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Preface

In many multi-user information systems, the users are organized as a hi­

erarchy. Each user is a subordinate, superior and/or coordinate of some 

others. In such systems, a user has access to the information if  and only 

if  the information belongs to the user or his/her subordinates. Hierarchical 

access control schemes are designed to enforce such access policy. In the past 

years, hierarchical access control schemes based on cryptography are inten­

sively researched. Much progress has been made in improving the schemes’ 

performance and security.

The main contribution of this thesis is a new hierarchical access control 

scheme. This is the first one that provides strict security proof under a 

comprehensive security model that covers all possible cryptographic attacks 

to a hierarchical access control scheme. The scheme is designed and ana­

lyzed based on the modern cryptography approach, i.e., defining the security 

model, constructing the scheme based on cryptography primitives, and prov­

ing the security of the scheme by reducing the cryptography primitives to 

the scheme. Besides the security property, this scheme also achieves good 

performance in consuming small storage space, supporting arbitrary and dy­

namic hierarchial structures. In the thesis, we also introduce the background 

in cryptography and review the previous schemes.
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Chapter 1

Introduction

1.1 P rob lem  S ta tem en t

In a multi-user information system, the access permission to certain infor­

mation objects is usually only granted to certain users. To enforce the access 

policy, secret values for certain objects is assigned to the users with access 

privilege. The secret values may be the password used to authenticate the 

users for accessing to the objects, or the cryptographic key for the users to 

decrypt the encrypted data to recover the original information. In either 

case, the access control to the protected information relies on the secret val­

ues assigned to the users. For simplicity, we call the secret values a key, 

although it might be either a cryptographic key or a password.

In many situations, the organization of the users is a hierarchy. In the 

hierarchy, each user has his/her subordinates, superiors and/or coordinates. 

The access control policy in such an organization usually grants a user the 

access privileges of all his/her subordinates. We call such a policy hierarchical 

access control policy, and call the scheme that implements such a policy a 

hierarchical access control scheme. In the scheme, the group of users with 

the same access privileges is called a security class.

10
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CHAPTER 1. INTRODUCTION

A hierarchical system can be represented as a partially ordered set (poset). 

In such a hierarchy, all users are allocated into a number of disjoint sets of 

security classes (or classes in short,) Q , Cg, - - - ,Cn- A binary relation < 

partially orders the set C =  {C i, Cg, • ■ • , C^,}. The users in Cj have access 

to the information held by users in Q  if  and only if  the relation C, <  Cj 

held in the poset (C, <). We denote Q  < Cj if  Q  < Cj and C, is not Cj. I f  

Ci < Cj, Ci is called a successor of Cj, and Cj is called a predecessor of Q. 

I f  Ci <  Cj and there is no such that Ci < Ck < Cj, then Q  is called an 

immediate successor of Cj, and Cj is called an immediate predecessor of Q. 

A class without any predecessor is called a root class. A class without any 

successor is called a leaf class. A class w ith both predecessors and successors 

is called an internal class. An example of the structure of a poset hierarchy 

is shown in Figure 1.1.

Figure 1.1: Fxample of the structure of a poset hierarchy

A straightforward access control scheme for poset hierarchy is to assign

11
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CHAPTER 1. INTRODUCTION

each class w ith a key, and let a class have the keys of all its successors. 

The information belonging to a class is encrypted with the key assigned 

to that class, therefore the predecessors have access to the information of 

their successors. This is simple but awkward because the classes in higher 

hierarchy have to store a large number of keys. In the past two decades, 

many schemes based on cryptography have been proposed to ease the key 

management for poset hierarchy. Generally, these schemes are aimed to fully 

or partly achieve the following goals:

•  Support any arbitrary poset. I t  is desirable that any arbitrary poset is 

supported. Some schemes only support special cases of poset such as a 

tree. Such schemes are considered restrictive in application.

•  Be secure under attacks. The schemes are supposed to withstand at­

tacks. For example, a user may try  to derive the key of a class that is 

not his/her successor. The schemes should be secure under all possible 

attacks.

•  Require small storage space. Any scheme needs a user in a class to store 

a certain amount of secret or public parameters. A ll the schemes tried 

to reduce the amount of parameters stored.

•  Support dynamic poset structures. The structure of a hierarchy may 

change. Glasses may be added to or deleted from the hierarchy. In 

these cases the users in the classes (not only the ones added and deleted) 

need to update the parameters they store. I t  is desirable that when 

a change takes place, the number of classes involved in updating their 

parameters is as small as possible.

Regarding the security of the schemes, it  is important to define how to 

evaluate whether the schemes are secure. In many of the previous schemes, 

a list of attacking scenarios are given. However, we can easily give more

12
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CHAPTER 1. INTRODUCTION

attacking scenarios. Other than elaborating a list of attacks which may still 

be incomplete, we prefer to a security definition that can cover any attacks 

that are possible to the scheme. We come up with the following security 

model:

D e fin itio n  1.1 A hierarchical access control scheme fo r poset hierarchy is 

secure i f  fo r any group of classes in the poset, i t  is infeasible to derive the 

key of any class that is not a member of that group, nor a successor of any 

member of that group.

This model covers any attacks presented in previous schemes. W ithin this 

model, only the legitimate predecessors of a class have access to this class. 

A ll other users, no matter how they conspire, are not able to access this class.

1.2 C on tr ib u tion  o f  T h is T h esis

In the past years a lot of hierarchical access control schemes have been pro­

posed. They made a great progress in improving the performance and se­

curity. However, as we w ill review in details in the next chapter, although 

some schemes achieve good performance in supporting arbitrary poset, small 

storage and dynamic structures, none of them have thoroughly proved to be 

secure under the security model in Definition 1.1.

In this thesis, we propose a new scheme that is superior to the previous 

schemes in that it  provides both good performance and provable security. 

Our scheme supports arbitrary poset, has similar performance in storage 

and dynamics achieved by other schemes. The most significant part of our 

scheme is its formal security proof under Definition 1.1, which the previous 

schemes did not provide.

13
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CHAPTER 1. INTRODUCTION

1.3 O utlin e o f  th is  th esis

The rests of the thesis are organized as follows. In Chapter 2, we introduce 

the cryptographic background, including the definitions, concepts and nota­

tions, which is necessary for us to present and analyze the previous schemes 

as well as ours. In Chapter 3 we review the previous schemes, showing the 

progress, direction and open problems in this topic. In Chapter 4 we present 

our scheme and its security proof. Chapter 5 summarizes the schemes.

14
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Chapter 2 

Cryptography Background

In this chapter we introduce the cryptographic background based on which 

schemes are designed and analyzed. It  includes the definitions, notes and 

algorithms in mathematics (number theory, abstract algebra and finite field); 

basic cryptographic primitives, cryptography scheme design methodologies. 

We only include what are necessary for the following chapters. For extensive 

contents of the background, please refer to [2], [8] and [15].

2.1 M a th em a tics  B ackground

In tegers m od N

Let Z denote the set of integers, Z+ denote the set of positive integers.

I f  a, b are integers, not both zero, then their greatest common divisor, 

denoted gcd(a,6), is the largest integer d such that d divides a (denoted as 

d|u) and d divides b {d\b). I f  gcd(a,6) =  1 then we say that a and b are 

relatively prime. I f  a, N  are integers w ith N  > 0 then there are unique 

integers r, q such that a =  Nq +  r  and 0 <  r  < N. We call r  the remainder 

upon division of a by N, and denote it by a mod N. I f  a, b are any integers

15
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CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

and N  is a positive integer, we write

a =  b mod N

if  a mod N  =  b mod N. We associate to any positive integer N  the follow­

ing two sets:

Tjn =  {0,1, • • • ,N  — 1}

Z*pf =  { i  e Z ■. 1 < i  < N  — 1 and gcd(i, N )  =  1}

The first set is called the set of integers mod N. Its size is N, and it  contains 

exactly the integers that are possible values of a mod N  as a ranges over Z. 

We define the Euler Phi (or totient) function 4>{N) =  |Z^| for all N  G Z+. 

That is, 0 (N ) is the size of Z*pj.

Group

Let G be a non-empty set and let ■ denote a binary operation on G. We say 

that G is a group if  it has the following properties:

1. Closure: For every a, 6 G G it is the case that a • 6 is also in G.

2. Associativity: For every a, 6, c G G it is the case that (a• 6) • c =  a-{b-c).

3. Identity: There exists an element 1 G G such that a ■ 1 =  1 • a =  a for 

all Q G G.

4. Invertibility: For every a G G there exists a unique 6 G G such that 

a ■ b =  b ■ a =  1 .

The element b in the invertibility condition is referred to as the inverse 

of the element a, and is denoted

A group G is abelian (or commutative) if  a ■ 5 =  6 • a for all a, 6 G G.

Let N  be a positive integer. The operation of addition modulo N  takes 

input any two integers a, b and returns (a +  b) mod N. The operation of

16
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CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

multiplication modulo N  takes input any two integers a, b and returns ab 

mod N. Then Zjv is a group under addition modulo N, and is a group 

under multiplication modulo N.

In Zat, the identity element is 0 and the inverse of a is —a mod N  =  

N  — a. In Z ^ , the identity element is 1 and the inverse of a is a 6 e Z ^  such 

that =  1( mod N).

In any group, we can define an exponentiation operation which associates 

to any a G G and any integer i a group element we denote a \  defined as 

follows. I f  i =  0 then a* is defined to be 1, the identity element of the group. 

I f  z >  0 then

a* =  a g - g .
i

I f  i  is negative, then we define a* =

W ith these definition in place, we can manipulate exponents in the way 

in which we are accustomed with ordinary numbers. Namely, identities such 

as the following hold for all a G G and all i , j  G Z:

0'+:' = o ' . o:"

=  0'^

a "* =

= ( a - i ) '

The size of a group G is called its order, denoted |G|. It  is the number of 

elements in the group. We w ill often make use of the following basic fact. It  

says that if  any group element is raised to the power the order of the group, 

the result is the identity element of the group.

Let G be a group and let m =  |G| be its order. Then a™ =  1 for all 

CL G G.

This means that computation in the group indices can be done modulo

m:

17
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CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

Let G be a group and let m =  |G| be its order. Then a® =  a® ™ for 

all a e G and all z e Z.

Exam ple 2.1 Let us work in the group under the operation of multipli­

cation modulo 21. The members of this group are 1, 2, f ,  5, 8, 10, 11, 13, 

16, 17, 19, 20, so the order of the group is m =  12. Suppose we want to 

compute 5®® in this group. Applying the above we have

5̂  ̂ mod 21 =  5̂  ̂ mod 21 =  5̂  mod 21 =  4.

□

I f  G is a group, a set S Ç G is called a subgroup if  i t  is a group in its 

own right, under the same operation as that under which G is a group. I f  we 

already know that G is a group, there is a simple way to test whether S is a 

subgroup; it is one if  and only if  x ■ y~^ G § for all x,y  E S. Here y~^ is the 

inverse of y in G .

Let G be a group and let § be a subgroup of G. Then the order of S 

divides the order of C.

Cyclic groups and generators

Let G be a group, let 1 denote its identity element, and let m =  |G| be the 

order of G. I f  y G G is any member of the group, the order of g is defined to 

be the least positive integer n such that y”  =  1. We let

<  P > =  {g ' : % G Z;,} =  { / ,  y \  - - ,

denote the set of group elements generated by y. A fact is that this set is a 

subgroup of G. The order of this subgroup is the order of y, thus the order 

n of y divides the order m of the group. An element y of the group is called 

a generator of G if  < y > =  G, or, equivalently, if  its order is m. I f  y is a

18
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CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

generator of G then for every a G G there is a unique integer i G such that 

y® =  a. This i is called the discrete logarithm of a to base g, and we denote 

it by DLogQ^g(a). Therefore, DLogQ^g{a) is a function that maps G to Z^, 

and moreover this function is a bijection. The function of Z ^  to G defined 

by % ^  y' is called the discrete exponentiation function, and the discrete 

logarithm function is the inverse of the discrete exponentiation function.

Here we give an example. Let y =  11, which is a prime. Then Z^^ =  

{1 ,2 ,3,4,5,6,7,8,9,10} has order y — 1 — 10. Let us find the subgroups 

generated by group elements 2 and 5. We raise them to the powers i  =  

0, • • • ,9. We get:

i 0 1 2 3 4 5 6 7 8 9

2® mod 11 1 2 4 8 5 10 9 7 3 6

5® mod 11 1 5 3 4 9 1 5 3 4 9

Looking at which elements appear in the row corresponding to 2 and 5, 

respectively, we can determine the subgroups these group elements generate:

(2) =  {1 ,2 ,3 ,4,5,6 ,7 ,8 ,9 ,10}

(5) = {1,3,4,5,9}

Since (2) equals to Z{^, the element 2 is a generator. Since a generator exists, 

Z*i is cyclic. On the other hand, (5) A  so 5 is not a generator of Z*^. 

The order of 2 is 10, while the order of 5 is 5. Note that these orders divide 

10, the order of the group. The table also enables us to determine the discrete 

logarithms to base 2 of the different group elements:

a 1 2 3 4 5 6 7 8 9 10

E/oyz«^,2(a) 0 1 8 2 4 9 7 3 6 5

The discrete exponentiation function is conjectured to be one-way (mean­

ing the discrete logarithm function is hard to compute) for some cyclic groups

19
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CHAPTER 2. CRYPTOGRAPHY BACKGROUND__________________

G. Due to this fact we often seek cyclic groups for cryptographic usage. Here 

are two example sources of such groups;

•  Let y be a prime. Then the group Z* is cyclic.

The operation here is multiplication modulo y, and the size of this 

group is (/>(y) =  y — 1. This is the most common choice of group in 

cryptography.

•  Let G be a group and let m =  |G| be its order. I f  m is a prime number, 

then G is cyclic. In other words, any group having a prime number of 

elements is cyclic.

Another source of cyclic group is from finite field, which is defined later. 

Groups of prim e order

A group of prime order is a group G whose order m =  |G| is a prime number. 

Such a group is always cyclic. These groups turn out to be quite useful in 

cryptography, so let us take a brief look at them and some of their properties.

An element h of a group G is called non-trivial if  it  is not equal to the 

identity element of the group.

Suppose G is a group of order q where g is a prime, and h is any non-trivial 

member of G. Then h is a generator of G.

A common way to obtain a group of prime order for cryptographic schemes 

is as a subgroup of a group of integers modulo a prime. We pick a prime y 

having the property that q =  (y ~ l) /2  is also prime. I t  turns out that the 

subgroup of quadratic residues modulo y then has order q, and hence is a 

group of prime order.

Let us now explain what we perceive to be the advantage conferred by 

working in a group of prime order. Let G be a cyclic group, and g a generator. 

We know that the discrete logarithms to base g range in the set Zm where

20
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m =  |G| is the order of G. This means that arithmetic in these exponents 

is modulo m. I f  G has prime order, then m is prime. This means that any 

non-zero exponent has a multiplicative inverse modulo m. In other words, 

in working in the exponents, we can divide. I t  is this that turns out to be 

useful.

Ring

A ring (M, -f, •) consists of a set R with two binary operations arbitrarily 

denoted 4- (addition) and • (multiplication) on M, satisfying the following 

axioms.

•  (M, -f) is an abelian group w ith an identity denoted 0.

•  The operation • is associative. That is, a ■ {b ■ c) =  {a ■ b) ■ c) for all 

a, 6, c e R

• There is a multiplicative identity denoted 1, w ith 1 ^ 0 ,  such that

1 ■ a =  a ■ 1 =  a for all a G R.

•  The operation ■ is distributive over +. That is, a-{b+c) =  {a-b)-\-{a-c) 

and (6 +  c) - a =  (6 - o) +  (c - o) for all a, 6, c G R.

The ring is a commutative ring if  a ■ 6 =  6 ■ a for all a, 5 G R.

For example, the set Z „ with addition and multiplication perforrned mod­

ulo u is a commutative ring.

Field

A field is a commutative ring in which all non-zero elements have multiplica­

tive inverses.

For example Z „ is a field (under the usual operations of addition and 

multiplication modulo n) if  and only if  n is a prime number.

21
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Polynom ial rings

I f  M is a commutative ring, then a polynomial in the indeterminate x over 

the ring R is an expression of the form

/ ( x )  =  a„x" H +  0 2 +  oix +  oo

where each Oj € R and n > 0. The element Oj is called the coefficient of Xj 

in /(x ) . The largest integer m for which a™ ^  0 is called the degree of /(x ) , 

denoted deg /(x ) .

Division algorithm for polynomials is defined as follows if  g{x),h{x) e 

F[x], w ith h(x) A 0, then ordinary polynomial long division of g{x) by h[x) 

yields polynomials q{x) and r(x ) E F[x] such that g{x) =  q{x)h{x) + r (x ) ,  

where deg r{x) < deg h{x). Moreover, g(x) and r(x ) are unique. The 

polynomial q{x) is called the quotient, while r(x ) is called the remainder. 

The remainder of the division is sometimes denoted g{x) mod h{x), and the 

quotient is sometimes denoted g{x) div h{x).

I f  g{x),h{x) G F[x] then h{x) divides g(x), written h{x)\g{x), if  g{x) 

mod h{x) =  0.

I f  g[x),h{x) G F[x], then g{x) is said to be congruent to h{x) modulo 

/(x )  if  / (x )  divides g{x) — h{x). This is denoted by

g{x) =  h{x) mod /(x )

Let / (x )  be a fixed polynomial in F[x]. The equivalence class of a poly­

nomial g{x) G F[x] is the set of all polynomials in F[x] congruent to g{x) 

modulo /(x ).

F [x ]/( /(x ))  denotes the set of (equivalence classes of) polynomials in F[x] 

of degree less than n =  deg f{x ) .

I f  R is a commutative ring, the polynomial ring R[x] is the ring formed by 

the set of all polynomials in the indeterminate x having coefficients from R.
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The two operations are the standard polynomial addition and multiplication, 

w ith coefficient arithmetic performed in the ring R.

Let f ( x )  G F[x] be a polynomial of degree at least 1. Then / (x )  is said to 

be irreducible over F if  it  cannot be written as the product of two polynomials 

in F[x], each of positive degree.

I f  / ( x )  is irreducible over F, then F [x ]/( /(x ))  is a field.

F in ite  F ie ld

A finite field is a field F which contains a finite number of elements. The 

order of F is the number of elements in F.

Facts about finite field:

•  I f  F is a finite field, then F contains p"® elements for some prime p and 

integer m >  1.

•  For every prime power order p”®, there is a unique finite field of order 

p™. This field is denoted by Fpm, or sometimes by GF(p"®).

An irreducible polynomial / ( x )  G Zp[x] of degree m is called a primitive 

polynomial i f  x is a generator of F*m, the multiplicative group of all the 

non-zero elements in Fpm =  Z p [x ]/(/(x )).

Exam ple 2.2 Example of a finite field F24 of order 16: R can he verified 

that the polynomial f {x )  =  x'̂  4- x 4- 1 is irreducible over Z 2 . Hence the finite 

f ie ld¥ 2 ‘i can be represented as the set of all polynomials over ¥ 2  of degree less 

than 4- That is,

F24 =  {ugX^ 4“ a2 x'  ̂4- QjX 4 - Uo|®i G {0, !} } •

For convenience, the polynomial a^x^ 4- 02 X̂  4- a\x 4- Oq can be represented by 

the vector (usagOiOo) of length 4, and

F24 =  {(03020100)|0i G { 0, 1}}.
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□

The following are some examples of field arithmetic.

•  Field elements are simply added componentwise; for example,

(1011) +  (1001) -  (0010).

•  To multiply the held elements (1101) and (1001), multiply them as

polynomials and then take the remainder when this product is divided

b y f^ ^ :

(x^ +  +  1 ) - (z^ +  1 ) =  +  x^ +  x “̂ +  1

=  x^+x'^ +  x +  l  mod f{x ) .

Hence (1101)•(1001) =  (1111)

• The multiplicative identity of Fg4 is (0001).

• The inverse of (1011) is (0101). To verify this, observe that

(x^ +  a: +  1) • (x^ +  1) =  x^ +  x^ +  x + 1

=  1 mod /(x ),

whence (1011) • (0101) =  (0001).

/ (x )  is a primitive polynomial, or, equivalently, the held element x =  (0010) 

is a generator of Fg4 . This may be checked by verifying that all the non-zero 

elements in Fg4 can be obtained as a powers of x. The computations are 

summarized in Table 2.1.
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Table 2.1: The powers of x modulo /(x )  =  x"̂  +  x +  1.

i x' mod x"^ +  X  +  1 vector notation

0 1 (0001)
1 X (0010)
2 x ^ (0100)

3 x ^ (1000)
4 X  +  1 (0011)

5 (0110)

6 x^ +  x% (1100)

7 X ^ +  X  +  1 (1011)

8 x ^  +  1 (0101)

9 x^ +  x (1010)

10 X ^ +  X  +  1 (0111)

11 x^ +  x^ +  x (1110)
12 X® +  X ^  +  X  +  1 (1111)

13 x ^  +  x ^  +  1 (1101)

14 x ^  +  1 (1001)
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Table 2.2; B it complexity of basic operations in Z„.

Operation B it Cornplexity

Modular Addition (a +  b) mod n 

Modular subtraction (a — b) mod n 

Modular multiplication (a • b) mod n 

Modular inversion a~^ mod n 

Modular exponentiation mod n ,k  < n

O(logTt) 
O(logm) 
()(logf n;) 
0(log^ 7l) 
0(log^ n)

2.2 C o m p lex ity  o f  A lgorith m s

The numbers arising in cryptographic algorithms are large, having magni­

tudes like 2^12 or The arithmetic operations on these numbers are the 

main cost of the algorithm, and the costs grow as the numbers get bigger.

The numbers are provided to the algorithm in binary, and the size of 

the input number is thus the number of bits in its binary representation. 

We call this the length, or binary length, of the number, and we measure 

the running time of the algorithm as a function of the binary lengths of its 

input numbers. In computing the running time, we count the number of b it 

operations performed.

Table 2.2 summarizes the b it complexity of basic operations in Z„.

Table 2.3 summarizes the complexity of basic operations in Fpm. In the 

table, “operations in Zp” means either an addition, subtraction, multiplica­

tion, inversion, or division in Zp.

A ll these operations can be finished within polynomial (in the number of 

the bits of the inputs) steps.

26

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Table 2.3: Complexity of basic operations in Fp

Operation Number of operations in Zp

Addition

Substraction

Multiplication

Inversion

Exponentiation

()(m)
0(m)

0{m?)

2.3 In tractab le  C om p u ta tion a l P rob lem s

In modern cryptography, the security of the cryptographic schemes relies 

on the intractability of the computational problems. These problems are 

believed to be intractable, although no proof is known. We present some of 

them that are used in the schemes we w ill review and present below. We 

take the notations mainly from [2]. For an introduction to the problems in 

more plain English, please refer to [15].

Note all the operations in the following problems are modular operations 

on corresponding groups. For simplicity we omit the modular expression. 

For example, we write a +  b instead oî a +  b mod N  i f  we have indicated 

that the operation is on the group Zjv-

2.3.1 Discrete Logarithm  Problem

As we have seen, on the cyclic group the discrete exponentiation function 

can be computed by a polynomial algorithm. Its inversion, the Discrete 

Logarithm Problem (DLP) is defined as the following: given a finite cyclic 

group G of order n, a generator of G, and an element /3 G G, find the 

integer x G [l,n ], such that =  j3. The DLP is believed to be hard. Next
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we give a quantitative description about the hardness.

Let A  be an probabilistic polynomial algorithm that inverts the exponen­

tiation function. Let x X  denotes the operation of selecting an element 

X uniformly from some set X at random. We consider the experiment in 

Experiment 1.

X

x ' ^  ^ (% )

if  g^' =  X  then  
return 1 

else  
return 0 

end if
Experim ent 1: Experiment ExpQg(A)

In this experiment, we anticipated there is some probability that the 

return value is 1 , i.e., A  has some probability that output an x' such that 
gx' _  gx df-advantage of A  is defined as

The dehnition above measures how good an algorithm is at solving the 

discrete logarithm problem.

The discrete logarithm problem is believed to be intractable. Formally 

speaking, let I be the bit-length of the order of the group G, for any polyno­

mial time (in I) algorithm A  and any polynomial P{-), for sufficiently large

Adug,,(.A) = Pr[Expg,,(,A) = 1] <
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2.3.2 The R S A  problem

The RSA problem is defined as follows: given a positive integer n that is a 

product of two distinct odd primes p and q, a positive integer e such that 

gcd{e, 4>{n)) =  gcd(e, {p — l)(g  — 1)) =  1 , and an integer c, find an integer 

m G Zn such that r r f  — c.

Let A  be a probabilistic polynomial time algorithm that solves the RSA 

problem. Let G =  Z„. We consider the experiment in Experiment 2.

x ' ^  A (X )

if  {x'Y =  X  then  
return 1 

else 
return 0 

end if

Experim ent 2: Experiment Exp^^Y^{A)

The RSA-advantage of A  is defined as

=  P r[Expg^^(A ) =  1]

Like the discrete logarithm problem, the RSA problem is believed to be 

intractable: let I be the bit-length of the order of the group G, for any A  

and any polynomial P(-), for sufficiently large /,

A d vg P iA )  =  P r lE x p iJ A )  =  1] <  p | iy

2.3.3 Decisional D iffie-H ellm an Problem

The DDK problem is to distinguish the two distributions {g, and

{g, g^,g^,g^), where g is the generator of a finite cyclic group G of order m; x,
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y, z are random variables uniformly distributed on In another word,

given DDH problem is to distinguish g^  ̂ from a random variable

uniformly distributed on G.

The formalization considers a “two worlds” setting. The adversary gets 

input X, Y, Z. In either world, X, Y  are random group elements, but the 

manner in which Z  is chosen depends on the world. In World 1 ,2  =  

where x =  DLogQ^g{X) and y =  DLogQ^g{Y). In World 0, Z  is chosen at 

random from the group, independently o( X ,Y  . The adversary must decide 

in which world it  is.

Let G be a cyclic group of order m, let A  be a distinguisher, an proba­

bilistic polynomial algorithm that returns one bit, 0 or 1 , depending on which 

world A  thinks it  is in. We consider the experiments in Experiment 3;

Experiment Exp^^^ ^(A) Experiment Exp^^  °(A)

z xg

% 4 -g ^ ;y  ^ g l / ; 2 4 - g ^

return A {X , Y, Z) return A{X, Y, Z)

E xperim en t 3: DDH experiments

The ddh-advantage of A  is defined as

Advi^^ iA )  =  \ P lE x p ÿ p \ A ) \  -  P [ E x p i f p \ A ) ] \

The definition above measures how good A  can distinguish the two world. 

The DDH problem is believed to be intractable on some cyclic group, i.e., 

let I be the bit-length of the order of such a group G, for any A  and any 

polynomial P(-), for sufficiently large /,

A i v t i i A )  < Y f y  
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Note DDH is not intractable in every cyclic group. Most groups in which 

DDH is believed to be intractable have prime order. In [3] a list of such 

groups are given. Here we just present one that w ill be used in our scheme: 

Let p =  2g +  1 where both p  and q are prime. Let Qp be the subgroup 

of order q of Z*. Qp is a cyclic group of prime order on which DDH is 

intractable.

2.4 C ryp tograp h ic  P rim itiv es

2,4.1 One-way function

A one-way function is a function which is easy to compute but hard to invert. 

Here we give our formal definition.

D efinition 2.3 Let m ,n  be polynomials. Let I be an integer parameter, V  =  
U;{0, a n d  7Z =  the function  f  \ V  ^  TZ is a one-way

function  i f  the two conditions hold:

1. easy to compute. On input x  e { 0 , / ( x)  can be computed in  

polynom ial tim e (in  I), and

2. hard to invert. For any probabilistic polynom ial-tim e (in  I )  algorithm  

A , any polynom ial P {-), and a ll suffic iently large I, on input x  G 

( 0,

A [A (/((x)) =  x] < ^

where f i  denotes the restriction o f f  on {0,1}"^®.

For example, on the cyclic group G, the exponentiation function is one-way 

because it  is easy to compute, but hard to invert. Its inversion DLP is 

intractable.
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2.4.2 One-way hash function

One-way hash function h : V  7Z,V =  {0,1}™® (7Z =  {0,1}^®, >

n ( l) , m ( - ) , n(-) are polynomials) is an one-way function with pre-image resis­

tance and 2nd pre-image resistance properties;

1 . pre-image resistance; given x G D, it  is infeasible to find x' such that 

x' 7  ̂X and h (x ') — h(x).

2. 2 nd pre-image resistance: it is infeasible to find a pair of x  f  x' such 

that h (x ') = h{x).

2.4.3 Universal one-way hash function fam ily

Universal one-way hash function families are first proposed in [13]. Then [17] 

extended the work. A generalization of the universal one-way hash function 

family is proposed in [23] (called sibling intractable function family SIFF), 

which is used to solve the hierarchical access control problem. Here we give 

the definition and construction of the universal one-way hash function family.

Definition 2.4 Let m, n  he polynomials. Let I be an integer parameter, V  =  
1J;{0,1 }™® and TZ =  |J ;{0 ,1}"®, the functions { f \ f  : V  -a  JZ] is a fam ily  o f 

universal one-way hash functions i f  fo r  a ll probabilistic polynom ial algorithm  

A  the fo llow ing holds fo r  sufficiently large I:

1. On input x G { 0 ,1 } ™ ® , Pr[A{f,x) =  x ', / (x )  =  / (x ') ,x ' A  x] <  

where the probability is taken over a ll f  G {/;} and the random choices 

of A.

2. f i  is computable in  polynom ial tim e ( i n i ) .

3. f i  is accessible: there exists an algorithm  G such that Q on input I 

generates un ifo rm ly  at random a description o f f  G f i.

( f i denotes the restriction  o f f  on {0,1}™®.}
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Exam ple 2.5 A n example o f universal one-way hash function  is constructed 

below.

1. On the fin ite  fie ld  Fgi, { //}  =  {fa,b\fo.,b{^) =  chop{ax +  h),a,h G ¥ 2 1 }  

where a ll computation are in  F̂ ; and chop: {0,1}' 1—> {0,1}'^^ chops 

the last bit.

2. Let g be an one-way perm utation. Define H i =  {h  =  f  o g \ f  G {/;}}• 

Then [ j f H i )  is a universal one-way hash function . □

The universal one-way hash function has the following Collision Accessibility 

property: Given x f  x' G {0,1}™®, it is easy to find h G hi such that 

h{x) =  h{x'). Note that by the definition of the universal one-way hash 

function family, given the x and h, it is intractable to find the x' f  x such 

that h{x') =  h{x).

2.4.4 Pseudo-Random  function

The pseudo-random function family was proposed by Goldreich, Goldwasser 

and Micali in [9]. In such a family, each function is specified by a short, 

random key, and can be easily computed given the key. But without the key, 

given an input, the output of the function looks like a random number. Next 

we give a formal description.

A function family is a map 2F : K, x D ^  TZ. Here K, is the set of keys of 

T  and V  is the domain of H  and TZ is the range of P. The set of keys and 

the range are finite, and all of the sets are nonempty. The two-input function 

P  takes a key K  and an input X  to return a point Y  we denote by P {K , X).  

For any key R  G AC we define the map Fk ■ V  TZ hy F k {X )  =  P {K ,Y ) .  

We call the function E^  an instance of function family P. Thus P  specifies 

a collection of maps, one for each key.
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Let F u n c {V , TZ) denote the family of all functions of V  to TZ. Suppose 

D =  {0 ,1 }', TZ =  {0 ,1}^, then the size of the key space of Func{V ,TZ) is 

2^^'. There is a key for every function of Lbits to L  bits, and this is the 

number of such functions.

A random function g : V  TZ is an instance uniformly picked from 

FuncÇD, TZ) at random, and put in a black-box. This means that one can 

give any value X ,  and get back g {X) .  But one cannot get the description of 

the instance g. The dynamic view of a random function can be thought of 

as implemented by the following computer program. The program maintains 

the function in the form of a table T  where T [ X ]  holds the value of the 

function at X .  Initially, the table is empty. The program processes an input 

X  e V  as follows:

if T[X] is not defined then
y

end if
return T[x]

The answer on any point is random and independent of the answers on other 

points.

A pseudo-random function is a family of functions, which is a subset of 

the random function family F unc{V ,T Z ), with the property that the input- 

output behavior of a random instance of this family is “computationally 

indistinguishable” from that of a random function.

We fix a family of functions P  : K- x V  TZ, and assume a two-world 

setting:

World 0: The function g is drawn at random from Func{V ,TZ ).

World 1: The function g is drawn at random from P . Note W is a subset 

of F u nc{V , TZ).

Let A  be an algorithm that takes an oracle from a function g : V  ^  TZ, 

to return a bit, 0  or 1 , to indicate which family of function the adversary
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thinks the g is from. We consider the experiments in Experiment 4.

Experiment ^(A) Experiment ExpTf^ °(A)

g4^Pï:MC(P,%)

A  queries g A  queries g

A  outputs 6 A  outputs b

return b return b

E xperim en t 4: Experiments for pseudo-random function distinguisher 

The prf-advantage of A  is defined as

Adup-^(A) =  |P [E xp^^-°(A ) =  1] -  P [E x p ^ ^ - \A )  =  1]|

The definition above measures how good A  can distinguish the two world. 

I f  for any polynomial time algorithm A, its pr/-advantage is negligible, 

then the function family W ; / C x P - ^ R i s a  pseudo-random function family.

The block ciphers such as DES and AES, are modeled as pseudo-random 

functions (or permutations). That is, let I be the block size, for any poly­

nomial time algorithm A, any polynomial P, for sufficiently large I, there 

is
Adv^gA) <

The DDH problem we introduced above is also believed to be a pseudo­

random function family.

2.5 C ryp tograp h ic  S ch em e S ecu rity

In this section, we introduce the cryptographic protocol design approaches. 

After reviewing the Cryptanalysis-driven design. Shannon Security, we will 

focus on provable security which is used in our design. For more details, 

please refer to [2 ], [8 ].
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2.5.1 Cryptanalysis-driven design

Traditionally, cryptographic protocols have been designed by focusing on 

concrete attacks and how to defeat them. The approach works like this;

1. A  cryptographic goal is recognized.

2 . A  solution is offered.

3. One searches for an attack on the proposed solution.

4. When one feasible attack is found, go back to Step 2 and try  to come 

up with a better solution. The process then continues.

Step 3 is called cryptanalysis. In the classical approach to design cryp­

tographic scheme, cryptanalysis was an essential component of constructing 

any new design.

There are some difficulties w ith the approach of cryptanalysis-drive de­

sign. The obvious problem is that one never knows if  things are right. The 

process should iterate until one feels “confident” that the solution is ade­

quate. But one has to accept that design errors might come to light at any 

time.

2.5.2 Shannon Security

A “systematic” approach to cryptography, where proofs and definitions play 

a visible role, begins in the work of Claude Shannon[19], which measures 

the secrecy of the information with information theory concepts. We briefly 

present the idea of Shannon as follows. Let R : {0 ,1 }”  —> [0,1] be a probabil­

ity  distribution on the set of n-bit plaintexts. That is, assume Alice chooses 

a plaintext m to send with probability P[m\. This distribution is known to 

everyone, including the adversary. Thus, before the ciphertext c is transmit­

ted, all the adversary knows is that any particular message m has probability
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P[m] of being transmitted. Shannon security requires that, the conditional 

probability that after observing the ciphertext c, to the adversary, the prob­

ability that the message is m keeps P[m\. That is f  [m|c] =  P[m\. I t  means 

that the adversary does not get any information about the plaintext from its 

ciphertext.

An example of such a scheme, one-time pad, is Shannon-secure. The 

one-time pad is as follows. Alice and Bob share a random secret key of n 

bits, K  =  kik^ ■■ - kn- Alice want to send Bob a message M , also n bits, 

M  =  777-17712 • rrin. The ciphertext C  is the bit-wise XOR of the plaintext

and key:

C =  M  K  =  C1C2

where

Cl =  k \  r r i i ,  Cg =  fcg m 2 ,  • • • ,Cn =  kn  m ^ .

After receiving the ciphertext. Bob can recover the plaintext w ith the key:

M  =  C K  =  77717772

where

' Tflri

rrii =  /Ci ^  Cl, 7772 =  /C2 ^  C2, • • • , r77„ =  ^  C„.

In the one-time pad encryption, the adversary does not get any information 

about M  from C.

Shannon-security however has important limitations. To achieve Shannon 

security, the key has to be as long as the message. I f  an encryption scheme is 

to meet Shannon security, the number of key bits must be at least the total 

number of plaintext bits we’re going to encrypt.

This fact has some fundamental implications. I f  we want to do practical 

cryptography, we must be able to use a single short key to encrypt lots of 

bits. This means that we w ill not be able to achieve Shannon security. A 

different paradigm and a different notion of security have to be taken.
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2.5.3 Provable Security

The modern cryptography introduces a new dimension: the amount of com­

puting power available to an adversary. I t  seeks to have security as long as 

adversaries do not have “too much” computing time. Schemes are breakable 

i f  the adversary has infinite computing power, but in practice, the attacks 

are infeasible.

For the security of a scheme, we w ill want to be making statements like 

this: Assuming the adversary uses no more than t  computing cycles, her 

probability of breaking the scheme is at most t  =  2“ ^°°. Notice we do not 

assume how the adversary operates, what algorithm, or technique the adver­

sary uses.

The legitimate parties must be able to efficiently execute the scheme in­

structions. Their effort should be reasonable. But the task for the adversary 

must be infeasible.

C ryptographic prim itives

The computational nature of modern cryptography means that one must 

find computationally hard problems, and base the cryptography schemes on 

them. The basic problems are called cryptographic primitives. They have 

some “hardness” or “security” properties, but by themselves they do not solve 

any problem of interest. They must be properly used as building blocks to 

achieve some useful scheme.

Cryptographic primitives are drawn from two sources: engineered con­

structs and mathematical problems. In the first class fall standard block 

ciphers such as the well-known AES algorithm. In the second class falls the 

DLP, RSA and DDH problems we have introduced above.
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The provable-security approach

From the cryptographic primitives, we start to transform them into schemes 

to solve the practical problems. We w ill view a cryptographer as an engine 

for turning the primitives into schemes. That is, we focus on scheme design 

under the assumption that good primitives exist.

A poorly designed scheme can be insecure even though the underlying 

primitive is good. The fault is not of the underlying primitive, but that 

primitive was somehow misused.

In practice, lots of application schemes have been broken, yet the good 

primitives, like AES and RSA, have never been convincingly broken. We 

would like to build on the strength of such primitives in such a way that 

schemes can “inherit” this strength, not lose it. The provable-security paradigm 

lets us do that.

The provable-security paradigm is as follows. Take some goal, like achiev­

ing privacy via symmetric encryption. The first step is to make a formal 

adversarial model and define what it  means for an encryption scheme to be 

secure. The definition explains exactly when the adversary is successful.

W ith a definition in hand, a particular scheme, based on some particular 

primitive, can be put forward. I t  is then analyzed from the point of view 

of meeting the definition. The plan is now show security via a reduction.

A reduction shows that the only way to defeat the scheme is to break the 

underlying primitive.

A reduction is a proof that if  the cryptographic primitive does the job it 

is supposed to do, then the scheme we have made does the job that it  is sup­

posed to do. Believing this, it is no longer necessary to directly cryptanalyze 

the scheme. I f  one found a weakness in the scheme, one would have found 

the weakness in the underlying primitive. And if  we believe the primitive 

is secure, then without further cryptanalysis of the scheme, we believe the 

scheme is secure too.
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In order to do a reduction one must have a formal notion of what is meant 

by the security of the underlying cryptographic primitive: what attacks, 

exactly, does it  withstand? For example, we might assume that discrete 

exponentiation function is a one-way function and can not be inverted.

Here is another way of looking at what reductions do. When a reduction 

from the onewayness of discrete exponentiation function to the security of 

the scheme, it is actually giving a transformation with the following property. 

Suppose the adversary A  is able to break the scheme. The transformation 

takes A  and turns it into another adversary that breaks discrete logarithm 

problem. Thus we conclude, as long as we believe no adversary cannot break 

DLP, there could be no such adversary A  that breaks the scheme. In other 

words, the scheme is secure.

The concept of using reductions in cryptography is a beautiful and pow­

erful idea. Schemes designed in this way have superior security guarantees. 

Yet we need to notice that in some ways the term “provable security” is 

misleading. As the above indicates, what is probably the central step is pro­

viding a model and definition of security. The reduction proves the scheme 

is secure under the security model. Whether the scheme is secure in practice 

depends on whether the model is defined reasonably.

The scheme we provide in chapter 4 takes the provable-security approach.
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Chapter 3

Related Works

In this chapter we review a number of previous schemes, trying to show a 

trace of efforts, progresses and directions in hierarchical access control. This 

is not a comprehensive list of all works, but to the best of our knowledge, 

these schemes present distinct ideas in solving the problems, and are typical 

among similar schemes.

A ll these schemes consist of two procedures. One is the key assignment. In 

this procedure a Central Authority (CA) assigns the secret keys and related 

public parameters to classes. The other is the key derivation. I t  is a procedure 

that a class derives the keys of its successors.

These schemes are categorized into 2 groups. One group is called direct 

access schemes because in these schemes, a predecessor can compute the key 

of any successor w ithout knowing the parameters of other successors between 

them. The other group is called indirect access schemes because in order to 

compute the key of a successor, a predecessor has to compute the keys of the 

successors between them.
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3.1 S om e D irect A ccess Schem es

This group of schemes can also be called RSA-based schemes because the 

intractability of the RSA problem forms the basis of the security of the 

schemes.

3.1.1 A kl-Tay lor scheme

Akl-Taylor scheme [1] is the first scheme that addresses the access control in 

a poset hierarchy. Let Oi, Cg, - - - , O,, • • • indicate the security classes in the 

poset. The key assignment are as follows:

choose 2 large secret prime numbers p and q, and publish N  =  pq 

choose a secret g E Z» 

for each class 0% do
assign a distinct prime number pi

P  =  Ylcjf,CiPj assigned to each class as its public parameter 

ki =  mod N  is assigned to Ci as its secret key 

end for
Procedure 5: AKL-Taylor Key assignment

When a class Ci tries to derive the secret key of class Cj < Ci, it runs 

the following key derivation algorithm:

kj =  k.

Procedure 6: AKL-Taylor Key derivation 

The correctness of the key derivation procedure is easy to verify:

=  g^'

— hj 
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Table 3.1: Key Assignment in Akl-Taylor scheme

Security Class Public Parameter Secret Key
1 P = 1 h
2 P2 = P1P3P6P7P11P12
3 p5 = P1P2
4 Pi = P1P2P3P5P6P7P11P12 P = kY
5 P  = P1P2P3P4P6P7P8PIIP12
6 P  = PlP2P3P4P5P7P8?9Pl0Pl2 k& = fcf®
7 P  = PlP2P3P4P5P6?8P9PlO kj = kY
8 P  = P1P2P3P4P5P6P7P9P10P11P12 p  = kp
9 P  = P1P2P3P4P5P6P7P8P10P11P12 kg = A:f®

10 Po = P1P2P3P4P5P6P7P8P9P11P12 Po = k^°
11 Pll = P1P2P3P4P5P6P7P8P9T10P12 Pi = A:f“
12 P12 = P1P2P3P4P5P6P7P8P9P10P1I pg = kf"

The secret analysis is as follows:

I f  Cj > C j ,  then Pj\Pi, and kj =  is computable by Q  with secret

key and the public parameters p  and Pj.

I f  Cj ^  Ci, then Pj \ P , and to compute kj =  is to solve the RSA

problem, which is not feasible.

We give an example for the AKL-Taylor scheme. A  hierarchy shown 

in Figure 1.1 consists of Ci , - - -  , Cig. Suppose p i,-- -  ,pn  are the prime 

numbers assigned to the classes respectively. Then secret keys and the public 

parameters of the classes are shown in Table 3.1.

In the case Cg > Qo, if Cg is to derive the key of C\q , it  can compute

kw =  ^^10/-Pa y
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In the case C4 ^  C5 , if  C4 tries to derive p ,  i t  w ill have to solve the RSA 

problem, which is infeasible:

P  =  mod N

=  m odK

Akl-Taylor scheme is an elegant solution to the access control in a poset 

hierarchy. But with this scheme, a large amount of storage for the public 

parameters is required. For example, in a system with n classes, a leaf 

class (a class without any successor) needs to store the product of n distinct 

prime numbers. Moreover, once a security class is added to or deleted from 

the system, the public parameters and keys of all the classes except for its 

predecessors have to be re-calculated.

Later, in [14], Alackinnon et al. presented an algorithm for prime as­

signment for Akl-Taylor scheme. W ith  the improved assignment, the primes 

assigned to the classes do not have to be distinct as in the original Akl-Taylor 

scheme. This reduces the number of distinct primes in Akl-Taylor scheme, 

but the number of primes used in a class’s public parameter is s till the same 

as in Akl-Taylor scheme.

3.1.2 H arn -L in  scheme

In [10], Earn and Lin proposed an scheme that can be viewed as a “mirror 

version” of the Akl-Taylor scheme, which shifts the storage load from the 

lower classes to the upper classes. The key assignment procedure is shown 

in Procedure 7.

I f  a class Ci tries to derive the secret key of class Cj, it runs the key 

derivation algorithm in Procedure 8 .

The correctness Harn-Lin key assignment and derivation can be verified 

as follows:
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CA choose 2 large secret prime numbers p and q, and publish N  =  pq 

CA choose a public a e [2, n — 1] such that gcd{a, A ) =  1 

for each class C, do
assign a distinct prime number Cj 

compute di — mod (f>{N) 

end for
for each class Q  do

CA computer R  =  ric^<Ci R 
CA assign R  to each class as its public parameter 

CA compute ki =  mod N

CA assign ki to Q  as its secret key 

end for
Procedure 7: Harn-Lin Key assignment

Procedure 8: Harn-Lin Key derivation
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Notice that eAi =  1 mod 4>{N)

=  (onc;,<c/k m od^M ^nc,<c,W nc,<c/* mod A

=  (anc;,<Cj mod ^

=  kj

The security of the Harn-Lin scheme is analyzed as follows:

I f  Ci > Cj, R IP , then kj =  is computable by C« w ith  secret key

and the public parameters p  and p .

I f  Cj j t  Ci, then R  { p ,  and to compute K j  =  K ^^^ ' is to solve the RSA 

problem, which is not feasible. □

Also, we give an example of Harn-Lin scheme. Like the example for the 

AKL-Taylor scheme, hierarchy shown in Figure 1.1 consists of C i, • • • , Cig. 

Suppose pi, • • • ,p i2 are the prime numbers assigned to the classes respec­

tively. Then secret keys and the public parameters of the classes are listed 

in Table 3.2

In the case Cg > Cio, if  Cg is to derive the key of Cio , i t  can compute 

kio =  mod A

In the case C 4  ^  C 5 , if  C 4  tries to derive R , it  w ill have to solve the RSA 

problem, which is infeasible:

ks =  mod A

=  mod A

W ith the Harn-Lin scheme, the higher a class is in the hierarchy, the 

larger storage it requires. In a hierarchy w ith n classes, the leaf classes 

need to store only 1 prime as its public parameter, but a root class (a class 

that is the predecessor of all other classes) needs to store the product of n
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T a b le  3 .2 ; K e y  a s s ig n m e n t  in  H a r n - L i n  s c h e m e

S e c u r i t y  C la s s P u b l ic  P a r a m e t e r S e c r e t  K e y

1 P i  —  616263646566676869610611612 =  o W  mod j

2 P 2  —  6264656369610 =  o A '  mod jY

3 P 3  —  636466676369610611612 Ala =  0 ^ ^ '  mod A

4 P i  =  646369610 Al4 =  mod ^(IV) j  ^

5 P 5  =  6569610 Alg =  mod ÿ (N )  j  2Y

6 P q =  65611 Ale =  m o d ^ (N ) jY

7 P 7  =  67611612 k j --- aO  ̂ 'I’P l  m o d  N

8 P s  =  6g k s  =  aK   ̂ mod 4>{N) j \ j

9 P 9  =  69 Aig =  mod A

10 P ig  =  610 Alio =  0^1^' m o d ^ M  yy

11 P l l  =  611 A iii m odÿ(W ) ;Y

12 P12 =  612 k i 2 =  aCY mod 4>{N) jyf
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primes. This is reverse to the Akl-Taylor scheme. Considering there are more 

lower classes than upper classes in a practical hierarchy, the Harn-Lin scheme 

achieves improvement in storage space consumed by all users. However, in 

view of the greatest storage space required for a single user, the Harn-Lin 

scheme is the same as the Akl-Taylor scheme.

3.1.3 Huang-Yang Scheme

In [11], Huang and Yang proposed a scheme based on Akl-Taylor scheme 

to reduce the number of primes consumed in Akl-Taylor scheme. In Akl- 

Taylor scheme, each class is assigned with a distinct prime. In Huang-Yang 

scheme, a combination of primes is assigned to a class. For example, it assigns 

( 2°) — 45 pairs of primes to 45 classes, instead of assigning 10 distinct primes 

to 10 classes respectively. By reducing the number of primes, it  is hoped that 

the storage space for the key materials for a class will be reduced.

The key assignment in Huang-Yang scheme is shown in Procedure 9. In 

the procedure, /  is a one-way hash function.

I f  a class Cj tries to derive the secret key of class C j , it runs the following 

key derivation algorithm as shown in Procedure 10.

Although the scheme is carefully designed w ith several attacking possibil­

ity  in mind, [2 1 ] shows that it  is insecure against the collusion attack whereby 

some security classes conspire to derive the secret keys of other leaf security 

classes. Here we show that some leaf security classes in a leaf group can 

conspire to derive secrets of other classes in the same leaf group.

Assume the leaf group {Cj_i, Cj_2 , - , Cj_j} w ith secret keys {fcj_i, &j_2, • • ■ ,

fcj t̂}, respectively, has a common ancestor C j .  W ithout loss of generality, we 

assume that {Q q , Qq, • • • , Q q_ i} collude.

Denote L =  km (L jq , Rq, • • • , Rq). We can represent Kj_j as follows. For
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choose 2 large secret prime numbers p and q, and publish N  — pq 

choose a public /cq G [2, n -  1] such that gcd{ko, n) =  1 

for each class Q  do
if Ci is not a leaf class then  

assign a distinct prime number 

compute di =  e~  ̂ mod <̂ (7V) 

else
assign a distinct set of prime number Zj =  • • • , 6  ̂^}

compute z' =  • ■ • , where d ij  =  eC mod 0(iV), j  G [1, k]

end if 
end for
for each class Q  do

if Ci is not a leaf class then
computer Pj, the product of the distinct primes assigned to Cj where

Q  <  Q
CA assign p  to Q  as its public parameter 

compute ki =   ̂ mod N

assign ki to C, as its secret key 

else
computer P  =  f j  

assign p  to each class as its public parameter
CiCP-Ud.ez'C'j mod 4,{N)

compute ki =  k()  ̂ ' mod N

assign ki to C, as its secret key

end if 

end for
Procedure 9: Huang-Yang Key assignment
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p (  mod N  if  Ci is a leaf class,

[  mod N  if  Q  is a leaf class,

Procedure 10: Huang-Yang Key derivation

I e

mod AT =  mod TV

where A:'- =  kp^^.

By extended Euclidean algorithm, we can find t — 1 integers for I e 

[ l , t  — 1], such that

y i  - ^ f { C i , i ) v i , i= A
te(i,t-i]

where

A = gcd(-^/(C',,/) 1])
R,i

Then we have

n  =  n  mod #  =  (K :;y  mod Y
1] 1]

I f  A|(p, i f l d t p i tb^n Q ,i, Ci,2 , • • • ,, Ci^t-i can conspire to deduce ki t̂ as fol­

lows:

K ,  ^  = {  n  g f f

where

i,t
L

■'= Pm -A

The research in [21] shows that the probability of A|(p. is rather

high. For example, in a leaf group of 10 members, each assigned with 2 primes 

out of 5 primes. I f  the output length of /  is 48 bit, then the probability that 

a class can be attacked by others is greater that 90%.
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3.2.1 Sandhu Scheme

In [18], Sandhu proposed an access control scheme for tree hierarchy based 

on parameterized family of one-way functions constructed from encryption 

primitives such as DES. The tree hierarchy is a special case of a poset hier­

archy where each class has at most one immediate predecessor. The key for 

a class is generated w ith its identity (ID) and the key of its immediate pre­

decessor through a one-way function. In the scheme, no public parameters 

are needed for key derivation except for the ID of the classes.

A well known method to construct a one-way function is to encrypt some 

fixed and public known constant c using x as the key, i.e. f {x )  =  P (c) where 

£ is the encryption algorithm of a block cipher. This can be generalized 

to obtain a family of one-way functions by replacing the constant c by a 

parameter p, that is fp{x) =  £x{p)- Now computing the inverse of fp{x) 

amounts to computing the key x given that p encrypted as f{x ) .  So this is a 

known plaintext attack which is infeasible for secure cryptosystems. Hence 

fp{x) is a one-way function for every p. The collection of functions fp{x) is 

called a parameterized family of one-way functions.

The key assignment procedure in Sandhu scheme is shown in Procedure

11.

assign an arbitrary key to the root security class, 

for each class Q  do
if Cj is an immediate successor of C, then

assign to C, as its key.
end if 

end for

Procedure 11: Sandhu key assignment procedure
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Each class Cj can derive the key of its immediate successor. I f  Q  <  Cj 

but Ci is not an immediate successor of Cj, Cj needs to run the derivation 

procedure iteratively for each Q  that Ci < Ci <  Cj and finally derives ki. 

The procedure is shown in Procedure 12. When a Cj is to derive the key of 

its successor Q , it runs the procedure in Procedure 12.

if  Ci is C /s immediate successor then  

else
Cj compute all keys in the path from Cj to Q  downwards until ki is 

obtained 

end if
Procedure 12; Sandhu key derivation procedure

Since the family of one-way functions is publicly known and the names of 

the security classes are public, a class can easily compute the key kj for all 

security classes Cj covered by Cp, However it  is computationally infeasible to 

compute kj for a security class Cj >  C,; since this amounts to the inversion 

of one or more one-way functions.

Finally it  should be computationally infeasible to compute kj from ki for 

Cj incomparable w ith Q . To see what this entails consider the simple case 

where C, and Cj are immediate successor of Ck- Then

By the assumed security of the £ it  is infeasible to compute kj from ki by 

solving the known plaintext problem of the former equation to derive k^ and 

then using the latter equation to compute kj. For a strong cryptosystem we 

believe it can be safely assumed that there w ill also be no other tractable 

method of computing kj from ki in this situation. Moreover even if we know
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the keys for a large number of siblings it  w ill be infeasible to compute the 

keys for a sibling outside the known set. That is collusion among the siblings 

is infeasible. Similar considerations apply to incomparable classes which are 

not siblings.

Compared with the direct access schemes, the required storage space in 

Sandhu scheme is reduced tremendously. However, this scheme can only be 

implemented for a tree hierarchy. The solution for the general case of an 

arbitrary poset was not given.

3.2.2 Zhong Scheme

In [24] Zhong proposed a solution that supports poset while inheriting the 

advantages of Sandhu scheme. This scheme is based on an ideal hash function 

h : TZxS 7Z where 7Z can be considered as a set of keys, 5  can be regarded 

as a set of class IDs. The hash function must be collision-free and modelled 

as a random oracle.

The key assignment procedure in Zhong’s scheme is shown in Procedure 

13P

When a class Cj > Q  needs to derive the ki, it runs the key derivation 

procedure as described in Procedure 14.

The security analysis is given as follows.

This scheme prevents classes from illegal derivation of keys. That is, a 

class can never derive a key that does not belong to any successor. In general, 

consider the class Q . Suppose that Q  wants to derive kh, where C/ ^  C / 

Therefore, Q  has to compute kh from ki. For each common predecessor Cj 

of these two security classes, these two secret parameters can be expanded

^In Zhong’s scheme, the key assigned to Q  is fci 0 P i  where Pi is picked by Q. Here 

we simplify the description.
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for each class Q  do
if Ci has no predecessor then

CA picks ki eTZ  uniformly at random 

else if Ci has one immediate processor Cj  then  
CA picks ü j j  e S

ki  ̂ h(^kj, cijj'  ̂

publish ü j j  

else
{comment: Q  has more than one immediate predecessors

C ji, • • • , Cjk }

CA picks Qjij, ■ • ■ , djk,i G <S
ki  ̂ h{kj\, d jij^

Oj2,i ^  A;j 0  h{kj2,aj2,i)

Ojk,i ^  A:; 0  h{kj2,aj2,i) 

publish d ji j ,  ' ' ' , ^jk,i 

publish O j 2j ,  ■■■ , Ojk,i 

end if 

end for
Procedure 13: Zhong key assignment procedure
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if  Cj is the single immediate predecessor of Q  then
ki — hk j , dj i

else if Cj is Q 's immediate predecessor Cj\ then
ki ■< h(^kji,djij^

else if Cj is C /s immediate predecessor Cjp,p >  1 then

ki =  Ojpj 0

else
Cj compute all keys in the path from Cj to C, downwards until ki is 

obtained 

end if
Procedure 14: Zhong key derivation

according to the paths from Cj  to them:

ki =  h ( . .. h{kj, 

kh — . ..hi^kj,

However, by the property of random oracle, h{L, a) is independent of h{L, a') 

if a /  d'. Because Ch <  Q , the paths from Cj to C/, must diverge from the 

path from Cj  to Q  at some point. Therefore, kh must be independent of ki. 

In other words, Q  cannot compute kh from fcj. □

3.2.3 Zheng-H ard jono-P ieprzyk Scheme

In [23] Zheng et al. proposed a solution that supports poset while inheriting 

the advantages of Sandhu scheme. What is more important, in this proposal, 

the security of the scheme is analyzed based on a comprehensive security 

model instead of some ad hoc attacking scenarios. The security definition is 

as follows:

Definition 3.1 Let C  be the set of classes in a hierarchical organization. 

S' C  C , 8 (S') denotes the set of classes in S' and all the successors of S'.
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Let P  be a polynomial, I an integer. Assume |C| =  P{n). A key generation 

scheme fo r a hierarchical organization is secure i f  for any S' C C, fo r any 

class Ci ^  0(§O, fo r any polynomial Q and fo r all sujficiently large I, the 

probability that the classes in S' are able to find by collaboration the key ki 

of the class Q  whenever Q  has no successor, or to simulate C« ’s procedure 

fo r generating the key of a successor of Q  whenever Q  is an internal class 

or the root class, is less than .

Pseudorandom function families and sibling intractable function fami­

lies (SIFF) are employed in this scheme. fc-SIFF is a generalization of the 

universal one-way hash function family we have introduced. Similar to the 

universal one-way hash function, the k-SIFF has the following properties:

1. let s =  [log2 (fc)], k-SIFF maps {0 ,1 } ' to {0,1}*“ ®

2. Given distinct Xi,--- ,Xj G { 0 , 1 } / j  < k, it  is easy to find f  e k — 

S IF F  such that f { x i )  =  f { x 2 ) =  • ■ ■ =  f {x j) .

3. Given distinct Xi, ■ • • ,Xj G { 0 , 1 } / j  < k, and the f  e k — S IF F  such 

that / ( x i)  =  /(xa) =  • • • =  f { x j ) ,  it  is infeasible to find a x' such that

=  /(Xg) =  . . . =  /(X j).

We define the notes for the key assignment and derivation procedures. 

Denote by 7Dj the identity of the class C, . Assume that every 7D, can 

be described by an m{l)-hit string, where m is a polynomial. Let T  — 

{T i}  be a pseudo-random function family, where T) =  { f x l fK  ■ {0, l } ” *̂h 

{0 ,1 } / K  G {0 ,1 }" }  and each function fK  G IFi is specified by an /-b it string 

K.  Let FI =  [J iH i he a. /c-SIFF mapping /-bit to /-bit output strings. Also 

assume that k is sufficiently large so that no nodes could have more than k 

parents. The key assignment procedure is described in Procedure 15.

When a class Cj >  Q  needs to derive the F, it runs the key derivation 

procedure as described in Procedure 16.
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A random string ko G {0,1}^ is chosen for the root class 

for each class Q  without a key do
if the class Q  has a single immediate predecessor Cj then  

ki =  îkj{kF>i) 
else

{comment; Q  has p immediate predecessors C^y, , • • •

a random ki G {0 ,1 }' is chosen for C, 

choose from H; a function hi such that 

hi{fkj^{IDi)) = hifkj^{IDi)  =  • • • =  hi{fk^^{IDi)) = ki 
publish hi 

end if 
end for

Procedure 15: Zheng-Hardjono-Pieprzyk key assignment

if Cj is the single immediate predecessor of Q  then  

h  =  fk j{ ID i)

else if Cj is one of the immediate predecessors of Q  then  

ki =  h i{fk^{ID i)) 

else
Compute all keys in the path from Cj to Q  downwards until ki is ob­

tained 

end if
Procedure 16: Zheng-Hardjono-Pieprzyk key derivation
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For the security of the scheme, [23] gives a proof sketch as follows:

Assume S' C C, Cj ^  ©(S'). According to the definition for security, the 

following two cases are to be considered:

Case 1 : Q  has no successor and S' can directly find the key of C, .

Case 2 : Q  has one or more successors and S' can simulate C i ’s procedure for 

generating the key kj of some successor Cj of Q.

First discuss Case 1 where C, has no successor. Note that the key ki of 

Ci is derived from the key(s) of the predecessor (s) of Cj by the use of the 

pseudo-random function family. Therefore, obtaining ki by S' implies that S' 

is able to predict the output of the pseudo-random function family, which is 

a contradiction.

Now consider Case 2 where Q  is an internal class or the root class, and 

S' can simulate Q  ’s procedure for generating the key kj of some successor 

Cj of Ci . Note that Cj may or may not be a member of 0 (5 '). For the key 

generation scheme, being able to simulate C j ’s procedure for generating the 

key Cj of the successor Cj of Cj implies being able to get either ki when C, 

is the single predecessor of Cj , or fk^ (ID j) when Cj has other predecessor 

than Cj . Also note that getting ki or fk ^ ilD j)  means getting the keys of 

all the descendants of Cj besides the key kj of Cj . Thus there are only two 

situations to be considered when S' is able to get fcj or fk^{ID j) but fails to 

mimic any of the immediate predecessors of Cj . These two situations are:

Situation 1 : Cj is an predecessor of some class(s) in 0(S').

Situation 2 : Cj is not the predecessor of any class in ©(S').

Consider Situation 1 first. Since Q  is an predecessor of a class in ©(S'), there 

is a path from Cj to the class in ©(S'). Cj can derive the key of the class 

in ©(S') by evaluating the pseudo-random function family and (instances of)
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the sibling intractable function family which appear in the path. Therefore, 

getting the key fcj of Q  or / fc //D j)  by S' implies that S' can do at least 

one of the following three actions: invert the pseudo-random function family, 

find a collision string for (instances of) the sibling intractable function family 

(appearing in the path from C, to the class in ©(S'), or invert (instances of) 

the sibling intractable function family. The success of any of these actions 

w ith a high probability is a contradiction. Comparing to Situation 1, Situ­

ation 2 is easier to analyze. Since Q  is not the predecessor of any class in 

©(S'), there is pass from a class in ©(S') to Q  . Thus getting fcj or / fc / /D j)  

by ©(S') implies that ©(S') can predict the output of the pseudo-random 

function family. This is also a contradiction.

The construction of fc-SIFF is similar to the construction of universal one­

way hash function we presented in section 2.4.3. An example is as follows.

Let s >2^. On the finite field F 2 m,

=  {pa,b|go,b(:c) =  cL o p(ao  4 - O iX  -I 1- Oo, ' "  , « k - i  G 7 ^ ^ .}

where all computation are in Egm and the function

c/iop : { 0 , i r  { 0 ,

chops the last s bits.

Let /  be an one-way permutation. Define Hm =  {h  =  g o f\g  E Gm)}- 

Then Um(^m) is a k-universal one-way hash function.

[12] and [24] state that there are problems in implementation of Zheng’s 

scheme in practice. But from the above example, we think the implementa­

tion is practical.

The security model in the Zheng-Hardjono-Pieprzyk scheme is actually 

equivalent to our security model in Definition 1.1. Yet a formal and rigor­

ous proof can not be obtained directly from the above proof sketch. The 

argument in the proof is more “statement” than “proof’ . Detailed proof is
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still open there. For example, we consider the following simple scenario in 

Figure 3.1. Suppose S' =  {C 2 , C4 }, the class they are going to attack is C3.

Figure 3.1: A simple attacking scenario: class 2 and class 4 conspire to attack 

class 3

This case falls into Case-2, Situation-1 in the proof sketch. According to 

the proof argument, S' has to invert the pseudo-random function family. We 

know if  Ci itself intends to attack C3 , i t  is safe to say that C4 has to invert 

the pseudo-random function family. But now with the help of C2 , it  is not 

obvious that C4 has to invert the pseudo-random function family. What we 

need to prove here, is that w ith all the information held by C2  and C4 , to 

compute kz is infeasible. The result can not be obtained directly from the 

argument in the proof sketch.
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3 .3  Sum m ary

In this chapter we reviewed some typical hierarchical access schemes. More 

schemes with variance including [5] [6] [7] [16] [22] . In view of the four re­

quirements to the schemes, Zheng-Hardjono-Pieprzyk scheme is a outstand­

ing one. The most significant part in this scheme is that it provides a security 

model that generalized all possible attack scenarios natural to the schemes. 

Also its performance in storage and dynamics is at least as good as others. 

Yet we think its security proof should be more formal and rigorous, thus is 

more persuasive and clear to be verified. For a scheme, a proof in the flavor 

the provable security, reducing some standard cryptographic primitives to 

the scheme, w ith each step firm ly based on clear reasoning, would be more 

favorable. In the next parts, we are going to present a new scheme with same 

performance and security property as Zheng-Hardjono-Pieprzyk scheme, but 

w ith more rigorous formal security proof.
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Chapter 4 

Proposed Scheme

In this chapter, we propose a new hierarchical access control scheme.

4.1 P o se t R ep resen ta tio n

First we define how the poset is represented. For a given hierarchy structure, 

its corresponding poset (C, <) can be represented by a Hasse diagram, which 

is a graph whose vertices are classes of C and the edges correspond to the < 

relation. An edge from Cj G C to C, G C is present if  Q  <  Cj and there is 

no Ck G C such that Q  < C& and Ck < Cj. I f  Q  < Cj, then Cj is drawn 

higher than C,. Because of that, the direction of the edges is not indicated 

in a Hasse diagram. Figure 1.1 shows an example of poset represented as a 

Hasse diagram.

4.2 A u x iliary  F unction

We introduce a function that w ill be used in our scheme below. Let p =  2 g + l 

where p, q are all odd primes. Let G be the subgroup of Z* of order q. We
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define a function /  ; G —> [1 , g] as follows;

{p  — x; X > q

For any x G Z*, if  x G G, then —x ^  G. So the above function is a 

bijection. I f  x is a random variable uniformly distributed on G, /(x )  is 

uniformly distributed on [l,g].

4.3  K ey  M an agem en t

The key management of the scheme consists of two procedures; the key 

assignment and the key derivation.

4.3.1 K e y  Assignment

The CA runs Procedure 17 to assign each class Q  its public parameters p,, 

h ij and a secret key fcj. The function /  in the procedure is the auxiliary 

function presented above in (4.1).

For example, the classes in Figure 1.1 w ill be assigned with the secret key 

and public parameters as shown in Table 4.1.

4.3.2 K e y  D erivation

When a class Cj needs to compute the key of one successor Q , it finds a path 

from itself to the successor in the Hasse diagram of the hierarchy. Starting 

from its immediate successor in the path, the class go through the path, and 

computes key of every successor along the path. The procedure of derivation 

is shown in Procedure 18.

For example, in Figure 1.1, class 1 is to derive the key of class 10. It finds 

the path 1 —̂ 3 10, and does the following computations:
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Table 4.1; Example of key assignment

Node I D secret key public parameters

1 k i -

2 ^  =  / ( P 2 ' ) 92

3 g 3

4 A:4 = ^4,2 — 9z f  > L4 3 =  p4^

5 k $  =  f { O s ) 95

6 ^6 =  / ( g 6^) 96
7 97

8 =  / ( g g * ) 98

9 Ag = ^9,4 =  gg^, L g ,5 — gg^

10 &10 = h i o , 3  =  9 i o ^ P h i O A  =  9 i f p h i o , 5  =  9i t ' ‘

11 k i i  = h u , 6  —  9i i i  h \ i j  =  g j f

12 ^12 =  / ( g i D g l2

64

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



CHAPTER 4. PROPOSED SCHEME

CA chooses a group Z*, where p — 2q +  1, p and q are both large primes. 

CA chooses G, the subgroup of Z* of order q

CA traverses the Hasse diagram from the root class with width-first algo­

rithm, and 

for each C* do 
set ÿi to be a unique generator of G 

if  Cj does not have any immediate predecessor then  
set ki to be a number chosen from [I, q] at random 

else if  Cj has only one immediate predecessor Cj then

else
{comment: Cj has more than one immediate predecessors} 

let X  be the set of keys of C j’s immediate predecessors

^ — rixiSA’
/Ci =  /(g f)
for all Xi E X  do

h. g,
end for 

end if 
end for

Procedure 17: Key Assignment

/C3 =  /(gs ')

kio =  /(^io,s)

4.3.3 A dd a class

Let Cfc be a new security class to be added into the hierarchy. The procedure 

to add the class is shown in Procedure 19.
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if Cj is the only one immediate predecessor of Q  then  

else if Cj is one of immediate predecessors of Q  then

ki — 

else
{comment: Cj is not a immediate predecessor of Q }  

compute all keys in the path from Cj to Q  downwards until p  is obtained 

end if
Procedure 18: Key Derivation

Exam ple 4.1 Let class C\z be the new class to be added in the hierarchy, 

serving as the immediate predecessor of C i and immediate successor of C i, 

as shown in Figure f . l .  After the update, key of Ci is set, and the keys and 

public parameters of the classes that are successors of Cis, including C i, Cg, 

Cg and Cio, are updated.

4.3.4 Delete a classe

Let Ck be the class to be deleted from into the hierarchy. The procedure to 

delete the class is shown in Procedure 20.

Exam ple 4.2 Let class Cg be the class to be deleted from the hierarchy, as 

shown in Figure f.2. After the update, the keys and the public parameters of 

Cg and Cio are changed.

4.3.5 A dd relation

A relationship between Ca and Q  added to the hierarchy so that Ca >  C& is 

added. The procedure to add the relation is shown in Procedure 21.
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CA randomly selects e G / { 1 }  for Cj 

if Ci does not have any immediate predecessor then  

set ki to be a number chosen from [1 , q] at random 

else if Ci has only one immediate predecessor Cj then

^  =  /(g ^ )  
else

{comment; Q  has more than one immediate predecessors} 

let X  be the set of keys of C/s immediate predecessors

^ — rixiGA’
=  /(g f)

for all Xj  G A do

end for 

end if
for all Ci that is the successor of Ck do

if Ci has only one immediate predecessor Cj then  

=  /(g ^ )
else

{comment: Q  has more than one immediate predecessors} 

let X  be the set of keys of C/s immediate predecessors

^ =  rix
=  /(g j 

for all Xj  G A do
7
" i j  — 9i 

end for 

end if 

end for

Ixi&X

Procedure 19: Add a new class
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Figure 4.1: Add a class: class 13 is added.

Exam ple 4.3 Let edge from  Cg to Cg is added to the hierarchy, as shown in 

Figure f.S). After the update, the keys and the public parameters of Cq, C\i 

are changed.

4.3.6 D elete relation

A relationship between Ca and Cb is delete from the hierarchy so that Ca >  C& 

is deleted. The procedure to delete the relation is shown in Procedure 22.

Exam ple 4.4 Let edge from  C3 to C4 is deleted from the hierarchy, as shown 

in Figure f-4- After the update, the keys and the public parameters of Ci, 

Cg, Cg ond Cio changed.
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Traverse the classes of Cfc’s successors with width-first algorithm, and 

for each C, that is Cfc’s successor do
if Ci is an immediate successor of Cfc then  

CA assigns a new generator g, to Q  

end if
if  Ci does not have any immediate predecessor other than Cfc then  

set ki to be a number chosen from [1 , q] at random 

else if Ci has only one immediate predecessor Cj other than Ck then

^  =  /(9 ^ )  
else

{comment; Q  has more than one immediate predecessors other than 

Cfc}
let X  be the set of keys of C,’s immediate predecessors (not include 

Cfc)

^ “  Yixi&X 
=  /(g f)  

for all Xj G A do

K ,  =  s C
end for 

end if 

end for
Delete Cfc and and the edges connected to Cfc

Procedure 20: Delete a class
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Figure 4.2: Delete a class: class 5 is deleted.

Figure 4.3: Add a relation: class 2 > class 6 is added.
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Add an edge for the new raltion

Traverse the sub-graph consists of the class Q  and its successors with 

width-first algorithm, and 

for each Q  traversed do
if Ci has only one immediate predecessor Cj then  

=  /(g ^ )
else

{comment: Q  has more than one immediate predecessors} 

let X  be the set of keys of C /s immediate predecessors

^ =  U  

=  /(g f)
for all Xi E X  do

~  9: 
end for 

end if 
end for

Procedure 21: Add a relation
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the CA assigns Q  with a new generator

Traverse the sub-graph consists of the class Cb and its successors with 

width-first algorithm, and run the following algorithm for each class: 

if Ci has only one immediate predecessor Cj then  

=  /(9 ^ )
else

{comment: Q  has more than one immediate predecessors} 

let X  be the set of keys of Q 's immediate predecessors

— T\.x (̂3X
A:i =  /(p f)
for all Xj  e  A do

h i, =  s C
end for 

end if
Delete the edge for the relation

Procedure 22: Delete a relation
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11 12

Figure 4.4; Delete a relation: class 3 >  class 4 is deleted.
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4 .4  S ecu rity  A n a lysis

4.4.1 Standard Cryptographic Assumptions

On the group G used in our scheme, two standard assumptions, the discrete 

logarithm (DL) assumption and decisional Diffie-Hellman (DDK) assumption 

are believed to hold [3]. Another assumption, named group decisional Difhe- 

Hellman (GDDH) assumption is proved to hold on G too [20, 4]. To be 

concrete, let g be a generater of G, a,b,c be random variables uniform on 

[l,g ], A  be a set of random variables uniform on [l,g ], I be the binary 

length of q. Suppose \X\ is polynomially bounded by I. Let (S') indicate 

the product of all elements in the set S. For any probabilistic polynomial 

time (in Ï) algorithms A, any polynomial Q, for I large enough, the three 

assumptions are formally expressed as follows;

DL assumption:

Pr[Aig,g°‘) =  a] <
<2(0

DDE assumption:

ln W 9 .9 “ ,9‘ .s “‘ ) =  1] -  P ,W 9 .9 “ ,9‘ ,V )  =  111 <  o y j

For convenience, we use the notation from [20] to simplify the expres­

sion. We say that the probabilistic distributions {g, g°', g^, g°'̂ ) and 

{g, g°', g^, g^) are polynomially indistinguishable, and denote them as

W, g",

GDDH assumption:

c  %) =  i] -A [A (g ,p ^ p n (s ) |^  c  %) =  i]| < ^

or denoted as
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4.4.2 Security P roof

The security of our scheme is based on the above three assumptions. In 

the following parts, we prove the scheme is secure under Definition 1.1. We 

suppose the number of classes in C is polynomially bounded by I (the binary 

length of |G|), and all the algorithms considered below are polynomial time 

(in I) algorithms.

We choose an arbitrary class Q  E C and suppose its secret key is kt- Let 

A be the set of predecessors of Q . We need to prove that, even when all the 

classes in C — A — { Q }  conspire, it  is computationally intractable for them 

to derive kt.
We group the set C — A — { Q }  into three subsets; B the set of classes in 

C — A which do not have predecessors in C — A, and which is not Q ; D the 

set of classes that are immediate successors of Q; R =  C —A — {C t} — B — D. 

The followings relations between B, D and R are direct from their definitions;

•  B U © U R  =  C — A — {C t}

•  B n D  =  0, R n B  — 0 and R n D =  0

• the classes in R are successors of the classes in B, or D, or both

An example of the above partition is as follows; in Figure 3.1, suppose class 

4 is the one we choose as the class Q , then A  =  {1 ,2 ,3 },B  =  {5,6 ,7},© =  

{ 8 , 9 , 1 0 } , R  =  { 1 1 , 1 2 } .

First we consider when all classes in B conspire, what information about 

kt they can learn. Suppose the generator assigned to class Ct is %, X  is the 

set of secret keys of the immediate predecessors of class Q . Let n ( ‘5) be 

the product of all elements in the set S. Let x =  then kt =  gf- The

public parameters of Q  are
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The classes ^  € B with generators G [l,n ] may share the same pre­

decessors w ith class Q , thus may hold a subset of Ç T }  as their

public parameters or secret keys. We assume that

is all the information possibly held by classes in B that is related to kt. So 

the public parameters of Ct, plus the information pertaining to kt held by B 

is a subset of

We have the following result showing that even all classes in B conspire, with 

the above information, they can not distinguish kt from a random number on 

[l,q \. For convenient expression, the following theorem and its proof follow 

the notation style similar to that in [2 0 ].

Theorem  4.5 Suppose DDH and GDDH assumptions hold on the group G. 

Let c he a random variable uniform on [1 , g], x =  P%(T). The two distribu­

tions

VL = (pr, c %}, G G [1,/ ]̂})

and

K. = c x}, c x j e  |i,nl})

are indistinguishable.

P roof. From GDDH assumption we have

c  % }) c  % })

A polynomial time algorithm can choose z uniformly from [1, g] at random, 

and reduce the above GDDH distribution pair to

Vi = c (%')',(onnvvia c x]
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V L  =  (ft“ . { f t .  C X},g l ,  {gîY, {(ft')n(®)|S c  X } )

respectively. It follows that

H  ^ p o l y  ( 4 -2)

Let Cl be a random variable uniform on [l,g ]. Since zci is independent of z 

and c, from DDH, we have

(gt, , g D  -M v  (po 9^, p ro

A polynomial time (in I) algorithm can choose X  that is a set of random 

variables uniform on [1 , g], and whose order is polynomially bounded by I,

and reduce the above DDH distribution pair to

VL  =  (« {.{ft.sP '^ ’ ls  C A -}.s r,(ft ') ',{(9 n n '* ’ ls  c  X } )

U t  =  ( f t ' , ( f t . C  n f t ' , ( 9 ' ) » . c  i f } )  

respectively. I t  follows that

C  C  (4.3)

Similarly, by choosing z and c uniformly from [1, g] at random, a polynomial

time (in I) algorithm can reduce the GDDH distribution pair

c  % }) c  % } ) .

to

VL  =  (9{,{9.,9P '“ ’ |S c  A i} . f t '. ( f t ')« ,{ ( f t ')n ra |s c  A-})

K  = (ft', (ft,9P ‘^ '|s  c  x } , g t , L ; r .  {(9{)n'''>|S C X } )  .

respectively. It  follows that

^ p o l y  H  ( 4 -4 )
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From (4.2), (4.3) and (4.4), We conclude

W '^poly

I.e.,

(9 f.{ f t ,9 P '^ 'iS  c A -},9 f , { ( 9 f )n ra |S C A})

«M y {sY  S A-},ft', {Onn'i^’lS c A}) .

By choosing Zj, i G [l,n ] uniformly from [l,g ] at random, a polynomial 

time algorithm can reduce Vb and to

9 l C A},{ft“ ,{ft“-)n(''>is c A, » e  [1,4}) 

ft', { f t ,s P ‘^’ l5  c A, {4",(ft"')n'»i|g Ç A,i e [1,4})

I t  follows that

^poly ^bn

This completes our proof. □

Then we consider when the classes in B and D conspire, what information 

about kt they can learn. The classes d* G © assigned with generator 

i G [1, m] may hold a subset of the following information pertaining to kt'.

The following theorem shows that even all classes in B and © conspire, they 

can not derive kf.

Theorem  4.6 I t  is intractable fo r any polynomial time (in I) algorithm to 

derive gf from
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i.e., fo r any polynomial time (in I) algorithm A, any polynomial Q, i f  I is 

sufficiently large, then

1
=  W ) ] <

(2 (f) '
Proof. For convenience, let

Step 1. Assume that there exist a polynomial time (in I) algorithm B,  

a polynomial Qi and a number L, for I > L

Pr lB(V,  g 'J’ P ) =  f i g f ) ]  >  ^  (4.5)

where gd is a generator of G.

Let c be a random variable uniform on [l,g], Q2{1) =  2Q i(l). Suppose I 

is large enough. We consider the following two cases

*  Case 1: =  /(g f)] >

Notice that c is a random variable independent of V. Let z G [l,g], we 

define the following algorithm C{gd,

choose a generator of G as g*

choose a set of n distinct generators of G as B

choose a set of random variables uniform on [1 , q] as A

compute V with gt, B and A

return B(P, g^, g^)

A lgorithm  23: C{gd,gl )

The algorithm C is a polynomial time (in I) algorithm. Since z =  /(g. 

for some c G [1, g] (though we do not know c), we have

Q Ll)
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This contradicts the DL assumption. 

Case 2:

From this inequality and (4.5), we have

a i B U . f t . d " ' ' )  =  / ( f t ' ) l  -  a |B (v ,9 j,9 } '» o  =  / ( 4 ) i  
1 1

1

J(9D\ _  ff„c\

>

(?2(Z)

Let z e G, we define the algorithm D(V, z) in Algorithm 24.

(4.6)

choose a generator of G as g& 

i f  D(V,gd,g^(''^) =  / ( z )  then  

return 1 

else 
return 0 

end if
A lgorithm  24: D(V, z)

D is a polynomial time (in I) algorithm. From (4.6), we have

P4D (V ,9 f) =  l l - P . p ( V , g a  =  l l

=  P , [ B ( V ,  f t ,  f tV W ' )  =  f i g ; ) ]  -  P r l B i V ,  f t ,  g P V V ) =  f { g ; ) ]  

1
>

(2 2 (f) '

That means D can distinguish the two distributions:

(P ,gr) (V.Pt).

This contradicts to Theorem 4.5.
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Combining Case 1 and Case 2, we conclude that for any polynomial time (in 

I) algorithm B, any polynomial Q, for sufficiently large I,

1
Pr B(V,g,,gd  = /O f) < (4.7)

Step 2 . Assume there exist a polynomial time (in I) algorithm A , a 

polynomial Q and a number L  such that for 1 > L,

1
Pr >

(2 (f) '

Let H (V ,gd,gf^'^) =  A(V,{g^,gy^^'^|% E [1,/".]}) where zi, -- are
random variables uniform on [1, g], and m is polynomially bounded by I. We 

have

Pr B(V,ft.9i'“̂ >) = /{9f)] = P r [ A ( V , { g ‘i , ( g ÿ ) ’ '-’ V ' \ i e [ \ M )  =  S i f , ) ]
1>

(2 (f)

This contradicts (4.7). Therefore for any polynomial time (in I) algorithm 

A, any polynomial Q, for sufficiently large I,

1
Pr

I.e.,

<
(2 (f) '

□This completes our proof.

Finally, we consider when all the classes in B, D, and R conspire, whether 

they are able to derive kp. Since all the classes in R are successors of B or 

D or both, the information held by R can be derived by a polynomial time 

(in I) algorithm from the information held by B and B. Thus if  B U D U R 

can derive kp, then B U D can derive kp. This contradicts to Theorem (4.6). 

Therefore we conclude that the scheme is secure under the security model 

defined in Definition (1.1).
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Chapter 5 

Summary

In this chapter, we briefly summarize the schemes we have reviewed and 

proposed. We set four criteria to evaluate the schemes. Because all these 

schemes except for Sandhu’s scheme [18] support poset structure, we only 

compare these schemes in the other three criteria, i.e., storage requirement, 

dynamics and security.

5.1 S torage R eq u irem en t

Our scheme is an indirect access scheme, and has similar storage requirement 

with other indirect schemes. In a hierarchy with N  classes where each class 

has at most M  predecessors, the storage space required for a single class is 

about M  for our scheme and other indirect schemes. For the direct schemes, 

to store the public information of one class, the maximum storage is about 

N  numbers, or the product of the N  numbers. In a real situation, N  would 

be much greater than M , and N  w ill increase as the scale of the hierarchy 

increases, while M  usually keeps constant. So the indirect schemes achieves 

require less storage than the direct schemes.
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5.2 D yn am ics

As an indirect hierarchical access scheme, the operation of adding, deleting a 

class or link in our scheme is similar to other indirect access schemes. When 

a class is added or deleted, or a link is added to or deleted from a class, 

only its successors are impacted, i.e., the secret key and public parameters 

of those classes need to be updated. The direct schemes are quite different. 

For example, in Akl-Taylor scheme, when a class is added or deleted, all the 

classes except for its successors have to update their secret keys and public 

parameters. In Harn-Lin scheme, when a class is added or deleted, all its 

predecessors w ill be impacted. In addition, for these two schemes, to prevent 

a deleted class to access its former successors, the keys of these successors 

have to be changed too. In a practical hierarchy, there are much more low 

level classes than high level classes, and it  is more likely that the low level 

classes will change. Therefore in an indirect scheme, less classes are impacted 

than in a direct scheme when the hierarchy structure changes. The indirect 

schemes are more suitable than direct schemes for a dynamic hierarchy.

5.3 S ecu rity

Security is essential to a cryptographic scheme. The hierarchical access con­

tro l schemes must withstand the cryptographic attacks. Every scheme shows 

that a class Q  cannot derive the key of another class Cj i f  Q  is not C/s  

predecessor. Some of the schemes further analyzed that in some collusion at­

tacks, the schemes are still secure. In these scheme a list of collusion attack­

ing scenarios are listed and discussed. However, such lists do not elaborate 

all possible attacks. The first comprehensive security model is presented in 

Zheng-Hardjono-Pieprzyk scheme [23]. This security model covers all possi­

ble collusion attacks. In their scheme, Zheng et al. gave a proof sketch to
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show that their scheme is secure under this security model. However, the 

proof sketch is not a very rigorous mathematic proof. Some statement in the 

sketch is not obviously tenable and need more detailed proof to make it per­

suasive. In our scheme, we take the provable security approach, and strictly 

proved that our scheme is secure as long as the standard DDH assumption 

holds. We would say so far our scheme is the flrst hierarchical access control 

scheme that is provable security under the comprehensive security model. 

Also the techniques used in the security proof in our scheme are helpful in 

analyzing the security of other schemes.

5.4 C onclu sion

In this thesis we reviewed previous hierarchical access control schemes, pro­

posed a new access control scheme for poset hierarchy. The new scheme sup­

ports any arbitrary poset, achieves the best performance of previous schemes, 

and provides a formal security proof under a comprehensive security model. 

None of the previous schemes achieved the properties as fully as ours does. 

Also our work provides useful techniques that facilitate the analysis of other 

schemes.
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