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Gold-Induced Nanostructuring of Silicon Surfaces 

By 

Laura Pedri

ABSTRACT

In this thesis, a combination o f scanning tunneling microscopy and low energy 
electron diffraction is used to investigate how submonolayer amounts o f Au affect the 
large scale surface morphology o f a vicinal Si sample miscut from (111) by 8° toward 
[11-2]. It is found that the structure o f this surface is exquisitely sensitive to Au 
coverage. The surface exhibits nanofacets whose orientation depends critically on the 
amount o f Au deposited. These nanofacets must preserve the total off-axis angle o f the 
wafer. We find that the (775) facet persists over a wide range o f Au coverages up to
0.32 ML. The (775)-Au reconstruction is characterized by a self-assembled array o f 1-d 
atomic chains spaced 21.3 Â apart and is optimized at a Au coverage o f 0.24 ± 0.03 ML. 
Oddly, the stoichiometry at optimal coverage incorporates 1.5 Au atoms per unit cell. 
The persistence o f the (775)-Au reconstruction over such a wide range o f Au coverages 
suggests that it is a low energy surface.
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1. INTRODUCTION

Interest in nanostructures is fueled by their unusual physical properties and by 

their potential use in ultra-small electronic devices\ An effective approach to fabricate 

such small structures is by self-assembly. One area o f recent interest is the self-assembly 

o f Au induced atomic wires on Si which may act as a prototype system to study the one 

dimensional confinement o f electrons^'^.

There have been many predictions concerning exotic electron behaviour in one 

dimension^’’®. In particular, a quantum liquid in one dimension is known as a Luttinger 

liquid". Here, elementary excitations are collective spin and charge density fluctuations 

with bosonic character, unlike Landau’s Fermi Liquid Theory where they are quasi­

particles with charge e and spin 1/2. For example, in two or three dimensions it is 

improbable that electron wave packets would ever penetrate each other. In one 

dimension, however, the Fermi surface is just two points with wavevectors ±kp, and 

electrons are forced into collisions. Thus, the electron wavepackets have maximum 

overlap and excitation becomes a collective process.

Atomic scale wires not only produce exotic phenomena that are fundamentally 

interesting to study, they also offer tantalizing possibilities in modern technology. For 

these applications, atomic scale wires on Si are an ideal substrate since they are formed 

by a self-assembly process that results in a high degree o f perfection. For example, 

Kirakosian et al.^ have focused on incorporating DNA with these chains for the purpose 

o f creating electronic biosensors for proteins, antibodies and viruses. Other possible 

applications include fabricating connections to muscle cells and neurons in logic circuits.
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Si is an attractive substrate for the formation o f atomie scale wires for several 

reasons'^. Firstly, according to the Peierls theorem a single string o f atoms suspended 

freely in space will not exhibit 1-d metallic behaviour". The atoms will instead form 

pairs creating a lattice deformation and open up a band gap. It is possible to avoid the 

Peierls transition by anchoring the atoms to a rigid substrate like Si. In this way, the 

elastic energy penalty for a pairing distortion may be prohibitively high. Secondly, the Si 

bandgap prevents metallic states at the surface from coupling to the bulk. In addition, Si 

exhibits a natural tendeney toward the formation o f  anisotropic surface reeonstruetions. 

I f  the sample is slightly miscut from the (111) plane, the deposition o f metal atoms ean 

induce a single domain self-assembled array o f chains^’̂ . For larger miscuts, the 

deposition o f Au stabilizes high index facets resulting in a regular step array with one 

chain per terrace. As a result, the ehains can achieve the ultimate limit o f atomically thin 

1-d metallic w ires".

Previous work by Crain et a l."  has foeused on tuning the chain spacing by 

varying both the wafer misent and the Au eoverage. They selected four prototypical 

orientations: Si(335)-Au and Si(557)-Au which are oriented toward [-1-12], and Si(553)- 

Au and Si(775)-Au which are oriented toward [11-2]. In many respects, Si(775)-Au 

exhibited unique behaviour compared with the other chain structures. In particular, these 

authors reported that the Si(775)-Au reeonstruction is stable over a wide range o f Au 

eoverages; 0.25 ± 0.07 ML. At the low end o f this range, the stoichiometry is consistent 

with the incorporation o f one Au atom per unit cell. On the other hand, the high end o f 

this range, 0.32 ML, corresponds to over two Au atoms per unit eell. I f  the (775)-Au 

surface has a unique surface structure, and thus Au stoiehiometry, it is not elear why it is
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observed over such a wide range of coverages. Other groups have also observed stable 

(775)-Au surfaces and have suggested that (775) is a low energy facet" '" .

In this thesis, the Si(775)-Au reconstruction is investigated as a function o f Au 

coverage in an attempt to gain insight into its peculiar behaviour. By using a constant 

miscut and only varying the Au coverage, we can observe how submonolayer amounts o f 

Au affect the surface structure o f the wafer. Using STM and LEED, we identify the 

resulting Au-induced facet planes, compose a phase diagram o f the surface 

reconstructions and define the optimal coverage for the (775)-Au reconstruction.
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2. SILICON CRYSTALLOGRAPHY

Silicon is the most widely used semiconductor (indirect bandgap o f 1.17eV) in 

electronics. In the bulk, the atoms form tetrahedral bonds and adopt a diamond crystal 

structure (fee with a basis o f 2) as shown in Figure 2.1. The primary cleavage plane is 

(111).

a) b)

Figure 2.1a) The silicon (diamond) structure'* b) fee structure showing primitive basis vectors19

The first semiconductor surface imaged with the scanning tunneling microscope 

(STM) was the Si(l 11)7x7 reconstruction^^. The 7x7 reconstruction is the low energy 

surface for clean (111) below 850°C. Above this temperature, the surface reconstructs in 

a 1x1 pattern"\ As discussed below, the large 7x7 unit cell is one o f the reasons Si is an 

attractive template for the self-assembly o f atomic chain structures.

The atomic structure o f the Si(l 11)7x7 reconstruction has been the subject o f 

debate since 1959 when the first LEED observations were published'^. It wasn’t until
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1985 that the widely accepted dimer-adatom-stacking fault (DAS) model was proposed 

by Takayanagi, et al. (see Figure 2.2)^^.

A datom  

restatom  layer

# e

•  •  •  %. %

•  • •  •  • •
*  ®  second layer

•  bulk layer

# # # #
#  #  #

Figure 2.2. Schematic of the S i(lll)-7 x 7  DAS structure showing the faulted and unfaulted halves^^.

The DAS model involves considerable rearrangement o f both the surface atoms and top 

double-layer atoms. In total, there are 49 atoms in the surface reconstruction split into 

two halves, one being 0.2 Â higher than the other. These are referred to as the faulted 

and unfaulted halves respectively. Dimers occur at the interface between the halves and 

work to ‘zip’ the faulted and unfaulted halves together. There are 18 dimers in all. The 

protrusions visible in STM are the 12 top-layer adatoms that are each bonded to three 

atoms in the surface double-layer. Note that this surface is three-fold symmetric.

The adsorption o f Au on the 7x7 reconstruction induces a host o f reconstructions 

depending on the Au coverage. At a Au coverage o f 0.44 ML, the surface undergoes a 

5x2 chain-like reconstruction characterized by chains spaced 16.7 Â apart^^.
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Figure 2.3a) Multidomain S i(lll)5x2-A u , 298 Â x 291 A b) A single domain S i(lll)5x2 -A u  on a 1° 
off-axis S i ( l l l )  sample, 307 Â x 306 Â. Both images are presented as the derivative of topography 
which gives the appearance of a surface illuminated from the left. In this case, light appears to shine 
on the steps.

Due to the underlying three-fold symmetry o f the surface, the 5x2 exhibits three 

equivalent domains o f chains along the, [1-10], [01-1] and [-101] directions. The domain 

structure limits the overall length o f the chains (see Figure 2.3a). A sample with a slight 

miscut away from the (111) plane will form an array o f steps and break the symmetry o f 

the surface. Since the 7x7 reconstruction is large and has a stable step geometry^’̂ ’̂  the 

top edge of a step will always consist o f a string of comer holes o f the 7x7 unit cell which 

mn along [-110]. Since the 7x7 reconstruction on any terrace is single domain, a kink in 

the step edge equals the addition o f a 1/2-unit cell to reach another row o f comer holes. 

This is equivalent to the addition o f 14 rows of Si atoms and generates a large energy 

barrier to kink formation ensuring long, straight step edges. I f  the steps are chosen to mn 

parallel to one o f the chain directions, (in our case, [1-10]), the chains align parallel to the 

steps. The result is a self-assembled array of Au-induced chains that essentially m n the 

breadth o f the entire sample (see Figure 2.3b). At high miscut angles, the unit cell 

contains a step edge and one can achieve the ultimate limit o f one chain per terrace^^.
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Following the lead o f previous authors we employ the following nomenclature for 

vicinal surfaces^’. We will refer to the clean vicinal surface by the M iller indices 

appropriate for the surface normal to that plane. For the Au-induced surface, we will use 

the same Miller index to describe the surface adding the suffix ‘-A u’ to the name. 

Unfortunately, this standard can be contusing since the names o f both reconstructions are 

extremely similar, although the surfaces are structurally very different. For example, the 

clean (775) facet corresponds to a miscut 8.5° from (111) toward [11-2]. This facet is 

unstable. The incorporation o f Au on this surface induces a wholesale reconstruction that 

stabilizes the facet and results in highly reconstructed (111) terraces spaced 21.3 Â apart 

separated by single bilayer steps. We label this the (775)-Au surface.

A vicinal surface will only be stable if  the total free energy cannot be lowered by 

the creation o f facets. The net angle o f the surface must be conserved and the net area o f 

the facets can be determined using the following equation^*.

An = '^ A .n .  (2.1)

where n is the surface normal, A is the area o f the original surface and A, are the areas of 

the resulting facets. In addition, if  the faceting process is reversible the morphological 

changes can be conveniently described by equilibrium thermodynamics^*. The resulting 

surface morphology is a consequence o f the thermodynamic balance between surface 

elastic energy and the reduction o f dangling bonds. In vacuum, faceting is achieved via 

surface self diffusion where the rate limiting mechanism is the evaporation/condensation 

o f  mobile species on the terraces^^. Schwennicke et al.*° has found that metal adsorbates 

on Si induce profound modifications o f step-step interactions and thus, the morphology 

o f the surface. Previous work'^'^^ has found that annealing submonolayer amounts o f Au
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on vicinal Si(l 11) preferentially causes faceting to (775) and (995) planes suggesting that 

these are low energy configurations.

In this thesis, we study the surface structure o f an 8° off-axis wafer as a function 

o f Au coverage. We find that the Si(775)-Au reconstruction dominates the surface 

morphology. Figure 2.4 illustrates a previously proposed s t r u c t u r e f o r  the (775)-Au 

reconstruction and an associated STM image obtained in our laboratory. In the STM 

image, the chains are seen as bright lines running vertically across the image in the [1-10] 

direction. Photoemission experiments by Crain et al. '̂  ̂ have revealed that these chains 

exhibit 1-d metallie behaviour. The bright spherical protrusions are Si adatoms. In the 

structural model, the Au atoms are represented by yellow spheres and the Si atoms by red 

and blue spheres. Although the structure o f the (775)-Au reconstruction has not been 

definitively determined, it is generally agreed that the unit cell (and effectively, each 

chain) is a highly reconstructed S i ( l l l )  terrace separated by a single bilayer step 

(3.1 Â)'"*. It is known that it is energetically favourable for Au atoms to become

'K : «

9  D'-srifc» ;®-7

( w [11-2]

Figure 2.4a) Proposed structure for the Si(775)-Au reconstruction taken from Crain et al. showing the 
unit cell and, b) an STM image of the Si(775)-Au reconstruction, 158 A x 237 A, -2.0V.
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incorporated into the terrace and substitute for Si atoms in the surface layer rather than sit 

on top o f the terrace near the step edge^’’̂ .̂ Calculations show that the An states are well 

below Ef , thus, the Au is inaccessible to the STM tip. Therefore, all structures in the 

STM images are associated with Si states. This includes the adatoms, which, on a related 

surface, were also experimentally determined to be Si'^"^ .̂ The unit cell incorporates a 

step edge and also includes the honeyeomb-chain-channel (HCC) reconstruction which is 

the Si analogue o f graphite^'^. The red spheres in the above model represent the HCC 

reconstruction. In addition, Crain et al. suggest that two Au atoms are assigned to each 

terrace. This assignment was based on similarities between photoemission data for the 

Si(775)-Au and the Si(l 11)5x2-An surfaces’'*. The (5x2)-Au reconstruction is known to 

have two An atoms per unit celf^. Although the (775)-Au reconstruction exhibits many 

similarities with the (5x2)-Au unit cell, the exact stoichiometry o f the (775)-Au unit cell 

is unknown.
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3. EXPERIMENTAL TECHNIQUES

3.1. The Ultra High Vacuum System

The study o f surface science, as a whole, requires an environment in which 

atomically clean surfaces ean be prepared and maintained. As a result, the science has 

largely benefited from the development o f ultrahigh vacuum (UHV) technology. A clean 

sample will not acquire much contamination for the duration of an experiment in a UHV 

system. The time for one complete monolayer to adsorb onto a surface, assuming eaeh 

ineident moleeule sticks, depends inversely on pressure and is given by

TML = 4kT/Pvdo' (3.1)

where T is the temperature, v is the average velocity o f the moleeules, P is the pressure, k 

is Boltzmann’s eonstant and dô  is the surface area occupied by each molecule. For air, 

do is 0.372 nm and v is 467 m/s at room temperature, therefore, at atmosphere it would

take just 25 ns to cover a sample, as opposed to over 5 hours under UHV conditions'^. 

Clearly, cleanliness is the most important attribute that distinguishes a UHV system from 

any other vacuum system.

A UHV system uses a combination o f pumps to evacuate the chamber. Each 

pump has its own specific operating pressure range and its own characteristic class o f 

gases that it will pump and also generate as impurities. A schematic o f the vacuum 

system used in this experiment is shown in Figure 3.1. The first stage o f pumping oceurs 

in the mechanical pump. Gas enters the pumping chamber and is compressed by a rotor 

and vane and then expelled to the atmosphere through a discharge valve. It has a high 

pumping speed but a low pressure limit in the high vacuum range. The pump used in the 

laboratory was an Edwards E2M2^^.
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SIDE VIEW

AES (b e h in d )

NEC
LEED

LL

GV

T S P

TP

MP

STM

Auger Electron 
Spectrometer (AES) 
Gold Evaporator (GE) 
Gate Valve (GV)
Ion Gauge (IG) 
Ionization Pump (IP) 
Low Energy Electron 
Diffraction (LEED) 
Load Lock (LL) 
Mechanical Pump 
(MP)
Non-evaporable Getter 
Pump (NEG)
Scanning Tunneling 
Microscope (STM) 
Turbomolecular Pump 
(TP)
Titanium Sublimation 
Pump (TSP)

Figure 3.1. A simplified schematic of our UHV system. View ports and manipulators were omitted 
for simplification.

The next stage o f pumping is done by the turbomolecular pump, which works on 

the principle o f momentum transfer. The turbo’s rotating blades impart momentum to 

gas molecules in a preferential direction such that the probability o f a molecule being 

transmitted from the inlet to the outlet is much higher than in the reverse direction. A 

single blade is insufficient to produce suitably low pressures, so multiple blades and 

multiple stages are used to achieve high vacuum. In general, turbo pumps have a high 

pumping speed, large hydrogen compression ratio, low ultimate pressure and do not 

backstream hydrocarbons. Due to the nature o f its operation, a turbo pump is most 

efficient in the molecular flow regime where Kn > 1. Knudsen’s number, Kn, is the ratio 

o f the mean free path o f a gas molecule to some characteristic dimension o f the system. 

As a result, it cannot exhaust air to the atmosphere and must be backed by a mechanical 

pump. The pump used in the laboratory was a Varian Turbo-V60 Turbomolecular
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Pump^’. The base pressure is 8 x 10’'° Torr. The turbomolecular pump was mainly used 

to back the ion pump during chamber baking and for pumping out the load lock.

To achieve even lower pressures, the turbo molecular pump is separated from the 

chamber via a gate valve, and then the ion pump is used. Ions can be generated at low 

pressures if  the energizing electrons can be made to hit a gas molecule before they hit a 

wall. Ion pumps achieve this by using a Penning Cell, which consists o f an anode and 

two cathodes. Electric fields present in each cell trap the electron in a potential well 

between the two cathodes and an axial magnetic field forces the electrons into circular 

orbits that prevent them from reaching the anode. Thus, electrons travel long distances 

before colliding with the anode increasing the probability o f eolliding with and ionizing a 

gas molecule. Ions produced in a collision are accelerated to the cathode where they 

stick, sputter away the cathode (in our case a titanium cathode) and produce secondary 

electrons leaving the cathode to getter active gases. The ion pump used in the laboratory 

was a Varian Vaclon Plus 150 with a base pressure o f 10’ ’̂ Torr^’.

Working in tandem with the ion pump are the titanium sublimation pump (TSP) 

and the non-evaporable getter pump (NEG). The TSP is classified as a surface getter 

pump. An ac current is used to heat a titanium filament that sublimes and deposits 

titanium on adjacent walls. Since titanium is reactive, active gases are captured on the 

freshly sputtered titanium surface. A fresh titanium layer must be periodically deposited 

to maintain constant pumping. The TSP used in the laboratory was manufactured by 

Varian^’.

The NEG works on principles similar to the TSP but without the sublimation 

process. The pump itself is made o f a gettering material that can be activated or
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regenerated by heat. A Capacitorr-D400 NEG pump^* was used in the laboratory. The 

cartridge is made of a series o f disks made o f a sintered porous material. A tungsten wire 

is used to heat the cartridge and activate the material for pumping by diffusing adsorbed 

carbides and oxides into the bulk.

Despite the efficiency o f the network o f pumps used in the system, the base 

pressure would still not reach the low pressures that characterize a UHV system. This is 

because water vapor adsorbs onto and absorbs into the walls o f the chamber. These 

molecules slowly desorb when the system is being pumped down and limit the base 

pressure. To eliminate water vapor, it is therefore necessary to bake the chamber to at 

least 100°C for a minimum of 48 hours^^. Following the bake, pressures o f 10'" Torr can 

be obtained.

To measure the low pressures characteristic o f a UHV chamber we use an 

ionization gauge. Although it is not a pump, the ion gauge works on principles similar to 

that o f  the ion pump and is used to measure pressures below 10'^ Pa. Electrons, when 

passing through the interior of a grid, ionize gas molecules. These ionized molecules are 

then accelerated by the grid system to a thin wire collector located in the centre o f the 

grid at a rate proportional to the gas density. The gauge used in the laboratory is a Varian 

UHV-24 Nude Ionization Gauge^^. It gives accurate measurements from 10'^ Torr to 

2x10'" Torr at its x-ray limit.

3.2. Low Energy Electron Diffraction

One method we used to study crystal surface structure was low energy electron 

diffraction (LEED). LEED is the oldest o f all surface science techniques. Davisson and
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Germer won the Nobel Prize in 1937 for demonstrating the wave nature o f  the electron 

using a LEED experiment'^*’. Interest in LEED grew in the 1960’s due to the development 

o f  modern UHV technology and direct visual display of the diffraction pattern. The 

physical basis o f LEED lies in the interference effects produced by phase differences 

between electrons elastically scattered from the 2-dimensional array o f atoms on the 

crystal surface. Low energy electrons have a wavelength on the order o f the lattice 

spacing of the surface. Thus, when an electron beam is aimed at the sample the electrons 

are scattered by the strong potential produced by the positive nucleus and outer electrons 

o f the atom.

Low energy electrons have a short mean free path, which means electrons 

penetrating more than a few atomic layers into the solid have a high probability o f being 

inelastically scattered. The probability o f backscattering is also high, so few electrons 

will actually penetrate the surface. The elastically scattered electrons can be seen as a 

Fraunhofer diffraction pattern on a phosphor screen.

Principles of Diffraction

To examine the diffraction process more closely, imagine that the surface atoms 

on a crystal are arranged in a perfect 2-dimensional periodic lattice that will act as a 

grating. One method used to determine the momentum of the diffracted rays, Ewald’s 

construction, exploits conservation o f momentum. A 3-dimensional unit cell o f a crystal 

can be defined by three lattice vectors ai, az, and as (see Figure 2.1b). The reciprocal 

lattice vectors are given by
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b := 2 7 t(a 3 x a i)/V

b 3 = 2 7 i ( a ix a 2 ) /V

17

(3.2)

(3.3)

(3.4)

where V = ara 2xa3 . To obtain a 2-d reciprocal lattice o f the surface, let the base vector a 3 

o f the 3-d crystal structure approach infinity and ai and a2 remain unchanged. As a 

result, the reciprocal lattice vector b3 approaches 0, and the discrete points parallel to b 3 

in the reciprocal lattice coalesce to form lines or rods as shown in Figure 3.2.

For the 2-d diffraction o f backscattered electrons from solids 

k ' = k + A k  (3.5)

Using the origin o f k as the centre, a sphere o f radius 2ti/A, is constructed in reciprocal 

space.

Figure 3.2. Ewald sphere within the 2-d reciprocal lattice'*'

Diffraction occurs everywhere the Ewald sphere cuts a reciprocal lattice rod, since 

this is where Equation 3.5 is satisfied. By varying the incident beam energy the number 

of scattered beams and their directions will change. The lateral symmetry o f the surface

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



18

is immediately reflected in the geometry o f the diffraction pattern. LEED, therefore, can 

provide information on the periodicity and translational symmetry o f a surface.

a

r# f %

ai "v >

•  #  #

ci

f

»

Figure 3.3a) Real space 7x7 reconstruction^'', b) LEED pattern showing the 7x7 reconstruction in 
reciprocal space, c) Area defined by the circle in (b) showing the reciprocal lattice vector.

For example, the clean S i ( l l l )  surface exhibits a 7x7 reconstruction, which 

means that the surface layer is described by a unit cell seven times larger than the bulk
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termination. Thus, the real space unit cell is defined by vectors I  a | =7a, and the 

reciprocal lattice vector is then | bi | =2Ti/7a as illustrated in Figure 3.3.

Instrumentation

A simplified schematic o f the LEED set-up used in this experiment'*^ is shown

below.

f luo re sce n t  s c re e n

%///' d if f r a c te d  bea m

sam p le

incident beam

-  1st grid

-l?d Irid }
- 4 t h  grid

Figure 3.4. Simplified LEED schematic'*^. See text for details.

An electron gun provides the incident electron beam that is then focused to a 

grounded target surface. Diffracted electrons travel in a field free region toward a system 

of grids, the first o f which is set to the same potential as the sample (ground). The next 

few grids are biased to retard all electrons except those that have been elastically 

scattered. The diffracted electrons pass through these grids and are accelerated onto a 

fluorescent screen. The observed diffraction pattern is a projection o f the reciprocal 

lattice o f the surface. The diffraction pattern is recorded using a digital camera purchased

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 0

from Electrim Corporation'*'' and externally eontrolled using a previously developed 

LABVIEW^^ program''^

3.3. Auger Electron Spectroscopy 

Principles of Anger Emission

Another method used to study the erystal surface is Auger electron spectroscopy. 

Auger electron emission can be triggered by the ionization o f a core level o f an atom by 

an incident electron or photon. An ion in such an excited state ean lose some o f its 

potential energy by filling the core hole with an electron from a higher energy level and 

by emitting energy in the form o f either a photon or an electron (see Figure 3.5). These 

two emission processes compete. Photon emission dominates when the electron binding 

energy is greater than lOkeV'*’. Electron emission is the more probable decay mechanism 

for low atomie number elements with an n = 1 vacancy and for all elements with n -  2 

and n = 3 vacancies.

a)

A uger Electron

•KLL

3/2
2p
2s

1/2 Incident Partic le

1s

X-ray Photon

2p

2s
Incident Particle

is
b)

Figure 3.5a) For Auger emission, the core hole is filled with an electron from a higher energy level 
and the energy difi'erence between the states (in this case, the K and Ln levels) is carried away by the 
Auger electron, b) For photon emission, the difference between the K and Ln states is carried away 
by a photon^.
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In the electron emission process, the vacancy is filled by an electron in a higher 

energy level. The energy difference between the states is carried away by a third electron 

since this electron must expend energy to escape the atom. The emitted electron is 

known as the Auger electron, named after Pierre Auger who described this process in 

1925'* .̂ For Auger emission, the emitted electron will have a kinetic energy, KE, which 

depends on the energy of the atomic levels involved in the process as

KE = E a - E b - E c - U  (3.6)

Ea, Eb and Ec are the one electron binding energies o f the core electron, the valence 

electron and the Auger electron respectively. U  lumps together the hole-hole interaction 

energy in the free atom, and any screening polarization and relaxation effects in the 

solid'*^. From Equation 3.6, the Auger electron has a discrete energy characteristic o f the 

energy levels o f a specific atomic species making spectroscopic identification o f the 

element possible.

AES is highly surface specific. Auger emission fills holes o f low binding energy 

giving the Auger electrons a short mean free path. Thus, electrons emitted from deeper 

w ithin the solid have a low probability o f  detection. AES can detect surface 

contaminants down to the lO'^ atoms/cm^ range^°, however it cannot detect the presence 

o f hydrogen or helium due to the fact that Auger emission is a three electron process. 

AES is an extremely sensitive tool to determine atomic species present at a surface. We 

use AES in tandem with LEED as powerful tools to provide detailed information on the 

organization and purity o f our surfaces at the atomic scale.
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Auger Spectra

An Auger electron spectrum plots the number o f electrons detected as a function 

o f energy, N(E) vs. E. Elements are identified by the location o f a small peak on the 

energy axis. The width of the Auger peak is affected by the type o f transition (bow many 

valence levels are involved), the lifetime o f the transition and small energy losses 

experienced by the escaping electron. The numerous energy losses create a tailing 

structure on the low energy side of most peaks on the N(E) curve and, combined with the 

fact that the peak is small, makes the peak maximum difficult to locate. To solve this 

problem dN(E)/dE is often plotted instead. Peak energies are detected by the location of 

the most negative part o f the Auger spike on the dN(E)/dE axis.

a)
100 110 120

Kinetic Energy (eV) b)

I M

100 110 120
Kinetic Energy (cV)

Figure 3.6a) Auger spectrum plotted as intensity vs. energy b) Auger spectrum plotted as the 
derivative of the intensity vs. energy. Note how, in this case the peak is sharp making spectroscopic
identification more straightforward^.

Instrumentation

The Auger electron spectrometer used in this experiment is an Omicron model 

CMA 100^' and is located inside the UHV chamber. The CMA (cylinder mirror 

analyzer) consists o f concentric metal cylinders that are biased to produce an electric
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field designed to guide electrons o f a particular energy to a detector. An energy spectrum 

is swept by varying the potential o f the outer cylinder, which thereby samples the energy 

distribution o f the electrons that hit the detector. In these experiments, a 3000 eV 

electron beam was used as the incident beam and the emitted electrons were collected by 

the CMA and output to a channel electron multiplier (Channeltron). The Channeltron is a 

thin tube o f a low electron binding energy material. A high voltage is applied between 

the ends o f the tube establishing a continuous voltage gradient. Incident electrons trigger 

the emission o f secondary electrons which proceed further into the Channeltron 

triggering more electrons, and so on.

_ O uter 
Cylinder

Ea '= E| _ Inner 
Cylinder

A uger E iectrons

E lectron B eam  an d  CMA Axis

Sam ple
C tianneltron

Figure 3.7. Simplified schematic of a CMA''*. The potential of the outer cylinder can be varied to 
sample the Anger electron energy distribution.

This process can increase the detected electron current by a factor o f lO’ The resulting 

spectrum is graphically displayed using the DAT software package supplied with the 

instrument. The Handbook o f Auger Electron Spectroscopy 3̂ *̂ Ed.'^* was used as a 

standard to compare with the experimentally determined spectra and to identify elements 

present on the surface o f the Si wafer.
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3.4. Scanning Tunneling Microscopy

Scanning tunneling microscopy (STM) was first performed in 1981 by Binning, 

Rohrer, Gerber and Weibel at IBM Zurich Laboratories. In 1982, they published STM 

images of the S i( l l l )  7x7 reconstruction thereby ending a 20 year debate concerning the 

structure o f this surface^^. In 1986 they won the Nobel Prize for this work.

In STM, a metal probe with an atomically fine tip is brought close to the 

conducting surface to be imaged. When a voltage less than the work function o f the 

material is applied, electrons can tunnel across the gap. The net current is in the direction 

o f the bias. Although this process is classically forbidden it occurs according to the 

principle o f quantum tunneling.

Quantum Tunneling

In an STM system operating under vacuum, the space in the vacuum region acts 

as a potential barrier between the metallic tip and surface.

▲
Ef*--.... ..... Ef« Ef*...... - - E r

Er'.

a)
Distance

b) c)

-E/

Figure 3.8. A schematic of the potential barrier between electrodes L and R for vacuum tunneling^'*.
a) The difference in the Fermi levels is equal to the difference in the work functions between L and R.
b) The system approaches electrical equilibrium, c) A voltage is applied across the gap and tunneling 
can occur in the direction of the bias.

The difference between the Fermi levels is equal to the difference in work 

functions between the two metals (see Figure 3.8a.). The system will approach electrical 

equilibrium, and the difference in work functions is manifested as an electric field across
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the gap (see Figure 3.8b.). When a voltage, V, is applied across the gap, electrons in 

states within an energy eV below the Fermi level on the negative side can tunnel into 

empty states up to an energy eV above the Fermi level on the positive side (see Figure 

3.8c). The fraction o f electrons that tunnel across the gap (the transmission probability) 

can be determined by solving Schrodinger’s equation for a 1-d potential barrier.

Consider a beam of identical particles incident on a potential barrier o f height U 

and width L as in Figure 3.9.

U

Energy II III

X = 0 X = L

Figure 3.9. 1-d potential barrier,54

It is well known that the tunneling current at low voltage and temperature behaves as

I - e ^ ^  (T7)

where K=(2m(U-E)/^^)'^^. For a typical work function of around 4 eV, the inverse 

decay length, k ,  is on the order o f 1.0 Â'^ Thus, the tunneling current will drop nearly an

order o f magnitude for every Angstrom o f vacuum between the surface and the tip. Since 

the current is sensitive to changes in height at the Angstrom level, using feedback control 

to maintain a constant tunnel current between the tip and sample while raster scanning the 

tip across the sample will give a topographical map o f the surface. This is true so long as
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the surface features are on the nanometer scale or larger, such as terraces and atomic 

steps. On an atomic scale, the definition o f topography becomes obscure and a more 

precise calculation o f the tunneling current is needed.

Tersoff and Hamann developed a theory for tunneling between a surface and a 

model tip in their 1985 paper entitled Theory o f  the scanning tunneling microscope^^. 

While they treat the surface ‘exactly’, the tip is modeled locally as a spherical potential 

well due to the fact that tip manufacturing was (and still is) performed in a non- 

reproducible manner. According to Bardeen^^, the tunneling current is given by

1 =
In e

^ M.''

where y(E) is the Fermi function, V the applied voltage, Muv the tunneling matrix element 

between states Yu (probe) and Yv (surface) and E„ and E^ is the energy o f state Yu and Yv 

respectively in the absence o f tunneling. Note that, Yu and Yv are not orthogonal and are 

o f different Hamiltonians. In the limit o f small voltage, room temperature, and replacing 

the tip with an ideal point source o f current. Equation 3.8 reduces to^^

- J Î , )  (3.9)
V

where is the position o f the probe. The quantity on the right o f Equation 3.9 is the

surface loeal density o f states (LDOS) at the Fermi energy. Thus, the STM image is a 

contour map o f constant surface LDOS.

The problem o f a non-ideal tip can be solved if Muv is caleulated for this general 

case. Tersoff and Hamann^^ obtained, under the assumption that any angular dependence 

o f Yu can be neglected, an expression for Muv and evaluated it to be
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(3.10)

where k  is the inverse decay length for the wavefunctions in vacuum, Q.̂  is the probe

volume and R is the local radius o f curvature o f the probe at ^  . Now, the tunneling 

current becomes

/  = x %  >l> ,{rls(E^  -  £ , )  (3.11)
V

where Dt is the density o f states per unit volume of probe tip, cp is the work function and 

Ef is the Fermi level. Thus, the tunneling current is proportional to the local density o f 

states (LDOS), and the image is not directly associated with surface topography. 

Although Equation 3.11 ignores angular momentum, Tersoff and Hamman^^ and later 

Lang^’ showed that only s states (where m = 0) contribute appreciably to the tunnel 

current. Lang also supported Tersoff and Hamman’s assertion that at low bias, the STM 

image is that o f the surface LDOS at the position o f the tip. Another interesting finding, 

according to Lang^’’̂ *, is that the majority o f the tunnel current is emitted from the 

furthermost atom jutting from the tip and is largely insensitive to the structure o f the rest 

o f the tip.

The fact that the STM images electronic states and not simply topography can be 

seen in the Au-induced chain-like reconstructions studied in this thesis. As was 

previously discussed, the Au states are inaccessible to the STM tip since Au derived 

states lie well below Ep. Therefore, all structures in the STM image are Si related (see 

Figure 2.4). The creators o f the model shown in Figure 2.4 suggest that the bright chains 

are most likely related to Si dangling bonds at the step edge^"*’̂ .̂ Thus, the chains are not
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actually topographical features but are directly related to the electronic structure o f the 

surface.

Instrumentation

Figure 3.10 is a simplified schematic o f an STM system. In STM, the current and

h)

Figure 3.10 a) Simplified schematic o f  an STM system'*’’, b) Constant current scanning mode*’’. The 
current and voltage between the tip and the sample is held constant as the tip is raster scanned across 
the sample.

the voltage between the sample and the tip are held constant as the tip is made to traverse 

the sample. Feedback control changes the distance between the sample and tip to 

maintain a constant current. This method is referred to as constant current mode (see 

Figure 3.10b) and was historically the first method to be used. Another method, the 

constant height mode, measures changes in current while the tip traverses the sample at a 

constant height. Although this method is faster, it runs the risk o f crashing the tip into 

sample surface features and was not used in this thesis.
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The tip must be brought into tunneling range in a very precise manner and raster 

scanned without crashing into the sample. In addition, the spacing between tip and 

sample must be accurate to within 0.05 Â. These stringent tolerances are obtained using 

piezoelectric ceramics (see Figure 3.10a) that can be controlled by changing the voltage 

applied to the piezo. Independent movement in x, y and z, as well as mechanical rigidity 

to increase vibration isolation and feedback control make these ceramics particularly 

suited to the STM application. Piezoceramics actually have a non-linear response to 

applied voltage, but since the electric fields used in STM are small, the movement can be 

considered linearly proportional to the applied voltage.

A course approach mechanism must be used to bring the tip into tunneling range 

from a macroscopic distance away without crashing the tip. Our STM uses an inertial 

approach system. A voltage is applied to a piezo stack causing it to extend in the desired 

direction o f motion. The scan tube maintains static friction and moves with the piezo 

stack. The stack then quickly slips back fast enough to overcome static friction. The 

scan tube’s inertia maintains its position while the stack is in motion. The result is a net 

displacement o f the scan tube but not the piezo stack. To prevent the tip from crashing 

into the sample on approach, the feedback contracts the scan tube and moves the tip away 

from the sample during the inertial step. It relaxes back after the step and, if  no tunnel 

current is detected the process repeats.

Perhaps the most crucial part o f the STM system is the tip itself. The best images 

are obtained when tunneling occurs from an atomically sharp tip. This condition is 

difficult to ascertain, but fortunately certain metal wires, when cut or fractured, produce a 

ragged surface with a high probability o f having a single atom at the endpoint. The
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geometry, chemical nature o f the tip and the behaviour o f LDOS influence the resolution 

o f the instrument. The resolution is limited by the size o f the tip if  the tip radius is 

greater than the tip-sample separation. However, in the case o f  an atomically sharp tip, 

the resolution is limited by the tip-sample separation. As tips, we used electrochemically 

etched tungsten or cut platinum-iridium wires. Both o f these were used for data 

acquisition in this thesis.

Factors other than tip radius and placement also must be considered. Vibration 

isolation is absolutely necessary if atomic resolution is to be achieved and can be quite 

difficult to control. In the UHV system, the ‘no moving parts’ rule is employed when the 

STM is in use. This restricts the use o f the turbomolecular pump and reactivation o f the 

TSP. The STM sits on a Viton stack inside o f the chamber to dampen any vibrations. In 

addition, the entire UHV system is pneumatically levitated.

The advantage o f using STM, as opposed to using LEED and AES, is that it offers 

direct real-space determination o f surface structure regardless o f periodicity. Since it can 

be performed under UHV conditions it is particularly conducive to imaging our Si 

samples which are highly reactive in air. The STM used in this thesis was an Omicron 

Micro SPM^' controlled by RHK Technology^^ SPM 100 electronics.
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4. SAMPLE PREPARATION

Several parameters affect the formation o f  regular step arrays on vicinal Si 

surfaces: miscut angle, annealing sequence, current direction and external stress^. All of 

these factors were strictly controlled using the following sample preparation procedure. 

The goal is to prepare clean samples that display a long range ordered array o f atomically 

straight single height steps.

The substrate is n-type S i ( l l l )  with a miscut o f 8° along (11-2)^* .̂ The doping 

concentration was in the lO'* cm'^ range. We also used n-type S i ( l l l )  miscut by 1° 

toward (-1-12) for calibration purposes. The wafers were held as stress free as possible 

between two Ta wire loops in a sample holder that was specially designed for this 

purpose (see Figure 4.1). The sample holder was designed so that each side was 

electrically isolated from the other to permit current flow through the sample when held 

between the two wire loops. The size o f the holder is such that it fits into pre-existing 

sample transfer mechanisms inside the UHV chamber. Similar to the sample holder, one 

o f these sample transfer mechanisms (a.k.a. the thermal dis-combobulator) was modified 

so that each side is electrically isolated to ensure that current is passed through the 

sample (see Figure 4.2). The sample was heated by a DC current and mounted such that 

current flows in the [1-10] direction. This direction avoids electromigration effects 

which cause kinks in the step edges to form^.
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Figure 4.1. CAD drawing of the Si wafer holder. The two halves of the holder are electrically 
isolated from each other to permit current to flow across the Si sample. Dimensions are in inches. 
Tantalum wire loops were spot welded to each piece (not shown) and the ends o f the wafer were 
inserted into the loops.
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Arrays o f  single steps were obtained using the following annealing sequence^. 

Wafers were outgassed for 30 minutes at a temperature just below 650°C so as not to 

remove the oxide layer. The wafers were then flashed to 1200°C for 10 s to remove the 

oxide and to diffuse residual surface carbon into the bulk. They were then cooled to 

1060°C (where single steps are stable) within 12 s and held at this temperature for 1 min. 

The most important step is a quench from 1060°C to 850°C in less than 3 s to avoid step 

bunching and/or step height tripling. Thermal disorder from the quench is removed by 

holding the wafer at 850°C for 1 min and then slowly cooling the sample (within 30 s) to 

help preserve long range 7x7 domains and kink-free step edges^. During the final stages 

o f the heating procedure the pressure in the UHV chamber was in the low 10“'° range. 

We found that if  the final pressure was too high our sample was disordered and showed 

traces of carbon contamination in AES. The temperature o f the wafer was measured 

using an Ircon Ultimax Plus UX20P^' portable radiation thermometer with the emissivity 

set to 0.4.

Auger electron spectroscopy was used to verify the cleanliness o f  each sample 

and LEED was used to ensure long range order. An Auger spectra o f the sample, before 

and after cleaning, is shown in Figure 4.3. A visual check was also done to ensure that 

the sample maintained its colour and reflectivity. Surface roughening on the scale o f 

microns is visible as a haze on the surface o f the sample and is caused by traversing the 

temperature range o f 950-1250°C too slowly and at too high a pressure^^’̂ .̂

Next, the appropriate Au coverage was deposited while the sample was held at 

650°C. Following evaporation, the sample was annealed at 850°C for 2 minutes to ensure 

long range order. The Au was deposited from a tungsten basket evaporator which was
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Figure 4.3. Auger spectra of (a) Si with the oxide layer present and (b) clean Si. Notice the absence 
of the C and O peaks on the clean sample.

calibrated using LEED and AES at a range of coverages on S i ( l l l )  miscut 1.1° toward 

[-l-ll]"*^. When 0.44 ML o f Au is deposited on the S i ( l l l )  surface, the surface 

reconstructs into a 5x2 chain-like pattern^^. To define the Au coverage we use the 

density of the S i ( l l l )  atomic layer, where 1 ML = T.SxlG '̂  ̂atoms/cm^. Regions o f 5x2 

and 7x7 are easily distinguishable in the LEED pattern. Since the 5x2 reconstruction is 

optimized when 0.44 ML is deposited, correlating the surface reconstruction to Auger 

peak height ratios is straightforward. Once the evaporator is calibrated, we need only 

measure the Auger peak height ratios to determine Au coverage on each sample (see 

Figure 4.4).

The calibration procedure assumes a constant Au flux. This assumption was 

experimentally verified by comparing Auger peak height ratios for different combinations 

o f evaporation times. For example, the Si/Au peak height ratio for an evaporation time of 

4 minutes equals the Si/Au peak height ratio for two evaporations o f 2 minutes each (i.e.
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Si/Au4mins=Si/Au2mms+2mins). The covefage uncertainty is ± 0.025 ML. Due to the fact 

that the Au peak is coincident with a minor Si peak, the minimum amount o f Au that we 

can measure with AES is 0.03 ML.
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Figure 4.4. Auger spectra (a) clean Si (b) 0.43±0.03 ML Au. Notice that in this spectrum, the Au 
peak height has increased thereby changing the Si/Au peak height ratios.

Samples were allowed to cool at least 1 hour before STM images were taken to 

reduce thermal drift. It was possible to study the sample for a period o f days by 

periodically annealing to 830° for a few minutes to remove adsorbed contaminants.
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5. RESULTS AND DISCUSSION

In this thesis, we use a combination o f STM and LEED to investigate how 

submonolayer amounts o f Au affect the large scale surface morphology o f a vicinal Si 

wafer miscut from (111) by 8° toward [11-2]. In agreement with previous work*'*, we 

find that depositing submonolayer amounts o f Au onto our 8° off-axis wafer produce 

atomic scale chain-like reconstructions. In addition, we find that submonolayer amounts 

o f Au drastically alter the surface morphology o f our 8° off-axis sample in the form o f 

nanofaceting.

We can identify facet orientation using the following formulae to obtain the 

Miller index (n) for a facet^’ :

tant? = — (5.1)
P

n = (p -I- m, p m, p -  m) (5.2)

where û  is the angle between the unknown facet and the (111) plane, p is the number o f 

bulk atoms across the terrace and m is the number o f single height Si steps separating 

each terrace. In our case m always equals 1.

We use Figure 5.1, which represents a cut through the bulk Si crystal, to illustrate 

the relative positions o f  various facet planes and to help determine p. Any line from the 

left; most point to any other point in Figure 5.1 represents a possible crystal orientation 

(facet) as labeled by the Miller indices above each point. The points are representative o f 

Si atoms in the bulk crystal. The horizontal line in the middle o f the crystal is the (111) 

plane. Any line below the (111) plane represents a facet tilted toward [11-2] and any line 

above represents a facet tilted toward [-1-12]. The surface that we are studying is shown

as a red line in Figure 5.1. It is characterized by an 8° miscut toward [11-2] where, from
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Figure 5.1, p -  6 and m = 1. Therefore, according to Equation 5.2 the surface 

corresponds to the (775) plane. In the following discussion, we demonstrate the 

capability o f tailoring the surface morphology simply by varying the Au coverage.

[11-2]

Figure 5.1. The Si Road Map is a representative drawing of a cut through the Si bulk crystal in the 
(1-10) plane. The dots indicate the position of Si atoms in the bulk and the black horizontal line in 
the middle of the crystal is the (111) plane. The surface we are studying is shown in red.

All STM images shown in this thesis are typical o f what was found in 

macroscopically separated regions on the same sample. The data were taken at random 

sampling points from across the sample in constant current imaging mode at room 

temperature.

Figure 5.2 is an STM image o f the clean 8° off-axis sample. We choose to display 

the image as the derivative o f topography, which gives the appearance o f a surface 

illuminated from the left. The derivative o f this image, as with all other images presented 

in derivative mode in this thesis, is rendered using the RHK SPM32 software.
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[1-10]

[11-2]

Figure 5.2. STM image (424 Â x 689 A) of the clean 8° off-axis sample taken at a bias of -2.26 V. The 
derivative of the topography is shown giving the appearance of a surface illuminated from the left. 
S i ( l l l )  terraces (illuminated regions) are separated by single height steps that cast shadows on the 
terraces. This array is internpted by regions of step bunching (wide dark areas).

The clean (775) facet is not stable and breaks up into a series o f  Si(l 11) terraces 

(illuminated regions) separated by single height steps. The (111) terraces are l/2-7x7 

unit cells wide (23 Â). Corner holes are barely visible running along each step edge. The 

array is frequently interrupted by regions o f step bunching (wider dark regions). Step 

bunching is characteristic o f samples miscut toward [11-2]^"  ̂ and it is reported that these 

regions o f step bunching form (331) microfacets^^.

Schwennicke et al. '̂  ̂ have shown that metal adsorbates on vicinal surfaces 

profoundly affect step-step interactions. The adsorption o f submonolayer amounts o f An 

induces wholesale restructuring o f the surface, stabilizing the (775) surface and 

eliminating regions o f step bunching. Fundamentally, this is why Au adsorption on our 

off-axis wafer stabilizes the (775) surface. According to previous work by Crain et al.̂ '*, 

depositing a wide range o f Au coverages (0.18-0.32 ML) onto the clean 8° off-axis
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sample results in the (775)-Au reconstruction. Since a particular reconstruction has a 

specific Au stoichiometry it is unclear where the extra/missing An atoms are incorporated 

and, within this range, what the optimal Au coverage is. These authors also report stable 

(553), (335), (557), (995) and (13 13 7) facets on various off-axis samples at various Au 

coverages suggesting that the deposition o f Au stabilizes a myriad o f high index 

facets®’’'̂ ’̂ .̂ Contrary to these results, Seehofer et al.'^ report stable (775) facets on 2°, 4° 

and 9° off-axis wafers at 0.44 ML An. Similarity, Shibata et al.'^’̂  ̂ report stable (775) 

facets on 4° off-axis wafers at 0.7 ML. This suggests that (775) is a low energy facet 

independent o f miscut. In this thesis, we find that the Si(775)-Au facet is stable over a 

wide range o f Au coverages up to 0.32 ML. However, we find that when the coverage is 

not optimal the large scale surface morphology consists o f nanofacets with only portions 

o f the surface exhibiting the (775)-Au reconstruction. In addition, we find that (775)-Au 

regions are present down to almost zero coverage.

At all Au coverages where we observe (775)-Au termination, STM images o f the 

(775)-Au reconstruction appear identical (allowing for different STM tip conditions) as 

shown in Figure 5.3. This suggests that the local Au coverage on all (775) facets is 

always the same. Therefore, the stoichiometry o f the (775)-Au surface is constant. In 

other words, there is always the same number o f Au atoms incorporated into the (775)- 

Au unit cell regardless o f the total amount o f An that is deposited on the sample as a 

whole. As stated above, we find that the Si(775)-Au facet is stable along with nanofaeets 

o f various off-axis orientation. The extra/deficit Au must therefore be accommodated by 

these other nanofacets.
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Figure 5.3. Local areas o f Si(775)-Au on our 8° miscut sample at various Au coverages: 
a)0.18 ± 0.03 ML, 280 Â x 280 Â b) 0.24 ± 0.03 ML, 320 Â x 280 Â c) 0.26 ± 0.03 ML, 260 A x 150 A. 
In all images, the chains are spaced 21.3 A apart and are imaged as protrusions (as are the adatoms). 
This is characteristic of the (775)-Au reconstruction.

In order to investigate how and where the deficit/extra Au is deposited, we 

systematically varied the Au coverage and studied the resultant surface morphology using 

STM and LEED. We define the low coverage regime as samples with less than 0.18 ML 

o f Au. In this range, deposition o f Au onto the elean 8° off-axis surface and subsequent 

annealing to 850°C appears to result in wholesale restructuring o f the surface. At 

0.06 ML o f Au, this restructuring includes the formation o f (775), (332) and enlarged 

(111) facets as well as large 3-d structures. It is unclear what the exact nature o f  the 3-d 

structures is. Representative data at 0.06 ML Au coverage is shown in Figure 5.4.

The large area STM scan o f the surface at 0.06 ML coverage (Figure 5.4a), 

exhibits flat (775)-Au terminated regions. The flat regions were determined to be (775)- 

Au by measuring the chain spacing on these areas. The (775)-Au reconstruction is 

characterized specifically by chains spaced 21.3 Â apart.
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Figure 5.4a) Large scale STM image (5000 Â x 5000 Â) of the clean 8° off-axis wafer with 
0.06 ±  0.03 ML Au taken at a bias of 2.19 V. The derivative of topography is shown. The flat 
terraces are (775)-Au terminated. There are two different facets present, other than (775), in both 
the step up and step down directions. Large 3-d structures are also present. The black line across 
the image indicates the position of the line scan, b) Corresponding LEED image (70 eV). The nx2 
reconstruction can be seen as rows of spots running along [11-2]. The spot spacing along the rows 
corresponds to the chain spacing in reciprocal space. Circles indicate the presence of the 7x7 
reconstruction that can be seen running diagonally between the rows, c) The line scan shows the 
relative orientations of the facets. Facet angles were measured to determine the surface structure. 
Note how, from left to right, they occur in both step up and step down directions, d) Representative 
drawing of the relative orientations of the facets with respect to the (111) and (775) planes.
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Figure 5.4c is a cross sectional eut through the image (corresponding to the black 

line across Figure 5.4a) which shows the relative facet angles. This cross section, as well 

as all others in this thesis, was achieved by first flattening the terraces using the “plane 

subtract” macro in the SPM 32 software. The angles were then measured using the 

“section data” macro. It can be seen in Figure 5.4c that, from left to right, there are facets 

separating the (775) terraces in the step up direction followed by facets in the step down 

direction. Notice that the step up facets are spaced farther apart than the step down 

facets. The angle between the step up facets and the (775) plane is, on average, 7.2°. In 

other words, the facet is 1.3° degrees from the (111) plane. Within experimental 

uncertainty, this facet is most likely the (111) plane. The angle between the (775) plane 

and the step down facet is, on average, 2° making the facet 10.5° from the (111) plane. 

This facet probably corresponds to the (332) plane, which is actually oriented 10.6° from 

(111) as determined from Figure 5.1 and Equations 5.1 and 5.2. These facets are shown 

with respect to the (111) plane in Figure 5.4d.

For comparison, at this Au coverage LEED data shows mixed chain-induced and 

7x7 reconstructions (see Figure 5.4b). The chain-induced pattern corresponds to the 

(775)-Au reconstruction. The spacing along the [11-2] direction in the LEED (i.e. in 

reciprocal space) corresponds to the real space chain spacing. The 7x7 reconstruction is 

the low energy reconstruction for S i ( l l l )  surfaces in the absence o f Au. These 7x7 

regions are circled in Figure 5.4b. In light of the LEED data, we can assume that at this 

coverage Au is incorporated into at most two o f the three facets (the (775) plane and 

possibly the (332) facet), leaving at least one face bare and 7x7 terminated. Since the 7x7
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reconstruction occurs on clean (111), this is further evidence that the shallow angle facet 

in the step up direction is (111).

As noted in the previous section, the minimum amount o f deposited Au that we 

can measure is 0.03 ML. However, even below this threshold LEED indicates the 

presence o f a chain-like reconstruction. The LEED is streaky, but nevertheless quite 

striking, and suggests that the formation of the Si(775)-Au reconstruction is possible with 

less than 0.03 ML o f Au.

At increasing Au coverage (between 0.18 ML and 0.24 ML), as in Figure 5.5, the 

LEED ceases to show any traces o f the Si(l 11)7x7 reconstruction. Once again, the 

surface undergoes drastic restructuring due to the deposition o f Au. In STM (Figure 

5.5a), there is no indication o f both the 3-d structures and facets with angles steeper than 

(775) (in other words, angles greater than 8.5° from (111)). The absence o f facets with 

steeper off-axis angles suggests that the formation o f steep angle facets is linked to the 

formation o f the large 3-d structures. The shallow angle facet present at low Au coverage 

is now replaced with a facet o f increasing off-axis angle as shown in Figure 5.5.

Similar to the low coverage regime, the (775)-Au terminated regions in Figure 

5.5a are determined by the chain spacing. As shown in the line scan (Figure 5.5c) the 

angle between the facets is, on average, 4.1°. From Figure 5.1 and Equations 5.1 and 5.2, 

this facet corresponds to (13 13 11). There is no evidence that Au is present on the 

(13 13 11) facet. Overall, we find that the surface preferentially reconstructs to (775)-Au 

indicating that the (775) facet is energetically favourable. Therefore, as more Au is 

deposited on the surface, we can assume that more o f the surface can become (775)-Au 

terminated.
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Figure 5.5a) Large area STM image (2500 Â x  2500 Â) of the clean 8° off-axis wafer with 
0.20 ±  0.03 ML Au taken at a bias of -2.08 V. The derivative of topography is shown. Again, the 
addition of small amounts of An causes large scale surface restructuring. Only the step up direction 
facet remains, however it is now much closer to the (775) plane than in Figure 5.4a. The line across 
the image indicates the position of the line scan, b) Corresponding LEED image (70 eV) showing the 
nx2 reconstruction. There is a pincushion effect as a result of sample position, c) Line scan showing 
the relative facet angles, d) Representative drawing showing the relative orientation of the facets 
with respect to the (111) and (775) planes.
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As mentioned in Section 2, the sample must conserve its net angle as well as 

balance surface stress with the elimination o f dangling bonds. Therefore, the change in 

the surface area o f the (775) facet (due to changes in Au coverage) causes a 

corresponding change in the orientation o f the non-(775) facet. We observe a directional 

trend in this respect as the non-(775) facet progresses from (111)7x7 facet (8.5°) at low 

coverage toward the (775) direction (i.e. 4.1° at 0.2 ML).

The (775)-Au surface appears to be optimized at a coverage o f 0.24 ML. At this 

coverage, we find that the LEED pattern (Eigure 5.6d) is sharp indicating a well ordered 

surface. There are also 1/2 order streaks running along the [11-2] direction which 

suggest the presence o f a 2x periodicity along the chains. The presence o f a streak rather 

than a spot at the 1/2 order location also indicates a lack o f phase correlation between 

adjacent chains. In other words, the 2x periodicity along each chain is not correlated with 

the structure on adjacent chains.

As shown in the large scale STM image (Figure 5.6a), 0.24 ML produces regions 

o f  (775)-Au (as characterized by the chain spacing) that are large and minimally 

interrupted by other facets (dark regions). As shown in the corresponding line scan, the 

angle between (775) and the other facet is small (around L). The non-(775) facet is 

continuing the directional trend o f moving toward (775) with increasing Au coverage. 

This facet corresponds to (443) termination according to Equations 5.1 and 5.2. Note 

that, ideally the Si(775) surface occurs on a wafer miscut by 8.5°. Since our wafer is 

miscut by only 8°, these small angle facets are necessary to preserve the total off-axis 

angle o f the wafer.
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In general, we find that the deposition o f 0.24 ± 0.03 ML o f Au optimally 

stabilizes the (775) surface and forms a regular array o f chains spaced 21.3 Â apart. 

Paradoxically, this optimal coverage corresponds to a stoichiometry of 1.5 Au atoms per 

unit cell. This is highly unusual as previous work*'^ suggests that most high index 

vicinals o f Si(l 11) are stabilized by the incorporation o f only one Au atom per unit cell. 

For comparison, it is also known that the Si( 111)5x2-Au reconstruction, which forms on 

flat (111) surfaces, incorporates two Au atoms in the unit c e lP . The Si(775)-Au 

reconstruction appears to be intermediate between these two cases, suggesting a novel 

surface structure which incorporates elements from both surface reconstructions 

culminating in one Au atom shared between two unit cells. In this way, 1.5 Au atoms 

could be attributed to each 1x1 unit cell. Recent work on a similar reconstruction, 

Si(553)-Au, finds a similar scenario using three-dimensional x-ray diffraction^ They 

find that the unit cell contains two Au atoms; one Au atom having a fixed position within 

the unit cell and one having split 50-50 occupancy between two almost equivalent sites. 

In our case, there could be a similar mechanism in the (775)-Au unit cell. However, on 

average only one o f the two additional sites is occupied resulting in a coverage equivalent 

to 0.24 ML. One extra Au atom every second unit cell may also explain the period 

doubling observed in LEED.

At coverages beyond optimal (the over coverage regime), between 0.24 ML and 

0.32 ML, large scale images o f the surface again show facets. Representative data for the 

over coverage regime is shown in Figure 5.7. As shown in Figure 5.7a, at a coverage o f 

0.26 ML there are two facets present, one of which is (775)-Au terminated as determined 

by the chain spacing. The angle between the facets, as determined from the line scan in
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Figure 5.7c, is 8.6°. Within error, this facet corresponds to (111) termination, which is 

8.5° from (775). Therefore, as the Au coverage increases beyond optimal, the non-(775) 

facet jumps back toward (111). At this coverage, we observe chains spaced 14 A apart 

on the (111) facet indicating the presence o f Au (highlighted by arrows in Figure 5.7a). 

STM also indicates the re-occurrence o f 3-d structures, although these are structurally 

different than those that occurred in the low coverage regime. FEED images at this An 

coverage (Figure 5.7b) show an nx2 reconstruction with additional spots along the [11-2] 

direction. The additional spots indicate the presence o f more than one chain spacing. 

This supports the observation in STM of chains running along the non-(775) facet.

We observe that, as the An coverage is increased beyond optimal, the (775)-Au 

reconstruction persists. This suggests that the (775) facet is still energetically preferred in 

much the same way as in the low coverage regime. However, in the high coverage 

regime, the non-(775) facet is always observed to be (111)-Au terminated. Thus, excess 

Au (more than what is stoichiometrically required by the (775)-Au facet) is being 

accommodated by the (111) facet. This result is in agreement with Seehofer et al. and 

Shibata et al.‘ ’̂’̂  who observe (775)-Au and (111)5x2-Au facets at various Au coverages. 

We observe a chain spacing o f 14 A on the (111) facets, which is inconsistent with the 

(111)5x2-Au chain spacing. Nevertheless, the presence o f chains on the (111) terrace is 

compelling.

As the An coverage is increased beyond 0.26 ML, the surface structure becomes 

more difficult to characterize. We observe the formation o f triangular shaped terraces at 

a coverage of 0.32 ML as shown in Figure 5.8.
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Figure 5.7a) Large scale STM image (1000 Â x 1000 Â) o f the clean 8° off-axis wafer with  
0.26 ± 0.03 ML Au taken at a bias of -2.04 V. The derivative of topography is shown. As the An 
coverage increases beyond optimal, the angle between the two facets increases. Arrows highlight the 
presence o f chains on the non-(775) facet. The line shows the position o f the line scan, b) 
Corresponding LEED image (70 eV). Arrows point to the extra spots which indicate the presence of 
more than one chain spacing, c) Line scan showing the facet angles, d) Drawing representing the 
relative facet orientations with respect to (111) and (775) planes.
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Figure 5.8. Large scale STM image (2000 A x 2000 A) of the 8° off-axis wafer with 0.32 ± 0.03 ML 
Au taken at a bias of 2.05 V. Large triangular shaped terraces dominate the surface structure.

STM shows chains spaced 21.2 Â apart on the triangular shaped terraces 

indicating the persistence o f local (775)-Au termination. LEED images o f this surface 

again show an nx2 reconstruction together with extra spots running along the chains 

indicating the presence o f more than one chain-like reconstruction, although this was not 

observed in STM.

At approximately 0.32 ML, the (775)-Au surface ceases to be observed in STM, 

however LEED still shows the presence o f a chain-induced reconstruction. One example 

o f this is a 0.43 ML sample shown in Figure 5.9. In Figure 5.9a, the chains are spaced 

14.8 Â apart, which corresponds to the (553)-Au reconstruction. Notice that the terrace 

shape is once again defined by long straight step edges with chains running parallel to the 

steps, perhaps indicating a local stability in this morphology. The surface exhibits a 

sawtooth morphology with the angle between the facets being 7.1° (Figure 5.9b).
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Figure 5.9a) STM image (749 Â x 634 Â) of clean 8° off-axis wafer with 0.43 ± 0.03 ML An taken at a 
bias o f 2.05 V. At this coverage the (775) facet is not stable and is replaced by (553). The 
reappearance o f long straight facet edges indicates a local stability in the reconstruction. The line 
indicates the position of the line scan, b) Corresponding LEED image (70 eV). Arrows point at the 
positions of extra spots indicating the presence of more than one chain spacing, c) Line scan showing 
relative facet angles. Note the sawtooth morphology, d) Drawing representing relative facet 
orientations with respect to the (111) plane.
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This corresponds to having both (553) and (554) terminations. There is evidence in 

Figure 5.9a that there are chains running along the (554) plane as well. LEED (Figure 

5.9d) shows a chain-induced reconstruction with extra spots running along the [11-2] 

direction. This supports STM evidence o f the presence o f more than one chain-like 

reconstruction. We also observe (332)-Au termination when just over 0.32 ML o f Au is 

deposited as in Figure 5.10.

Figure 5.10. Small scale STM image (146 Â x 161 Â) of our clean 8° off-axis wafer with >0.32 ML Au 
taken at a sample bias of-2.0V. The chain spacing is 17.9Â indicating (332)-Au termination.

The presence o f (332) and (553) facets, which replace the (775) facet, could be 

due to the fact that Au, in far excess o f the (775)-Au optimal coverage, can no longer be 

accommodated by both the (775) and the (111) facets as it was in Figure 5.7. At this 

coverage, the (775) surface is no longer stable and it is more favourable for the surface to 

adopt a higher facet angle with a smaller chain spacing. Small chain spacings will 

incorporate more Au than chains spaced farther apart. Thus, when more than 0.32 ML of 

Au is deposited, we find that the Si(775) facet is replaced by other terminations with
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sm aller chain spacings. Nonetheless, the Si(775)-Au reconstruction persists up to 

0.32 ML suggesting that it is a low energy facet.

As mentioned, several authors report the existence o f (775)-Au facets on vicinal 

Si wafers at various Au coverages. Work by Crain et al.̂ '*'̂  ̂ show that it is possible to 

achieve stable (775)-Au facets on an 8° off-axis wafer over a range o f Au coverages. 

However, for other miscuts, they show stable (553), (557), (335), (995) and (13 13 7) 

facets suggesting that the crystallographic orientations nearest to the off-axis angle o f the 

sample are energetically preferred. On the other hand, Seehofer et al. and Shibata et 

al.^ '̂^’ suggest that the (775) facet is inherently preferred on all vicinal samples. Despite 

this discrepancy, all o f the above mentioned authors agree that (775)-Au is unique in that, 

unlike its other high index counterparts, it shares many attributes with Si(l 11)5x2-Au. In 

Chapter 2 o f this thesis, the Si(l 11)5x2-Au reconstruction was introduced. It normally 

occurs on flat (111) terraces and is optimized at a Au coverage o f 0.44 ML^^, however, it 

also persists on samples with slight miscuts^^"^*. Crain et al.''^ report similarities in the 

band structure o f Si(775)-Au and Si(l 11)5x2-Au based on photoemission measurements. 

Also, the fact that (775)-Au persists over a wide range o f Au coverages and sample 

orientations suggest that it is energetically preferred. This parallels the fact that 

Si(l 11)5x2-Au is a low energy reconstruction on the (111) surface^^. Seehofer et al.'^ 

note that the (775) terrace (recall from Figure 2.4 that it is a (111) terrace separated by 

single height steps) is large enough to accommodate a single 5x2 unit cell. Our results 

suggest that the (775)-Au unit cell is a modified form o f the 5x2-Au unit cell to 

accommodate the highly stepped surface. As well, the stoichiometry o f the (775)-Au 

reconstruction appears to dictate some form of Au sharing. Au sharing may be a property
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required by highly stepped surfaces and the period doubling seen in LEED for nx2 chain­

like reconstructions supports this hypothesis. Given that the 5x2-Au reconstruction is 

energetically preferred on the flat surface, the presence o f a highly stepped surface may 

result in a modified 5x2-Au reconstruction. This would explain the myriad o f similarities 

between the two reconstructions as well as allow for the few differences. It would also 

explain the inherent tendency for Au-induced surface morphologies to include the (775) 

facet.
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6. SUMMARY

In this thesis, we have found that the (775)-Au reconstruction persists over a wide 

range of coverages up to 0.32 ML, and is optimized at a coverage o f 0.24 ML. We find 

that the (775)-Au reconstruction at all coverages appears identical. This suggests that the 

local Au coverage on all (775)-Au facets is 0.24 ML. The stoichiometry at optimal 

coverage (0.24 ML) for the (775)-Au reconstruction is such that 1.5 Au atoms are 

incorporated into each unit cell. We suggest that this stoichiometry can be accomplished 

though period doubling, and is supported by the presence o f half-order streaks in LEED.

When the Au coverage is not optimal, the surface morphology exhibits nanofacets 

whose orientation depends exquisitely on the Au coverage. Nanofaeeting is a result of 

the balance o f surface stress, caused by the conservation o f sample angle, with the 

elimination o f dangling bonds^^’ It was observed that extremely small changes in the 

Au coverage drastically alter the surface structure. Up to 0.32 ML, the (775) facet is 

always present suggesting that it is energetically preferred. Even at extremely low 

coverages, < 0.03 ML, the (775)-Au reconstruction is present. As more Au is deposited 

onto the surface, more o f the surface can become (775)-Au terminated. Since the local 

Au coverage on the (775) facet is 0.24 ML, the deficit/extra Au is accommodated by the 

non-(775) facet. The change in the surface area o f the (775) facets causes a 

corresponding change in the orientation of the non-(775) facet as defined by Equation 

2.1. In the under coverage regime, we see a directional trend in the orientation o f the 

non-(775) facet with increasing Au coverage. A summary o f these results is shown in the 

following phase diagram of surface morphology versus Au coverage.
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Figure 6.1. Phase diagram of surface structure as a function of Au coverage. Relative facet angles 
are shovm underneath.

In the low coverage regime (up to 0.18 ML), the non-(775) facet does not contain 

Au. However, in the high coverage regime (0.24 ML -  0.32 ML), we find that the 

surface morphology is composed o f (775)-Au and (111)-Au facets. As the Au coverage 

is further increased, the surface morphology becomes disordered before reverting to an 

ordered sawtooth morphology. In this case, at 0.43 ML the (775)-Au reconstruction is no 

longer present and is replaced by (553)-Au and (554)-Au facets.

Our results show that, up to a threshold o f 0.32 ML o f Au, the (775) facet is 

stable. Beyond this threshold, other chain spacings are stabilized. This suggests that, in 

agreement with Seehofer et al.'^, the (775) facet is indeed energetically preferred. 

However, in agreement with Crain et al.̂ "̂ '̂ ,̂ these results also showcase the ability to 

tune the chain spacing with Au coverage. The discrepancy between these results as 

alluded to earlier in this thesis is resolved if we attribute the results by Seehofer et al.'^ to 

the fact that the Au coverage is within the threshold to stabilize the (775)-Au facet. The 

results by Crain et al.’'* are due to the fact that the (775)-Au threshold has been exceeded. 

We can verify this hypothesis by repeating our experiment with different off-axis wafers. 

I f  the (775) facet is indeed energetically preferred, we expect to find persistent (775)-Au
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facets on any vicinal sample, even on samples misent further away from the 8.5° misent

required for an ideal (775) facet. To the hest o f our knowledge, there have been no 

experiments o f this kind to date.
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