  4.18: Verr vs. T im e
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Figure 4.19: V0 vs. Time
ODE: Verr vs. Time
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Figure 4.20: Verr vs. Time
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O D E :  il v s . T im e
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Figure 4.21: IL vs. Time
ODE: Diode X vs. Time

0 .0 0 5  0.01 0 .0 1 5  0 .0 2  0 .0 2 5  0 .0 3  0 .0 3 5  0 .0 4  0 .0 4 5  0 .0 5
Time (Sec)

Figure 4.22: Diode X  vs. Time
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All the parameters are kept the same for all three simulations and an acceptable LTE 

of 5% is considered for the results. The settling times for MATLAB, SPICE and OCTAVE 

simulations are considered to be 50 ms. The over-shoot peak values of the simulations vary 

due to the nonlinear characteristics of the switch function. The MATLAB simulation results 

are not comparable with the other two simulations because MATLAB uses the ideal circuit 

components.

SPICE and ODE Verr Vs. Time
12

SPICE Verr -
O D E  V err -

10

8

6

4

2

0

■2

4

■6
0 0.005 0.01 0.015 0 .025 0.030.02

Time (s)

Figure 4.23: V„r comparison between SPICE and OCTAVE

Figure 4.23 shows the SPICE and OCTAVE simulations for Verr as shown on figure legend. 

Although they both show similar characteristics, the acceptable LTE for ODE in Octave is 

5% but for SPICE, the LTE tolerance range is less than 1% and minimum time step is 20 ns. 

The LTE in SPICE can not be increased without experience convergence problems. Another 

major difference is the control circuit components, such as operational amplifiers and switches 

are different in SPICE and ODE simulation. The simulation codes for SPICE, MATLAB and 

OCTAVE are given in the Appendix B.
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4.6 Sim ulation of the B oost Converter using T D -E N V

ODE and TD-ENV methods are based on the same nonlinear Equations (4.20 - 4.25). The 

TD-ENV method solves the set of nonlinear equations for the full switching period of T2  along 

t2 axis with N  grid points.

On the proposed TD-ENV method, an adaptive time step is used on the ii-axis and fixed 

grid on the f2-axis. In this research, the Euler integration is used in H-axis and 3-point rule 

and/or BE method is used in the f2-axis. The advantage of the TD-ENV is that it receives less 

computation time and storage for all the circuits simulated in this research (except for the PI 

controller circuit, as it will be seen). To avoid the convergence problem and high LTE during 

the transient time on PI circuits, the interpolated ODE results are used as initial condition in 

t2 direction [4], However from the simulation it is observed tha t the use of ODE results do not 

improve the computation time. This is because the duty cycle Dcon in the PI controller changes 

each time point of H direction, where step size is kept in the minimum. A small change in Dcon 

produces a huge difference in the switching resistor and takes longer time for the simulation. 

For PI controller, Dcan oscillates in a different frequency and includes an other widely separated 

time scale to the system. A minimum time step of ^  is chosen for the complete simulation to 

reduce the higher LTE. If a time step smaller than j* is used, even smaller LTE is achieved. 

However for the smaller time step, TD-ENV method takes longer than the ODE method.

To improve simulation time and reduces LTE in P controller, small time steps are considered 

during the transient and large time steps are considered during the steady state.

The steps followed to obtain a better convergence rate and to reduce LTE are summarized 

as follows.

• An exponential behavior is considered during the fall-rise transition time in the switch 

function as explained in Section 4.3.

• Reduced the number of state variables in the circuit and increased the grid size in the t2

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



axis.

• Relaxed the acceptable LTE during the simulation time.

• Used interpolated ODE results [4] for the first 2 cycles in t2 direction to have better LTE 

and convergence rate.

Two cases are considered for the TD-ENV simulations, and they are:

1. Circuit with fixed load

2. Circuit with variable load

4.6 .1  C ircu it w ith  F ixed  Load

• A pp lica tion  O f C o n s tan t D u ty  C ycle C on tro l: Here the converter circuit with fixed 

load is simulated using constant duty cycle Dcon control of Where Dcon is applied to 

the switch function of the converter circuit as shown in Figure 4.16. The fixed load is 

equal to 4 fi, the inductance is 10 uH, the internal inductor resistance is 10 mfl, internal 

capacitor resistance is 20 mfl, and the capacitor is 200 uF. Table 4.3 shows the methods 

used and the computation times for constant duty cycle. On this table, the ODE method 

uses one time variable which is discretized using BE. Traditional TD-ENV uses two time 

variables which are discretized using BE. However this method doesn’t use the complete 

proposed control. Traditional method only adjust the time step size using dichotomy, 

where dynamic tolerance are not adjusted as discussed in Chapter 3. TD-ENV methods 

with BE and 3-point are discretized using BE and center derivatives respectively, and 

the proposed adaptive time step control is used in the t x time direction. It is observed 

that the proposed method TD-ENV is almost four times faster than the ODE solution. 

Figures 4.24 - 4.27 show the simulation results of output, state variable representation,
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Table 4.3: Converter circuit with constant duty cycle control, using 40 grid points in T2

method used
Rejected

points

Accepted

points

Total points 

(Time)

ODE BE N/A N/A 10000+ (9452 s)

TD-ENV 

Traditional time-step controller
BE (LTE only) 108 364 472 (2641 s)

TD-ENV with BE 

Proposed time-step controller
BE 15 137 152 (683 s)

TD-ENV with 3-point 

Proposed time-step controller
Center derivatives 12 106 118 (557 s)

inductor current and time step variation. For simulation, hmax = 500T2 and hmin — ^  

are used as step limitations.
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Figure 4.24: VQ vs. Time without Feedback Controller
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Figure 4.25: X vs. Time without Feedback Controller
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Figure 4.27: Time step size vs. Time points without Feedback
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• Application o f P  Controller

The P controller is applied on the converter circuit. The maximum time step for this 

simulation is 5 OOT2 . When the simulation is performed for 30 ms, the initial transient 

was not visible. Therefore a semi-log scale is used to show the time step.

Figures 4.28 and 4.29 show the output voltage (V0) and inductor current (iL) respectively 

for OCTAVE code TD-ENV simulation using a P controller. It can be observed tha t 

the P controller produces a steady state error on Figure 4.28. Table 4.4 compares the 

computation time for this P controller circuit. Figure 4.31 shows the adaptive step size 

for initial transient. After 3 ms the step size is increased very much which can be seen at 

the end time points of the Figure 4.31.
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Figure 4.28: Transient response with P controller. V0 vs. Time

Figure 4.29: Transient response with P controller, i i  vs. Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-2
- 4

-6
-8

-10

-12

-14

-16

0.8

2.50.6

X 1 0 '5 0.4
X 10'0.2

0.5
0 012(s) I1(s)

Figure 4.30: Transient response with P controller. State variable X vs. Time
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Figure 4.31: Transient response with P controller. Time step size vs. Time
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• Application PI Controller:

A P controller alone cannot remove the steady state error. Therefore a PI controller is 

applied on the converter circuit to remove the steady state error of V0. The time step 

on Figure 4.32 is kept at a minimum value of ^  most of the time during the simulation, 

which leads to a long simulation time. If the time step continues to behave with this 

minimum time step, the PI computation time gets as high as N 3 x ODE simulation time. 

At every time point along t l  direction, proposed model will simulate N X N  grid points 

of FDTD problem. For the worst scenario lets consider the minimum step size all along 

the t l  axis, then simulation will repeat N 2X N  more computations than ODE simulation 

time.

PI controller: Time-step size Vs. Time
6e-05

5e-05

4e-05

3e-05
CL

2e-05

1e-05

20 40 60 80 100 120 140 160 1800

Time points

Figure 4.32: Time step size vs. Time with PI controller

Figure 4.33 shows the PI controller duty cycle variation. Zoomed Figure 4.33 shows an 

other exciting frequency in the system. There a sinusoidal variation in duty cycle control 

can be observed. The sinusoidal variation in Dcon creates a huge difference in switching
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Figure 4.33: Dcon oscillation for PI

Table 4.4: PI controller computation times for various methods

Integration method used P time (s) PI time (s)

SPICE Gear 850 1400

Matlab Variable time step ODE15S 1550 2110

ODE BE 30942.11 33701.99

Traditional TD-ENV BE 11962.11 -

Proposed TD-ENV BE with center derivatives 3612.81 -

resistor R s for adjacent time points in the t\ scale. This produces a large LTE and keeps 

the time step at minimum size.

Table 4.4 compares the computation times for the simulations with P and PI controllers. 

The total simulation time is 30 ms. A LTE of 5% is used for all simulations. For SPICE, a 

time step of 20 ns is used as a minimum time step. SPICE couldn’t  finish the computation for 

time steps greater than 20 ns. From the results in Table 4.4, it follows that the proposed model 

gives better simulation times than the other methods.
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4 .6 .2  C ircuit w ith  Variable Load

• A pplication  o f P  con tro ller: The next set of simulations is made for a variable load 

with a P controller. The time dependance of the variable load is shown in Figure (4.34). 

The load resistor is given by

R i  =  4 +  2s m ( 27TT1t 1) ,  ( 4 .30)

where rx is 5e-3.

Variable Load: RI = 4 + 2 sin(2 pi 5e-31)

5.5

6 4.5c.O
«o>c(0c.o•ono_i 3.5

2.5

0 50 100 250150 200
Time (s)

Figure 4.34: Variable Load

Figures 4.35, 4.36, 4.37 and 4.38 show the transient simulation results for output voltage, 

inductor current, diode state variable and time-step size respectively. The continuation of 

this simulation is shown for full simulation time in Figures 4.39-4.42. Figure 4.42 shows 

the adaptive step size on y — axis, where maximum allowed step size is 20 s. The front 

moving problem in the diode state variable and the discontinuous mode can be seen during 

this time on Figure 4.37. During this discontinuous mode time, the switching resistor (R s) 

is plotted and made sure that the R s doesn’t  have any change other than t on and toff  

transitions during T2 time period.
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Table 4.5: Total computation time for the boost converter with P controller, variable load and 

40 grid points

Integration method Accepted Rejected Total simulation for 250 s

(Tol: 5%) points points points (time s)

Traditional BE 541 374 915 points (54,130 s)

Proposed Euler with 3

point rule in T2 236 13 249 points (11,660 s)

Table (4.5) shows a clear advantage for the proposed method. The CPU time for a time- 

marching simulation would be too long to be practical. The proposed model is almost 

six times faster than the traditional method. ODE implementation is not feasible for the 

above table comparison, because it will take a long time and tons of points to complete 

the simulation. The boost converter with P controller settle around 9.5 V, and it has a 

constant steady state error. However in PI controller the output Voltage settles exactly 

at 12 V, with small ripple due to switching and output capacitor rsc  and C. The integral 

controller removes the steady state error as discussed in Section (4.3). The proposed 

method gives better results for a constant duty cycle system, P controller system and 

variable load with P controller system. Figure 4.42 shows the full scale of time step 

control for variable load using P controller. During the initial transient time, step size is 

less than 6 x 10~6 as shown in Figure 4.38. After that time step size is increased gradually 

up to 20 s as shown in Figure 4.42. More grid points imply more points during the fall- 

rise edge on every switching period during our simulation. The fall-rise time on every 

switching transition has sharp changes and this produces convergence problems during 

the simulation.
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Figure 4.35: Transient response of circuit with variable load using a P controller. V0 vs. Time

Figure 4.36: Transient response of circuit with variable load using a P controller, i i  vs. Time
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Figure 4.42: Response of transient and steady state for the circuit with variable load using P 
controller. Time step vs. Time
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4.7 Com parison of in itial conditions in Tim e-M arching  

and T D -E N V  m ethods

In TD-ENV simulation, the first few switching results are way off from the ODE simulation 

results. This is because on TD-ENV simulation, a column of zeros is used as initial condition 

for the first two periods in the t2 direction. This gives improper extrapolated results a t the 

beginning of the simulation. To solve this problem, TD-ENV method uses the first 2 periods 

of the ODE result and interpolates them to get the initial condition for TD-ENV simulation 

where the rest of the parameters and initial conditions of ODE and TD-ENV are kept the same. 

This improved the LTE during transient response.

MPDE ResultsODE Results

Figure 4.43: Interpolation method to determine initial conditions for TD-ENV

The comparison between the results of time-marching and TD-ENV are mapped to one 

time dimension, as discussed in Section 4.1. On the edge of switching transition there are some 

glitches due to the ‘switching’ and linear interpolation.

Figure 4.43 shows the interpolation method used to formulate the initial conditions for TD- 

ENV simulation. If the the time step is assumed to be same in t 1 direction as in switching 

period T2, then the elements in the vertical line at t x = T2 can be found by linear interpolation.
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4.8 C onclusions

The bivariate form using TD-ENV and MFDTD can require far fewer points to represent a 

signal than a set of samples, yet it contains all the information needed to recover the original 

signal completely [1].

The MFDTD and TD-ENV methods are used to simulate a rectifier circuit and a converter 

circuit respectively. It is shown how the TD-ENV method is used for transient simulation in 

a DC-DC converter circuit and the MFDTD method is used for steady state simulation in a 

rectifier circuit.

Section 4.5 shows the ODE output results from SPICE, MATLAB and OCTAVE. They 

agree within some tolerance. However, they are not superimposed on each other, because the 

models are not exactly equal and the tolerances are different. Section 4.5 explains the TD-ENV 

method using an adaptive time step, which gives better computation time and storage than all 

the other traditional methods discussed in this Chapter for transient simulation. However, the 

PI controller circuit experiences a higher LTE and convergence problem due to fast variations 

and oscillations in the duty cycle Dcon as shown in Figure 4.33. The duty cycle control has 

an oscillation in Figure 4.33 is continuing throughout the simulation, that makes the time-step 

to be minimum all the time. As a result we don’t  have good computation time during the PI 

simulation.
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Chapter 5

Summary and Future Work

5.1 Sum m ary

The TD-ENV method is used with an adaptive time step algorithm to simulate a truly nonlinear 

circuit in time domain. Possibly one of the most important contributions of this work is the 

time step control algorithm for stiff circuits.

The TD-ENV and MFDTD methods solve transient and steady state respectively of a circuit 

particularly in the case where signals at two very different frequencies are used. However, it is 

impossible to declare any method superior. For a particular problem, one method can give a 

better results than the other and in another example same method can perform poorly.

The main drawback of the MFDTD method is the large size of the matrix. To increase the 

accuracy of the simulation, the grid size can be increased. As grid size increases, matrix size 

and computation time also increases. Sparse matrix properties can be used to remove some 

computation time. Therefore, the details of matrix solving are crucial. Sparse matrix solving 

algorithms should be used in MFDTD method.

The main drawback of the TD-ENV method is tha t it requires a small step size during the 

beginning of transient. Each time point in the true time axis 7\, the nonlinear equations are 

solved using Newton iterations. The larger the circuit size and number of unknown variables,
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the larger the number of nonlinear equations for the system. For example, for a circuit with 

k unknown variables and N  grid points at each T2 switching cycle, the number of nonlinear 

equations that has to be solved in the Newton iteration is k x N.

The TD-ENV method has 0 ( k N )3 relationship between the grid size and the computation 

time, when dense matrices are considered during simulation. Nevertheless, the TD-ENV method 

gives faster computation than ODE method for a system with widely separated time constant 

values in it.

Reference [4] shows the importance of the initial condition during a transient simulation. 

An interpolated ODE results are used as initial condition for TD-ENV method, as discussed in 

Chapter 4. When the ODE results are applied as initial condition in the TD-ENV method, the 

TD-ENV method gives a faster computation time than a column of zeros as initial conditions 

for all the variables.

5.2 Conclusion

Stiff circuits have extreme range of operating frequencies or time scales, which are difficult to 

simulate. The MPDE formulation gives faster computation when there are widely separated 

time constants. MPDE formulation is the solution to the problem of the transient analysis of 

circuits with widely different time constants (example: thermal-electrical). On this thesis the 

system of ODE’s that describe a circuit is converted into a system of PDE’s using multiple time 

variables, and solved through difference equations in MFDTD and TD-ENV.

The rectifier circuit gives a promising computational time for adaptive time step control 

a lg o rith m . T h e  tr a d itio n a l m e th o d  is tw ice as slow th a n  th e  p ro p o sed  a d a p tiv e  tim e  step 

model, as shown in Table 4.1. The proposed TD-ENV approach is also faster for the DC-DC 

converter circuits, except the circuit with PI controller because of the duty cycle oscillations. 

Another problem in this circuit is the sharp transition on the switching. Even though an
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exponential behavior is used on the switch function, the sharp transition still exists and gives 

convergence problems. During this transition time, the LTE is very high, and to compensate 

this error the adaptive time step algorithm takes the smallest time step, which increases the 

simulation time. Due to the smallest time step and Dcon oscillation as discussed in Section 4.6, 

computation time is too long for a PI controller system.

The proposed model has to be modified to handle a PI controller, because it gives higher 

LTE on the transition edge of the switch, even with a small time step. The LTE is computed 

using the difference between the extrapolated value and the nonlinear solution, as discussed in 

Section 2.5. To find an accurate LTE for the proposed method, more research can be done in 

future.

The Dcon oscillation shown in Figure 4.33 produces a moving front, mainly in the diode state 

variable during the simulation. This causes a large value in the estimated LTE tha t reduces 

the time step. Due to the presence of the PI controller, Dcon oscillates close to the switching 

frequency and the time step is kept as the minimum value during the simulation time, which 

is shown in Figure 4.32.

5.3 L im itations on M F D T D  and T D -E N V  m ethods

• M F D T D  m e th o d : Computation time is high, however this is a popular method to 

find steady state solution for Electro Magnetic circuits. In this research, the MFDTD 

method is tested by choosing various grid size for more accuracy. The higher the grid 

sizes, the higher the accuracy. Higher accuracy will superimpose ODE and ’MPDE to 

ODE’ comparison plots on each other as shown in Figure 4.5, however it will take long 

computation time. Also, this method can only be used for periodic and quasi-periodic 

signals to find the steady state solution and not for transient solution.

• T D -E N V  m eth o d : The system must have a periodic excitation to analyze TD-ENV
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method. Furthermore, the system must have widely separated time scales on it.

5.4 Future Work

• Most of the topics treated in this research are left open to new research. One possible 

topic for future work is to use the adaptive grid in t2 axis for faster computation in TD- 

ENV method. This would allow the simulation to have less points on t2 axis, which will 

reduce the computation time by a large factor. One possible method to achieve adaptive 

griding is called Adaptive Base Functions (ABF) given in [8].

• Another future work is the implementation of sparse matrix techniques during our sim­

ulation [39]. Sparse matrices are a basic tool of computational science and engineering. 

Sparse matrices are a special class of matrices that contain a significant number of zero­

valued elements. In this research, the Jacobian matrix in Newton iterations is a sparse 

matrix, but it is treated as a dense matrix by the simulation code. This sparse matrix 

property can be used to speed up the simulation.

• The PI controller DC-DC converter circuit experiences more convergence issues and high 

LTE. Two approaches can be considered to overcome these problems. The first is to use 

a different methods during each segment of the simulation time and the second is to use 

three time scales. Due to the limitation of time, these are not executed in this thesis. First 

approach is to formulate the circuit equations to improve convergence rate and reduce 

LTE by using ‘ON’ state model and ‘O FF’ state model switch equations. This will remove 

the transition edge on the switch function and may give better simulation results. Also, 

different methods can be used during the simulation time, such as ODE for the initial 

transient and then TD-ENV for the rest of the simulation time. From the simulation 

results it is clearly observed tha t there are convergence and LTE issues, during the start 

time to settling time. However, after settling time, there was no changes on the circuit to
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use TD-ENV with large time steps. The computation time can be improved also by using 

three time scales, one for switching (t2), one of PI controller oscillation (t3) and one for 

the real time These techniques will improve the adaptive time step algorithm and 

give better computation time even on PI controller system.
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A ppendix A

Time Dom ain methods: T im e-step

A .l  F D T D  in EM  circuits

The FDTD algorithm provides a means to numerically solve Maxwell’s equations in the time 

domain [38]. This technique is mostly used in Electro Megnetic (EM) circuit simulation. FDTD 

calculates the E  and H  fields within a gridded computational domain using grids tha t are small 

compared to the smallest wavelength and model feature. Therefore, far fields and some models 

with with extended features such as wires may not be applicable due to large domains with 

excessive computational times.

A .2 W avelets m ethods

Wavelets have dominant applications in signal processing and image processing, such as smooth­

ing, recognition of features and compression. Wavelets offer a means of approximating functions 

that allows selective grid refinement [33].

I l l
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A .3 N um erical Solution of D ifferential Equation

A differential equation (DE) is an equation involving an unknown function and its derivatives. 

It can have one or more variables. A DE can be either linear or nonlinear. Generally a linear 

equation is linear with respect to the dependent variable (y) and its derivatives. Def. of a 

linear DE is: if (a) every dependent variable (y ) and every derivative involved, dny / dx n, occur 

to the first degree only, and (b) no products of dependent variables, and/or derivatives, and/or 

nonlinear function occur [45].

Example of Non-linear partial 

differential equation

Example of Linear partial 

differential equation

S + 5 ( f S ) 3 +6!, =  0 6 ^ f  +  2 f  +  x =

/ d y \ ^  _  d2y 
\ dt ) dx2

dy _ d2y
dt dx2

f  = l°9{y) & + ! /  =  «
An Ordinary differential equation, ODE, has the form of y' = f ( t , y ) ,  where d f / d y  is a 

non-singular matrix. ODEs are encountered when dealing with initial value problems. The 

order of the differential equation is the order of the highest derivative of the unknown function 

involved in the equation. An ODE is a relation which involves one or several derivatives of 

an unspecified function y of x. The following equation: ij, = V0/R  +  C dV0/d t, is a first order 

differential equation. Usually, in circuit simulation, the order of a differential equation will be 

dependent on the number of capacitors and inductors used in the circuit. Partial differential 

equations arise in connection with two or more independent variables in an unknown function.

A linear differential equation of order n  is a differential equation and can be written in the 

following form:

dny dn~1y dy
+  «i —  +  a0y =  f ( x )  

dx

where a„ is not a zero function

Physical systems have special meaning for order of differentials. For example in displacement 

function, we can get velocity from the first order of the differential and the second order of
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differential will result the acceleration. There are many methods to find the solution for linear 

differential equation. A corresponding system of n  nonlinear equations in n variables does not 

have any such theory and it may have any number of solutions.

A first order homogeneous differential equation involves only the first derivative of a function 

and the function itself, with constants only as multipliers. The equation is of the form:

df(x)
— —  = af(x) ,  where a is a constant (A .l)

Solution for this differential equation is f ( x )  = Aoeax. The general solution to a differential 

equation must satisfy both the homogeneous and non-homogeneous equations.

A .4 R unge-K utta  m ethod

[42] A 4th order Runge-Kutta method for time stepping gives disastrous results for h =  0.1, 

but gives accurate approximation for when h = 0.05 as evidenced in Table A.I. On the above

_______ Table A.l: Stiff Solution using Runge-Kutta-Forth-Order Method_______

Time W i ( t ) I T i ( t ) C 7 i( t ) W2( t) W2( t) U2{ t)

(t) h=0.05

r-HdII
xi Unique soln h=0.05 h=0.1 Unique soln

0.1 1.712219 -2.645169 1.793061 -0.8703152 7.844527 -1.032001

0.2 1.414070 -18.45158 1.423901 -0.8550148 38.87631 -0.874681

0.3 1.130523 -87.47221 1.131575 -0.7228910 176.4828 -0.724998

0.4 0.909276 -934.0722 0.909409 -0.6079475 789.3540 -0.608214

0.5 0.738751 -1760.016 0.738788 -0.5155810 3520.999 -0.515658

Table A .l W\ and W2 represent the solution of t/i(t) and U2(t) respectively using different time 

steps. For example the first column represents the solution of C/ 1  (t) using the step size of 

0.05.
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A .5 Optim um  tim e step

[42] Decreasing time step and approximation error doesn’t have a proportional relationship. 

Decreasing time step will not always make approximation error small. It has an optimum limit. 

Differential equations are written in the change form of some variable with respect to another. 

Most of these problems require the solution to differential equation that satisfies a given initial 

condition. Generally small time step will results better results, but tha t is not always true. 

There is an optimum value h — y/2S/M,  will give us good results and if we go beyond this 

step, we will not get better results. This section is discribing about optimum time step using 

Lipschitz theorms.

definition Lipschitz constant 

A function f ( t , y ) is said to satisfy a Lipschitz condition in the variable y on a set D  C R 2,

provided a constant L > 0 exists with the property that:

|/ ( t .y i)  ~ f ( t , V 2 )\ < L \ y i - V 2 \

whenever (t, y\), (t, yfi) € D. L  is called Lipschitz constant for / .

Theorem

Suppose tha t D = (t,y)\ a < t < b, — oo < y < oo, and that f ( t , y ) is continuous on D. If /  

satisfies a Lipschitz condition on D  in the variable y, then the initial-value problem:

y = f { t ,y),  a < t < b ,  y(a) = a

has a unique solution y(t) for a < t < b.

Theorem

Suppose /  is continuous and satisfies a Lipschitz condition with constant L  on

D = ( t , y)| a < t < b, —oo < y < oo,

and tha t a constant M  exists with the property that

y(t) < M,  V € [a, b]
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Let y(t) denote the unique solution to the initial-value problem:

y = f{t ,y) ,  a < t  <b,  y(a) = a

and uq, ui , u2, - • • , un be the approximations obtained using Euler’s method for some positive

integer N: 

u0 =  a  +  S0

u l + 1 =  Ui + h f ( t i , U i ) + S i+1 , Vi =  0,1, • - • , N  -  1
Error associated with backward Euler method denotes Sit the round off error associated with

ul. Using above both theorem and Lipschitz conditions:

!>/(«,) - « , l < ^ [ e I("-“) - l ] ,  (A.2)

for each i = 0,1, 2, • • • , N.

Generally, we consider that small time-step will results better results. However, if we con­

sider equation A.2 the error bound is nolonger linear in h and, in fact, since

the error would be expected to become large for sufficiently small values of h. The main problem 

is we don’t have the values for M  and L. We can only get the relation in a certain time range. 

Letting

E(h) = hMJ  2 +  S/h  

with h suffiently small and using L’Hospital’s Rule will results

E'(h) =  M /2 +  S/h2

If h > y /2 5 fM , then E'{h) < 0 and E(h) is decreasing. If h < ^ 2 5/M,  then E'(h) > 0 and 

E(h) is increasing. The minimum value of E(h) occurs when h = ^ 2 5/M.  If we decrease h 

beyond this value, then the total error in will increase. Normally the value of 5 is sufficiently 

small that this lower bound for h does not affect the operation of Euler’s method.
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A. 6 M at lab D C -D C  converter PI results

Matlab: V ,  Vs. Time Matlab: Verr Vs. Time

Time (Sec)
0.09

Time (Sec)

Figure A.l: V0 Vs. Time Figure A.2: Verr Vs. Time
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A .7 Steady state A nalysis P  controller circuit w ith  vari­

able load

Steady state: Vout Vs. Time

Output Voltage (V)

7.5e*06

2 . 5 e ^ < s>

Steady state: il Vs. Time

Inductor current (A) ' 

Ifl

2.5e-06

7.5e-06

(a)

Steady state Diode State Variable Vs. Time

X: Diode Var

7.5e-06

2.5e-06

(b)

Steady state Time step size Vs. Time points
20

a>y
' tn
Q.
</>4>
E
i-

%
■S'(0
4)w

5 10 15
Time points (t1)

20

(c ) (d)

Figure A.3: This Figures (a), (b), (c), and (d) are Steady state simulation results for variable 

load converter circuit using P controller alone Vo, il, X, and Time step respectively.
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A ppendix B

Code

B .l  SPIC E Code

♦♦♦ Boost Converter Circuit ♦♦♦

♦.options reltol=.01 abstol=le-10 chgtol=le-14 vntol=le-4 opts 

.options method="gear"

.tran 10ns 50ms 0 50ns uic

♦♦♦ Operational amplifier model ♦♦♦

.subckt opampl 1 2  4

bl 3 0 v=12*tanh(100*v(l,2))

rout 3 4 100

cout 3 4 lOOff

. ends

.model diodemod d(is=10pA rs=10e-3)

♦.model switchmod sw(vt=2V ron=10m roff=lMEG)

.model mosn nmos(level=l kp=10 rd=10e-3)

♦♦♦ Power Circuit

vcc 1 0 dc 0 exp 0 6V 0 50us Is 50us
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11 1 2 lOuH 

rsl 2 3 10m 

dl 3 4 diodemod 

rsc 4 5 20m 

cl 5 0 200uF 

rl 4 0 4

*sl 3 0 13 0 switchmod off

cswitch 3 0 InF

ml 3 13 0 0 mosn

roff 3 0 1MEG

*.ic v(4)=0 v(5)=0

*** Control Circuit:

rll 6 4 10k

rl2 7 6 10k

xl 15 6 7 opampl

rl3 15 0 10k

rl4 19 15 10k

vref 19 0 12V

* Integral gain 

r21 17 7 100k 

c21 8 17 lOOnF 

x2 0 17 8 opampl 

*.ic v(8)=0 v(17)=0

* Proportional Gain 

r31 14 7 10k

r32 9 14 lk
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x3 0 14 9 opampl

* Adder

r42 10 8 10k 

r41 10 9 10k 

*r44 10 18 10k 

*vadd 18 0 0V 

r43 11 10 5k 

x4 0 10 11 opampl

* Limiter and PWM 

d2 11 16 diodemod 

vlim 16 0 5V

vtr 12 0 dc 0 pulse(6V -6V 0 9.7us .3us 0 lOus) 

bl 13 0 v=2+2*tanh(10*v(ll,12))

.save 4 7 11 

. end

B .2 Octave Code: ODE

M ain  C ode

’/. "/shared/users/jude/ode/te/trp/5var$ test2.m

% -------Begin main l oop-------

while tl < tlmax; 

to = tl; tl = to+h2;

xguess=old_xvec(:,iii-l) + (h2/ho).* (old_xvec(:,iii-1) - 

old_xvec(:,iii-2));

[old_xvec(:,iii), info] = fsolve("equa2",xguess);
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extraplatecLvalue = old_xvec(:,iii-1) + (h2/2)*((l/h_trap(iii-l)).*

(old_xvec(iii-1) - old_xvec(iii-2))+ 

(l/h_trap(iii-2)).* (old_xvec(iii-2) - old_xvec(:,iii-3))); 

absolute_error=(old_xvec(:,iii) - extraplated_value)

./old_xvec(:,iii);

TE=norm(abs(absolute_error), inf); 

while ((info!=l) | | (TE>Max_TE)) °/,False will exit 

if (h2 > hmin) 

h2 =h2/2; 

tl=to+h2;

xguess=old_xvec(iii-1) + (h2/ho).* (old_xvec(iii-1) - 

old_xvec(:,iii-2));

[old_xvec(:,iii), info] = fsolve("equa2".xguess); 

extraplated_value = old_xvec(iii-1) + (h2/2)*((l/h_trap(iii-l))

.*(old_xvec(:,iii-1) - old_xvec(:,iii-2))+ 

(l/h_trap(iii-2)).* (old_xvec(iii-2) - old_xvec(iii-3))); 

absolute_error=(old_xvec(:,iii) - extraplated_value)

./old_xvec(:,iii);

TE=norm(abs(absolute_error), inf); 

else 

h2=hmin; 

tl=to+h2;

xguess=old_xvec(iii-1) + (h2/ho).* (old_xvec(iii-1) - 

old_xvec(:,iii-2));

[old_xvec(:,iii), info] = fsolve("equa2",xguess); 

err(iii)=norm(equa2(old_xvec(:,iii)),inf);
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i n f 0 =1 ;

extraplatecLvalue =old_xvec(iii-1) + (h2/2)*((l/h_trap(iii-l)).*

(old_xvec(iii-1) - old_xvec(iii-2))+ 

(l/h_trap(iii-2)).* (old_xvec(:,iii-2) - old_xvec(:,iii-3))); 

absolute_error=(old_xvec(:,iii)-extraplated_value)./old_xvec(:,iii); 

TE=(Max_TE+Act_TE)/2; 

endif 

endwhile 

lte(iii)=TE; 

vsum=vsum+Uc; 

ho=h2;

h_trap(iii)=h2; 

step(iii)=h2; 

timel(iii) = tl; 

check_d(iii)=dutyl;

Switch(iii)=Rs;

if ((h2<hmax) && (info==l) && (TE<Act_TE)) 

h2=2*h2;

end

iii=iii+l; 

endwhile 

time_taken=toc;

*/,----------- End main l o o p -----------

Non-linear equation Code: equa2.m  function

% ~/shared/users/jude/ode/te/trp/5var$ equa2
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7. DEFINE VARIABLES FOR BOOST Converter 

7. Soft start

7. http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/sec3.html 

V1=0; V2=6; TD1=0; TAUl=50e-6; TD2=1; TAU2=50e-6; 

if tl<TD2

Vin=Vl+(V2-Vl)*(1-exp(-(t1-TD1)/TAU1)); 

else

Vin= 1+(V2-V1)*(1-exp(-(tl-TDl)/TAUl))+(Vl-V2)*(l-exp(-(tl-TD2)/TAU2)); 

endif

/.Define all circuit variables

7. Neet to save these Control Values for next iteration 

Uc=(h2/2)*(Vref-xvec(4)+Vref-old_xvec(4,iii-1));

Vcon=0.5*(Kp*(Vref-xvec(4)) + Ki*(xvec(5))); 

if (Vcon>5.7)7.5.7 

Vcon=5.7;

endif

dutyl=(l/Vref)*Vcon+l/2; 7.PI controller 

/.Clip duty between 1 to 0 

if (dutyl<0)

dutyl=l/2;

endif

Rs=pulse(tl,dutyl);

[Vd , id] = diode(xvec(2));

[Vdo, ido]= diode(old_xvec(2,iii-1));

D_il2_old= (old_xvec(l,iii-l)-old_xvec(l,iii-2))/h_trap(iii-l); 

D_Vc2_old= (old_xvec(3,iii-l)-old_xvec(3,iii-2))/h_trap(iii-1);
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D_U2_old = (old_xvec(5,iii-l)-old_xvec(5,iii-2))/h_trap(iii-l);

D_il2=2*(xvec(l)-old_xvec(l, iii-1))/h2-D_il2_old;°/,T2 periodic direction 

D_Vc2=2* (xvec (3) -old_xvec(3, iii-1)) /h2-D_Vc2_old; “/,T2 periodic direction 

D_U2 =2*(xvec(5)-old_xvec(5,iii-l))/h2-D_U2_old; y,T2 periodic direction 

’/.xvec = [il; X; Vc; Vo; U] ;

% Calculate switch current 

vs = Vd+xvec(4); 

is = vs / Rs;

% Add switch saturation 

if (is > 50)

is = 50 + log(vs/Rs - 49); 

end

vso=Vdo+old_xvec(4,iii-1); 

new_ic= C_p*(vs-vso)/h2;

F(l)= (Vin-xvec(1)*Rsl-Vd-xvec(4)) *1/L -(D_il2);%F1

F(2)= is + id-xvec (l)+new_ic; '/0F2

F(3)= (id - xvec(4)*(l/Rl))*l/C - (D_Vc2); °/.F3

F(4)= ((xvec(4)-xvec(3))/Rsc)*l/-C -(D_Vc2); '/,F4

F(5)= (D_U2)-Vref+xvec(4); °/.F5

endfunction

D iode function

# Diode equation

function [Vd , id] = diode(x)

Vt = 0.02585;

Is = 10e-12;
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rs = 10e-3; 

vl = 0.65;

k2 = Is * exp(vl/Vt); 

kl = k2 - Is; 

if (x < vl)

Vd = x;

id = Is * (exp(x / Vt) - 1); 

else

Vd = vl + log(l + (x - vl)/Vt) * Vt; 

id = kl + k2 * (x-vl) / Vt; 

endif

Vd = Vd + id * rs; 

endfunction

P ulse function

function R = pulse(tl,dutyl) # pulse function take time & duty cycle 

global Tl; 

global T2; 

global npoints;

7. Output 1 - Low Resistor 0 - High Resistor

R_on=10e-3;7.3

R_off=le6;

tuse= rem(tl,T2);

fallrise = 0.05*T2; 7. 57. of T2

dutyt = dutyl*T2;

if (tuse < fallrise && tuse < dutyt)
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y = tuse / fallrise; # linear rise 

else

if (tuse < dutyt) 

y = i ;  

else

if (dutyt > fallrise) 

if (tuse < dutyt+fallrise)

y = (dutyt+fallrise-tuse) / fallrise; # linear fall 

else 

y=0; 

endif 

else

if (tuse < dutyt)

y = (dutyt-tuse) / fallrise; # linear fall 

else

y = 0;

endif

endif

endif

endif

% Make logarithmic variations 

k = 20;

y = (exp(k * (1-y)) - 1) / (exp(k) - 1);

R=R_on+(R_off-R_on)*y; 

endfunction
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B .3 M atlab Sim ulink Block

RS&L

Bloc* D iagram - CC-CC a c ry * fl« r  c ircuit

□
V frits; *  M ttS U rV 'R tr tl

□ O]

□ □
Sigrvsl

li h i (h«f th»f> p n tc g ra ts r

□

V s _ c o r

Figure B.l: Matlab Boost converter
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