
An Access Control Scheme for

Partially Ordered Set Hierarchy

with Provable Security

Jiang Wu

Department of Computer Science

Lakehead University

March 2005

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1 ^ 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 0-494-11195-X
Our file Notre référence
ISBN: 0-494-11195-X

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

1^1

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Preface

In many multi-user information systems, the users are organized as a hi­

erarchy. Each user is a subordinate, superior and/or coordinate of some

others. In such systems, a user has access to the information if and only

if the information belongs to the user or his/her subordinates. Hierarchical

access control schemes are designed to enforce such access policy. In the past

years, hierarchical access control schemes based on cryptography are inten­

sively researched. Much progress has been made in improving the schemes’

performance and security.

The main contribution of this thesis is a new hierarchical access control

scheme. This is the first one that provides strict security proof under a

comprehensive security model that covers all possible cryptographic attacks

to a hierarchical access control scheme. The scheme is designed and ana­

lyzed based on the modern cryptography approach, i.e., defining the security

model, constructing the scheme based on cryptography primitives, and prov­

ing the security of the scheme by reducing the cryptography primitives to

the scheme. Besides the security property, this scheme also achieves good

performance in consuming small storage space, supporting arbitrary and dy­

namic hierarchial structures. In the thesis, we also introduce the background

in cryptography and review the previous schemes.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Acknowledgm ents

I am most grateful to Dr. Wei for his valuable guidance and help throughout

my study in Lakehead University. I t is a great pleasure to study and work

with him.

Thanks to the faculty of the Department of Computer Science and the

Department of Mathematical Science. As a student and a teaching assistant,

I learned a lot and received a lot of help from them.

Thanks also to David Wagner and Kristian Gjpteen for discussing some

tricky problems I posted on the news groups. Their discussion are instructive,

and made the research more interesting.

Last but not least, I would like to thank my family for understanding and

supporting my career goal and effort.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Contents

1 Introduction 10
1.1 Problem S ta tem ent.. 10

1.2 Contribution of This T h e s is .. 13

1.3 Outline of this th e s is ... 14

2 Cryptography Background 15
2.1 Mathematics Background .. 15

2.2 Complexity of A lg o r ith m s ... 26

2.3 Intractable Computational P ro b le m s ... 27

2.3.1 Discrete Logarithm Prob lem ... 27

2.3.2 The RSA problem .. 29

2.3.3 Decisional Diffie-Hellman Problem...................................... 29

2.4 Cryptographic P rim itives...31

2.4.1 One-way fu n c tio n ... 31

2.4.2 One-way hash fu n c tio n .. 32

2.4.3 Universal one-way hash function fa m ily32

2.4.4 Pseudo-Random function ... 33

2.5 Cryptographic Scheme S e c u r ity .. 35

2.5.1 Cryptanalysis-driven d e s ig n ... 36

2.5.2 Shannon S ecu rity ... 36

2.5.3 Provable S ecu rity ... 38

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CONTENTS

3 R elated Works 41
3.1 Some Direct Access Schemes..42

3.1.1 Akl-Taylor schem e... 42

3.1.2 Harn-Lin schem e.. 44

3.1.3 Huang-Yang Schem e.. 48

3.2 Some Indirect Access Schemes... 51

3.2.1 Sandhu Scheme... 51

3.2.2 Zhong Scheme... 53

3.2.3 Zheng-Hardjono-Pieprzyk Scheme.......................................55

3.3 Summary ... 61

4 Proposed Schem e 62
4.1 Poset Representation... 62

4.2 Auxiliary F u n c tio n .. 62

4.3 Key Management... 63

4.3.1 Key Assignment... 63

4.3.2 Key D e riv a tio n ... 63

4.3.3 Add a c la s s ... 65

4.3.4 Delete a classe...................... 66

4.3.5 Add re la tion .. 66

4.3.6 Delete relation ... 68

4.4 Security A n a ly s is ... 74

4.4.1 Standard Cryptographic Assumptions............................. 74

4.4.2 Security P ro o f... 75

5 Summary 82

5.1 Storage Requirem ent...82

5.2 D yn a m ics ... 83

5.3 S e c u r ity .. 83

5.4 Conclusion... 84

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CONTENTS

References...85

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of Figures

1.1 Example of the structure of a poset h ie ra rc h y 11

3.1 A simple attacking scenario: class 2 and class 4 conspire to

attack class 3 ... 60

4.1 Add a class: class 13 is added.. 68

4.2 Delete a class: class 5 is deleted... 70

4.3 Add a relation: class 2 > class 6 is added....................................... 70

4.4 Delete a relation: class 3 > class 4 is deleted............................... 73

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of Tables

2.1 The powers of x modulo f { x) = x ^ + x + l25

2.2 B it complexity of basic operations in Z „ 26

2.3 Complexity of basic operations in Fpm.. 27

3.1 Key Assignment in Akl-Taylor scheme .. 43

3.2 Key assignment in Harn-Lin scheme.. 47

4.1 Example of key assignment... 64

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of A lgorithm s

1 Experiment E x p ^ g { A) .. 28

2 Experiment Exp^^J^{A) .. 29

3 DDH experiments...30

4 Experiments for pseudo-random function distinguisher 35

5 AKL-Taylor Key assignment.. 42

6 AKL-Taylor Key derivation .. 42

7 Harn-Lin Key assignment ... 45

8 Harn-Lin Key de riva tio n .. 45

9 Huang-Yang Key assignment ... 49

10 Huang-Yang Key d e r iv a tio n ... 50

11 Sandhu key assignment procedure... 51

12 Sandhu key derivation procedure ... 52

13 Zhong key assignment procedure.. 54

14 Zhong key de riva tion ... 55

15 Zheng-Hardjono-Pieprzyk key assignment................................... 57

16 Zheng-Hardjono-Pieprzyk key d e riv a tio n 57

17 Key Assignment.. 65

18 Key D e r iv a tio n .. 66

19 Add a new class.. 67

20 Delete a c la s s ... 69

21 Add a re la tion ... 71

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

LIST OF ALGORITHMS

22 Delete a relation .. 72

23 79
24 D(V,z) ... 80

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 1

Introduction

1.1 P rob lem S ta tem en t

In a multi-user information system, the access permission to certain infor­

mation objects is usually only granted to certain users. To enforce the access

policy, secret values for certain objects is assigned to the users with access

privilege. The secret values may be the password used to authenticate the

users for accessing to the objects, or the cryptographic key for the users to

decrypt the encrypted data to recover the original information. In either

case, the access control to the protected information relies on the secret val­

ues assigned to the users. For simplicity, we call the secret values a key,

although it might be either a cryptographic key or a password.

In many situations, the organization of the users is a hierarchy. In the

hierarchy, each user has his/her subordinates, superiors and/or coordinates.

The access control policy in such an organization usually grants a user the

access privileges of all his/her subordinates. We call such a policy hierarchical

access control policy, and call the scheme that implements such a policy a

hierarchical access control scheme. In the scheme, the group of users with

the same access privileges is called a security class.

10

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 1. INTRODUCTION

A hierarchical system can be represented as a partially ordered set (poset).

In such a hierarchy, all users are allocated into a number of disjoint sets of

security classes (or classes in short,) Q , Cg, - - - ,Cn- A binary relation <

partially orders the set C = {C i, Cg, • ■ • , C^,}. The users in Cj have access

to the information held by users in Q if and only if the relation C, < Cj

held in the poset (C, <). We denote Q < Cj if Q < Cj and C, is not Cj. I f

Ci < Cj, Ci is called a successor of Cj, and Cj is called a predecessor of Q.

I f Ci < Cj and there is no such that Ci < Ck < Cj, then Q is called an

immediate successor of Cj, and Cj is called an immediate predecessor of Q.

A class without any predecessor is called a root class. A class without any

successor is called a leaf class. A class w ith both predecessors and successors

is called an internal class. An example of the structure of a poset hierarchy

is shown in Figure 1.1.

Figure 1.1: Fxample of the structure of a poset hierarchy

A straightforward access control scheme for poset hierarchy is to assign

11

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 1. INTRODUCTION

each class w ith a key, and let a class have the keys of all its successors.

The information belonging to a class is encrypted with the key assigned

to that class, therefore the predecessors have access to the information of

their successors. This is simple but awkward because the classes in higher

hierarchy have to store a large number of keys. In the past two decades,

many schemes based on cryptography have been proposed to ease the key

management for poset hierarchy. Generally, these schemes are aimed to fully

or partly achieve the following goals:

• Support any arbitrary poset. I t is desirable that any arbitrary poset is

supported. Some schemes only support special cases of poset such as a

tree. Such schemes are considered restrictive in application.

• Be secure under attacks. The schemes are supposed to withstand at­

tacks. For example, a user may try to derive the key of a class that is

not his/her successor. The schemes should be secure under all possible

attacks.

• Require small storage space. Any scheme needs a user in a class to store

a certain amount of secret or public parameters. A ll the schemes tried

to reduce the amount of parameters stored.

• Support dynamic poset structures. The structure of a hierarchy may

change. Glasses may be added to or deleted from the hierarchy. In

these cases the users in the classes (not only the ones added and deleted)

need to update the parameters they store. I t is desirable that when

a change takes place, the number of classes involved in updating their

parameters is as small as possible.

Regarding the security of the schemes, it is important to define how to

evaluate whether the schemes are secure. In many of the previous schemes,

a list of attacking scenarios are given. However, we can easily give more

12

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 1. INTRODUCTION

attacking scenarios. Other than elaborating a list of attacks which may still

be incomplete, we prefer to a security definition that can cover any attacks

that are possible to the scheme. We come up with the following security

model:

D e fin itio n 1.1 A hierarchical access control scheme fo r poset hierarchy is

secure i f fo r any group of classes in the poset, i t is infeasible to derive the

key of any class that is not a member of that group, nor a successor of any

member of that group.

This model covers any attacks presented in previous schemes. W ithin this

model, only the legitimate predecessors of a class have access to this class.

A ll other users, no matter how they conspire, are not able to access this class.

1.2 C on tr ib u tion o f T h is T h esis

In the past years a lot of hierarchical access control schemes have been pro­

posed. They made a great progress in improving the performance and se­

curity. However, as we w ill review in details in the next chapter, although

some schemes achieve good performance in supporting arbitrary poset, small

storage and dynamic structures, none of them have thoroughly proved to be

secure under the security model in Definition 1.1.

In this thesis, we propose a new scheme that is superior to the previous

schemes in that it provides both good performance and provable security.

Our scheme supports arbitrary poset, has similar performance in storage

and dynamics achieved by other schemes. The most significant part of our

scheme is its formal security proof under Definition 1.1, which the previous

schemes did not provide.

13

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 1. INTRODUCTION

1.3 O utlin e o f th is th esis

The rests of the thesis are organized as follows. In Chapter 2, we introduce

the cryptographic background, including the definitions, concepts and nota­

tions, which is necessary for us to present and analyze the previous schemes

as well as ours. In Chapter 3 we review the previous schemes, showing the

progress, direction and open problems in this topic. In Chapter 4 we present

our scheme and its security proof. Chapter 5 summarizes the schemes.

14

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 2

Cryptography Background

In this chapter we introduce the cryptographic background based on which

schemes are designed and analyzed. It includes the definitions, notes and

algorithms in mathematics (number theory, abstract algebra and finite field);

basic cryptographic primitives, cryptography scheme design methodologies.

We only include what are necessary for the following chapters. For extensive

contents of the background, please refer to [2], [8] and [15].

2.1 M a th em a tics B ackground

In tegers m od N

Let Z denote the set of integers, Z+ denote the set of positive integers.

I f a, b are integers, not both zero, then their greatest common divisor,

denoted gcd(a,6), is the largest integer d such that d divides a (denoted as

d|u) and d divides b {d\b). I f gcd(a,6) = 1 then we say that a and b are

relatively prime. I f a, N are integers w ith N > 0 then there are unique

integers r, q such that a = Nq + r and 0 < r < N. We call r the remainder

upon division of a by N, and denote it by a mod N. I f a, b are any integers

15

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

and N is a positive integer, we write

a = b mod N

if a mod N = b mod N. We associate to any positive integer N the follow­

ing two sets:

Tjn = {0,1, • • • ,N — 1}

Z*pf = { i e Z ■. 1 < i < N — 1 and gcd(i, N) = 1}

The first set is called the set of integers mod N. Its size is N, and it contains

exactly the integers that are possible values of a mod N as a ranges over Z.

We define the Euler Phi (or totient) function 4>{N) = |Z^| for all N G Z+.

That is, 0 (N) is the size of Z*pj.

Group

Let G be a non-empty set and let ■ denote a binary operation on G. We say

that G is a group if it has the following properties:

1. Closure: For every a, 6 G G it is the case that a • 6 is also in G.

2. Associativity: For every a, 6, c G G it is the case that (a• 6) • c = a-{b-c).

3. Identity: There exists an element 1 G G such that a ■ 1 = 1 • a = a for

all Q G G.

4. Invertibility: For every a G G there exists a unique 6 G G such that

a ■ b = b ■ a = 1 .

The element b in the invertibility condition is referred to as the inverse

of the element a, and is denoted

A group G is abelian (or commutative) if a ■ 5 = 6 • a for all a, 6 G G.

Let N be a positive integer. The operation of addition modulo N takes

input any two integers a, b and returns (a + b) mod N. The operation of

16

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

multiplication modulo N takes input any two integers a, b and returns ab

mod N. Then Zjv is a group under addition modulo N, and is a group

under multiplication modulo N.

In Zat, the identity element is 0 and the inverse of a is —a mod N =

N — a. In Z ^ , the identity element is 1 and the inverse of a is a 6 e Z ^ such

that = 1(mod N).

In any group, we can define an exponentiation operation which associates

to any a G G and any integer i a group element we denote a \ defined as

follows. I f i = 0 then a* is defined to be 1, the identity element of the group.

I f z > 0 then

a* = a g - g .
i

I f i is negative, then we define a* =

W ith these definition in place, we can manipulate exponents in the way

in which we are accustomed with ordinary numbers. Namely, identities such

as the following hold for all a G G and all i , j G Z:

0'+:' = o ' . o:"

= 0'^

a "* =

= (a - i) '

The size of a group G is called its order, denoted |G|. It is the number of

elements in the group. We w ill often make use of the following basic fact. It

says that if any group element is raised to the power the order of the group,

the result is the identity element of the group.

Let G be a group and let m = |G| be its order. Then a™ = 1 for all

CL G G.

This means that computation in the group indices can be done modulo

m:

17

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

Let G be a group and let m = |G| be its order. Then a® = a® ™ for

all a e G and all z e Z.

Exam ple 2.1 Let us work in the group under the operation of multipli­

cation modulo 21. The members of this group are 1, 2, f , 5, 8, 10, 11, 13,

16, 17, 19, 20, so the order of the group is m = 12. Suppose we want to

compute 5®® in this group. Applying the above we have

5̂ ̂ mod 21 = 5̂ ̂ mod 21 = 5̂ mod 21 = 4.

□

I f G is a group, a set S Ç G is called a subgroup if i t is a group in its

own right, under the same operation as that under which G is a group. I f we

already know that G is a group, there is a simple way to test whether S is a

subgroup; it is one if and only if x ■ y~^ G § for all x,y E S. Here y~^ is the

inverse of y in G .

Let G be a group and let § be a subgroup of G. Then the order of S

divides the order of C.

Cyclic groups and generators

Let G be a group, let 1 denote its identity element, and let m = |G| be the

order of G. I f y G G is any member of the group, the order of g is defined to

be the least positive integer n such that y” = 1. We let

< P > = {g ' : % G Z;,} = { / , y \ - - ,

denote the set of group elements generated by y. A fact is that this set is a

subgroup of G. The order of this subgroup is the order of y, thus the order

n of y divides the order m of the group. An element y of the group is called

a generator of G if < y > = G, or, equivalently, if its order is m. I f y is a

18

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

generator of G then for every a G G there is a unique integer i G such that

y® = a. This i is called the discrete logarithm of a to base g, and we denote

it by DLogQ^g(a). Therefore, DLogQ^g{a) is a function that maps G to Z^,

and moreover this function is a bijection. The function of Z ^ to G defined

by % ^ y' is called the discrete exponentiation function, and the discrete

logarithm function is the inverse of the discrete exponentiation function.

Here we give an example. Let y = 11, which is a prime. Then Z^^ =

{1 ,2 ,3,4,5,6,7,8,9,10} has order y — 1 — 10. Let us find the subgroups

generated by group elements 2 and 5. We raise them to the powers i =

0, • • • ,9. We get:

i 0 1 2 3 4 5 6 7 8 9

2® mod 11 1 2 4 8 5 10 9 7 3 6

5® mod 11 1 5 3 4 9 1 5 3 4 9

Looking at which elements appear in the row corresponding to 2 and 5,

respectively, we can determine the subgroups these group elements generate:

(2) = {1 ,2 ,3 ,4,5,6 ,7 ,8 ,9 ,10}

(5) = {1,3,4,5,9}

Since (2) equals to Z{^, the element 2 is a generator. Since a generator exists,

Z*i is cyclic. On the other hand, (5) A so 5 is not a generator of Z*^.

The order of 2 is 10, while the order of 5 is 5. Note that these orders divide

10, the order of the group. The table also enables us to determine the discrete

logarithms to base 2 of the different group elements:

a 1 2 3 4 5 6 7 8 9 10

E/oyz«^,2(a) 0 1 8 2 4 9 7 3 6 5

The discrete exponentiation function is conjectured to be one-way (mean­

ing the discrete logarithm function is hard to compute) for some cyclic groups

19

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

G. Due to this fact we often seek cyclic groups for cryptographic usage. Here

are two example sources of such groups;

• Let y be a prime. Then the group Z* is cyclic.

The operation here is multiplication modulo y, and the size of this

group is (/>(y) = y — 1. This is the most common choice of group in

cryptography.

• Let G be a group and let m = |G| be its order. I f m is a prime number,

then G is cyclic. In other words, any group having a prime number of

elements is cyclic.

Another source of cyclic group is from finite field, which is defined later.

Groups of prim e order

A group of prime order is a group G whose order m = |G| is a prime number.

Such a group is always cyclic. These groups turn out to be quite useful in

cryptography, so let us take a brief look at them and some of their properties.

An element h of a group G is called non-trivial if it is not equal to the

identity element of the group.

Suppose G is a group of order q where g is a prime, and h is any non-trivial

member of G. Then h is a generator of G.

A common way to obtain a group of prime order for cryptographic schemes

is as a subgroup of a group of integers modulo a prime. We pick a prime y

having the property that q = (y ~ l) /2 is also prime. I t turns out that the

subgroup of quadratic residues modulo y then has order q, and hence is a

group of prime order.

Let us now explain what we perceive to be the advantage conferred by

working in a group of prime order. Let G be a cyclic group, and g a generator.

We know that the discrete logarithms to base g range in the set Zm where

20

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

m = |G| is the order of G. This means that arithmetic in these exponents

is modulo m. I f G has prime order, then m is prime. This means that any

non-zero exponent has a multiplicative inverse modulo m. In other words,

in working in the exponents, we can divide. I t is this that turns out to be

useful.

Ring

A ring (M, -f, •) consists of a set R with two binary operations arbitrarily

denoted 4- (addition) and • (multiplication) on M, satisfying the following

axioms.

• (M, -f) is an abelian group w ith an identity denoted 0.

• The operation • is associative. That is, a ■ {b ■ c) = {a ■ b) ■ c) for all

a, 6, c e R

• There is a multiplicative identity denoted 1, w ith 1 ^ 0 , such that

1 ■ a = a ■ 1 = a for all a G R.

• The operation ■ is distributive over +. That is, a-{b+c) = {a-b)-\-{a-c)

and (6 + c) - a = (6 - o) + (c - o) for all a, 6, c G R.

The ring is a commutative ring if a ■ 6 = 6 ■ a for all a, 5 G R.

For example, the set Z „ with addition and multiplication perforrned mod­

ulo u is a commutative ring.

Field

A field is a commutative ring in which all non-zero elements have multiplica­

tive inverses.

For example Z „ is a field (under the usual operations of addition and

multiplication modulo n) if and only if n is a prime number.

21

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

Polynom ial rings

I f M is a commutative ring, then a polynomial in the indeterminate x over

the ring R is an expression of the form

/ (x) = a„x" H + 0 2 + oix + oo

where each Oj € R and n > 0. The element Oj is called the coefficient of Xj

in /(x) . The largest integer m for which a™ ^ 0 is called the degree of /(x) ,

denoted deg /(x) .

Division algorithm for polynomials is defined as follows if g{x),h{x) e

F[x], w ith h(x) A 0, then ordinary polynomial long division of g{x) by h[x)

yields polynomials q{x) and r(x) E F[x] such that g{x) = q{x)h{x) + r (x) ,

where deg r{x) < deg h{x). Moreover, g(x) and r(x) are unique. The

polynomial q{x) is called the quotient, while r(x) is called the remainder.

The remainder of the division is sometimes denoted g{x) mod h{x), and the

quotient is sometimes denoted g{x) div h{x).

I f g{x),h{x) G F[x] then h{x) divides g(x), written h{x)\g{x), if g{x)

mod h{x) = 0.

I f g[x),h{x) G F[x], then g{x) is said to be congruent to h{x) modulo

/(x) if / (x) divides g{x) — h{x). This is denoted by

g{x) = h{x) mod /(x)

Let / (x) be a fixed polynomial in F[x]. The equivalence class of a poly­

nomial g{x) G F[x] is the set of all polynomials in F[x] congruent to g{x)

modulo /(x).

F [x]/(/(x)) denotes the set of (equivalence classes of) polynomials in F[x]

of degree less than n = deg f{x) .

I f R is a commutative ring, the polynomial ring R[x] is the ring formed by

the set of all polynomials in the indeterminate x having coefficients from R.

22

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

The two operations are the standard polynomial addition and multiplication,

w ith coefficient arithmetic performed in the ring R.

Let f (x) G F[x] be a polynomial of degree at least 1. Then / (x) is said to

be irreducible over F if it cannot be written as the product of two polynomials

in F[x], each of positive degree.

I f / (x) is irreducible over F, then F [x]/(/(x)) is a field.

F in ite F ie ld

A finite field is a field F which contains a finite number of elements. The

order of F is the number of elements in F.

Facts about finite field:

• I f F is a finite field, then F contains p"® elements for some prime p and

integer m > 1.

• For every prime power order p”®, there is a unique finite field of order

p™. This field is denoted by Fpm, or sometimes by GF(p"®).

An irreducible polynomial / (x) G Zp[x] of degree m is called a primitive

polynomial i f x is a generator of F*m, the multiplicative group of all the

non-zero elements in Fpm = Z p [x]/(/(x)).

Exam ple 2.2 Example of a finite field F24 of order 16: R can he verified

that the polynomial f {x) = x'̂ 4- x 4- 1 is irreducible over Z 2 . Hence the finite

f ie ld¥ 2 ‘i can be represented as the set of all polynomials over ¥ 2 of degree less

than 4- That is,

F24 = {ugX^ 4“ a2 x' ̂4- QjX 4 - Uo|®i G {0, !} } •

For convenience, the polynomial a^x^ 4- 02 X̂ 4- a\x 4- Oq can be represented by

the vector (usagOiOo) of length 4, and

F24 = {(03020100)|0i G { 0, 1}}.

23

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

□

The following are some examples of field arithmetic.

• Field elements are simply added componentwise; for example,

(1011) + (1001) - (0010).

• To multiply the held elements (1101) and (1001), multiply them as

polynomials and then take the remainder when this product is divided

b y f^ ^ :

(x^ + + 1) - (z^ + 1) = + x^ + x “̂ + 1

= x^+x'^ + x + l mod f{x) .

Hence (1101)•(1001) = (1111)

• The multiplicative identity of Fg4 is (0001).

• The inverse of (1011) is (0101). To verify this, observe that

(x^ + a: + 1) • (x^ + 1) = x^ + x^ + x + 1

= 1 mod /(x),

whence (1011) • (0101) = (0001).

/ (x) is a primitive polynomial, or, equivalently, the held element x = (0010)

is a generator of Fg4 . This may be checked by verifying that all the non-zero

elements in Fg4 can be obtained as a powers of x. The computations are

summarized in Table 2.1.

24

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Table 2.1: The powers of x modulo /(x) = x"̂ + x + 1.

i x' mod x"^ + X + 1 vector notation

0 1 (0001)
1 X (0010)
2 x ^ (0100)

3 x ^ (1000)
4 X + 1 (0011)

5 (0110)

6 x^ + x% (1100)

7 X ^ + X + 1 (1011)

8 x ^ + 1 (0101)

9 x^ + x (1010)

10 X ^ + X + 1 (0111)

11 x^ + x^ + x (1110)
12 X® + X ^ + X + 1 (1111)

13 x ^ + x ^ + 1 (1101)

14 x ^ + 1 (1001)

25

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Table 2.2; B it complexity of basic operations in Z„.

Operation B it Cornplexity

Modular Addition (a + b) mod n

Modular subtraction (a — b) mod n

Modular multiplication (a • b) mod n

Modular inversion a~^ mod n

Modular exponentiation mod n ,k < n

O(logTt)
O(logm)
()(logf n;)
0(log^ 7l)
0(log^ n)

2.2 C o m p lex ity o f A lgorith m s

The numbers arising in cryptographic algorithms are large, having magni­

tudes like 2^12 or The arithmetic operations on these numbers are the

main cost of the algorithm, and the costs grow as the numbers get bigger.

The numbers are provided to the algorithm in binary, and the size of

the input number is thus the number of bits in its binary representation.

We call this the length, or binary length, of the number, and we measure

the running time of the algorithm as a function of the binary lengths of its

input numbers. In computing the running time, we count the number of b it

operations performed.

Table 2.2 summarizes the b it complexity of basic operations in Z„.

Table 2.3 summarizes the complexity of basic operations in Fpm. In the

table, “operations in Zp” means either an addition, subtraction, multiplica­

tion, inversion, or division in Zp.

A ll these operations can be finished within polynomial (in the number of

the bits of the inputs) steps.

26

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Table 2.3: Complexity of basic operations in Fp

Operation Number of operations in Zp

Addition

Substraction

Multiplication

Inversion

Exponentiation

()(m)
0(m)

0{m?)

2.3 In tractab le C om p u ta tion a l P rob lem s

In modern cryptography, the security of the cryptographic schemes relies

on the intractability of the computational problems. These problems are

believed to be intractable, although no proof is known. We present some of

them that are used in the schemes we w ill review and present below. We

take the notations mainly from [2]. For an introduction to the problems in

more plain English, please refer to [15].

Note all the operations in the following problems are modular operations

on corresponding groups. For simplicity we omit the modular expression.

For example, we write a + b instead oî a + b mod N i f we have indicated

that the operation is on the group Zjv-

2.3.1 Discrete Logarithm Problem

As we have seen, on the cyclic group the discrete exponentiation function

can be computed by a polynomial algorithm. Its inversion, the Discrete

Logarithm Problem (DLP) is defined as the following: given a finite cyclic

group G of order n, a generator of G, and an element /3 G G, find the

integer x G [l,n], such that = j3. The DLP is believed to be hard. Next

27

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

we give a quantitative description about the hardness.

Let A be an probabilistic polynomial algorithm that inverts the exponen­

tiation function. Let x X denotes the operation of selecting an element

X uniformly from some set X at random. We consider the experiment in

Experiment 1.

X

x ' ^ ^ (%)

if g^' = X then
return 1

else
return 0

end if
Experim ent 1: Experiment ExpQg(A)

In this experiment, we anticipated there is some probability that the

return value is 1 , i.e., A has some probability that output an x' such that
gx' _ gx df-advantage of A is defined as

The dehnition above measures how good an algorithm is at solving the

discrete logarithm problem.

The discrete logarithm problem is believed to be intractable. Formally

speaking, let I be the bit-length of the order of the group G, for any polyno­

mial time (in I) algorithm A and any polynomial P{-), for sufficiently large

Adug,,(.A) = Pr[Expg,,(,A) = 1] <

28

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

2.3.2 The R S A problem

The RSA problem is defined as follows: given a positive integer n that is a

product of two distinct odd primes p and q, a positive integer e such that

gcd{e, 4>{n)) = gcd(e, {p — l)(g — 1)) = 1 , and an integer c, find an integer

m G Zn such that r r f — c.

Let A be a probabilistic polynomial time algorithm that solves the RSA

problem. Let G = Z„. We consider the experiment in Experiment 2.

x ' ^ A (X)

if {x'Y = X then
return 1

else
return 0

end if

Experim ent 2: Experiment Exp^^Y^{A)

The RSA-advantage of A is defined as

= P r[Expg^^(A) = 1]

Like the discrete logarithm problem, the RSA problem is believed to be

intractable: let I be the bit-length of the order of the group G, for any A

and any polynomial P(-), for sufficiently large /,

A d vg P iA) = P r lE x p iJ A) = 1] < p | iy

2.3.3 Decisional D iffie-H ellm an Problem

The DDK problem is to distinguish the two distributions {g, and

{g, g^,g^,g^), where g is the generator of a finite cyclic group G of order m; x,

29

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

y, z are random variables uniformly distributed on In another word,

given DDH problem is to distinguish g^ ̂ from a random variable

uniformly distributed on G.

The formalization considers a “two worlds” setting. The adversary gets

input X, Y, Z. In either world, X, Y are random group elements, but the

manner in which Z is chosen depends on the world. In World 1 ,2 =

where x = DLogQ^g{X) and y = DLogQ^g{Y). In World 0, Z is chosen at

random from the group, independently o(X ,Y . The adversary must decide

in which world it is.

Let G be a cyclic group of order m, let A be a distinguisher, an proba­

bilistic polynomial algorithm that returns one bit, 0 or 1 , depending on which

world A thinks it is in. We consider the experiments in Experiment 3;

Experiment Exp^^^ ^(A) Experiment Exp^^ °(A)

z xg

% 4 -g ^ ;y ^ g l / ; 2 4 - g ^

return A {X , Y, Z) return A{X, Y, Z)

E xperim en t 3: DDH experiments

The ddh-advantage of A is defined as

Advi^^ iA) = \ P lE x p ÿ p \ A) \ - P [E x p i f p \ A)] \

The definition above measures how good A can distinguish the two world.

The DDH problem is believed to be intractable on some cyclic group, i.e.,

let I be the bit-length of the order of such a group G, for any A and any

polynomial P(-), for sufficiently large /,

A i v t i i A) < Y f y

30

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

Note DDH is not intractable in every cyclic group. Most groups in which

DDH is believed to be intractable have prime order. In [3] a list of such

groups are given. Here we just present one that w ill be used in our scheme:

Let p = 2g + 1 where both p and q are prime. Let Qp be the subgroup

of order q of Z*. Qp is a cyclic group of prime order on which DDH is

intractable.

2.4 C ryp tograp h ic P rim itiv es

2,4.1 One-way function

A one-way function is a function which is easy to compute but hard to invert.

Here we give our formal definition.

D efinition 2.3 Let m ,n be polynomials. Let I be an integer parameter, V =
U;{0, a n d 7Z = the function f \ V ^ TZ is a one-way

function i f the two conditions hold:

1. easy to compute. On input x e { 0 , / (x) can be computed in

polynom ial tim e (in I), and

2. hard to invert. For any probabilistic polynom ial-tim e (in I) algorithm

A , any polynom ial P {-), and a ll suffic iently large I, on input x G

(0,

A [A (/((x)) = x] < ^

where f i denotes the restriction o f f on {0,1}"^®.

For example, on the cyclic group G, the exponentiation function is one-way

because it is easy to compute, but hard to invert. Its inversion DLP is

intractable.

31

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

2.4.2 One-way hash function

One-way hash function h : V 7Z,V = {0,1}™® (7Z = {0,1}^®, >

n (l) , m (-) , n(-) are polynomials) is an one-way function with pre-image resis­

tance and 2nd pre-image resistance properties;

1 . pre-image resistance; given x G D, it is infeasible to find x' such that

x' 7 ̂X and h (x ') — h(x).

2. 2 nd pre-image resistance: it is infeasible to find a pair of x f x' such

that h (x ') = h{x).

2.4.3 Universal one-way hash function fam ily

Universal one-way hash function families are first proposed in [13]. Then [17]

extended the work. A generalization of the universal one-way hash function

family is proposed in [23] (called sibling intractable function family SIFF),

which is used to solve the hierarchical access control problem. Here we give

the definition and construction of the universal one-way hash function family.

Definition 2.4 Let m, n he polynomials. Let I be an integer parameter, V =
1J;{0,1 }™® and TZ = |J ;{0 ,1}"®, the functions { f \ f : V -a JZ] is a fam ily o f

universal one-way hash functions i f fo r a ll probabilistic polynom ial algorithm

A the fo llow ing holds fo r sufficiently large I:

1. On input x G { 0 ,1 } ™ ® , Pr[A{f,x) = x ', / (x) = / (x ') ,x ' A x] <

where the probability is taken over a ll f G {/;} and the random choices

of A.

2. f i is computable in polynom ial tim e (i n i) .

3. f i is accessible: there exists an algorithm G such that Q on input I

generates un ifo rm ly at random a description o f f G f i.

(f i denotes the restriction o f f on {0,1}™®.}

32

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

Exam ple 2.5 A n example o f universal one-way hash function is constructed

below.

1. On the fin ite fie ld Fgi, { //} = {fa,b\fo.,b{^) = chop{ax + h),a,h G ¥ 2 1 }

where a ll computation are in F̂ ; and chop: {0,1}' 1—> {0,1}'^^ chops

the last bit.

2. Let g be an one-way perm utation. Define H i = {h = f o g \ f G {/;}}•

Then [j f H i) is a universal one-way hash function . □

The universal one-way hash function has the following Collision Accessibility

property: Given x f x' G {0,1}™®, it is easy to find h G hi such that

h{x) = h{x'). Note that by the definition of the universal one-way hash

function family, given the x and h, it is intractable to find the x' f x such

that h{x') = h{x).

2.4.4 Pseudo-Random function

The pseudo-random function family was proposed by Goldreich, Goldwasser

and Micali in [9]. In such a family, each function is specified by a short,

random key, and can be easily computed given the key. But without the key,

given an input, the output of the function looks like a random number. Next

we give a formal description.

A function family is a map 2F : K, x D ^ TZ. Here K, is the set of keys of

T and V is the domain of H and TZ is the range of P. The set of keys and

the range are finite, and all of the sets are nonempty. The two-input function

P takes a key K and an input X to return a point Y we denote by P {K , X).

For any key R G AC we define the map Fk ■ V TZ hy F k {X) = P {K ,Y) .

We call the function E^ an instance of function family P. Thus P specifies

a collection of maps, one for each key.

33

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

Let F u n c {V , TZ) denote the family of all functions of V to TZ. Suppose

D = {0 ,1 }', TZ = {0 ,1}^, then the size of the key space of Func{V ,TZ) is

2^^'. There is a key for every function of Lbits to L bits, and this is the

number of such functions.

A random function g : V TZ is an instance uniformly picked from

FuncÇD, TZ) at random, and put in a black-box. This means that one can

give any value X , and get back g {X) . But one cannot get the description of

the instance g. The dynamic view of a random function can be thought of

as implemented by the following computer program. The program maintains

the function in the form of a table T where T [X] holds the value of the

function at X . Initially, the table is empty. The program processes an input

X e V as follows:

if T[X] is not defined then
y

end if
return T[x]

The answer on any point is random and independent of the answers on other

points.

A pseudo-random function is a family of functions, which is a subset of

the random function family F unc{V ,T Z), with the property that the input-

output behavior of a random instance of this family is “computationally

indistinguishable” from that of a random function.

We fix a family of functions P : K- x V TZ, and assume a two-world

setting:

World 0: The function g is drawn at random from Func{V ,TZ).

World 1: The function g is drawn at random from P . Note W is a subset

of F u nc{V , TZ).

Let A be an algorithm that takes an oracle from a function g : V ^ TZ,

to return a bit, 0 or 1 , to indicate which family of function the adversary

34

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2 CRYPTOGRAPHY BACKGROHND

thinks the g is from. We consider the experiments in Experiment 4.

Experiment ^(A) Experiment ExpTf^ °(A)

g4^Pï:MC(P,%)

A queries g A queries g

A outputs 6 A outputs b

return b return b

E xperim en t 4: Experiments for pseudo-random function distinguisher

The prf-advantage of A is defined as

Adup-^(A) = |P [E xp^^-°(A) = 1] - P [E x p ^ ^ - \A) = 1]|

The definition above measures how good A can distinguish the two world.

I f for any polynomial time algorithm A, its pr/-advantage is negligible,

then the function family W ; / C x P - ^ R i s a pseudo-random function family.

The block ciphers such as DES and AES, are modeled as pseudo-random

functions (or permutations). That is, let I be the block size, for any poly­

nomial time algorithm A, any polynomial P, for sufficiently large I, there

is
Adv^gA) <

The DDH problem we introduced above is also believed to be a pseudo­

random function family.

2.5 C ryp tograp h ic S ch em e S ecu rity

In this section, we introduce the cryptographic protocol design approaches.

After reviewing the Cryptanalysis-driven design. Shannon Security, we will

focus on provable security which is used in our design. For more details,

please refer to [2], [8].

35

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

2.5.1 Cryptanalysis-driven design

Traditionally, cryptographic protocols have been designed by focusing on

concrete attacks and how to defeat them. The approach works like this;

1. A cryptographic goal is recognized.

2 . A solution is offered.

3. One searches for an attack on the proposed solution.

4. When one feasible attack is found, go back to Step 2 and try to come

up with a better solution. The process then continues.

Step 3 is called cryptanalysis. In the classical approach to design cryp­

tographic scheme, cryptanalysis was an essential component of constructing

any new design.

There are some difficulties w ith the approach of cryptanalysis-drive de­

sign. The obvious problem is that one never knows if things are right. The

process should iterate until one feels “confident” that the solution is ade­

quate. But one has to accept that design errors might come to light at any

time.

2.5.2 Shannon Security

A “systematic” approach to cryptography, where proofs and definitions play

a visible role, begins in the work of Claude Shannon[19], which measures

the secrecy of the information with information theory concepts. We briefly

present the idea of Shannon as follows. Let R : {0 ,1 }” —> [0,1] be a probabil­

ity distribution on the set of n-bit plaintexts. That is, assume Alice chooses

a plaintext m to send with probability P[m\. This distribution is known to

everyone, including the adversary. Thus, before the ciphertext c is transmit­

ted, all the adversary knows is that any particular message m has probability

36

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

P[m] of being transmitted. Shannon security requires that, the conditional

probability that after observing the ciphertext c, to the adversary, the prob­

ability that the message is m keeps P[m\. That is f [m|c] = P[m\. I t means

that the adversary does not get any information about the plaintext from its

ciphertext.

An example of such a scheme, one-time pad, is Shannon-secure. The

one-time pad is as follows. Alice and Bob share a random secret key of n

bits, K = kik^ ■■ - kn- Alice want to send Bob a message M , also n bits,

M = 777-17712 • rrin. The ciphertext C is the bit-wise XOR of the plaintext

and key:

C = M K = C1C2

where

Cl = k \ r r i i , Cg = fcg m 2 , • • • ,Cn = kn m ^ .

After receiving the ciphertext. Bob can recover the plaintext w ith the key:

M = C K = 77717772

where

' Tflri

rrii = /Ci ^ Cl, 7772 = /C2 ^ C2, • • • , r77„ = ^ C„.

In the one-time pad encryption, the adversary does not get any information

about M from C.

Shannon-security however has important limitations. To achieve Shannon

security, the key has to be as long as the message. I f an encryption scheme is

to meet Shannon security, the number of key bits must be at least the total

number of plaintext bits we’re going to encrypt.

This fact has some fundamental implications. I f we want to do practical

cryptography, we must be able to use a single short key to encrypt lots of

bits. This means that we w ill not be able to achieve Shannon security. A

different paradigm and a different notion of security have to be taken.

37

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

2.5.3 Provable Security

The modern cryptography introduces a new dimension: the amount of com­

puting power available to an adversary. I t seeks to have security as long as

adversaries do not have “too much” computing time. Schemes are breakable

i f the adversary has infinite computing power, but in practice, the attacks

are infeasible.

For the security of a scheme, we w ill want to be making statements like

this: Assuming the adversary uses no more than t computing cycles, her

probability of breaking the scheme is at most t = 2“ ^°°. Notice we do not

assume how the adversary operates, what algorithm, or technique the adver­

sary uses.

The legitimate parties must be able to efficiently execute the scheme in­

structions. Their effort should be reasonable. But the task for the adversary

must be infeasible.

C ryptographic prim itives

The computational nature of modern cryptography means that one must

find computationally hard problems, and base the cryptography schemes on

them. The basic problems are called cryptographic primitives. They have

some “hardness” or “security” properties, but by themselves they do not solve

any problem of interest. They must be properly used as building blocks to

achieve some useful scheme.

Cryptographic primitives are drawn from two sources: engineered con­

structs and mathematical problems. In the first class fall standard block

ciphers such as the well-known AES algorithm. In the second class falls the

DLP, RSA and DDH problems we have introduced above.

38

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

The provable-security approach

From the cryptographic primitives, we start to transform them into schemes

to solve the practical problems. We w ill view a cryptographer as an engine

for turning the primitives into schemes. That is, we focus on scheme design

under the assumption that good primitives exist.

A poorly designed scheme can be insecure even though the underlying

primitive is good. The fault is not of the underlying primitive, but that

primitive was somehow misused.

In practice, lots of application schemes have been broken, yet the good

primitives, like AES and RSA, have never been convincingly broken. We

would like to build on the strength of such primitives in such a way that

schemes can “inherit” this strength, not lose it. The provable-security paradigm

lets us do that.

The provable-security paradigm is as follows. Take some goal, like achiev­

ing privacy via symmetric encryption. The first step is to make a formal

adversarial model and define what it means for an encryption scheme to be

secure. The definition explains exactly when the adversary is successful.

W ith a definition in hand, a particular scheme, based on some particular

primitive, can be put forward. I t is then analyzed from the point of view

of meeting the definition. The plan is now show security via a reduction.

A reduction shows that the only way to defeat the scheme is to break the

underlying primitive.

A reduction is a proof that if the cryptographic primitive does the job it

is supposed to do, then the scheme we have made does the job that it is sup­

posed to do. Believing this, it is no longer necessary to directly cryptanalyze

the scheme. I f one found a weakness in the scheme, one would have found

the weakness in the underlying primitive. And if we believe the primitive

is secure, then without further cryptanalysis of the scheme, we believe the

scheme is secure too.

39

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

In order to do a reduction one must have a formal notion of what is meant

by the security of the underlying cryptographic primitive: what attacks,

exactly, does it withstand? For example, we might assume that discrete

exponentiation function is a one-way function and can not be inverted.

Here is another way of looking at what reductions do. When a reduction

from the onewayness of discrete exponentiation function to the security of

the scheme, it is actually giving a transformation with the following property.

Suppose the adversary A is able to break the scheme. The transformation

takes A and turns it into another adversary that breaks discrete logarithm

problem. Thus we conclude, as long as we believe no adversary cannot break

DLP, there could be no such adversary A that breaks the scheme. In other

words, the scheme is secure.

The concept of using reductions in cryptography is a beautiful and pow­

erful idea. Schemes designed in this way have superior security guarantees.

Yet we need to notice that in some ways the term “provable security” is

misleading. As the above indicates, what is probably the central step is pro­

viding a model and definition of security. The reduction proves the scheme

is secure under the security model. Whether the scheme is secure in practice

depends on whether the model is defined reasonably.

The scheme we provide in chapter 4 takes the provable-security approach.

40

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 3

Related Works

In this chapter we review a number of previous schemes, trying to show a

trace of efforts, progresses and directions in hierarchical access control. This

is not a comprehensive list of all works, but to the best of our knowledge,

these schemes present distinct ideas in solving the problems, and are typical

among similar schemes.

A ll these schemes consist of two procedures. One is the key assignment. In

this procedure a Central Authority (CA) assigns the secret keys and related

public parameters to classes. The other is the key derivation. I t is a procedure

that a class derives the keys of its successors.

These schemes are categorized into 2 groups. One group is called direct

access schemes because in these schemes, a predecessor can compute the key

of any successor w ithout knowing the parameters of other successors between

them. The other group is called indirect access schemes because in order to

compute the key of a successor, a predecessor has to compute the keys of the

successors between them.

41

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

3.1 S om e D irect A ccess Schem es

This group of schemes can also be called RSA-based schemes because the

intractability of the RSA problem forms the basis of the security of the

schemes.

3.1.1 A kl-Tay lor scheme

Akl-Taylor scheme [1] is the first scheme that addresses the access control in

a poset hierarchy. Let Oi, Cg, - - - , O,, • • • indicate the security classes in the

poset. The key assignment are as follows:

choose 2 large secret prime numbers p and q, and publish N = pq

choose a secret g E Z»

for each class 0% do
assign a distinct prime number pi

P = Ylcjf,CiPj assigned to each class as its public parameter

ki = mod N is assigned to Ci as its secret key

end for
Procedure 5: AKL-Taylor Key assignment

When a class Ci tries to derive the secret key of class Cj < Ci, it runs

the following key derivation algorithm:

kj = k.

Procedure 6: AKL-Taylor Key derivation

The correctness of the key derivation procedure is easy to verify:

= g^'

— hj

42

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

Table 3.1: Key Assignment in Akl-Taylor scheme

Security Class Public Parameter Secret Key
1 P = 1 h
2 P2 = P1P3P6P7P11P12
3 p5 = P1P2
4 Pi = P1P2P3P5P6P7P11P12 P = kY
5 P = P1P2P3P4P6P7P8PIIP12
6 P = PlP2P3P4P5P7P8?9Pl0Pl2 k& = fcf®
7 P = PlP2P3P4P5P6?8P9PlO kj = kY
8 P = P1P2P3P4P5P6P7P9P10P11P12 p = kp
9 P = P1P2P3P4P5P6P7P8P10P11P12 kg = A:f®

10 Po = P1P2P3P4P5P6P7P8P9P11P12 Po = k^°
11 Pll = P1P2P3P4P5P6P7P8P9T10P12 Pi = A:f“
12 P12 = P1P2P3P4P5P6P7P8P9P10P1I pg = kf"

The secret analysis is as follows:

I f Cj > C j , then Pj\Pi, and kj = is computable by Q with secret

key and the public parameters p and Pj.

I f Cj ^ Ci, then Pj \ P , and to compute kj = is to solve the RSA

problem, which is not feasible.

We give an example for the AKL-Taylor scheme. A hierarchy shown

in Figure 1.1 consists of Ci , - - - , Cig. Suppose p i,-- - ,pn are the prime

numbers assigned to the classes respectively. Then secret keys and the public

parameters of the classes are shown in Table 3.1.

In the case Cg > Qo, if Cg is to derive the key of C\q , it can compute

kw = ^^10/-Pa y

43

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

In the case C4 ^ C5 , if C4 tries to derive p , i t w ill have to solve the RSA

problem, which is infeasible:

P = mod N

= m odK

Akl-Taylor scheme is an elegant solution to the access control in a poset

hierarchy. But with this scheme, a large amount of storage for the public

parameters is required. For example, in a system with n classes, a leaf

class (a class without any successor) needs to store the product of n distinct

prime numbers. Moreover, once a security class is added to or deleted from

the system, the public parameters and keys of all the classes except for its

predecessors have to be re-calculated.

Later, in [14], Alackinnon et al. presented an algorithm for prime as­

signment for Akl-Taylor scheme. W ith the improved assignment, the primes

assigned to the classes do not have to be distinct as in the original Akl-Taylor

scheme. This reduces the number of distinct primes in Akl-Taylor scheme,

but the number of primes used in a class’s public parameter is s till the same

as in Akl-Taylor scheme.

3.1.2 H arn -L in scheme

In [10], Earn and Lin proposed an scheme that can be viewed as a “mirror

version” of the Akl-Taylor scheme, which shifts the storage load from the

lower classes to the upper classes. The key assignment procedure is shown

in Procedure 7.

I f a class Ci tries to derive the secret key of class Cj, it runs the key

derivation algorithm in Procedure 8 .

The correctness Harn-Lin key assignment and derivation can be verified

as follows:

44

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

CA choose 2 large secret prime numbers p and q, and publish N = pq

CA choose a public a e [2, n — 1] such that gcd{a, A) = 1

for each class C, do
assign a distinct prime number Cj

compute di — mod (f>{N)

end for
for each class Q do

CA computer R = ric^<Ci R
CA assign R to each class as its public parameter

CA compute ki = mod N

CA assign ki to Q as its secret key

end for
Procedure 7: Harn-Lin Key assignment

Procedure 8: Harn-Lin Key derivation

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

Notice that eAi = 1 mod 4>{N)

= (onc;,<c/k m od^M ^nc,<c,W nc,<c/* mod A

= (anc;,<Cj mod ^

= kj

The security of the Harn-Lin scheme is analyzed as follows:

I f Ci > Cj, R IP , then kj = is computable by C« w ith secret key

and the public parameters p and p .

I f Cj j t Ci, then R { p , and to compute K j = K ^^^ ' is to solve the RSA

problem, which is not feasible. □

Also, we give an example of Harn-Lin scheme. Like the example for the

AKL-Taylor scheme, hierarchy shown in Figure 1.1 consists of C i, • • • , Cig.

Suppose pi, • • • ,p i2 are the prime numbers assigned to the classes respec­

tively. Then secret keys and the public parameters of the classes are listed

in Table 3.2

In the case Cg > Cio, if Cg is to derive the key of Cio , i t can compute

kio = mod A

In the case C 4 ^ C 5 , if C 4 tries to derive R , it w ill have to solve the RSA

problem, which is infeasible:

ks = mod A

= mod A

W ith the Harn-Lin scheme, the higher a class is in the hierarchy, the

larger storage it requires. In a hierarchy w ith n classes, the leaf classes

need to store only 1 prime as its public parameter, but a root class (a class

that is the predecessor of all other classes) needs to store the product of n

46

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

T a b le 3 .2 ; K e y a s s ig n m e n t in H a r n - L i n s c h e m e

S e c u r i t y C la s s P u b l ic P a r a m e t e r S e c r e t K e y

1 P i — 616263646566676869610611612 = o W mod j

2 P 2 — 6264656369610 = o A ' mod jY

3 P 3 — 636466676369610611612 Ala = 0 ^ ^ ' mod A

4 P i = 646369610 Al4 = mod ^(IV) j ^

5 P 5 = 6569610 Alg = mod ÿ (N) j 2Y

6 P q = 65611 Ale = m o d ^ (N) jY

7 P 7 = 67611612 k j --- aO ̂ 'I’P l m o d N

8 P s = 6g k s = aK ̂ mod 4>{N) j \ j

9 P 9 = 69 Aig = mod A

10 P ig = 610 Alio = 0^1^' m o d ^ M yy

11 P l l = 611 A iii m odÿ(W) ;Y

12 P12 = 612 k i 2 = aCY mod 4>{N) jyf

47

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

primes. This is reverse to the Akl-Taylor scheme. Considering there are more

lower classes than upper classes in a practical hierarchy, the Harn-Lin scheme

achieves improvement in storage space consumed by all users. However, in

view of the greatest storage space required for a single user, the Harn-Lin

scheme is the same as the Akl-Taylor scheme.

3.1.3 Huang-Yang Scheme

In [11], Huang and Yang proposed a scheme based on Akl-Taylor scheme

to reduce the number of primes consumed in Akl-Taylor scheme. In Akl-

Taylor scheme, each class is assigned with a distinct prime. In Huang-Yang

scheme, a combination of primes is assigned to a class. For example, it assigns

(2°) — 45 pairs of primes to 45 classes, instead of assigning 10 distinct primes

to 10 classes respectively. By reducing the number of primes, it is hoped that

the storage space for the key materials for a class will be reduced.

The key assignment in Huang-Yang scheme is shown in Procedure 9. In

the procedure, / is a one-way hash function.

I f a class Cj tries to derive the secret key of class C j , it runs the following

key derivation algorithm as shown in Procedure 10.

Although the scheme is carefully designed w ith several attacking possibil­

ity in mind, [2 1] shows that it is insecure against the collusion attack whereby

some security classes conspire to derive the secret keys of other leaf security

classes. Here we show that some leaf security classes in a leaf group can

conspire to derive secrets of other classes in the same leaf group.

Assume the leaf group {Cj_i, Cj_2 , - , Cj_j} w ith secret keys {fcj_i, &j_2, • • ■ ,

fcj t̂}, respectively, has a common ancestor C j . W ithout loss of generality, we

assume that {Q q , Qq, • • • , Q q_ i} collude.

Denote L = km (L jq , Rq, • • • , Rq). We can represent Kj_j as follows. For

48

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

choose 2 large secret prime numbers p and q, and publish N — pq

choose a public /cq G [2, n - 1] such that gcd{ko, n) = 1

for each class Q do
if Ci is not a leaf class then

assign a distinct prime number

compute di = e~ ̂ mod <̂ (7V)

else
assign a distinct set of prime number Zj = • • • , 6 ̂^}

compute z' = • ■ • , where d ij = eC mod 0(iV), j G [1, k]

end if
end for
for each class Q do

if Ci is not a leaf class then
computer Pj, the product of the distinct primes assigned to Cj where

Q < Q
CA assign p to Q as its public parameter

compute ki = ̂ mod N

assign ki to C, as its secret key

else
computer P = f j

assign p to each class as its public parameter
CiCP-Ud.ez'C'j mod 4,{N)

compute ki = k() ̂ ' mod N

assign ki to C, as its secret key

end if

end for
Procedure 9: Huang-Yang Key assignment

49

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

p (mod N if Ci is a leaf class,

[mod N if Q is a leaf class,

Procedure 10: Huang-Yang Key derivation

I e

mod AT = mod TV

where A:'- = kp^^.

By extended Euclidean algorithm, we can find t — 1 integers for I e

[l , t — 1], such that

y i - ^ f { C i , i) v i , i= A
te(i,t-i]

where

A = gcd(-^/(C',,/) 1])
R,i

Then we have

n = n mod # = (K :;y mod Y
1] 1]

I f A|(p, i f l d t p i tb^n Q ,i, Ci,2 , • • • ,, Ci^t-i can conspire to deduce ki t̂ as fol­

lows:

K , ^ = { n g f f

where

i,t
L

■'= Pm -A

The research in [21] shows that the probability of A|(p. is rather

high. For example, in a leaf group of 10 members, each assigned with 2 primes

out of 5 primes. I f the output length of / is 48 bit, then the probability that

a class can be attacked by others is greater that 90%.

50

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.2 Som e In d irect A ccess Schem es

3.2.1 Sandhu Scheme

In [18], Sandhu proposed an access control scheme for tree hierarchy based

on parameterized family of one-way functions constructed from encryption

primitives such as DES. The tree hierarchy is a special case of a poset hier­

archy where each class has at most one immediate predecessor. The key for

a class is generated w ith its identity (ID) and the key of its immediate pre­

decessor through a one-way function. In the scheme, no public parameters

are needed for key derivation except for the ID of the classes.

A well known method to construct a one-way function is to encrypt some

fixed and public known constant c using x as the key, i.e. f {x) = P (c) where

£ is the encryption algorithm of a block cipher. This can be generalized

to obtain a family of one-way functions by replacing the constant c by a

parameter p, that is fp{x) = £x{p)- Now computing the inverse of fp{x)

amounts to computing the key x given that p encrypted as f{x) . So this is a

known plaintext attack which is infeasible for secure cryptosystems. Hence

fp{x) is a one-way function for every p. The collection of functions fp{x) is

called a parameterized family of one-way functions.

The key assignment procedure in Sandhu scheme is shown in Procedure

11.

assign an arbitrary key to the root security class,

for each class Q do
if Cj is an immediate successor of C, then

assign to C, as its key.
end if

end for

Procedure 11: Sandhu key assignment procedure

51

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

fUSLALCnSD WOfUfS

Each class Cj can derive the key of its immediate successor. I f Q < Cj

but Ci is not an immediate successor of Cj, Cj needs to run the derivation

procedure iteratively for each Q that Ci < Ci < Cj and finally derives ki.

The procedure is shown in Procedure 12. When a Cj is to derive the key of

its successor Q , it runs the procedure in Procedure 12.

if Ci is C /s immediate successor then

else
Cj compute all keys in the path from Cj to Q downwards until ki is

obtained

end if
Procedure 12; Sandhu key derivation procedure

Since the family of one-way functions is publicly known and the names of

the security classes are public, a class can easily compute the key kj for all

security classes Cj covered by Cp, However it is computationally infeasible to

compute kj for a security class Cj > C,; since this amounts to the inversion

of one or more one-way functions.

Finally it should be computationally infeasible to compute kj from ki for

Cj incomparable w ith Q . To see what this entails consider the simple case

where C, and Cj are immediate successor of Ck- Then

By the assumed security of the £ it is infeasible to compute kj from ki by

solving the known plaintext problem of the former equation to derive k^ and

then using the latter equation to compute kj. For a strong cryptosystem we

believe it can be safely assumed that there w ill also be no other tractable

method of computing kj from ki in this situation. Moreover even if we know

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

the keys for a large number of siblings it w ill be infeasible to compute the

keys for a sibling outside the known set. That is collusion among the siblings

is infeasible. Similar considerations apply to incomparable classes which are

not siblings.

Compared with the direct access schemes, the required storage space in

Sandhu scheme is reduced tremendously. However, this scheme can only be

implemented for a tree hierarchy. The solution for the general case of an

arbitrary poset was not given.

3.2.2 Zhong Scheme

In [24] Zhong proposed a solution that supports poset while inheriting the

advantages of Sandhu scheme. This scheme is based on an ideal hash function

h : TZxS 7Z where 7Z can be considered as a set of keys, 5 can be regarded

as a set of class IDs. The hash function must be collision-free and modelled

as a random oracle.

The key assignment procedure in Zhong’s scheme is shown in Procedure

13P

When a class Cj > Q needs to derive the ki, it runs the key derivation

procedure as described in Procedure 14.

The security analysis is given as follows.

This scheme prevents classes from illegal derivation of keys. That is, a

class can never derive a key that does not belong to any successor. In general,

consider the class Q . Suppose that Q wants to derive kh, where C/ ^ C /

Therefore, Q has to compute kh from ki. For each common predecessor Cj

of these two security classes, these two secret parameters can be expanded

^In Zhong’s scheme, the key assigned to Q is fci 0 P i where Pi is picked by Q. Here

we simplify the description.

53

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

for each class Q do
if Ci has no predecessor then

CA picks ki eTZ uniformly at random

else if Ci has one immediate processor Cj then
CA picks ü j j e S

ki ̂ h(^kj, cijj' ̂

publish ü j j

else
{comment: Q has more than one immediate predecessors

C ji, • • • , Cjk }

CA picks Qjij, ■ • ■ , djk,i G <S
ki ̂ h{kj\, d jij^

Oj2,i ^ A;j 0 h{kj2,aj2,i)

Ojk,i ^ A:; 0 h{kj2,aj2,i)

publish d ji j , ' ' ' , ^jk,i

publish O j 2j , ■■■ , Ojk,i

end if

end for
Procedure 13: Zhong key assignment procedure

54

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

if Cj is the single immediate predecessor of Q then
ki — hk j , dj i

else if Cj is Q 's immediate predecessor Cj\ then
ki ■< h(^kji,djij^

else if Cj is C /s immediate predecessor Cjp,p > 1 then

ki = Ojpj 0

else
Cj compute all keys in the path from Cj to C, downwards until ki is

obtained

end if
Procedure 14: Zhong key derivation

according to the paths from Cj to them:

ki = h (. .. h{kj,

kh — . ..hi^kj,

However, by the property of random oracle, h{L, a) is independent of h{L, a')

if a / d'. Because Ch < Q , the paths from Cj to C/, must diverge from the

path from Cj to Q at some point. Therefore, kh must be independent of ki.

In other words, Q cannot compute kh from fcj. □

3.2.3 Zheng-H ard jono-P ieprzyk Scheme

In [23] Zheng et al. proposed a solution that supports poset while inheriting

the advantages of Sandhu scheme. What is more important, in this proposal,

the security of the scheme is analyzed based on a comprehensive security

model instead of some ad hoc attacking scenarios. The security definition is

as follows:

Definition 3.1 Let C be the set of classes in a hierarchical organization.

S' C C , 8 (S') denotes the set of classes in S' and all the successors of S'.

55

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

Let P be a polynomial, I an integer. Assume |C| = P{n). A key generation

scheme fo r a hierarchical organization is secure i f for any S' C C, fo r any

class Ci ^ 0(§O, fo r any polynomial Q and fo r all sujficiently large I, the

probability that the classes in S' are able to find by collaboration the key ki

of the class Q whenever Q has no successor, or to simulate C« ’s procedure

fo r generating the key of a successor of Q whenever Q is an internal class

or the root class, is less than .

Pseudorandom function families and sibling intractable function fami­

lies (SIFF) are employed in this scheme. fc-SIFF is a generalization of the

universal one-way hash function family we have introduced. Similar to the

universal one-way hash function, the k-SIFF has the following properties:

1. let s = [log2 (fc)], k-SIFF maps {0 ,1 } ' to {0,1}*“ ®

2. Given distinct Xi,--- ,Xj G { 0 , 1 } / j < k, it is easy to find f e k —

S IF F such that f { x i) = f { x 2) = • ■ ■ = f {x j) .

3. Given distinct Xi, ■ • • ,Xj G { 0 , 1 } / j < k, and the f e k — S IF F such

that / (x i) = /(xa) = • • • = f { x j) , it is infeasible to find a x' such that

= /(Xg) = . . . = /(X j).

We define the notes for the key assignment and derivation procedures.

Denote by 7Dj the identity of the class C, . Assume that every 7D, can

be described by an m{l)-hit string, where m is a polynomial. Let T —

{T i} be a pseudo-random function family, where T) = { f x l fK ■ {0, l } ” *̂h

{0 ,1 } / K G {0 ,1 }" } and each function fK G IFi is specified by an /-b it string

K. Let FI = [J iH i he a. /c-SIFF mapping /-bit to /-bit output strings. Also

assume that k is sufficiently large so that no nodes could have more than k

parents. The key assignment procedure is described in Procedure 15.

When a class Cj > Q needs to derive the F, it runs the key derivation

procedure as described in Procedure 16.

56

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

A random string ko G {0,1}^ is chosen for the root class

for each class Q without a key do
if the class Q has a single immediate predecessor Cj then

ki = îkj{kF>i)
else

{comment; Q has p immediate predecessors C^y, , • • •

a random ki G {0 ,1 }' is chosen for C,

choose from H; a function hi such that

hi{fkj^{IDi)) = hifkj^{IDi) = • • • = hi{fk^^{IDi)) = ki
publish hi

end if
end for

Procedure 15: Zheng-Hardjono-Pieprzyk key assignment

if Cj is the single immediate predecessor of Q then

h = fk j{ ID i)

else if Cj is one of the immediate predecessors of Q then

ki = h i{fk^{ID i))

else
Compute all keys in the path from Cj to Q downwards until ki is ob­

tained

end if
Procedure 16: Zheng-Hardjono-Pieprzyk key derivation

57

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

For the security of the scheme, [23] gives a proof sketch as follows:

Assume S' C C, Cj ^ ©(S'). According to the definition for security, the

following two cases are to be considered:

Case 1 : Q has no successor and S' can directly find the key of C, .

Case 2 : Q has one or more successors and S' can simulate C i ’s procedure for

generating the key kj of some successor Cj of Q.

First discuss Case 1 where C, has no successor. Note that the key ki of

Ci is derived from the key(s) of the predecessor (s) of Cj by the use of the

pseudo-random function family. Therefore, obtaining ki by S' implies that S'

is able to predict the output of the pseudo-random function family, which is

a contradiction.

Now consider Case 2 where Q is an internal class or the root class, and

S' can simulate Q ’s procedure for generating the key kj of some successor

Cj of Ci . Note that Cj may or may not be a member of 0 (5 '). For the key

generation scheme, being able to simulate C j ’s procedure for generating the

key Cj of the successor Cj of Cj implies being able to get either ki when C,

is the single predecessor of Cj , or fk^ (ID j) when Cj has other predecessor

than Cj . Also note that getting ki or fk ^ ilD j) means getting the keys of

all the descendants of Cj besides the key kj of Cj . Thus there are only two

situations to be considered when S' is able to get fcj or fk^{ID j) but fails to

mimic any of the immediate predecessors of Cj . These two situations are:

Situation 1 : Cj is an predecessor of some class(s) in 0(S').

Situation 2 : Cj is not the predecessor of any class in ©(S').

Consider Situation 1 first. Since Q is an predecessor of a class in ©(S'), there

is a path from Cj to the class in ©(S'). Cj can derive the key of the class

in ©(S') by evaluating the pseudo-random function family and (instances of)

58

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

the sibling intractable function family which appear in the path. Therefore,

getting the key fcj of Q or / fc //D j) by S' implies that S' can do at least

one of the following three actions: invert the pseudo-random function family,

find a collision string for (instances of) the sibling intractable function family

(appearing in the path from C, to the class in ©(S'), or invert (instances of)

the sibling intractable function family. The success of any of these actions

w ith a high probability is a contradiction. Comparing to Situation 1, Situ­

ation 2 is easier to analyze. Since Q is not the predecessor of any class in

©(S'), there is pass from a class in ©(S') to Q . Thus getting fcj or / fc / /D j)

by ©(S') implies that ©(S') can predict the output of the pseudo-random

function family. This is also a contradiction.

The construction of fc-SIFF is similar to the construction of universal one­

way hash function we presented in section 2.4.3. An example is as follows.

Let s >2^. On the finite field F 2 m,

= {pa,b|go,b(:c) = cL o p(ao 4 - O iX -I 1- Oo, ' " , « k - i G 7 ^ ^ .}

where all computation are in Egm and the function

c/iop : { 0 , i r { 0 ,

chops the last s bits.

Let / be an one-way permutation. Define Hm = {h = g o f\g E Gm)}-

Then Um(^m) is a k-universal one-way hash function.

[12] and [24] state that there are problems in implementation of Zheng’s

scheme in practice. But from the above example, we think the implementa­

tion is practical.

The security model in the Zheng-Hardjono-Pieprzyk scheme is actually

equivalent to our security model in Definition 1.1. Yet a formal and rigor­

ous proof can not be obtained directly from the above proof sketch. The

argument in the proof is more “statement” than “proof’ . Detailed proof is

59

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

still open there. For example, we consider the following simple scenario in

Figure 3.1. Suppose S' = {C 2 , C4 }, the class they are going to attack is C3.

Figure 3.1: A simple attacking scenario: class 2 and class 4 conspire to attack

class 3

This case falls into Case-2, Situation-1 in the proof sketch. According to

the proof argument, S' has to invert the pseudo-random function family. We

know if Ci itself intends to attack C3 , i t is safe to say that C4 has to invert

the pseudo-random function family. But now with the help of C2 , it is not

obvious that C4 has to invert the pseudo-random function family. What we

need to prove here, is that w ith all the information held by C2 and C4 , to

compute kz is infeasible. The result can not be obtained directly from the

argument in the proof sketch.

60

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 3. RELATED WORKS

3 .3 Sum m ary

In this chapter we reviewed some typical hierarchical access schemes. More

schemes with variance including [5] [6] [7] [16] [22] . In view of the four re­

quirements to the schemes, Zheng-Hardjono-Pieprzyk scheme is a outstand­

ing one. The most significant part in this scheme is that it provides a security

model that generalized all possible attack scenarios natural to the schemes.

Also its performance in storage and dynamics is at least as good as others.

Yet we think its security proof should be more formal and rigorous, thus is

more persuasive and clear to be verified. For a scheme, a proof in the flavor

the provable security, reducing some standard cryptographic primitives to

the scheme, w ith each step firm ly based on clear reasoning, would be more

favorable. In the next parts, we are going to present a new scheme with same

performance and security property as Zheng-Hardjono-Pieprzyk scheme, but

w ith more rigorous formal security proof.

61

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 4

Proposed Scheme

In this chapter, we propose a new hierarchical access control scheme.

4.1 P o se t R ep resen ta tio n

First we define how the poset is represented. For a given hierarchy structure,

its corresponding poset (C, <) can be represented by a Hasse diagram, which

is a graph whose vertices are classes of C and the edges correspond to the <

relation. An edge from Cj G C to C, G C is present if Q < Cj and there is

no Ck G C such that Q < C& and Ck < Cj. I f Q < Cj, then Cj is drawn

higher than C,. Because of that, the direction of the edges is not indicated

in a Hasse diagram. Figure 1.1 shows an example of poset represented as a

Hasse diagram.

4.2 A u x iliary F unction

We introduce a function that w ill be used in our scheme below. Let p = 2 g + l

where p, q are all odd primes. Let G be the subgroup of Z* of order q. We

62

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

define a function / ; G —> [1 , g] as follows;

{p — x; X > q

For any x G Z*, if x G G, then —x ^ G. So the above function is a

bijection. I f x is a random variable uniformly distributed on G, /(x) is

uniformly distributed on [l,g].

4.3 K ey M an agem en t

The key management of the scheme consists of two procedures; the key

assignment and the key derivation.

4.3.1 K e y Assignment

The CA runs Procedure 17 to assign each class Q its public parameters p,,

h ij and a secret key fcj. The function / in the procedure is the auxiliary

function presented above in (4.1).

For example, the classes in Figure 1.1 w ill be assigned with the secret key

and public parameters as shown in Table 4.1.

4.3.2 K e y D erivation

When a class Cj needs to compute the key of one successor Q , it finds a path

from itself to the successor in the Hasse diagram of the hierarchy. Starting

from its immediate successor in the path, the class go through the path, and

computes key of every successor along the path. The procedure of derivation

is shown in Procedure 18.

For example, in Figure 1.1, class 1 is to derive the key of class 10. It finds

the path 1 —̂ 3 10, and does the following computations:

63

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

Table 4.1; Example of key assignment

Node I D secret key public parameters

1 k i -

2 ^ = / (P 2 ') 92

3 g 3

4 A:4 = ^4,2 — 9z f > L4 3 = p4^

5 k $ = f { O s) 95

6 ^6 = / (g 6^) 96
7 97

8 = / (g g *) 98

9 Ag = ^9,4 = gg^, L g ,5 — gg^

10 &10 = h i o , 3 = 9 i o ^ P h i O A = 9 i f p h i o , 5 = 9i t ' ‘

11 k i i = h u , 6 — 9i i i h \ i j = g j f

12 ^12 = / (g i D g l2

64

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

CA chooses a group Z*, where p — 2q + 1, p and q are both large primes.

CA chooses G, the subgroup of Z* of order q

CA traverses the Hasse diagram from the root class with width-first algo­

rithm, and

for each C* do
set ÿi to be a unique generator of G

if Cj does not have any immediate predecessor then
set ki to be a number chosen from [I, q] at random

else if Cj has only one immediate predecessor Cj then

else
{comment: Cj has more than one immediate predecessors}

let X be the set of keys of C j’s immediate predecessors

^ — rixiSA’
/Ci = /(g f)
for all Xi E X do

h. g,
end for

end if
end for

Procedure 17: Key Assignment

/C3 = /(gs ')

kio = /(^io,s)

4.3.3 A dd a class

Let Cfc be a new security class to be added into the hierarchy. The procedure

to add the class is shown in Procedure 19.

65

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

if Cj is the only one immediate predecessor of Q then

else if Cj is one of immediate predecessors of Q then

ki —

else
{comment: Cj is not a immediate predecessor of Q }

compute all keys in the path from Cj to Q downwards until p is obtained

end if
Procedure 18: Key Derivation

Exam ple 4.1 Let class C\z be the new class to be added in the hierarchy,

serving as the immediate predecessor of C i and immediate successor of C i,

as shown in Figure f . l . After the update, key of Ci is set, and the keys and

public parameters of the classes that are successors of Cis, including C i, Cg,

Cg and Cio, are updated.

4.3.4 Delete a classe

Let Ck be the class to be deleted from into the hierarchy. The procedure to

delete the class is shown in Procedure 20.

Exam ple 4.2 Let class Cg be the class to be deleted from the hierarchy, as

shown in Figure f.2. After the update, the keys and the public parameters of

Cg and Cio are changed.

4.3.5 A dd relation

A relationship between Ca and Q added to the hierarchy so that Ca > C& is

added. The procedure to add the relation is shown in Procedure 21.

66

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

CA randomly selects e G / { 1 } for Cj

if Ci does not have any immediate predecessor then

set ki to be a number chosen from [1 , q] at random

else if Ci has only one immediate predecessor Cj then

^ = /(g ^)
else

{comment; Q has more than one immediate predecessors}

let X be the set of keys of C/s immediate predecessors

^ — rixiGA’
= /(g f)

for all Xj G A do

end for

end if
for all Ci that is the successor of Ck do

if Ci has only one immediate predecessor Cj then

= /(g ^)
else

{comment: Q has more than one immediate predecessors}

let X be the set of keys of C/s immediate predecessors

^ = rix
= /(g j

for all Xj G A do
7
" i j — 9i

end for

end if

end for

Ixi&X

Procedure 19: Add a new class

67

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

Figure 4.1: Add a class: class 13 is added.

Exam ple 4.3 Let edge from Cg to Cg is added to the hierarchy, as shown in

Figure f.S). After the update, the keys and the public parameters of Cq, C\i

are changed.

4.3.6 D elete relation

A relationship between Ca and Cb is delete from the hierarchy so that Ca > C&

is deleted. The procedure to delete the relation is shown in Procedure 22.

Exam ple 4.4 Let edge from C3 to C4 is deleted from the hierarchy, as shown

in Figure f-4- After the update, the keys and the public parameters of Ci,

Cg, Cg ond Cio changed.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

Traverse the classes of Cfc’s successors with width-first algorithm, and

for each C, that is Cfc’s successor do
if Ci is an immediate successor of Cfc then

CA assigns a new generator g, to Q

end if
if Ci does not have any immediate predecessor other than Cfc then

set ki to be a number chosen from [1 , q] at random

else if Ci has only one immediate predecessor Cj other than Ck then

^ = /(9 ^)
else

{comment; Q has more than one immediate predecessors other than

Cfc}
let X be the set of keys of C,’s immediate predecessors (not include

Cfc)

^ “ Yixi&X
= /(g f)

for all Xj G A do

K , = s C
end for

end if

end for
Delete Cfc and and the edges connected to Cfc

Procedure 20: Delete a class

69

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

Figure 4.2: Delete a class: class 5 is deleted.

Figure 4.3: Add a relation: class 2 > class 6 is added.

70

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

Add an edge for the new raltion

Traverse the sub-graph consists of the class Q and its successors with

width-first algorithm, and

for each Q traversed do
if Ci has only one immediate predecessor Cj then

= /(g ^)
else

{comment: Q has more than one immediate predecessors}

let X be the set of keys of C /s immediate predecessors

^ = U

= /(g f)
for all Xi E X do

~ 9:
end for

end if
end for

Procedure 21: Add a relation

71

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

the CA assigns Q with a new generator

Traverse the sub-graph consists of the class Cb and its successors with

width-first algorithm, and run the following algorithm for each class:

if Ci has only one immediate predecessor Cj then

= /(9 ^)
else

{comment: Q has more than one immediate predecessors}

let X be the set of keys of Q 's immediate predecessors

— T\.x (̂3X
A:i = /(p f)
for all Xj e A do

h i, = s C
end for

end if
Delete the edge for the relation

Procedure 22: Delete a relation

72

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

11 12

Figure 4.4; Delete a relation: class 3 > class 4 is deleted.

73

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

4 .4 S ecu rity A n a lysis

4.4.1 Standard Cryptographic Assumptions

On the group G used in our scheme, two standard assumptions, the discrete

logarithm (DL) assumption and decisional Diffie-Hellman (DDK) assumption

are believed to hold [3]. Another assumption, named group decisional Difhe-

Hellman (GDDH) assumption is proved to hold on G too [20, 4]. To be

concrete, let g be a generater of G, a,b,c be random variables uniform on

[l,g], A be a set of random variables uniform on [l,g], I be the binary

length of q. Suppose \X\ is polynomially bounded by I. Let (S') indicate

the product of all elements in the set S. For any probabilistic polynomial

time (in Ï) algorithms A, any polynomial Q, for I large enough, the three

assumptions are formally expressed as follows;

DL assumption:

Pr[Aig,g°‘) = a] <
<2(0

DDE assumption:

ln W 9 .9 “ ,9‘ .s “‘) = 1] - P ,W 9 .9 “ ,9‘ ,V) = 111 < o y j

For convenience, we use the notation from [20] to simplify the expres­

sion. We say that the probabilistic distributions {g, g°', g^, g°'̂) and

{g, g°', g^, g^) are polynomially indistinguishable, and denote them as

W, g",

GDDH assumption:

c %) = i] -A [A (g ,p ^ p n (s) |^ c %) = i]| < ^

or denoted as

74

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

4.4.2 Security P roof

The security of our scheme is based on the above three assumptions. In

the following parts, we prove the scheme is secure under Definition 1.1. We

suppose the number of classes in C is polynomially bounded by I (the binary

length of |G|), and all the algorithms considered below are polynomial time

(in I) algorithms.

We choose an arbitrary class Q E C and suppose its secret key is kt- Let

A be the set of predecessors of Q . We need to prove that, even when all the

classes in C — A — { Q } conspire, it is computationally intractable for them

to derive kt.
We group the set C — A — { Q } into three subsets; B the set of classes in

C — A which do not have predecessors in C — A, and which is not Q ; D the

set of classes that are immediate successors of Q; R = C —A — {C t} — B — D.

The followings relations between B, D and R are direct from their definitions;

• B U © U R = C — A — {C t}

• B n D = 0, R n B — 0 and R n D = 0

• the classes in R are successors of the classes in B, or D, or both

An example of the above partition is as follows; in Figure 3.1, suppose class

4 is the one we choose as the class Q , then A = {1 ,2 ,3 },B = {5,6 ,7},© =

{ 8 , 9 , 1 0 } , R = { 1 1 , 1 2 } .

First we consider when all classes in B conspire, what information about

kt they can learn. Suppose the generator assigned to class Ct is %, X is the

set of secret keys of the immediate predecessors of class Q . Let n (‘5) be

the product of all elements in the set S. Let x = then kt = gf- The

public parameters of Q are

75

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The classes ^ € B with generators G [l,n] may share the same pre­

decessors w ith class Q , thus may hold a subset of Ç T } as their

public parameters or secret keys. We assume that

is all the information possibly held by classes in B that is related to kt. So

the public parameters of Ct, plus the information pertaining to kt held by B

is a subset of

We have the following result showing that even all classes in B conspire, with

the above information, they can not distinguish kt from a random number on

[l,q \. For convenient expression, the following theorem and its proof follow

the notation style similar to that in [2 0].

Theorem 4.5 Suppose DDH and GDDH assumptions hold on the group G.

Let c he a random variable uniform on [1 , g], x = P%(T). The two distribu­

tions

VL = (pr, c %}, G G [1,/]̂})

and

K. = c x}, c x j e |i,nl})

are indistinguishable.

P roof. From GDDH assumption we have

c % }) c % })

A polynomial time algorithm can choose z uniformly from [1, g] at random,

and reduce the above GDDH distribution pair to

Vi = c (%')',(onnvvia c x]

76

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CEAPTER 4. PROPOSED SOREME

V L = (ft“ . { f t . C X},g l , {gîY, {(ft')n(®)|S c X })

respectively. It follows that

H ^ p o l y (4 -2)

Let Cl be a random variable uniform on [l,g]. Since zci is independent of z

and c, from DDH, we have

(gt, , g D -M v (po 9^, p ro

A polynomial time (in I) algorithm can choose X that is a set of random

variables uniform on [1 , g], and whose order is polynomially bounded by I,

and reduce the above DDH distribution pair to

VL = (« {.{ft.sP '^ ’ ls C A -}.s r,(ft ') ',{(9 n n '* ’ ls c X })

U t = (f t ' , (f t . C n f t ' , (9 ') » . c i f })

respectively. I t follows that

C C (4.3)

Similarly, by choosing z and c uniformly from [1, g] at random, a polynomial

time (in I) algorithm can reduce the GDDH distribution pair

c % }) c % }) .

to

VL = (9{,{9.,9P '“ ’ |S c A i} . f t '. (f t ')« ,{ (f t ')n ra |s c A-})

K = (ft', (ft,9P ‘^ '|s c x } , g t , L ; r . {(9{)n'''>|S C X }) .

respectively. It follows that

^ p o l y H (4 -4)

77

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

From (4.2), (4.3) and (4.4), We conclude

W '^poly

I.e.,

(9 f.{ f t ,9 P '^ 'iS c A -},9 f , { (9 f)n ra |S C A})

«M y {sY S A-},ft', {Onn'i^’lS c A}) .

By choosing Zj, i G [l,n] uniformly from [l,g] at random, a polynomial

time algorithm can reduce Vb and to

9 l C A},{ft“ ,{ft“-)n(''>is c A, » e [1,4})

ft', { f t ,s P ‘^’ l5 c A, {4",(ft"')n'»i|g Ç A,i e [1,4})

I t follows that

^poly ^bn

This completes our proof. □

Then we consider when the classes in B and D conspire, what information

about kt they can learn. The classes d* G © assigned with generator

i G [1, m] may hold a subset of the following information pertaining to kt'.

The following theorem shows that even all classes in B and © conspire, they

can not derive kf.

Theorem 4.6 I t is intractable fo r any polynomial time (in I) algorithm to

derive gf from

78

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

i.e., fo r any polynomial time (in I) algorithm A, any polynomial Q, i f I is

sufficiently large, then

1
= W)] <

(2 (f) '
Proof. For convenience, let

Step 1. Assume that there exist a polynomial time (in I) algorithm B,

a polynomial Qi and a number L, for I > L

Pr lB(V, g 'J’ P) = f i g f)] > ^ (4.5)

where gd is a generator of G.

Let c be a random variable uniform on [l,g], Q2{1) = 2Q i(l). Suppose I

is large enough. We consider the following two cases

* Case 1: = /(g f)] >

Notice that c is a random variable independent of V. Let z G [l,g], we

define the following algorithm C{gd,

choose a generator of G as g*

choose a set of n distinct generators of G as B

choose a set of random variables uniform on [1 , q] as A

compute V with gt, B and A

return B(P, g^, g^)

A lgorithm 23: C{gd,gl)

The algorithm C is a polynomial time (in I) algorithm. Since z = /(g.

for some c G [1, g] (though we do not know c), we have

Q Ll)

79

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CEAPTEB 4. PROPOSED SCHEME

This contradicts the DL assumption.

Case 2:

From this inequality and (4.5), we have

a i B U . f t . d " ' ') = / (f t ') l - a |B (v ,9 j,9 } '» o = / (4) i
1 1

1

J(9D\ _ ff„c\

>

(?2(Z)

Let z e G, we define the algorithm D(V, z) in Algorithm 24.

(4.6)

choose a generator of G as g&

i f D(V,gd,g^(''^) = / (z) then

return 1

else
return 0

end if
A lgorithm 24: D(V, z)

D is a polynomial time (in I) algorithm. From (4.6), we have

P4D (V ,9 f) = l l - P . p (V , g a = l l

= P , [B (V , f t , f tV W ') = f i g ;)] - P r l B i V , f t , g P V V) = f { g ;)]

1
>

(2 2 (f) '

That means D can distinguish the two distributions:

(P ,gr) (V.Pt).

This contradicts to Theorem 4.5.

80

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 4. PROPOSED SCHEME

Combining Case 1 and Case 2, we conclude that for any polynomial time (in

I) algorithm B, any polynomial Q, for sufficiently large I,

1
Pr B(V,g,,gd = /O f) < (4.7)

Step 2 . Assume there exist a polynomial time (in I) algorithm A , a

polynomial Q and a number L such that for 1 > L,

1
Pr >

(2 (f) '

Let H (V ,gd,gf^'^) = A(V,{g^,gy^^'^|% E [1,/".]}) where zi, -- are
random variables uniform on [1, g], and m is polynomially bounded by I. We

have

Pr B(V,ft.9i'“̂ >) = /{9f)] = P r [A (V , { g ‘i , (g ÿ) ’ '-’ V ' \ i e [\ M) = S i f ,)]
1>

(2 (f)

This contradicts (4.7). Therefore for any polynomial time (in I) algorithm

A, any polynomial Q, for sufficiently large I,

1
Pr

I.e.,

<
(2 (f) '

□This completes our proof.

Finally, we consider when all the classes in B, D, and R conspire, whether

they are able to derive kp. Since all the classes in R are successors of B or

D or both, the information held by R can be derived by a polynomial time

(in I) algorithm from the information held by B and B. Thus if B U D U R

can derive kp, then B U D can derive kp. This contradicts to Theorem (4.6).

Therefore we conclude that the scheme is secure under the security model

defined in Definition (1.1).

81

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 5

Summary

In this chapter, we briefly summarize the schemes we have reviewed and

proposed. We set four criteria to evaluate the schemes. Because all these

schemes except for Sandhu’s scheme [18] support poset structure, we only

compare these schemes in the other three criteria, i.e., storage requirement,

dynamics and security.

5.1 S torage R eq u irem en t

Our scheme is an indirect access scheme, and has similar storage requirement

with other indirect schemes. In a hierarchy with N classes where each class

has at most M predecessors, the storage space required for a single class is

about M for our scheme and other indirect schemes. For the direct schemes,

to store the public information of one class, the maximum storage is about

N numbers, or the product of the N numbers. In a real situation, N would

be much greater than M , and N w ill increase as the scale of the hierarchy

increases, while M usually keeps constant. So the indirect schemes achieves

require less storage than the direct schemes.

82

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 5. SHMMARY

5.2 D yn am ics

As an indirect hierarchical access scheme, the operation of adding, deleting a

class or link in our scheme is similar to other indirect access schemes. When

a class is added or deleted, or a link is added to or deleted from a class,

only its successors are impacted, i.e., the secret key and public parameters

of those classes need to be updated. The direct schemes are quite different.

For example, in Akl-Taylor scheme, when a class is added or deleted, all the

classes except for its successors have to update their secret keys and public

parameters. In Harn-Lin scheme, when a class is added or deleted, all its

predecessors w ill be impacted. In addition, for these two schemes, to prevent

a deleted class to access its former successors, the keys of these successors

have to be changed too. In a practical hierarchy, there are much more low

level classes than high level classes, and it is more likely that the low level

classes will change. Therefore in an indirect scheme, less classes are impacted

than in a direct scheme when the hierarchy structure changes. The indirect

schemes are more suitable than direct schemes for a dynamic hierarchy.

5.3 S ecu rity

Security is essential to a cryptographic scheme. The hierarchical access con­

tro l schemes must withstand the cryptographic attacks. Every scheme shows

that a class Q cannot derive the key of another class Cj i f Q is not C/s

predecessor. Some of the schemes further analyzed that in some collusion at­

tacks, the schemes are still secure. In these scheme a list of collusion attack­

ing scenarios are listed and discussed. However, such lists do not elaborate

all possible attacks. The first comprehensive security model is presented in

Zheng-Hardjono-Pieprzyk scheme [23]. This security model covers all possi­

ble collusion attacks. In their scheme, Zheng et al. gave a proof sketch to

83

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CHAPTER 5. SHMMARY

show that their scheme is secure under this security model. However, the

proof sketch is not a very rigorous mathematic proof. Some statement in the

sketch is not obviously tenable and need more detailed proof to make it per­

suasive. In our scheme, we take the provable security approach, and strictly

proved that our scheme is secure as long as the standard DDH assumption

holds. We would say so far our scheme is the flrst hierarchical access control

scheme that is provable security under the comprehensive security model.

Also the techniques used in the security proof in our scheme are helpful in

analyzing the security of other schemes.

5.4 C onclu sion

In this thesis we reviewed previous hierarchical access control schemes, pro­

posed a new access control scheme for poset hierarchy. The new scheme sup­

ports any arbitrary poset, achieves the best performance of previous schemes,

and provides a formal security proof under a comprehensive security model.

None of the previous schemes achieved the properties as fully as ours does.

Also our work provides useful techniques that facilitate the analysis of other

schemes.

84

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

BIBLIOGRAPHY

R eferen ces

[1] Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem

of access control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239-

248,1983.

[2] M ihir Bellare and Phillip Rogaway. Introduction to Modern Cryptogra­

phy. http: / / www-cse.ucsd.edu/users/mihir/cse207/classnotes.html.

[3] Dan Boneh. The decision diffie-hellman problem. In AN TS-III: Pro­

ceedings of the Third International Symposium on Algorithmic Number

Theory, pages 48-63. Springer-Verlag, 1998.

[4] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. The

group diffie-hellman problems. In Selected Areas in Cryptography, 9th

Annual International Workshop, SAC 2002, volume 2595 of Lecture

Notes in Computer Science, pages 325-338. Springer, 2003.

[5] Brian J. Cacic. Indirect key derivation schemes for key management of

access heir archies. Master’s thesis, Lakehead University, Thunder Bay,

ON, Canada, 2004.

[6] Tzer-Shyong Chen, Yu-Fang Chung, and Chang-Sin Tian. A novel key

management scheme for dynamic access control in a user hierarchy. In

COMPTAC, pages 396-397, 2004.

[7] Gerald C. Chick and Stafford E. Tavares. Flexible access control with

master keys. In CRYPTO ’89: Proceedings on Advances in cryptology,

pages 316-322. Springer-Verlag New York, Inc., 1989.

[8] Oded Coldreich. Foundations of cryptography. Cambridge University

Press, Cambridge, UK.;New York, 2001.

85

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

BZBMOGRAPHY

[9] Oded Coldreich, Shah Coldwasser, and Silvio Micali. How to construct

random functions. J. ACM, 33(4);792-807, 1986.

[10] L. Harn and H.-Y. Lin. A cryptographic key generation scheme for

multilevel data security. Comput. Secur., 9(6):539-546, 1990.

[11] Min-Shiang Hwang and Wei-Pang Yang. Controlling access in large par­

tia lly ordered hierarchies using cryptographic keys. Journal of Systems

and Software, 67(2):99-107, 2003.

[12] Narn-Yih Lee and Tzonelih Hwang. A pseudo-key scheme for dynamic

access control in a hierarchy. J. Inf. Sci. Eng., 11(4):601-610, 1994.

[13] M Yung M Naor. Universal one-way hash functions and their crypto­

graphic application. In Proceedings of the 21st Annual ACM Symposium

on the Theory of Computing, pages 33-43, 1989.

[14] Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim C.

Akl. An optimal algorithm for assigning cryptographic keys to control

access in a hierarchy. IEEE Trans. Comput., 34(9):797-802, 1985.

[15] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Veinstone. Hand­

book of Applied Cryptography. CRC Press, 1996.

[16] Indrakshi Ray, Indra jit Ray, and Natu Narasimhamurthi. A crypto­

graphic solution to implement access control in a hierarchy and more.

In SACMAT ’02: Proceedings of the seventh ACM symposium on Access

control models and technologies, pages 65-73. ACM Press, 2002.

[17] J Romp el. One-way functions are necessary and sufficient for digital sig­

natures. In Proceeding of 22nd Annual ACM Symposium on the Theory

of Computing, pages 387-394, 1990.

86

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

BIBLIOGRAPHY

[18] Ravi S. Sandhu. Cryptographic implementation of a tree hierarchy for

access control. Inf. Process. Lett., 27(2);95-98, 1988.

[19] Claude E. Shannon. Communication theory of secrecy systems. Bell

System Technical Journal, 28(4):656-715, 1949.

[20] Michael Steiner, Cene Tsudik, and Michael Waidner. Diffie-hellman key

distribution extended to group communication. In CCS ’96: Proceedings

of the 3rd ACM conference on Computer and communications security,

pages 31-37. ACM Press, 1996.

[21] Shyh-Yih Wang and Chi-Sung Laih. Cryptanalysis of hwang-yang

scheme for controlling access in large partially ordered hierarchies, jour­

nal of systems and software. Journal of Systems and Software, 75(1-

2):189-192, 2005.

[22] Cungang Yang and Celia Li. Access control in a hierarchy using one-way

hash functions. Computers & Security, 23:659-664, 2004.

[23] Y. Zheng, T. Hardjono, and J. Pieprzyk. The sibling intractable function

family (siff): notion, construction and applications. lE IC E Transac­

tions on Fundamentals of Electronics, Communications and Computer

Science., E76-A(l):4-13, 1993.

[24] Sheng Zhong. A practical key management scheme for access control in

a user hierarchy. Computers & Security, 21(8):750-759, 2002.

87

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

