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Abstract of the Thesis

Central venous cattieters (CVC) are a known source of nosocomial blood 

stream infections. However, standard cultivation metfiods to identify causal 

pattiogens of cattieter-related blood stream infections (CRBSI) on catheters often 

fail. In this study, I compare the traditional cultivation method to the cultivation- 

independent PCR-DGGE method to examine bacterial colonization on central 

venous catheters retrieved from cancer patients.

In order to study the biofilm communities that colonize the catheters, an 

optimized sonication protocol was developed to remove biofilm bacteria from 

their substratum. I showed that a sonicating power of 12 Watts for 5 minutes 

could remove bacteria, such as Pseudomonas putida and Staphylococcus 

epidermidis cells, from a glass surface without killing the bacteria.

Twenty-four catheters were retrieved from cancer patients and used in this 

study. Five out of the 24 catheter samples (21%) showed growth in at least one 

of the culture media used. The isolates recovered from the catheters belonged to 

five bacterial species, including Staphylococcus aureus, S. epidermidis, S. 

hominis, a Staphylococcus sp., and Streptococcus agalactica.

The PCR-DGGE method showed that 100% of the catheters were 

colonized by bacteria. Furthermore, unlike the cultivation assay demonstrated 

that contaminated catheters were colonized by only one or two bacterial species, 

DGGE analysis showed that all the catheters in this study possessed a mixed- 

bacterial community of at least 4 bacterial species. By analyzing the sequences
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of the DGGE bands, Enterococcus faecalis (100%), E. faecium (96%) and 

Roseomonas sp. (88%) were the most predominant species detected on the 

catheters. Staphylococcus epidermidis, S. hominis, S. aureus, Corynebacterium 

sp. and Serratia sp. were detected on 30-54% of the catheter samples. Other 

bacterial species, such as E. coli, Aeroccous sp.. Micrococcus sp. and alpha 

proteobacterium were detected on less than 30% of the catheters. In addition, 

scanning electron microscopy (SEM) confirmed the DGGE findings in that 

biofilms were found on all the catheter samples. Biofilms were found in the 

lumens of the catheters but rarely associate with the outer surface.

The catheters were rinsed prior to the sonication process and the rinsing 

buffers were also analyzed by culturing and DGGE assays as described for the 

catheter samples. None of the buffer samples showed any positive growth in the 

growth media but all of them showed positive amplification by a pair of 

eubacterial universal primers and showed similar DGGE profiles as their 

respective catheter samples, showing that even gentle rinsing could remove 

enough biofilm cells for PCR-DGGE analysis.

In conclusion, the PCR-DGGE method is a superior method in identifying 

biofilm microbial communities on catheters. This method could detect and identify 

“viable but non-culturable” bacteria that were missed by the conventional 

cultivation methods. Furthermore, this study also revealed that some bacterial 

species (such as Enterococcus, Roseomonas spp. and Serratia spp.), that have 

yet been recognized as a major cause of catheter related infections, can 

potentially be important catheter-associated pathogens.
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1. Literature Review

1.1 Problems associated with use of catheters

More than 150 million of intravenous catheters are used annually in North 

American hospitals (Crump and Collignon, 2000) and catheter-related blood 

stream infections (CRBSI) have been implicated as one of the major causes of 

nosocomial infections (Siegman-lgra et a i, 1997). Up to 250,000 documented 

cases of CRBSI occur annually in the USA (O'Grady et a i, 2002). Use of central 

venous catheters (CVC) is responsible for as many as 90% of total CRBSI 

developed in hospital (Bregenzer et a i, 1998). The annual cost associated with 

catheter-related infections in the United States in 1992 was estimated to exceed 

$4.5 billion (Polonio et a i, 2001). For each individual patient recovered from a 

nosocomial bloodstream infection in an intensive care unit (ICU), it can cost as 

much as $40,000 (Pittet et a i, 1994). Central venous catheter related blood 

stream infections cause considerable morbidity and mortality (Mermel et al.,

2000). Intra-vascular catheters related sepsis brings 80,000 deaths annually in 

USA alone (Pelletier et al. 2000). Also, Tcholakian and Raad (2001 ) indicated 

that frequency of infection was considerably greater in immunocompromised 

patients who require CVC for parenteral nutrition and chemotherapy treatment. 

Prolonged use of intravascular devices in patients who are older, sicker and 

immunosuppressed can lead to complications and increased morbidity and 

mortality rates (Goldmann and Pier, 1993; Siegman-lgra et a i, 1997)
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1.2 Catheter contaminations

Central venous cattieters (CVC), in general, are long, fine, sterile tubes 

ttiat are introduced into a large blood vessel sucti as ttie jugular or subclavian 

vein for parenteral administration of fluids and/or medications (Long and Phipps 

et. al., 1985) or for measurement of central venous pressure (Carratala et al., 

1999: Flowers et al., 1989; Friel, 1981; Stamou et al., 1999). In this study, I focus 

on the Hickman - Broviac catheters, which are specifically used for administration 

of drugs, such as chemotherapeutic agents, to cancer patients.

Catheters can be colonized by microorganisms, leading to catheter-related 

infections. Goldmann and Pier (1993) suggested that the vast majority of 

endemic infusion related infections were caused by catheter contamination. The 

consensus is that most of the infusion-related infections are initiated during 

insertion of catheter. Epidemiological data indicates that microorganisms at the 

insertion site are able to track into the wound made by the catheters and can 

rapidly colonize the catheters’ intravascular segment. The bacteria are able to 

move down the external surface rapidly, infecting a larger area of the catheters.

The most common sources of CVC-related infections are bacteria from 

patients’ skin, hands of medical staff, tools and chemicals (Murga et al. 2001 ). 

Since the most common source of microorganisms that colonize catheters is the 

patients' own cutaneous flora, the major type of bacteria that causes catheter- 

related bacteremia is coagulase-negative staphylococci, a common group o f skin 

microflora (Goldmann and Pier, 1993). Snydman et al. (1990) found that with
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each case of catheter contamination, at least one of the organisms cultured from 

the catheter was also present on the skin of the patient.

Health care personnel can also contribute to catheter infections by not 

washing their hands appropriately. This can lead to intrahospital bacterial 

dissemination (Maki ef al., 1977). Use of 2% aqueous chlorhexidine for skin 

disinfection and proper hand washing can result in 2-fold decrease in CRBSI 

(Sandoe at. al, 2001). As it is a clinical standard to draw blood to ensure proper 

catheter placement, bacteria from the tip of a catheter can be disseminated by 

this procedure in catheter lumen. Blood proteins absorbed on the internal 

catheter surface serve as ideal adhesive material especially for Gram-negative 

bacteria (Murga et al. 2001). Critically ill patients frequently develop infections, 

such as pneumonia, pyelonephritis, urinary tract infections and septic vein 

thrombosis. Bacteria from these infections can be spread by circulatory system 

and cause CVC intra-luminal colonization (Raad etal., 1995). Infusate 

contaminations during industrial production can also cause bloodstream 

infections but this is a rare source of bloodstream infections (Maki at. al., 1981).

1.3 The types of bacteria that colonize catheters

As mentioned earlier, one of the most frequently isolated bacteria from 

colonized catheters are coagulase-negative staphylococci (CoNS), such as 

Staphylococcus epidermidis. Other skin microflora such as Staphylococcus 

aureus have also been isolated (Stamou et al., 1999; Raad, 2000; Goldmann and 

Pier, 1993). Center of Diseases Control of the USA (CDC 1999; Guidelines for 

the Prevention of Intravascular Catheter-Related Infections 2002) has reported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that coagulase-negative staphylococci cause 37% of all CRBSI. S. aureus, 

enterococci, Candida spp. and Gram-negative bacilli account for 12.6, 13.5, 8 

and 14 % of reported hospital-acquired CRBSI, respectively. However, many 

more microorganisms have been linked to catheter-related bloodstream 

infections. These include Enterococcus faecalis, Corynebacterium spp., Bacillus 

spp., Enterobacter aerogenes. Pseudomonas aeruginosa, Klebsiella pneumonia. 

Salmonella spp., Mycobacterium neoaurum, Serratia marcescens and Candida 

albicans, (Atela etal., 1997; Nahass and Weinstein, 1990; Raad, 1998; Raad, 

2000; Stamou et al., 1999).

1.4 CVC related infections in cancer patients

Solid tumors and hematological malignancies are frequently associated 

with neutropenia and weakened immune response. Septicemia is a frequent 

complication in immunocompromised patients undergoing chemotherapy using 

long-dwelling central venous catheters (Soufir, 1999). Such patients often do not 

demonstrate clinical symptoms of systemic inflammation. These make 

diagnostics of catheter related sepsis impossible and cause increasing mortality 

(Pelletier ef a/. 2000; Andremont ef a/., 1988; DesJardin etal., 1999). Catheters 

used in treatment of cancer patients usually remain in a patient’s body for longer 

than 30 days (Andremont et a!., 1988). This further increases the potential o f 

catheter infections of the cancer patients. Over 40% of the nosocomial infections 

observed in cancer patients are catheter-related blood stream infections 

(Armstrong et al., 1986; Johnson etal., 1986).

10
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1.5 The formation of biofilm on catheters

it has been recognized that majority of the bacterial communities in the 

environment, as well as on medical devices, live in form of biofilms (Donlan,

2001). Donlan and Costerton (2002) described biofilms as sessile microbial 

communities that are characterized by cells irreversibly attached to substrate 

surfaces or to each other and are embedded in a matrix of extracellular polymeric 

substances (EPS). Biofilm bacteria have been shown to colonize the lumen of 

catheters and are usually immersed in a thick layer of EPS (Aschner et al., 1987; 

Mamie et al., 1984; Tenney et al., 1986). Raad et al., (1993) showed that biofilms 

can associate with either the outside or inner lumen of catheters. Due to the 

direct contact of catheters with the bloodstream, the catheter surfaces are usually 

coated with plasma proteins such as laminin, fibrinogen, fibronectin and albumin. 

These proteins can act as conditioning films for bacteria attachment. For instance,

S. aureus adheres to proteins such as fibronectin, fibrinogen and laminin while S. 

epidermidis adheres to fibronectin only (Rand, 1998). Biofilm formation has been 

shown to occur as early as three days after catheterization (Anaissie et al., 1995). 

Tenney et al., (1986) demonstrated that Hickman catheters that were used to 

treat patients with chemotherapy drugs could be completely colonized by 

microbial biofilms on both the inner and outer surface of the catheters after three 

weeks. Short-term (less than 10 days) indwelling, non-cuffed catheters are 

usually colonized by skin microflora, such as coagulase-negative staphylococci 

(39% of the catheters used), S. aureus (26%), Candida species (11%) and 

Gram-negative bacilli (14%). In contrast, long-term (> than 10 days) CVC were

11
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found being colonized mostly by coagulase-negative staphylococci (25%) and 

Gram-negative bacilli (45%) (Maki etal., 2001; Maki etal., 1998).

According to Heilmann et al. (1996a), biofilm formation consists of 5 

stages -  attachment to a surface, proliferation, intercellular adhesion, 

extracellular slime production, and cells or even whole biofilm detachment. All 

these phases can be demonstrated on S. epidermidis biofilm development, one 

of the most frequently found inhabitants of human skin and CVC. Heilmann et al., 

(1997) also discovered that a cell surface protein exhibiting vitronectin-binding 

activity was related to the primary attachment of S. epidermidis to a polystyrene 

surface. This protein is encoded by the chromosomal atiE gene (Heilmann et a l , 

1997). Other genes have been implicated in the second stage of biofilm 

formation, including three intercellular adhesion genes named icaA, icaB and 

icaC, which are found in an operon structure (Heilmann et al., 1996b). 

Staphylococcus spp. produce a group of cell wall-associated proteins regulating 

adhesion of the bacteria to surfaces and conducting protection against host 

immune system (Balaban et al., 1998).

1.6 Biochemistry and physiology of Biofilm cells

Bacterial cells communicate with each other by quorum sensing (QS) 

mechanism during biofilm formation (Greenberg, 1997; Kleerebezum et al, 1977). 

Different bacterial species produce a number of different classes of OS signal 

molecules. Af-acyl-L-homoserine lactone (AHL) and some of its dérivâtes are 

shown to be the QS signals of Gram-negative bacterial species, such as E. coli. 

Pseudomonas and Vibrio spp. (Calfee et al, 2001; Mayville et al., 1999). The QS

12
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signals are constitutively produced by individual cells. However, the signal 

molecules will only be effective in transforming microcolonies of attached cells to 

mature biofilms when these signal molecules within the microcolonies reach their 

threshold concentrations. Once they reach their threshold concentrations, they 

turn on the biofilm genes that are responsible for the maturation of biofilms, 

producing a large amount of EPS that assemble the biofilm matrices.

Gram-positive bacteria communicate by other OS signal molecules such 

as peptide pheromone, cell-density dependent peptides and cascade of sensor 

proteins and histidine kinase, located in the cell membrane of the bacterium. 

Some of these peptides interact with membrane bound kinase sensors to 

transduce signals across the membrane. Cyclic thiolactone is another OS signal 

molecule used by Staphylococcus aureus for biofilm formation.

Biofilm cells are more resistant to pH and temperature changes, 

disinfectants and antibiotics. It has been shown that bacterial biofilms on medical 

catheters are 1000 times more resistant to antibiotics than their planktonic 

counterparts (Donlan, 2001, Costerton, 1995). This can be explained by changes 

in cell wall composition of and increase in EPS production by the biofilm cells 

(Rupp and Hamer, 1998). Due to the low immunogenic response elicited by the 

polysaccharide matrix of biofilms, the immune system may not be able to detect 

the presence of bacterial cells hidden in the biofilm matrices (Davies et al., 1998: 

Fuqua et al., 1994). Aerobic and anaerobic processes can also occur 

simultaneously at different sites of a biofilm (Davies et al., 1998). When a biofilm

13
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reaches its maturity, biofilm cells can be detached into the blood stream of a 

patient causing symptoms of bacteremia (Crump and Collignon, 2Q00).

1.7 Detection of catheter-related infections

Several methods are used to diagnose catheter-related infections. Some 

of these methods require removal of the catheters. They include:(1) cultivation of 

potential pathogens from the tip of the catheters (either qualitative or quantitative), 

(2) a rolling-tip plate method (a semi-quantitative cultivation assay by rolling the 

tip of a catheter sample on microbiological agar media), and (3) direct 

microscopic examination (staining with either Gram stain or acridine orange).

Other detection methods do not require removal of the catheters. These include 

(1) Superficial cultures from sites of insertion, (2) endo-luminal brushing, (3) 

paired quantitative central (peripheral venous blood culturing, (4) unpaired 

quantitative culturing of blood samples obtained through CVC, and (5) direct 

microscopic examination of blood samples obtained through CVC.

Accurate diagnosis of catheter-related blood stream infection (CRBSI) 

requires quantitative blood smear counting, blood sample culturing and catheter 

tip smear counting and culturing. These methods are labor-intensive and costly 

(Raad, 2004). Presence of microbial contaminations on the external surface of 

central venous catheters can be detected by the semi-quantitative rolling tip 

culturing assay. A catheter is considered colonized when more than 15 CPUs are 

detected (Maki etal., 1977; Buisson etal., 1987; Collignon etal., 1986). However, 

the rolling-tip plate method does not detect microorganisms that colonize the 

inner lumen of catheters because the inner lumen does not come into contact

14
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with the nutrient agar. Therefore, this method may under estimate the incidence 

of CRBSI (Sherertz et al., 1997; Crump and Collignon, 2000).

Sonication has been used to remove biofilm bacteria from catheter 

samples and found to be more sensitive than other methods to detect bacteria on 

contaminated catheters (DesJardin et al., 1999). For catheters that have been in 

place for extended periods of time, the sonication method demonstrates 20% 

more sensitive than the roll-tip plate and catheter flashing methods (Sherertz et 

al., 1997).

To detect CRBSI without removing the catheters, paired blood samples 

can be drawn from the central (via the central venous catheters) and peripheral 

veins of patients for quantitative culturing assays. Patients with CRBSI should 

show a high central (peripheral ratio of bacterial counts (Flynn et a i, 1987). A 

qualitative approach has also been proposed to detect CRBSI in cancer patients 

(DesJardin et al., 1999; Raad et al., 2004). Blood samples are taken from the 

peripheral and central veins of the patients. If the same bacteria are identified 

from both blood samples, the patients are considered positive for CRBSI.

“Endo-luminal brush method” is another method that allows CRBSI 

diagnosis without CVC removal (Kite et al., 1997). When compared with the 

rolling-tip culturing method, the percentage of catheters tested positive were 82 

and 66% for the endo-lumnal brushing and roll-tip plate methods, respectively 

(Kite etal., 1997).

One of the most important limitations of direct cultivation from catheter tip 

samples is the demand for catheter removal. Despite the removal of catheters for

15
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microbiological analysis will provide a more accurate diagnosis of CRBSI, 

cattieter removal is not always preferred by clinicians (Press et al., 1984) 

because only 25-45% of episodes of sepsis witti long-term devices represent true 

CRBSI (Tacconelli et al., 1997). Furthermore, some clinical studies show that 

CRBSI caused by coagulase-negative staphylococci can be successfully treated 

by antibiotic infusion through the infected catheters, with a success rate of 60- 

91% (Press etal., 1984; Hartman etal., 1987; Benezra etal., 1988; Marr et al., 

1997; Messing 1990). Some studies also demonstrated that the quantitative 

blood culture method may allow diagnosis of CRBSI without the unnecessary 

removal of non-infected catheters (Flynn et al., 1987; Maki et al., 1977; Yagupsky 

and Menegus, 1989; Sherertz et al., 1997). However, leaving an infected 

catheter in place increases the risk of recurrent of bacteremia up to 20% (Raad 

et a i, 1992; Elishoov et al., 1998; Press 1984).

Nevertheless, a common consensus of whether a catheter should be 

removed for CRBSI analysis has yet been reached. Siegman-lgra etal. (1997) 

performed a meta-analysis of different diagnostic methods to evaluate their 

effectiveness of detecting CRBSI. These methods include (1) qualitative culture 

of the tip, (2) semiquantitative culture (“rolling-tip plating”), (3) quantitative culture 

of the tip, (4) direct microscopic examination (Gram staining and acridine orange 

staining), (5) paired quantitative blood cultures (central (peripheral vein blood 

samples) and (6) unpaired quantitative blood samples obtained through the CVC. 

The most accurate method was the quantitative culture of the catheter tip

16
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samples (90% accuracy) and the unpaired quantitative blood culturing had the 

lowest accuracy of 78%.

1.8 Analysis of CVC colonization by PCR-DGGE

Fast identification of causative microorganisms on catheters is important 

for CRBSI treatment and prognosis. Most of bacterial cells on an infected 

catheter are hidden inside of a thick layer of extracellular polymeric substances 

(EPS) and are not accessible for the host’s immune system. This also makes 

routine blood culturing ineffective and serological diagnosis of CRBSI uncertain 

(Crump and Collignon, 2000). In a mature biofilm, bacterial cells undergo 

differential genotypic and phenotypic expressions according to their topographic 

position in the matrix. Coch et al., (2002) showed that bacterial communities 

found on catheters exhibited viable but non-culturable (VBNC) behavior. 

Furthermore, bacterial cells taken from biofilms fail to grow on most standard 

microbiological growth media and this becomes a major limitation of most clinical 

culturing methods (Marshall, 2000).

Studies have shown that both bacterial DNA and enzyme activity are 

present on medical devices even when no bacteria are recovered by plating 

(Costerton et al., 1999). The presence of messenger RNAs on these devices 

also proves metabolic activity of biofilm cells (Vandecasteele et al., 2002). 

Molecular detection of microbial DNA by polymerase chain reaction (PCR) is 

sensitive and quantitative and has been successfully used to establish bacterial 

presence in different clinical samples. Amplification of 16S rDNA of bacteria 

makes possible to avoid frequently inconclusive cultivating methods. PCR is

17
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extremely sensitive and can detect as small amount of bacteria as 10 cells per 

one pi of blood sample (Schabereiter-Gurtner et al., 2001 ; Walter et al., 2000). In 

case of CRBSI, bacterial presence on catheter lumen can be detected by PCR 

(Dobbins et al., 2003). PCR amplification can detect even one bacterial cell in a 

blood sample drawn via a catheter (Warwick et al., 2004).

Biofilm on a long-dwelling catheter can be composed of mixed microbial 

species. According to Donlan (2001), samples provided for blood culturing taken 

from long dwelling catheters are always colonized by Gram-positive and Gram- 

negative mixed cultures. The denaturing gradient gel electrophoresis (DGGE) 

can be used to detect the composition of bacterial communities without prior 

information about the possible identity of the microbes in these communities.

DGGE has been used to identify bacterial communities in various 

environments, such as soil, feces and food (Leung et al., 2003; Satokari et al., 

2001 ). PCR amplification of DNA extracts from samples with a pair of universal 

eubacterial 16S rDNA primers produces 16S rDNA fragments of all bacteria 

found in the samples. The amplified 16S rDNA fragments from various bacterial 

species can be separated by electrophoresis in a dénaturant (urea and 

formamide) gradient gel. DNA fragments are separated based on their GC:AT 

nucleotide ratio, length and arrangement of nucleotide base sequence and 

melting temperature. All these factors influence speed and distance that the DNA 

fragments travel in the gel. The DGGE profile of a sample represents the specific 

bacterial composition of the sample. The DNA bands in the gel can be excised.

18
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amplified, sequenced and identified by comparing with known bacterial DNA 

sequences in the GenBank database.

DGGE has been widely used in environmental microbiology for evaluation 

of microbial community in natural environments (Davies et al., 2004). However, it 

is rarely used in medical diagnosis and has yet to be used for detection of CRBSI. 

Therefore, the aim of this study is to compare the traditional cultivation method to 

the cultivation independent PCR-DGGE method to examine bacterial colonization 

on central venous catheters recovered from cancer patients.

1.9 Objectives of the Thesis

Specific objectives of this study are:

(i) to develop an optimal protocol to remove biofilm bacteria from a 

substratum;

(ii) to isolate and identify bacteria on central venous catheters (CVC) 

collected from cancer patients by cultivation using various microbiological 

media;

(iii) to determine the diversity and identity of the bacterial community on CVC 

recovered from cancer patients by the PCR-DGGE method; and

(iv) to examine the presence of biofilm on the CVC by scanning electron 

microscopy.

19
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2. Materials and methods

2.1 Biofilm removal protocol

A protocol to remove bacterial biofilms from surfaces was developed for 

this study. A Sonic Dismembrator Model 100 sonicator (Fisher Scientific) was 

used to remove biofilm bacteria from the catheter samples. Knowing that high 

energy of sonication can destroy bacterial cells, the tolerance level of bacterial 

cells to various intensity of sonication was evaluated. Taking into account that 

bacterial community on a catheter can be represented by both Gram-positive and 

Gram-negative bacteria. Staphylococcus epidermidis (Gram-positive) and 

Pseudomonas putida (Gram-negative) were used as model strains to optimize 

the sonication procedure.

A S. epidermidis and a P. putida strain were grown in Tryptic Soy Broth 

(TSB; Becton Dickinson and Company, Sparks, MD, USA) to an early stationary 

phase at 37° and 30°C, respectively, harvested, washed twice and suspended in 

sterile phosphate-buffered saline (PBS: 0.14M NaCI, 2.68 mM KOI, 10.10 mM 

Na2 HP0 4  and 1.76 mM KH2 PO4 , pH 7.4) at ODeoo 1 0. One ml of bacterial 

suspension of each strain was exposed to different intensity of sonication ranging 

from 0 to 16 Watts for 5 minutes. Cell density of the sonicated and non-sonicated 

samples were determined by plate counting on Tryptic Soy Agar (TSA; Difco 

Detroit, Ml, USA) incubated at 37°C for S. epidermidis and 30°C for P. putida for 

48 hours. Viability of the cell suspensions was examined at different sonicating 

powers and an optimal setting was chosen for biofilm removal (Figure 1 ).
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Statistical analyses, sucti as the ANOVA and standard derivations, were 

performed by the SPSS statistical software package ver 9.0.

Sonication was applied to P. putida biofilm grown on glass surface in order 

to demonstrate the ability of the sonication method to remove biofilm. Two ml of 

overnight P. putida culture were added to 18 ml of TSB containing 2 pieces of 

sterile pre-cleaned cover slips and triplicate samples were used for this 

experiment. The samples were incubated at 30°C for 24 hours with shaking at 50 

rpm. After 24 hours, the growth medium was removed from all beakers and the 

cover slips were rinsed 3X with 20 ml sterile PBS. One glass cover slip from each 

beaker was submerged in 20 ml sterile PBS and was sonicated at 12 Watts for 5 

minutes. The second glass cover slip was used as an un-sonicated control. The 

glass cover slips were stained with acridine orange and examined under an 

epifluorescent microscope for biofilm cells.

2.2 Catheters

Catheters collected from 24 cancer patients, who were under 

chemotherapeutic treatments at the Northwestern Ontario Cancer Care Centre 

between 2003 and 2004, were used for this study. Blood stream infection (BSI) 

was suspected in 13 patients based on clinical symptoms. Peripheral blood 

culture assays were performed on blood samples obtained from these patients 

by the Thunder Bay Regional Health Centre Clinical laboratory and two samples 

produced growth. For seven patients, peripheral blood culture assays were 

repeated twice but the results were negative. Inflammation of an insertion site 

and dermal tunnel was observed in three patients but in each case culturing of
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the insertion site probe was negative. For the remaining 11 patients, symptoms 

of BSI were not observed. The catheters were removed from the patients 

between 20 and 180 days depending on the length of the treatments and 

potential BSI (Table 1).

2.3 Catheter processing

Catheter tips (about 5 cm in length) were received in sterile plastic bottles. 

For each catheter sample, three 1-cm pieces were cut from the tip of the catheter 

sample. One piece of the catheter was used for cultivation assay, one for the 

DGGE analysis and the last piece was for SEM imaging. The catheter pieces 

were separately placed in sterile 1.5 ml Eppendorf tubes and gently washed by 

pipetting 1 ml of sterile PBS solution from both ends of the catheter pieces to 

wash away blood residues that adhered on the catheter samples. Each of the 

washed catheter pieces was split vertically into 4 equal pieces and placed in a 

sterile 1.5 ml Eppendorf tube for further processing, by the cultivation assay, 

DGGE analysis or SEM imaging. The wash solution from each catheter sample 

was also saved for the corresponding analysis.

2.4 Culturing assay

To remove biofilm cells from the catheters, 500 pi of sterile phosphate- 

buffered saline (PBS; 0.14M NaCI, 2.68 mM KOI. 10.10 mM Na2HP0 4  and 1.76 

mM KH2PO4, pFI 7.4) were used to immerse the catheter samples and the 

samples were sonicated at an output power of 12 Watts for 5 minutes. The 

sonicated liquid samples were divided into six equal portions and were cultivated
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on TSA, MacConkey Agar and Sheep Blood Agar, both aerobically and 

anerobically at 37°C for 72 hours. When colonies were found, they were picked 

and streaked onto the same, but fresh medium. The isolates were Gram stained 

and identified by 16S rDNA sequencing.

The PBS solution samples that were used to wash the catheters prior to 

the sonication process were also analyzed by culturing assay as described for 

the catheter samples.

2.5 DNA extraction and 16S rDNA sequencing from isolates

Bacterial isolates were grown aerobically in 50 ml of TSB at 37° C to late 

log phase (OD at 600 nm 1.0). One ml of this broth suspension was placed in a

1.5 ml tube and centrifuged at room temperature at speed 14,000 x g for 5 

minutes. The cell pellet was washed with 1.0 ml of sterile deionized water 3 times. 

Finally, the pellet was resuspended in 1.0 ml of the sterile deionized water and 

the tube was placed in a 100°C water bath for 10 minutes to kill cells and release 

their DNA. The cap of the tube was pierced to allow the release of steam 

pressure. The tube was centrifuged for 5 minutes at 14,000 x g and the 

supernatant was transferred to a sterile 1.5 ml tube and one pi of the crude DNA 

extract was used for 16S rDNA amplification.

A pair of universal eubacterial primers, 341-Forward (5’- 

CTACGGGAGGCAGCAG) and 534-Reverse primers (5'-

ATTACCGCGGCTGCTGG), were used to amplify the V3 region of the IBS rDNA 

of the catheter DNA extracts, producing an amplicon of 194 bp. Amplification was 

performed under the following conditions:denaturation at 95°C for 1 min.
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annealing at 55°C for 1 min, and extending at 72°C for 1 min. A total of 30 cycles 

were performed and then followed by a final extention step at 72°C for 10 min.

The PCR was performed in 200 pi PGR tubes using HYBAID PCR Sprint 

Thermocycler (Midwest Scientific, MO, USA). One pi of DNA template was used 

for each 50 pi reaction product mixture containing 0.5 mM of each primer, 0.2 

mM of each dNTP (MB! Fermentas, Burlington, ON), 1.0 U of Tag polymerase 

(MBI Fermentas, Burlington, ON), 5 pi of lOx PCR buffer without MgCb to 1x 

final concentration, 3 pi of 25mM MgCb to 1.5 mM final concentration. The PCR 

product was examined by electrophoresis in a 1% agarose gel. DNA was stained 

with ethidium bromide (100 pg/ml) and visualized under UV light.

DNA product concentration was measured in each sample by comparison 

with a known concentration of DNA standard marker. Concentration of the 

amplicon was adjusted to about 150 -  200 ng per pi. The sample was sent to 

Mobix Lab (MacMaster University, Ontario) for DNA sequencing. The amplicon 

DNA sequences were identified by comparing to known bacterial DNA 

sequences in the GenBank database at the NCBI Blastn website 

(http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi).

2.6 DNA extraction from catheter samples

Five hundred pi of the Instagene matrix solution (Bio-Rad Laboratories Inc, 

Hercules, CA) were used to immerse each catheter sample for sonication at 12 

Watts for 5 min. After sonication the catheter samples were incubated at 56°C for 

30 minutes and vortexed at high speed for 10 seconds. The samples were then 

placed in a 100°C water bath for 8 minutes. Again, each sample was vortexed at
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high speed for 10 seconds and centrifuged at 14,000 x g for 5 minutes. The 

supernatant was transferred to another sterile 1.5 ml tube and the volume was 

estimated. Using the GeneClean (Q-Bio Gene, Carlsbad, CA) Kit reagents, DNA 

from the crude DNA extract was purified by binding to a silica matrix. The DNA- 

silica matrix was washed with buffered ethanol and the purified DNA was eluted 

from the silica by 25 pi of sterile deionized water as recommended by the 

manufacturer. The purified DNA extracts were stored at -20°C for the PGR- 

DGGE assay.

2.7 PCR-DGGE

PGR primers targeting the V3 region of 16S rDNA gene of eubacteria at 

the nucleotide positions 341 (Universal Primer Forward 341-f-GG) and 534 

(Universal Primer Reverse 534-r) were used to amplify the 16S rDNA fragments 

of the bacterial population in the catheter DNA extracts. The sequences of the 

forward and reverse primers were;Universal 341-Forward-GG, GG clamp 

underlined, (5’-

GGGGCGGGGGGGGGGGGGGGGGTGGGGGGGGGGGGGGGGGG GTA CGG 

GAG GGA GGA G) and 534-Reverse primers (5’- ATT AGG GGG GGT GCT GG). 

The PGR assay was performed in a 25 pi PGR mixture containing 0.5 unit o f Tag 

DNA polymerase (MBI Fermentas, Burlington, ON), 0.5 pi of each 25 pM primer,

2.5 pi 10X buffer without MgGl2 and 3 pi of 25 mM MgG^, 2.5 pi of dNTP mix (0.2 

mM for each kind of nucleotide), deionized water 12.5 pi and one pi of catheter 

DNA extract. The PGR reaction mixtures were prepared aseptically and 

processed in a Hybaid PGR Sprint Thermal cycler (Midwest Scientific, MO, USA).
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Amplification was performed under the following conditions:denaturation at 95°C 

for 1 min, annealing at 55°C for 1 min, and extending at 72°C for 1 min. A total of 

30 cycles were performed and then followed by a final extention step at 72°C for 

10 min. The PCR amplification product was examined by electrophoresis in a 1% 

agarose gel. DNA was stained with ethidium bromide (100 pg/ml) and visualized 

under UV light. DNA concentrations were estimated with a Chemigenius 

Biolmaging system and a GeneTools ver. 3.00.22 software program (Synoptic 

Ltd., SynGen division, Beacon House, Cambridge, England)

A 40% Acrylamide/Bis solution, 37.5:1 (DCode Universal mutation 

Detection System, Bio-Rad Laboratories Inc, Hercules, CA) was cast with an 

increase of dénaturant gradient from 25 to 65 % (top to bottom). One hundred 

percent of dénaturant was defined as 7M urea plus 40% formamide. The DGGE 

gel was equilibrated in a DGGE unit containing 7 L of IX  TAE running buffer 

(Bio-Rad) maintained at 60°C. The PCR products of the catheter samples 

(containing the 341F GO clamp) were mixed with an equal volume of 2x loading 

dye (1.5 ml of bromphenol blue-xylene cyanol mixture and 3.5 ml of 100% 

glycerol) and were loaded to the DGGE gel. The gel was processed at 150 Volts 

and a constant temperature of 60°C was kept during whole DGGE procedure. 

Staphylococcus epidermidis, Enterococcus faecalis and Escherichia coli 16S 

rDNA amplicons were used as positive controls and sterile double-deionized 

water was used as a negative control. The DGGE process was terminated after 8 

hours and the gel was stained for 15 minutes in 150 ml of IX  TAE buffer 

contained 15 pi of 10,000x SYBR Green I (Sigma-Aldrich, St. Louis, MO). The
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image of the gel was captured by a Chemigenius Biolmaging documenting 

system and a GeneTools ver. 3.00.22 software was used to detect and quantify 

DNA bands with concentration higher than 5 ng. The computer selected DNA 

bands were also confirmed by visual examination. The DGGE profiles of the 

samples are presented by binary codes in Table 2.

2.8 DNA extraction from DGGE gel

Selected bands were excised and rinsed in 1 ml double distilled water 

(ddHzO). The excised gel was homogenized in 50 pi of sterile ddH20 and allowed 

to equilibrate overnight at 4°C. The gel homogenate was spinned at 14,000 x g 

for one minute. One pi of the homogenate was amplified with 341-Forward and 

534-Reverse primers as described earlier, except the forward primer lacked GC 

clamp. The PCR product was purified by 1% agarose electrophoresis. The DNA 

from agarose gel was extracted by centrifugation through a glass wool stuffed 0.5 

ml microcentrifugal tube which had a tiny whole punched in its bottom. The DNA 

collected was purified with phenol-chlorophorm extraction and ethanol 

precipitation. To confirm that PCR product from an excised band was identical to 

the original band, the band homogenate was also amplified with the DGGE 

primers and confirmed by DGGE.

2.9 Sequencing and Identification of DGGE bands

The PCR amplified products of selected bands were cloned into the pGEM 

® -T Easy cloning vector (Promega corporation, Madison, Wl) using a mod ified 

protocol. In brief, one pi of the PCR product (about 20 ng/pl) were mixed with 5 pi
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of the 2x Rapid Ligation buffer (60mM Tris-HCI, pH 7.8, 20mM MgCI2, 20mM 

DTT, 2mM ATP 10% PEG), one pi of T4 DNA ligase, and 3 mcL of sterile ddH20. 

After overnight ligation at 4°C, the ligate product was transformed into an E. coli 

JM109 cells prepared by the Fermentas Bacterial Transformation Kit (MBI 

Fermentas, Burlington, ON). One and a half ml of an overnight E. coli culture 

grown at 37°C in LB broth, shaken at 200 rpm, was spun down for 1 minute at

14,000 X g at room temperature. The cell pellet was washed once with double 

distilled water, centrifuged at 14,000 x g, resuspended in 300 pi of TransformAid 

T- solution and pelleted at 14,000 x g after incubating on ice for 5 minutes. The 

cells were resuspended in 120 pi of TransformAid T- solution and incubated on 

ice for 5 minutes. One pi of the ligation mixture was mixed with 50 pi of cell 

suspension and incubated on ice for 5 minutes. The mixture was immersed in 

42°C for 90 seconds and placed immediately back on ice for 5 minutes. The 

transformation mixture was mixed with 1 ml of TSB pre-warmed at 37°C and 

placed in a 37°C incubator for 1 hour. Three hundred pi of the suspension were 

plated on selective agar media for bacterial selection. The antibiotic selective 

agar was prepared based on the Promega protocol with Ampicillin (100 pg/ml), 

X-Gal (20 pg/ml) and IPTG (200 pg/ml). White colonies were isolated for further 

analysis.

To confirm the insertion of the 16S rDNA fragment, crude DNA extracts 

were extracted from the selected clones by the boiling method as in Section 2.5. 

The crude DNA extracts from the white transformants were amplified with the T7 

(5’- TAAT ACG ACTCACTATAG G G ) and SP6 (5'-
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GCTATTTAGGTGACACTATAG) primers. The PCR products were visualized on 

an agarose gel as described earlier. Clones that gave the expected 200 bp PCR 

fragment were chosen for DNA sequencing analysis.

The Promega Wizard Plus Mini-Plasmid Purification Kit (Promega 

corporation, Madison, Wl) was used to extract the pGEM Easy-16S rDNA 

plasmids from the selected clones. In brief, aliquots of 10 ml of LB broth with 100 

pl/ml of Ampicillin were inoculated with the selected clones and incubated 

overnight at 37°C in a shaker incubator. Cells were centrifuged for 5 minutes at

14,000 X g, suspended in 250 pi of suspension solution and 250 pi of ceil lysis 

solution, incubated at room temperature for 5 minutes and neutralized with 350 pi 

of Neutralization solution. After centrifugation of the tube at 14,000 x g for 10 

minutes, 850 pi of the supernatant were centrifuged through the Spin Column 

and double-washed with 750 pi of the Column Wash Solution. Plasmid DNA was 

dissolved and removed from the Spin Column by centrifugation with 100 pi of 

nuclease-free water. Sequencing of the 16S rDNA insert in the plasmid was 

performed Mobix DNA laboratory (MacMaster University, Ontario). Sequences of 

the 16S DNA insert were compared and identified with GenBank database 

(http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi).

Some DGGE bands were identified by direct sequencing from the PCR 

products obtained the excised DNA bands. To confirm that PCR product from an 

excised band was identical to the original band, the band homogenate was also 

amplified with the DGGE primers and confirmed by DGGE before DNA 

sequencing.
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2.10 Electron Scanning Microscopy

A Scanning Electron Microscope/Energy Dispersive Spectrometer 

(SEM/EDXA, JEOL-USA Inc., Peabody, MA) was used for examining of external 

and internal surfaces of catheters. Catheter samples were prepared by 

desiccation in a biosafety hood at room temperature. Time for desiccation was 

selected by comparison of images of control samples desiccated for 6 hours, 12 

hours, 18 hours, 24 hours, 36 hours and 48 hours. Most effective resolution was 

observed in samples desiccated for 24 hours. Catheter samples were cut into 5- 

mm pieces and prepared for microscopy by desiccation for 24 hours, gold- 

sputtered and observed under the SEM.
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3. Results

3.1 Optimization of a sonication procedure to remove biofilm 
cells

Comparing the viability of the planktonic Pseudomonas putida and 

Staphylococcus epidermidis cells before and after sonication revealed that both 

bacterial species maintained their viability with an output power of < 14 Watts for 

5 minutes (Figure 1 ). Using an ANOVA test, survival ability of both bacterial 

strains was not significantly different when exposed to sonication power between 

5 to 14 Watts for 5 minutes. However, at an output power of 16 Watts for 5 

minutes, the cell densities of P. putida and S. epidermidis declined significantly (p 

< 0.01 ) at about 1.7-2.6 log and 2.0-2.8 log CFU/ml, respectively.

Based on the above testing, a setting of 12 Watts for 5 minutes was used 

to remove 72-h old biofilm P. putida cells attached on glass cover-slips. Laser 

scanning confocal microscopy showed that all the biofilm cells were essentially 

removed from the cover-slip after sonication at this energy level (Figure 2c).

3.2. Detection of bacterial colonization on catheters by culturing

Samples collected from the sonicated catheters were cultured on TSA (or 

in TSB), MacConkey Agar and Blood Agar aerobically and anerobically. Five out 

of 24 catheter samples (21%) showed positive growth in at least one of the 

culture media used (Table 3). Bacterial isolates from each catheter were 

screened with the ERIC-PCR (data not shown). Isolates that showed distinct 

ERIC-PCR DNA fingerprints were chosen for further identification by 16S rDNA 

sequencing. Among the five culture-positive catheters, all of them contained
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specific member(s) of the Staphylococcus genus, including S. aureus, S. 

epidermidis, S. hominis and Staphylococcus sp., and one of the catheters 

possessed a Streptococcus agalactica strain (Table 4). However, 100% of the 

samples showed positive amplification with eubacterial universal primers in PCR 

analysis, indicating presence of bacteria (or bacterial DNA) on all the catheters 

(Table 3).

Buffer samples that were used to rinse blood residue from the catheters 

were also analyzed by the culturing methods, but none of the buffer samples 

showed any positive growth in the growth media. Again, all of the buffer samples 

showed positive amplification by eubacterial universal primers (data not shown).

3.3 DGGE analysis of catheter bacterial community

PCR amplification of the catheter samples by a pair of universal 16S rDNA 

primers (amplifying the V3 variable region of the 16S rDNA of eubacteria) 

produced amplicons at about 200 bp for all 24 catheters (Table 3). The DGGE 

profiles of the amplicons showed that every single catheter in this study 

contained bacterial DNA that belonged to a multitude of bacterial species (Figure 

3). Despite the fact that the catheters were collected by more than one oncologist 

over a one-year span, the DGGE profiles were relatively similar and dominated 

by seven major DNA bands (C l, C2, C3, C7, C8, C22, C23) that were found in > 

40% of the 24 catheters. While other DGGE bands, such as, C l 1, C l 2, C l 3, C l 6 

and C21, appeared only in limited number of the samples.

The major DGGE bands were excised, amplified and re-examined with the 

DGGE assay to confirm their purity prior to sequencing analysis. In order to
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recover enough DNA from the DGGE bands for sequencing, individual DGGE 

bands were either cloned into a cloning plasmid or directly amplified from the 

excised bands. Both, cloning and direct sequencing from amplified DGGE band 

were performed on bands 01, 02, 08, 011, 021 and 022. Sequencing data from 

these bands showed that both approaches produced quality DNA sufficient for 

sequencing analysis (data not shown). Based on this finding, the rest of the 

DGGE bands were identified by direct sequencing.

All the DGGE bands chosen for DNA sequencing analysis showed high % 

of similarity (98 -  100%) to known DNA sequences deposited in the GenBank 

database (Table 5). Bands 01 and 02 were identified as Enterococcus faecium 

and Enterococcus faecalis, respectively, and they ware present in all catheter 

samples. Other dominant species included Roseomonas sp. (band 03), 

Corynebacterium sp. (band 07), Serratia sp. (band 08), Staphylococcus 

epidermidis (band 022) and Staphylococcus hominis (band 023). Bacterial 

species such as Aerococcus sp. (band 011 ), Micrococcus sp. (band 012), 

unculturable proteobacterium (band 013), Staphylococcus aureus (band 016) 

and Escherichia coli (band 021 ) were found in less than 40% of the catheter 

samples (Figure 5).

Buffer samples used to rinse blood residue from the catheters were also 

analyzed by the POR-DGGE assay. Their DGGE profiles were similar to their 

catheter counterpart samples (Figure 4). Flowever, the intensity of the DGGE 

profiles from the buffer samples was significantly weaker than that of the catheter 

samples, indicating a lower bacterial DNA density in the wash buffers. DGGE
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bands of the wash samples were identified (Table 6). Similar to the catheter 

samples, dominant species (> 40%) were Enterococcus faecalis, Enterococcus 

faecium, Roseomonas sp., Corynebacterium sp.. Staphylococcus hominis, 

Serratia sp. and Staphylococcus aureus. Other species including Staphylococcus 

epidermidis, E. coli, Aerococcus sp. and Streptococcus agalactiae were identified 

in the wash buffer samples (Figure 5).

3.4 Electron Scanning Microscopy

Biofilms were found in the lumens of all catheter samples, but rarely 

associate to the outer surface of the catheters. Various types of biofilm structure 

were observed on the surface of the catheter lumens (Figure 6), some with single 

cell-layer covered with either a thin or thick layer of extracellular polymeric 

substances (Figures 6A and 6B), some with multiple cell-layers (Figure 6C), and 

some with thick biofilm that had few bacterial cells visible on the matrix surface 

(Figure 6D). Some biofilms also contained both cocci and rod-shaped cells of 

various sizes (Figure 6E), indicating a mixture-culture contamination. In one of 

the catheter samples, bacterial cells in the biofilm were connected with thin 

tubular structures (Figure 6F). It is not clear if these tubular structures were 

conjugation pili or artifacts of extracellular polymeric substances.
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Tables

Table 1. Clinical information about source of catheters
N N Cancer

O f
Reason

for
removal

BSI A n ti
Bact­
erial
lock

Dermal
Tunnel

Inflam m ation
Symptoms

Blood culture 
Repeated

Urine
culture

B M N D E/T Neg yes Neg WNP WNP

PM ND E/T Neg yes Neg WNP WNP

H I Lym pho
ma

BSI Pos yes Neg Four times/NG WNP

JS ND E /T Neg yes Neg 'WNP WNP

K D Esophag
us

BSI Pos yes Pos/NG Two times/NG M F

PE Breast E/T Neg yes Neg WNP WNP

SH N D E/T Neg yes Neg W NP WNP

FT Rectum BSI Pos yes Pos/NG Two times/NG NG

A R Melano
ma

E/T Neg yes Neg WNP Growth  - 
E. coli

DJ N D E/T Neg yes Neg WNP WNP

GD M yelom
a

BSI Pos yes Neg Four times/NG G row th - 
C.albicans

M R Breast BSI Pos yes Pos/NG Two times/NG W NP
K K Leukemi

a
BSI Pos yes Neg Six times/NG WNP

QN N D E /T Neg yes Neg WNP W NP

W A Breast E /T Neg yes Neg WNP WNP
JA Breast BSI Pos yes Neg Two times/NG W NP

SA Lympho
ma

BSI Pos yes Neg Six times/NG Twice N G

SN Colon BSI Pos yes Neg Three times 
S. m altophilia-

NG

D T Colon BSI Pos yes Neg Three times 
P. agglomerans-

NG

N N Esophag
us

BSI Pos yes Neg Two times/NG WNP

KP Rectum BSI Pos yes Neg Two times/NG M F

PL Colon BSI Pos yes Neg Two times/NG W N P

KKw N D E/T Neg yes Neg W NP W N P

BE ND E/T Neg yes Neg WNP WNP

A bbrev iations

Samples (F irst column) were labeled by firs t letters o f  patients names, ND  -  No data, B S I  -  B lo o d  Stream 
Infection, E /T  -  End o f  therapy, A/B lock  -  instilla tion  o f  the catheter w ith  antib iotic, P os -  positivée 
presence o f symptoms, N e s  -  Negative absence o f  symptoms, WNP  -  Was not performed, N G  -  N"o 
growth, ” M F - ’’M ixed  flo ra”  -  means no other data.
G ro w th  detected:

-'Escherichia. c o / i , - “ C lostrid ia albicans, - ' Stenotrophomonas maltophilia, -'Pantoea agglomerans
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Table 2. Bacteria detected in all samples by DGGE and culture method (part 1)

Bacterial species
So

BM
Wa Cu So

PM
Wa Cu So

HI
Wa Cu So

JS
Wa Cu So

KD
Wa Cu So

PE
Wa Cu So

SH
Wa Cu So

FT
Wa Cu

Aerococcus spp.C11B11 -

Corynebacterium minutissimumC7B7 - + - + +

Enterococcus faecalis C2B2 + + - + + - + + - + + - + + + + + - - + +

Enterococcus faeclumC1B1 + + - + + ■ + + - + + - + + + + + + - + +

Escherichia collC21B21
Micrococcus luteusC12
Roseomonas genomospeclesC3B3 + - + + - - + - + + - + + + + - - - + + -

Serratia spp.CSBS + +

Staphylococcus aureusC16B16 + - + + - - + + - + - + - + - + - + +

Staphylococcus epldermldlsC22B22 + - - + - - + - - + - + - + - + + + - -
Staphylococcus homlnlsC23 + * - - - - + * + - - + - + * + * - - -

Streptococcus agalactlaeB24 + + - -
Uncultured alpha proteobacterlum CI3
Abbreviations:
Samples (top row) were labeled by first letters o f patients' names. So - materials removed by sonication. Wo - materials removed by pipetting wash, Cu, - culture esssay.
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Table 2. Bacteria detected in all samples by DGGE and culture method (part 2)

B acteria l s p e c ie s

Aerococcus spp.C11B11 
Corynebacterium minutissimumC7B7  
Enterococcus faecalis C2B2 
Enterococcus faeciumC1B1 
Escherichia coliC21B21 
Micrococcus luteusC12  
Roseomonas genomospeciesC3B3 
Serratia spp.CSBS 
Staphylococcus aureusC16B16 
Staphylococcus epidermidisC22B22 
Staphylococcus hominisC23  
Streptococcus agalactiaeB24 
Uncultured alpha proteobacterlum CI3

AR 
So Wa Cu

DJ
So Wa Cu

+ +

+ +

+ +

+

+ + 

+

GD 
So Wa Cu

+

+ +

+ +

+

+ +

+ +

+

+

MR 
So Wa Cu

+

+ +

+  +

+

KK 
So Wa Cu

+ +

•f
+ +

+ +

QN 
So Wa Cu

+ +

+

+ +

Abbreviations:
Samples (top row) were labeled by first letters o f patients' names, ^  - materials removed by sonication.

WA 
So Wa Cu

+

+  +

+ +

JA
So Wa Cu

+  +

+ +

r -

Wo - materials removed by pipetting wash, Cu - culture esssay.
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Table 2. Bacteria detected in all samples by DGGE and culture method (part 3)

Bacterial species
So

SA
Wa Cu So

SN
Wa Cu So

DT
Wa Cu So

NN
Wa Cu So

KP
Wa Cu So

PL
Wa Cu So

KKw
Wa Cu So

BE
Wa Cu

Aerococcus spp.C11B11 -
Corynebacterium minutissimumC7B7 + - + - + + + + + + + + - + - -
Enterococcus faecalis C2B2 + + + + + + + + + + + + + + + +

Enterococcus faeciumC1B1 + - + + + + + + + + + + + + + +

Escherichia coliC21B21 + + + • + - - -
Micrococcus luteusC12  
Roseomonas genomospeciesC3B3 + + + + + + + + + + _ - + -

Serratia spp.CSBS + - + - + - + + + + + + + ■ -
Staphylococcus aureusC16B16 - + - + - + - + - + + - +

Staphylococcus epidermidisC22B22 + + + ■

Staphylococcus hominisC23 - - * - - - *
Streptococcus agalactiaeB24 + ■

Uncultured alpha proteobacterlum C I3
Abbreviations:
Samples (top row) were labeled by first letters o f patients' names, So - materials removed by sonication, Wo - materials removed by pipetting wash, Cu - culture esssay.
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Table 3. Bacterial growth from materials removed by sonication.

Cat' Aerobic^ AnerobiU PCR“
TSB/TSA^ MacConkey^ Blood^ TSB/TSA MacConkey Blood

BM« - - - - - - +
PM - - - - - - +
HI - + - - - - +
JS - - - - - - +
KD - - - - - - +
PE - - - - - - +
SH + - - - - - +
FT - - - - - - +
AR - - - - - - +
DJ - - - - - - +
GD - - - - - - +
MR - - - - - - +
KK - - - - - - +
QN + - - - - - +
WA - - - - - - +
JA - - - - - - +
SA - - - - - - +
SN - - - - - - +
DT + - - + - - +
NN - - - - - - +
KP + - - - - - +
PL - - - - - - +
KKw - - - - - - +
BE - - - - - - +

Footnotes;
' -  Cat abbreviation o f  “catheter”

-  Aerobic, Anerobic -  description o f growing condition 
-  PCR -  polym erase chain reaction was perfoiTned with 16S Universal forward and 

reverse primers producing 200 bp size amplicons. “+” means DNA product am plification ) 
was detected by horizontal gel electrophoresis 
 ̂ -  TSB/TSA -  Tryptic-Soy Broth, Tryptic-Soy Agar 
 ̂-  M acConkey agar 
 ̂ -  Agar with sheep blood
 ̂-  H ospital’s coding system for removed catheters 
 ̂ -  bacterial colonies growth
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Table 4. Origin of grown bacteria established by 16S rDNA 
sequencing

Caf Mdentity^ 1 Growth conditions (Homology
KP IStaphylococcus hominis j Aerobic 1 100
DT \Staphylococcus. sp.. 1 Aerobic/Anaerobic 1 100
QN i Staphylococcus epidermidis ! Aerobic 1 1Ô0
SH Istreptococcus agalactica ”~j Aerobic ) 100
SH IStaphylococcus epidermidis 1 Aerobic 1 100
HI [Staphylococcus aureus 1 Aerobic ; 100
HI IStaphylococcus hominis 1 Aerobic 1 100

Footnotes:
■ “Cat” -  abbreviation o f “catheter”

-  origin o f  bacterial DNA according to GenBank 
 ̂ -  percentage o f  similarity o f  nucleotide sequence in analyzed DNA and GenBank 

analog
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Table 5. Bacterial DNA band origin defined by sequencing
(removed by sonication)

Bands
Phylogénie affiliation^ Homology

C1 Enterococcus faecium 98
C1/2 Enterococcus faecium 98
C1/3 Enterococcus faecium 98
C2 Enterococcus faecalis 99

C2/2 Enterococcus faecalis 99
C2/3 Enterococcus faecalis 99
C2/4 Enterococcus faecalis 99
C2/5 Enterococcus faecalis 100
C3 Roseomonas genomospecies 99

C3/2 Roseomonas genomospecies 99
C7 Corynebacterium minutissimum 100

C7/2 Corynebacterium minutissimum 99
C8 Serratia spp. 100

C8/2 Serratia spp. 100
C11 Aerococcus spp. 98
C12 Micrococcus lute us 

Uncultured alpha
100

C13 proteobacterium 100
C16 Staphylococcus aureus 100

C16/2 Staphylococcus aureus 100
C21 Escherichia coli 100

C21/2 Escherichia coli 100
C21/3 Escherichia coli 100
C22 Staphylococcus epidermidis 100

C22/2 Staphylococcus epidermidis 100
C22/3 Staphylococcus epidermidis 100
C22/4 Staphylococcus epidermidis 100
C22/5 Staphylococcus epidermidis 100
C23 Staphylococcus hominis 99

C23/2 Staphylococcus hominis 99
Footnotes:
' -  origin o f  bacterial DNA according to GenBank
 ̂ -  percentage o f similarity o f nucleotide sequence in analyzed DNA and GenBank 

analog
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Table 6. Bacterial DNA band origin defined by sequencing
(removed by pipetting wash)

Bands
Phylogénie affiliation^ Homology %"

B1 Enterococcus faecium 99
B1/2 Enterococcus faecium 99
B2 Enterococcus faecalis 100

B2/2 Enterococcus faecalis 100
B2/3 Enterococcus faecalis 99
B3 Roseomonas genomospecies 99
B7 Corynebacterium minutissimum 100

B7/2 Corynebacterium minutissimum 100
B8 Serratia spp. 100

B11 Aèrococcus spp. 98
B16 Staphylococcus aureus 98
B21 Escherichia coli 100

B21/2 Escherichia coli 100
B22 Staphylococcus epidermidis 100

B22/3 Staphylococcus epidermidis 100
B24 Streptococcus agalactiae 100

B24/2 Streptococcus agalactiae 100
B24/3 Streptococcus agalactiae 100

Footnotes:
' -  origin o f  bacterial DNA according to GenBank
 ̂-  percentage o f  similarity o f nucleotide sequence in analyzed DNA and GenBank

analog
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Figures

Figure 1. Comparison of CPU count under different levels of 
sonication power.
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Figure 2a: Epi-fluorescent
microscope picture
of P. putida pure culture cells

Figure 2b:Confocal 
microscope picture 
of P. putida biofilm crumbs 
grown for 72 hours on glass 
slides.

Figure 2c: Confocal microscope picture of a glass slide after 
removal of P. putida biofilm by sonication.
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Figure 3. DNA bands in sonication removed materials

Cl a n
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-  SI (5. epidermidis), 82 {E. faecalis), S3 {E. co/z);labels bands o f  known bacterial 
strains DNA used as markers.
-  Bands labeled w ith capital C correspond to DNA bands labeling shown in Table 5 o f 

biofilm samples rem oved from catheters by sonication.
-  Double capital letters label sample source by patient and also 

correspond to labeling shown in Table 5.
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Figure 4. DNA bands In washing by pipetting removed materials
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- S I  (S. epidermidis), S2 {E. faecalis), S3 {E. co//): labels bands o f  known bacterial 
strains DNA used as markers.
-  Bands labeled with capital B correspond to DNA bands labeling shown in Table 6  o f  

blood samples rem oved from catheters by pipetting wash.
-  Double capital letters label sample source by patient and also 

correspond to labeling shown in Table 6.

46

Reproduced with permission of the copyright owner. Further
reproduction prohibited without permission.



Figure 5. Bacterial DNA detected in material removed by
sonication, pipetting wash and culture.

Bacterial presentation on catheters
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Figure 6. Bacterial biofilm on catheters

Figure 6A. Single layer biofilm.
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Figure 6B. Biofilm cells covered 
under EPS layer.

Figure 6C. M ultilayer biofilm structure.
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Figure 6D. Thick biofilm matrix 
without visible cells.

m

Figure 6E. Biofilm containing cells 
with various shapes and sizes.
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Figure 6E. Biofilm cells with 
intercellular tubular structures.
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4. Discussion

Cultivation of microbial isolates from catheters has been the standard 

protocol to examine catheter related bacterial infections (Siegman-lgra et al., 

1997). However, it is common to have negative microbiological test results on 

catheters from patients who show symptoms of catheter-associated bacterial 

infections (Costerton et a l, 2003). Recently, PCR detection methods have been 

used to circumvent the short-coming of the conventional cultivation methods to 

diagnose microbial infections in clinical settings (Dobbins et al., 2003). However, 

these methods target only the major bacterial pathogens that are commonly 

implicated for catheter-associated bacterial infections. The shortcoming of these 

methods is that they can miss potential pathogens that are uncommon or 

unanticipated in catheter related infections. To our knowledge, this study is the 

first attempt at examining bacterial community compositions on catheters that 

were used in chemotherapy for cancer patients, using the PCR-DGGE method.

Despite 100% of the catheters having tested positive for bacterial 

colonization by the PCR assay, only 5 catheters (21%) contained bacteria that 

could be recovered by cultivation methods. Our observations agree with others, 

in that only a small percentage of the suspected catheter-related bacterial 

infection patients produce positive microbiological cultures from their catheters 

(Collignon et al., 1986; Maki et al., 1977; Pinilla et al., 1983). For instance,

Nahass and Weinstein (1990) showed that only 20 (45%) of 44 catheters 

recovered septic patients were colonized by microorganisms. Because none of 

these studies have tested their samples with non-cultivation methods such as the
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PCR or SEM methods, the assumptions were that these infections were either 

not catheter related, or were from some unknown sources, it is well known that 

bacteria produce copious amounts of extracellular polymeric substances to 

adhere on the medical devices as biofilms (Franson et a i, 1984). Besides being 

highly refractory to biocide treatments and resistant to environmental stresses, 

biofilm cells are usually at a resting phase (Lewis, 2001 ) and a portion of the 

biofilm cells also loses their ability to replicate in standard growth media despite 

their ability to respire (Yu and McFeters, 1994). In this study, I showed that 

cultivation methods are not effective in detecting some biofiim bacteria that 

colonize catheters.

Six out of the seven bacterial isolates recovered from the catheters were 

identified as members of the Staphylococcus genus. It is similar to the findings of 

Butt et al. (2004) that bacteria isolated from long-dwelling catheters used in 

cancer treatments had a high incidence of colonization by coagulate-negative 

staphylococci (73%). With a weakened immune system of patients undergoing 

chemotherapy treatments, it is not surprising to see high incidence of infection 

caused by staphylococci, which are part of the normal microflora that inhabit 

human skin. Streptococcus agalactiae is one of the most common causes of 

nosocomial infections that can also be related to catheter infections (Strampfer et 

a/., 1987).

Unlike most cultivation studies showing that contaminated catheters are 

colonized by one, or simple mixture, of microbial species (Maki et a/., 2001 ; Maki 

et a/., 1998), DGGE analysis showed that all the catheters in this study contained
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a mixed culture of at least 4 bacterial species. This could be due to the fact that 

these catheters stayed in the patients for as long as 6 months.

Enterococcus faecalis (100%) and E. faecium (96%) were the most 

predominant species detected on the catheters. This disagrees with the many 

reports that Staphylococcus species are the most common bacterial agents 

causing catheter-related blood infections (Kloos and Bannerman, 1994; Frebourg 

et al., 2000; Arciola et a i, 2001). Both Enterococcus species are gastro-intestinal 

bacteria thought to be innocuous to humans. Recently, they emerged as the 

major causes of sepsis in intensive care units and of immunocompromised 

patients in hospitals and nursing homes. Because enterococci can easily transmit 

from person-to-person through contaminated gloves or clothing, enterococci may 

be a more common catheter-related infection agent than I thought they were.

Roseomonas (88%) was the next dominant group of bacteria found on the 

catheters. It is a slimy, waterborne. Gram-negative coccobacillus and has 

recently been isolated from catheter and blood samples of cancer patients (Lewis 

et al., 1997). It has been considered primary or secondary pathogen causing high 

fever on infected patients. However, reported cases of Roseomonas infection 

have been relatively limited (Indra et al., 2004). Our study shows that 

Roseomonas could be an important causal agent of catheter-related infections.

Other common catheter-related infection bacteria, such as S. epidermidis, 

S. hominis, S. aureus, Corynebacterium sp. and Serratia sp. were also found on 

the catheters of this study, ranging between 30-54%. However, other studies 

showed that 100% of catheters were colonized with S. epidermidis within 3
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weeks of installation (Tenney et al., 1986). Similar to other studies (Donlan et al., 

2001, Costerton et al. 1995), E. coll, Aeroccous sp., Micrococcus sp. and alpha 

proteobacterium were found on the catheters in low percentages.

Blood residues adhering on the surface the catheters were removed by 

rinsing. Neither culture nor DGGE assays from the wash samples did not match 

with the microbiological tests from blood samples obtained from the patients 

(Table 1). For instance, several bacterial isolates, such as Pantoea agglomerans 

and Stenotrophomonas maltophilia, were identified in the blood samples of some 

patients but none of these isolates were isolated from or identified in the DGGE 

profiles of the wash samples. However, the DGGE profiles of the wash samples 

and their corresponding catheters were almost identical. This indicates that the 

microbial communities obtained from the catheters were genuinely biofilm 

bacteria and not contaminations from the blood system. Since a small portion of 

the biofilm cells can be rinsed away from the catheters easily, it raises the 

possibility of collecting these loosely attached biofilm bacteria by drawing blood 

samples from suspected contaminated catheters. This may allow PCR-DGGE 

test on catheter biofilm samples without removal of catheters from patients.

The bacterial communities found on the catheters by the DGGE were 

significantly more diverse than the cultivation methods. Twelve major bacterial 

species (i.e. counting those that have been sequenced and identified) were 

detected by DGGE but only four bacterial species, including three 

Staphylococcus spp. and one Streptococcus sp., were isolated from the same 

set of catheter samples. The DGGE analysis of the catheter and wash samples
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revealed all the bacterial cultures recovered from the catheters. However, some 

major species, such as Enterococcus faecalis, E. faecium, Roseomonas sp., 

Corynebacterium sp. and Serratia sp., that were detected by the DGGE were not 

recovered by cultivation methods. It is not known whether these bacterial species 

from the catheters are not adjusted to the growth media and conditions used in 

this study, or they are more susceptible to become “viable but non-culturable”.

Scanning electron microscopy confirms the DGGE findings that biofilms 

were found on all catheter samples. Absence of biofilm on the external surface of 

a catheter can be explained by the fact that bacteria on the outside surface of the 

catheter are exposed and prone to host cellular and humoral immune systems. 

While inside the catheter lumen, there is limited possibility for the immune system 

to destroy the biofilm. Furthermore, blood proteins, water and other nutrients can 

diffuse into the lumen of a catheter providing essential conditions for bacterial 

growth. Colonization inside the lumen of a catheter can occur rapidly and result 

in a coagulation cascade inside the catheter (Maki, 1994).

This study shows that the PCR-DGGE method is a superior method in 

identifying microbial communities on catheters and has revealed some potentially 

important catheter-associated pathogens {Enterococcus, Roseomonas spp. and 

Serratia spp.). It also shows that only 13 out of the 24 cancer patients who 

carried the biofilm-associated catheters exhibited symptoms of infection.

However, further investigations are required to determine if catheter-associated 

infections are controlled by (1) detachment of biofilm bacteria, (2) composition of
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the biofilm bacteria, (3) expression of pathogenic genes, and/or (4) strength of 

the patient’s immune system.
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