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Abstract

The demand for more communication bandwidth and network resources, has pushed 

researchers to find faster and more reliable data communication networks. Wavelength 

division multiplexing (WDM) is a promising technology to meet such increasing de­

mands. To make use of the WDM networks, some issues need to be dealt with. This 

thesis discusses three problems, constraint-based path selection. Congestion Control 

and Admission Control.

When selecting a path between the source and destination, in which some constraints 

are present, the choice of the path can have dramatic effects on the Quality of Service 

(QoS). Three path selection algorithms are compared in order to achieve optimum 

path selection. These algorithms are presented and analyzed in this thesis. The al­

gorithms do not just deal with one path selection constraint but k-constraints.

Two controllers are presented: A proposed congestion controller and the second is a 

call admission controller in circuit switched networks. The proposed congestion con­

trol algorithm is based on the fuzzy logic technique and aims to control the congestion 

in a WDM network through an adequate adjustment of the delay on the calls that are 

in the queue of the server. The adaptive admission controller for circuit switched net­

works is based on the optimization of resources in the network. Numerous Simulation 

results are presented which show the performance of each controller.
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Chapter 1

Introduction

The demand for more communication bandwidth and network resources has pushed 

researchers to find faster and more reliable data communication networks. Wave di­

vision multiplexing is the promising technology to meet such increasing demands. 

An optical fiber has high bandwidth, but not all of its bandwidth can be used be­

cause of the limitations of the end users when accessing the network. Therfore, it is 

very difficult to use all of the single fiber bandwidth in a single high capacity wave­

length channel because of the optical to electronic bandwidth mismatch. Two factors 

contribute to the development of the WDM optical fiber which are; the method of 

sending many light beams of different wavelengths simultaneously down the core of 

an optical fiber, and the erbium doped fiber amplifier which amplifies the signals 

with different wavelengths simultaneously, regardless of their modulation scheme or 

speed. Although WDM optical networks solve a lot of bandwidth problems, but 

when it comes to implementation other problems are discovered. This thesis looks at 

the most popular issues that face WDM technology, such as path selection subject 

to multiple constraints, and admission and congestion control schemes. Section 1.2 

discusses some of the solutions presented in previous studies regarding these matters, 

although there is a lot of literature in these areas I chose only recent and most relative 

to my research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1 Thesis Objectives

WDM has been designed to support various classes of multimedia traffic with dif­

ferent bit rates and Quality of Service requirements. Due to the unpredictable fluc­

tuations and burstiness of traffic flows within multimedia networks, congestion can 

occur frequently. Therefore, it is necessary to design appropriate congestion control 

mechanisms to ensure the promised quality of service is met. Congestion Control is a 

process which is used in networks to avoid congestion, which is desired since network 

resources are limited. If uncontrolled, users can easily overload certain networking 

resources thus making the network unusable. The complexity is increased since net­

work traffic is a complex nonlinear and non stationary process which is significantly 

affected by immeasurable parameters and variables. Hence, a precise model of this 

process becomes increasingly difficult as the complexity of the process increases. This 

area has been the interest of many researchers. In the networking literature several 

congestion control mechanisms have been proposed.

WDM networks entails the reservation of limited resources (i.e., bandwidth) at each 

node along the path. If, upon arrival of a call, the desired resources are unavailable 

at any of the intermediate nodes, the call is said to be blocked. Blocked calls are 

assumed to be lost form the system, a mode of operation known as “blocked calls 

cleared” Common performance measures for this mode of operation include block­

ing probability and throughput. A fundamental issue arrises in networks supporting 

quality of service requirements is that of call admission. Call admission is the decision 

to accept or reject a new call. The need for admission control, even when network 

resources are available, is due to the fact that the acceptance of certain calls can have 

detrimental effects on the performance of currently active calls. The call admission 

problem has attracted considerable interest in recent years and is most often placed 

in the context of high-speed integrated services networks.

A network model has been designed using C-|—I- to test the proposed congestion

^In some models, calls that are denied immediate access can be queued until network resources 

are available.
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control algorithm and the previously proposed call admission algorithm that was pre­

sented in (Gokbayrak and Cassandras 2002). The network model uses discrete event 

simulation, and the network is designed to follow the WDM network architecture. 

The network model consists of a traffic generator, a path selection, a wavelength 

selection algorithm and a controller. Therefore, it is worth mentioning how the wave­

length selection and the path selection schemes are chosen and how performance is 

degraded if they are not chosen carefully. Three constraint-based path selection al­

gorithms are examined. The algorithms examined are the Delay Cost Constrained 

Routing (DCCR), Least Delay Path (LDP) and the HZ.l algorithm.

A control algorithm is proposed to control congestion in a WDM network which 

is based on the Fuzzy Logic approach. The fuzzy model used is a standard additive 

model. An adaptive online admission control is presented. The admission controller 

uses an online surrogate problem methodology to formulate the call admission control 

problem. Each controller is implemented in the network model and simulated to see 

how the blocking probability can be controlled using either the proposed congestion 

control algorithm or the adaptive online admission control algorithm(Cokbayrak and 

Cassandras 2002). The performance of each controller is presented through a series 

of simulation results.

1.2 Previous Related Work

1.2.1 Path Selection Subject to  M ultiple Constraints

In (Chen and Nahrstedt 1998) an algorithm is proposed to solve the Multi-Constrained 

path problem which uses a polynomial tim e complexity. The authors first reduce the  

NP-complete problem to a less complicated one, which can then be solved in polyno­

mial time. The authors prove that the solution of the simplified problem is the same 

as the solution of the original problem. This can then be solved using an extended
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version of Dijkstra’s algorithm or by Bellman-Ford algorithm. The total time com­

plexity of the algorithm, if the extended Dijkstra is used is 0 { X ‘̂V'^). However, if 

Bellman-Ford algorithm is used, then it is 0 { X V E ) ,  where X  is an integer defined 

inside the algorithm, V  is the set of nodes, and E  is the set of links. The value of X  

is chosen by the user such that, the higher the value of X ,  the bigger the chance of 

finding a satisfactory path and a higher overhead. The algorithm proposed in (Chen 

and Nahrstedt 1998), can give more accurate results, but at the expense of higher 

overhead.

The authors in (Korkmaz and Krunz 1999) try  to solve the problem of finding a 

path between the desired source and destination which satisfies one or more con­

straints. They also consider selecting a path which has multiple additive constraints. 

The problem is then defined as a Multiple Constrained Path Selection. The algo­

rithm presented consists of two main parts; it first filters out the links that are not 

on any feasible path, secondly, it then uses a randomized search to find a path that 

meets the requirements (if such a path does exist). The algorithm has the worst case 

computational complexity of O(n^), and a storage complexity of 0 (n ), where n  is 

the number of nodes in the network. The algorithm presented has a slight chance of 

not finding a path that meets the required QoS, even though one might exist. The 

results of the randomized algorithm are close to the results to the optimal results. 

This algorithm has the potential of achieving better results at the expense of more 

computational costs. One of the advantages of this randomized algorithm is tha t it 

does not need to know the true state of the network at each node, but it achieves 

high performance when this information is available.

The solutions that have been proposed for the problem of finding a path under 

multiple constraints suffer either from excessive computational complexities and/or 

unacceptable performance. The authors in (Korkmaz and Krunz 2001) introduce an 

algorithm which solves the downfall of previous algorithms. In (Korkmaz and Krunz 

2001), a nonlinear cost function gX, is introduced which can be used as the basis for 

efficient heuristic solutions to the Multi-Constraint Optimization Problem (MCOP).
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The proposed algorithm is called H-MCOP, this algorithm tries to approximate the 

minimization of gX. The algorithm searches for a feasible path and also optimizes 

the use of available resources. The authors show through a series of simulations that 

H-MCOP provides the same performance as the predecessors and sometimes exceeds 

them. The main advantage of this algorithm, is that it has the same complexity as 

Dijkstra’s shortest path algorithm. The authors also mention that the performance 

of the H-MCOP can also be increased if it is used with the k-shortest path  algorithm. 

Another advantage that this algorithm has is that even when the constraints are neg­

atively correlated, or even at no correlation, the algorithm still provides significant 

performance improvement over other presented algorithms. How the algorithm per­

forms in the presence of an inaccurate state information and how it could be used in 

a distributed manner still need to be investigated.

In (Liu and Ramakrishnan 2001), an algorithm that solves the K-Multiple constraint 

shortest path (KMCSP) problem was presented. The algorithm can be applied to 

multiple constrained shortest path and k-shortest path problems. The algorithm’s 

running time can be exponential in worst case scenarios, but still is comparable to 

the algorithms used in existing practical networks. The algorithm first makes a can­

didate list containing paths that go from the source to destination. The paths are 

then sorted by shortest paths. On the other hand, paths that definitely violate the 

constraints are removed from the list. Dijkstra algorithm can be used in performing 

both of these functions. The simulation results presented in (Liu and Ramakrishnan

2001), show that the results are comparable to the current best known polynomial 

time 6-approximation algorithms.

In (Yuan 2002), a multi-constrained routing is defined as finding a route between 

the desired source and destination that would satisfy multiple independent QoS con­

straints. This paper presents two heuristics; the first is called the limited granularity 

heuristic, the second is the limited path heuristic. These algorithms can be applied 

to the extended Bellman-Ford algorithm to obtain a solution to the k-constrained 

QoS routing problem. The limited granularity heuristic presented in (Yuan 2002)
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uses bounded ranges of integers in order to obtain an approximate solution in the 

polynomial time. In other words, the main idea of this algorithm is to simplify the 

original NP-hard problem. This algorithm is then used to solve the k-constrained 

problem by approximating A: — 1 QoS matrix with k — 1 bounded ranges. The author 

shows that this algorithm maintains a table size of in each node to achieve

high performance, where N is the number of nodes. Thus, the cost of this high per­

formance is the time complexity of 0(|xV|^|Zg(|V|)) entries at each node. The author 

shows through a series of simulations that when k > 3, the limited path heuristic is 

more efficient than the limited granularity heuristic in solving general k-constrained 

QoS problems. Both algorithms can solve the multi-constrained problem when k = 2, 

however the advantage of the limited granularity heuristic is that it maintains a table 

size of where n is a reasonably high constant. It also guarantees finding

(1 — (1/n)) approximate solutions, while the limited path heuristic can not provide 

such a guarantee.

A problem that is presented in (Guo and M atta 2003), is finding the least cost path, 

which is subject to some delay constraint in a network. This problem is defined as 

a Delay-Constrained Least Cost (DCLC) routing problem. The algorithm presented 

by Cuo and M atta uses a nonlinear weight function and then applies a k-shortest 

algorithm, which makes the search for a path faster and more accurate. The authors 

want to increase the accuracy of the algorithm by using another DCLC heuristic. It 

can narrow down the search, consequently trading some extra execution time for a 

more accurate search. The authors show, by simulation, that even when the cost and 

delay are negatively correlated, the improved SSR (Search Space Reduction)-f DCCR 

algorithm proposed always returns a feasible path, whose cost is very close to the 

optimum one. The optimal one is produced by using an extensive computational 

effort, which makes it undesirable in the real world.

It is worth mentioning that the algorithms mentioned in this section are used in the 

centralized approach.
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1.2.2 Adm ission and Congestion Control in Optical Networks

In (Haas 1991) a congestion control scheme is proposed. The algorithm is based 

on periodic exchange of sampling packets and on adaptive admission control. The 

scheme is designed for an end to end distributed operation. One of the advantages 

of this design is that no changes or additions are required within the subnet. An 

important feature of the proposed scheme is that it can cope with traffic surges that 

are short compared to the round trip delays.

The congestion control problem in high speed wormhole routing networks is tackled 

in (Leonardi et al. 1996), by comparing and evaluating two alternate approaches. 

First, the back pressure flow control, which is an explicit mechanism, and secondly, 

the deflection routing with host input rate control, which is an implicit mechanism. 

The problem with the back pressure flow control is that it has the potential for dead­

locks, while the problem with the deflection routing is that it has the potential for 

live locks. It is shown in the paper that deflection routing with worm alignment 

provides throughputs which are relatively close to those obtained from back pressure 

with virtual channels. In terms of complexity of the node, they both are very close 

(in the case of the back pressure with virtual channels versus the case of deflection 

routing approach). The authors sacrifice low complexity in order to solve the dead 

lock problems related to back pressure by using restricted routing or using virtual 

channel technique. The simulations and results presented show that the restricted 

routing technique gives bad performance due to congestion on the most used network 

links near the root of the spanning tree. The memory requirement depends on the 

network size. On the other hand, the problem with deflection routing is the live lock 

problem and also poor performance, if the deflection process is completely asynchro­

nous. The authors avoid live locks by routing several worms together and random 

choices avoid deterministic circular paths. In (Leonardi et al. 1996), the authors show 

that the performance does greatly improve due to the reduced deflection probability. 

The memory requirements of deflection routing are related to the size of the data 

units, but does not depend on the size of the network. The advantages of the de­
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flection routing are: simplicity of implementation, robustness against failures, can be 

implemented on any topology with few restrictions, and has the ability to implement 

more complex input control schemes based on the observed link load. However, when 

the traffic is unbalanced, as in the case of a single server and several circuits, the back 

pressure flow control mechanism using a virtual channel was shown to perform better 

than the deflection routing.

Congestion control in packet switching networks is tackled by Mascolo in (Mascolo 

1999). Mascolo uses transfer functions to represent the system that is being con­

trolled. The dynamic behavior of each network queue, in response to data input, is 

presented in a cascade of an integrator with a time delay. Propagation delays are 

emphasized, since they are very important in high speed communication networks. 

The Smith principle is chosen in order to design the congestion controller. The con­

troller can be used over any path with any bandwidth delay product. The control law 

is applied to control the Available Bit Rate in Asynchronous Transfer Mode (ATM) 

networks and it compares its performance to other control laws that can be used. 

The mathematical analysis presented is, in a realistic network, which has different 

round trip times and shares available bandwidth with high priority traffic. The main 

advantages are the simplicity of the algorithm applied in the network, and the ability 

to examine the transient and steady state behaviors using mathematical analysis. 

Other advantages are the absence of overshoots and/or oscillations when converging 

from input rate to stationary rates and the fact that it is adaptive as it adapts to the 

changing traffic conditions.

In (Zhao and Jia 1999) a new admission control algorithm has been proposed. The 

main idea presented is the Adaptive Real Time Connection (ARTC), which is a gen­

eralized traditional real time connection. The QoS specifications are not given by 

exact values, but instead by regions in the QoS parameter space. Therefore, when 

a call is accepted the best possible QoS from the specified region can be offered. 

The algorithm presented has three main objectives. First, to increase the acceptance 

probability, secondly, to provide admitted calls with the best possible QoS in terms
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of available network resources, and thirdly, to maintain the run time of the algorithm 

at an acceptable level. The main advantage of this algorithm is that it can be applied 

in real world systems.

A robust adaptive congestion control algorithm is presented in (Imer et al. 2000), 

which requires only the knowledge of the maximum round trip network delay and the 

maximum number of simultaneous connections switched through the same output 

port. Imer, Basar and Srikant assume that the available service rate and the incom­

ing call rate are controlled by one of the output lines of the switch. The authors show 

that if the value for the gain is chosen properly, the algorithm achieves max-min fair­

ness along with queue length stability under Minimum Cell Rate (MCR) and Peak 

Cell Rate (PCR) constraints, and different number of sources and their round trip 

delays. The algorithm is also able to achieve high utilization of available bandwidth. 

The computational complexity of the algorithm is low, since there is only one single 

design parameter, /), to be tuned and the switch has to perform only two divisions; 

one multiplication and two additions per output line in order to determine the Ex­

plicit rate (ER). The main disadvantage of this algorithm is that if P is small, it 

results in a smaller overshoot, but a larger settling time.

In (Ma and Hamdi, 2000), a complete mechanism which include an admission con­

trol policy, a traffic regulator, and a scheduling algorithm has been presented. The 

scheduling algorithm is for the reservation medium access control protocol, in the 

single hop passive star coupled WDM optical network. This provides guaranteed de­

terministic performance service to the application streams, composed for real time 

variable length calls. A new admission control policy is presented, which is used to 

make decisions on which application streams can be admitted, when more than one 

new application stream requests to enter into the network. The scheduling algorithm 

is dedicated to scheduling the variable length messages in the specified WDM optical 

networks. A mathematical model has been formulated in order to evaluate the delay 

bound. The network service scheme has been validated through a series of simulations 

presented by the authors.
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A two level bandwidth allocation and admission control strategy is presented by 

(Davoli and Maryni 2000), in the perspective of an access multiplexer to a multi-user, 

multi-service broad-band telecommunication network. The main idea is the addition 

of the neural network controller in a two level hierarchical scheme over an infinite time 

horizon. Since the controller has to adjust its parameters to varying traffic changes, 

it makes use of the neural approximations whose dynamics change.

In (Liu et al. 2000) a scheduling application for a WDM optical network is presented. 

In the design presented, agents are used to provide the enabling mechanism for moni­

toring and controlling the network equipment. (Liu et al. 2000) uses a resource broker 

to take care of the communication and interoperablilty issues between the agents and 

the application. In order to decouple the communication between agents and the 

scheduling application and to enable communication among the agents themselves, 

the authors designed an event service to handle this. The application presented is 

equipped with a wavelength scheduling algorithm to provide traffic control and effi­

cient resource allocation.

In (Tan and Yang 2002), traffic controllers are presented and designed using the 

classical control theory and Schur-Cohn stability criterion. This provides the al­

gorithm with the required stability condition under which the controlled switching 

network is stable, in terms of buffer occupancy. A class of end to end rate based 

congestion controllers are proposed, which meet the necessary requirements for the 

relevant stability condition. Furthermore, ideas are presented on how to choose the 

most desirable controller from this class to meet more specific performance require­

ments. The mathematical analysis and simulations presented show the validity of this 

approach. The drawback of the approach is that it does not guarantee the required 

QoS in real time communication networks.

The authors in (Zhou and Mouftah 2002) propose the Least Load Routing (LLR-k) 

algorithm and the Adaptive Least Load Routing (ALLR-K) algorithm. These algo­

rithms try to improve the performance of the Least Load Routing (LLR) and the 

fixed path least-congestion (FPLC) algorithms. In the LLR, instead of blocking a

10
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call because there are no resources on the least loaded route, k number of routes are 

searched for an available wavelength. On the other hand, in FPLC, instead of fixing 

the alternate route, let some of the routes be fixed and others are dynamically gen­

erated according to the history of the traffic distribution. Simulations and numerical 

analysis presented show that LLR-k is much less complex than FPLC; LLR-k has 

higher performance than FPLC and is more robust in the sense that the value of k  is 

independent of the network topologies.

The Weighted Sequential Greedy Scheduling (WSGS) protocol is proposed in (Smil- 

janic 2002). This approach is similar to the Weighted Probabilistic Iterative Matching 

(WPIM) protocol but instead of using the probabilistic iterative match, the protocol 

presented uses the sequential greedy scheduling instead. Thus, the WSGS implemen­

tation is further simplified in a comparison to the WPIM. Using this protocol makes it 

very simple to flexibly share bandwidth in switches with input buffering. The author 

showed that the proposed WSGS can reserve 50 % of the total switch capacity.

In (Boudriga and Obaidat, 2003) an initial look at how Advanced Reservation (AR) 

affects admission control, path selection, and resource reservation. The authors pro­

posed an admission controller and resource management scheme for optical networks 

that deals with service uncertainty, helps optimize traffic engineering and reduces 

reservation costs. This method allows users to specify advanced reservation requests 

based on what they know about their quality of service. The authors also provided 

an efficient framework for optimized service utilization and continuity. They show 

through a set of simulations that their Multi-step Reservation Admission (MRA) 

scheme, outperforms the traditional schemes.

In (Kim et al. 2004), a Delay Buffer Control for Mixed Traffic (DBCM) is used for 

QoS of mixed traffic, from real-time (RTT) and non-real time traffic (NRT) sources 

in Networks. The authors measure the transfer delay at the node, which they have 

defined as the time in which the user transmits a packet, and the node takes this 

packet and forwards it to the output link. The transfer delay is maintained around a 

desired value, by dynamically adjusting the output bandwidth and also adjusting its

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



overshoot, accordingly. Fairness is considered in (Kim et al. 2004) when adjusting 

the bandwidth. The authors present packet loss in delivering NRT by measuring and 

controlling the buffer level in each node. The proposed algorithm is different than its 

predecessors in three main areas. First, this algorithm considers mixed traffic sources 

for both RTT and NRT. Secondly, the delay is measured and used as a control target, 

thus delay and buffer occupancy are controlled for RTT and NRT which corresponds 

to their different QoS requirements. Thirdly, the output rate of the node is adjusted 

as a control input, which improves the feedback delay. Buffer utilization is then im­

proved by dynamic control and buffer control based on proper available bandwidth. 

Simulations show that DBCM performs well, in terms of punctuality rate and packet 

loss ratio, when compared to other algorithms. The downfall of the presented algo­

rithm is tha t it does not consider diverse priorities of RTT and NRT sources.

The structure that is proposed by Kim, Park, and Ko in (Kim et al. 2004) is a 

system over communication networks, and a system over asymmetric path delay con­

figurations (SOAP) on the high speed networks. The SOAP uses two different path 

sharing reliable transport protocol. One path has a constant delayed data to the 

destination by using its buffers, and the other path delivers the data with their delay 

information to the destination. In (Kim et al. 2004), two kinds of dynamic output- 

feedbacks are proposed: The Previous Mode (PM)-dependent and PM independent 

controllers. The mode represents one of the status that a switching controller can 

belong to. The PM dependent controller obtains its mode based on its previous mode, 

while the PM independent controller does not. The Hoo norm minimization problem 

of the SOAP is based on two methods using a piecewise Lypanov function for the 

PM-dependent controller. For the PM-independent controller a common Lypanov 

function is used for the Hoo norm minimization. The authors show, by the means 

of simulations, that the PM-dependent controller performs better than that of the  

PM-independent switching controller, for all the admissible mode transitions in the 

most uncertain communication network conditions.

In (Mosharaf et al. 2004) a call admission control policy is presented to provide

12
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fairness control and service differentiation in WDM grooming networks. The problem 

is first formulated as a Markov Decision Process (MDP) and the optimal policy is 

obtained by the policy Iteration method. Based on the properties of the optimal 

policy, a decomposition algorithm is proposed for multi-link networks. The algorithm 

has lower computational complexity with very good performance. It can achieve sub- 

stational improvement in terms of fairness ratio and utilization.

A class of congestion control algorithms are presented in (Deb and Srikant 2004) 

for networks with unicast and Multicast sessions. The congestion control mechanism 

can be implemented in a decentralized manner and with a simple one-bit marking 

scheme. The authors proved the stability of one particular congestion-control algo­

rithm among the class of schemes that have been proposed. Fluid level simulation 

results were provided to show how maximum rates can be obtained using the algo­

rithm. The scheme can be used efficiently in the presence of TCP sessions, and with a 

judicious choice of parameters, it can ensure fair long-run throughput among different 

TCP sessions and multicast receivers.

The authors in (Bruni et al. 2005) focused on the scheduling and congestion con­

trol problems for a band limited network. The authors took into account the QoS 

requirements of the various connections. Optimal control methodologies are used to 

tackle and solve the problem. The main features of this solution are the unitary con­

text and implementation of the congestion and scheduling controls, and the feedback 

structure of the optimal solution, which secures a high level of robustness. In (Bruni 

et al. 2005), the authors assumed discretization of the time interval, which allowed 

the problem to become an instantaneous optimal control problem.

1.3 Thesis Organization

In order to control a system all system characteristics must be studied thoroughly. 

Chapter 2 discusses the optical fiber in detail, describes the makeup of a WDM optical 

network and how the wavelengths are assigned. Three constraint-based path selection

13
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algorithms are examined in chapter 3. In chapter 4, the proposed congestion control 

algorithm is presented. The admission control algorithm (Gokbayrak and Cassandras

2002) is presented in chapter 5. Simulation results are presented separately in each 

chapter. Chapter 6 discusses the network model that was used for the simulations. 

Finally chapter 7 concludes the thesis and gives some directions for future work.

14
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Chapter 2 

W DM  Optical Communication 

Networks

The optical fiber has emerged for its ability to meet the continuous growing demand 

of data and voice traffic. The reason for that is because the optical fiber has poten­

tially limitless capabilities: huge bandwidth, low signal attenuation and distortion, 

low power requirement, small space requirement and low cost (Murthy and Gurusamy 

2001) and (Tanenbaum 1996).

In order to get the maximum bandwidth so that the users’ needs can be met, which 

include: voice, video conferencing, etc., simultaneous multiple user transmissions are 

introduced into the network. This can be achieved in an optical network by either 

wavelength or frequency division multiplexing (WDM, FDM), by time division mul­

tiplexing (TDM), or by code division multiplexing (CDM).

Optical TDM and CDM are not appropriate for the network because the TDM bit 

rate and CDM chip rate would have to operate on a rate higher than the electronic 

rate. Since WDM has no such requirement, it is the most appealing to be used. The 

bit rate of a WDM channel can be chosen subjectively, so it is usually chosen at 

maximum electronic speed.

15
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2.1 Wavelength-Division Multiplexing

Wavelength division multiplexing solves the problem of huge opto-electronic band­

width mismatch^ by requiring that each user equipment operates at the electronic 

rate. The optical transmission spectrum consists of non-overlapping frequency bands, 

so that each one is assigned to a single communication channel. The huge fiber band­

width can be greatly utilized if multiple channels are allowed to co-exist on a single 

fiber. Another feature of using WDM, is that all WDM devices are easier to im­

plement when working at electronic speeds. As a result, there is a great number of 

WDM devices available in the market today and they are on the rise.

Research and development on optical WDM networks grew rapidly in the past few 

years. The main area in which this has been tested and prototypes have been made, 

is in the telecommunication area.

2.2 WDM Networking Evolution

WDM networking evolution is divided into three main areas:- point to point WDM 

systems, wavelength add/drop multiplexers, and finally fiber and wavelength cross 

connects (Mukherjee 2000).

2.2.1 Point to  Point W D M  System s

Telecommunication companies are now implementing the WDM technology. The 

reason behind this is, as more and more users and their demands increase, WDM is 

becoming the best solution in terms of cost-effectiveness compared to increasing the 

number of fibers (Murthy and Gurusamy 2001).

^The mismatch occurs because the wavelength capacity is lOGbps today and increasing, while 

the sub-rate traffic varies from 51.84 Mbps
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Figure 2.1: A Four channel point to point WDM transmission system with amplifiers

In order to upgrade the capacity of a transmission link there are three possible 

solutions:

•  Add more fiber links

• Use an n-WDM solution (see figure 2.1)

•  Use a higher electronic speed solution (i.e., upgrade the hardware)

For short distances (50 Km or less), adding more fiber links seems to be the least 

cost solution, but for longer distances the WDM solution is the least costly solution, 

with higher electronic speeds not that far behind. As can be seen in figure 2.1, in 

a WDM transmission system, there are four wavelengths which are entered into a 

Multiplexing terminal in order to be put on a single Optical link. In order to sepa­

rate the four wavelengths at the end of the fiber link, they have to pass through a 

De-multiplexing terminal.

The WDM Mux and DeMux in point to point links are now available from different 

manufacturers such as Pirelli, and AT&T. Among these products the maximum num­

ber of channels is 160, as of October 2005, using an 0 0 -1 9 2  fiber. This fiber gives a 

bandwidth of lOGbps (Sycamore Networks).
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2.2.2 W avelength A dd/D rop  M ultiplexers

D E M U X M U X

Figure 2.2: A Wavelength Add/Drop Multiplexer (WADM)

An Add/Drop optical multiplexer whose architecture is shown in figure 2 .2 , con­

sists of switches. Each switch corresponds to a specific wavelength. Based upon the 

direction of the switch it can either disturb or un-disturb the signal corresponding to 

that wavelength. In other words, it can either continue on the next optical link or it 

can be dropped locally and that wavelength would be free so that a new data stream 

can be added. Note that more than one wavelength can be dropped or added at a time.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.3 Fiber and W avelength Cross Connects 

•  Passive Star

Input Fiber 1 Output Fiber 1
M

Input Fiber 2

A1....A4 

Output Fiber 2
A2

Input Fiber 3

A1 ,..,A4 

Output Fiber 3
A3

Input Fiber 4

A1 ,..,A4 

Dutput Fiber 4
A4 A1,..,A4

Figure 2.3: A Passive Star

A passive star having a  number of input and output ports, is used in network 

applications. An optical signal introduced into any input port is distributed 

to  all other ports. Because of the nature of the construction of a passive star 

coupler, the number of ports is usually of a power of 2 as seen in figure 2.3. The 

passive star is used to build local WDM networks.
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• Passive Router
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Figure 2.4: A Passive Router

A passive router routes each connection depending on a routing matrix. The 

difference between the passive star and the passive router, is tha t the passive 

router can route simultaneous connections^ through itself, while the passive 

star can only route N simultaneous connections, as seen in figure 2.4. The 

passive router is mainly used as a mux/demux device.

• The Active Switch

The active switch can also support simultaneous connections like the passive 

router. The difference between them is that the active switch’s routing matrix 

can be reconfigured on demand under electronic control. However, the active 

switch is not passive, therefore it needs to be powered. The active switch 

can also be referred to as a Wavelength Routing Switch (WRS). The main 

application of the active switch is in constructing wide area wavelength routed 

networks.

^Where N in Figure 2.4 is equal to 4
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2.3 The Construction of a Wavelength Routed Wide 

Area Optical Network

A wavelength routed optical network is shown in figure 2.5. As it can be seen the 

network consists of active switches connected by fiber links. Each access station is 

connected to an active switch through a fiber link, this combination is called a network 

node. Each node contains a tunable transm itter and receiver.

An example of communication between nodes is shown in figure 2.5. If there is a

B A ,

C  I

A ccess Station; Contains tunable transm itters and Receivers

(■" Switch: Contains photonic switch, and pertiaps photonic
— amplifiers, wavelength converters, etc.

Optical Link

The path between the source and destination

Figure 2.5: A Wavelength routed (wide area) optical WDM network

connection request between nodes B and C, it is shown that the light path is using 

the wavelength Ai. If a wavelength conversion device is not available, then both nodes 

have to be tuned on the same wavelength. This is called the wavelength continuity 

property of the light path. If a wavelength converter is present as in the example 

in figure 2.5; the light path between nodes D and E does not have to use the same 

wavelength throughout the path.

A major requirement for wavelength routed optical networks is that if there are 

two or more light paths traversing the same fiber link, they must be on different 

wavelengths so interference does not occur.
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2.4 Network Control Management

Once a connection request is received at the node, the node is required to calculate 

the path to the destination and to reserve the required wavelength along the path. 

The node has to have/inquire the network state information in order to know which 

wavelengths are available. Therefore, there must be some kind of control mechanism 

in order to reserve and free the resources needed. The control mechanism can either 

be centralized or distributed.

• Centralized

Centralized routing (White 2002) dictates that the routing information gener­

ated are stored at a central location within the network. Once a connection 

request is received at the node, the node needs to consult this centralized site 

and inquires as to the best route on which to transmit the data. The central 

site maintains a routing table. The primary advantage of using a centralized 

routing is that all routing information is kept at one node or site. Having only 

one routing table, minimizes routing table storage and eliminates the possibility 

of multiple routing tables with conflicting information. A major disadvantage of 

the centralized routing is that if the node holding the one and only routing table 

crashes, the entire network will have no routing information. Also if all other 

nodes must consult the one node holding the routing table, network congestion 

or a bottleneck may result at the routing table’s node.

• Distributed

There are two main distributed network control management approaches. The 

first approach is proposed in (Ramaswami and Segall, 1997), and is referred 

to as the “link-state approach” because it routes connections in the link-state 

fashion. The second approach is referred to as the “distance-vector routing 

approach” because it utilizes the distributed Bellman-Ford routing algorithm 

(Bellman 1958). The two are described below:
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1. Link State

In the network, each node has information about the whole network topol­

ogy, {i.e., it knows which wavelengths are free and which paths to take). 

Upon a call request, the node chooses a path and a wavelength based upon 

the information it has. Once the route and the wavelength are chosen, the 

node attem pts to reserve the wavelength on each link along the chosen 

path and sends an acknowledgment message back to the source. If all the 

reservations are successful, then it sends a setup message to each of the 

nodes, therefore the appropriate switches are then configured at each node, 

and the connections are established. If the reservation is not successful, 

then a takedown message is sent to the nodes to free up all the reserved 

wavelengths and the call is blocked. Consequently, when a call is accepted 

or blocked, each node sends an updated message to the rest of the nodes 

in the network. This message includes any changes in the status of the 

wavelengths being used on the node’s outgoing links.

2. Distance Vector

In the distance-vector approach, each node does not need to maintain com­

plete link-state information on the network, but maintains a routing table 

instead. This routing table specifies the next hop and the distance (cost) to 

the destination for every destination and wavelength. This approach uses 

the Bellman-Ford algorithm to maintain the routing tables. This method 

requires the nodes to update their routing table whenever a connection is 

established or taken down. Therefore each node sends routing updates to 

their neighbouring nodes periodically or whenever the status of the node’s 

outgoing links change. When a connection request is received, the source 

node looks up its routing table and selects the wavelength that has the least 

cost to the destination (if more than one wavelength have the same least 

cost, then the first fit approach is used for the wavelength assignment).
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2.5 The Routing and Wavelength Selection

The performance of the network is dependent on how the desired wavelength and 

path are chosen, which are known as the Routing and Wavelength Selection (RWA) 

problem. The search for the free wavelength is simple since any available wavelength 

can be assigned along the selected route. The selection process is crucial so as to 

maximize the wavelength utilization. Selection is further classified into sequential 

and combinatorial approaches, as presented in (Choi et al. 2000). The sequential 

approach sorts routes to be assigned and then assigns a wavelength to these routes. 

On the other hand, the combinational selection considers the inter-dependency of 

each selection. It is then broken down into optimal and heuristic approaches. The 

optimal approach is an NP-complete problem which is very difficult to apply in larger 

networks. However, in heuristic approaches, it is hard to reduce the search space to 

a smaller set of routes. The description of each approach is as follows:

• Sequential Selection 

— Selection order

* Largest number of neighbors-first schemes, sort the routes according 

to the number of neighbors in an attem pt to assign an available wave­

length.

* Largest available wavelength-first schemes, sort the routes in the order 

of available wavelengths.

* Largest traffic-first schemes, sort the routes in order of traffic require­

ment.

* Largest path-first schemes, sort routes in order of the number of hop 

counts for each route.

* Shortest first schemes, sort the routes with the shortest number of 

hops first.

* Random schemes sort routes in a random order.
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-  Selection rule

* First fit schemes select the first available wavelength in numerical or­

der.

* Most used schemes attem pt to allocate the most used wavelength first.

* Least used schemes attem pt to allocate the least used wavelength first.

* Random schemes attem pt to randomly allocate a wavelength.

• Combinational Selection

-  Optimal selections can be solved by excessive search, but they do not 

ensure that the algorithm can handle large networks.

-  Heuristic selection algorithms work very well with the network sorting 

problems and they are divided into genetic algorithms, simulated annealing 

algorithms and Tabu algorithms.

In summary, WDM optical network technology is introduced and examined from 

different perspectives. Major problems and setbacks that face the WDM network 

have been discussed in order to give the network designer the full picture.
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Chapter 3

Path Selection Algorithms

Constraint-based path selection algorithms are needed to find a path that would 

satisfy a set of QoS constraints^. This problem is NP-complete (Garey and Johnson 

1979), thus many heuristic algorithms have been proposed. Many of these algorithms 

are presented in (Kuipers et al. 2002). When selecting a path between a desired 

source and destination, in which more than one constraint is present, choosing a path 

can have dramatic effects on the QoS. Therefore, the key issue is to identify efficient 

paths that can satisfy the given QoS constraints. This is known as the QoS-based 

routing problem. The goal of this chapter is to shed some light on the myriad existing 

multi constraint path selection algorithms proposed for QoS-based uni-cast routing. 

These algorithms are DCCR (Guo and M atta 2003), LDP, and HZ_1 (Handler and 

Zang 1980).

Before exploring each algorithm, a definition of the notations used is needed. Let 

G{N, E)  represent the network topology, where N  is the set or the number of nodes, 

and E  is the set or the number of links. The source and destination nodes are 

represented by s and d, respectively. The number of QoS metrics is denoted by m.  

Each link is characterized by an m-dimensional link weight vector, consisting of m 

nonnegative QoS weights where Wi{u,v) , i  =  l...m , (u, u) e  E  as components. The 

constraints tha t are being considered are additive constraints, in which the QoS value

^The QoS constrains refers to the minimization of the delay, the cost, etc.
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of a path is equal to the sum of the corresponding weights of the links along that 

path.

3.1 Delay Cost Constrained Routing (DCCR)

DCCR is presented in (Cuo and M atta 2003). DCCR takes the same greedy strategy 

as in Dijkstra’s algorithm^ (Tanenbaum 1996). DCCR algorithm uses a nonlinear 

equation 3.1, in searching for the optimum path. When using a nonlinear weight 

function, only recording one best path from source to destination may lead to failure 

in finding an optimum path. DCCR solves this issue by applying Chong’s k-shortest 

paths algorithm (Chong et al. 1995), which records k-shortest paths, listed in increas­

ing weights for each node. By examining the k  paths, the path with the lowest cost 

in the final step, can be chosen and returned as the optimum solution. The pseudo 

code for the DCCR algorithm as in (Cuo and M atta 2003) is presented in 3.1.1.

Path Weight =  ̂— ( 31)
CostBound

The k-shortest path algorithm is very similar to the Dijkstra algorithm. The basic 

idea of this algorithm is that it stores k  number of paths in an array for each node. 

These paths are the current best paths from the source to this node. The algorithm 

then uses a heap, in order to store the nodes that have not yet been visited k times. 

The elements of the heap contain the following information: nJd, wgt  and idx\ where, 

nSd  identifies the node and idx locates an element of the array ND{nJd)  of the k- 

shortest paths associated with this node. As it can be seen in the pseudo code shown in 

Appendix A, the heap operations are based on node weight (wgt) . The relaxation step 

in the DCCR algorithm is similar to the Dijkstra algorithm, however the difference 

appears in lines 17-23 in the DCCR algorithm when an unvisited node’s weight is 

updated, then the corresponding element in the heap also needs to be updated. Also

^Dijkstra’s algorithm is used to generate a path from the source to the desired destination subject 

to a single QoS constraint.
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if the weight of the current path is less than the weight of one of the k-paths recorded, 

the recorded path with the maximum weight is replaced by the new path.

The k-shortest path may return a path that contains loops. (Guo and M atta 2003) 

avoids this problem by using a non dominated strategy. A path P is said to be 

dominated by another path P ' , if and only if D{P) > D{P') and C{P) > C{P')  

(where D{P)  represent the delay of the path P  and C{P)  represent the cost of the 

path P). By applying this method, and since delay and cost are additive metrics, 

a path that would contain a loop will always be dominated by the corresponding 

loop-free sub path. Consequently, the final path solution will not contain any loop.

3.2 HZ_1

The HZ-1 (Handler and Zang 1980) uses a linear weight function. The algorithm 

starts off with two paths; the Least Delay Path (LDP) and the Least Cost Path  (LCP). 

They are calculated using Dijkstra’s algorithm, with the weight function being the 

link delay and link cost respectively, which is shown in lines 1 and 2  (See Appendix 

B for pseudo code).

By examining the LCP, if the delay of the LCP is a feasible delay bounded path, 

then it is the optimal solution. If it is not feasible, therefore, at each iteration the 

algorithm keeps two paths, the current best feasible, which is delay bounded LDP, 

and the current best infeasible path LCP. Two parameters a  and are then defined 

in line 7. These parameters are used to construct a new linear path weight function, 

as seen in equation 3.2.

W (f  ) =  a  X D (P) 4- X C ( f  ) (3.2)

Using the linear function which include link cost and link delay, the HZ_1 algorithm 

tries to find the optimum (LWP) path, in order to reduce both cost and delay. A new 

variable is introduced 7 , where 7  is the current least path weight, in the algorithm 

7  =  D{LCP)  X C{LDP)  — D{LDP)  x C{LCP).  If finding the LWP is successful.
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i.e., W {L W P )  < 7  and LWP is feasible (D{LWP) < Ad),  LWP replaces the LDP 

to become the best feasible path, therefore, the weight given to link cost increases 

in the next cycle (lower cost paths are given more preference). If LWP is infeasible 

{D{LWP) > Ad),  then the LWP replaces LCP in the next iteration. Therefore, 

this increases the weight given to link delay. When no more progress can be made, 

the algorithm stops and returns the best feasible path out of LWP and LDP as the 

optimum path.

3.3 Comparing HZ_1 and DCCR

3.3.1 Tim e Com plexity

L em m a l.(G uo and M atta 2003) The time complexity of the DCCR algorithm is 

given as 0(k\E\log{k\v\) +  k'^\E\ +t{A)) ,  where A is any single metric shortest-path 

algorithm and t{A) is the time complexity of A.

P ro o f  (Guo and M atta 2003):

In order to take out a minimum value from an array, it takes 0(log{k\V\)).  Since 

a maximum of k\V\ paths are considered in this algorithm. Therfore, k\V\ elements 

need to be taken out at worst case scenarios. This gives 0{k\V\log{k\V\)).  It can 

be seen that the most number of edges that can be used in the relaxation process is 

equal to k\E\, since each relaxation step would include taking out the largest value 

of elements from the k-array of the neighboring node (0{k)).  Therefore, one heap 

search operation is equal to {0{log{k\V\))), and a heap modification is {0{log{k\V\))). 

Consequently, the total time spent for each relaxation step is 0{k\E\{log{k\V\)  -f 

k)) =  0{k\E\log{k\V\) +  k^\E\). A cost bound needs to be calculated in the DCCR 

algorithm, which is achieved by running Dijkstra’s algorithm to find the cost of the 

LDP in t{A) time. If the priority queue is implemented as a binary heap, then the 

total time complexity of the DCCR algorithm is 0{k\E\log{k\v\) + k'^\E\ + t(A )). 

L em m a 2 .(Guo and M atta 2003) The time complexity of the HZA algorithm is
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0{m{G){\E\  +  t ( A )  +  2 t ( i 4 ) ) ,  where m{G) is the total number of executed iterations,

A  is any single-metric shortest path algorithm and t(A) represents the time complexity 

of A.

Proof (Guo and M atta 2003):

In lines 7-18 (see appendix B) in the HZ_1 algorithm, which represent the outer loop 

runs m{G) times, and at each iteration, the weight of at most |E | edges, and the 

least weight path in t{A) time need to be computed. Therefore, the total time is 

0{m{G){\E\ + t{A))). A loop needs to run in order to calculate the LDP and LCP, 

this takes 2t{A), assuming Dijkstra’s algorithm is used and the priority queue is 

implemented as a binary heap. Therefore, the time complexity becomes 0{m(G)(E\-\-  

\E\log\V\) -f- 2)\E\log\V\ =  0{m{G){\E\ +  t{A) 4- 2t(A)).

3.3.2 Performance Comparison Under Different Network Topolo­

gies

A simulator (which is written in C) in which the source, destination and network 

topology are entered and depending on what algorithm is being used the optimum 

path is given. The program tests the path selection algorithms under different net­

works with varying number of nodes, in order to see . The positions of the nodes lie 

in a rectangular area. The source node s and the destination node d, are chosen such 

that the M anhattan distance between s and d is the longest possible distance in the 

graph, for example see figure 3.1.

The link delay function consists of the propagation delay Tp, the transmission 

delay Tt, and the queuing delay Tq. The transmission delay is ignored due to the 

assumption that high speed links are being used. The ratio between the queuing 

delay and the propagation delay is given by r  =  T^fTp, which reflects how busy the 

communication link is. Thus, the link delay is defined as d{e) =  (1 4- r)  x Tp.

In the simulation model, r  is uniformly distributed in [0, T], where T  is a parameter 

which refiects the maximum queuing delay allowed at each switch. T  is set to be 10
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DestinationSource

Figure 3.1: Example of the source and destination used in the simulation 

in our simulations.

Link cost is generated such that it does not increase the difficulty in finding an 

optimum path. In the simulations there is a negative correlation between the de­

lay and cost {i.e., the more the cost, the less the delay). The link cost is given by 

c(e) =  M / (C-+-d(e)), where M  and C  are parameters chosen so as to adjust the value 

of c(e) within a reasonable range. In the simulations, M  = 1000, C = 1 and d{e) 

varies from 0 . 1  to 2 0 .

The tightness of the delay bound is chosen based on the configuration of the 

graph. Each time a new graph is generated, Dijkstra’s algorithm is used to find 

the LDP and LCP, then it computes the delay of these two paths, denoted by 

D(LDP) and D(LCP), respectively. The delay bound is then defined to be 

A j =  D{LDP)  -t- p{D{LCP) — D{LDP)),  where p G [0,1], this is called the delay 

bound ratio, and thus refiects the tightness of the delay bound. In the simulations, p 

is set to 0.5^. Figure 3.2 shows the performance measures of the three algorithms 

for different network sizes. The least delay path is simply the path with the least 

delay and is found using Dijkstra’s algorithm (see Appendix C). The negative corre­

lation is shown in the LDP, as it costs the most in comparison with the HZ_1 and the 

DCCR algorithm. DCCR takes advantage of its non-linear function and the HZ_1 

takes advantage of its less computational complexity, to find an optimum path. The

^These values were chosen in order to compare the results with those in (Guo and M atta 2003)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Path Algorithm Com parison
400 0

LDP
HZ_1
D C C R350 0

300 0

250 0

S 2000

1500

1000

5 0 0

N etw ork ID In In c rea sin g  N u m b er Of N o d es

Figure 3.2: Comparison of the path selection algorithms with respect to cost

optimum paths that are found are much less than the LDP in terms of cost. The 

speed of the DCCR is slower than HZ_1 , since the DCCR uses a non-linear weight 

function to obtain the optimal path (Guo and M atta 2003).

Thus, it can be seen how the optimum path can be obtained when the link cost 

and link delay are negatively correlated. Obviously, this assumption increases the 

difficulty of finding the optimal path. The tradeoff between the two algorithms, HZ_1 

and DCCR, is the computational delay depending on which weight function would 

be used (linear or non-linear weight function).
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Chapter 4

Congestion Control

Congestion Control is a process which is used in networks to avoid congestion. Con­

gestion control is desired since network resources are limited. If uncontrolled, users 

can easily overload certain networking resources, thus making the network unusable. 

Furthermore, the complexity is increased since network traffic is a complex nonlinear 

and non stationary process which is significantly affected by immeasurable parameters 

and variables. Hence, a precise model of this process becomes increasingly difficult as 

the complexity of the process increases. Fuzzy modeling has been found to effectively 

describe a system with these properties. This area has been the interest of many 

researchers.

In (Loukas et al. 2000) a Random Early Discard^ (RED) algorithm is presented 

which uses a fuzzy logic controlled RED queue. In order to implement this, the fixed 

max/min queue thresholds are removed from the RED queue for each class and re­

placed with dynamic network state dependant thresholds. The thresholds are then 

calculated using a fuzzy logic controller. In (Chen et al. 2000) a fuzzy autoregressive 

(AR) model is proposed for predicting actual traffic data in high speed networks. The 

model uses the fuzzy clustering algorithm. Based on the prediction of traffic conges­

tion by this proposed fuzzy-Autoregressive model, a congestion control algorithm is 

developed to smooth the input arrival process through decreasing the peak bit rate.

'̂ RED simply sets some min and max dropping thresholds for each class.
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In (Al-Hammadi and Schormans 2001) a fuzzy congestion control (FCC) scheme has 

been presented to monitor both low and high priority buffers. In order to reduce the 

complexity of the proposed FCC scheme, a separate fuzzy associative memory (FAM) 

is used for every buffer in the time priorities switch. The proposed FCC scheme gives 

lower cell loss and delay when compared with the conventional explicit binary scheme. 

One logic approach (Chrysostomou et al. 2003) for congestion control in a Diff-Serv 

framework is implemented with marking capabilites^. The design (Chrysostomou et 

al. 2003) of the fuzzy knowledge base avoids the necessity of any special parame­

terization or tuning, aside from the linguistic interpretation of the system behavior. 

The proposed fuzzy explicit marking (FEM) technique can perform equally well using 

homogeneous or heterogenous traffic sources without any special tuning.

In (Liu and Guan 2004) a fuzzy controller has been designed to calculate the ex­

plicit rate (ER) value. The fuzzy controller algorithm consists of three parts, which 

determine the FID parameters. The advantage of this scheme is that it is robust to 

the uncertain round trip delay and available bandwidth for available bit rate services. 

In (Chrysostomou et al. 2004), a fuzzy logic based approach for delivering an im­

proved and more predicatable congestion control implementation within the Diff-Serv 

architecture is presented. (Chrysostomou et al. 2004) uses fuzzy logic techniques to 

develop a new active queue management (AQM) scheme, which is implemented within 

the Diff-Serv framework using a two-class FEM controller (FEM In/out) to provide 

congestion control. In order to maintain both high utilization and low mean delay, 

the fuzzy control system proposed is designed to regulate the queue of IP routes at a 

predefined level, by achieving a specified target queue length (TQL).

In this chapter, we propose an algorithm based on the Fuzzy Logic approach in 

order to control congestion in a WDM network.

^Marking is performed by either dropping a  packet or settin g  its explicit congestion  notification  

bit.
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4.1 Motivating Example

The Network

"x
7 Channels

The
Controller

Figure 4.1: Motivating Example

We are given a small size WDM network see figure (4.1). In this example, the 

WDM network has seven channels on each link. The channels are chosen by the first 

fit wavelength routing scheme (see chapter 2). The calls’ arrival times follow a Poison 

distribution, and the holding times follow an exponential distribution. The required 

task in this example is to meet a certain QoS measure. The QoS is given in terms 

of the Blocking Probability {BP).  A B P  reference (BPref) is given which represents 

the QoS the network has to meet. In order to satisfy this QoS a control scheme needs 

to be applied. The network checks its blocking probability at sampling periods (z), 

in order to see if this QoS is being met. The network calculates the error (e*) at each 

sampling period, which is the difference between the BPi and BPref- The control used 

in this scenario puts a specific delay on the incoming calls depending on the value of 

Cj and fit-i. The network then enters the 6 % and ej_i values into the controller. The 

exact delay (A/Xj) is then obtained from the controller output, in order to give the
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network some time to free up its resources (see figure (4.1)), hence meet the required 

QoS. If for example at sampling period i, the network is not meeting its required QoS 

(i.e., the network is congested) and the delay is calculated to be 4ms, then one of the 

following three things can happen at the next sampling period i +  1 :

1. The network is not congested anymore, then the controller will takeout the 

unnecessary delay.

2. The network is not congested, but very close to the boundary of the BPref, then 

the controller will keep the delay on the network until it has fully recovered from 

the congestion.

3. The network is more congested than it was at sampling period i, then the 

controller will put more delay to give the network some time to free up more of 

its resources.

All of these steps will be explained in more detail throughout the chapter.

4.2 Fuzzy Systems

A fuzzy system is a system, static or dynamic, which uses fuzzy sets or fuzzy logic and 

the corresponding mathematical framework. Fuzzy systems can serve many functions, 

such as modeling, data analysis, prediction and control. One of the first applications 

of fuzzy systems were in automatic control. The fundamental idea of a fuzzy logic 

controller is to formulate the control strategy of a human operator, which can then 

be represented as “if-then” statements. These “if-then” statements are called rules. 

These rules have two parts, the first part of the rule is called antecedent, which 

identifies the conditions in which the rule would apply, the second part is called 

consequent, which contains linguistic terms (e.g., light, medium, high, etc.). These 

linguistic terms represent a quantitized approximation of the magnitude of the af­

fected variables (Kosko 1997) and (Verbruggen and Babuska 1999).
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In order to state the “if-then rules” appropriately, the linguistic terms that are 

used, the logical relationships that operate on them, and the representation of the 

“if-then” relations, need to be defined. These concepts include the fuzzy sets, fuzzy 

set operations, fuzzy relations, and the types of rule based fuzzy models.

4.2.1 Fuzzy Sets

Consider a variable that is used to describe the state of the network. The network 

administrator’s knowledge about the magnitude of this variable may be represented 

by three linguistic terms, for instance: Light, Medium, or Heavy. A heavy state of 

the network is a set which may be defined such that the blocking ratio is greater or 

equal to some value P . In the conventional set theory, this set can be represented by 

a characteristic function SHeavy (T) which is defined as

'  « ‘he blocking r a t io s  F  

0  otherwise

According to this definition, a specific blocking rate value is either an element of the 

set (Heavy) or not. It makes more sense to assume that there is a gradual transition 

from non-heavy network states to heavy network states. This concept can be repre­

sented by a fuzzy set, which is defined by generalizing the characteristic function of 

conventional sets. A membership function is the characteristic function of the fuzzy 

set.

Fuzzy sets can be represented in discrete domains as a list of ordered pairs {{xi, 

/i(z{)}, Xi e  X ) ,  and on continuous domain as an analytical formula of the member­

ship function, for example (//(z) =  1 / ( 1  -h z^), z  € M).

4.2.2 Fuzzy Set Operations

Fuzzy sets and logical connectives such as AND (conjunction), OR (disjunction) or 

NOT (complement), need to be combined in order to work with fuzzy rules. Conse-
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quently, the logical connectives from conventional Boolean logic have been extended 

to their fuzzy equivalents. If there are different domains such as, X  and Y,  fuzzy 

sets are then defined in each domain, therefore, the operator has to be applied in the 

Cartesian product space of X  and Y  {i.e., for all possible pairs of x  and y).

4.2.3 Fuzzy Relations

A fuzzy relation is a fuzzy set in a Cartesian product space of several domains, 

X i  X X 2 y. ... X Xn- The membership degree represents how much an element is 

associated with the different domains Xi.  An n-array fuzzy relation is a mapping

P  : X X ... X [0,1], (4.2)

which assigns the membership grades to all n-tuples (zi, Z2 , z „ )  from the Cartesian 

product ATi X ^ 2  X ... X Xn- The fuzzy relations are used to represent the fuzzy 

“if-then” rules.

4.2.4 Standard Additive M odel

As described before, in the rule based fuzzy systems, the relationships between vari­

ables is presented using “if-then” rules, which have the form If antecedent proposition 

then consequent proposition. The antecedent proposition is always a fuzzy propo­

sition represented by a linguistic variable and a linguistic term. The form that is 

focused on is presented in (Zak 2003), it is the Standard Additive Model. Let X  and 

Y  be nonempty sets and let I  and J  be nonempty index sets^. If a collection of fuzzy 

sets {Aa : a: € /}  and {By : /5 € J}  are given on X and Y respectively, and the 

rules are given in the form of

IF A ., THEN Bp

În mathematics, the elements of a set A may be indexed or labeled by means of a set J that is 

on that account called an index set.
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The “IF-THEN” rules along with the collections of fuzzy sets form a function R from 

{Aa : a Ç: 1} to {Bj3 : which is called the fuzzy system associated with

the rules.

A fuzzy system can be considered a “fuzzified” function from X  to T  with fuzzy 

sets replacing points in the domain. Let us consider, for instance, the following two 

rules:

IF A3 , THEN Bs,

IF A4 , THEN Ba,

and assume that the point x„ is found in the support of A3 and A4 . Therefore, accord­

ing to the given rules, both B3 and Bg have to be considered. The process by which 

these actions are combined is called defuzzification. The outcome of defuzzification is 

a numerical value. The defuzzifier used is called the standard additive model (SAM). 

A schematic representation of a SAM with two inputs, and a single output is given 

in figure 4.2.

D efuzzifier

If  Ai\i ANT) UjM 
Then CtM

IfAijANDBj: 
Then Cwz

I f  Ai, AND Bj 
Then Ct,

Figure 4.2: A diagram of the closed-loop system with a fuzzy logic controller
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4.3 Congestion Control Using Fuzzy Logic

4.3.1 The Network M odel

The model that is worked on is a small size WDM Network in which all the call 

requests go through a server. It is assumed that the server’s queue can take up 

to k number of calls at a time. The calls arrive in the queue following a Poisson 

distribution, and the duration for each call is exponentially distributed. The network 

that is used is a WDM network, where the bandwidth of each link is divided into 

n channels, (i.e., [Aq, A i,..., A„]). The paths are predetermined by the server using 

Dijkstra’s algorithm, and the path is calculated based on the least number of hops. 

The server also calculates a backup path for each incoming call request, in case the 

primary path fails. The backup path is calculated by the second least number of hops. 

The server receives the following information about a call: source, destination, arrival 

time, and duration time. It is also assumed that each call needs only one channel. 

The same channel is reserved, throughout the path from the source to destination, 

for the duration of this call. If a call request does arrive but there are no channels to 

support it, the call is blocked and registered as a blocked call due to lack of resources 

to support it. Blocked calls are either handled as lost calls or they are put a side until 

resources are available. For the purpose of this research these calls will be classified as 

lost calls. The metric that is used to evaluate the network is the blocking probability 

which is calculated using the following equation:

BP{Nt, NBC,)  =  (4.3)

where is the total processed calls upto sampling index i where the sampling period 

is fixed at a certain number of calls, and NBCi  represents the number of blocked 

calls at sampling index i  The goal is to minimize the blocking probability as much 

as possible.
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The server checks the state of the network based on the QoS^ that needs to  be 

achieved in terms of the blocking rate. The server then uses this information in order 

to adjust the delay, which is measured in milliseconds. If the network state is light 

and has not exceeded its QoS measure, then it will decrease the delay (if a delay has 

been put on these calls). However, if the network state has exceeded its QoS measure, 

then it will add a certain delay on the calls so that it will give the network time to 

free up its resources for incoming calls. Let represent the delay at sampling period 

i and fj,o represent the initial delay of the server’s queue. The initial conditions for 

the delay (jio) in all the simulations is zero. The new delay is given by the following 

equation:

fJ'i+l =  /̂ i +  (4.4)

where A//j is the delay difference that will be added on /Tj. As it can be seen while 

AjUi can be either positive or negative, //j must be always greater than or equal zero.

How will the server know by how much to decrease or increase its queue delay, and 

how sensitive will it be? A controller needs to be applied such that it would be able 

to translate the BP  values that are obtained from the network, into something that 

would best describe the state of the network. This is where the fuzzy controller will be 

most useful and this is explained in more detail in the next section. Before discussing 

the design of the controller, the attributes of the system that is being used need to be 

known. First, is knowing how the system responds to different server delay settings 

in terms of the blocking ratio. This is done by modeling the network using a network 

modeling software (such as OPNET, or C + + ), and applying different delays, then 

observing its effect on the blocking probability. This will give a better understanding 

of how long it will take for the system to recover from congestion or if the network 

is light, by how much should the delay of the server decrease without congesting 

the network. Secondly, which QoS measure the system is working under or needs 

to satisfy and make a judgment whether this QoS can be satisfied using the current

^The QoS mentioned here refers to a specific blocking rate that needs to be achieved. This will 

be explained in more detail later in the chapter.
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network model and its available resources. The QoS measure will be represented by a 

set point, which is the desired B P  and is represented by BPref- The fuzzy controller 

will take the error and the difference Aci as the inputs and A/ij will be the output 

of the controller. The error and the error-difference are given by:

Aci =  6 i  —  6 i - i  (4.6)

where 6i represents the error at the current sampling period (i), and ej_i represents 

the error at the previous sampling period (z — 1). Thus, by examining equations (4.5 

and 4.6), we can see that if Acj > 0 then the error is increasing, and if Ae^ <  0 

then the error is decreasing. In both of these cases the controller needs to act in 

terms of the delay (A^j) that is going to be put on the system. In order to give the 

controller an idea on where the error is heading, Ae%, which plays the role of the error 

time-derivative éj, is the input which gives this information. The inputs Cj and Acj 

are used to generate the “IF THEN” rules (see table 4.1), for example:

IF 6i is Large Negative and Ae^ is Large Negative then the output is Medium Positive. 

The table will be discussed further in the next section.

4.3.2 Fuzzy Controller

A block diagram of a closed-loop system with a fuzzy logic controller (FLC) and the 

fuzzy logic control architecture are shown in figure (4.3). The controller uses the 

error e{ and the rate of change of the error Ae^, as its inputs. As it can be seen in 

figure (4.3), there are five principal elements to the fuzzy logic controller (Cirstea et 

al.20Q2):

•  Fuzzification module (fuzzifier).

•  Knowledge base.

• Rule base.
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Network
Fuzzy Logic 

Controller (FLC)

FLC

Am,
Ae, Fuzzification DeffuzificationInference

Knowledge Base Rule Base

Figure 4.3; A diagram of the closed-loop system with a fuzzy logic controller

• Inference engine.

• Defuzzification module (defuzzifier).

The fuzzification module converts the crisp values® of the control inputs into fuzzy 

values, so that they are compatible with the fuzzy set representation in the rule base. 

The knowledge base provides all the necessary definitions for the fuzzification process 

such as membership functions, and fuzzy set representation of the input variables. 

Figures (4.4) and (4.5), show the fuzzy sets and the membership functions for both 

Cj and Acj.

The “IF-THEN” rules are presented in the form of a matrix presented in table 4.1. 

We use seven membership functions for the controller’s inputs and its output.

® A crisp value is a precise numerical value such as 2, 3, or 7.34. The crisp value is obtained after 

the defuzzification.
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LN MN SN SP MP LP

Cd

0.5

- 3.0 5.0- 7.0 - 5.0 3.0 7.0

%ERROR

Figure 4.4; Fuzzy numbers of the linguistic variable e.

SN SPLN MN MP LP

0.5

- 3.0 2.0 3.0- 2.0 - 1.0 1.0

% DELTA ERROR

Figure 4.5: Fuzzy numbers of the linguistic variable Aci

We then generate the rules. The set of rules are shown in table (4.1), where LN 

denotes large negative, MN means medium negative, SN is small negative, Z is zero, 

SP is small positive, MP is medium positive, and LP is large positive. The next step 

involves choosing an inference engine and a defuzzifier. We use the product inference 

rule and the modified center average defuzzifier which is presented as follows (Zak 

2003).
mgPk/Sk (4.7)

for k = 1,2 ,..., 49, following the rules shown in table (4.1), we compute

i , j  =  l ,2 ,.. . ,7  (4.8)

The functions are the membership functions corresponding to the linguistic

variables e,, and Aci (see figure 4.4 and 4.5), respectively. The variables i, j  corre-
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A C i /  6i LN M N SN Z SP MP LP

LN MP(m°) SP(77lg) SP(mg) MN(777 )̂ MN(mg) M N (77lg) LN (777;)

M N MP(mg) MP(mg) S N ( m ; J S N ( m ; 2 ) SN(771 3̂ ) M N ( m ; J

SN L P (m ° 5 ) M P (m ? 6 ) S P (m ? 7 ) Z (m ;g ) S N ( m ; g ) SN(m^) MN (771̂ 1)

Z LP(m^2) MP(m^3) S P ( ^ ) 2 ( ^ 25) S N (771^ ) SN(771̂ 7) SN(77%^)

SP L P (m 2 g ) MP(m&)) s P M i ) SP(m^2) 2 ( ^ 33) Z ( 7 7 ^ ) SN(777g5 )

M P LP(m^6) LP (77137) MP(mgg) SP (777.39) SP(77l^o) S P « i ) SP(m^)

LP L P (m ^ 3 ) LP(m ^) MP(m^) MP(m|g) S P « 7 ) SP(m^) Z(rTz^g)

Table 4.1: The Rules Matrix

spond to the elements’ address in table (4.1) {i.e., i = 1, j  = 1 then it corresponds 

to ”M P“ in the table). The parameter corresponds to the controller output 

membership function. The output depends on the results obtained from table 4.1. 

Depending on the values of and Acj, and are calculated. S'jg is the spread 

of the corresponding controller output function {S^ is equal 1 for all A:=l,...,49). Al­

though the output values range between 1...49, but because we have seven recurring 

cases we only need seven different outputs.

The values of the output are chosen depending on the nature of the system that is 

being controlled. Of course since this is a continuous function the output is a mixture 

of all of the output values depending on the degree of membership in each of the cells 

in table (4.1). This process is called the Defuzzification process. The m% values are 

obtained by trial and error to see how fast the system can operate under different 

conditions and if it can meet the required QoS (setpoint) desired. An example is 

given below to show how the results are obtained:

E xam ple:

if after a run of the network, the following values are obtained:

•  %6i=-6.5 see figure (4.4) and %Ae,—-2.75 see figure (4.5)

• In figure (4.4) we can see that -6.5 intersects with the LN and MN lines. There-
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fore /X®). and fi^k obtained from the equations of the line.

•  In figure (4.5) we can see that -2.75 intersects with the LN and MN lines. 

Therefore and are obtained from the equations of the line.

• Therefore pk can be calculated using equation (4.8) and A/xy is calculated using 

equation (4.7).

In the next section, simulation results will be presented for different set points, so 

that we can examine how the controller reacts under different situations.

Algorithm Summary: For x =  0 till i =  M,  where M  is the total number of calls

•  Nl: The network is run on the delay yUj.

•  N2 : B P{Ni ,NBCi)  is calculated using equation (4.3).

•  N3: and Acj are calculated using equations (4.5) and (4.6) respectively, and

then inputed in the controller.

•  N4: The controller output A/Xj (the delay difference) is then obtained from the 

controller.

•  N5; The network is then run with delay difference added.

•  N6 : If X =  M  then stop, otherwise repeat steps N1-N5.

4.3.3 Simulation Results

The network topology used is as follows;

The network model is working under the following parameters: The duration times 

for the calls follow an exponential distribution with mean equal to 0 .1  msec, and in­

ter arrival times follow a Poisson distribution with mean equal to 0.019msec. Hence, 

the network is working under 50% load. If the network load is increased then the 

controller needs to be reconfigured all over again. The network shown in figure (4.6), 

is a WDM network with eight channels on each link (Aq, A2 , ..., A7). The simulations
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Figure 4.6: The Network Model

are performed for different setpoints (0.01,0.03,0.05,0.07,0.1) which are in terms of 

the blocking ration in percent. The sampling period used in the simulations is based 

on the number of processed calls. These simulations are performed with different 

sampling periods to show the controller performance with respect to the sampling 

period. The sampling periods that are used are 100, 200, and 250 calls. The total 

number of calls generated were 10,000 and 14,000, to see how this change may effect 

the response. The parameters for m l  are as follows:

• For LP is 13.63ms.

•  For MP is 13.13ms.

• For SP is 12.62ms.

•  For Z is 0.0ms.

• For SN is -5.05ms.

• For MN is -10.1ms.

•  For LN is -15.15ms.

These values were chosen by examining the network under different values to see how 

fast does the controller need to react in order to be able to meet the required set­

point. Figures (4.7 to 4.46) show the evolution of tracking error versus the number
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of calls. Figures (4.47-4.51) show the evolution of the control input versus the number 

of calls. The simulations were done when the control was applied and without to see 

how much the performance of the network would deteriorate without the presence of 

a controller.

As mentioned earlier the results shown are for setpoints (0.01%, 0.03%, 0.05%,

0.07%, 0.1%). It can be seen that the controller’s worst case scenario in terms of 

both control and achieving the QoS requirement would be in the case where the set­

point is equal to 0.01% {i.e., only 1 call can be blocked every 10,000 and 1.4 calls 

can be blocked every 14,000). It is shown that as the setpoint increases to 0.1% the 

performance of both the 10,000 and 14,000 improves in meeting the QoS measure.

The results are looked at from two perspectives, from the controller and the net­

working QoS point of view. In figures (4.7-4.14), where the setpoint is set for 0.01%, 

when the samphng is 1 0 0  calls, the controller exerts a lot of effort so that it does not 

just meet but also exceeds the QoS requirement by not blocking any calls throughout 

the 10,000 calls. Thus, giving a steady error of 0.01%, but even by increasing the 

number of calls to 14,000 as shown in figure (4.10) it does not change, still no calls 

were blocked. In figure (4.8) the controller succeeds in making the error converge to 

zero, thus meeting the desired setpoint. The main difference between the 100 call 

sampling and the other two is tha t the 1 0 0  call sampling is very small that it does 

not give the system a chance to have a drop in terms of error as shown in figures (4.8) 

and (4.9). The first drop is lower than the other drops in all the figures (in terms 

of the error e) because the blocked call happens when not as much calls have been 

processed, therfore the drop is much higher (i.e., one blocked call in 600 gives a  block­

ing probability of 0.16% which is high with respect to the setpoint). In the results 

where no control was put on the network, (see figures (4.13) and (4.14)), they start 

out the same as the controlled plot, until they hit the drop where the first blocked call 

occurs. The uncontrolled system has no control, therefore the error never converges 

anywhere near the zero axis.

In figures (4.15-4.22) the setpoint is changed to 0.03%. In these figures where the
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total number of calls is set to 1 0 , 0 0 0  the controller exceeds the QoS requirement but 

the error does not converge to zero. In the case where the number of caUs are in­

creased to 14,000 the controlled system does not meet the desired QoS measure, but 

is very close to zero in terms of the error.

The reason for this error not converging to zero in all the cases of the 10,000 calls, 

is that there is more control being applied, which is good in terms of the QoS mea­

sure so that it guarantees that the QoS will be met, even if sudden traffic changes 

occur. This controller was first designed for a server queue that can hold up to 10,000 

calls, but the reason we did simulations with 14,000 is to see the limitations of the 

controller. This is shown in figures (4.18-4.20) where the error settles in the negative, 

thus not achieving the desired QoS. Another point that also contributes to the error 

settling in the negative is that sometimes the number of calls is not divisible by the 

setpoint.

Peaks appear in later simulations as the setpoint increases to 0.1% (see figures 4.39- 

4.46). These peaks occur once a call or more has been blocked, thus a great effect on 

the error can be seen. The controller here decreases the unnecessary A/i because the 

setpoint permits that, therefore more of those peaks are shown.

The output which is the A/i is shown in figures (4.47-4.51). The output is shown for 

different setpoints at a sampling of 200 calls. The A/i indicates what the controller 

is doing, thus A/i equal to zero means that no control is being applied. It can be 

seen that the %e and A/i plots work together following the fuzzy rules that are being 

applied. For example in figures (4.8) and (4.47) the delay increases to force the error 

to increase and keeps a steady A/i until the error converges to zero. It takes the 

system some time to react to the A/i (control) that is being applied on the system.
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Figure 4.7; Sampling of 100 calls and Set- 
point=0.01% (For 10,000 calls)

I

Figure 4.8: Sampling of 200 calls and Set- 
point=0.01% (For 10,000 calls)

I

Figure 4.9: Sampling of 250 calls and Set- 
point=0.01% (For 10,000 calls)

Figure 4.10: Sampling of 100 calls and Set- 
point=0.01% (For 14,000 calls)

I

Figure 4.11: Sampling of 200 calls and Set- 
point=0.01% (For 14,000 calls)

I

Figure 4.12: Sampling of 250 calls and Set- 
point=0.01% (For 14,000 calls)

I

Figure 4.13: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.01% (For 
10,000 calls)

I

Figure 4.14: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.01% (For 
14,000 calls)
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Figure 4.15; Sampling of 100 calls and Set- 
point=0.03% (For 10,000 calls)

I

Figure 4.16: Sampling of 200 calls and Set- 
point=0.03% (For 10,000 calls)

I

Figure 4.17: Sampling of 250 calls and Set- 
point=0.03% (For 10,000 calls)

I

Figure 4.18: Sampling of 100 calls and Set- 
point=0.03% (For 14,000 calls)

I

Figure 4.19: Sampling of 200 calls and Set­
point—0.03% (For 14,000 calls)

I

Figure 4.20: Sampling of 250 calls and Set- 
point=0.03% (For 14,000 calls)

I

Figure 4.21: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.03% (For 
10,000 calls)

I

Figure 4.22: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.03% (For 
14,000 calls)
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Figure 4.23: Sampling of 100 calls and Set- 
point=0.05% (For 10,000 calls)

I

Figure 4.24: Sampling of 200 calls and Set- 
point=0.05% (For 10,000 calls)

I

Figure 4.25: Sampling of 250 calls and Set- 
point=0.05% (For 10,000 calls)

I

Figure 4.26: Sampling of 100 calls and Set- 
point=0.05% (For 14,000 calls)

I

Figure 4.27: Sampling of 200 calls and Set- 
point=0.05% (For 14,000 calls)

I

Figure 4.28: Sampling of 250 calls and Set­
point—0.05% (For 14,000 calls)

I

Figure 4.29: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.05% (For 
10,000 calls)

I

Figure 4.30: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.05% (For 
14,000 calls)
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Figure 4.31; Sampling of 100 calls and Set- 
point=0.07% (For 10,000 calls)

I

Figure 4.32: Sampling of 200 calls and Set- 
point=0.07% (For 10,000 calls)

I

Figure 4.33: Sampling of 250 calls and Set- 
point=0.07% (For 10,000 calls)

I

Figure 4.34: Sampling of 100 calls and Set- 
point=0.07% (For 14,000 calls)

I

Figure 4.35: Sampling of 200 calls and Set- 
point=0.07% (For 14,000 calls)

I

Figure 4.36: Sampling of 250 calls and Set- 
point=0.07% (For 14,000 calls)

I

Figure 4.37: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.07% (For 
10,000 calls)

I

Figure 4.38: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.07% (For 
14,000 calls)
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F ig u re  4.39: Sampling of 100 calls and Set- 
point=0.1% (For 10,000 calls)

I

F ig u re  4.40: Sampling of 200 calls and Set- 
point=0.1% (For 10,000 calls)

I

Figure 4.41: Sampling of 250 calls and Set- 
point=0.1% (For 10,000 calls)

I

Figure 4.42: Sampling of 100 calls and Set- 
point=0.1% (For 14,000 calls)

e

Figure 4.43: Sampling of 200 calls and Set- 
point=0.1% (For 14,000 calls)

ë

F ig u re  4.44: Sampling of 250 calls and Set- 
point=0.1% (For 14,000 calls)

I

Figure 4.45: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.1% (For 
10,000 calls)

I

Figure 4.46: Sampling of 200 calls, WITH 
NO CONTROL and Setpoint=0.1% (For 
14,000 calls)
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I

Figure 4.47; The controller output A/i at 
Setpoint=0.01% (For 10,000 calls) and sam­
pling of 200 calls

Ï

Figure 4.48: The controller output A/i at 
Setpoint=0.03% (For 10,000 calls) and sam­
pling of 200 calls

I

Figure 4.49; The controller output A/i at 
Setpoint=0.05% (For 10,000 calls) and sam­
pling of 200 calls

Î

Figure 4.50; The controller output A/i at 
Setpoint=0.07% (For 10,000 calls) and sam­
pling of 200 calls

I

Figure 4.51; The controller output A/i at Setpoint=0.1% (For 10,000 calls) and sampling of 200 
calls
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Chapter 5 

Adaptive Online Admission 
Control

In circuit switched networks, during the duration of a call, a path between the com­

munication nodes has to be established and has to meet the QoS requirements {i.e., 

short delays and slow variances). In circuit switched networks, resources^ have to be 

reserved at each node along the path between the source and destination. However, if 

a resource for the incoming call can not be found the call is blocked. Blocked calls are 

assumed to be lost by the system or in some cases, they are queued until resources 

are available. Performance measures of such networks include blocking probability 

and throughput rate. In an uncontrolled network, a call is always accepted as long as 

there are resources available to support such a call, if resources are unavailable then 

the call is blocked. In order to meet the QoS requirements, call admission control has 

been established, which is the decision to accept or reject a call. The importance of 

admission control is tha t even when there are resources available the acceptance of 

certain calls can have drastic measures on the performance of the network, and also 

on the currently active calls.
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Figure 5.1: Motivating Example

5.1 Motivating Example

In this example we are given a WDM optical network with seven channels on each 

link. Each circuit (see figure (5.1)) is given a certain number of channels tha t it 

can use. The number of channels of each c, is presented by U, therefore in this case 

we have ti, tg, and tg. These values are stored in a vector called the threshold vector 

T^. The goal of this algorithm is to find the optimum threshold vector T,  which is 

represented by In this example we are given the initial vector T  =  [4,5,3] and 

the calculated blocking probability is 4%. In order to reach the required T*, some

iterations will take place. The iterations are done based on the sensitivity of each

circuit to the incoming traffic {i.e., depending on the number of channels each circuit 

needs). In this example, after checking the sensitivity (this will be explained in more 

detail later in the chapter) of each circuit we find that:

•  ti  needs 3 channels instead of 4,

•  t2 needs 4 channels instead of 5,

^Resources in this case refer to available wavelengths, because we are dealing with WDM net­
works.

^The source destination pairs have been predetermined and they are viewed as circuits denoted 
by Cj. This will be explained in more detail in the next section.

^Where T  =  [h,t2 , t 3 ]
^The vector T* is the threshold vector with the minimum blocking probability.
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•  (g needs 4 channels instead of 3.

After the iteration, the new threshold vector is T  =  [3,4,4] with a blocking probability 

of 3%. The iterations repeat in order to find T*. These iterations follow the algorithm 

that will be discussed in more detail later in this chapter. Please note that t i + t 2 < 7  

because each link has only seven channels.

5.2 Adaptive Online Admission Control

(Gokbayrak and Cassandras 2 0 0 2 ) deals with circuit switched networks, in which the 

source destination pairs have been predetermined and they can be viewed as circuits 

denoted by q . A call that uses the route q  will be a call of type i. Generally, circuit 

switching is implemented either by Wave Division Multiple Access (WDMA), Fre­

quency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA). 

In other words, multiplexing is dividing the total capacity into n  logical channels. For 

each channel there exists a transceiver at the node. Therefore, a call of type i must 

reserve a channel/ transceiver for the duration of the call. For simplicity reasons, 

(Gokbayrak and Cassandras 2002) assumes that all calls use the same capacity and 

each call uses one channel for the duration of the call. Therefore, in order for a call 

of type i to be accepted, there has to be one less than Ti calls currently active over 

circuit i, where Ti is the threshold of the calls of type i. The goal of (Gokbayrak 

and Cassandras 2 0 0 2 ) is to calibrate this threshold online as the state of the network 

changes. The advantages of having a Threshold-based call admission control policy 

are:

1. The call admission algorithm can be done using local information at the source.

2. No distributional information is required in order to determine the threshold 

value.

3. This is an adaptive process in the sense that the optimal values of the thresholds 

are automatically adjusted as the operating conditions of the network change.
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The drawback is that at lower network utilization there will be insufficient use of 

resources, since this policy works on the class of complete partitioning policies.

(Gokbayrak and Cassandras 2002) tackles the admission control as follows: it for­

mulates the call admission control problem in order to transform it into a resource 

allocation problem, it then minimizes the weighted network call blocking probability 

by developing a specific methodology for the online optimization of the thresholds, 

which is presented in (Gokbayrak and Cassandras 2001). This algorithm is used to 

determine the optimum value of the threshold vector T, and it transforms the orig­

inal discrete problem into a continuous optimization problem. The online surrogate 

problem® Methodology for stochastic discrete resource allocation problems and the 

adaptive call admission control algorithms will be discussed in detail in the next two 

sections, respectively.

5.3 Online Surrogate Problem Methodology for Sto­
chastic Discrete Resource Allocation Problems

In (Gokbayrak and Cassandras 2001), the authors consider a discrete optimization 

problem, where the decision variables are positive integers. An example of this re­

source allocation problem is found in communication networks, where there is a fixed 

number of channels to optimize some performance metric.

For the problems that are considered in (Gokbayrak and Cassandras 2001), let r  

represent the decision vector. The set of vectors of r  is represented by Aj,. In a typical 

resource allocation setting, ri denotes the number of resources that user i is assigned, 

therefore:
N

Ad =  {r : =  A:} (5.1)
i=l

ITwhere r  =  [ r i ,r 2 , ...,rjv] , k  is the total number of resources and N  is the number of 

users (but in this case it is the number of connections).

Let Ld,{r, w) be the cost incurred over a specific sample path w when the state is r.

® A surrogate problem is the substitution of the original discrete problem into a solvable continuous 
problem. This will be explained in more details in the next sections.
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and let Jd{r) =  E[Ld{r)] be the expected cost of the system operating under r. In 

the future, w will be dropped from Ld{r, w) and, unless otherwise noted, all costs will 

be over the same sample path. Then the discrete optimization problem is to find r* 

which belongs to Ad. Therefore:

Jdir*) — min Jd{r) =  min E[Ld{r)] (5.2)
rSAd reAd

When the system operates in an environment, where calls are coming in a random 

order, the duration is also random and when no closed form expression of E[Ld{r)] 

is available, the problem is further complicated. Generally, this requires simulations 

or direct measurements made on the actual system. Most of the known approaches 

are based on some kind of random research, with the added difficulty of having to 

estimate the cost function at every step.

It can be expected that much faster improvements can be made, if the scheme is 

allowed to relocate multiple resources firom users who have smaller cost sensitivities to 

users with higher cost sensitivities. The questions that (Gokbayrak and Cassandras 

2001) try  to answer are: Is it possible to transform a discrete optimization problem, 

as in equation (5.2) into a surrogate continuous optimization problem, then proceed 

to solve the latter using standard gradient based approaches, and finally transform its 

solution into a solution of the original problem? Moreover, is it possible to design this 

process for online operation? That is, at every iteration step in the solution of the 

surrogate continuous optimization problem, is it possible to immediately transform 

the surrogate continuous state into a feasible discrete state r?

In (Gokbayrak and Cassandras 2001), the authors transform the original discrete 

set Ad into a continuous set over which a surrogate optimization problem is defined 

and solved subsequently. An important feature of the proposed approach is that every 

state r  in the optimization process remains feasible, so that our scheme can be used 

online to adjust the decision vector as the operation conditions change over time. 

Then the key issue is to  show that, when and if an optimal allocation is obtained in 

the continuous state space, the transformed discrete state is in fact r* in equation 

(5.2).
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5.3.1 Basic Approach for Online Control

In the next sections, the following notations will be used; Let indicate the i th  

component in r, r? indicate the j t h  vector in the set Ad, the index n  denotes the 

iteration steps. Since equation (5.2) is a non linear integer programming problem, 

one common method to solve this problem is to relax the integer constraint on all 

Tj so that they can be regarded as continuous (real valued) variables and then apply 

standard optimization techniques. Therefore:

• Ac is the relaxed set of the convex hull® Ad-

• Lc is the cost function over a specific sample path.

The resulting surrogate problem is to find p* tha t minimizes the surrogate expected 

cost function Jc(p*) over the continuous set Ac- Therefore:

Jc{p*) — min Jc{p) = min E[Lc{p)] (5.3)p€Ac p€Ac

Where p € is a real valued state. Assuming an optimal solution p* can be deter­

mined, this state must then be mapped back into a discrete vector by some means,

usually using some form of truncation.

In (Gokbayrak and Cassandras 2001), a different approach is proposed which is 

intended to operate online. A relaxation is still invoked. A formulation of the surro­

gate continuous optimization problem with some state space Ac C  and Ad C  Ac 

is presented. However, at every step n  of the iteration scheme involved in solving the 

problem, both the continuous states and discrete states are simultaneously updated 

through a mapping of the form =  fn{Pn)- This has two advantages:

1. The cost of the original system is continuously adjusted.

2. It allows the user to make use of information typically needed to obtain the cost 

sensitivities from the actual operating system at every step of the process.

®The convex hull of a set of points is the intersection of all convex sets which contain the points.
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The surrogate system is set to be equal to the actual system, i.e.:

po — f'o (b'4)

Therefore, at the nth step of the process, let Hn{rn,Wn) denote an estimate of the

sensitivity of the cost Jc{Pn) with respect to obtained over a sample path Wn of the

actual system operating under allocation r„. Therefore, two sequential operations are 

then performed at the nth  step;

Nl: The continuous state pn is updated through

Pn+l Pn VnHnij'ni'^n) (b-5)

Where Pn+\ G Ac and is a step size parameter.

N2: the newly determined state p„+i of the surrogate system is transformed into an 

actual feasible discrete state of the original system through

»~n+l =  / n + l ( P n + l )  ( 5 .6 )

Where fn+i-  Ac Ad is a. mapping of feasible continuous states to feasible discrete 

states which must be selected appropriately {i.e., it has to satisfy a certain constraint), 

this will be explained later in more detail. It is shown that equation (5.5) generates 

the sequence {pn} and equation (5.6) is an additional operation, which converges to 

r* in equation (5.2).

Note that corresponds to feasible realizable states, based on which one can 

evaluate H n { r , w )  from observable data, (i.e., a sample path of the actual system 

under r„, not the surrogate state p„).

Before addressing the issue of obtaining estimates, Hn{rn,Wn) is necessary for the 

optimization scheme described above to work. There are two other crucial issues that 

form the corner stones of the proposed approach:-

1. fn+i in equation (5.6).

2. Lc{p,w) and its relationship to Ld{r,w).
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5.3.2 Continuous to  D iscrete Transformation

In this section fn+i in equation (5.6) is needed, in order to retrieve the rn+i, which 

is our discrete variable.

Ac is defined as
N

^c  = {p - ^ P i  = K }  (5.7)
i= 0

where p is a positive real number, (Gokbayrak and Cassandras 2 0 0 1 ) begins by spec­

ifying a set Fp of mappings /(p ) as in equation (5.6). It first defines:

7, =  {% I p̂  e  (5.8)

Where Ip is the set of i that corresponds to the elements in the continuous set, which 

are integers. Next, (Gokbayrak and Cassandras 2001) defines the following:

f t i p ) = I ^ (5.9)
Ip] otherwise

f r ( p )  = { (5.10)
[pj otherwise

where \p{\ denotes the ceiling (smallest integer > fi) and [pij denotes the floor 

(largest integer < fi). Therefore:

Fp =  {fi\ fi  : Ac A d ^ i J i i p )  G { /i^ (p ),/r(p )}}  (5.11)

For all f  e  Fp and r  6  Ad, f{r)  = r. The purpose of /  G Fp is to transform 

some continuous state vector p £ Ac into a neighboring discrete state vector r £ Ad 

obtained by seeking \pf\ or [pJ for each component i — I,..., N ,  with this definition 

of continuous to discrete state transformation it can be defined as )^{p) which is the 

set of all feasible neighboring discrete states of p G Ac- Another definition presented 

in (Gokbayrak and Cassandras 2001) is the set of all feasible neighboring states of 

p G Ac is

H p) =  {A'f =  /(P)> for /  G Fp} (5.12)
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A more convenient and explicit characterization of equation (5.12) is by defining a

residual vector p € [0 , 1 )'®̂ of the continuous state p, is given by:

P = P - [ P \  (5.13)

where [pJ is the vector whose components are [pJ, =  [piJ. In the case of equation 

(5.7), we set
N

and r{ =  0, f o r  i E Ip (5.14)nip
i=l

Therefore, F  (p) is an N  dimensional vector component which is either 0 or 1 summing 

up to rUp. It follows that for all f^  6  Fp

f  (P) =  LPJ + ^ (P )  (5.15)

In (Gokbayrak and Cassandras 2001) it states that any p E Ac can be expressed as

a convex combination of points r  E bf(p). (Gokbayrak and Cassandras 2001) asserts 

that every p E Ac belongs to the convex hull of all feasible neighboring state set N(p) 

defined in equation (5.12).

5.3.3 Optim ization Algorithm

Nl: Perturb p„ so that Ipn =  0.

N2: Select /„  such tha t r„ =  fn{pn)-

N3: Operate at to evaluate VLc(pn) using perturbation analysis.

N4: Update the continuous state, pn+i =  [pn -  PnVLc(pn)].

N5: If some stopping condition is not satisfied, then repeat steps for n +  1. Else 

P — Pn+l-

In (Gokbayrak and Cassandras 2001), a method is presented for solving stochastic 

discrete optimization problems, where the decision variables are non negative integers. 

It does this, by first, transforming the discrete problem into a surrogate continuous
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optimization problem, which is solved using gradient based techniques. The solution 

of the original problem is found as an element of the discrete state neighborhood of 

the optimal surrogate state. A key advantage of this solution is that it is performed 

online, thus giving the system an online control nature, based on actual data from 

the system.

5.4 Adaptive Call Admission Control Algorithm
5.4.1 Call Adm ission Control Problem  Formulation

(Gokbayrak and Cassandras 2002) considers an N  node network with fixed routing 

specified by C  circuits. The circuit i is denoted by the vector Q =  [qi, Qz, Qw], 

where C{j =  1 if circuit i passes through node j  and Cij = 0 otherwise. Thresholds are 

the number of channels assigned to each circuit, therefore, the goal is to determine the 

number of transceivers at each node. Let ti{j) be the number of transceivers assigned 

to circuit i at node j .  The capacity constraint is now equal to Yli=iU{j)cij <  n  for 

all j  =  1,..., A. Upon the establishment of a call, the transceivers that are used are 

reserved for the duration of the call. Therefore, a circuit constraint ti(j) =  ti{k) =  Tj, 

for all nodes j , k  which belong to circuit i. A  threshold vector is introduced whose 

elements hold all the circuit constraints i.e., T  — [Ti, ..,Tc].

Let Li{T) represent the cost of circuit i observed along the sample path associated 

with threshold vector T.  Therefore, the resource partitioning problem is handled 

as a discrete optimization problem, where the objective is to determine the vector 

T  to minimize a weighted sum of the expected costs E[Li{T)] over all circuits. In 

(Gokbayrak and Cassandras 2001), Li{T) represents the fraction of blocked type i calls 

over some given time interval and depends only on T{. Therefore, what is required 

is the minimization of a weighted blocking probability over all call types, which is 

represented in (Gokbayrak and Cassandras 2 0 0 2 ) by (P I)

c
(P l)m m ^ ft£ ;[ ii(T < )| (5.16)

Z=1
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This is subject to the resource capacity constraints;

Yli&Dj ^  ^  ^  for all nodes j  =  1, ...,7V;

Tie{0,1 ,...} for all circuits i = 1,..., C

where is the weight associated with type i calls and D j  = {i : Cij = l]i  = 1 ,..., C}

For solving (PI), (Gokbayrak and Cassandras 2 0 0 2 ) uses an online surrogate prob­

lem methodology for stochastic discrete resource allocation problems, which is dis­

cussed in detail later in this chapter. (Gokbayrak; and Cassandras 2002) considers 

the transceivers at each node as discrete resources allocated to the different circuits 

in the network. By relaxing the threshold constraints, it transforms (P I )  into a con­

tinuous surrogate optimization problem (P2). This is then solved online through a 

stochastic approximation type algorithm, which updates the original system as the 

surrogate system is updated. Therefore, a sensitivity estimation is required.

5.4.2 Sensitivity Estim ation

(Gokbayrak and Cassandras 2 0 0 2 ) presents an online sensitivity estimation algorithm 

for the effect of a change in the threshold parameters on the cost criterion, which in 

this case is the weighted sum of all call probabilities over all call types.

W DM  Based Modeling

Time Division Multiple Access (TDMA) is the most common circuit switching tech­

nique used, where multiplexing identifies an n-slot period for each network node, such 

that each call is assigned a slot in the frame; but for our interest this will be applied in 

a WDM optical network where each call will be assigned a channel on a link, therefore 

multiplexing identifies a wavelength channel on each link and for each channel there
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exists a transceiver on each node. Depending on the bandwidth of the call, the size 

of the channel is determined. (Gokbayrak and Cassandras 2 0 0 2 ) assumes uniform 

bandwidth requirement {i.e., each call needs one channel). Once a call is assigned a 

channel, it reserves this channel for the duration of the call.

The channel that is assigned to the call, will be reserved for the duration of this call 

through out the path of the call. In other words, if the call is between nodes 0 and 2 

and it takes the path (0 ,1 ,2 ) and it reserves the channel i at the source node, which 

is 0 , then the channel i has to be reserved at the intermediate nodes, respectively (at 

node 1). This channel assignment procedure results in allocating Ti channels to type 

i calls in each link. The quality of service measure that will be used, is that if a call 

can not be assigned a channel on a link, it will be blocked.

The arrival of various call types is assumed to be randomly distributed. The j t h  

type i call is characterized by the following pair (A*-, ^]), where A)j represents the call 

arrival and ^  represents the call duration.

The system is described in (Gokbayrak and Cassandras 2 0 0 2 ) from the point of 

view of an incoming call of type i to node q. Therefore, at node q, it has channels 

which are assigned to call type i and other channels which are assigned to other call 

types. The channel assigned type i is called a transmission channel, while all those 

remaining are called vacant channels. (Gokbayrak and Cassandras 2 0 0 2 ) represents 

the number of free channels by fi, therefore 0 < fi  < Ti. If /j =  0, the call is blocked. 

The call will be using the assigned channel for and once the call is terminated f i 

is incremented by one.

(Gokbayrak and Cassandras 2 0 0 2 ) uses the blocking probability for each type i call 

as a performance metric. The algorithm observes a sample path of the system and 

lets bi represent the number of type i calls that are blocked. Therefore, if K  type i 

calls are observed, then the estimate call blocking probability is given by {hi{K))/K).  

This is denoted by Pi and is given by

e  =  ^  (5.17)
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Consequently, a change in the parameter Ti, will have a great effect on bi observed on 

the sample path. (Gokbayrak and Cassandras 2002) uses a technique to predict the 

effect of removing or adding a channel from the allocation to type i calls, using only 

data observed on the sample path.

The “M arked/Phantom ” Sensitivity Estimation Algorithm

In order to answer the questions presented in the previous section, (Gokbayrak and 

Cassandras 2002) views the channel i.e., slot allocated for a call as a marked slot, 

and begins to evaluate the number of blocked calls that would have resulted had this 

been a vacant slot instead. This is accomplished based on data directly obtained from 

the sample path that is observed. The second approach considers a vacation slot and 

views it as a phantom slot, in which case the objective is to evaluate the number of 

blocked calls that would have resulted had this been a transmission slot instead.

The observed system is referred to as the nominal system and the system tha t would 

have resulted from marking a slot, is referred to as the Marked or Phantomized system. 

To mark or phantomize a slot is the same as marking or phantomizing a transceiver. 

Let us define the following sample path  quantities;

• bf. The total number of blocked type i calls in the nominal system.

• b^: The total number of blocked type i calls in the marked system.

6f  ; The total number of blocked type i calls in the Phantomized system.

ai{k): The total number of type i call arrivals during the k^^ period {i.e., period) 

of the nominal system.

di{k): Number of type i call completions during the k*  ̂ period of the nominal 

system.

di^{k): Number of type i call completions during the period of the marked 

system.
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•  df{k): Number of type i call completions during the period of the Phan­

tomized system.

• fi{k): Number of transmission slots available to type i calls in the k^^ period of 

the nominal system. Clearly 0 <  fi{k) < Tj.

•  fi^{k): Number of transmission slots available to type i calls in the period 

of the marked system. Clearly 0 <  //"(fc) < 3^ — 1.

•  f t i ^ ) -  Number of transmission slots available to type i calls in the k^^ period 

of the Phantomized system. Clearly 0 <  f f  {k) < T i  + l.

The objective is to evaluate and 6f  using only quantities observed along a sample 

path of the nominal system. The value will be used in evaluating the sensitivity of 

the blocking probability for type i calls.

AbP bP -  bi
K K (5.18)

or

^  ' (5.19)

After analyzing the nominal path, the result is:

+  1) =  [/:(A;) -F d̂ (A:) -  o^(k)]+, /((O) =  T; (5.20)

where [x]'  ̂=  max{0,x).  Therefore, the number of free slots in a period is initially

given by the threshold parameter 3]. The fi{k) is incremented by the number of the

call completions di{k) and decremented by the number of new calls Oi(/c).

Construction of the Marked System  Sample Path:

The equation to determine the free slots of the marked system can be written as 

follows:

/r(fc+ 1) = [fr(k)+ ĉ (k) -  a,(fc)]+,/r(o) = r, - 1 (5.21)
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In equation (5.22), ai{k) is obtained directly from the nominal system. (Gokbayrak 

and Cassandras 2 0 0 2 ) introduces another variable allowing to test if the system is 

cost sensitive or insensitive to removing a slot; u =  min{k  : fi{k)-]-di{k) < a i ( k ) , k  = 

0 ,1,...}. If such a u does not exist, then the system is insensitive. If u does exist then 

/ P  =  fi{k) — 1 for all A; — 0,..., u and d^(k) = di{k) for all A: =  0,..., u.

(Gokbayrak and Cassandras 2 0 0 2 ) defines a call to be a tagged call, when it is 

accepted in the nominal system, but blocked in the marked system. (Gokbayrak and 

Cassandras 2 0 0 2 ) introduces Zi{k) as an additional binary variable, which indicates a 

tagged call at the beginning of the k^^ period, therefore Zj(0 ) =  0. A binary variable 

Zi is set as Zi{u+I)  = 1 , therefore:

/i(% 4-1) == -F 1) == 0 (5.22)

This call is terminated at some period I > u. Therefore, for the duration of this 

tagged call, both the nominal and marked systems, see the same number of blocked 

calls. Thus, it can be seen that the available slots available will be: /P (/)  +  d^{l)  =  

f i { l )  + d i { l )  — 1. Therefore, two cases need to be considered:

•  / i ( 0  +  di{l) < ai(l): In this case, the slot is freed up by the completion of the

tagged call, and will be used by a new tagged call, therefore Zi{l +  1) = 1. The

process will repeat with the following initial condition f i ( l -F1 ) =  fP{l  + 1 ) =  0 .

•  fi{i)+di{l) > ai{l): In this case, the slot freed up by the completion of the tagged 

call is not used by a new one, therefore Zi{l -F 1) =  0. The process will repeat 

with the following initial condition /,(/ +  !) > 0  and /P(7 +  1 ) =  f i { l  +  1) — 1 .

In order to formally define the dynamics of Zi{k), (Gokbayrak and Cassandras 2 0 0 2 ) 

introduces one more binary variable yi{k),  as the indicator of the completion of the 

tagged call of type i within the kth  period. If the tagged call is completed in the kth  

period, then yi{k) = 1. The following balance equation is given.

1 i f  f i { k )  +  di {k)  <  ai {k)

0 i f  fi{k) +  di{k) > ai{k) and yi{k) = 1 (5.23)

Zi{k) otherwise.
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Note that Zi{k) is completely determined from the observable quantities along the 

nominal sample path. There can be at most one tagged call of type i in the marked 

system at any instant, since only one transmission slot is removed in the marked 

system.

Therefore, the final step is the evaluation of the sensitivity of the blocking proba­

bility for type i calls, (A b^ /K ) .  As defined, it is the ratio of the total number of 

tagged calls over the observed sample path to the total number of observed arrivals. 

Let ![.] be the usual indicator function (in which if the conditions inside the function 

are satisfied then it is a binary true which is equal to 1 otherwise false which is equal 

to 0). Thus, it is given by:

F i - lAbf
— =  — 2 2  +  M k )  <  Oi(fc)l X l [ z i ( t )  =  0 o r yi(k) =  1]. (5.24)

K K

In practice, A 6P is simply incremented by 1 with every transition of Zi{k) from (0 to 

1 ). i.e., à tagged call is terminated in that period and another tagged call is accepted. 

Construction of the Phantomized System Sample Path:

The equation for the free slots in the Phantomized system is:

m  +  1) =  m k )  +  € ( k )  -  ai{k)]*, /f(O) =  r ,  +  1 (5.26)

Let u =  m in{k  : fi{k)+di{k) < ai(k),k = 0,1,...}, if u  does not exist, then the system 

does not block any calls of type i. Assuming that u  does*exist, the Phantomized and 

the nominal system will accept every call until the uth period. Thus f f {k)  =  fi{k) -F1 

for all k = 0,. . . ,u  and df (k) =  di{k) for all k = 0,..., u. A call is defined as a phantom 

call, when it is blocked in the nominal system but accepted in the Phantomized 

system. A binary variable is introduced to indicate the presence of a phantom call 

Zi{u -F 1) and is set to Zi{u +  1) =  1.

In the uth  period, the accepted number of calls in both systems is represented by: 

f [{k)  + d^{k) = fi{u) -F di{u) -F 1 calls. Therefore, for the duration of the phantom 

call, both the nominal and Phantomized systems, see the same number of blocked 

calls.
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Therefore, in the Ith period, the nominal system and the Phantomized system will 

have f i ( l )  +  di { l )  and f i ( l )  + d^(l) =  f i { l )  +  di { l )  + 1 available slots, respectively. Two 

cases need to be considered:

•  / i ( 0  +  di( l )  <  ai i l ) :  In this case the slot is freed up by the completion of the 

phantom call, and will be used by a new phantom call, therefore 2 ,(3  4 - 1 ) =  1 . 

The process will repeat with the following initial condition +  =  0 =

• / i(0  +  ^i(0 ^  Oi(Z): In this case, the slot freed up by the completion of the 

tagged call is not used by a new one, therefore, Zi{l 4 -1) =  0. The process will 

repeat with the following initial condition /,( / 4-1) 4-1 =  / f  4-1) > 0 .

In order to formally describe the dynamics of Zi{k), another binary variable is in­

troduced yi{k) as an indicator of termination of a phantom call of type i within the 

kth  period. The following balance equation is given:

1 i f  f i { k )  +  d i (k )  <  ai (k)

Zi(k + 1)=< 0 i f  fi{k) + di{k) > ai{k) and yi(fc) =  1 (5.26)

Zi{k) otherwise.

Note that Zi{k) is completely determined from the observable quantities along the 

nominal sample path. There can be, at most, one phantom call of type i in the

Phantomized system at any instant, since only one transmission slot is added in the

Phantomized system.

Therefore, the final step is the evaluation of the sensitivity of the blocking prob­

ability for type i calls, (A l^ /K) .  As defined, it is the ratio of the total number of 

phantom calls over the observed sample path  to the total number of observed arrivals. 

Thus, it is given by:

Abf ^P 1 ^ ^

-  =  — l[fi{k) + di{k) < ai{k)] x l[zi{k) = 0 or yi{k) =  1]. (5.27)

In practice, is simply incremented by 1 with every transition of Zi{k) firom (0 to 

1 ). i.e., a tagged call is terminated in that period and another tagged call is accepted.
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Optimal Call Admission Threshold Determination

In this section, we return to the original problem, where a threshold vector T, which 

satisfies the capacity constraints at the nodes is sought to minimize a weighted sum 

of blocking probabilities. W ith this in mind, the algorithm presented in the previ­

ous section (Gokbayrak and Cassandras 2001) is applied here. The original discrete 

feasible set is transformed into a continuous feasible set, over which a surrogate op­

timization problem is defined and solved. It has been shown in the previous section, 

that when an optimal threshold vector r* is obtained in the continuous state space, 

it is transformed to the optimal threshold vector T*. In other words, once a solution 

to the surrogate optimization problem is found, it is transformed in order to obtain 

a solution to the original discrete stochastic optimization problem.

First, by relaxing the constraint Ti, which is an integer for i =  1,..., C7. The relaxed 

problem can be formulated as follows:
c

min V '/?i£'[Li(ri)] (5.28)r * ^i=l

Also subject to the resource capacity constraints YlieOj A for nodes j  = 1, . . . ,N,  

T i > 0  for all circuits i = 1, ...,C. In this formulation, Ti is the surrogate variable (real 

valued threshold) for type i calls, f3i is the weight associated with type i calls.

In order to determine the optimal threshold the following steps are taken

1. Evaluate:

f t  =  (5^29)
e S., Aj

where \  is the Poisson arrival rate for circuit i and (3i is the weight associated 

with type i calls.

2. Operate at T„ in order to evaluate the sensitivity estimate Hn where

Abf
‘ K

i f  (Tm+l)i > (Em+l)i
(% ). =  •! “ '’‘i  (5.30)
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3. Evaluate the perturbed variable Tn+i

En+l =  Tn -  T]Hn (5.31)

where 77 is a step size parameter.

4. Evaluate the blocking probability

Zw, A,Pi(T,)
Zf=iA,

Pb = (5.32)

where Pi{Ti) is the expected circuit i call blocking probability with assigned 

threshold.

Before calculating PiiTi), first the circuit loads p, =  (A,/pi) need to be calcu­

lated where pi is the mean of the calls’ holding time which follow an exponential 

distribution, and

Pi(Ti) = (5.33)

Summarizing the Algorithm Steps:

• Let To = To

•  Perturb Tn (if necessary) so that all components are non integer.

• Operate at to calculate the sensitivity of the threshold vector.

• Calculate Tn+i and obtain Tn+i

•  Calculate the blocking probability, if it satisfies a certain condition, then the 

optimum r* =  r„+i, else repeat the steps for n -F 1 .

Thus, it can be seen that the threshold based call admission policies for circuit 

switched networks has been considered and a scheme has been developed for ad­

justing the threshold parameters online, where the goal is to minimize a weighted 

sum of call blocking probabilities. The main advantages of this control scheme lie in

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



its implementational simplicity and the fact that it is completely distributed in na­

ture. It is adaptive in the sense that it can automatically adjust the thresholds as the 

operating conditions change and it does not require any explicity distributional mod­

eling assumptions. The seed of this algorithm is the marked/ phantom slot algorithm, 

developed for online estimation of the sensitivity of the call blocking metric defined 

above with respect to the thresholds. The reason is that this algorithm is based 

on directly observable network data tha t does not require any special distributional 

modeling assumptions.

5.4.3 Simulation Results

In this section, we present the call admission approach and its features by considering 

the following network: The objective is to determine the optimal thresholds T*

C l C2

C4C3

Figure 5.2: Network Topology

(in the call admission policy) so as to minimize the weighted network call blocking 

probability (equation (5.32)). The choice of the value for the step size parameter r} 

is very crucial, and it can only be obtained by trial and error.

In the simulations, we assume n =  20 channels per link. The arrival of the calls 

follow a Poisson distribution with mean A =  0.02 and the holding times follow an 

exponential distribution with mean /i — 0.01. All the call types have the same arrival 

and holding time means. The circuit loads pi = p2 — p3 = P4 = 0.2, and Pi can be
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calculated using equation (5.29). Therfore the corresponding separable optimization 

problem in equation min^^ggN A-Pi(îi)î subject to:

•  Ti +  T 2 < 2 0 ;

•  T i +  T2 +  T3 +  T4 <  20;

• T2 + Tz < 20;

• T3 + T4<20;

All the call types are of equal importance with the mentioned system parameters. To 

illustrate the approach, we performed a single run optimization of the threshold in the 

call admission policy with different constant step size parameters (77). The gradient 

projection method (gradients in this case are directly calculated using equations 5.30 

and 5.32, so that there is no estimation noise) with a constant step size parameter 

rj. Simulations were done using different values for the constant step size parameter

77, with a constant initial value for the threshold T  which is [4, 4, 4, 4] and [3, 4, 2,

4]. These are presented in the form of tables which are composed of the calculated 

threshold vector T  at each sampling period k  (which is taken every 25 calls) and the 

corresponding weighted network probability (Pb). As it can be seen every vector T 

does not exceed the total available number of channels which is 2 0 .

In the simulations choosing any initial threshold vector is straightforward, but choos­

ing a step size parameter 77 is very tricky in the sense that it is different for each 

network and the chosen initial threshold vector. By examining equation (5.31), it can 

be seen that the choice of 77 effects r„+i, if 77 is too small then T^+i will take more 

iterations to reach the desired value, but if 77 is large then Tn+i will change too fast 

thus skipping potential values. Thus the choice of 77 can effect the threshold choice, 

therefore effecting the resulting weighted network probability. The results shown in 

table (5.1-5.4) used different values of 77. For each set of results we get an optimum 

vector T* at which the minimum Pb is achieved. The best T* in terms of the Pb is 

when 77 =  25 at k= l. At A: =  1 at the case of 77= 2 5 , T* — [5,4,6 ,4], It only took one
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iteration to obtain the minimum Pb. It can be seen that the optimum value of rj in 

this case is 25. Consequently, the user has to run the algorithm on different step size 

parameters in order to make sure that the results obtained are optimum.

k .......T'"""" A  ^
0 4,4,4,4 5.45822 X IQ-s
1 4,4,5,4 4.14825 X 10-^
2 4,4,6,4 4.09548 X IQ-o
3 4,4,7,4 4.09371 X 10-b
4 4,4,8,4 4.09366 X 10-*
5 4,4,8,4 4.09366 X 10-*
6 4,4,8,4 4.09366 X 10-*
7 4,4,8,4 4.09366 X 10-*
8 4,4,8,4 4.09366 X 10-b

k ------ -------- n
0 4,4,4,4 5.45822 X 10-*
1 5,4,6,4 2.78551 X 10-*
2 5,3,9,3 5.46397 X 10-4
3 5,2,10,3 4.37183 X 10-%
4 5,2,10,3 4.37183 X 10-%
5 5,2,10,3 4.37183 X 10-%
6 5,2,10,3 4.37183 X 10-%
7 5,2,10,3 4.37183 X 10-*
8 5,2,10,3 4.37183 X 10-%

Table 5.1: At 77 = 10 Table 5.2: At 77 = 25

k T n
0 4,4,4,4 5.45822 X 10-*
1 6,3,8,3 5.45487 X 10-4
2 5,3,9,3 5.46397 X 10-4
3 5,3,9,3 5.46397 X 10-4
4 5,3,9,31 5.46397 X 10-4
5 5,3,9,3 5.46397 X 10-4
6 5,3,9,3 5.46397 X 10-4
7 5,3,9,3 5.46397 X 10-4
8 5,3,9,3 5.46397 X 10-4

k T
0 4,4,4,4 5.45822 X 10-*
1 6,2,9,3 4.37130 X 10-*
2 6,2,9,3 4.37130 X 10-*
3 6,2,9,3 4.37130 X 10-*
4 6,2,9,3 4.37130 X 10-%
5 6,2,9,3 4.37130 X 10-*
6 6,2,9,3 4.37130 X 10-*
7 6,2,9,3 4.37130 X 10-*
8 6,1,10,3 4.193696 X 10-^

Table 5.3: At 77 = 50 Table 5.4: At 77 = 75

77
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Another set of values are presented with an initial T  vector of [3, 4, 2, 4]. The 

results are presented in tables (5.5-5.8 ). Again different values of 77 are simulated 

to see which 77 would give the optimum solution in terms of the weighted blocking 

probability. As it can be seen in table (5.6) at A: =  2 the optimum result for the Pb 

is 2.7551 X 10“® at the threshold value T* [6 , 4, 5, 4]. This is the same Pb achieved 

in the previous results. Note that we have two different vectors with the same result. 

This is because we have Pi = P2 = P3 = Pa, then any combination of the elements in 

the vector would give this Pb (see equations (5.32) and (5.33)).

k Pb
0 3,4,2,4 4.39858 X 1Q-*
1 3,4,3,4 5.73143 X 10-4
2 3,4,3,4 5.73143 X 10-4
3 3)4,4,4 3.13862 X 10-4
4 3,4,5,4 3.00763 X 10-4
5 3,4,6 ,4 3.00235 X 10-4
6 3,4,7,4 3.00217 X 10-4
7 3,3,10,4 5.59497 X 10-4
8 3,3,11,3 8.18777 X 10-4

k T Pb
0 3,4,2,4 4.39858 X 10-%
1 4,4,5,4 4.14825 X 10“®
2 6,4,5,4 2.78551 X 10“%
3 6,3,7,4 2.8659 X 10-4
4 5,3,9,3 5.46397 X 10-4
5 5,2,10,3 4.37183 X 10“*
6 5,2,10,3 4.37183 X 10“*
7 5,2,10,3 4.37183 X 10-*
8 5,2,10,3 4.37183 X 10“%

Table 5.5: At 77 = 10 Table 5.6: At 77 == 25

k Pb
0 3,4,2,4 4.39858 X 10-*
1 5,3,9,3 5.46397 X 10-4
2 7,1,11,1 8.33333 X 10-'̂
3 7,0,11,2 0.254098
4 7,0,11,2 0.254098
5 8 ,0 ,1 1 , 1 0.291667
6 8 ,0 ,1 1 , 1 0.291667
7 9,0,11,0 0.5
8 9,0,11,0 0.5

k Pb
0 3,4,2,4 4.39585 X 10“*
1 5,2,11,2 8.19727 X 10“%
2 5,3,10,2 4.37183 X 10“*
3 6,3,10,1 4.19396 X 10-*
4 9,2,9,0 0.254098
5 10,2,8,0 0.254098
6 1 0 ,2 ,8 , 0 0.254098
7 1 1 ,1 ,8 , 0 0.29167
8 1 1 ,1 ,8 , 0 0.29667

Table 5.7: At 77 = 50 Table 5.8: At 77 =  75

Threshold-based call admission policies have been considered for circuit switched 

networks and an algorithm has been developed for adjusting the threshold parameters 

online, the objective being to minimize a weighted sum of call blocking probabilities. 

In addition to this, the main advantages of this threshold-based admission control 

scheme lie in its implementational simplicity, and the facts that: it is completely
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distributed in nature; it is adaptive in the sense that it can automatically adjust 

the thresholds as the operating conditions change; and it does not need any explicit 

distributional assumptions.

Central to this admission control scheme is the Marked/Phantom channel algorithm 

developed in section 5.2.2 for online estimation of the sensitivity of the call block­

ing metric defined earlier with respect to the thresholds. An advantage that the 

M arked/Phantom Channel algorithm has is that no special distributional modeling 

assumptions are required, because this algorithm is based on directly observable net­

work data. Another advantage is that this approach is not just limited to the call 

blocking probability metric. Similar admission control problems can be formulated 

with more general cost functions or with multiple objectives if sever traffic classes are 

to be explicitly modeled.
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Chapter 6 

The Network Model and 
Simulation

The network model which is used for our simulations is based on routing decisions. 

The simulator is then composed of a Traffic Generator, Shortest Path Routing, Wave­

length Assignment, and Discrete Event Simulation (will be explained in more detail 

later in this chapter). The traffic generator uses the Poisson distribution for call 

arrivals, and exponential distribution for holding times.

6.1 Network Model

The communication between nodes is done of peer-to-peer type. All nodes in the 

network share a global memory module that holds the states of the communication 

links between network nodes. On the other hand, the routing decisions are distrib­

uted. Having a central node computing the shortest path or secondary path for each 

message on each node would cause the network to suffer from a considerable delay. 

Each node plans the path on its own using the shared information in the global mem­

ory module. That way, the frequently updated states in the global memory and the 

distributed routing decisions together would avoid the problem of uncertainty in net­

work states and the processing delays for path planning.

A dvan tages

The advantage of having this global shared memory module is that all nodes would 

have up to date information about the different network state parameters. 

D isadvan tages
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The disadvantage is the deadlock that may happen while having this module being 

accessed from more than one node. Even if the deadlock is prevented, there still may 

be a bottleneck accessing this memory module. However in this case, the number of 

nodes in the optical network is not high enough to cause hazardous events that actu­

ally affects the performance of the network. Another disadvantage is the complexity 

of implementing the connection database.

6.1.1 Dijkstra’s Algorithm

One possible method for selecting a route through a network is to use a least cost 

algorithm, which chooses a route that minimizes the sum of the costs of all the 

communication paths along that route. If one could find the route with the smallest 

sum, one would find the least cost route. An algorithm such as Dijkstra’s (Tanenbaum 

1996) is performed by each node, and the results are stored at the node and sometimes 

shared with other nodes (for pseudo code see appendix C).

6.1.2 Network Simulator Flow Chart

The flow chart of the C-t—I- network simulator is presented in figure (6.1). The pro­

gram first starts by reading the network graph that is entered. The network graph 

consists of the number of nodes and the links connecting each node. A wavelength 

database is built for each link. On each link there exists N number of wavelengths 

(channels). A variable describes the nature of each wavelength on each link (i.e., 

either reserved or free). A traffic generator is used to generate the traffic (M number 

of calls). For each call there exists the following information: 1. The source, and 

destination, 2. The arrival time and duration of the call. Each call is entered in 

the Dijkstra’s algorithm, in order to obtain a path (route) between the source and 

destination. A message is sent from the source to the destination to determine which 

wavelengths are available on the specified route obtained by Dijkstra. Upon receiving 

the message by the destination node, the free wavelength^ is selected and a message

^The wavelength is selected by first fit scheme (please see chapter 2 for definition).
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is sent back to the source, and reserves the specified wavelength on all the finks it 

passes. If there is no channel available, then the call is blocked and registered as a 

blocked call. Before the program moves on to process the next call request, it first 

checks if there are current calls that have ended. If there are, then the channels that 

were reserved by the ended call get released for other calls to use.

ST A R T

'IZ t ..
The network graph : 

is entered.

The wavlengtti database 
for each link is setup for 
N number of available 

wavelengths on each link

Traffic Generator: 
generates M 

numt>er of calls 
(S.D) pairs.

'T f there are calls'" 
that ended

Free up the 
wavelengths used 

by the finished 
calls.

END End active 
calls

YES

Input the source and 
destination for call I In the 

Dijkstra's algorithm to 
obtain a path between the 

source and destination

A m essage is sent from 
source to destination to 
see  what wavelengths 

are available

; Register the call I 
: a s  a  blocked call.

V'-' If there Is a  '  
'">.çhannel available"

A wavelength is 
reserved and chosen 

on the path for the 
duration of call t.

F ig u re  6.1: Network Simulator Flow Chart
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6.2 Random Variables

A random variable can be thought of as the numeric result of operating a non de­

terministic mechanism or experiment to generate a random result. Mathematically, 

a random variable is defined as a measurable function from a probability space to 

some measurable space. This measurable space is the space of possible values of the 

variable, and it is usually taken to be the real numbers. For a continuous random 

variable X ,  the probability that X  lies in the interval [a, b] is given by

P{a < X < h ) =  f  f{x )d x  (6.1)
J  a

Where /(x ) is the probability density function.

6.3 Poisson Distribution for Call Arrivals

Poisson distribution is given by equation 6.2.

% == 0,1,...
p{x) = X!

0, otherwise
(6.2)

Where, a  is the number of occurrences, and p{x) is the probability that x  occurs.

Traffic, in general, may be very busy and has to slow down and wait, or it may be 

very light with little slowing or blockage. Facilities, such as roads, telephone lines, toll 

booths, service agents, and bank tellers, may be either under or over utilized causing 

costly idle time or poor service to customers. The Poisson distribution explains that 

call arrivals will always tend to be clumped together and will not arrive in an even 

manner.

A relationship exists which links the inter-arrival time and the arrival time charac­

teristics. In the case where the inter-arrival time is Exponentially distributed, then 

the arrival time would be Poisson distributed. The actual arrival time is obtained by 

adding the inter-arrival time to the previous arrival time. The inter-arrival time is 

obtained using the following equation:

Yi = \ x l o g ^ — ,i =  0 ,1,2,... (6.3)
0  1 — X
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Where p  ̂ is the mean, i represents the number of calls on hand and x  is the random 

variable and Yi is the ith  inter-arrival time.

6.4 Exponential Distribution for Holding Times

The holding time^ resembles the exponential distribution, because call lengths vary 

they can be short or long, but very seldom that they will be close to the average length 

of all connections’ times experienced in a day. Therefore, by using the exponential 

delay, one can accurately simulate a holding time for a connection. The Exponentially 

distributed random variable is obtained using the following equation:

% == (6.4)

Where, x is the random variable with normal distribution and A is the mean. This is 

then used to generate the holding time.

The random variables are generated using the C-H- program. First, a normal 

distribution variable is generated using the built in commands “srand” and “rand” . 

After getting a random number with a normal distribution, it then uses that to get 

the Poisson distributed and Exponentially distributed random variables.

6.5 Discrete Event Simulation

Discrete event simulation is a construction method for simulation programs. The 

simulated time runs through a sequence of moments when discrete events occur. The 

method is considered to be more efficient, but on the other hand, more difficult to 

handle than time step simulation*. It has been given preference in most modern 

discrete simulation programs.

The discrete event simulation (Banks et al. 1996) divides the process to be emulated 

into a sequence of events. An event is a change of a process state that is modeled by

^The holding time of a call refers to the duration of the call.
^The idea of time step simulation is to divide the simulated time into intervals of the same length 

and to recalculate all model variables at the end of each of these intervals.
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a sudden change of a model variable. Events are organized in a list that contains the 

time of each event in ascending order. In this way, sub-processes that run parallel are 

represented with a sequential structure. The selected time unit can be freely chosen 

without influence on the number of calculations.

Discrete simulation systems today predominantly use the principle of the discrete 

event simulation. It is more universal than time step simulation. In fact, the time 

step simulation can be regarded as a special case of discrete event simulation.

6.6 Implementation Approach

The evaluation of the congestion control and call admission control algorithms is 

based on an event driven simulator consisting of two parts; the first deals with the 

routing and resource reservation, the second deals with the congestion control and 

admission control.

# A call connection request arrives with the following information (Source, Des­

tination, Duration).

•  The source node then calculates the route using the desired path selection al­

gorithm which in this case is the Least Cost Path which is calculated using 

Dijkstra’s algorithm (see chapter 3).

• The source node sends a control message to check the available resources on 

that route.

•  Upon receiving this control message by the destination node, the destination 

node then chooses the available channel. In this case, the wavelength assignment 

was following the first fit criteria (see chapter 2).

•  The message is then sent back down the route, and reserves the channel on all 

the links on this route for the duration of the call.

•  The source begins transmission upon receiving the control message.
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•  If there is no channels available then the call is blocked.

• When the call ends, the channel that was used by the call is freed up to be used 

by other incoming call requests.

• For th e  adm ission  an d  congestion  con tro l, depending on which is being 

applied, the congestion control is implemented at the server level in which the 

server will communicate with the nodes via a dedicated system channel, while 

the admission controller is applied at each node.

This is done for every call request. For statistical data collection whenever a call is 

blocked it is recorded.

In summary, the complete simulator that is built using C + + , has been presented 

in this section. The arrival time and holding time have been calculated using the 

formulas presented. It has been explained in detail how the call is handled from the 

moment it arrives till it ends.
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Chapter 7 

Conclusion and Future Work

The WDM optical network is shown to be the promising technology which can meet 

the demands for more communication bandwidth and network resources. This the­

sis examines the WDM optical network technology from different perspectives. The 

RWA has been presented, and it is shown that the method of choosing the wavelength 

can affect the network performance.

Three path selection algorithms (LDP, HZ_1, and DCCR) are closely examined, in 

which two of them (DCCR and HZ_1), can operate under multiple constraint paths. 

It is shown that the optimum path chosen between the source and destination can 

be obtained, even when constraints are negatively correlated. The trade off between 

the two algorithms, HZ_1 and DCCR, is the computational time depending on which 

weight function is used (linear or non-linear weight function).

The congestion controller presented uses fuzzy logic to decrease the blocking ratio, 

at the expense of adding more delay to the incoming calls. It is shown through a 

series of simulations in chapter 4, tha t the controller decreases the blocking ratio in 

order to meet the desired setpoint. The drawback of this controller is that it does 

not ensure full link utilization, and tha t there is a need for the controller to be recon­

figured every time the network changes. The price to pay when using this controller, 

is the delay it puts on the calls. In some cases, this option is not valid due to the 

sensitivity of the traffic to the slightest delay. Another point to keep in mind is that 

the network is running on 50% traffic load.

The admission controller presented uses threshold-based call admission policies for
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circuit-switched networks. An algorithm is presented for adjusting the threshold pa­

rameters online. The goal of this algorithm is to minimize the weighted sum of call 

blocking probabihties. The main advantage of this algorithm lies in its implementa­

tional simplicity. The optimizing approach used is based on the surrogate problem 

method as described in chapter 5, section 5.1. This approach requires the estimate 

of the gradients with respect to the surrogate control parameters, which is achieved 

by applying the marked/ phantom slot algorithm. The downfall of this algorithm is 

that, it does not ensure the value obtained from the blocking ratio to be the least 

minimum solution. Other minimum solutions might appear, as shown in the graphs 

in chapter 5. The main advantages that this controller achieves are that it ensures 

full link utilization; it is adaptive in the sense that it will give the proper threshold 

vector, even if traffic changes; it ensures that resources are not wasted; and it follows 

a certain fairness policy.

An interesting area for future work would be to modify the congestion controller 

using the fuzzy logic, in order to insure full link utilization and configure it so that 

the network is run on 85 or 90% traffic load. The combination of the admission 

and congestion controllers in one network might lead to interesting results, especially 

in affecting the network blocking probability. An area of vast interest is the full 

link restoration and path restoration techniques in WDM networks, which could be 

explored and implemented with the admission and congestion controllers.
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Chapter 8 

Appendices
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Appendix A

The DCCR Algorithm Pseudo
Code

RoutingDCCR(G(V; E),  s, d,AjAc,D,C,k)

1. /*Each node u has k records, (D, C, kE,7rnd,7ridx,mark), which is stored in N D {u, idx), 

where m dx  points to the predecessor’s record of that path. A min-heap M H  is main­

tained by increasing weight order, each heap item has the form {njid ,w gt,idx)* /

2 .  Set Chest <— o o ,P  <— nil

3. InitializeSingleSource((?, s, N D , M H , k)

4. HeapInsert(M if,(s,0,l)) /* Searching start from s */

5. while MHj^  0

6. {u,wgtu,idxu) HeapEXtractMin(MR)

7. AZ)(M,ida;„).mark=VISITED

8. if It =  d /*found a path p*/

9. C(p)<— J2i£P c(0 /*trace back this new path p  and compute its cost */.

10. P ^ p \ J P

11. if C(p) < Ckat

1 2 .  Chest ̂  C  ijp) , Phest  ̂ P

13. if  It =  d and |P |= k  /*Tried k  shortest paths*/

14. Return phest

15. for each vertex v G Adj[u] /*relaxation*/

16. { W{ v ) , D{ v ) , C{ v ) ) -<r -  ComputeWeight(u, tdxujît)

17. (idXy,Wmax) ^  FindM ax(ND,v) /*Find path to v with max weight*/
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18. if W {v) < Wmax and path idxy is not dominated

19. ND(v,2dz«) (D(n), C(t;), it,zdz«,UNVI8ITED)

20. i-t— HeapSearch(Mif, v, idxC)

21. if % ^  nil /^U pdate heap records*/

22. HeapReplace(MJT, i, {v, W{v) , idxv))

23. else HeapInsert(M P, {v, W (v),idxy))

InitializeSingleSource(G, s, N D , M H , k)

1. for each node u G G

2. for i 1 to A: do

3. ND {u, i).{D, C, W, TTnd, TTidx, mark) <r- (oo, oo, oo, nil, nil, UNVISITED)

4. N D {s ,l) .W  = 0 

ComputeWeight(G, s, N D , M H , k)

1. D{v) 4— ND {u, idx).D  +  d{u, v), C{v) ND {u, idx).C  +  C{u, v)

2. Compute W{v) as defined in Equation 3.1

3. Return {W {v),D {v),C{v))

FindM ax(VD, u)

1. Return {idx, N D {u ,idx).W ) where idx is the index of the path with maximum 

weight and VD('U,zdx).marA:=UNV1SITED

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

H Z  A  Algorithm Pseudo Code

The H Z  A
IN PU T

G{V, £')=graph, P=source node, 

d—destination node,

A=application specified delay bound, .

£)=link delay function,

C'=link cost function.

D JK =Shortest Path Algorithm (e.g. Dijkstra’s algorithm)

OUTPUT

A delay bounded path from source s to destination d.

RoutingHZ(C(V; E), s, d,A,D, C, D JK )

1. Call DJK(C, s, d, D) to compute the least delay path, store it in L D P

2. Call DJK(G, s, d, C) to compute the least cost path, store it in LC P

3. if D {LD P)<  A

4. Return FAILED.

5. if D {LCP)<  A

6. Return LC P . /*  L C P  is a feasible path */

7. Seta  ^  C{LDP) -  C (L C P ),/? ^D (LCP)-D (LD P)

^  D (T C f ) * C(LDP) -  D(LDP) * C(TCP).

compute w{e) a  * d(e) +  /? * c(e) for each e Ç. E.

Call DJK(C, s, d, W ) to compute the least weight path, store it in L W P .

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8. if  W { L W P ) = - i

9. if  D { L W P )  < A

10. R e tu rn  L W P

11. else /*  D { L W P )  > A

12. R e tu rn  L D P

13. if  W { L W P )  <  7

14. if  D ( L W P )  < A

15. L D P  ^  L W P

16. else /*  D { L W P )  >  A */

17. LCP ^  L W P

18. Go to step 7.
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Appendix C

Dijkstra’s algorithm pseudo code

#define M A X J ^ O D E S  1024

#define INFINITY 10000000000

int n, d is t[M A X J^O D E S }{M A X M O D E S }-

void shortest_path(int s, int t, int path[ ])

{struct state {

int predecessor; 

int length;

enum{permanent, tentative}label; 

}state[MAX_NODES]; 

int i, k,Tnin; 

struct state *p;

for (p=&state[0]; p<&state[n]; p+ + ){  

p- >predecessor=-1 ; 

p- > length=INFINIT Y; 

p->label=tentative;

}

state[t].length=0; state[t].label=permanent; 

k — t, 

do {

for (i=0;i<n;i++)

if (dist[A:][z]!=0 && state[z].label==tentative {
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if(state[A;] .length+dist[k] [i] <state[i] .length) { 

state [*] .predecessor=A;; 

state[i] .length=state[fc] .length+dist [k] [i] ;

}
}

A:=0;min=INFINITY; 

for(i=0; i<n; z++)

if(state[z].label==tentative&;&state[z].length<mw){ 

mm=state[i] .length; 

k = i;

}

state [A:]. label=permanent ;

}while (A:!=s) 

i=0; k = S]

do (path[i++]=A:;A:=state[A:].predecessor;}while(A:>0);

}
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