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A bstract

Chaos, with reference to chaos theory, refers to an apparent lack of order in a system 

that, nevertheless, obeys particular laws or rules. The chaotic signals generated by 

chaotic systems have some properties such as randomness, complexity and sensitive 

dependence on initial conditions, which make them particularly suitable for secure 

communications. Since the 1990s, the problem of secure communication, based on 

chaos synchronization, has been thoroughly investigated and many methods, for in­

stance, robust and adaptive control approaches, have been proposed to realize the 

chaos synchronization. However, from systems theory perspective, it may seem obvi­

ous that many robust and adaptive control methods could be considered for possible 

attacks against secure communication.

In this thesis, we introduce the concept of secure chaos synchronization from the con­

trol theoretic view point. A new secure communication system, based on the chaos 

synchronization, is proposed and its security is analyzed, both theoretically and nu­

merically.
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Chapter 1

Introduction

Nonlinear systems, which have attracted heightened interest and refreshed vigor 

since the last decades, have always played a crucial role in the study of natural phe­

nomena. The interest in nonlinear system research is mainly boosted by the discovery 

of chaos. One of the basic principles of science, concerning deterministic systems, is 

that the behaviour of these systems can be predicted. The discovery of chaos phe­

nomena, however, has proven that this point of view may not be true all the time.

Chaos, with reference to chaos theory, is a relatively new discipline, with bound­

less applications in all areas of science and technology such as: mathematics, physics, 

biology, chemistry as well as engineering. Chaos describes a specific range of irreg­

ular behaviour of what we consider to be simple, well-behaved systems. The type 

of behaviour, that in the last few decades has come to be called “chaotic” (Li and 

Yorke 1975), looks erratic and almost random, which is quite similar to the behaviour 

of a system strongly influenced by the outside, random noise. Nevertheless, chaotic 

systems, defined as dynamical systems having such random-like behaviour, are some­

times very simple systems, almost free of noise. In fact, these systems are essentially 

deterministic; that is, given the initial condition and the equations describing a sys­

tem, the future behaviour of the system can be predicted for all t ime.

One of the most essential elements in chaotic dynamical systems is the unpre­

dictability, which is caused by the extreme sensitivity to initial conditions and control

1
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parameters, otherwise known to the world as the “butterfly-effect” (Lorenz 1963). 

This concept means that with a nonlinear chaotic system, even infinitesimal changes 

in initial conditions or control parameters will result in dramatically different output 

of that system. This makes the evolution of the nonlinear chaotic system become 

entirely “unpredictable” as time elapses (Lorenz 1963; Lorenz 1993).

Another salient feature about chaotic systems is their ability to synchronize with 

each other under some certain conditions. Since the long-term behaviour of chaotic 

dynamical systems is impossible to predict, such a synchronization seems impossible. 

However, it has been proved that under certain circumstances two or more chaotic 

dynamical systems, which are coupled together and evolving from different initial 

conditions, can undergo identical motion (Pecora and Carroll 1990; Pecora and Car­

roll 1991).

1.1 M otivation

Currently, along with the rapid advancement of information technology, comput­

ers have become major components of information technology for a variety of applica­

tions, such as communications, electronic mail, on-line business and others. Moreover, 

the Internet and communication systems have become another important component 

of information technology to provide connectivity at global and local scales, for the 

sharing of various information and data. This leads to an explosive increase in trans­

mission of messages containing the useful information through different ways. It is 

no surprise then, in such transmission, implementing and maintaining security and 

privacy is a prerequisite to protect the information as well as the systems involved in 

the transmission. Cryptography becomes necessary when higher security and privacy 

are specially required, especially when the message is transmitted over any untrusted 

medium, which includes any network, particularly, the Internet. The main objective of 

cryptography is to develop a cryptosystem, which keeps the transmission information

2
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secret and tamper-proof; protects information from unauthorized parties; prevents 

fraud; and ensures personal privacy. Therefore, in light of their important role, cryp­

tosystems have become an indispensable part of modern information technology.

Chaotic systems have several interesting features such as the ergodicity, ran­

domness, nonperiodicity and sensitive dependence on initial conditions (Lasota and 

Mackey 1997; Hilborn 1994), which make them very attractive to the cryptographist. 

In fact, some researchers have pointed out that such significant properties can be 

connected with several cryptographic primitive characters such as “diffusion” and 

“confusion” required by modern cryptography (Fridrich 1998; Kocarev et al. 1998; 

Alvarez et al. 1999). Interestingly, the idea of using chaos in cryptography is not novel 

and can be traced back to Shannon’s classic paper titled “Communication Theory of 

Secrecy Systems” published in 1949 (Shannon 1949). Of course, he could not use the 

term chaos; he just mentioned that the good mixing transformations, used in a good 

secrecy system, depend on their arguments in a “sensitive” way. The good mixing 

transformations can be considered as chaotic maps or equations bounded in limited 

phase space with positive Lyapunov exponents. In fact, from an algorithmic point of 

view, any good cryptosystem can be regarded as a chaotic or pseudo-chaotic system 

(Chirkikov and Vivaldi 1999), since perfect cryptographic properties are ensured by 

pseudo-random disorder, generated from deterministic encryption operations, which 

is just like chaos generated from chaotic dynamical systems (Brown and Chua 1996). 

In (Gotz et al. 1997 ), it has been shown that some conventional cryptosystems can 

present chaotic behaviour. This definitely reveals that there exists a tight relation­

ship between chaos and cryptography, so it is a natural idea to use chaos and chaotic 

systems to enrich the design of new chaos-based cryptosystems.

In the last few decades, the construction of chaos-based cryptosystems has a t­

tracted a great deal of attention, and plenty of chaotic cryptosystems have been 

developed, among which two main design paradigms for two different purposes can 

be found in the literature: the discrete-time chaotic cryptosystem and the continuous­

time chaotic cryptosystem.

3
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Discrete-time chaotic cryptosystems, as the name suggest, is used to encrypt the 

digital information by employing discrete-time chaotic dynamical systems. In this 

application, discrete-time chaotic systems are usually used as the pseudo-random bit 

generators, which serve as a one-time pad for encrypting the information. The use of 

discrete-time chaotic systems for the encryption purpose has been done for the first 

time by Matthews (Matthews 1989). In his approach, a one-dimensional chaotic map, 

exhibiting chaotic behaviour for a range of initial conditions and control parameters, 

has been utilized to generate a sequence of pseudo-random numbers in order to en­

crypt and decrypt the message. Shortly thereafter, in 1990, a cryptosystem based 

on a piecewise linear chaotic Tent map was developed by Habutsu with his colleague 

(Habutsu et a l 1991), where the parameter of the Tent map was used as a secret 

key, and the encryption and decryption were achieved by performing the inverse and 

forward iterations of the chaotic Tent map, respectively. A great number of other dis­

crete chaotic cryptographic algorithms have also been proposed in the recent years; 

see (Li et al. 2001), and (Masuda and Aihara 2002), for a more comprehensive de­

scription of the discrete-time chaotic cryptosystems.

Continuous-time chaotic cryptosystems, on the other hand, aim mainly to use 

continuous-time chaotic dynamical systems to generate the broadband, nonperiodic 

and noise-like chaotic signals for secure communications, where message signals, usu­

ally continuous signals, are hidden into the chaotic signal at the transm itter side, and 

recovered at the receiver side through the chaos synchronization technique.

The idea of utilizing synchronous chaotic systems for secure communications was 

first discovered by Pecora and Carroll (Pecora and Carroll 1990). They reported 

that certain chaotic systems can be decomposed into two subsystems: a drive subsys­

tem and a stable response subsystem that synchronize when they are coupled with a 

common drive signal. After that, vast amounts of research of chaos synchronization 

and its application to secure communications have been presented in the literature. 

Adhering to the Pecora-Carroll drive-response concept, several chaotic secure com­

munication systems have been successfully established (Chua et al. 1992; Oppenheim

4
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et al. 1992; Ogorzalek 1993; Halle et al. 1993). Furthermore, based on Lyapunov 

stability criterion, linear or nonlinear state feedback is another useful way to achieve 

synchronization of two isolated chaotic systems for secure communication applica­

tions (Wu and Chua 1994). More recently, some traditional problems in systems and 

control theory have been linked to chaos synchronization (Morgiil and Solak 1996; 

Nijmeijer and Mareels 1997; Morgiil 1999). This treatment opens another world of 

the synchronization problem for chaotic secure communication purpose. For example, 

a nonlinear state observer design approach is developed to solve the chaotic synchro­

nization problem of a class of chaotic systems in (Grassi and Mascolo 1997; Liao and 

Huang 1999; Alvarez-Ramirez et al. 2002). Moreover, in (Liao and Lin, 1999; Frad­

kov et al. 1999; Lian et al. 2002), the adaptive observer design method is presented 

to design the receiver system for a secure communication system to deal with the 

problem of synchronizing two chaotic systems with mismatching parameters, since 

the adaptive mechanism can compensate for the effects of those parametric uncer­

tainties.

Following these approaches, the proposed chaotic secure communication methods 

may be classified as: chaotic masking, chaotic modulation and chaotic switching. In 

the first case, the private message signal is just added to the chaotic carrier signal 

(Pecora and Carroll 1991; Cuomo and Oppenheim 1993; Lian et al. 2002). In the 

second case, not only is the message signal added to the chaotic carrier signal, but 

also the states of the chaotic generator are modulated by the message signal through 

an invertible procedure; thus, the generated chaotic signal inherently contains the 

information of the message signal (Halle et al. 1993; Liao and Huang 1999; Boutayeb 

et al 2002). In the third case, chaotic switching is based on the requirement of two 

distinct chaotic systems for bits “1” and “0” . The transmission signal is obtained 

by switching between these two chaotic systems according to either a bit “1” or “0” 

of the message signal being transm itted (Cuomo and Oppenheim 1993; Kolumban 

et al 1997; Murali et a l 2001). Clearly, the two former approaches are designed 

for transmitting analog signals, while the latter is designed for transmitting digital

5
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signals.

Although being demonstrated successfully in computer simulations and hardware 

implementation, the preliminary application of chaotic systems for the secure com­

munications has a low level of security because an intruder can extract the hidden 

message signal from the transmission signal by using different unmasking techniques 

(Short 1996). To overcome the problem of unmasking the message signal from the 

chaotic transmission signal, several different approaches have been recently intro­

duced to improve the security of the chaotic cryptosystem. For instance, a more 

advanced encryption scheme of using multiple chaotic signals is developed in (Yang 

et al. 1997), and in (Grassi and Mascolo 1999; Murali et al. 2001), the authors pre­

sented an idea of achieving secure transmission of the message signal by considering 

the fact that encrypting the chaotic signal is as important as encrypting the message 

signal. Therefore, for this purpose, the conventional cryptographic method and chaos 

synchronization are combined together for the design of a chaotic cryptosystem, which 

can offer higher security and privacy for the users.

Nevertheless, since all these chaotic secure communication systems, mentioned 

above, are based on the synchronization properties of simple chaotic systems, the 

key issue for these approaches is the security of the synchronization. This means the 

synchronization of chaotic systems should play a crucial role in preventing the private 

message from being read by any intruder during the transmission procedure. Unfor­

tunately this problem did not get the deserved consideration when synchronization- 

based secure communication schemes were proposed in the past. For example, in 

(Suykens et al. 1999; Li and Shi 2003), some researchers have proposed the robust 

synchronization and adaptive synchronization theory to deal with the parameter mis­

match or unknown parameter problems. As we know, the value of parameters of 

the chaotic system is usually considered as the secret “Key” for the synchronization 

between the transm itter and the receiver. These robust and adaptive approaches, 

however, give a possibility to measure the “Key” . This means that by using the 

robust and adaptive techniques, an intruder can design a receiver system, which can

6
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synchronize with the transmitter system without the precise knowledge of the “key” . 

Therefore, from the viewpoint of systems theory, many adaptive or robust control 

methods may be considered for possible attacks against secure communications and 

encryption schemes. In light of this, the concept of secure synchronization with re­

spect to adaptive and robust control methods has been introduced in (Celikovsky and 

Chen 2005).

1.2 Thesis Objective

Inspired by the earlier works of other researchers, in this thesis, we further study 

the behaviour of chaotic dynamical systems and its application in modern cryptogra­

phy. The primary objective of this thesis is to develop a chaotic secure communication 

scheme based on the synchronization of two continuous-time chaotic dynamical sys­

tems, which can provide higher security level for the transmission of various kind of 

messages. Moreover, since the signal propagation delay is unavoidable for any real 

communication system, the second objective is to verify the validity of the developed 

communication system with an unknown propagation time-delay involved during the 

transmission of message signals. In order to fulfill these objectives, we first analyze the 

security of several synchronization approaches for certain chaotic systems proposed 

in the literature, from the control theory viewpoint, since chaos synchronization is 

the basis of the design of secure communication systems. As we know, due to the fact 

that chaotic systems are very sensitive to initial conditions and control parameters, a 

very general way used in almost all the chaotic secure communication schemes is to 

set the values of system parameters as the secret “Key”, which means that only the 

transm itter and the receiver in a communication system using the exact same “Key” 

can realize the synchronization. Some synchronization methods,, however, have been 

proposed without this consideration, implying that even with a different “Key” the 

synchronization can still be achieved. This means that the security requirement for

7
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these synchronization methods is not satisfied.

Since the security property is the most important aspect of chaos synchronization, 

the concept of secure synchronization of synchronized chaotic systems, from the con­

trol theory point of view, is then presented in detail in order to lay a sound foundation 

for the later development of the secure communication scheme. Also, based on the 

generalized Lorenz system, a new chaotic secure communication scheme, which com­

bines the secure synchronization scheme with the conventional cryptographic tech­

nique, is developed in this thesis. The analysis of its security is performed from 

both the control theory viewpoint and the cryptographical viewpoint to verify that 

the proposed secure communication system can offer a higher security and privacy 

for the transmission of messages. Finally, the stability of the proposed secure com­

munication system with the time-delay problem is discussed, since the propagation 

time-delay during the transmission procedure is always exist for any real communi­

cation systems.

1.3 Thesis Structure

This research was multidisciplinary and involved several different fields of re­

search: nonlinear dynamics, chaos theory, communications, cryptography and control 

theory. The first portion of this dissertation provides a comprehensive overview of 

those fields of research. The second portion provides a detailed description of our 

research contribution: Designing a new secure communication system based on the 

secure synchronization scheme.

In Chapter 2, we present a comprehensive overview of chaos and chaotic systems 

by describing the definition, classification and characteristics of chaos and chaotic 

systems. Particularly, a class of chaotic systems named generalized Lorenz system is 

also introduced in this chapter.

Chapter 3 focuses on representing the relationship between chaotic systems with

8
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the modern cryptography. Some basic principles of cryptography are introduced, and 

two different kinds of chaotic cryptosystems are presented.

Chapter 4 is devoted to introducing the methodology of chaos synchronization. 

There are two major schemes for coupling and synchronizing identical chaotic systems 

that are investigated in detail, especially the one approached from the control theory 

point of view, namely, the observer-based synchronization. Further, the application 

of chaos synchronization for secure communication is discussed, and some examples 

are provided.

In Chapter 5, attention is turned to designing a new secure communication system 

on the basis of secure synchronization of chaotic systems. First, a scheme of chaotic 

secure synchronization using the generalized Lorenz system family as the platform is 

presented. Then, a new secure communication system is developed and its security is 

discussed. Furthermore, the validity of the secure communication system is analyzed 

by taking into account the propagation time-delay problem.

Finally, conclusions are summarized in Chapter 6, where the future work is also 

mentioned.

9
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Chapter 2

Chaos and Chaotic System s

As one of the greatest accomplishment in human's >ry, the differ j : ' 1 cal­

culus and the laws of motion discovered by Newton, in me 17th century, ga- 

the deterministic view of nature and then led to a great optimism about our ability 

to predict the behaviour of dynamical systems. Subsequent generations of scientists 

believed that the nature of dynamical systems was expected to be completely deter­

mined dependent upon the nature of the forces acting on them and upon their initial 

states.

According to the Newtonian laws of physics, it was assumed that, if the initial 

condition for any dynamical system could be measured precisely, the behaviour of 

the dynamical system could be predicted accurately, and that the more accurate the 

measurements of initial conditions were, the more precise would be the resulting pre­

dictions. However, in the early 20th century, Poincare, a great French mathematician, 

discovered that in some astronomical systems, there were an unpredictability for the 

system evolution, which meant that even a small error in the measurement of initial 

conditions would make the prediction about the system future condition impossible. 

In fact, this unpredictability is so called “chaos” now. Even though Poincare could 

not use the unburned term “chaos” to describe the unpredictability at that time, he 

did prove mathematically that, even if the measurement could be made much more 

precise, the unpredictability for outcomes did not shrink along with the inaccuracy

10
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of measurement, but remained huge (Poincare 1892-1899).

Half a century later, Edward Lorenz, a meteorologist at MIT, worked on a project 

to simulate weather patterns on a computer. He accidentally found the surprising 

phenomenon that, with some certain parameters, the deterministic system described 

by ordinary differential equations that he used to theoretically model the motion of 

atmospheric air flow became unpredictable (Lorenz 1963). This has become known 

as the phenomenon of chaos. After repeated experimentation, Lorenz revealed the 

underlying mechanism of chaos: simply formulated systems with only a few variables 

can display highly complicated behaviour that is unpredictable. This started a new

age for humanity’s understanding of nature and triggered enthusiasm in the study of

chaos phenomenon.

2.1 Examples of Chaos Phenom enon

Humanity’s understanding for the natural and social phenomenon originally 

stems from some particular things or events, and the discovery of chaos is no ex­

ception. In this section, we shall briefly introduce the chaos phenomenon through 

two representative examples of chaotic systems.

2.1.1 The Logistic Map

The first example of chaotic systems is a very simple m?«’hematical model from 

ecology named the logistic map, also called the logistic eqv -i, which is often used 

to describe the growth of biological population. Due to its mathematical simplicity, 

the simple model continues to be a useful tool for new ideas in chaos study.

The equation of logistic map is given by:

xn+i = /jLXn{l -  xn) =  f{ x n), n =  1,2,.... (2.1)

11
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where, p  is a constant depending on the conditions of the ecological environment, and 

xn represents the population of a species reproducing in a controlled environment at 

generation n. To keep the number manageable, we let xn represent the percentage 

of some a priori upper bound for the population, so 0 < x n < 1 (Kapitaniak 2000). 

Given this equation with some initial population x0, it would seem straightforward 

to predict the behaviour of xn. As we shall see, however, this is far from the case 

for certain values of the constant p. For different values of the parameter p, the 

dynamical analysis of the model of the logistic equation can be carried out as follows:

1.) For 0 < p  < 1, the dynamical characteristics of the logistic equation is very 

simple, and x  =  0 is the only equilibrium or fixed point in the range of x, which 

means that the population of the species decreases and dies.

2.) For 1 < p < 3, there are two equilibrium points for the dynamical system of the 

logistic equation that are x  =  0 and x  =  1 — and the equilibrium point of 

x — 0 becomes a “repelling fixed point” since trajectories that start near x  =  0 

move away from that value. This implies that the population increases for a 

few generations, then becomes stable, as Figure 2.1(a) shows.

3.) For 3 < p  < 4, the logistic equation presents a complex dynamical behaviour 

that the values of x  oscillate back and forth between two values, and then four, 

then eight, then sixteen, etc, as shown in Figure 2.1(b,c). Finally, it turns into 

never settling down to a periodic cycle — instead the long term behaviour is 

aperiodic, that is chaos, as shown in Figure 2.1(d).

It is noticeable that the system has a periodic behaviour with p  =  3.3, shown 

in Figure 2.1(b), and then as the value of the parameter p  changes to p = 3.53, this 

periodicity becomes twice that of the behaviour with p — 3.3, as shown in Figure 

2.1(c). This phenomenon refers to the period-doubling bifurcation, which is one of the 

most primary routers to chaos (Reichl 1992).

12
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(a) /i =  2.8 (b) n  =  3.3

I

(c) n  =  3.53 (d) jj, — 4.0

Figure 2.1: Logistic map with different parameters
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2.1.2 The Lorenz Equations

Our second example of chaotic systems is the highly simplified model of a convect- 

ing fluid, originally introduced by E. Lorenz in 1963 (Lorenz 1963). In this paradigmic 

model, what Lorenz set out to demonstrate was that even a very simple system may 

have an unusual and unpredictable behaviour. The Lorenz system can be expressed 

by the following three coupled differential equations:

f t  =  - * ( X - V )

' f  = ~ x z + P x ~ y  (2-2)

, f t  =  xy ~ 0 z
where state variables x ,y ,z  are related to the physical properties of a convecting 

fluid, and a  is called the Prandtl number, which is usually set as a value of 10. The

parameter (3 relates to the size of the area represented by this convecting fluid model
O

and it was set to (3 =  g. Finally, p, called the Rayleigh number, is the adjustable 

control parameter.

This model, also called the Lorenz system, although based on what appears to 

be a very simple set of differential equations, exhibits very complex behaviour with 

certain parameters. In the following part we shall explain why this simple dynamical 

system may present an unusual chaotic behavior.

From the equation (2.2), it can be shown that the equilibrium or fixed points of 

the Lorenz system satisfy the following condition:

I x = y

< x(p — 1 — z) — 0 (2.3)

X  =  ± y / P ~ Z  =  ± y / p ( p -  1)

Notice that, when p < 1, there is only one fixed point: 0(0, 0, 0). When p > 1, there 

are three distinct fixed points, given by:

( 0 (0, 0. 0)

- p+(VMpzrr,VMp:rX),P-1) (2-4)

. P - ( - v W p - 1) . - V / % > - 1) ,/» -  1)

14
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For the fixed point: 0 (0 ,0 ,0 ), it is easy to obtain the Jacobi matrix evaluated a 

this point, which is given by:

A =

and the eigenvalue equation

(/? +  A) ((a +  A)(l +  A) — pa) =  0, 

with the eigenvalues, given by:

-a  a 0

p - 1 0 (2.5)

<35.1OO

(2 .6)

Ai -p (2.7)
A2,3 =  0.5(—(cr +  1) ±  v V  +  !)2 -  M l  -  p))-

Clearly, Aii2,3 < 0 with p < 1, which means that the fixed point 0 (0 ,0 ,0 ) is a stable 

point, as shown in Figure 2.2(a). When p > 1, from the equation (2.7), it can be 

concluded that A2 > 0, while A3 < 0, implying that the fixed point 0 (0 ,0,0) becomes 

the saddle point1.

For the fixed points P + and P ~ , the Jacobi matrix can be expressed as follows:

—a a 0

21=  1 - 1  - s / 0 ( p -  1)

v W p - 1 )  V 0 (f> -  ! )  - 0

The corresponding eigenvalue equation is given by:

A3 +  {a + P + 1)A2 +  p(a  + p) A +  2j3a{p — 1) =  0. 

Now, we set a value of parameter p as

Ph

(2.8)

a {a +  (3 +  3)

(2.9)

(2.10)
a — P — 1

For example, if we take the values of parameters as Lorenz did, i.e., a =  10 and
O

(3 =  then -ph =  24.74. It can be seen that if the parameter p can be chosen such

1 Saddle point is the fixed point that attract trajectories on one side but repel them on the other.
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that p < Ph, the equation (2.9) has three real negative eigenvalues or one real negative 

eigenvalue and two complex conjugate eigenvalues with the negative real part. This 

means that P + and P~ become attracting fixed points, implying that the trajectories 

are attracted to one or the other of the two fixed points, as Figure 2.2(b-c) show. On 

the other hand, if the parameter p is chosen as p > ph, the equation (2.9) has one 

real negative eigenvalue and two complex conjugate eigenvalues with the positive real 

part, which means that the fixed points P + and P~ become the saddle points, which 

leads to the chaotic behavior, as shown in Figure 2.2(d).

s-

3-

2-

0

-1
4

(c) p =  22 (d) p =  28

Figure 2.2: Behavior of the Lorenz system with different value of parameters
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2.2 Chaos

Through the examples illustrated above we have a vivid comprehension for the 

chaos phenomenon. Chaos represents a kind of very complex dynamical behaviour 

more complicated than the familiar steady state or cyclic patterns occuring in a  fairly 

simple system without any external noise and perturbation. Before engaging in more 

serious discussion about the applications of chaos and chaotic systems, it is necessary 

to study them theoretically.

2.2.1 W hat Is Chaos?

There is not yet a unified, universally accepted, rigorous definition of chaos in 

the current scientific literature; nevertheless, it can be depicted in several different 

but closely related ways.

Sensitive dependence on initial conditions, which is also named the “Butterfly 

Effect” (Lorenz 1993), would be considered as the essence of chaos by many scien­

tists. It is believed that the term “chaos” first appeared in the famous paper “Period 

Three Implies Chaos” published by T. Li and J.A. Yorke to refer to a kind of un­

usual, and irregular movement, presented by some dynamical systems (Li and Yorke 

1975). In 1986, at a conference on mathematical chaos held by the Royal Society in 

London, mathematicians were asked to define “chaos” that had become the buzzword 

for their hot research area. After much deliberation, chaos is formally defined as the  

s to ch a stic  behaviour occurring  in  a d e te rm in is tic  s y s te m  (Stewart 1990).

2.2.2 Classification of Chaos

Based on the type of dynamical systems, the chaos phenomenon can be classified 

into two different categories: continuous-time chaos and discrete-time chaos.

17
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Continuous-Tim e Chaos

Continuous-time chaos is the erratic and irregular behaviour presented by contin­

uous chaotic systems, for example, the Lorenz system. A very common representation 

of these systems is that of a system of n-simultaneous first order ordinary differential 

equations (ODE’s) given by the following equation:

dx „. . .
^  =  / ( M ) .  (2.11)

where x (t) E R” are the state variables of the system, and 0 < t < oo.

Generally, the bounded steady-state behaviour of the continuous-time chaotic 

systems is not an equilibrium point, not periodic and not quasi-periodic. The limit­

ing trajectories of these systems are attracted to a region in state space which forms 

a set having fractional dimension and zero volume, which means that these sets are 

not simple geometrical objects like a circle or a torus. Since the trajectories, in this 

limiting set, are locally unstable, yet remain bounded within some region of the sys­

tem’s state space, these sets are termed strange attractor or chaotic attractor (Hilborn 

1994).

Clearly, the Lorenz system, introduced above, is a continuous-time chaotic sys­

tem, and other typical examples of the continuous time chaotic systems are:

The Chua’s oscillator, given by

| f  =  a ( y - x - f ( x ))

< elf = x~y + z (2-12)
. i  =  - P v - i * ’

where f ( x)  = bx + \{a  — 6)(| x  +  1 | — | x  — 1 |) with a < b < 0, and a , (3 and 7 are 

positive constants.

The Rossler system, given by

ax + y

—x — z (2.13)

b - c z  + y z ,

18
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where a, b and c are positive constants.

The trajectories of these two chaotic systems, as shown in Figure 2.3, lie inside 

bounded but locally unstable regions with wells being the strange attractors men­

tioned earlier.

(a) Trajectory of Chua’s system (b) Trajectory of Rossler system

Figure 2.3: The chaotic behaviour of the Chua’s system and the Rossler system

D iscrete-T im e Chaos

Now, for discrete-time chaotic systems, similar features that we have seen for 

the case of continuous-time chaotic systems can also be found, although they follow 

different formulation. This formulation is expressed by a map /  from a set S  onto 

itself, that is,

xn+1 = f ( x n,a ), n = 0 ,1 ,2 ,..., (2.14)
- - T r i

where x n  = % nl %n 2 nm are the state variables and a — a  i  a 2 . OCp

are parameters of the system. Generally, the trajectories of the dynamical variables 

x n is computed by iterating it; i.e., given an initial value xq, we can compute X\ and 

then using X\ compute x^, and so on (Lakshmanan and Rajasekar 2003). Similar 

to the continuous-time case, the trajectories of discrete chaotic systems are never
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attracted into an equilibrium point or become periodic but they are aperiodic and 

random-like, that is, chaotic. The example of the logistic map discussed at the be­

ginning of this chapter is a discrete-time chaotic system.

2.2.3 Characteristics of Chaotic System s

We now take up briefly the problem of characterizing the chaos phenomenon 

presented by dynamical systems. Although chaos and chaotic systems have been dis­

covered and extensively studied for fewer than forty years, and the complete knowl­

edge of this very unusual phenomenon has not been obtained yet, there are still three 

fundamental features that can be used to identify whether or not we face a chaotic 

system.

(1) Com bination of stochasticity  and determinism.

Chaotic systems present an internal stochasticity which make the systems lo­

cally unstable; namely, the movement of chaotic systems appears irregular, seemingly 

random and its long-term behaviour can not be predicted. The internal stochas­

ticity is used mainly to distinguish it from the external stochasticity, which is the 

random motion caused by external random excitation. Usually, a system is consid­

ered to be stochastic if some state of the system can appear or disappear, under 

certain conditions. The internal stochasticity is the stochastic character produced 

spontaneously by a completely deterministic system under certain system parameter 

conditions (Chen and Leung 1998).

Thus, although chaos has the internal stochasticity, it should be clear tha t chaos 

is not a completely random phenomenon. The chaotic behaviour arises in very simple 

systems which are essentially deterministic, implying that from moment to moment 

the system is evolving in a deterministic way, that is, the current state of a system 

depends upon the previous state in a rigidly determined way. This is in contrast to 

a random system such as the game of playing dice, where the present state has no
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causal connection to the previous one (Rasband 1990).

(2) S en sitiv ity  to  in itia l conditions.

W hat is closely related to the internal stochasticity is the property that chaotic 

systems are sensitively dependent on initial conditions. For regular dynamical sys­

tems, a small variation in initial conditions, caused by intrinsic and external noise 

perturbation, will result in a small change of the system state. In other words, the 

evolution of a dynamical system, exhibiting a regular behaviour for two specifications 

of initial states, that are initially very close together, is always similar and even iden­

tic. This makes it possible to predict the future state of that regular system.

On the contrary, for a chaotic system, due to the intrinsic property of internal 

stochasticity in the system, even the smallest change in initial conditions will lead 

trajectories diverging from each other exponentially. Such a property is often called 

the sensitivity to initial conditions.

20
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Figure 2.4: Two trajectories started with the initial state xQ =  1 

(the broken line) and x'0 =  1.001 (the solid line)

Here, we take the Lorenz system, referring to equation (2.2), as an instance to 

demonstrate this very important property for chaotic systems. We run the equation 

with two nearby initial conditions for the same value of parameters that make the 

Lorenz system behave chaotically, and study the difference between the two resultant 

solutions of the state variable x. Figure 2.4 shows the trajectories for two initial

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



O
conditions with a =  10, j3 — |  and p — 28. One orbit (the broken line) starts from 

£0 =  1, &nd another one (the solid line) starts from xq =  1.001. As we see, in the 

beginning, the trajectories overlap, but later, they separate quite a bit, displaying the 

divergence of nearby trajectories.

Since there is always some imprecision in specifying initial conditions in any real 

experiment, it can be noticed that the actual future behaviour of a chaotic system 

is in fact unpredictable. This essential feature of chaotic systems was once vividly 

referred to the “Butterfly effect” by Lorenz. He stated that, owing to the sensibility 

of the system to the initial conditions, only a little flap of the butterfly’s wings can 

make the meteorologist unable to predict the weather in a month.

(3) N onlinearity .

For a linear differential equation, given definite initial conditions would yield a 

determined solution. This implies that linear systems can not have a chaotic behav­

iour; therefore, it can be pointed out that chaos only appears in non-linear systems. 

Certainly, nonlinearity is only a necessary condition but not sufficient for the ap­

pearance of chaos, that is, chaotic behaviour must come via non-linear systems but 

nonlinearity does not necessarily imply chaotic behaviour.

2.2.4 Lyapunov Exponents

As we have seen deterministic chaos is associated with random-like behaviour 

arising from the sensitivity to initial conditions. Thus, we would like to have some 

specific quantitative measures in order to recognize chaos and sort out true chaotic 

behaviour from just noisy behaviour or erratic behaviour due to the complexity. In­

deed, there are many such quantitative measures available in the literature for this 

purpose and the most prominent of them is the Lyapunov exponents (Eckmann and 

Ruelle 1985).

For a chaotic system, the Lyapunov exponents measure essentially the aver-
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x(t)

d(t)

Xq x'(t)

Figure 2.5: Trajectories starting from two nearby points

age divergence rate of nearby trajectories in the phase space. Suppose x(t) is the 

trajectory of the following nonlinear dynamical system:

x = f (x ) ,  r G R "  (2.15)

We consider two trajectories x(t) and x'(t), shown in Figure 2.5, in a n-dimensional 

space starting from two nearby points x0 and x'Q. Let d(t) =  x(t) — x'[t) represents 

the measure of the distance between the two trajectories x(t) and x'(t). We can find 

that the change of the distance between the two orbits can be expressed by

d(t) ~  d0eXit, i = l ,2 , . . . ,n .  (2-16)

where are called the Lyapunov exponents. If there exists one positive Lyapunov ex­

ponent, the distance between the two trajectories, that is d(t), changes exponentially 

fast, implying sensitive dependence on initial conditions; therefore, the motion is said 

to be chaotic. Consequently, finding a single positive Lyapunov exponent is sufficient 

to confirm the existence of chaos. When more than one of the Lyapunov exponents 

are positive, then the motion is referred to as hyperchaos (Wolf et al. 1985).

We often consider computing the largest Lyapunov exponent for a dynamical 

system, measuring the maximal average rate of separation of nearby states. A simple 

procedure has been developed by Benettin et al., which estimates the largest Lya­

punov exponent directly from the equations governing the system (Benettin et al. 

1976). In (Wolf et al. 1985), the authors generalized Benettin’s method to time series 

data, known as Wolf’s method. Although Wolf’s paper only discussed the computa­

tion of non-negative Lyapunov exponents, it can be used effectively to compute the
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largest Lyapunov exponent of a chaotic system.

2.3 Generalized Lorenz System

For later convenience, we now introduce a general class of continuous-time chaotic 

systems, which is called the generalized Lorenz system.

As described above, the original Lorenz system (2.2) was discovered about 40 

years ago, which has played a very important role in the study of chaos theory. After 

that, some other similar chaotic systems have been discovered one after another, such 

as the Chen system (Chen and Ueta 1999; Ueta and Chen 2000) and the Lii system 

(Lii and Chen 2002), which are described by (2.17) and (2.18), respectively, as follows

- a ( x  -  y )

(p — a)x  — xz  +  py (2-17)

xy  — fiz

-<j(x -  y)

- x z  + py (2-18)

xy  — pz.

W ith the appropriately chosen parameters system (2.17) and (2.18) can present a 

very complex behaviour, that is chaotic, as shown in Figure 2.6(a) and Figure 2.6(b).

As a m atter of fact, it was pointed out that, according to the system struc­

tures, all chaotic systems, mentioned above, can be classified into a very large and 

general class of relevant chaotic systems, named the generalized Lorenz system (GLS) 

(Celikovsky and Chen 2002), which can be expressed by the following definition.

D efin ition  2.3.1. The following general class of three-dimensional nonlinear systems
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(a) Trajectory of Chen system (b) Trajectory of Lii system

Figure 2.6: The chaotic behaviour of the Chen system and the Lii system 

of ordinary differential equations is called a generalized Lorenz system (GLS):

x = A x  +  (C x )B x ,

an O12 0 0 0 0

A = 021 0-22 0 , B  = 0 0 - 1

0 0 a 3 0 1 0

and C 1 0 0
(2.19)

where x  =  x\ x 2 x$ ■ The generalized Lorenz system is said to be nontrivial i f  it 

has at least one solution that goes neither to a constant nor to infinity nor to a limit 

cycle.

In order to render the system (2.19) exhibit chaotic behaviour, the matrix A  has 

to be chosen in such a way that the following inequality must be satisfied:

—A2 > Ai > —A3 > 0, (2 .20)

where Ai_3 € M are the eigenvalues of the matrix A  (Wiggins 1988). Since this is 

the only requirement, the generalized Lorenz system (2.19) represents a quite general 

class of three-dimensional autonomous systems.

Moreover, in the work of (Celikovsky and Chen 2002), the authors found that 

there exists a nonsingular linear transformation of coordinates, by which the system
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(2.19) can be transformed into a form, called the generalized Lorenz canonical form. 

This generalized Lorenz canonical form can be given as the following definition.

D efin ition  2.3.2. The following general class of three-dimensional nonlinear sys­

tem of ordinary differential equations is called a generalized Lorenz canonical form  

(GLCF):

z — A z + (C z )B z ,

Ai 0 0 0 0 - 1

A  = 0 A2 0 , B  = 0 0 - 1

0 0 A3 1 K 0

, C = 1 - 1  0
(2 ,21)

where z
1 T

z l  z 2 z 3 and k £  (—1, oo).

Notice that there is only one scalar real parameter k in GLCF, which plays a 

subtle tuning role for the chaotic behaviour of the system. Further study of GLCF 

reveals that it represents a family of chaotic systems with only one parameter k . 

When — 1 < k < 0, it represents the Chen system and when k =  0, it represents the 

Lii system, while it represents the Lorenz system in the case of 0 < k < oo.
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Chapter 3 

Chaos and Cryptography

Chaos theory, which has brought to our attention a surprising fact that simple 

dynamical systems are able to exhibit a very complex and unpredictable behaviour, 

consistently plays an active role in modern cryptography. It is the every special char­

acteristic of random-like behaviour and extreme sensitivity to initial conditions and 

parameter settings, presented by chaotic systems, that attract people to use chaos 

as the basis for developing the new cryptosystem, since these properties seem per­

fectly satisfying the classic Shannon requirements of confusion and diffusion (Shannon 

1949). In an ideal cryptosystem, the confusion property decreases the correlativity 

between the original message and the encrypted message, while the diffusion property 

guarantees that the data at some coordinates in the input message block is relocated 

to other coordinates in the output message block (Schneier 1996). In other words, we 

can say that diffusion changes the position of data in a message, while the data  itself 

is modified during the confusion process. Furthermore, the fast encryption rate and 

the ease of implementing chaotic systems into both hardware and software also make 

the application of chaotic dynamics in cryptography particularly attractive.

It is worth to notice that a deep relation between chaos and cryptography has 

not been established yet. An important difference between chaos and cryptography 

lies on the fact that systems used in chaos are defined only on real numbers, while 

cryptography deals with systems defined on finite number of integers (Gickenheimer
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and Holmes 1983; Schneier 1996). Nevertheless, it is believed that these two disci­

plines can benefit from each other. Thus, for example, as we show in this chapter, new 

cryptographic algorithms can be derived from chaotic systems. On the other hand, 

chaos theory may also benefit from cryptography: new methods and techniques for 

chaos analysis may be developed from cryptography.

3.1 Basic Principles of Cryptography

Suppose a message is to be transferred from one party (transmitter) to another 

(receiver) across some sort of public channel, for instance, the Internet. The two par­

ties, the transmitter and receiver, must cooperate for the transmission of a message 

to occur. Security aspects come into play when it is desirable or necessary to protect 

the message transmission from an intruder who may present a threat to confiden­

tiality or authenticity. There are various techniques that can be used to provide the 

protection for the message, among which the most common method used in practice 

is the encryption or encryption-like transformation of the message. This technique 

refers to a very important discipline, called cryptography, which is defined to be the 

science and art of converting a legible message, for the protection against passive 

and active fraud. An overview of recent developments in the design of conventional 

cryptographic algorithms is given in (Preneel et al. 1998).

In the domain of cryptography, a encryption system is also called a cipher, or a 

cryptosystem. The message before being encrypted in any way is called the plaintext, 

and the encrypted message is called the ciphertext. The process of disguising a mes­

sage in such a way as to hide its substance is encryption. Similarly, the decryption 

is the process of turning the ciphertext back into the plaintext. The operation of 

encryption or decryption depends on two components: the cryptographic algorithm 

and the key. The cryptographic algorithm is the mathematical function used to en­

crypt and decrypt the message and the key is a piece of information that controls the
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operation of the cryptographic algorithm to produce a unique result for a particular 

user. In key-based cryptosystem, the key is required for both the encryption and 

decryption processes; the key specifies the particular transformation of the plaintext 

into the ciphertext, or vice versa, during the process of decryption. Therefore, only if 

the key being used for decryption matches that being used for encryption procedure, 

the encrypted message can be decrypted correctly. By following Kerckhoffs’s princi­

ple, the security of a cryptosystem should only rely on the “key” , since adversaries 

can only recover the plaintext from the observed ciphertext when they get the correct 

key, and the longer the key, the more time and computing power it takes to crack the 

cryptographical scheme. It should be emphasized here, that the whole idea behind 

cryptography is not to make the cryptographical methods crack-proof, but to make 

breaking it more costly than the value of the message being protected (Schneier 1996).

The most general form of a cryptosystem can be illustrated as Figure 3.1. Denote 

the plaintext and the ciphertext by P  and C, respectively. The encryption procedure 

can be described as C =  E ks{P), where K e is the encryption key and E(-) is the 

encryption function. Analogously, the decryption procedure is P  = D Kd(C), where 

Kd is the decryption key and D(-) is the decryption function.

K e K d

Plaintext Ciphertext f 
Public channel

Recovered plaintextEncryption Decryption

Figure 3.1: The general cryptosystem

3.2 Conventional and Chaotic Cryptography

It is clear from the above demonstration that the complexity and the secrecy of 

the key, used for encryption-decryption purposes, play a major role in the security of 

the desired cryptosystem. It is used as the tool to complement the security-related
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transformation in encrypting messages, thereby, it has to be generated as randomly 

as possible. In other words, the key generators must be able to be operated in the 

unpredictably random way in order to add more uncertainty into the cryptosystem, 

making it less vulnerable.

Due to the importance of randomness in cryptography, recently the use of chaos 

for data encryption has received much more consideration, since chaotic signals are 

broadband, noise-like and difficult to predict. In fact, chaotic systems are very sen­

sitive to the changes in initial conditions and parameters, which make them behave 

in an unpredictable pattern. This would be considered a good source of random­

ness needed for a good cryptosystem. For this reason, in the last ten years many 

cryptographical approaches based on chaos phenomenon have been proposed and a 

relatively new branch of modern cryptography has been developed, that is, the chaotic 

cryptography in contrast to the conventional cryptography.

When it comes to conventional cryptography, cryptosystems operate on discrete 

values and in discrete time. In fact, since its ancient beginnings, cryptosystems have 

been almost exclusively applied to the discrete-value message. These systems range 

from the so called Caesar cipher, to the well known Vigenere Cipher, up to the modern 

encryption algorithms, like data encryption standard (DES) or the asymmetrical al­

gorithm by Rivest, Shamir and Adelman (RSA) (Schneier 1996). On the other hand, 

for chaotic cryptography, the continuous-value message and the usage of continuous- 

value systems, which may operate in continuous or discrete time, become the crucial 

points in it. To emphasize its difference to conventional cryptography, we shall use the 

term continuous-value cryptography synonymously with chaotic encryption or chaotic 

cryptography. In our understanding, it is just a necessity to utilize nonlinearities and 

to force the system dynamics into a chaotic operation to fulfill basic cryptographical 

requirements in the continuous-value case (Dachselt and Schwarz 2001).

Hence, the most important difference between conventional and chaotic cryp­

tosystems is the domain of the involved elementary signals, which is called the symbol 

level, describing the smallest pieces of which the stream of information is composed.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since conventional cryptosystems operate on discrete signals, the plaintext, the ci­

phertext and the key are elements of finite sets no matter whether these are bits, 

integer numbers or some kind of metasymbols. Usually, the symbol level of conven­

tional cryptosystems is binary. On the contrary, in discrete-time continuous-value 

cryptosystems plaintexts, ciphertexts and keys are in general real values, so the sym­

bol level is the real axis or an interval of it. The case of continuous-time continuous- 

value cryptosystems is even more complicated. The whole plaintext and ciphertext 

time functions are usually considered as elements of the symbol level, because there 

is no strict mathematical method that can be used to break this information down 

into smaller units. Figure 3.2 illustrates the comparison of symbol level domains for 

conventional and chaotic cryptosystems.

St .  0 1 0  1 1 1 0  1...

I I I I I I I I 
0 1 2 3 4 5 6 7

Discrete-time 
Discrete-value 

Conventional cryptosystems

Discrete-time Continuous-time
Continuous-value 

Chaotic cryptosystems

Figure 3.2: Different classes of encryption systems

3.3 Chaotic Cryptosystem s

In chaotic cryptography, chaotic systems are utilized in two major different ways 

for encrypting two different types of message data. The early attempts of using chaos 

in cryptography were in the conventional way, namely, in discrete-value and discrete­

time implementation, and was for encrypting the digital message (Matthews 1989; 

Habutsu et al. 1991; Li et al. 2001). In these applications, chaotic systems, usually 

discrete-time chaotic systems, were used as a pseudo-random number generator for
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the encryption purpose. Since this kind of cryptosystem uses chaotic systems in­

stead of the conventional way to generate pseudo-random numbers, it is also called 

the chaos-based cipher. The other approach of chaotic cryptosystems is based on 

the synchronization of continuous-time chaotic systems, and is generally designed for 

secure communications where, usually, the analog signals, for instance voice signals, 

are encrypted and transfered within a given network, thereby called chaotic secure 

communications.

3.3.1 Chaos-Based Cipher

1 1 0 0  1

M essage 
binary file

XOR

Encrypted signals 
01010...

Chaotic binary 1 0  0 1 1 . . .

XOR

Decrypted signals 
11001... _

Chaotic binary 1 0  0 1 1 . . .

Xn —

State X

f 1 x n > A
x n — <

1 0 x n <  A

State X

Chaotic system Chaotic system

Key KChaotic binary sequence
generator ---------------

T ransmitter Receiver

Figure 3.3: Schematic diagram of the chaos-based cipher

For the chaos-based cipher, Figure 3.3 shows its schematic diagram. W ithout 

loss of generality, we assume that the message transmitted from the transm itter is a 

binary file consisting of a chain of 0’s and l ’s. Before the transmission of the binary 

message takes place, the transm itter and the receiver have previously agreed to use 

the same n-dimensional discrete chaotic dynamical algorithm governed by equation

(2.14) for the encryption and decryption purpose.
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The encryption procedure can be expressed as this. As the first step, the trans­

mitter searches for a sequence of the original message of a fixed size specified by a 

parameter. Then the chaotic dynamics is turned on with arbitrary initial conditions 

and/or parameters, set by the key K  to generate the same size sequence of real num­

bers by iterating it. After that, a threshold A  is chosen for the real number sequence 

to construct the chaotic binary sequence by this convention: if x n > A  it is set as 1, 

and if x < A  it is set as 0. Once the chaotic binary sequence is generated, the XOR 

operation can be applied to the message binary file and the chaotic binary sequence, 

and then we get the encrypted binary sequence. The same process is carried on for 

remaining parts of the original message and, finally, the ciphertext would be obtained.

In order to decrypt the ciphertext and retrieve the original message data again, 

the procedure described above is simply repeated at the receiver side. Since we use 

the key K  to set the initial conditions and parameters, upon which the chaotic dy­

namical system is extremely dependent in the sense that two arbitrarily close initial 

values will result in totally different systems states, this means that even the slightest 

difference of the key K  will make the generated chaotic binary sequence completely 

unuseful. In other words, it can be said that only with the precise knowledge of the 

key K  one can recover the ciphertext successfully.

Here, we give an example to demonstrate the implementation of the chaos-based 

cipher. In this example, we use the logistic equation (2.1) as the chaotic binaxy 

sequence generator to design a chaos-based cipher, and then use it to encrypt and 

decrypt an image file. Moreover, in this example, we use two sets of keys, k\ is for 

the parameter /r =  4 and ^  is the initial value of xq — 0.6. Figure 3.4 illustrates the 

results of encrypting and decrypting an image file.

3.3.2 Chaotic Secure Communications

The approach of chaotic secure communications, referring to dealing with con­

tinuous value information by using continuous-time chaotic systems, for instance, the
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(a) Original image (b) Encrypted image with keys: 

k\ — fl — 4, k,2 — Xq =  0.6

(c) Decrypted image with correct keys: (d) Decrypted image with partial wrong

k\ =  fj, =  4, /c2 =  xo =  0.6 keys: k\ =  fi =  4.001, /c2 =  xo =  0.6

Figure 3.4: Example of encrypting and decrypting an image 

file with a chaos-based cipher
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Lorenz equation (2.2), was mainly promoted by the pioneering work of Pecora and 

Carroll. In (Pecora and Carroll 1990; Pecora and Carroll 1991), the authors proposed 

to use stable subsystems of given chaotic systems to construct unidirectionally cou­

pled synchronization systems1. Moreover, Pecora and Carroll noticed that by adding 

a continuous message signal with a small amplitude to the chaotic signal, the syn­

chronization of two chaotic systems can still be obtained, if they have the exact same 

parameters in the system equations, which can be considered as the private key for 

this secure communication system. Thereafter, the idea of using two synchronous 

chaotic systems, for secure communications, has received a great deal of interest, and 

several secure communication methods, such as: the chaotic masking, chaotic modu­

lation and chaotic switching have been successfully developed based on the realization 

of synchronization of two chaotic systems.

In conventional communication systems, the signal carriers are usually the peri­

odic sinusoidal signals because they can increase the bandwidth efficiency for com­

munication systems. However, the transmitted power of the sinusoidal signals is 

concentrated within a narrow band, which leads to a high power spectral density. 

As a result, some unwanted problems may occur. For example, the synchronization 

between the transm itter and receiver may be destroyed due to high attenuation over 

a narrow frequency band; the interference among users on the system may be exac­

erbated; the possibilities of intercepting the message may increase. On the contrary, 

chaotic signals are usually broadband and noise-like, which are suitable to be used 

to design a secure communication system, for the secure transmission of analog and 

digital message signals (Chen and Dong 1998).

The common feature of most existing chaotic secure communication algorithms 

is that a scalar chaotic signal is used for transmitting message signals. Usually, the 

most general form of the communication system requires two components, each of 

which consists of a chaotic system, identical in most cases. One of these two compo­

nents is called the transm itter and the other one is called the receiver, as Figure 3.5

1More detail will be discussed in Chapter 4.
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Figure 3.5: The chaotic secure communication system

shows. The basic idea of this kind of chaotic cryptosystems is to use, at the transm it­

ter side, a chaotic system to generate the broadband noise-like chaotic carrier signal 

with the cryptographic key. By a proper modulation and encryption operation, the 

private message signal is hidden in the chaotic carrier signal and becomes an unin­

telligible signal, which is then transmitted over the public channel to the receiver. 

At the receiver, the chaotic carrier signal is regenerated by the synchronous chaotic 

system, so that by combining it with the received signal, through the inverse modu­

lation and encryption operation, the original message signal can be extracted. The 

peculiarity of the chaotic secure communication lies in the message signal extraction 

process, which is based on synchronization phenomena between the transm itter and 

the receiver. This phenomena is required for successful message recovery, since only 

the completely synchronized receiver is capable of reconstructing the chaotic carrier 

signal. Due to the properties of great sensitivity to initial conditions and parameter 

settings of chaotic systems, it is believed that the chaotic receiver will only synchro­

nize with the transmitter, if it has exactly the same parameter settings with the 

transmitter. Thus, these parameter settings can be considered as the secrete “Key” 

for a chaotic secure communication system (Dachselt and Schwarz 2001).

Since the synchronization of chaotic systems plays a central role in the recover­

ing process of the private message signal for this kind of chaotic cryptosystems, here, 

we only introduce it briefly, and we shall describe it thoroughly in the next chapter, 

after introducing the concept of chaos synchronization.
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Chapter 4 

Chaos Synchronization

Synchronization, which usually refers to the coherence of different processes due 

to a coupling or to a forcing, is the basic phenomenon appearing in wide range of 

real systems, such as in biology, neural networks, physiological process, and so on. 

Although this phenomenon appears to be quite regular, when applied to periodic os­

cillations, the thought that two systems, each running chaotically, could synchronize 

with each other sounds quite inconceivable. Indeed, there is an essential difference 

between the synchronization of periodic oscillations and synchronization of chaotic 

systems. In the former case the oscillations do not have intrinsic instability and 

stochasticity which are common features of chaotic systems, whereas, in systems os­

cillating chaotically, it has been seen that infinitesimally nearby initial conditions 

trigger quite distinct evolutions. As a result, chaotic systems intrinsically defy syn­

chronization, because even two identical systems, starting from slightly different initial 

conditions, would evolve in time in an unsynchronized manner. Considering this, it 

would seem rather pointless to attem pt to synchronize chaotic systems in any sense 

(Chen and Dong 1998).

It was only until 1990, Pecora and Carroll discovered that a particular class of 

chaotic systems possesses a self-synchronization property, which means that by ar­

ranging these chaotic systems in a specific way, the identical chaotic behaviour could 

be achieved for these chaotic systems even if they were isolated, implying that it
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is possible to design a synchronizing system driven by chaotic signals (Pecora and 

Carroll 1990; Pecora and Carroll 1991). This striking discovery has attracted con­

siderable interest among researchers from various disciplines. The motivation of the 

investigations has come from potential applications of this phenomenon to secure 

communications, model verification of nonlinear dynamics and many other areas.

Up to now, there are several different categories of chaos synchronization. Most 

frequently, chaos synchronization is studied where a complete system consists of uni- 

directionally coupled identical subsystems, as described by Pecora and Carroll. In 

this case, the synchronization appears as an actual equality of the corresponding state 

variables of the coupled systems as they evolve over time. In other words, it implies 

that all state trajectories of the synchronized chaotic systems asymptotically con­

verge to each other in the course of the time. We refer to this type of synchronization 

as identical synchronization or complete synchronization. Another situation is when 

coupled chaotic systems are not identical. This kind of problems has been reported by 

Rulkov and his colleagues in (Rulkov et al. 1995) where two unidirectionally coupled 

chaotic systems are called synchronized if a static functional relation exists between 

the states of both systems. This kind of synchronization is usually termed as gener­

alized synchronization.

In this chapter, we shall focus on the realization of the identical synchronization 

of chaotic systems and its application to secure communications.

4.1 Synchronization of Chaotic System s

Considering the complex behaviour of chaotic dynamical systems, it is interest­

ing to wonder whether we can find some mechanisms for externally influencing the 

functioning of chaotic systems and, on the other hand, how we can possibly uti­

lize the amazing ability for performing other useful tasks such as signal processing. 

These questions and many more may be answered through investigating the concept
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of chaos synchronization. Therefore, we shall study the synchronization problem of 

two chaotic systems using different approaches that have been proposed so far in the 

literature. Each method will be investigated thoroughly and an example will be pro­

vided for each one of them.

The first thing to be highlighted is that the most common process, leading to 

synchronized states of chaotic systems, refers to the so-called drive-response coupling 

configuration, consisting of two chaotic dynamical systems, one of which generates 

driving signals, so it is called the drive system (or the driving system), and the other 

is driven by these signals and then it is called the response system (or the driven 

system). This implies that one chaotic system evolves freely and drives the evolution 

of the other. As a result, the response system is slaved to follow the dynamics of 

the drive system, which, instead, purely acts as an external but chaotic forcing for 

the response system. Based on this situation the definition of synchronization can be 

introduced in the general sense as follows:

D efin ition  4.1.1. Given a drive system of variables x(t), with dynamics governed 

by a continuous-time nonlinear dynamical system, given by equation (2.11), and an 

identical response system of variables x(t), it is said that there is synchronization if

lim |) x(t) — x(t) ||=  0. (4.1)
t —too

Notice that it is clear from this definition that the synchronization of two dynamical 

systems means that trajectories of one of the two systems will converge to the same 

values of the other one and will remain in step for the future time. This makes the 

synchronization appear to be structurally stable.

4.1.1 Pecora-Carroll’s Approach

Consider the n-dimensional autonomous dynamical system, whose temporal evo­

lution is governed by equation (2.11). We suppose that the system can be arbitrarily
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divided into three components:

ii = f ( u , v ) (4.2a)

v — g(u,v)  (4.2b)

w = h(u,w)  (4.2c)

where u = (u i,u2, ...,um)T, v =  {vi,v2, ...,vk)T, w — (wi,w2, ...,wi)T, and n = m + k +  

I. The first two components (4.2a) and (4.2b) represent the drive subsystem, whereas 

the last equation (4.2c) represents the response component which is then called the 

response subsystem. We now create a new subsystem with variables w' identical to 

the response subsystem of equation (4.2c), given by

w' — h{u,w') (4.3)

where u{t) is the driving signal.

For the system described by equations (4.2), the chaos synchronization can be 

expressed as this: giving the same chaotic driving signal u(t) for the response subsys­

tem (4.2c) and its replica (4.3), at the moment t  =  to, generally e(t0) is not equal to 

zero, where e(t) is the synchronization error defined by e(t) = || w(t) — w'(t) ||. But 

as the time approaches to infinity, it yields that lim^oo || e(t) ||=  0. This means that 

the trajectories of two systems, starting from different initial conditions, will converge 

under the action of the chaotic driving signal.

The key problem is how to guarantee that, for a fixed set of drive initial condi­

tions, wherever w'(t) starts, it would always converge to the trajectory of the subsys­

tem (4.2c), that is w(t), and at each point of time always be at the same predictable 

place on that trajectory. This leads to the linear variational expansion for the response 

subsystem, given by

e =  h(u, w ') — h(u, w) = Jwh(u, w)e + 0 (w , u) (4.4)

where Jwh is the Jacobian matrix of the w subsystem vector field with respect to the 

variable w only, and 0{w)  represents the higher-order terms. In the limit of small e,
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the behaviour of equation (4.4) depends on the Lyapunov exponents of the response

subsystem w for the particular driving signal u(t), which are called conditional Lya­

punov exponents. In (Pecora and Carroll 1990; Pecora and Carroll 1991), it has been 

shown that the necessary and sufficient condition for the trivial solution of equation 

(4.4) to be asymptotically stable is that all of conditional Lyapunov exponents1 are 

negative. Such a condition can be met if u(t) is a synchronizing signal. However, 

given a chaotic system , not all possible options of the driving signal lead to a syn­

chronized state, as we shall show momentarily.

Let us describe this procedure using an example of the Lorenz system introduced 

in the former chapter. Its dimensionless equation is given by

x — —a(x  — y )

y =  — xz  +  px — y  (4.5)

z  = x y - p z ,

and it can be decomposed into three different response subsystems considering the

state x, y and z  as the driving signal, respectively, described as follows:

(1) x-drive response subsystem

y' — —xz' + px — y'
(4.6)

z' — xy' — Pz'

(2) y-drive response subsystem

x' =  —a(x' — y)
(4.7)

z = x'y  — Pz1

(3) z-drive response subsystem

x' — —a(x' — y')
(4.8)

y’ =  - x ’z + px' -  y'

1For the method to calculate Lyapunov exponents, refer to (Eckmann and Ruelle 1985).
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Notice that the dynamics of all of the response subsystems given above is independent 

of the original Lorenz system; therefore, the original Lorenz system (4.5) is considered 

as the drive system and its decomposed subsystems (4.6), (4.7) and (4.8) are regarded
O

as the response system. It can be shown that for a  =  10, (3 =  ^ and p = 60 giving 

rise to a chaotic dynamics drive and response systems can be synchronized only for 

the x — and y —drive response systems, as shown in Figure 4.1(a,b), since conditional 

Lyapunov exponents are (Ai =  —1.81, A2 =  —1.86), (Ai =  —2.67, A2 =  —10) and 

(Ai = 0.011, A2 — —11.01) respectively for x —, y — and z—drive response systems. 

This means that due to the slightly positive conditional Lyapunov exponent for the 

z-drive response system, its trajectory will not converge to that of the drive system 

even though there is a driving signal acting on it. Figure 4.1(c) demonstrates this 

result.

nmefsec)

(a) x-drive (b) y-drive (c) z-drive

Figure 4.1: Results of chaos synchronization from P-C approach

Thus, these two x — and y —drive response subsystems can converge to the corre­

sponding components of the original Lorenz system respectively. Notice that, these 

two subsystems can be combined together to construct a full-dimensional response 

system, which is structurally similar to the drive system (4.5) (Cuomo and Oppen- 

heim 1993). For example, if we consider the state x  of the system (4.5) as the driving
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signal, the full-dimensional dynamics of the response system can be given by:

x' — —a(x' — y')

y’ — - x z ' + px - y '  (4.9)

H = xy' — f3z'

In this case, it can be shown straightforwardly that the synchronization is a 

global property of the nonlinear error dynamics between the system (4.5) and (4.9) 

with the parameter <j, (3 > 0. First, let us define the synchronization error dynamics 

e =  {&i^2,e3)T as

e\ =  x — x' =  —cr(ei — e2)

62 =  y - y '  =  —e2 — xe3 (4.10)

e3 =  z  -  z' =  xe2 - f3 e 3.

Then we consider the Lyapunov function as

v  =  o ( “ e i  +  e2 +  ei) (4 -11 )Z <7

where a  is a positive constant. Taking the time derivative of V  along trajectories of 

the resulting error dynamical system (4.10) leads to

V  =  \ ei&i + e2e2 + e3e3
i o (4-12)

=  —(ei -  2 e2)2 -  \ e \  -  f3e%.

Therefore, it follows that V  < 0 for (3 > 0. According to the Lyapunov stability 

theory, it implies that the error dynamics converge to zero exponentially fast, that is

lim e(t) =  0. (4-13)
t —>oo

Figure 4.2 shows the synchronization between the drive system (4.5) and the 

full-dimensional response system (4.9).

4.1.2 Observer-based Synchronization

Notice that once the chaotic drive system is given, the above drive-response 

method does not give a systematic procedure to determine the response system and
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Figure 4.2: The components of the synchronization error for 

the drive system (4.5) and the full-dimensional response system (4.9)

the driving signal. Hence, it depends on the choice of the drive system and could not 

be easily generalized to an arbitrary chaotic drive system. This leaves some ambiguity 

as to what the actual response system should be, given a drive system. A natural 

attempt would be to consider the drive system as transmitting a driving signal to 

the response system and the response system is requested to recover the full state 

trajectory of the drive system. This problem is intimately related to the observer 

problem in control theory. Naturally, many efforts have been made to show that 

the synchronization problem of chaotic systems could be solved through the observer 

design approach, which has been then called observer-based synchronization. In this 

approach, for the given drive system, the response system could be chosen in the 

observer form, which is a copy of the drive system modified with a term depending 

on the difference between the received signal and its prediction. This additional term 

is used to attenuate the difference between the state of the designed drive system and 

the state of the observer system. Then under some relatively mild conditions, local 

or global synchronization of drive and observer systems can be guaranteed. Hence, 

this synchronization scheme offers a systematic procedure, independent of the choice 

of the drive system.

The observer-based synchronization method was proposed in (Grassi and Mascolo
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1997; Liao and Huang 1999; Alvarez-Ramirez et al. 2002) and first motivated by the 

work in (Peng et  al. 1996). Compared with Pecora-Carroll’s method, this approach 

does not require the computation of the conditional Lyapunov exponents or the ini­

tial conditions belonging to the same basin of attraction. Moreover, it guarantees 

synchronization of a wide class of chaotic systems, via a scalar synchronizing signal 

only. In order to illustrate how this method works, we shall consider synchronizing 

two identical n-dimensional chaotic systems through the observer design technique.

Consider the general nonlinear chaotic system (2.11) having the form given by

x =  A x + f ( x , y )  

y = C T x

where x G M" is the state, and y  E M is the output signal used as the synchronizing 

signal for the observer. The matrix A  € Rnxn and C E Mn are constants. Notice that 

in this case the noise description is not taken into account so this differential equation 

is deterministic. Moreover, /  : Mn —► Mn is assumed to be a real analytic vector field 

and satisfy the global Lipschitz condition in x, i.e., there exists a positive constant, 

called the Lipschitz constant, 7 , such that

(4.14)

f ( x , y )  -  f ( x , y )  j|< 7 II x - x (4.15)

for all x, x  E Mn and for all y E R. By following the method proposed by Rachavan 

and Hedrick (Raghavan and Hedrick 1994), the observer design can be described as 

follows. We assume that the linear part of equation (4.14) is observable, i.e., the pair 

[A, C T) is observable in the sense that the rank of the observability matrix

O

( CT

CTA

\

VCTA n —1

(4.16)

/
is equal to n.

So now we can construct an observer for the system (4.14) in the following form:

x  =  A x + f{x ,  y) + L(y — CTx) (4-17)
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where i e i "  represents the dynamic estimate of the state x  and f ( x , y ) represents 

the estimated vector of f ( x ,y )  based on the estimated x. L £ W 1 is the observer 

gain vector chosen in such a way that (A  — LCT) is an exponentially stable matrix 

which is always possible since the pair (A, CT) is observable (Ogata 2002). Then 

for any symmetric and positive definite matrix Q £ Rnxra there exists a symmetric 

and positive definite matrix P  € MnXn such that the following well-known Lyapunov 

matrix equation is satisfied:

(A -  L C 1 y  P  + P (A  -  L C 1) =  - Q  (4.18)

Let us now define the error for the state estimate as e =  x — x  and by using

(4.14) and (4.17) we obtain the following error dynamics:

e =  { A -  LC T)e + f ( x ,y )  -  f ( x ,y )  (4.19)

By considering the positive definite Lyapunov function V(e) =  eTP e , it has been

shown that if

7  <  4 = ^  (4.20)

where the matrices P and Q are positive definite satisfying equation (4.18) and 

Amin(Q), ^max(P) denote the minimum and maximum eigenvalues of the matrices 

P  and Q, respectively. Then

lim e(t) =  0, (4-21)
i —► oo

implying that the designed observer (4.17) yields asymptotically stable estimates for 

the system (4.14) (Thau 1973).

To demonstrate the above observer design method for synchronization, we shall 

take a numerical example employing the Rossler system given by equation (2.13), 

which can be written in the form of system (4.14), with a =  0.2, b = 0.2 and c =  5 

exhibiting the chaotic behaviour, as follows:
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X A x + f ( x ,y )

-0 .2 0 0 V

- 1 0 - 1 x  + 0

0 0 - 5 0.2 +  £3 y

(4.22)

y = CTx

T

0 1 0 x = x 2

where x  =  x i , x 2, x 2 and y is the synchronizing signal. Notice that, since the pair 

(A , CT) for the system (4.22) is observable, it can be concluded, by applying the above 

discussion, that there exists a gain vector L, such that a response system designed 

through the observer design approach can synchronize with the drive system for any 

initial state. The observer-based response system designed in the form of system

(4.17) is given as follows:

x = A x + f (x ,  y) +  L(y -  C^x)

- 0.2 0 0 y

- 1 0 - 1 x  + 0

0 0 - 5 0.2 +  x3y

+ L(y -  C Ti )
(4.23)

If the observer gain is chosen as L , it makes the matrix-2.1323 2.2 -2.3077 

(A — LC T) stable with the eigenvalues of —1, —2 and —4. Thus the error dynamics 

can be driven to zero as shown in Figure 4.3.

io

5

O

*5

•IO

•15O 5 10 15
Time(sec)

20 25 30

Figure 4.3: The components of the synchronization error for system (4.22) and (4.23)
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B ru now sky C anonical Form

We now consider a special case of chaos synchronization on the basis of the 

observer design technique, where a particular way can be used to determine the 

observer gain vector L for the synchronization of two chaotic systems (4.14) and

(4.17).

Suppose that there exists a linear change of coordinates z =  Ox by which the 

chaotic drive system (4.14) can be transformed into the following so-called Brunowsky 

canonical form  (Ciccarella et al. 1993), given by

z =  A z  +  B<f>(z, y) 

y = Cz
(4.24)

with
0 1 0 . . 0 -  _

0
0 0 1 . . 0

, B  =
0

0 0 0 . . 1
1

0 0 0 . . 0

C = 1 0

It can be proven that, since the nonlinearity f ( x ,y )  in the systems (4.14) is globally 

Lipschitz in x, 4>(z, y) in (4.24) is also globally Lipschitz in z (i.e. || <f>(z, y ) —cj)(z, y) ||<  

7* || z — z ||). Then, the corresponding observer system can be depicted as follows

z =  Az + B(p(z,y) + L ( y - y )  

y = Cz
(4.25)

where L  =  OL is the transformation of the observer gain vector L. We further 

consider that L depends on a positve parameter 0, and it is in the following form

m  =

OL\Q

a 202
(4.26)

a j r‘
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where 0:1,2,....n are some constants appropriately chosen in such a way to make the 

polynomial H (A) =  An 4- aiAn_1 +  • • • +  a n Hurwitz.

We now introduce the ^-scaled synchronization error:

e =  A( z -  z) (4.27)

where A =  diag(9n~1, 9n~2,..., 1).

Based on the equations of (4.24)-(4.27), we can obtain the following error dy­

namics:

e =  9(A -  L(l)C)e + AB(<p(z, y) -  <t>(z, y)). (4.28)

It can easily be shown that, with the appropriately chosen L(9) in the form (4.26),

the matrix (A — L(l)C)  is stable so that there is a symmetric and positive definite

matrix P  satisfying equation (4.18) with Q — I.

Now, we choose the Lyapunov function as V  =  eTPe, and then the time derivative 

of V  along the trajectories of system (4.28) is

V  = - 9 \ \ e \ \ 2 +2er P(AB(<t>(z,y)-<P(z,y))

< - 9  || e ||2 +2 || eTP(AB((f>(z, y) -  <p(z, y)) ||

<  - 9  || e ||2 +2 || e |||| P  |||| AB  |||| cf>(z,y) -  *(£ ,y )  ||
(4.29)

<  - 9  || e ||2 +2^zXmax(P)\b0\ || z  -  z  |||| e ||

< —9 || e ||2 + 27zAmax(P )|60|||A-1 || || e ||2

< - ( ^ - 2 7,Amax(P)|6o|||A-1||) | |e  ||2 .

where |60| =  || AP|| is a positive nonzero constant and the 7z is the Lipschitz constant. 

Clearly, the following inequality holds for all of 9 > 1:

V  < - { 9  -  2l z \ max{P)\b0\) || e ||2 . (4.30)

Once the parameter 9 is chosen appropriately such that 9 > max  {1, 27zAmax(P)|6o|}, 

we can conclude that V  < 0, which implies that, from standard Lyapunov arguments, 

the given chaotic drive system (4.14) and the designed observer (4.17) can be syn­

chronized, if the observer gain vector L  is chosen as

L{9) = 0 ~ 1L(9), 9 > m a x{  1, 2 jz\ max(P)\b0\} . (4.31)
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This method of designing the observer gain vector L provides a simple way to 

adjust the convergence rate of the synchronization errors by an appropriate choice 

of the parameter 0. In fact, since V(t) < V (0 jexp~(e~2'rzAmax<'P)lt>ol) ̂ the larger the 

value of 9, the faster the convergence of the trajectories of the drive and the observer 

system.

In order to illustrate the method discussed above, we still take the Rossler sys­

tem as an example to construct a synchronization system, so the linear change of 

coordinates can be chosen as:

z = Ox, O

1 0 0 

a 1 0

a2 — 1 a —1

(4.32)

With the same parameters as used in the previous example, the Rossler system (4.22) 

can be transformed into the form of system (4.24), given by:

i  =  A z  +  B<p(z)

0 1 u 0
= 0 0 1 2 + 0

0 0 0 1

y = Cz 1

100 2

(4.33)

where <j>(z) =  — 5zi — 4.823 — 0.2zf — 0.2z\  +  0.962x22 — 0.2zxz3 +  z2z3 — 0.2. If L  iis

chosen as L (9) = 39 392 93 such that the eigenvalues of the matrix (A — L(1)C) 

are all located at —1, then, according to equation (4.31), the observer gain matrix 

L(9) can be obtained by:

L(9) = 0 ~ lL =

—2.8845#2 -  0.19230s 

30

-O.115502 +  0.19230s

(4.34)

Figure 4.4 and 4.5 present the synchronization errors for 0 =  3 and 0 =  10, with the

corresponding L = -31.1526 9.0000 4.1526 and L -480.75 30.00 180.75
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respectively. As the figures show, the trajectories of the systems (4.14) and (4.17) con­

verges to zero exponentially, and the larger the value of 9, the faster the convergence 

rate.
1 2

10

8

6

I<us 4 
1
'§ 2

o
-2

-4

-6
2.5

Tim e(sec)
3 3.5 4 4.5 5O 0.5 1 1.5 2

Figure 4.4: Synchronization errors of systems (4.14) and (4.17) for 9 = 3

T ime(sec)

Figure 4.5: Synchronization errors of systems (4.14) and (4.17) for 9 = 10

4.2 Application in Secure Communications

As briefly introduced in the previous chapter, the problem of synchronizing two 

chaotic systems has been throughly studied recently, mainly because of its potential
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application to designing new chaotic cryptosystems for secure communications. For 

this application, on the transmitter side, the chaotic system with some preset pa­

rameters, as the key, is used to encrypt the private message signal, which is then 

transmitted through the public channel. The other chaotic system, on the receiver 

side, is used to retrieve the encrypted message signal via the synchronization of these 

two chaotic systems. Since chaotic systems are sensitively dependent on their initial 

conditions and parameters, it is believed that only the person, who knows exactly 

the key used in the transmitter, can design a synchronous receiver system to recover 

the message signal. Obviously, in the drive-response setup described above, the drive 

system can be considered as the transm itter and the response system can be regarded 

as the receiver, as illustrated in Figure 3.5.

Several methods concerning this m atter have been proposed in the literature. We 

shall discuss three different approaches called chaotic masking, chaotic modulation 

and chaotic switching in the followings.

4.2.1 Chaotic Masking

Private message signal
m(t )

x(t) s ( t )

rh(t)

Chaotic transmitter Chaotic receiver

Figure 4.6: Chaotic signal masking cryptosystem

The most direct approach to communicating with a chaotic signal is called chaotic

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



masking, which was proposed in (Pecora and Carroll 1990; Cuomo and Oppenheim 

1993). The basic idea that underlines this method is that the private message sig­

nal m(t) to be transmitted is added directly to the noise-like masking signal at the 

transmitter-end for the encryption purpose, then the overall signal is transm itted to 

the receiver over the public channel. At the receiver-end, the masking is removed via 

the synchronization of transmitter and receiver systems. This process is done by us­

ing the transmission signal as the driving signal to reconstruct the noise-like masking 

signal at the receiver system, and subtracting it from the received signal which finally 

recovers the message signal m(t)  (refer to Figure 4.6). In order for this scheme to 

work properly, the original message signal has to be sufficiently small with respect to 

the chaotic masking signal, so that it can be considered as a small perturbation in 

the transmission signal. Since it is found experimentally that the ability to synchro­

nize is robust, i.e., is not highly sensitive to perturbations in the transmission signal, 

implying that the synchronization can be done with the masked signal (Pecora and 

Carroll 1991).

By following the example of synchronization of Lorenz system in Section 4.1.1, 

we design a chaos masking secure communication system consisting of the transm it­

ter the same as system (4.5) and the receiver similar to the system (4.9), with x(t) 

replaced by s(t) as a driving signal. Although there are many possible variations, 

we consider a transmission signal of the form s(t) =  x(t) + m (t) where we assume 

that the power level of the message signal m(t) is significantly lower than tha t of the 

chaotic masking signal x(t), so that the synchronization between the transm itter and 

receiver can be guaranteed. As Figure 4.6 illustrates, once the receiver is synchro­

nized with the transmitter by the driving signal s(t), then the masking signal x(t) 

can be reconstructed, that is, x(t) =  x'(t). Consequently, the original information 

signal m(t) can be finally recovered as m(t) — s(t) — x'(t) —> m(t), with x(t) —> x'(t) 

as t  —► oo.

The performance of this secure communication system is demonstrated in Figure 

4.7 with a segment of a sound signal: “The good boy.” being transm itted through it.
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The figure shows the original sound signal m(t) and the recovered sound signal m(t). 

Clearly, the sound signal was recovered and was of reasonable quality in informal 

listening tests.
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Figure 4.7: Sound signal encryption and recovery with chaotic masking method: 

(a) original sound signal; (b) recovered sound signal; (c) transmission signal

4.2.2 Chaotic M odulation

The method of chaotic modulation proposed in (Wu and Chua 1993) and (Liao 

and Huang 1999) resembles the above approach, but adds more complexity and se­

curity to the transmission of the message signal. The suggested idea is that, at 

the transmitter, the original message signal is not only modulated with the chaotic 

signal by some specified operation, but also injected into the chaotic system. This 

means that the message signal can modify states of the transm itter system through 

an invertible procedure; thus, the generated chaotic signal inherently contains the 

information of the message signal. The receiver synchronizes with the transm itter 

via reconstruction of its state using the transmission signal. The message signal is
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recovered by applying the inverse modulation operation to the reconstructed state 

and the received signal. The main idea of this method is sketched in Figure 4.8.

Private message signal
m(t )

x(t)  1 s(t) x'(t) rh{t)

Chaotic transmitter Chaotic receiver

Figure 4.8: Chaotic signal modulation cryptosystem

We shall describe this method using the Lorenz system again, and consider a 

simple way to modulate the message signal m(t) with the chaotic signal x(t), that is, 

s(t) = m(t) + x(t).  This addition is then transm itted to the receiver; meanwhile it is 

also fed back into the transmitter system. Then, the transmitter for this scheme is 

given as follows:
x = —a(x — y)

y  =  — (x +  m(t))z + p(x + m(t)) — y  (4.35)

i  =  (x + m(t))y -  (3z.

Now consider the transmission signal as s(t) =  x(t) +  m(t), the receiver can be 

designed as:
x — —a(x  — y)

y -  - { x  +  m(t))z  +  p{x +  m (t)) -  y  (4.36)

£ =  (x + m(t))y -  @z.

For this chaotic modulation cryptosystem, it can be proven that the transm itter 

(4.35) can synchronize with the receiver (4.36), with the parameters a =  16, P = 4 and
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p =  44.8 (Wu and Chua 1993). Hence the original message signal can be retrieved by 

an inverse modulation operation, that is, m(t) =  s ( t )—x(t) —> m(t), with x(t) —► x(t) 

as t —► oo. Figure 4.9 shows the results of transmitting a continuous-time message 

signal by using the chaotic modulation method.
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Figure 4.9: Transmission of message signals with the chaotic modulation method: 

(a) original message signal; (b) recovered message signal; (c) transmission signal

4.2.3 Chaotic Switching

In the method of chaotic masking and chaotic modulation, a continuous-time 

message signal was encrypted by a noise-like chaotic signal. Now, we present a  quite 

similar cryptosystem, introduced in (Parlitz et al. 1992), to safely transmit and 

receive a discrete-valued message signal, which is usually binary. The essence of this 

method is that two sets of parameter values are predefined at the transm itter system, 

while only one set of parameter values, which is the same as one of those two sets used 

in the transmitter, is preset at the receiver system. Then the transmitter switches
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parameters, so that they change to one of two predefined sets of values depending on 

whether a “1” or a “0” is being transmitted. At the receiver, one set of values will 

lead to a perfect synchronization, while another one will produce a synchronization 

error between the received driving signal and the receiver’s generated chaotic signal. 

By low pass filtering the synchronization error signal and applying a threshold test 

to the low pass filtered signal, the binary message signal can be retrieved successfully 

(Cuomo and Oppenheim 1993). This process is shown in Figure 4.10.

m ( t ) /
Chaotic transmitter

x(t) Y*

yy

*
Parameter

X switching

Detection
m(t)

Chaotic receiver

Figure 4.10: Chaotic signal switching system

To illustrate the performance of this scheme, we take a square wave as the binary 

message signal shown in Figure 4.11(a), which produces a variation in the parameter 

(3 of the transmitter, given by system (4.5), with zero-bit and one-bit parameters 

corresponding to /?(0) =  4 and (3(1) =  4.4, respectively, while, at the receiver system 

which is also given by system (4.5), the value of the parameter (3 is kept as (3 — 4 

for all the time. Figure 4.11(b) shows the synchronization error signal. It is obvious 

that the parameter switching produces significant synchronization error during a “1” 

transmission and a very small error during a “0” transmission. Figure 4.11(c) shows 

the synchronization error signal filtered by a low-pass filter, designed as:

10~8(0.1216 +  0.36482i +  0.364822 +  0.1216*3)
H(z) = (4.37)

1 -  2.99572i +  2.991522 -  0.995723 

Figure 4.11(d) shows that the square-wave can be finally recovered by applying a
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threshold test2 to the filtered synchronization error signal.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

/ w  Mo 001

- 0.01
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(sec)

Figure 4.11: Discrete signal encryption and recovery with chaotic switching method: 

(a) digital information signal; (b)synchronization error power; (c) low 

pass filtered signal; (d) recovered digital signal.

2In this case, we set the threshold value as 0.008. For all the value of filtered synchronization 

error signal lesser than the threshold value, it is set as 0, otherwise it is set as 1.
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Chapter 5

N ew  Secure Com m unication  

System

Achieving easy recovery by the receiver but difficult detection by any third party 

of a message signal is always the most important issue in secure communications. 

As seen from the applications of chaos synchronization to secure communications 

discussed in the former chapter, the message signal is first modulated by a chaotic 

carrier signal for the encryption purpose and then transmitted to the receiver, while 

the receiver has to recover the message signal from the incoming transmission sig­

nal, via the synchronization of the transmitter and the receiver system. Since haotic 

systems are extremely dependent on their initial conditions and parameter settings, 

the asymptotic synchronization of the transmitter and the receiver is inevitable for 

the scheme, which not only guarantees a message signal being successfully recovered 

by the receiver, but also prevents it from being read during the transmission process 

by any unauthorized party. This means that the most important aspect of chaos 

synchronization is its security.

Commonly, in order to achieve the synchronization, some typical ways such as the 

drive-response mechanism, observer-based approach, etc., which have been discussed 

in detail in the former chapter are usually utilized. However, for several of these 

methods, the security of the synchronization is quite questionable as discussed in the
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following section. This chapter formalizes the concept of secure synchronization of 

chaotic systems and discusses an approach to achieve the secure synchronization of 

chaotic systems. A new secure communication system, based on the secure synchro­

nization, is also developed and investigated.

5.1 Secure Synchronization

Generally, in applications of chaos synchronization to secure communications, 

the parameter settings of the drive system are considered as the secret “key” for the 

encryption of message signals, and it is believed that without precise knowledge of 

this secret “key” , used in the drive system, it is very difficult to design a correspond­

ing response system synchronized with the drive system to decrypt the encrypted 

message signals. However, from a control theory viewpoint, the problem of having 

unknown parameters in the system model can be solved by using certain techniques 

such as the adaptive control or robust control. For example, an adaptive observer 

usually includes an estimation subsystem for the unknown parameters, and, by using 

some adaptation algorithms, the unknown parameters can be estimated accurately. 

This means that the adaptive or robust control method may be considered for pos­

sible attacks against secure communication and encryption schemes. By using these 

techniques, an intruder might design a false receiver synchronized with the transm it­

ter to recover the message signals without knowing the secrete “key” . This problem, 

however, was mostly neglected when chaotic secure communication schemes were de­

veloped in the past. To demonstrate this problem, we shall introduce an adaptive 

synchronization scheme originally studied in (Fradkov et al. 1999) and (Liao and 

Tsai 2000), which employs the adaptive control technique for the synchronization of 

chaotic systems with unknown parameters, so that it is not suitable for the applica­

tion to secure communications.
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5.1.1 Example of Insecure Synchronization

Consider the following nonlinear chaotic system with the unknown constant pa­

rameters n
x = A x  + BfiT(f){y)

(5.1)
y =  CTx

where x  G Mn is the state, and y G R. is the scalar output signal used as the syn­

chronizing signal for the observer. The matrix A  G RnXn, B  G Rnxiand C e t "  are 

constants. Moreover, 4>(x) is (Z x k) matrix with uniformly Lipschitz entries, /x 6 Rfc 

is the constant parameter vector which may be unknown as the secret key.

Assume that the pair (CT, A) is observable. Then, on the basis of state observer 

design approach discussed before, an adaptive-observer-based synchronization system 

corresponding to the drive system (5.1) can be designed as follows:

x  =  Ax  +  BfiT(f)(y) +  L(y  — CTx) (5.2)

where y is the received transmission signal and L 6 1 "  is the observer gain vector 

which is chosen fittingly such that (A — LC T) is an exponentially stable matrix, which 

is possible since the pair (CT , A) is assumed to be observable. Moreover, /i G Rfc 

represents the adjustable parameters used to estimate the unknown parameters in the 

drive system, which are updated according to the following adaptation algorithm:

fr =  <l>(.y)(y-y)- (5-3)

Furthermore, we assume that there exists a strictly positive real (SPR) transfer func­

tion, W (s) =  CT(s i  — {A — LCt ))~xB , with an appropriately chosen L. In light of the

well-known Kalman-Yakubovich Lemma (Ioannou and Sun 1996), this strict positive 

realness of W(s) guarantees that there exist symmetric and positive matrices P  and 

Q satisfying the following equations

(A -  LCT)TP  +  P (A  -  L C 1) =  - Q

P B  = C. (5.4)
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Then, we have the following proposition:

P ro p o sitio n  5.1.1 (Liao an d  T sai 2000). . For the given drive system (5.1), the 

designed adaptive-observer-based response system (5.2) associated with the adaptation 

algorithm (5.3) can globally asymptotically synchronize with the drive system, i.e., 

||x(i) — x(t)|| —> 0 as t —> 0 for all initial conditions.

Proof. First of all, we define the state error for the system (5.1) and (5.2) as e =  x —x, 

and then, under the adaptation algorithm (5.3), the resulting error dynamics can be 

characterized as follows:

e = (A —LC T)e + B(/j, — jf)T(f)(y). (5.5)

We now choose the Lyapunov function as

V  — eTPe  +  (p -  fi)T{p -  p.). (5.6)

Taking the time derivative of V  along the trajectories of the resulting error dynamical 

system (5.5) leads to

V  = eTPe +  eTPe +  2 (p — p)T(—p)

= ((.A - L C T)e + B { p - f i ) T4>{y))TPe

+eTP((A  -  LCT)e +  B(p, -  fx)T(j>{y)) +  2(p -  fi)T{-cp{y)CTe)

-  eT(A -  LCT)TPe + (f(y)T(p -  fi)BTPe  (5.7)

+eTP((A  — LCT)e + eTP B (p  — p,)<f>(y)) — 2(p — jx)T<p(y)CTe 

= eT((A -  LC t )t P  +  P (A  -  LC T))e +  (f{y)T{p -  fi)BTPe  

+eTP B (p  -  p.)4>(y) -  2 ( / j , -  p)T4>{y)TCTe.

By using equation (5.4), it yields

V  =  —eTQe. (5.8)

Since V  is a positive and decrescent function and V  is negative semidefinite, by 

following the LaSalle Principle (Khalil 2002), we can conclude that e(t) —► 0 as
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t —> oo, which means that the designed adaptive-observer-based receiver (5.2) can 

synchronize with the given drive system (5.1).

Consider as an example of chaotic synchronization system where both drive and 

response systems are the well-known Chua’s chaotic system. The drive system in 

dimensionless form is given by (2.12) and it can be written in the form (5.1) as 

follows:

x = A x  + B p T(p(y)

-1 0 10 0 1

= 1 - 1  1 x  + 0 (—10by -  5(a -  6)(| y +  1 | -  | y -  1 Q)

0 -15 0 0

y =  CTx - 1 0 0 x = Xi

(5.9)

— 105 —5 (a — b)where <f>(y) = y \ y +  1 | -  | y -  1 | , and pT =  ^  

which is assumed to be a priori unknown motivating the use of an adaptation for the 

response system design. It can be easily verified that the pair (CT A) is observable, 

which means that the response system can be designed according to the above results, 

modeled as

x  =  A x  +  B p T(f)(y) +  L(y -  y)

-1 0 10 0 1

1 - 1 1 x  + 0 ( A l y +  M 2 ( |  y + 1 1 -  1 y - 1 | ) )  +  L(y -  y)

0 -15 0 0

I! =  CTx  = 1 0 0 x  = Xx
(5.10)

where p T - M l  M2 represent the adjustable parameters used to estimate unknown 

parameters p\ and p2 , which are updated according to the adaptation algorithm (5.3), 

that is,

M i  =  ( y - y ) y

M 2  =  ( y - y ) ( \ y  +  l  \ -  \ y  -  1 | ) .
(5.11)
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-8.9615 1.6921 0.5769 so that theIt can be found that, if L is chosen as L = 

matrix (A  — LCT) is stable with the eigenvalues —0.9737 and —0.5324± j 4 .6518, then 

we can get the strict positive real transfer function

s2 +  s +  15
" W  =  C T ( S I  ~  ( A  ~  L C T ) ) ~ ' B  =  T T I o i ® *  +  22.9595s +  21.3461' 

This means that the following symmetric and positive-definite matrices

P

(5.12)

0.5107 0.2553 0.0046 1 0 0

0.2553 7.5173 -0.2977 ,Q = 0 1 0

-0.0046 -0.2977 0.5256 0 0 1

(5.13)

can be obtained according to equation (5.4).

Moreover, in the numerical simulation, the values of system’s parameter, the 

secret “Key”, are chosen as a =  —1.28 and b =  —0.69, implying that /q =  6.9 and 

H2 =  2.95. Figure 5.1 demonstrates that the state of the designed adaptive observer

(5.10) can converge to that of the given drive system (5.9), although some of system’s 

parameters are unknown for the observer system. Figure 5.2 shows the unknown 

parameters fix and fi2, and the estimated parameters fix and fi2, respectively. Clearly, 

in this approach, although some parameters of the drive system are unknown, they 

can still be estimated by this adaptive-observer-based approach. Consequently, it is 

not secure to be used in secure communications applications.

5.1.2 Concept of Secure Synchronization

Certainly it is undesirable if a synchronization scheme, which might be used for 

secure communications, is known to be vulnerable to simple attacks. In view of this, 

here we present the concept of secure synchronization, with respect to adaptive and 

robust control schemes (Celikovsky and Chen 2005). We begin with re-defining the 

definition of the synchronization of chaotic systems, formulated in control theoretic 

terms.

Consider the nonlinear chaotic system ( 2 . 1 1 )  with a parameter vector / i ,  which
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is re-written as follows:

x = f ( x , t ,p ) ,

where x e l "  and p  6 Mm.

(514)

Definition 5.1.1. System (5.14) *5 sa^d t° achieve a synchronization of a solution 

x( t) , t  > t0, i f  there exists an auxiliary output, y =  y(x) € W ,p  < n, such that with 

this output the system (5.14) has the following smooth asymptotic observer for the 

solution x(t), t >  to-'

x = f (x ,  t, p) +  cp(y(x),y(x), x , p), (5.15)

where x, x € Mn and p  € Mm.

Definition 5.1.2. The synchronization is said to be antiadaptive secure with re­

spect to the parameter p, i f  there does not exist any adaptive observer of the form  

(5.15) with p — p, p  € Mm, which can be obtained from the following adaptation 

algorithm:

p = ip(p1y (x ) ,y (x ) ,x ,t ) .  (5.16)

D efinition 5.1.3. The synchronization is said to be antirobust secure with respect 

to the parameter p, if there exists a positive constant K  such that for any p, p  from

a given compact set and for any solution of the system (5.14) with p  =  p and the

observer (5.15) with p  = p, it holds that

\im \\x(t) — x(t)\\ > K (p  — p). (5-17)
t—>oo

Then the secure synchronization is defined as the one that is both antiadap­

tive secure and antirobust secure.

Obviously, for any synchronization scheme, the antiadaptive secure implies that, 

if the parameter p  is considered as the secret key, there should be no way that an 

intruder could obtain it by using the adaptive-observer design technique. Moreover, 

the antirobust secure means that, for any synchronization method employing an esti­

mated key parameter, a big enough inaccuracy of the parameters estimation should
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cause big enough synchronization error. Therefore, both antiadaptive and antirobust 

security properties of the synchronization scheme are crucial for resisting potential 

attacks, since they guarantee that only the person who knows exactly the secret key 

can design an observer to construct the synchronization system.

Notice that although the secure synchronization is defined very broadly and there­

fore it seems difficult to verify, the intention here is to underline the fact that, the 

synchronization of chaotic systems for secure communications should offer a higher 

level of security to prevent the secure communication system from being vulnerable to 

simple attacks. Baaed on this consideration, the adaptive-observer-based approach to 

synchronize the well-known Chua’s system with some unknown parameters presented 

by Proposition 5.1.1 is not antiadaptive secure. In fact, it has been shown that the 

unknown key parameters used in the drive system were estimated successfully by this 

adaptive-observer approach (see Figure 5.2). Moreover, the case of synchronization 

problem of a typical class of chaotic systems having the so-called Brunowsky canon­

ical form, which is discussed in Section 4.1.2, can be considered as the one which is 

not antirobust secure. The reason is given by the following Proposition.

P ro p o s itio n  5.1.2 (A lvarez-R am irez  e t  al. 2002). Suppose that system (5.14) 

and its synchronizing output y(x) have the form

x  =  A x + B f ( x ,  p)
K J (5.18)

y = Cx

with
0  1 0  . . .  0 r  -\

0
0  0  1 . . .  0

, B  =
0

0  0  0  . . .  1
1

0  0  0  . . .  0

where f ( x ,  p) is Lipschitz in x, x  is bounded, and p  stays within a compact set. Then 

the system (5.18) allows synchronization that is not antirobust secure. Namely, the
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(5.19)
T

9r/

system

x = A x  +  B f ( x ,  p) + L(y — Cx)

where p is some nominal value of the unknown parameter p and L = Q Q2 

has the property that for any positive constant e, there exists a 9(e) >  0, such that 

lim^oo ||x(t) -  x(t) || —> 0.

Proof. Consider the 0-scaled synchronization error for the systems (5.18) and (5.19) as 

e =  A (x—x), where A =  diag(9n~1, 9n~2,..., 1), and then the resulting synchronization 

error dynamics can be characterized as follows:

F(9) =

9F( l ) e +  0 . . .  

- 9  1 0 ...

- 9 2 0 1 0

- 93 0 0 ' - .

-9n~l 0 0 . .

- 9 n 0 0 . .

P(t)
0 0 

. . .  0

0

0 1 

0 0

(5.20)

where p(t) =  f ( x ,  fi) — f(x ,  p) is a certain bounded function, since f ( x ,  p) is Lipschitz, 

implying that ||p(f)|| <  ol\ \x  — x ||, a  > 0 for all t > 0. It is easy to verify that the 

matrix F ( l)  is Hurwitz. This means that there exists a symmetric positive definite 

matrix P  such that the equation

F(1)t P  + P t F(1) = - I (5.21)

is satisfied.

We now choose the Lyapunov function as V  = eTPe  , and then the time derivative 

of V  along the solution of (5.20) is given by

V  =  —#||e||2 +  2 jo .

<  — #||e||2 +  2 a\\x — x\

< —̂ ||e ||2 +  2o:||P ||||e||2

< (—9 +  2 a ||P ||) ||e ||2.

P(*) Pe

e l l
(5.22)
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From equation (5.22), it can be seen that for any positive constant a, a positive 

constant 9 can be found such that V  < 0, which implies that

lim ||x(t) — £(£)|| —► 0. (5.23)
t — ►OO

■

From Proposition 5.1.2, it is obvious that this synchronization approach has the 

robustness property, which means that it is not highly sensitive to the mismatch of 

parameters used in the drive and response systems. This is against the definition of 

secure synchronization presented above; therefore, it should not be used for secure 

communications. So, based on the above analysis, we may state that a secure syn­

chronization scheme should not be based on typical drive-response techniques and 

should not use well-classified chaotic systems. On the contrary, a good candidate 

might be a system that admits an observer, but at the same time has some important 

components that are detectable but not observable.

5.1.3 Secure Synchronization Scheme

The generalized Lorenz system (GLS) and its transformation form, the so-called 

generalized Lorenz canonical form, have been introduced in Chapter 2. Since it 

represents a very general class of chaotic systems with only one parameter, we shall use 

it to design a synchronization system based on the concept of secure synchronization.

Now, by letting

Zl ~  2̂ 

X1Z2 — X2Z1

(k + 1)(z1 -  z2)2
V

2(Ai — A2)

(5.24)

where rj Vi  V2 % , the system (2.21) can be transformed into the following

observer canonical form (Celikovsky and Chen 2005):

rj = Ar) + F{q,y) (5.25)
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II 1 0 (Ai +  A2)t7i

where A 0 0 0 and F(rj, y) = -A i A27?i -  (Ai -  A2)t7i773 -  0.5(k +  l)(??i)3

0 0 ^3 K(K)(m y

with K ( k ) = ^ ( ' t +21̂ i -_2^ -  . ?Az.

The reason to transform the system (2.21) into the form (5.25), here, is to remove 

the cross term z2[z\ — z2) in the system (2.21); meanwhile to keep the term K(K)rjf in 

the system (5.25), which depends only on the component % =  z\ — z2. This property 

is crucial for the synchronization scheme design to be presented later on.

We now consider the system (5.25) with its bounded trajectory r)(t), t  > t0 as 

the drive system and the first state rft is chosen as the driving signal to drive a 

response system in order to achieve the synchronization. Then the drive system can 

be expressed as follows
f] =  Arj +  F(r), y)

V = CTrj
(5.26)

where CT 1 0 0 Notice that, for the drive system (5.26), the pair (C7\  A) 

is not observable but detectable, which implies the possibility to design a response 

system as an observer to synchronize the system (5.26). Now we consider the following 

system as the response one:

77 =  Afj + F{fj,y) + L(ffi - t][)

0 1 0 (Ai +  \ 2)Vi h

0 0 0 77+ -X iX 2r}[ -  (Ai -  X2)rj[fi3 -  0.5(/c+ l ) ^ ) 3 + h

0 0 A3 K ( kM ) * 0

(Vi ~  rfx)

(5.27)

where rj = , and L — with Z12 < 0. In addition, r}[ isl\ l2 0

the input driving signal, which may be biased by the noise during the propagation 

procedure. Thus, by assuming ||t7i (t) —rj[ (t ) || <  s, where e is a small positive constant, 

the following theorem can be obtained.

T h eo rem  5.1.1 (C elikovsky a n d  C h en  2005). Consider a drive system given by

(5.26) and an observer-based response system given by (5.27). It holds exponentially
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in time that

lim \\r){t) -  77(f))|| < Ds  (5.28)t—► OO

where D is some positive constant. Particularly, i f  rft = r)[, the response system

(5.27) globally asymptotically synchronizes the drive system (5.26), i.e.,

t —>oo
(5.29)

Proof. By allowing the state error 77 =  

be written as follows:
Vi  V2 Vs = rj — fj, the error dynamics can

Vi = V i~  Vi

— ( A x  +  ^ 2 ) ^ 1  +  ^ 2  ~  I1V1 ~  V2 ~  ( A i  +  A 2  —  h ) r ] i

— h(Vi ~  Vi) +  62 ~  62 +  (Ai +  A2 — h){T]i — rff) 

=  Zi?7i + fj2 +  (Ai +  A2 — h)(r)i — rj[)

(5.30)

V2 =  V 2 - V 2

= -X iX 2rji -  (Ai -  X2)'nir}3 -  0.5(« +  l)r]f

—I2V1 +  (A1A2 +  k)Vi +  (Ai — Xfjri^fjz +  0.5(/c +  l)(?7i)3 

=  h(vi ~  Vi) ~  (Xi -  X2)r][(r]3 -  rjs)

+(-A iA 2 ~ h ~  (Ax -  A2)t73 -  0.5(ac +  l)(r}f +  77? (^?i)2 +  iv[)2))(Vi ~  v[)

=  k m  + 4> ( t ) m  +  pit) im -  v[)
(5.31)

where 0 (f) =  -(A : -  A2)77i and ( p{ t )  =  (-AiA2 - l 2 ~  (Ax -  A2)773 -  0.5(« +  1 )(rfi +

V i i v ' i ) 2 +  ( V i ) 2 ) ) -  Since trajectories 7 7 ( f )  are bounded, f i t )  and p { t )  are bounded

functions.

% =  m  - f j 3

=  A 3 ( t 7 3  —  7) 3 )  +  —  ( r j f ) 2 )

=  A3773 +  K («) (771 +  7/J (771 -  77j)

=  A 3 7 7 3  +  V ’W ( ? 7x -  V i )

(5.32)
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where ip(t) =  K { k)(t}\ +  rj[) is also a bounded function.

Obviously, by solving equation (5.32), it is easy show that

i%(t) = eX3% (0) + eXst [  e~X3T7p(r)(rji(r) -  r̂ /1(r))d
Jo

Assume ||t̂ (£)|| <  î> <̂ i > 0- Then we can get

ll%WII =  ||eA3b)3(0) +  eX3t f* e -A3T̂ (r)(r]i(r) -  77i(r))d r  ||

(5.33)

1 (r) -  71[{r))\ \dT=  e A3t||773(0)|| +  eAst /q  e A3r||^ (r

< eA3t||?73(0)|| +  die eXst f* e~XzTdr

< eXst11773(0)|| +  Gh£eA3t( - - ^ ) ( e -A3t -  1)

<  eA3t||773(0)|| -  ^  ^  eX3t.

Clearly, since A3 < 0, di > 0 and £ > 0 we can obtain

lim \ \ U m  <  eA3t||773(0)|| -  ^  +  y ^ e A3t <  < D xe
t - *  00 a 3 a 3 a 3

(5.34)

(5.35)

where Di =  — is a positive constant.Aq

Now, by defining 77 

can have

, and according to equation (5.30) and (5.31), we

V
Vi

V2

h  1 0

1.....- 
"■1<N

+CO

77 + 7 ) 3  +
I2 0 <p(t)

(m -  v 'i)
(5.36)

Sr] + <j>(t)fjs +  771 -  r][).

h  1 0 Ai +  A2 — l\
, <£(*) = and (pit) =

I2 0 0(f)_ <p{t)
where S  =

Hurwitz matrix, and <p(t) and (p{t) are also bounded functions. 

Therefore, by solving (5.36), we can have:

fj(t) = estfj(0) + est J* e~ST4>{r)7j3(r)dr  

+eSt fo e~ST<p(r )(Vi(T) ~  17i(T))dr.

Obviously, S  is a

(5.37)
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Similarly, assume ||<£(f)|| <  d2 and \\<p ||<  d3, where d2, d3 are positive constants. 

Then we can get:

II^WII =  l|eStH 11̂ (0)11 +  l|es t || fo II e“5T||||0(r)||||r?3(T)||dr 

+l|e5t||/o  II e‘ 5T||||(p(r)||||(r?i(r) - ^ ( r ) ) | |d r  

< l|e54||||T7(0)|| + d 2 || eSt| | /„* || e -5T||||7)3(T)||dT (5.38)

+d3e || e^H/o || e_5r||dr

Since the matrix S  is Hurwitz, there exist two positive constants m  > 1 and a > 0 

such that ||e5t|| <  me~at for all t > 0. Thus, the following inequality:

||r](f)|| <  m e  Q<||r?(0)|| + d 2m f * e  a(t T)||7)3(r) ||d r  + d3e m f* e  Q(t TW  (5.39)

is satisfied for all t > 0.

Notice that, based on equation (5.33) and (5.35), the second part of the right 

hand side of (5.39) can be written as

d2m e - at J^eaT\\fj3(r)\\dT 

< d2m e~ at eaT(eXsT\\fj3(0)\\ + Die — D ieeXzT)dr

< d2m e~ at /o (e ^ +A3̂ T||773(0)|| +  D ieeaT — D\S e^a+Xz T̂)dT

< d2m e~ at( 11 (e(Q+A»>f - 1 )  +  ^ f ( e at- l )  -  - ^ - ( e ^ + ^ - l ) )  ^ ' 40)GL I A3 GL I A3
d2m  1| 7)3(0)11 _ d2m  |1 7)3(0) || —at 1 d2mDi£    d2TnD-[£ —at

a  A3 a  -f- A3 ct
_ d 2mD1s \ 3t , d2mD ie -at 

a + \ 3 e a + A3 '

Clearly, with A3 < 0 and a > 0, and as t —> 00, the following inequality can be 

obtained

Similarly, we can get the solution for the third part of the right hand side of 

(5.39), given by

d2mDi£
(5.41)

d3em f ‘ e “n- 7'dT =  _  'M dli (5.42)

Obviously, d:\im f '  e 1,11 r-dr tends to as t —> oo.

Based on equations (5.39)-(5.42), we can finally get:

lim \\r](t)\\
t —>00

d2mD\£ d3em
(5 .43)

a a

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where D 2 = d2mDi+ d3m is a positive constant. 

This completes the proof.

In the following numerical simulation, Ax =  8, A2 =  —16, A3 =  —2, k =  0, 

lx =  —8 and l2 = —12 was chosen to construct the secure synchronization system, 

while the initial error between the drive system (5.26) and the observer-based system

(5.27) was set quite large. In addition, we only considered the case of 771 (t) = 

that means there was no noise or bias involved in the driving signal rji. Figure 5.3 

shows the chaotic behaviour of the drive system (5.26) in three-dimension and in 771-773 

plane. Figure 5.4 demonstrates that the synchronization errors of the system (5.26) 

and (5.27) can converge to zero exponentially.

m

(a) The oscillator in three dimension (b) The oscillator in 771-% plane

Figure 5.3: Chaotic behaviour of the drive system (5.26)

We now analyze the security property of the synchronization scheme. First of 

all, we only consider the parameter k in the drive system (5.26) as the secret key. 

According to the definition of secure synchronization, it is supposed that with a 

mismatched key parameter k used in the “fake” response system, it is very difficult for 

an intruder to achieve the synchronization. This refers to the property of antirobust 

secure. The effect of a mismatch in the key parameter k is given in the following
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10 15 20 25
Time{sec)

Figure 5.4: Synchronization of the drive system and the observer-based

response system

proposition.

P ro p o sitio n  5.1.3 (Celikovsky an d  C hen  2005). Consider the drive system a 

key -parameter k =  Kd, and the observer-based response system with an unbiased input, 

i.e., r)[ =  Tji and a mismatched key parameter k =  kt . Then for sufficiently small 

I Kd — Kr\, we have

lim \\r]i(t) -77i(i))|| < A (h ,fe)|«dt-+oo (5.44)

where, for i =  1,2, Di(li,l2) > 0 are some parameters converging to zero under the 

condition li ±  y /lf  + 4l2 —» —oo , while D${li, l2) > 0 is the parameter which does not 

depend on l^2.

l  T
Proof. Defining the state error rj = 

written as follows:

Vi = h v  i +  m

171 172 m =  r) — fj, the error dynamics can be

= I2V1 ~  (Ai -  A2)7?i773 +  0.5(«y -  Kd)r]l

V3 =  A37)3 + K{Kd -  Krffil 

=  A3f)3 +  Kffid -  Kr)ljj(t)

(5.45)

(5.46)

(5.47)
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where ip(t) =  r[{{t) is obviously a bounded function.

Analogous to the previous proof procedure, solving equation (5.47) yields

773(f) =  eX3tfj3(0) + K(Kd -  nr)eX3t [  e_A3r V'(r)dr. (5.48)
Jo

And finally we can end up with

lim \\rto(t)\\ < D z\K(Kd -  Kr)|t—>00

where D 3 is a positive constant depending on the parameter A3.
iT

(5.49)

Similarly, by defining 77 

we can have
Vi V2 , and according to equation (5.45) and (5.46),

h  1 0
77 = 77 +

k  0 1 p (p 1 V to cf l 
,,

fj3 +  («d -  Kr)
0

O.577? (5.50)

=  S'T] + <p(t)fj3 + (Kd -  Kr)(p(t)

where S  = h  1 

k  0

0

-(A i -  A2)77i
and cp(t) =

0.577?
Hurwitz matrix, implying that there exists two positive constan

Obviously, S' is a 

ts m  > 1 and a  >  0

such that ||e5t|| <  m  e~at for all t > 0. Moreover, 0(f) and <p(t) are bounded functions, 

i.e., ||0 (f)|| <  ai and ||y?(f)|| <  a2 with ai > 0, a2 > 0.

Therefore, by solving (5.50), we can have:

M t)\\  = ||e5t||||77(0)|| +  ||e5t|| f* || e -5T||||0 (r) ||||^3(r) ||d r

+ | K d - K r | | | e 5 t | | / (J || - S t  I M r)\\d r

< He1541|||77(0)jj +  ax||e5t|| J* ||e 5 r||||773(r) ||d r

r+ a 2|Kd -  KrlUe54!!/,, ||e 5 r||d 

< m e~ at\\fi(0)\\ + a im  f*  e_a(t_r)||^3(r) ||d  

+ a , 2 m \ K d — K r  | f *  e ~ a ^ ~ T^ d T

(5.51)

Based on equation (5.49) and (5.51), we can finally get:

lim ||77(t)|| <  — ( - ^ 3Ql +  a2m)\Kd -  kt \ < D\Kd -  Kr \ (5.52)t-*oo a  A3
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where D — a* +  02m), whose value is dependent on the matrix S. Since

S  — h  l"1

h  0
, it can be proved that, if l\ ±  \ / l j  + 4Z2 —► — 0 0  then

lim ||7](t)|| =  0. (5.53)t—*oo

Through the above mathematical analysis, it is clear that, due to the special 

structure of the system used for the secure synchronization purpose, the third state 

is detectable but not observable, which leads to the third component of the error 

dynamics to be independent of the gains l\ and 1%. This means that D 12  can be made 

sufficiently small by choosing a large observer gain, li and I2, thereby making the 

first two components of synchronization errors converge to a sufficiently small value. 

However, the third component of the error dynamics only dependents on the mismatch 

of the parameter, which implies that the synchronization errors will stay large if there 

exists a mismatch of the parameter. Hence, using a mismatched “Key” , At , in a 

“fake” synchronization system may lead to a signal which is qualitatively similar to 

the correct one, but it will not help much the intruder to recover the hidden message 

signal by using this fake synchronization system. Therefore, the antirobust secure 

can be realized. On the other hand, the adaptive-observer-based scheme presented 

in Proposition 5.1.1 can not be used for this case, because, by considering CT =  

1 0 0 in system (5.26) and equation (5.4) with P  being nonsingular, it leads to 

the rank of B  to be equal to one. This means that it is not possible to design an 

adaptive-observer to estimate the values of the key parameter k  in the given drive 

system (5.26). Moreover, it is noticeable that there is a singularity for 771 =  0 which 

can prevent the observer canonical form (5.26) from being further transformed into an 

observability form, where the latter enables the use of Proposition 5.1.1 or Proposition

5.1.2 with B having rank equal to one. So, clearly, the antiadaptive secure property 

can also be obtained for this approach.

Figure 5.5 shows the simulation result of synchronizing the systems (5.26) and
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Figure 5.5: “Fake” synchronization of the system (5.26) and (5.27) 

with unmatched key parameter k

(5.27), by using a slightly different parameter k, namely, Kd =  0 in the drive system

(5.26) and Kd =  0.01 in the response system (5.27). Other data are the same as those 

used in the previous simulations. As the figure shows, even a slight difference in the 

value of the parameter k can cause a big synchronization error.

5.2 A New Secure Communication System

In previous sections, we discussed some insecure synchronization schemes, which 

make secure communication systems based on these synchronization schemes can not 

be applied to transmitting message signals that request a high level of security. The 

synchronization scheme based on the generalized Lorenz system discussed in Section

5.1.3 has antiadaptive secure and antirobust secure properties, which means that we 

can design a new secure communication system based on this synchronization scheme 

to offer high security and privacy for the transmission of messages.

In the following, the observer-based secure synchronization scheme, illustrated 

above, is applied to designing a new chaotic secure communication system. Since the 

security property is the most crucial aspect for secure communication systems, we
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shall construct the cryptosystem based on the chaotic modulation method which has 

been discussed in detail in Chapter 4.

5.2.1 System  Structure

P(f)

Key

Transmitter Receiver

Figure 5.6: Block diagram of the chaotic secure communication system

Figure 5.6 shows the block diagram of the proposed cryptosystem, consist­

ing of an encrypter module (Transmitter), a public communication channel and a 

decrypter module (Receiver). As the figure shows, the transm itter system con­

sists of a chaotic system and an encryption scheme. The secret “Key”, shown in 

Figure 5.6 is used to set the values of parameters of the chaotic system, namely, 

K ey  =  {«;, Ai, A2, A3}. The chaotic system is used to generate two key signals, ki(t) 

and k,2{t). The first key signal, ki(t), is one state variable of the chaotic system, which 

should be utilized by the encryption scheme to pre-encrypt the message signal p(t). 

Then, the pre-encrypted signal, E(t), is added to the second key signal, /c2(f), which 

is another state variable of the chaotic system, for the further encryption. The sum is 

then transmitted to the receiver system through the public channel; meanwhile, it is 

also fed back to the chaotic system at the transm itter end. For the receiver system, 

same as the transmitter counterpart, it also consists of a chaotic system and a decryp­

tion scheme. By using exactly the same “Key” for the chaotic system parameters,
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Figure 5.7: Chaotic behaviour of system (5.54).

the synchronization between the transm itter and the receiver can be achieved. Thus, 

two key signals, Aq(f) and k2(t), precisely the same as those used by the transm itter 

system can be reconstructed, using a synchronization scheme. Hence, the decryption 

scheme can be employed to finally recover the message signal p(t).

The chaotic system used in the transmitter is described by equation (5.26) with 

a slight modification1 and represented as follows:

V =

V

0 1 0 (Ai +  A 2)y(t)

0 0 0 77 + -AiA2?/(f) -- (Ai -  \ 2)r]3y(t) -  0.5(k +  l)(y(f))3

0 0 A3 K(K)(y(t))2

r]i + E(t)

+  LE(t)

(5.54)

where E(t) e l  is the pre-encrypted signal outputted from the encryption scheme

and L I ■ I L2 0 is a gain vector. Moreover, we consider 771(f) as the key signal, 

k2(t). Then, the sum of k2(t) and the pre-encrypted signal E(t), namely, y(t) € M, is 

considered as the chaotic transmission signal, which drives the chaotic system at the

1Here, in order to design the receiver system properly, we modify the system (5.26) by adding 

the term LE( t ) .  Moreover, with an appropriately chosen parameters, the ratio of the value of the 

modification part, L E ( t ), to the value of state variables can be made quite small, for instance, 

0.001. Hence, we would consider it as a kind of external noise, which would not influence dynamical 

properties of the system, implying that system (5.54) can still present a chaotic behavior, as shown 

in Figure 5.7.
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receiver end. For the encryption scheme, since the third component of state variables 

of the chaotic system, r)3, is only detectable but unobservable, we consider it as the 

other key signal, ki(t). This should further increase the security level of the proposed 

cryptosystem. Then, the message signal can be pre-encrypted by means of an n-shift 

cipher introduced in (Yang et al. 1997), which can be depicted as:

E(t) = / ( . .  J ( f (p(t),ki{t)), k i ( t ) ) , fci(t))  ̂ (5.55)
n  n

where /  is a nonlinear function given by:

f ( x , k )

(x + k) + 2h, —2h < (x + k) < —h

(x + k), —h < ( x  + k ) < h  (5.56)

(x + k) — 2h, h < (x + k) < 2 h

where h is some constant parameter chosen in such a way that x(t) and k(t) lie within 

(—h. h). This function is shown in Figure (5.8).

f ( x ,  k)

-2h
(x +  k)

Figure 5.8: Nonlinear function used in continuous shift cipher

In the n-shift cipher, the key signal ki  (t ) is used n  times to encrypt the message 

signal. Since the pre-encrypted signal is a function of p(t) and ki(t),  and since the 

pre-encrypted signal is then further modulated with another set of key signals, that 

is k2(t), it hides both the dynamical and the statistical characteristics of both p(t) 

and ki(t).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 1 0 (Ai +  A2)y(f)

fj = 0 0 0 77 + -AiA2y(f) -- (Ax -  A2)7?32/(f) -  0.5(k +  l)(y (f))3

0 0 A3 E(^)(y( t ) )2

Similarly, the synchronizing chaotic system at the receiver end can be constructed 

as follows:

+ L(y ( t ) - t i i )

(5.57)

where y  is the received signal and L is the gain vector the same as that used in the 

transm itter system.

Then, it is believed that the synchronization can only be achieved with the use of 

the same “Key” at both transm itter and receiver sides. Hence, the key signals can be 

re-generated, namely, fci(f) —> fci(f) and /c2(f) —> fc2(f) as f tends to infinity. Finally, 

the corresponding decryption scheme can be expressed as follows:

P(t) =  /(■■• -fci(f)), —k \ (f)),. . . ,  - k i ( t ) ) (5.58)

where E(t) = y ( t ) — fci(f).

Then we have the following theorem:

Theorem  5.2.1. Suppose a message signal, p(t), is transmitted through a communi­

cation system consisting of a transmitter system with the chaotic system (5.54) and 

the encryption scheme (5.55), and a receiver system with the chaotic system (5.57) 

and the encryption scheme (5.58). Using the same “Key" in both transmitter and 

receiver system a global synchronization between the transmitter and the receiver sys­

tem can be achieved and the message signal, p(t), can be completely recovered at the 

receiver side.

Proof. Defining the synchronization error 77(f) =  77(f) —77(f), where fj = vi m  773
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y i e l d s

Oi(0 = Vi(t) -  mi*)

=  +  (Ai +  A2)(t7i(0 +  £ (0 )  +  L iE( t )

—772(0 ~  (Ai +  A2)(t7i(0 +  E(t)) — L i(771(0 +  E(t)  — 771 (0) (5.59)

=  —Li(r]i(t) -  771 (0) +  772O) -  772(0 

=  - L i  771(0 + 772W 

O2W =  ^ (O  “  772(0 

=  (—AxA2 — (Ai — A2)773 (0) (771 (0 +  £ (0 )

-0 .5 (k  +  1) (771 (0 +  E(t))3 +  L 2E(t)

—(—A1A2 +  (Ai — A2)773(0) (771(0 +  E(t))  (5.60)

+0.5(k +  1) (771 (0 +  E(t))3 — 1/2(771(0 +  £ (f) — 'fjiit))

= -(A i -  A2) (771(0 +  £ 7 ( 0 ) t73 ( 0  ~  £ 2̂ 1(0 

=  - £ 2 77i ( 0  +  (Ai -  A2)(771(0 +  £(0)773(0 

773(0 =  773(0 — 773(0

=  A3773(0  +  £(k )(t7 i(0  +  £ ( 0 ) 2 ~  A3773(0  -  £ (* 0(771 (0  +  £ ( 0 ) 2 (5-61)

=  A3t73(0

Obviously, by considering the inequality (2.20), the following equation is satisfied

l i m  | | t 7 3 ( O I I  = 0 .t—>oo (5.62)

r i TFurther defining 77(f) — 771(f) 772(f) , we can have:

_772(0J

—L i 1
7 7 ( f )  +

- L 2 0

=  577(O+0(f)773(O

%(f)
(Ai — A2) (771 (f) +  £ (0 )

(5.63)

where S  =  and 0(f)
—L2 0

0
is a bounded function.

Since 0(f) and 77
(Ai -  A2)(771(f) + £ (t)) 

bounded, then if L ^ 2 could be chosen in such a way that
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8  is a Hurwitz matrix, the synchronization error will converge to zero exponentially.

Once the synchronization between the transmitter and the receiver is achieved, 

the chaotic system in the receiver system can generate key signals the same as that 

used at the transmitter system, i.e., limt^oo k\(t) —> ki(t) and lim^oo k2 (t) -* k2(t). 

This means that lim^oo E(t)  =  y(t) -  k2(t) =  E(t)  +  k2(t) -  k2(t) -* E(t),  and then 

the decryption scheme (5.58) can be rewritten as:

m  = /(■■■ mm, mm mm  • • •, - * * « ) .  (5.64)'-----.-----' '------------------V----------------- '
n  n

Clearly, system (5.64) is the inverse procedure of the encryption scheme (5.55), which 

implies that the information signal can be finally retrieved.

■

5.2.2 Simulation Results

To explore the performance of the secure communication system proposed herein, 

two sets of numerical simulations have been performed for the different message sig­

nals.

Sim ulation I

In the first set of simulations, the message signal is considered as a sinusoidal
T

, im-5 8 0function p(t) = sin(0.057rt), and the gain vector L  is chosen as L 

plying that the matrix S  in (5.63) is Hurwitz. For the encryption and decryption 

purpose, h = 10 and n  =  30 are chosen for the n-shift cipher (5.55) and (5.58). First 

of all, we use the same “Key” for both of the transmitter and receiver system, namely, 

all the parameter settings of chaotic system in the transm itter and the receiver are 

the same.

Figure 5.9 shows the chaotic transmission signal transmitted over the public 

channel to the receiver system, and Figure 5.10 shows the synchronization error dy-
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Figure 5.9: The transmission signal
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Figure 5.10: Synchronization errors
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Time(sec)

Figure 5.11: The original information signal and the recovered signal

namics of the proposed communication system. Figure 5.11 shows the original plain 

signal p(t) and the retrieved signal p(t). Obviously, as the figure shows, after the 

synchronization phase, namely, once the synchronization of the transm itter and the 

receiver is achieved, the original message signal p(t) is recovered successfully.

The following figures show the effect of a mismatch in the “Key” for the proposed 

secure communication system. Figure 5.12 shows that even with a slightly different 

parameter settings, (for instance, Kd  = 0 and K r  = 0.001, where K d  and k t  are the 

parameter k  used in the transm itter and the receiver respectively, and other para­

meter settings are same), the synchronization error between the transm itter and the 

receiver is non-decayable. This means that the synchronization of the communication 

system, with the unmatched parameter, used in this simulation, can not be obtained. 

Therefore, the message signal can not be recovered at all, as shown in Figure 5.13.
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Figure 5.12: The behaviour of nondecaying errors of the “fake” synchronization

with K d  =  0 and K r  = 0.001.

Time(sec)

Figure 5.13: The original message signal and the wrongly recovered signal

with the unmatched Key
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Sim ulation  II

In the second set of simulations, we choose a piece of sound signal, that is “This is 

the automatic control laboratory at the Lakehead University.” , as the message signal 

to be transm itted through the proposed secure communication system. Similarly, we 

first use the same “Key” for the transm itter and the receiver. Figure 5.14 shows 

the simulation results; (a) represents the wave form of the original sound signal; 

(b) represents the wave form of the recovered sound signal and (c) represents the 

transmitted signal. Clearly, with the same “Key” used in the system, the original 

sound signal can be successfully retrieved at the receiver end. However, as Figure 5.15 

shows, with the wrong “Key” used at the receiver side, it was not possible to  achieve 

the synchronization, and therefore the original sound signal could not be recovered.

1
0.5

-0 .5  

-1
15 16 17 18 19 20  21

1

0.5

¥  0 

-0.5

-1
15 16 17 18 19 20 21

10 

5

- 5  

-1 0
15 16 17 18 19 20 21

Time(sec)

Figure 5.14: Simulation results for transmitting the sound signal with the 

same “Key” in transm itter and receiver systems
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Figure 5.15: Simulation results for transmitting the sound signal with the 

unmatched “Key” in transm itter and receiver systems

5.2.3 System  Security Analysis

For any secure communication scheme, a very important issue is whether or not 

it is actually secure. From the cryptographical viewpoint, according to (Schneier 

1996), the security of a cryptosystem is a function of two things: the strength of the 

algorithm and the length of the key. In the previous section, we already analyzed 

the security property of the chaos synchronization scheme in secure communication 

systems, from the control theory point of view. Since the proposed secure commu­

nication system uses the chaos synchronization scheme, which has both antiadaptive 

secure and antirobust secure properties, thereby it can prevent the system from being 

vulnerable to some potential attacks. This means that the algorithm used in the 

proposed secure communication system is safe enough. We now turn our attention to 

analyzing another security property of the proposed secure communication system, 

namely the length of the key.

It is quite clear from the description and numerical simulation above that the 

security of the proposed communication system is entirely dependent on the secrecy
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of the parameter settings of the chaotic system, which are set by the secret “Key” , 

i.e., K ey  =  {k , Ai, A2, A3}. Hence, some very practical questions to ask are: how 

accurately must the values of parameters in the “Key” be known for an intruder to 

recover the encrypted message signal? Is there enough Keys to prevent the system 

from being attacked by a brute-force attack? To answer these questions, we simu­

lated the proposed secure communication scheme by employing a wrong “Key” in 

the receiver system with random errors in the estimation of parameter settings. In 

these simulations, the message signal is still chosen as a sinusoidal function, i.e., 

p(t) =  sin(0.057r£), implying that the RMS norm value of the message signal is about 

0.5. Figure 5.16 shows the effect of the estimation error in system parameters on the 

recovery of the encrypted message signal. As Figure 5.16(a) shows, the estimation 

error of parameter k as little as 10-6 still produces a relatively large decryption error. 

Similarly, Figure 5.16(b-d) indicate that the estimation error of parameter Ai_3 as 

little as 10-5 still causes a relatively large decryption error. This means that, from 

the cryptographical view of point, the size of the key space of the proposed secure 

communication system will not be less than 106 x 105 x 105 x 105 =  1021 ~  269 

(Schneier 1996).

Assuming a brute-force search of every possible key is the most efficient method 

of breaking the secure communication system, then according to Table 5.1, which 

summarizes how long it would take to recover the encrypted message signal with the 

given key space, based on the fact that the key search machine tests 100 million keys 

per second, the length of the key for the proposed secure communication system is 

cryptographically large, implying that the proposed communication system is quite 

safe against a brute-force attack. Therefore, based on the analysis above, it is very 

clear that the proposed secure communication scheme can offer relatively high level 

of security for the transmission of message signals.
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Figure 5.16: The dependence of the recovered signal power on a fixed error in

parameters «, Ai_3, respectively

Key size 240 2 56 264 2 69

Required time 3.1 hours 347.5 days 5,849.4 years 317,100 years

Table 5.1: Brute-force key search times for various key sizes

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Secure Communication System  with the Time- 

Delay

In the former section, we proposed a new secure communication system, which 

has been proven to be able to offer a higher security level. Notice that, it only 

presents the ideal communication situation. However, for any real communication 

system, there always exists a propagation time-delay during the procedure of trans­

mitting message signals from the transm itter to the receiver and, from the control 

theory point of view, the time-delay may cause the communication system to be un­

stable (Kamen 1982). For instance, the work by (Chen and Liu 2000) showed that the 

existence of a time-delay in the synchronous system may result in the loss of synchro­

nization, thus, analyzing the stability of a  synchronized system with the time-delay 

is a quite important subject. Therefore, in the following section we shall take into 

account this practical problem to analyze the stability of the proposed secure com­

munication system in the presence of a time-delay.

Generally speaking, in a real communication system with the propagation time- 

delay involved, forcing the receiver system to synchronize with the transm itter system 

at exactly the same time seems unreasonable. Thus, in the following part, the syn­

chronization of the transmitter and the receiver for a communication system with an 

unknown constant time-delay is re-defined as follows:

D efin itio n  5.3.1 (J ian g  et al. 2004). The state of the receiver system at time t 

asymptotically synchronizes with the transmitter system at time t — rd, if

lim || x(t -  rd) -  x (t) ||=  0,
t —>oo

where rd is the unknown constant time-delay, and x(t) and x(t) are the state o f trans­

mitter and receiver system, respectively.

In light of this, the stability analysis for the proposed secure communication sys­

tem with the time-delay involved can be carried on as follows. We suppose th a t there
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is an unknown constant propagation time-delay2, rd, for the transmission of message 

signals from the transmitter to the receiver. This means that, at time t  — rd, the 

transmission signal is transmitted from the transmitter, and the delayed transmission 

signal will be received by the receiver at time t. Then the chaotic system (5.54) at 

the transmitter side can be re-expressed as follows:

0 1 0

v{t -  Td) = 0 0 0 v(t -  Td ) + LE(t -  rd)

0 0 •̂ 3

(Ai +  A2 )y( t  -  rd)

+  —AiA2y(t -  rd) -  (Ax -  A2)773y(t -  rd) -  0.5(« +  1 ) (y( t  -  r d))3

K ( K ) ( y ( t - T d ) ) 2  

y ( t - r d) =  r h ( t - T d) +  E ( t - T d)
(5.65)

where L  is the observer gain vector and E (t — rd) is the output of the encryption 

scheme. For the sake of brevity, here, we use a simple encryption scheme instead of 

function (5.55), which is given by:

E(t)  =  air^it) + a2p(t), (5.66)

where p(t)  is the message signal, and 0 < a ii2 < 1 are some constant which should be 

chosen in such a way to make the chaos to signal ratio as high as possible.

For the chaotic system at the receiver side, since there is an unknown but constant 

time-delay, rd, for the transmission procedure, it will be driven by the delayed signal 

y ( t - r d) for the synchronization purpose, so the system (5.57) can be re-expressed as

2Here, the assumption of a constant time-delay is based on the consideration that all the values 

of the transmission signal received by the receiver are unchanged but only delayed by a certain time.
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follows:

77(f) =

0 1 0 

0 0 0 

0 0 a3

r)(t) + L{y(t -  rd) -  y( t ))

+

(Ai +  A2 )y( t  -  rd) (5-67)

- ( A i A 2 +  (Ai -  \ 2 )f)3 ( t ))y{t  -  rd) -  0.5(/c +  1 ) {y( t  -  rd))3

K ( K ) ( y ( t - T d) ) 2 

y(t)  =  fix (t)

where y( t  — rd) is the received signal and L  is the gain vector the same as that used 

in the transm itter system.

If system (5.65) can synchronize with system (5.67), i.e., lim^oo || x( t  — Td ) — 

x(t) ||=  0, it can be obtained that 771(f) —> r)x(t — rd) and 173(f) —► r)2(t — rd). Then, 

the corresponding decryption scheme can be chosen as follows:

p(t) =  — (v(t ~  rd) -  y(t) -  aifjz(t)) (5.68)

where k\ 2 are same as that in the encryption scheme, and p(t) is the retrieved message 

signal, which is the same as the original message signal but delayed by rd.

We now prove that, by appropriately choosing the observer gain vector L, system

(5.67) can synchronize with (5.65), as described by the following theorem.

T h eo rem  5.3.1. Suppose a message signal, p(t), is transmitted through a secure com­

munication system consisting of a transmitter system with the chaotic system (5.65) 

and the encryption scheme (5.66), and a receiver system with the chaotic system

(5.67) and the decryption scheme (5.68). Further, consider that there is an unknown 

but constant propagation time-delay, rd, involved during the transmission procedure. 

By using the same “Key” in both the transmitter and the receiver system, the synchro­

nization of the transmitter and the receiver can be achieved, and the message signal, 

pit), can be completely recovered at the receiver side, but only delayed by time rd.

Proof. Defining the synchronization error 77(f) =  T}{t—Td)—rj(t), where 77 = Vi V2 Pi
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y i e l d s

%{t) =  Vi ( t -Td)  ~f k( t )

=  — Td) +  (Ai +  A2)(7 7 i(t — Td) + E(t  — Td)) +  L\ E( t  — Td)
-772(0 -  (Ai +  A2)(r?i(i -  rd) +  E(t  -  T d ) )

—Li(r)i(t -  Td )  +  E{t -  T d ) -  f}Xit))

=  -Lxirjxit -  Td) -  7)1 (0) +  m{t  -  Td) -  m(t)

= - L i f j i ( t )+ f j 2(t)
(5.69)

V2 ( 0  =  Tj2 ( i  -  T d )  -  7)2 ( 0

=  ( -A 1 A 2  -  (Ai -  \ 2) m ( t  -  T d ) ) ( v l { t  -  T d )  +  E ( t  -  T d ) )

-0 .5 («  +  l)(?7i(i -  T d )  +  E(t  -  T d ) ) 3 +  L2E{t -  T d )

— ( — A i A 2 +  ( A i  -  A 2 ) i 7 3 ( 0 ) ( 7 7 i ( t  -  T d )  +  £ ( f  -  T d ) )

+ 0 .5 ( k  +  l ) ( 7? i ( t  -  Td) +  S ( i  -  Td) ) 3 -  L 2{ r ) i ( t  -  T d )  +  E ( t  -  r d )  -  f j i ( t ) )  

=  - ( A i  -  A2) (771 ( t  -  Td) +  £ 7 ( i  -  T d ) ) r j 3( t )  -  L 2r j i ( t )

=  — L 2f j i ( t )  +  (Ai -  A2 ) ( t 7i ( t  -  Td) +  E ( t  -  T d ) ) f k ( t )

773(0 =  7)3 (i — Td) — 7)3(0

= A3773(i -  Td) +  K(K)(r)i(t -  Td ) + E(t -  Td ))2

—A3r?3(0 -  -  Td ) + E(t  -  Td))2

=  A3t)3(0
(5.71)

Obviously, by considering the inequality (2.20), the following equation is satisfied

lim \\v3(t)\\ = 0 . (5.72)
V ) OO
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Further defining 77 (t) =  

fj(t) =

Vi(t )  %  ( t) , we have:

Vi{t)

fh(t)1 —

- L \  1 

- L a  0  

577(f) +  <P{t)fj3(t)

rj(t) +

where S' =
- L x 1

and 0(f) =
- l 2 0

0

(Ai -  X2)(r]i(t -  +  £(£ -  Td))

0

%(<)
(5.73)

is a bounded
J A i  -  A2) (771 ( i  -  Td) +  S (£  -  Td)) 

function.

Since 0(f) and 77(f) are bounded, then if L i>2 could be chosen in such a way that 

S  is a Hurwitz matrix, the synchronization error will converge to zero exponentially. 

Thus, it can be obtained that 171(f) —»171 (£ — rd) and 173(f) —> 773 (f — Td) as £ tends to 

infinity. Then, the message signal, p(t), can be recovered as follows:

p(t) = i i y t i  -  Td) -  #(*) ~  “M * ) )
=  ~  rd ) + a i ??3^ -  Td) +  a 2p (f  -  T d ) - 7 7 1(f) -  a i 7 7 3(f))  (5.74)

-► P(t-rd)

5.3.1 Simulation Results

Similar to the former section, to demonstrate the performance of the secure com­

munication system with an unknown time-delay involved during the transmission 

procedure, two sets of numerical simulations have been performed for the different 

type of files.

S im ulation  I

In the first set of simulations, the message signal is still considered as a sinu-
lT

soidal function p(t) =  sin(0.057rf), and the gain vector L is chosen as L = 5 8 0
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implying that the matrix S  in (5.73) is Hurwitz. For the encryption and decryption 

purpose, a\ =  0.001 and a2 =  0.01 are chosen for function (5.66) and (5.68). Simi­

larly, we first use the same “Key” for both of the transmitter and receiver system.

10

-1 0

-20
20

10 15 25
Time(sec)

Figure 5.17: Synchronization errors of the secure communication system

with the time-delay.

Figure 5.17 shows the synchronization error dynamics of the proposed cryptosys­

tem with an unknown propagation time-delay. As the figure shows, even though 

there exists an unknown time-delay between the transmitter and the receiver for the 

proposed secure communication, the synchronization can still be achieved. Figure 

5.18 shows the original message signal p(t) and the retrieved signal p(t). Obviously, 

as the figure shows, once the synchronization of transmitter and receiver systems is 

achieved, the original message signal p(t) is recovered successfully but only delayed 

by rd.
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Original message signal 
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Figure 5.18: The original message signal and the recovered signal

The following figures show the effect of a mismatch in the “Key” for the secure 

communication system with an unknown time-delay. Figure 5.19 shows that, similar 

to the pervious delay-free case, even with a slightly different parameter settings, 

(«d =  0 and kt =  0.001 and other parameters are same), the synchronization error 

between the transmitter and the receiver is non-decayable. This means that the 

synchronization of the communication system, with the unmatched parameter, used 

in this simulation, can not be obtained. Therefore, the message signal can not be 

recovered at all, as shown in Figure 5.20.
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Figure 5.19: The behaviour of nondecaying errors of the “fake” synchronization

with Kd =  0 and Kr =  0.001.
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Figure 5.20: The original message signal and the wrongly recovered signal 

with the unmatched key parameter
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Sim ulation  II

In the second set of simulations, still, the sound signal: “This is the automatic 

control laboratory at the Lakehead University.” , was chosen as the message signal 

to be transmitted through the secure communication system with an unknown time- 

delay. Similarly, we first use the same “Key” for the transmitter and the receiver. 

Figure 5.21 shows the simulation results; (a) represents the wave form of the original 

sound signal; (b) represents the wave form of the recovered sound signal and (c) rep­

resents the transmitted signal. Clearly, with the same “Key” used in the system, the 

original sound signal can be successfully retrieved at the receiver end, although there 

is an unknown time-delay in the proposed secure communication system. However, 

as Figure 5.22 shows, with the wrong “Key” used at the receiver side, it was not 

possible to achieve the synchronization, and therefore the original sound signal could 

not be recovered.

.1 I_________________I_________________I________1________I_________________I_________________I_________________I
15 16 17 18 19 20  21

■j  -------------------------- ,-------------------------- ,-------------------------- 1-------------------------- 1-------------------------- j-

15 16 17 18 19 20  21

..... .A A
“A* _^  \ \........ ■\

.............S v  / "
15 16 17 18 19 20  21

Time(sec)

Figure 5.21: Simulation results for transmitting the sound signal with the 

same “Key” in transm itter and receiver systems
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Figure 5.22: Simulation results for transmitting the sound signal with the 

unmatched “Key” in transmitter and receiver systems
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Chapter 6

Conclusion

The interest in chaos synchronization has been boosted mainly by its potential 

application in the design of new chaotic cryptosystems for secure communications. In 

fact, the history of chaotic secure communications is short and its future is uncertain 

due to its problematic security. Plenty of attempts were made only to find that it was 

not difficult for an intruder to be able to extract the message signal from the chaotic 

transmission signal. The concept of secure synchronization, having the properties of 

antiadaptive and antirobust secure, has been discussed in this thesis, since, from the 

viewpoint of systems theory, adaptive and robust control methods can provide very 

powerful tools for the intruder to break the security of the communication system. 

Then, based on this consideration, a secure synchronization scheme has been dis­

cussed, using the generalized Lorenz system family as the platform. Due to the fact 

that this scheme has detectable but unobservable states, it excludes the possibility of 

using some straightforward adaptive and/or robust attacks.

The application of this synchronization scheme to secure communication has 

been also discussed in this thesis. A new secure communication system, combining 

the secure synchronization scheme with a conventional cryptographic technique, has 

been proposed to provide a desired security level. It has been proven that, since 

the proposed system has the antiadaptive secure and antirobust secure properties, 

the system’s parameters, which are considered as the secret “Key” for this secure
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communication system, play a crucial role in the encryption and decryption of the 

private message signals being transmitted through the secure communication system. 

If an intruder tries to build a fake receiver to synchronize with the transm itter with 

a guessed “Key” , a large enough error in guessing the “Key” leads to a large error in 

reconstructing the signals of the same magnitude, and this error cannot be suppressed 

even by choosing very high control gains. Therefore, it is very difficult for an intruder 

to guess the “Key” , leading to the recovery of the transm itted message. Hence, a 

higher security level can be guaranteed.

Although the mathematical analysis and numerical simulation have shown that 

the proposed secure communication system can exclude a great deal of possible cryp­

tosystem breaking schemes, thereby providing us with a very promising way for trans­

mitting private messages safely, the system’s security still needs to be further analyzed 

from the cryptographical viewpoint. Hence, the future work concerning a comprehen­

sive and careful evaluation for the cryptographical properties of the proposed secure 

communication system may be carried out. Moreover, a further analysis of more 

sophisticated attacks, such as the known plaintext attack and ciphertext-only attack 

on the designed communication, is another aspect of the future work. Since attacks 

considered in this thesis mostly refer to the system control techniques, the capability 

of the designed communication system to withstand other more sophisticated attacks 

should be carried out to check the real security. This should provide us with a  cryp­

tographic view for the security of this designed cryptosystem.
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