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Abstract 

In chapter 1 of this study the relationship between spatial, chemical, and 

biological factors and their influence on mercury concentrations in walleye were 

examined. Water, sediment, and fish tissue samples were collected in the summer of the 

2008 from 5 lakes near Aroland First Nation, in Nortwesthern, Ontario, Canada and 

analyzed for metals, mercury, pH, and alkalinity. Arc GIS was used to extract spatial data 

from base maps and digital elevation models, in order to calculate lake area, watershed 

area, and wetland area for each study lake. Hg concentrations in fish tissue were 

compared between lakes using a standardized length using an ANCOV A. The test proved 

that a significant difference was present (p=O.OOOO with 95% confidence intervals). 

Walleye (Sander vitreum) from Melchett Lake had the highest levels of mercury with a 

mean concentration of 0,5505ug/g, while Esnagami had the lowest at 0.2228 ug/g. 

A nonparametric Kruskal-Wallis ANOVA compared ranks of concentrations of 

chemical variables associated with Hg, between lakes. Melchett Lake statistically ranked 

the highest in DOC concentrations and lowest in alkalinity and pH (second lowest). 

Esangami ranked lowest in DOC concentrations, and highest for alkalinity and pH, 

suggesting that a high DOC concentration and low alkalinity in Melchett Lake helped 

increase mercury concentrations within fish. 

A backward stepwise multiple regression was performed on all biological, 

chemical and spatial data to isolate variables that contribute most to Hg concentration in 

Walleye from the entire study area. Wetland area (�=6.439), fish length ( �=0.559), 

watershed area (�=-5.797), and % wetlands (�=-1.26) were significant predictors of Hg 

in fish tissue. 



Hg concentrations in Walleye from the Aroland First Nations appear to be 

dependent on a complex interaction of factors, in particular DOC, pH, alkalinity, wetland 

abundance and fish length. Although growth rates were not calculated they play an 

important role on Hg levels in fish from northern remote lakes and should be considered 

in future studies. 

In chapter 2 the role of geology on water chemistry and mercury concentrations in 

5 lakes in Northwestern Ontario, Canada was evaluated. Water and rock samples were 

collected from 5 study lakes near Aroland First Nation in the summer of 2008. Water 

samples were analyzed for metals, pH, alkalinity, and mercury, while X-Ray diffraction 

analysis was performed on rocks samples to distinguish mineralization content. 

Remaining rock was used in a water/rock interaction column experiment to evaluate 

chemical weathering and leaching. 

A discriminant function analysis was used to separate lakes by their lake chemical 

signatures. Alkalinity, potassium and sulphur were used as  functions in the final analysis 

to separate lakes. Water chemistry was also compared by lake using a Kruskal-Wallis 

ANOV A. Results were then compared to XRD data and column experiment results. 

Lakes (Esnagami) containing the mineral dolomite ranked highest in alkalinity and Ca 

concentrations. Furthermore lakes such as Melchett and Briarcliff with an abundance of 

K bearing minerals, had some of the highest amounts of K in both lake water chemistry 

and column experiments. Finally O'Sullivan Lake had abundant Fe and Al bearing 

minerals within its surrounding watershed. Fe and Al concentrations were highest in 

O'Sullivan Lake. 



Thus while surrounding geology contributes small amounts of mercury to aquatic 

systems in the Aroland region, it is negligible when compared to the amount contributed 

by wetlands. 

Geochemistry influenced water chemistry in lakes from the Aroland region. In 

particular the abundant micas and feldspars contribute significant amounts of K, Fe, and 

Al. Furthermore lakes with carbonate minerals had higher levels of alkalinity and Ca. 
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General Introduction 

Aroland first nation is situated in the heart of the boreal forest, approximately 

350km northeast of Thunder Bay, Ontario, and 90 km north of Geraldton, Ontario. The 

area lies within the arctic watershed surrounded by a diverse geological and geographic 

landscape. The community of Aroland is able to access traditional lands for hunting, 

fishing, and gathering of local food, to maintain a healthy well being for the people of the 

community. This study forms part of larger project entitled "Assessment of mercury and 

heavy metal contaminant concentrations in humans and food sources (fish blueberries, 

grouse, and wild rice) and effects on health and socio-cultural traditions: A risk 

management strategy and guideline for traditional food consumption. The project was 

proposed by the Aroland First Nation in partnership with Lakehead University and Health 

Canada as a continuation of a university student's thesis, which found that elevated levels 

of mercury in Walleye from lakes commonly used by the community. 

For this study, six lakes were chosen based on their importance to the Aroland 

community as food sources, and the presence of the fish species walleye (Sander 

vitreum). Walleye was chosen as the fish species because it is an important food source to 

the community of Aroland and a popular recreational species to anglers. Melchett, 

0' Sullivan, Chaucer, Esnagami and Briarcliff lakes (Fig. 1.0) were chosen for the study 

since they are commonly used by the residents of Aroland. It was known the lakes 

differed in geology, surrounding vegetation, and land use. A description of lake location 

(UTM coordinates) and surface area of each study lake is displayed in Table 1.0. 
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Figure 1.0. Aerial photo from Google Earth displaying study lakes 
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Table 1.0. Description of lake coordinates and snrface area for Aroland 
stndy lakes 

Study Lake UTM (N) UTM (E) 

Melchett 499588 5618067 

O'Sullivan 496782 5584922 

Chaucer 499689 5612606 

Briarcliff 502917 5615670 

Esnagami 509801 5574845 

Geological Setting of Lake Watersheds 

Esnagami Lake 

Surface Area 
(km2} 
14.7 

42.06 

1.57 

1.27 

68.18 

Esnagami Lake is situated in two distinct geological boundaries. The majority of 

the rock surrounding the north, west, and northeast portions of the lake are situated in the 

Esnagami Batholith. The rock in this area is of Neoarchean age (2700-2799 Ma) and 

consists of granodiorite to tonalite bearing biotite with quartz phenocrysts. Various age 

phases of the batholith contain both unmetamorphosed to weakly deformed fractures 

containing chlorite and epidote. The southeast portion of the lake is situated in the 

Eastern Wabigoon Subprovince which is of neoarchean age (2700-2799 Ma). The 

lithology in this region of lake consists of tonalite to granodiorite gneiss gneiss. Fine to 

medium grained gneiss with late granite dikes and amphibolite inclusions can be found 

east of Onaman Lake to Nakina, and north of Longlac (Stott, et al, 2002). 

O'Sullivan Lake 

Three distinct geological areas are adjacent to O'sullivan Lake. The east and west 

shores of the lake are situated within the Willet assemblage, and is composed of pillowed 

theoletic basalt. Trace element geochemical characteristics are consistent with either a 

back-arc basin or a mix of ocean floor and lesser primitive island arc affinities. Particular 

lithologies in the O'sullivan Lake area include metavolcanic rocks (ca, 2740 Ma) 

consisting of fine grained, nonvesicular massive to pillowed flows. 
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Throughout the area of O'Sullivan Lake are Neoarchan diabase intrusive gabbro 

rock gabbroic rocks (gabbro to leucogabbro ) (Stott, et al. 2002). A small portion of 

southeast 0' Sullivan Lake is adjacent to the Esnagami batholith, which was previously 

described in the Esnagami Lake section. 

Melchett Lake 

Melchett Lake is situated within two distinct geological boundaries. The majority 

of Melchett Lake is surrounded by Archean aged metasediments consisting of 

conglomerate, quartzite, greywacke, akrose, slate, mica schist and tuff. Archean basic and 

intermediate metavolcanics rocks include; greenstone, basalt, pillow lava, metadiabase, 

andesite, dacite, amphibolite, chlorite schist, and hornblende schist (Pye, et al, 1965). 

Briarcliff Lake 

Briarcliff Lake is situated entirely in Archean aged metasediments. This 

geological unit was previously described in the geological settings of Melchett Lake. 

Chaucer Lake 

Chaucer Lake is situated entirely in Archean aged metasediments. This geological 

unit was previously described in the geological settings of Melchett Lake. 

Mercury in the Aquatic Environment 

Mercury is one of the most studied trace metals due to its toxic nature and unique 

ability to bioaccumulate in the environment, (Morel et al. 1998). Mercury is a transition 

metal, but unlike other metals, mercury is a liquid at room temperature and is fairly 

volatile due to its relatively high vapour pressure (Stein et al, 1996). 

Once consumed, methylmercury is quickly absorbed by the gastrointestinal tract 

where it is distributed to tissues throughout the body (Clarkson, 1997). Exposure to 
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mercury causes a wide array of effects on humans. Depending on the exposure time and 

dosage, effects are both chronic and acute. Exposure to high levels in both short and long 

time periods can lead to severe neurological disorders. Early symptoms are blurred 

vision, parathesia, malaise, which can lead to ataxia, deafness, and dysarthria, Exposure 

to very high concentrations can lead to coma and death (Health Canada, 2007). 

Symptoms due to long-term low exposure are much more subtle. Studies from 

eastern Finland have found that high mercury content in men, is conelated to high 

incidence of coronary and cardiovascular disease (Loukala-Ruskeniemi et al, 2003). 

Recently mercury exposure to pregnant women has drawn major concern from 

health organizations around the world. Research shows that methylmercury can interfere 

with proper neurological development of fetuses and infants. Thus the World Health 

Organization developed a recommended daily intake of 0. 71 ug Hg/kg body wt./day 

(based on a 60 kilogram adult), with no more then two thirds being methylmercury. It is 

recommended that pregnant women and infants are subjected to no more then 1.6ug 

Hg/kg body wt./week (Health Canada, 2007). 

Mercury enters the environment in a variety of ways. Three main sources in 

which mercury may enter natural surface waters and lakes are through atmospheric 

deposition, weathering of rock bearing mercury, and release from wetlands (in particular 

peatlands) (Rudd, 1995)(Rasmussen et al 1998). 

Since the onset of the industrial revolution anthropogenic processes drastically 

increased the concentration of mercury in the environment (Scheuhammer and Graham, 

1999). Although point sources of mercury have been significantly reduced atmospheric 

concentrations are steadily rising due to the burning of fossil fuels. Total global mercury 
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emissions during the mid 1990s were approximately 1900-2000 tonnes per year (Pacyna 

and Pacyna, 2001). Researchers now believe that anthropogenic sources equal or exceed 

that of natural sources of mercury (Scheuhammer and Graham, 1999). This theory is 

sufficiently supported by studies from core samples of lake sediments in Northern 

Canada, which show a doubling of mercury deposition over the past 50 years (Lockhart 

et al. 1998). 

Of the estimated 1900 tonnes of mercury released into the atmosphere, 

approximately 90-95% is in an inorganic form (either elemental Hg0 53% or the gaseous 

bivalent form, where it is then slowly oxidized by ozone and other oxidants to its 

mercuric state Hg (II) (Morel et al, 1998). 

Slow oxidation rates give mercury a significant resident time in the atmosphere 

(approximately 27 years) (Morel et al, 1998). Over time it moves throughout the 

atmosphere in a phenomena known as long-range atmospheric transport (LRAT). LRAT 

is responsible for introducing contaminants to remote areas of the world thousands of 

miles away from any anthropogenic source. This results in the presence of heavy metals 

in the arctic (Hermanson and Brozokski, 2005). 

Mercury is transported back to the Earth's surface mostly in the form of wet 

deposition, and to a lesser extent aerosols and particulate matter. The annual atmospheric 

deposition of mercury to remote unpolluted areas (similar to the Aroland region) is 

3ug/m2/yr, of which 70-90% is in a complexed mercuric form (Hg(II), 1-10% is in the 

elemental form (Hg0), and 1-20% is in an organic methyl form (MeHg)(Morel et al. 

1998). 
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Although the origin of MeHg in atmospheric deposition is debatable, remote areas 

of Northwestern Ontario receive approximately 0.39 mg/ha/yr, some of the lowest 

recorded levels found in the northern hemisphere (Rudd, 1995). 

Upon entering an aquatic system, a complex system of cycling and chemical 

transformation occurs. Dissolved mercury is distributed over several forms throughout 

the water column, Hg0 is fairly un-reactive and is generally found in higher 

concentrations near the water surface-air interface due to its volatility (Ullrich et al, 

2001 ) . Several forms of the divalent Hg(II) also exist as hydroxide and chloride (in the 

absence of sulphide) complexes. The presence and availability of these complexes are 

dependent on pH and chloride concentrations of the lake (Hahne and Kroontje, 1973). 

The third species of mercury found in natural waters occurs as organic complexes. 

Organic mercury complexes are found in two forms; dimethyl mercury species, which is 

unreactive, and the monomethyl species, which is commonly found bound to organic 

particles, and to a lesser extent as chloro and hydroxide complexes (Morel et al, 1998; 

Lindvquist, 1991). 

As previously mentioned of all the species of mercury present in a lacustrine 

system at one time monomethyl mercury is the one of greatest concern. Although only a 

small fraction of mercury deposited from the atmosphere is in the methyl form, 

methylation of inorganic mercury can occur within the lake sediment and to a lesser 

extent in the water column (Winfrey and Rudd, 1990). Methylmercury produced within 

organic soils and wetlands in lake catchments also contribute to in lake Hg levels (Reyes, 

et al, 2000). The majority of in lake mercury methylation occurs in anaerobic sediments, 

at the redox boundary. This usually coincides with the sediment-water interface, 
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(although some methylation occurs within the water column) It is then distributed within 

the lake by diffusion and advection. (Rudd et al,1983; Winfrey and Rudd, 1990). 

Methylmercury is believed to be produced by a group of anaerobic sulphate 

reducing bacteria (SRB),(although some facultative anaerobes and aerobes have also 

shown to be capable of methylation) (Compeau and Bartha, 1985). Methylation rates are 

therefore highest in anaerobic conditions, and decrease with increasing oxygen due to 

reduced activity by the SRB. The efficiency and rate at which microbes are able to 

produce MeHg depend mainly on microbial activity, and the concentration of available 

Hg for the microbes (Ullrich et al, 2001). These in turn are also influenced by 

temperature, pH, and concentration of inorganic and organic complexing agents and 

redox conditions (Langley, 1973). 

Generally the highest rates of methylation occur in summer when water 

temperatures are moderately warm. This increases microbial activity (Korthals and 

Winfrey, 1987). MeHg released from sediments was 50 to 70 % higher when water 

temperatures were 20°C compared to that of winter temperatures of 4 oc (Wright and 

Hamilton, 1982). Likewise demethylation rates favour lower temperatures, and thus 

methylmercury concentrations are reduced during winter months (Ullrich et al, 2001). 

There is a negative correlation between Hg levels in fish tissue and decreasing 

lake pH (Miskimmin et al, 1992). Many theories have suggested explanations for these 

correlations. Likely methylation rates increase with a reduction in pH. Studies indicate 

that a drop in pH from 7 to 5 increased MeHg production by 100-200%. The increase of 

MeHg at pH 5-7 has been attributed to a shift in the production of dimethylmercury to 
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monomethylmercury, which is less volatile and thus more available to bioaccumualtion 

(Winfrey and Rudd, 1990). 

Acidic conditions also increase the solubility and mobility of Hg and MeHg as 

well as other metals, thus mercury concentrations can be pH dependent. Therefore a drop 

in pH can increase in Hg inputs from the watershed into the lake (Lee and Hultberg, 

1990). Reduced pH values in lakes are often associated with Acid Mine Drainage, which 

typically have high concentrations of sulphate. The addition of sulphate increases the 

microbial activity of the sulphur reducing bacteria associated with increasing mercury 

methylation (Suchanek et al, 2000). 

Higher concentrations of dissolved organic carbon (DOC) are closely associated 

with higher levels of mercury in lake water, sediments and fish tissue (Ullrich et al, 

2001). Strong correlations occur between mercury concentrations in perch, and pike and 

lake water-colour. Water colour serves as an indicator of the amount of organic matter 

(particularly humic substances) within a lake (Nillsson and Hakanson, 1992). However 

the exact role of DOC and other organic matter is in this process is unclear. DOC may act 

as a nutrient for methylating microbes increasing their productivity. This in turn produces 

more methyl mercury (Ullrich, et al, 2001). The most supported theory suggests that 

organic matter does not play a part in producing MeHg but rather is used to transport 

MeHg that is produced within the watershed, such as that from a wetland or peatland 

(Heyes et al, 2000). 
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Watershed Characteristics: Area of Wetlands in Upland Areas and Their Inputs of 

DOC and Mercury to Receiving Lakes using ArcGIS 

1.0 Introduction 

Mercury concentrations in fish of remote boreal lakes are a result of numerous 

complex interactions between chemical, biological, and environmental (or spatial) 

factors. Each and every aquatic system has a unique and specific combination of 

interactions among these factors, making Hg concentrations highly variable through 

space and time (Simoneau, et al, 2005). 

Numerous biological factors influence Hg concentrations in fish. Because methyl 

mercury bioaccumulates in the aquatic environment, Hg concentrations in fish generally 

increase with length and age (Evans et al, 2005). Mercury also biomagnifies in the 

environment, thus an increase in trophic position is associated with higher Hg levels. 

Predatory fish such as walleye will generally have higher levels of mercury then 

herbivorous fish of the same size (Greenfield et al, 2001). 

Fish growth rates play an important role in regulating Hg levels. Slow growing 

fish typically have higher levels of Hg in their tissue compared to that of a fast growing 

fish of the same size. This phenomenon has been termed "biodilution", as it refers to the 

overall reduction of a contaminant due to accelerated growth resulting from differences in 

bioenergetic processes (Simoneau, et al, 2005; Lavigne, et al. 2010). 

Numerous environmental and spatial factors present within a lakes watershed 

influence Hg concentrations in fish populations. These factors include the area of wetland 

within the watershed, watershed size, lake size. (Gabriel et al, 2009;Garcia and Carignan, 

2000). 
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Wetlands, and in particular peatlands, are large producers of methyl mercury. 

Wetlands retain the majority of atmospherically deposited mercury and typically provide 

favourable conditions for MeHg production (acidic, anoxic, high organic content)(Watras 

et al, 2005). Remote wetlands receive most of their mercury from atmospheric 

deposition. Hg becomes trapped and complexed with organic material in the top layer of 

soil, and then methylated by sulphate-reducing bacteria (Nilsson and Hakanson, 1992). 

The release of organic and humic material allows the MeHg to be transported within the 

watershed, and then deposited into receiving lakes and streams within the watershed as 

dissolved organic carbon (DOC). Factors such as high rainfall, surface run off, and 

human activities such as drainage of wetlands promotes the release and transport of 

organic material, and thus play a large role in MeHg deposition into lakes (Watras et al. 

2005)(Nilsson and Hakanson, 1992). 

Studies performed in the Experimental Lakes Area (ELA) in Northwestern, 

Ontario show that streams with upland and headwater areas containing wetlands and 

peatlands consistently had higher levels of MeHg then streams with no wetlands in their 

headwater/upland reaches. Furthermore catchments containing higher wetland 

abundances by percent and area consistently display higher levels of mercury (Rudd, 

1995; Watras et al, 2005, Greenfield et al, 2001). 

Catchment size and the amount of disturbance within the catchment also affect Hg 

concentrations. Larger catchments are typically associated with higher levels of mercury, 

as is disturbance. Activities such as logging or forest fires disrupt the natural cycling of 

Hg in watersheds and release Hg into the aquatic system, thereby increasing Hg in 

aquatic biota (Garcia and Carignan, 2000, Garcia et al, 2007). 
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Lake size is another important factor influencing Hg concentrations in fish. 

Bodaly et al. (1993) found an inverse relationship between lake and mercury 

concentration in fish in remote Canadian Shield lakes. Higher mercury concentrations in 

fish from smaller lakes are due to higher epilimnetic water temperatures. Smaller lakes, 

warming earlier in the spring, have higher midsummer temperatures. This enhances 

microbial mercury methylation (Bodaly et al, 1993). Methylation of mercury is more 

predominant in deeper lakes. Deeper lakes have a larger area of hypolimnion, during 

summer stratification. Hence much of the in lake mercury methylation likely occurs in 

the hypolimnion, due to anoxic conditions, common in this strata (Nilsson and Hakanson, 

1992). 

A number of chemical factors also influence mercury concentrations in fish. 

Dissolved organic carbon (previously explained), pH, alkalinity, and sulphide have all 

been associated with Hg. 

There is a negative correlation between Hg levels in fish tissue and decreasing 

lake pH. Methylation rates do increase with a reduction in pH. Thus a drop in pH from 7 

to 5 results in a 100-200% increase in MeHg production. The increase of MeHg at pH 5-

7 results from a shift in the production of dimethylmercury to monomethylmercury,. The 

latter is less volatile and thus more available to bioaccumualtion (Winfrey and Rudd, 

1990). 

Closely associated to lake pH, is alkalinity. Alkalinity is the buffering capability 

of a lake or the ability to withstand changes in pH (Wetzel, 2001). Aquatic biotas in lakes 

with low alkalinity typically have higher concentrations of Hg compared to lakes with 

high alkalinity. This is impart due to increased rates of methylation by sulphate reducing 
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bacteria and the greater in take of dietary available Hg within the system (Weiner et al, 

1990; Lathrop et al, 1991) 

Sulphate levels are also correlated with elevated mercury concentrations. The 

addition of sulphate increases the microbial activity of the sulphur reducing bacteria that 

are associated with mercury methylation, resulting in higher levels of methylmercury 

(Suchanek et al, 2000; Branfireun, et al, 1999). 

Geographical Information Systems (GIS), are recognized by environmental 

mangers as a powerful and cost effective tool in the manipulation and interpretation of 

hydrological data pertaining to water quality (Luzio et al, 2004 ). With the use of high­

resolution digital elevation models (DEM), GIS software can extract drainage 

information, such as flow direction, and watershed delineations (Turcotte, et al, 2001). 

All of the above factors are influential in any one specific geographical area. This 

paper examines the biological, environmental, and chemical factors and their impact on 

Hg concentrations in water, sediment, and Walleye from lakes in Northwestern Ontario. 

Spatial characteristics and in particular wetland abundance within the lakes catchment 

areas and their influences on Hg levels will be the focus of this paper. Lakes that received 

inputs from upland catchments with large areas of wetlands should display statistically 

higher levels of dissolved and organic carbon. If so this will result in higher levels of 

mercury in lake water, sediments, and aquatic biota. 

1.1 Methods 

1.1.1 GIS Watershed Manipulation Procedure 

Arc GIS 9.3 was used to examine watershed characteristics of each of the study 

lakes. Ontario base maps and digital elevation models of the study area were acquired 
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from Lakehead University's Patterson Library. The digital elevation model was filled 

and checked for sinks or areas of low relief. Flow direction was calculated followed by 

flow accumulation. A conditional statement with the flow accumulation input was used, 

until a accumulation value was met that paired well to the base map of the river systems. 

A watershed map was produced using the stream link function in the ArcGIS watershed 

tool. This was done using the flow direction as the input to develop a stream network. 

Pourpoints were calculated based on values found from the flow direction. 

Next a 300 meter buffer was created around each of the study lakes and any 

watershed that was included within the buffer was included into each study lakes 

analysis. A total of 5 watersheds were produced (one for each study lake). From the final 

output the area of each watershed was calculated. NTS map data was used to overlay 

wetlands situated in each watershed. The area of wetland in each watershed was also 

calculated, as well as % wetland in each watershed. 

1.1.2 Study Site and Fish Sampling 

Fish were collected from the study lakes in the summer of 2008, by angling. 

Angling was requested by the community of Aroland as the collection method for fish 

samples. A guideline of 10 fish from each study lake was used following the same 

protocol used by Gassel et al, 2005 in a similar study. Angling allowed some fish to be 

released with minimal damage if needed be, whereas more invasive methods such as gill 

nets increase the chance of injury or mortality to the fish. 

Walleye (Sander vitreum) a popular sport fish and food source was chosen as the 

target species, This fish is a top predator in most lakes therefore will have higher 

accumulation of mercury compared to fish in lower tropic levels (Kidd, et al 1995). 



15 

All walleye kept for tissue analysis were measured (mm) and weighed (g) 

immediately after being caught. The fish were then filleted (skin removed) and a small 

piece of flesh approximately 10-30 grams was removed above the lateral line, anterior to 

the dorsal fin from the left side of the fish. The liver from each walleye was also removed 

and weighed. Both liver and flesh were separately wrapped in aluminum foil and placed 

in Ziploc bags and immediately frozen until analysis at LUEL. To reduce the chance of 

contamination strict quality control measures were followed. Powder free latex rubber 

gloves were used (and changed for every fish) at all times during the handling of the fish. 

All knives and cutting boards were rinsed with a dilute 2% HCl solution and double 

distilled water (DDW) between each fish. 

1.1.3 Water and Sediment Sampling 

Ten water samples were taken using a Kemmerer bottle in the summer of 2008 

from each lake. Sampling sites were chosen at random, and were distributed throughout 

each lake to ensure all regions of the lakes were represented in analysis. At each site a 

sample from both the surface and bottom was taken and put into a 1 liter polyethylene 

bottles (HDPE #2), and kept cool, until laboratory analysis. To ensure quality control one 

field duplicate was taken at a site in each lake. Field duplicates are used to ensure proper 

field sampling techniques were used, and were used to identify variations among samples 

caused by sampling errors. 

Separate water samples were taken at each of the sites for mercury analysis. 

Mercury is a trace metal and therefore extreme precaution must be taken as samples are 

easily contaminated, resulting in erroneous data. Water samples for mercury analysis 

were collected following the United States Environmental Protection Agency's protocol: 
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"Sampling Ambient Water for Trace Metals- Method 1669" in which a "clean hands" 

"dirty hands" sampling procedure was employed to reduce the chance of contamination. 

Water samples taken for mercury analysis were collected using an inert 

Kemmerer bottle made for collection of trace metals. Samples were collected using EPAs 

"clean hands, dirty hands" collection method for trace metals, and placed into a 500mL 

borosilicate bottle. Samples were preserved with 4mLIL of pre-tested 11.6 M HCl and 

refridgerated until time of analysis at LUEL. 

Sediment was also collected at each site using a Eckman dredge. Collected sediments 

were then placed into a plastic Ziploc bag where they were kept cool (or frozen) until 

analysis at LUEL. 

1.1.4 Laboratory Procedure for Fish Tissue Analysis 

Fish samples were mechanically liquefied in the lab in which a lOmL aliquot was taken 

analyzed for metals using ICP (see metals in water analysis). The rest of the sample was 

treated with BrCl and analyzed for mercury content using BrooksRAnd, following the 

EPA's method 1631 digestion II protocol. 

1.1.5 Laboratory Procedure for Water and Sediment Analysis 

Water samples were analyzed at the Lakehead University Environmental 

Laboratory (LUEL), in Thunder Bay, Ontario, for metals, pH, conductivity, dissolved 

organic carbon, and total alkalinity. LUEL is an IS017025 accredited environmental 

laboratory, which follows a strict quality assurance/quality control protocol. For each 

test a blank consisting of double deionized water (DDW) was analyzed, followed by a 

standardized QC samples. Furthermore a randomly selected sample was analyzed twice 

as the laboratory repeat. 
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Analysis of water samples closely followed a standardized operating procedure 

(SOP) specific to the method being used for each parameter. SOPs were adapted by 

LUEL staff from the Standard Methods for the Examination of Water and Wastewater 

18th ed. for pH/Alkalinity/Conductivity 

pH, alkalinity, and conductivity was measured on unfiltered samples at room 

temperature. Both pH and alkalinity were measured simultaneously using a DL53 Mettler 

titrator, and a DL20 autosampler with the software LabX Lite version 1.1. 

Conductivity was measured using the Accumet XL60 multi meter with an 

Accumet conductivity probe. To ensure accuracy a temperature compensation probe was 

used during conductivity analysis. 

Metals 

Samples analyzed for metal content were prepared at LUEL by digesting samples 

with nitric acid and concentrating them to five times that of pre-concentration using 

microwave. Samples were then analyzed at Lakehead University's Instrumentation 

Laboratory, using inductively coupled atomic emission spectrometry (ICP-AES). ICP­

AES measures element-specific characteristic emission spectra produced by a radio 

frequency inductively coupled plasma by optical spectrometry. 

Dissolved Organic Carbon 

Samples were first filtered through a 0.45J..Lm filter. A known volume of the 

filtered sample was then injected into a hear reaction vessel, in which the water is 

vapourized and organic carbon is oxidized in carbon dioxide and water. C02 was then 

transported in a carrier gas stream and measured by a nondispersive infrared analyzer, 

giving the total organic carbon present in the sample. 
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Laboratory procedures for mercury analysis of water followed EPA's method 

1631: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapour Atomic 

Fluorescence Spectromery. 

Sediment 

A lOmL aliquot of sediment was taken and analyzed for metals using ICP-AES. (see 

water for procedure). The rest of the sediment sample was then used for mercury 

analysis following EPA's method 1631, digestion II 

1.1.6 Procedure for Statistical Analysis 

Data analysis proceeded in 5 steps: 

(i) In order to assess if a significant difference in mercury concentration in fish 

ST A TISTICA 7.0 was used to explore descriptive statistics of both biological (fish 

lengths and weights) and chemical data (Hg concentrations in fish) for each study area. 

The Kolmogorov-Smirnov and Lilliefors tests were used to assess the normality of the 

data. Parameters that did not follow a normal distribution were log transformed in order 

to pass tests for normality. 

(ii) Fish length and size are typically positively correlated with Hg concentration in 

fish tissue. To see if the data from the Aroland study lakes followed the same pattern a 

simple linear regression was performed using ST ATISTICA 7 .0. Because simple linear 

regressions require normally distributed variables, the log-transformed data was used. 

(iii) Because length and size are considered a continuous predictor of mercury 

concentration in fish tissue an analysis of covariance (ANCOVA) was performed using 

the STATISTICA software program. ANCOVA's have the ability to assess the effects of 

the categorical predictor (lake) on a dependent variable (Hg concentration in fish tissue) 
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after accounting for the effects of one or more independent covariates (fish length) ( Hill 

and Lewicki, 2006). There are three assumptions for an ANCOVA; i) a normally 

distributed dependent variable (which has been fulfilled by the log transformation of the 

data), ii) data are sampled randomly, and iii) homogeneity of slope. Therefore 

ST A TISTICA was used to test the homogeneity of slope between fish mercury 

concentration between lakes. 

(iv) A Kruskal-Wallis ANOV A was used to determine if any significant differences 

were present among chemical variables that may influence Hg levels found in Walleye 

between lakes. Dissolved organic carbon, pH, sulphur, iron, alkalinity, Hg in sediment, 

and Hg in water, were all analyzed for significant differences between lakes. Water 

chemistry data did not follow a normal distribution and thus did not follow the 

assumptions required for an ANOV A. The Kruskal-Wallis ANOVA is a non-parametric 

test used to assess the hypothesis that the different samples in the comparison were drawn 

from the same distribution or from distributions with the same median (Hill, and Lewicki, 

2006). Interpretation of the Kruskal-Wallis is similar to that of the ANOVA, except that 

results are based on equality of ranks rather then means between groups. (Hill and 

Lewicki, 2006). 

(v) A backward stepwise multiple regression was performed using the STATISICA 

software package on biological, spatial, and chemical variables that have been shown to 

affect mercury concentrations in aquatic environments. A backward stepwise multiple 

regression begins by examining the combined effects of all independent or predictor 

variables on the dependent variables (Hg concentration in fish tissue). In each step the 

weakest predictor variable is removed (the variable with the highest P value) and the 
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analysis is performed again. This procedure is repeated until all remaining variables have 

an individual P value that is less then the accepted P value. 

Prior to the multiple regression all variables were assessed for multicollinearity 

using a pairwise correlation matrix. Any data that was significantly correlated was 

removed from the multiple regression analysis. 

1.2 Results 

1.2.1 Results from GIS Manipulation 

Geographic information systems were used to extract spatial data regarding 

watershed traits for each study lake; including watershed area, lake area, area of 

wetlands, and % wetlands in watershed. The results from this analysis are illustrated in 

Table 1.1. ArcGIS also produces detailed output of the results. Found in the output is a 

map displaying the study lakes and their corresponding watershed boundaries and 

wetlands contained within each watershed (Figure 1.1 ). 

Table 1.1. Summary of results from GIS analysis of spatial data from Aroland study lakes 
Table illustrates areas of watershed, lake, wetland abundance, and % wetlands for each lakes 

Lake Watershed Lake Area Area of Ofo Wetlands 
Area( km2) (km2) Wetlands in in 

Watershed Watershed 
(km2) 

Melchett 155.92 14.7 8.53 5.47 

Briarcliff 369.32 1.27 17.48 4.73 

Chaucer 18.95 1.57 0.36 1.9 

O'Sullivan 187.77 42.06 13.86 7.38 

Esnagami 248.16 68.18 10.86 4.37 
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Figure 1.1. Map displaying delineated watersheds and wetlands of lakes from the Aroland study 
area 
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1.2.2 Descriptive Statistics 

Descriptive statistics were used to explore the biological data of the Walleye caught from 

the study area. Table 1.2 shows the mean and standard deviation of fish length, fish 

weight, and mercury concentration in fish tissue for each lake. The Kolmogorov-Smirnov 

and Lilliefors tests for normality were also performed as part of descriptive statistics for 

fish length and mercury concentration. The distributions for both fish length and mercury 

did not follow a normal distribution. Untransformed data of mercury concentration from 

fish tissue had a p value > 0.2, and a Lilliefors correction of p value > 0.5, suggesting the 

data did not follow a normal distribution. Fish length data and mercury concentration in 

fish tissue data were log transformed for a more acceptable distribution. After log 

transformation fish length data had a p-value of >0.2 and a Lillifors correction of <0.05, 

which is considered a normal distribution. Log transformed Hg concentration in fish had 

a p-value of >0.2 and a Lilliefors correction value of p>0.20. This is statistically 

considered a normal distribution. 

Table 1.2. Summary of means and standard deviations of fish lengths, weights, and Hg 
concentrations 

Lake Fish Len. (mm} Fish Wt. (g} Hg Cone. (ug/g} 

Melchett (N=S) 389.75 +/- 65.42 727.88 +/- 289.16 0.5505 +/- 0.1516 

Briarcliff (N=9) 389.33 +/- 49.03 575.81 +/- 268.29 0.2460 +/- 0.0994 

Esnagami (N=lO) 421.00 +/- 43.79 680.39 +/- 219.29 0.2228 +/- 0.0902 

Chaucer (N=S) 371.67 +/- 50.11 510.29 +/- 232.40 0.3926 +/- 0.3497 

Osullivan (N=12} 345.00 +/- 31.34 374.45 +/- 127.28 0.3748 +/- 0.0939 

1.2.3 ANCOV A 

Literature illustrates that a positive correlation between fish size (length) and 

mercury concentration in fish tissue exists (Evans et al. 2005, Lathrop et al 1991). Linear 
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regressions were used to analyze fish length data vs. Hg concentrations separately for 

each lake. 

A positive correlation was found to exist for all lakes except Chaucer, suggesting that 

length is a covariate of Hg concentration in fish. Thus an ANCOV A is considered an 

appropriate test to be used rather then an ANOV A. Tests of slope homogeneity for log 

mercury concentration vs. log fish length for each lake indicate results of F= 0.19 and p= 

0.94. This indicates that the slope of log Hg concentrations vs. log fish length the same 

for all lakes (treatments). 

Results of the ANCOV A can be found in Figure 1.2. The graph shows the mean 

and standard deviations for the log transformed mercury concentrations in fish tissue. The 

test standardized fish length for all lakes to log 5.94, which is equivalent to 379.93mm. 

Final results of the ANCOVA were found to have an F-value of 16.52 in which p= 0.000. 

This indicates that a significant statistical difference is present in Wall eye mercury 

concentrations between study lakes when length i s  statistically controlled. Table 1.2 

illustrates that Walleye from Melchett Lake had the highest levels of mercury, while 

Esnagami and Briarcliff had the lowest. 



24 

Covariate means 
ANCOVA: log Mercury Concentration Between Study Lakes v.ith Fish Length as the Covariate 

LogFishlength: 5.936208 
Current effect: F(4, 37)=16.526, p=.OOOOO 

Vertical bars denote 0.95 confidence intervals 
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Figure 1.2. Graph showing mean and standard deviations for log transformed Hg concentration in 
fish tissue for standardized log fish length 5.937 (380mm). Also shown on graph is results from 
ANCOVA test 

1.2.4 Comparison of Water Chemistry Between Lakes 

Water chemistry was analyzed for total metals, alkalinity, total mercury and dissolved 

organic carbon. Mean concentrations of each the parameters are illustrated in Table 1.3. 

Melchett Lake was found to have the highest concentrations of DOC ( 11.34 ppm) and the 

lowest concentration of alkalinity (50.62 ppm). Esnagami Lake on the other hand had the 

highest levels of alkalinity (80.7ppm) and lowest levels of dissolved organic carbon (6.41 

ppm). pH levels throughout each were circum-neutral, and varied between 7.2 (Briarcliff) 

and 7.67 (Esngami). Total mercury concentrations in water and sediment were also 

measured. Melchett Lake was found to have the highest mean levels in both water and 

sediment with average concentrations of 3.23ppb and 0.1 ppm respectively. Esnagami had 

the lowest mercury levels within the lake water at 0.07ppb. 
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Table 1.3. Mean concentrations of Total Metal, Alkalinity, DOC, pH, and total Hg in water and 
sediment for each of the stud� lakes 

Chem ica l Pa ra meter Melchett Briarcl iff Chauce r  O'S u l l iva n  Esnaga m i  

Tota l Al ka l i n i ty as CaC03 ( p p m )  50.62 51.46 67.76 7 7.14 80.7 

D i ssolved O rg a n ic Carbon ( pp m_ 11.34 10.46 10.1 10.37 6.41 

Tota l Al u m i n u m  ( p p m )  0.0136 0.03 0.02 0.04 0.02 

Tota l Ba ri u m  ( p p m )  0.0068 0.01 0.001 0.001 0.01 

Tota l Ca l ci u m  ( p p m )  15.96 16.34 21.05 25.2 25.18 

Tota l I ro n  ( p p m )  0.08 0.12 0.09 0.11 0.04 

Tota l Potassi u m  ( p p m )  0.64 0.66 0.6 0.6 0.6 

Tota l  Mag nesi u m  ( p p m )  3.26 3.35 4.17 4.66 4.8 

Tota l M a ng a nese ( p p m )  0.01 0.01 0.01 0.002 0.01 

Tota l Sod i u m  ( p p m )  0.51 0.54 0.61 0.69 0.69 

Tota l  Sulfu r  ( pp m )  0.36 0.34 0.32 0.44 0.43 

Total Stronti u m  ( p p m )  0.02 0.02 0.02 0.02 0.02 

p H  7.48 7.2 7.64 7.57 7.67 

Tota l Hg i n  Water (ppb)  3.23 4.8 2.2 2.98 0.93 

Tota l Hg i n  Sed i ment (ppb) 0.1 0.04 0.07 0.1 0.07 

A Kruskal-Wallis ANOV A was used to evaluate if the differences found in 

chemical concentrations between each lake was statistically significant by comparing 

ranks based on medians. The ranks of alkalinity, pH, iron, sulphur, DOC, Hg in water, 

and Hg in sediment were all tested for significant differences. A summary of the results 

from Kruskal-Wallis ANOVA can be found in Table 1.4. Melchett Lake, which had the 

highest levels of mercury in Walleye, was found to have significant! y higher rank of 

dissolved organic carbon, and the lowest rank of alkalinity. Melchett also ranked second 

lowest in comparisons of pH. Esnagami Lake which was found to have the lowest 

mercury concentrations in Walleye, ranked significantly lower in DOC and iron. 

Furthermore Esnagami ranked significantly higher in pH and alkalinity. The test also 

illustrated that there was no significant difference among ranks between lakes for total 

mercury concentrations in water and sediment samples. 
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Table 1.4. Results from the Kruskai-Wallis ANOVA comparison of ranks between water and 
sediment parameters, where H= the kruskal wallis statisic (approximation of the Chi-squared 
distribution)(R= ordinal rank of concentration, and p=significnance <0.05 

DOC Kruskai-Wallis test: H4=27. 1 9, p =.0000 

Alkalinity 

OSull ivan Briar Esna Chauc 
R:31 .464 R:32.864 R:5.650 R:27.650 

Melchett 
R:40.500 

Kruskai-Wallis test: H4=46.72, p =.0000 

OSullivan Briar Esna Chauc 
R:40.429 R : 1 2 .273 R:47.800 R:26.500 

Melchett 
R:9.6000 

Iron Kruskai-Wallis test: H4=1 1 .38 p =.0246 
OSullivan Briar Esna Chauc Melchett 
R:27.929 R:35.045 R : 1 3.600 R:32.350 R:30.400 

Total Mercury H20 Kruskai-Wallis test: H4= 4.28 p =.3692 

pH 

Sulfur 

Mercury in Sed. 

Osullivan Briarc Esna Chauc 

R : 1 5 .375 R:7.2500 R : 1 2.500 R:1 6.500 

Melchett 

R : 1 1 .688 

Kruskai-Wallis test: H4= 35.62, p =.0000 
OSullivan Briar Esna Chauc 
R:31 .286 R:6.0000 R:42.400 R:40.200 

Melchett 
R:21 .000 

Kruskai-Wallis test: H4=46.08, p = .0000 

OSullivan Briar Esna Chauc 

R:43.857 R : 1 6.227 R:43.000 R:6.7500 

Melchett 

R:25.000 

Kruskai-Wallis test: H4= 7.50, p =. 1 1 1 8  
Osul livan 
R : 1 7.571 

Briar Esna Chauc 
R:6.8000 R:1 1 .333 R:1 1 .000 

Melchett 
R : 1 5.800 

1.2.5 Stepwise Multiple Regression 

In order to examine what biological, spatial, and chemical parameters were 

influencing mercury concentrations in Wall eye from the Aroland study area a backward 

stepwise multiple regression was used. All parameters used in the multiple regression 

have been found in previous literature to influence mercury concentrations in aquatic 

environments both positively and negatively. A pairwise correlation was performed to 

test for multicollinearity within the variables. Variables that are highly correlated cause 
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redundancy, which will affect the multiple regression model. Thus redundant predictor 

variables must be isolated and removed from the multiple regression analysis. Results 

from the pairwise correlation found length and weight were highly correlated with an R­

value=0.9l .  Calcium and alkalinity were also highly correlated (R=0.99). Weight and 

calcium were removed from the multiple regression analysis to avoid redundancy. A 

backward stepwise regression was then performed using the log transformed mercury 

concentration in fish tissue as the dependent variable. Length, watershed area lake area, 

wetlands area, % wetlands in watershed, alkalinity, dissolved organic carbon, pH, iron, 

and sulphur were used as the predictor variables. Fish length, watershed area, wetlands 

area, and % wetlands in watershed were the most statistically significant variables 

influencing mercury concentration in fish in the Aroland study area. Beta results suggest 

whether the variables are positively or negatively correlated with mercury concentration. 

Length ( <0.0 1, �=0.559) and wetland area (p<O.O 1, �=6.439) were positively correlated 

with mercury concentration in fish tissue, whereas watershed area (p=<O.Ol �-5.797) and 

% wetlands (p<O.O 1, �= -1.526) was negatively correlated with mercury concentration in 

fish tissue. The entire model had an R-value = 0.810, F- value= 19. 141, and p-value= 

0.00. 

1.3 Discussion 

1.3.1 Mercury Levels in Fish Tissue 

Mercury levels in fish tissue have long been recognized as a threat to human 

health. The Ontario Ministry of the Environment has published restrictions for mercury 

consumption in the Ontario Guide to Eating Sport Fish. Consumption restrictions begin at 

0.26ppm with total consumption restrictions being advised for levels greater then 
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0.52ppm. These guidelines are based on toxicological data developed by Health Canada, 

which accounts for intake from all environmental pathways (air, water, and food) 

(OMOE, 20 10). Although results from this study are presented as total mercury 

estimates have shown that methylmercury in fish tissue accounts for 80 to anywhere up to 

100% of the total mercury content found in fish tissue (Kannan et al 2008). 

When length was standardized Melchett Lake was statistically found to have the 

highest mean levels of mercury at 0.55 ug/g (ppm), which is greater then OMOE's 

maximum recommended consumption limit of 0.5ppm. Both Chaucer and 0' Sullivan 

(0.39 and 0.38 ug/g respectively) have mean mercury concentrations within the upper and 

lower limits OMOE' s recommended consumption guidelines. Thus consumption of fish 

from these lakes should be limited. Wall eye from both Esnagami and Briarcliff Lake had 

mean mercury concentrations situated at below OMOE' s lower restriction limit of 0.26 

ppm 

Mercury levels found in Wall eye from the Aroland area appear consistent with 

lakes from similar latitudes. Simoneau et al. 2005 found that mercury concentrations in 

Walleye with a standardized length of 350mm from Eastern Canada (latitudes 46° 15'00" 

N to 50°5 1'28" N) ranged from 0. 17 to 0.79ppm. Walleye from the Aroland region 

ranged from 0.22 to 0.55ppm for a standardized fish length of 380mm.Comparisons to 

this area must be examined carefully as water chemistry and land-use between the two 

areas vary Lavigne et al (20 10) also found a significant correlation between walleye 

length and Hg concentrations. Similar to Aroland lakes 50% of the fish sampled in 

Quebec were above Health Canada's recommended threshold of 0.5ppm. 
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1.3.2 Comparison of Chemical Variables that Affect Hg Levels in Walleye 

Results from the Kruskal-Wallis ANOV A found that statistically significant 

differences were present in the ranks of DOC, alkalinity, iron, pH, and sulfur. Ironically 

there was no statistical difference for Hg level in water and sediment between the lakes, 

even though there is a large variation of Hg within the fish of the same lakes. 

Melchett Lake which had the highest concentrations of Hg in walleye (0.55 ug/g), 

also had the statistically significant highest concentration of DOC at 11.34ppm (R:40.5, 

p=O.OOO), and lowest rank of alkalinity (50.62ppm) (R: 9.6, p=O.OOO) for all study lakes. 

These results suggest that Hg levels in Wall eye from Melchett Lake may be due to the 

lake having the highest levels of DOC, and the lowest levels of alkalinity and pH. 

Although pH was not picked out as a significant predictor of mercury 

concentration by stepwise multiple regression within this study, studies by Greenfield et 

al 2001, found pH to be important. As previously mentioned pH has been shown to be an 

effective indicator of mercury levels within aquatic systems. However lakes within the 

Aroland area all had similar circum-neutral pH levels (only varying between 7.1 and 7.7), 

whereas lakes in Greenfield et al. 2001 varied between 5.6 and 9.1. Thus pH may be less 

of a factor on mercury levels in lakes in the Aroland study due to similarity between pH 

levels, 

Furthermore although total mercury levels in water and sediment do not vary 

between the lakes, higher levels of DOC and lower alkalinity and pH may be increasing 

the microbial methylation rates within the Melchett, making it more available to enter the 

food chain. This appears true in this study as Esnagami Lake, which was statistically 

found to have the lowest Hg levels in fish (0.22 ug/g), ranked highest in pH with a mean 
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of 7.67 (R: 42.4, p=O.OOO) and alkalinity concentration with a mean of 80.7ppm (R: 47.8, 

p=O.OOO), and lowest in DOC concentration (6.41ppm) (40.5, p=O.OOO). 

1.3.3 Spatial and Biological Factors Affecting Mercury Concentrations in Fish 
Tissue 

Mercury concentrations in fish are a result of numerous biological, chemical, 

environmental and spatial factors. In this particular study fish length and wetlands area 

present in the lakes watershed were positively correlated and inversely correlated with 

watershed area and % wetlands in the watershed. Results from the stepwise multiple 

regression suggest that chemical variables such as pH, DOC, and alkalinity did not 

appear to have a significant relationships to Hg accumulation in walleye, despite being 

documented as highly important variables in the distribution of mercury in aquatic 

systems. The results are both consistent and inconsistent with similar studies found in 

previous literature. 

1.3.3.1 Length 

Larger, older fish have higher levels of mercury concentrations as they have 

consumed more mercury for a longer a period of time compared to that of a smaller 

younger fish. Results from the linear regressions performed on fish length and mercury 

concentration data suggest the same is true for lakes within the Aroland study area. 

Furthermore when compared with other variables that have been linked to affecting 

mercury levels within aquatic systems the backward stepwise multiple regression found 

that length statistically explained a large portion of the Hg variability within the Aroland 

study area, ( �=0.559, p=0.00005). Thus as fish length increases so does mercury 

concentration. Studies by Rose et al, (1999), and Sonesten, L., (2003), found similar 
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results and indicate that fish size (length) is one of the most important factors affecting 

mercury concentrations in all species of fish. 

Greenfield et al. (2001) used a regression tree analysis of spatial, biological and 

chemical data to predict mercury levels in yellow perch in Northern Wisconsin. Body 

condition (which was based on results of a linear regression between fish length and 

weight) of Yellow Perch was found to be a strong biological predictor of Hg levels in the 

biological regression tree and the combined multiple regression model. Rather than just 

length, Simoneau, et al (2005) found fish growth rates to be the biggest influence on Hg 

concentrations in 4 northern Quebec lakes. The authors concluded that difference in fish 

growth rates from lake to lake dominated all other environmental factors to account for 

differences in Hg concentrations in walleye populations. Thus lakes with populations of 

older, slower growing fish were found have higher mercury concentrations then that of 

lakes with younger, faster growing fish of the length. 

Lavigne et al (2010) found similar results for Walleye and Northern Pike 

populations throughout the province of Quebec. The author used von Bertalanffy growth 

models to estimate ages of fish specimens for a given length. A quadratic regression 

model was used to determine Hg concentrations for standardized lengths. It was found 

that slower growing walleye and northern pike had much high mercury concentrations 

then faster growing fish. 

Proper aging structures were not taken from Wall eye sampled from the Aroland 

study area, higher Hg levels in fish from Melchett Lake may be due to slower growth 

rates. Likewise lower Hg levels in Esnagami and Briarcliff lakes could be accounted for 

by faster growth rates. 
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Although study lakes are in a relatively close geographic proximity, significant 

variation in fish growth rates between lakes seems unlikely, Simoneau et al 2005, found 

that it does occur, not only from lake to lake, but also within lakes. Therefore a study 

looking at growth rates and mercury levels within the Aroland region maybe a very 

viable research opportunity to better explain the variation. 

1.3.3.2 Wetland Area 

Results from the stepwise multiple regression (Table 5) suggest that wetland 

abundance contributed most of the variation of fish Hg levels between lakes, as it had the 

highest beta coefficient ( �= 6.44). As wetland abundance increases within a watershed, 

so does Hg levels in fish. This is consistent to results found in similar studies. 

Castro et al. (2007) found significantly higher levels of Hg in brook trout from 

Maryland streams that had higher abundance of wetlands within its catchment area 

compared to that of streams with no wetland areas. Rudd, ( 1995) also found similar 

results, in which stained colour lakes that received large amount of inflow from wetlands 

had much higher levels of MeHg. 

Referring to Table 1.1 of the results, Melchett Lake has a wetland area of 8.53 

km2
, which is second lowest of all the study lakes, yet Walleye from the lake had 

statistically higher levels of Hg. Furthermore the Krustal-Wallis ANOV A illustrated that 

DOC was ranked highest in Melchett Lake. This suggests that Melchett Lake may be 

receiving DOC and Hg from sources other then Wetlands. The area itself is very remote 

and thus direct inputs from anthropogenic sources are highly unlikely. However the area 

is situated in the heart of the boreal forest, which is prone to both natural (forest fires) and 

anthropogenic disturbances (logging). Both of which maybe be present and contributing 
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to DOC and Hg levels within the Melchett Lake watershed. There are a number of 

noteworthy papers that support this theory. Garcia and Carignan (2000), found that 

extensive logging significantly increased the amount of Hg, in Northern Pike in Boreal 

Shield Lakes, compared to reference lakes with no disturbance. In a similar study Garcia 

and Carignan, (2005) used stable isotopes of nitrogen to determine trophic position of the 

fish. As suspected Hg increased with trophic status, however mercury availability was 

significantly higher at the base of the food chain in disturbed watersheds. Furthermore Hg 

concentrations in fish were significantly related to the disturbance size: lake size ratio. 

This ratio was highly correlated with DOC levels within the study lakes. 

1.3.3.3 Watershed Area and % Wetlands in Watershed 

Results from the stepwise multiple regression found that both watershed area and 

% wetlands in watersheds to be significant negative predictors of Hg concentrations in 

fish (�= -5.797, p=O.OOOO and �= -1.52, p=O.OOOO). These results suggest that mercury 

concentrations increase as catchment size becomes smaller, and wetlands become less 

abundant. Both results appear inconsistent and contradictory to what is been found in 

similar studies, and also data from this study. As mentioned the general consensus from 

prior studies suggest that mercury levels increase with increasing watershed size and 

wetland abundance. These results also contradict other predictors from the same multiple 

regression, as wetland area (km
2
) was found to be a strong positive predictor for Hg 

levels. Possible explanations for this are that lakes chosen for this study had large 

watershed areas in comparison to lake area. This would then increase the watershed area: 

wetland abundance ratio, thereby reducing the % of wetland. The numbers used in 

watershed area are finite and are real approximations of the amount of wetland within 



34 

each watershed. Data from this study as well as previous studies suggest that wetland 

area (km 2) rather then wetland % is a better predictor of Hg levels within the study. 

Another explanation for these contradictions of data is the lack of measurement of 

the hypolimnion area within the lake area model. As methylmercury is formed in anoxic 

conditions, lakes with a larger area of hypolimnion will produce more methylmercury, 

compared to that of shallow unstratified lakes. Results from Nilsson and Hakanson, 

1992, agree with this as they found that high mercury concentrations were correlated with 

lake colour in deep stratified lakes with large hypolimnions. Thus it is possible that lakes 

in the Aroland study area all receive Hg from surrounding wetlands, however lakes with 

a large area of hypolimnion are able to methylate higher concentrations of mercury, 

making it more available and visible within the fish tissue. 

1.4 Conclusions and Future Work 

It is difficult to pinpoint the factors influencing mercury concentrations in 

Walleye from the Aroland study area. It may result from a combination and interaction 

between a few particular biological, chemical, and spatial factors. Specifically fish 

length, wetland abundance (km2) were picked out by a stepwise multiple regression as the 

best predictors of Hg levels in fish. This is consistent with previous literature and likely 

both these factors are contribute to Hg levels in lakes and aquatic biota from the Aroland 

region. The multiple regression also suggests watershed area and % wetland abundance 

as negative correlated predictors of Hg levels. However this contradicts data from both 

this project, and previous literature, making it difficult to make informed conclusions. 

Although no chemical variables were chosen as good predictors in the stepwise 

multiple regression, results from a between lake comparison of lake water data using a 



35 

Kruskall-Wallis ANOVA, suggest that not all chemical variables should be overlooked. 

Melchett Lake which had the highest levels of Hg in Wall eye, ranked highest in DOC, 

and lowest in alkalinity, and pH (second lowest ranked), all of which are consistent with 

higher levels of Hg. In contrast Esnagami Lake, which had the lowest levels of Hg in 

Walleye, was found to rank lowest, in DOC, and iron, and highest in alkalinity and pH. 

This suggests that chemical factors do a role Hg levels in the aquatic environment. 

Other factors that weren 't included in this study may also be contributing to Hg 

concentrations. Growth rates of the fish, amount of disturbance (both natural and 

anthropogenic), and lake depth (hypolimnion area) were not covered in this project, due 

to logistical constraints, however all have shown the potential to induce changes in Hg 

levels in previous studies. In future studies similar to this, these variables be assessed to 

allow to enhance understanding of the exact variables influencing mercury within the 

aquatic system. 
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2. The Influence of Geology on Lake Quality/Characteristics Near Aroland Ontario 

2.0 Introduction 

The chemistry of natural surface water is influenced by a variety of external 

sources. Interactions with the atmosphere, watershed characteristics and land use all play 

important roles on the chemical characteristics of the lake. However one of the most 

important influences on the chemical characteristics of surface water is the erosion and 

weathering of surrounding rocks and minerals within the lakes watershed (Hem, 1985). 

Erosion and chemical weathering is an important process in the hydrogeochemical 

cycle of the elements. In this process water acts as both a reactant and a transport agent 

for dissolved solutes and particulates from the land to surface water (Stumm and Morgan, 

1996). 

Many factors control the rate of weathering and the dispersion of metals and other 

elements from rock into the aquatic environment. Temperature, pH, redox potential and 

time in which water is on contact with rock, all affect the solubility of each metal and 

their capability to be transported throughout a watershed (Chen and Brantley, 1997; 

Chuan et al ; 1996). 

During chemical weathering, rocks and minerals are dissolved into solutes. These 

are then transported through the watershed to be deposited into surface water (or 

groundwater)(Hem, 1985; Lavergren, 2005). The chemical composition of ground waters 

and surface waters often reflect the chemical characteristics of the rock, soil, and 

sediment that exist within a watershed (McCartan et al, 1998). 

Precipitation travels through an aquatic system as surface runoff, shallow 

interflow, groundwater flow through unconsolidated surficial materials, or bedrock 
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fractures (Newton et al, 1987). Generally surface water and shallow interflow water 

moves quickly through the watershed. This leaves little time for water to react with 

minerals in the soil. Groundwater, which moves much more slowly through the 

watershed, has time to react with geologic materials. Given sufficient time, groundwater 

can react with low solubility minerals (Newton et al, 1987). 

A lake's water chemistry commonly reflects the geochemistry of the underlying 

geology (Gibson et al. 1995). A considerable amount of literature exists pertaining to the 

influence of geology on water chemistry. Very often geology plays an integral part in 

lake health. One of the most well known examples of this is the presence of carbonate 

minerals such as calcite and dolomite (CaC03 and CaMg(C03)). Carbonate minerals are 

widely distributed and readily dissolve in water (Stumm and Morgan, 1996). Along with 

carbon dioxide (C02) and bicarbonate (HC03-), carbonate plays a major role in the pH 

buffering system of natural waters. This phenomena is known as alkalinity or acid 

neutralizing capacity (ANC), and is an important mechanism to withstand abrupt changes 

in pH (Wetzel, 2001). Lakes found within geologic units containing carbonates will 

often have significantly higher levels of alkalinity, as well the cations of calcium and 

magnesium (Gibson et a1, 2005) 

Surface water found in areas of granitic and quartzite bedrocks, similar to that of 

lakes in the Canadian Shield, typically have lower ANC due the lack of carbonates in 

surrounding rock. Lakes in these areas are more prone to a decrease in pH, due to the 

addition of acidic material (i.e. acid rain d). The inability to buffer changes in pH can 

have devastating consequences on aquatic organisms (Bouchard, 1995;Giovanoli et al, 

1988). 
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The chemical weathering of sulphide bearing rock can also effect pH. When 

oxidation in the presence of water occurs, sulphuric acid is generated (H2S04). The 

chemical weathering reaction of pyrite (FeS2), which is a common sulphide mineral is 

described as the following: 

4FeS2 + 1502 + 14H20 � 4Fe(0Hh + 8S04 
2
- + 16H+ 

The sulphuric acid produced then degrades other minerals such as silicates, which in turn 

release metals and other elements into the aquatic environment (Lavergren, 1995). Such 

reactions can dramatically increase levels of sulphate, major cations, and other metals in 

a lake system. 

Mercury is found naturally in varying concentrations throughout most igneous 

and sedimentary rocks (Hem, 1995). However, numerous studies have shown that 

sulphide mineralization in rock is often associated with elevated levels of metals 

including mercury. In particular black shales have a high occurrence of metals and trace 

elements. Black shale is a sedimentary rock that may be deposited in stagnant aquatic 

conditions with large amounts of organic and inorganic material. Decomposition of the 

organic material creates anaerobic conditions, which completely reduces all sulphur into 

sulphide, and causes metals to complex with sulphide ions creating suphide minerals in 

the sediment (Lavergren, 2005 ;Rasmussen et al 1998 ;Loukola-Ruskeeniemi et al ;2003), 

Black shale deposited in such conditions have exhibited high levels of copper, 

sulphur, nickel, carbon, zinc, cadmium, and mercury. Mercury anomalies were found 

after studies performed in the Thunder Bay, area show that stream sediments underlain by 

Rove black shale has significantly higher levels of trace metals, Hg, Zn, As, Cd, than that 

of the background area which was underlain by Archean metavocanics. Mercury and 
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trace metal anomalies in this area are attributed to weathering and deposition of the 

parent Proterozoic Rove and Gunflint formations. Sulphide mineralization in black from 

the Proterozoic are generally found be higher in mercury concentration then that of the 

Archean and Phanerozoic ages (Rasmussen, et al, 1998). 

Igneous rocks have also been associated with mercury anomalies. Research from 

Kaminak Lake, near Hudson Bay, illustrated that Hg concentrations were much higher in 

fish and water in areas of the lake that were underlain by sulphide rich meta volcanics. 

Anomalies within the lake water were attributed to weathering of mercury rich sulphides, 

as significantly large variations occurred not only within lakes in the same region but also 

within Lake Kaminak (Shilts and Coker, 1995). Mercury concentrations were so high in 

Kaminak that a commercial fishery was forced to move to nearby Kaminuriak Lake 

(which was not underlain by sulphides), as the Hg levels in Lake Trout exceeded the 

national consumption guidelines of 0.5ppm (Shilts and Coker, 1995). 

The purpose of this paper is to examine and quantify the similarities of water 

chemistry of the Aroland study lakes in relationship to geochemistry of surrounding 

geology within each lakes watershed. Study lakes will be compared to each other based 

on the chemical characteristics of their water, and sediment. Furthermore, the chemical 

characteristics of each lake will be compared to the geochemistry of their watersheds, 

using a variety of water/rock interaction experiments, and X -ray diffraction analysis. The 

chemical characteristics of each lake should closely resemble the geochemistry of the 

watershed and shoreline, indicating a geological influence. Furthermore mercury levels in 

both lake water and sediment, as well in the water/rock interaction experiments should be 

higher in lakes where mercury content is naturally higher in surrounding rock. These high 
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mercury concentrations in rock units and to a further extent receiving lake water and 

sediment will be highly associated with the presence of sulphide mineralization. 

2.1 Methods 

2.1.1 Field Sampling: Water and Rock 

The same procedures discussed in chapter 1 were used for this portion of the 

study for the collection of lake water. Rock samples were collected from outcrops 

surrounding each of the study lakes. A geological map of the area (Map 2102 Tashota­

Geradlton Sheet, Geological Compilation Series; 1 :253440) was used to ensure that all of 

the lithologies or rock types surrounding each lake were sampled. Large quantities of 

rock were broken off throughout each lithology and bagged in large heavy-duty plastic 

bags. Rock specimens were brought back to Lakehead University's Department of 

Geology where they were crushed and mechanically separated and bagged by grainsize. 

Rock were then were crushed by hand using an agate mortar and pestle. A mechanical 

agate grinder was then used to further grind the particles to the appropriate size of 1-

30J.Lm for X-ray diffraction analysis. 

2.1.2 Laboratory Procedures for Chemical Analysis of Water 

Laboratory procedures for water analysis were discussed in Chapter 1. Analysis 

was conducted for alkalinity, DOC, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Ma, Mg, 

Na, Ni, Pb, S, Sr, Ti, V, Zn, pH, and total Hg in lake water and Al, As, Cd, Cr, Cu, Fe, 

Mn, Ni, Pb, Se, Zn, and total Hg in lake sediment. The same procedures were used in this 

portion of the study. 
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2.1.3 Statistical Analysis of Water Chemistry 

Statistical analysis of water and sediment data followed the same process two step 

process: 

i) Kruskal-Wallis ANOVA 

A Kruskal-Wallis ANOVA was run using the statistical software package 

STATISTCA 7.0 to determine if significant differences of chemical concentrations in 

water existed. As mentioned in Chapter 1 the Kruskal-Wallis ANOVA is a nonparametric 

alternative to the ANOV A.  Significant differences between lakes was assumed for ranks 

of chemical concentrations when p < 0.05. 

ii) Stepwise Discriminant Function Analysis (DFA) 

STATISTICA 7.0 was used run a forward stepwise DFA on lake water 

and sediment data. Computationally DFA is similar to the ANOV A/MANOVA test, 

however DFA has the ability to determine what chemical variables contribute to the 

discrimination between lakes (Hill and Lewicki 2006). In a DFA variables are 

discriminated by considering the ratio of negative terms to the positive terms. In addition 

variables that are highly correlated are eliminated from the final analysis 

Prior to analysis, variables that had all samples below the instruments detection limit 

were removed . In the case of variables that only had a few samples below detection limit, 

the method discussed by Geib and Einax (2001), in which numbers representing 112 the 

instruments detection limit are inserted and used in the analysis. Because the test assumes 

that the data follow a normal distribution, water and sediment data was log transformed 

to provide a more normal distribution. 
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The stepwise DFA analysis used Wilks A as the separating statistic and the F 

statistic to enter/remove variables. A graphing function in ST ATISCA was then used to 

produce a scatterplot of function 1 vs function 2. Standardized coefficients were used to 

interpret each function. It is assumed that higher the coefficient of a variable the greater 

the contribution to the discrimination of the lakes. 

2.1.4 X-Ray Diffraction 

Samples were analyzed using a Panalytical Expert Pro Diffractometer at the 

Lakehead University Instrumentation Laboratory. Start and end positions [02Th.] of the 

detector were 6.0 and 76 respectively,  using a 0.0260 step size and a copper anode. 

X-Pert Highscore Plus software was used to analyze and compare peaks in the 

XRD data to the ICDD mineral databases and determine which minerals were present in 

each rock samples 

2.1.5 Water/Rock Interaction Column Experiment 

The purpose of the column experiments was to quantify chemical constituents in 

water by modelling chemical weathering of geologic units found within each lakes 

watershed, and water /rock interactions. Methods for the experiment closely resembled 

that of an experiment performed by Godwin (20 10) 

Six clear PVC piping with an inner diameter of 10.2cm were used to emulate lake 

water and rock interactions/weathering. Each column was equipped with black end caps, 

with the bottom end cap having a hole to allow for insertion of a syringe lure and valve 

for water sampling. 

Geological maps were used to measure the surface area of each lithology in 

contact with the shoreline from each lake. A ratio was calculated based on the amount of 
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each rock type was in contact with each lake. Rock samples were then measured out and 

weighed accordingly in respect to the calculated ratios. 

Crushed rock with grainsize between 0.5mm and l.Omm from each lake were 

placed in 100j..tm nitex cloth (in the calculated ratios) that had been sewn into sleeves. 

Sleeves were then hung separately in the each column and 4L of DDW. DDW was 

chosen to represent lake water as it allows to easily depict the chemical reactions and 

chemical leaching that is occurring between the rock and the water. A sixth column was 

used a blank, and thus had only an empty nitex sleeve and DDW within it. 

Columns were sampled at 1,2,7,14, and 30 days and analyzed at LUEL for metals, 

and mercury. The same laboratory procedures for the analysis of lake water mentioned in 

chapter 1 were followed. 

2.2 Results 

2.2.1 Lake Water Analysis and Statistical Results 

Mean concentrations were found for all water chemistry parameters. These results were 

illustrated in Chapter 1 (Table 1.3). 

A Kruskal-Wallis ANOV A was performed on water samples taken from each lake 

to evaluate if significant differences among ranks of water chemistry parameters existed 

between lakes. Table 2.0 shows the results from the test. The Kruskall-Wallis ANOVA 

illustrates that there is a significant differences in water chemistry among the study lakes 

for the majority of the parameters. All parameters except aluminum and barium were 

shown to have significant differences in ranks between lakes. 
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Table 2.0. Table showing Results from the Kruskal-Wallis ANOVA comparison of ranks between 
water chemistry parameters, where H= the kruskal wallis statisic (approximation of the Chi-squared 
distribution)(R= ordinal rank median rank of concentrations, and p=significnance <0.05 

Para meter and Test 
Significance Melchett Esnagami Briarcliff Chaucer O'Sull ivan 
DOC-H4= 2 7 . 19,  p = O . OOO R = 3 9 . 750 R = 5 .650 R = 3 2 . 700 R = 2 7 . 2 5 0  R = 3 0 .820 

AI-H4 = 4 . 70,  p = 0 . 3 194 R = 2 8 . 550 R = 2 5 . 700 

Alk- H =4 4 6 . 7 2 5 ,  p = O . OO O  R=9 .450 R=46.800 

Ba- H = 4  5 . 329, p = 0 . 2 5 5  R = 2 0 . 400 R = 3 0 .050 

Ca- H4=45.  73 p = O . OO O  R = 8 .  700 R = 4 3 . 900 

Fe- H4= 1 1 . 376, p = 0 . 023 R = 2 9 . 800 R = 1 3 . 400 

Mg- H4= 1 6 . 2 16,  p = 0 . 003 R=34.  750 R =  1 2 .450 

Ma- H4= 46. 378, p = O . OOO R=8. 500 

pH- H4= 3 5 . 6 1 7, p = O . OOO R = 2 0 . 000 

K- H4= 2 2 . 783, p = O . OOO R = 3 6 . 300 

Na- H3= 4 7 . 145, p = O . OOO R = 6 . 100 

Sr-H4= 4 7 . 890, p = O . O O O  R = 7 . 300 

R = 4 5 . 7 0  

R = 4 1 .400 

R = 2 2 . 1 5 0  

R = 40 . 200 

R= 38. 000 

S-H4= 46.076, p = O . OO O  R = 24 . 550 R=42 . 000 

Hg-H4=4. 28, p= 0 . 3692 R= 2 1 .000 R=42 . 400 

Discriminant Function Analysis 

R = 2 1 . 2 50 

R= 1 1 . 5 50 

R = 2 7 .850 

R= 1 2 . 300 

R = 3 5 . 3 5 0  

R= 34.900 

R= 1 2 . 500 

R = 5 . 50 0  

R=44 . 1 00 

R = 14. 900 

R= 1 3 . 700 

R= 1 5 . 200 

R = 7 . 2 5 0  

R = 24 . 950 

R = 2 5 . 500 

R=29 .900 

R = 2 5 . 500 

R = 3 1 .450 

R = 2 1 .400 

R = 2 5 . 500 

R = 3 9 . 20 0  

R = 1 6 . 750 

R =  2 5 . 700 

R = 26.430 

R = 6 . 750 

R = 1 6 . 500 

R= 34 . 3 2 1  

R = 3 9 . 428 

R = 28 . 786 

R=4 1 . 300 

R = 2 7 . 500 

R = 3 2 . 143 

R=46 . 2 14 

R = 3 0 . 286 

R = 20 . 8 5 7  

R=44.000 

R=45 . 0 3 6  

R = 4 2 . 8 5 7  

R= 1 5 . 3 7 5  

A forward stepwise discriminant analysis was used to determine if  significant 

differences in water chemistry among study lakes occurred. A DFA is a parametric test 

with the same assumptions as ANOVA or ANCOVA (mentioned in chapter l ). Green, 

1971 demonstrated that even with non-parametric data, DFA still provides statistically 

sound results for environmental data. In a DFA variables are discriminated by 

considering the ratio of negative terms to the positive terms. In addition variables that are 

highly correlated are eliminated from the final analysis. For instance alkalinity was 

correlated with calcium and manganese, while potassium was negatively correlated with 

aluminum. This most likely resulted in Ca, Ma, and Al being eliminated from the final 

discriminant analysis. Results of the DFA are iillustrated in Figure 2.0 with a scatterplot 

of discriminant function 1 vs. discriminant function 2. DFA test results found that 95% of 

the variance was accounted for in 2 functions. Function 1 accounted for most of the 

variability between lakes with an eigenvalue of 208.01 and 87.6% of the variability. 
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Standardized coefficients suggest root 1 is explained by alkalinity ( 1.44) and potassium (-

1.41 ). Function 2 had an eigenvalue of 17.42 and together with function 1 accounted for 

7.4% of the proportion of variability. Standardized coefficients suggest that root 2 is 

explained by sulphur (2.07), and potassium (-1.34). 

Aroland Study Lakes: Discri mi nant Analysis of Lake Water Chemi stry 
1 0  

8 

6 
.. • 4 • , . .. ..  •"' . ..  

2 .. .  .. 
m • • .. ..  D .. .. .. N '1. c 0 - ....... 

.g u " "  c -2 " lL 

-4 
• 

-6 

-8 &A • • 
. ... 

-10 • .. Melchett 
II Esnagami 

-1 2 " Briarcliff 
-25 -20 -1 5 -1 0 -5 0 5 1 0  1 5  20 • Chaucer 

Function 1 • OSullivan 

Figure 2.0. Scatterplot illustrating results from DFA of Lake Water Chemistry . .  The test had 1 1  
steps, with the WilksA. = 0.00001.  and p<O.OOOO 

Figure 2.0 illustrates that Melchett and Briarliff Lakes are similar but distinct 

from Esnagami and O'Sullivan Lakes, which are also closely grouped as well as Chaucer 

Lake, which is distinct from all lakes. As mentioned standardized coefficients suggest 

that function 1 is defined by alkalinity ( 1.44) and potassium, suggesting that Melchett and 

Braircliff lake are defined by low alkalinity and high potassium concentrations, whereas 

Esnagami and O'Sulivan Lakes are defined by high alkalinity and low potassium 

concentrations. Chaucer Lake appears to cluster around the"O" mark of function 1, which 
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indicates it has neither high or low levels of alkalinity and potassium when compared to 

the other lakes. 

Standardized coefficients suggest that function 2 is defined by sulphur (2.07) and 

potassium (-1.34). Referring to Figure 2, Melchett and O'Sullivan Lake are defined by 

high sulphur and low potassium concentrations, whereas Chaucer is isolated with low 

sulphur and high potassium concentrations. Both Esnagami and Briarcliff are relatively 

neutral on the axis. 

Function 1 and function 2 appear to contradict each other in regards to the 

discrimination of potassium between each lake. Because function 1 accounts for 

significantly more variation then function 2, it is assumed that function 1 is more reliable. 

Thus low alkalinity levels, as well as high potassium and sulphur concentrations 

characterize Melchett Lake. Chaucer is discriminated by low sulphur, while Briarcliff is 

defined by low alkalinity and high potassium. Furthermore Esnagami is characterized by 

high alkalinity and low potassium concentrations with regards to the other study lakes. 

2.2.2 Geological Data Results 

2.2.2.1 X-Ray Diffraction 

X-Ray diffraction is a common method used by geologists and mineralogists to 

examine the chemical make up of unknown solid materials. X -Ray diffraction was used 

to analyze the chemical composition of rocks surrounding lakes in the Aroland study 

area. Tables 2.2- 2.6 show the results from the X-Ray diffraction analysis. 
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Briarcliff 

Rock samples were taken from 3 different locations from around Briarcliff Lake. 

X-ray diffraction analysis illustrates that all areas had a very similar geochemical make 

up consisting of predominantly Si02 (quartz) and NaA1Sh08 (albite). Other minerals 

containing common elements such as potassium, iron, calcium and aluminum were also 

found to be present within the samples, in minerals such as fluorannite, microcline, and 

clinochlore. Major minerals found within rock samples from Briarcliff Lake and their 

general abundances are summarized in Table 2.2. 

Chaucer Lake 

Rock samples were taken from 4 locations surrounding Chaucer Lake. Similar to 

Briarcliff, both quartz and albite were commonly found in each sample. Results also 

illustrate that rock surrounding Chaucer Lake has minerals such as microcline, and 

flourannite containing a variety of common metals (AI, ,K,Fe, and Mg). Table 2.3 

summarizes results from XRD analysis for Chaucer Lake. 

Table 2.1. X-Ray Diffraction Results for Briarcliff Lake. Mineral abundances: Dominant-x, 
Moderate-o, Trace-*, and Absent-a 

Sample Quartz Albite Fluorannite Microcline Dickite Clinochlore 
1 
2 
3 

X 
X 
X 

0 0 
0 a 
0 a 

a a a 
0 a a 
a * 0 

Table 2.2. X-Ray Diffraction Results for Chaucer Lake. Mineral abundances: Dominant-x, 
Moderate-o, Trace-*, and Absent-a 

Sample Quartz Albite Microcline Clinochlore Phlogopite Flourannite 

1 X 0 0 a a 0 
2 X 0 a a 0 a 
3 X X a 0 a a 
4 X 0 a a 0 a 
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Melchett Lake 

Rock samples were taken from 4 different sites surrounding Melchett Lake . 

Results from the X-ray diffraction analysis show that both quartz and albite were found in 

all samples. Similar to both Briarcliff and Chaucer, the minerals microcline and 

fluorannite were also found to be present in samples from Melchett Lake. Again such 

minerals contain common metal elements such as Al, Fe, and Mg. Table 2.4 summarizes 

major minerals found in rock samples from Melchett Lake. 

Table 2.3 X-Ray Diffraction Results for Melchett Lake. Mineral abundances: Dominant-x, 
Moderate-o, Trace-*, and Absent-a 

Sam�le Quartz Albite Phlogo�ite Microcline Flourannite 
1 X 0 a a a 
2 X 0 * a a 
3 X 0 a * * 

4 X 0 a a a 

O'Sullivan Lake 

Rock samples were taken from 4 locations surrounding 0' Sullivan Lake. 

Although quartz and albite were found to be present in all samples, other minerals that 

were not present in samples from other lakes. Minerals such as Ankerite, Carlinite, and 

Koninckite appear to be present in samples from 0' Sullivan Lake, all of which were not 

found in any other samples. The chemical composition of these minerals is a combination 

of common metals such Fe, Mg, Mn, Al.. Major minerals present within rock from 

O'Sullvan Lake is summarized in Table 2.5 

Esangami Lake 

In total rock samples were taken from 3 locations surrounding Esnagami Lake. 

Similar to rock from other study lakes, quartz and albite are found to be quite common in 
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rocks surrounding Esnagami Lake. Unlike samples from the other study lakes, sample #1 

from Esnagami appears to have the mineral dolomite present. 

Other minerals found again are fairly similar with the other lakes geology, with 

Clinochlore and Fluorannite, being present. Table 2 .6 illustrates results from XRD 

analysis of rocks from Esnagami Lake. 

Table 2.4. X-Ray Diffraction Results for O'Sullivan Lake. Mineral abundances: Dominant-x, 
Moderate-o, Trace-*, and Absent-a 

Sam�le Quartz Albite Chinochore 
1 X 0 X 
2 X 0 X 
3 X 0 X 
4 X * X 

Table 2.5. X-Ray Diffraction Results from Esnagami Lake. Mineral abundances: Dominant-x, 
Moderate-o, Trace-*, and Absent-a 

Sam�le Quartz Albite Chlinochlore Dolomite Fluorannite 
1 
2 
3 

X 
X 
X 

0 
0 
0 

2.2.2.2 Column Experiments 

0 
a 
X 

X 
a 
a 

0 
0 
a 

Water/rock interaction column experiments were ran for 30 days in the spring of 

2010. Water from the experiments were sampled on days 1, 2, 7,  14, and 30, and 

analyzed for metal cations. Table 2 .8 shows initial results from Day 1 and final results 

from day 30 and the % change in concentration between days 1 and 30. 

Table 2 .8 illustrates that most chemical parameters from each column (lake) generally 

increased throughout out the entire experiment, with the exception being Chaucer Lake , 

in which 8 of the 14 detectable parameters decreased. In each column the levels of As, 

Be, Cd, Co, Cr, Mo, Pb, Ti, and V remained below detection limit for the entire 

experiment. 
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Table 2.6. Table displaying results from Day 1 and Day 30 sampling and % change from column 
experiment . Heading uses shortforms for lake names: Briarcliff=Briar, Chacer: Chane, Esnagami: 
Esna, Melchett=Melch, O'Sullivan=O'Sul. It assumed all columns started at concentrations of 0, as 
DDW was used as reagent 

Aluminum 

Arsenic 

Barium 

Berryllium 

Calcium 

Cadmium 

Cobalt 

Chromium 

Copper 

Iron 

Potassium 

Magnesium 

Manganese 

Molybdenum 

Sodium 

Nickel 

Lead 

Sulfur 

Strontium 

Titaniuim 

Vanadium 

Zinc 

Hg (ngiL) 

Briar 

Dayl 

0.025 

<DL 
0.008 

<DL 
6.289 

<DL 
<DL 
<DL 

0.032 

0.239 

Briar 

Day30 

0. 133 

<DL 
0.022 

<DL 
23.747 

<DL 
<DL 
<DL 

0.009 

0.2 

0.95 1 .43 

l . l l  2.52 

0.0749 0.0146 

<DL <DL 
0.6! 0.59 

0.003 <DL 
<DL <DL 

1 .7 1 .6! 

0.007 0.023 

<DL 0.014 

<DL <DL 
0.023 0.003 

22.4 76.46 

% 
Change 

432 

n/a 
1 75 

n/a 
277 

n/a 
n/a 
n/a 

-255 

-19.5 

50.5 

127 

-413 

n/a 
-3.4 

n/a 
n/a 

-5.6 

229 

n/a 
n/a 

-660 

241 

Chauc 

Day 1 
0.133 

<DL 
0.02 

<DL 
6.469 

<DL 
<DL 
<DL 
0.049 

0.412 

Chauc 

Day 30 

0.028 

<DL 
0.015 

<DL 
6.405 

<DL 
<DL 
<DL 
0.008 

0.092 

1 .7 1  1 .81 

l . 1 3  1 .08 

0.2856 0.5448 

<DL <DL 
0.7 0.51 

0.021 0.014 

% 
Change 

-375 

n/a 
-33.3 

n/a 
- 1 .0 

n/a 
n/a 
n/a 

-5!2.5 

-347.8 

5.85 

-4.63 

90.7 

n/a 
-37.3 

-50 

Esna 

Dayl 

0.089 

<DL 
<DL 
<DL 
l . 197 

<DL 
<DL 
<DL 

0.008 

0.056 

0.69 

0.31 

0.006 

<DL 
0.49 

<DL 

Esna 

Day30 

0.053 

<DL 
0.008 

<DL 
8.3 1 1  

<DL 
<DL 
<DL 

0.005 

0.879 

2.66 

1 .9 

0.2938 

<DL 
0.85 

<DL 

% 
Change 

-67.9 

n/a 
n/a 
n/a 
594 

n/a 
n/a 
n/a 
-60 

147.7 

285.5 

5 1 2.9 

479.9 

n/a 
73.5 

n/a 

Melch 

Dayl 

0.036 

<DL 
0.003 

<DL 
2.003 

<DL 
<DL 
<DL 
0.05 

0.05 

Melch 

Day30 

0.023 

<DL 
0.024 

<DL 
10.183 

0.001 

<DL 
<DL 

0.031 

0.021 

0.82 1 .57 

0.33 1 .07 

0.0395 0.8838 

<DL <DL 
0.46 0.57 

0.002 0.002 

% 
Change 

56.5 

n/a 
700 

n/a 
408.4 

n/a 
n/a 
n/a 

-61.3 

- 1 38 . 1  

9 1 .5 

224.2 

2137.5 

n/a 
23.9 

0 

<DL <DL n/a <DL <DL n/a <DL <DL n/a 
4.36 2.88 -51.4 0.54 0.62 !4.8 1.46 2.08 42.5 

0.008 0.009 !2.5 <DL 0.013 n/a <DL 0.014 n/a 
<DL <DL n/a <DL <DL n/a <DL <DL n/a 
<DL <DL n/a <DL <DL n/a <DL <DL n/a 

0.029 0.008 - 1 62.5 0.003 0.002 -50 0.01 0.004 - ! 50 

25.78 3 1 .83 23.5 4.51 28.89 540.6 8.68 46.81 439.3 

O'Sul 

Dayl 

0.058 

<DL 
<DL 
<DL 
5.5 1 7  

<DL 
<DL 
<DL 

0.019 

0.067 

0.36 

0.48 

0.0089 

<DL 
0.56 

<DL 

O'Sul 

Day30 

0. 1 3 1  

<DL 
0.013 

<DL 
27.487 

<DL 
<DL 
<DL 
0.01 

0. 128 

0.62 

2.3 

0.0346 

<DL 
0.71 

<DL 

% 
Change 

125.8 

n/a 
n/a 
n/a 

398.1 

n/a 
n/a 
n/a 
-90 

9! 

72.2 

!82 

288.8 

n/a 
37.5 

n/a 
<DL <DL n/a 
0.8 0.76 -5.26 

<DL 0.02 n/a 
<DL <DL n/a 
<DL <DL n/a 

0.013 0.002 -550 

9 . 1 2  62.45 586 

Because DDW was used as the reagent all parameters began the experiment at 

Oppm. In terms of parts per million increases, Ca displayed the most dramatic increases in 

concentration in all lakes except Chaucer, which showed a decrease between day 1 and 

day 30. 0' Sullivan and Briarcliff were found to have the highest finals Ca concentrations 

with 27.5 mg/L and 23.7mg/L respectively, while Chaucer had the lowest at 6.4mg/L. 

Figure 2.1 illustrates the changes in calcium concentration in column over the entire 

study period. In terms of ppm changes increases, potassium, magnesium and sulphur also 

displayed fairly moderate increases in concentration (except for Chaucer) between days 1 

and 30 of the experiment. Figures 2.2 to 2.6 show the changes in K, Mg, and S 

concentrations respectively within column water over the entire study period. The graphs 

show that highest K levels were found in columns from Esnagami (2.66mg/L) and 

Chaucer Lakes (1.81mg/L), with the lowest concentration being found in the O'Sullivan 
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column (0.62 mg/L). Furthermore the graphs demonstrate the highest levels of Mg were 

found in columns from Briarcliff (2.52mg/L) and O'Sullivan (2.30mg/L) while the 

lowest was found in Melchett Lake (1.07mg/L). Finally Figure 2.6 illustrates that the 

highest levels of sulphur were found in Chaucer and Melchett lakes with concentrations 

of 2.88 and 2.08mg/L respectively. The lowest sulphur levels were displayed in 

0' Sullivan with a final concentration of 0.76 mg/L. 

All columns displayed significant increases in concentrations of Hg (Fig.2.5) The 

highest concentrations were found in columns from Briarcliff, O'Sullivan and Melchett 

Lakes with 76.46, 62.45 and 46.81 ng/L respectively. The lowest concentration of Hg 

from the final day of the experiment was found in the column from Esnagami with a 

concentration of 28.89ng/L. Hg concentrations in all columns appear to be steadily 

increasing towards the end of the experiment. Figure 2.5 illustrates changes in Hg 

concentration over time for each column. The rest of the graphs depicting changes in 

concentration in the remaining variables from the column experiments can be seen in 

Appendix 1. 
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Calcium Concentration In Column Experiment Vs. Time (Days) 
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Figure 2.1. Changes in calcium concentrations in columns over time 

Potassium Concentrations in Column Experiments Vs. Time (Days) 
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Figure 2 .2. Changes in Potassium concentrations in columns over time 
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Magnesium Concentrations in Column Experiments Vs. Time (Days) 
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Figure 2.3. Changes in Magnessium concentrations in columns over time 

Sulphur Concentrations in Column Experiments Vs. Time (mg/L) 
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Figure 2.4 Changes in Sulphur concentrations columns over time 
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Mercury Concentrations in Columns Experiments Vs. Time (Days) 
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Figure 2.5. Changes iu Mercury concentrations in columns over time 

2.3 Discussion 

Water chemistry from 5 lakes in the Aroland study area should closely resemble 

the geochemistry of the geology in the surrounding watersheds. The presence of sulphide 

mineralization within surrounding lithologies should correspond to higher mercury levels 

in lake water. 

With the use of discriminant function analysis and nonparametric ANOVA 

statistics study lakes were separated based on their water chemistries. These were then 

compared to geochemical data from each watershed found through X-Ray diffraction and 

analysis and water rock interaction experiments. 

Apparently surrounding geology plays a role in each lakes water chemistry. Each 

lake will be discussed individually. 
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2.3.1 Melchett Lake 

DF A of log transformed water chemistry data suggest that Melchett Lake is 

discriminated by low alkalinity and high alkalinity and sulphur levels in comparison to 

other the lakes. Lake alkalinity is defined by the amount of carbonate and bicarbonate in 

a lake system. When present the dissolution of carbonate and bicarbonate bearing 

minerals greatly increase the receiving lakes ability to withstand a change in pH. XRD 

analysis of rock samples taken with the Melchett Lake watershed indicated that no 

carbonate minerals were present. These results reflect the water chemistry found in 

Melchett Lake as the Kruskal-Wallis ANOVA ranked the lowest lake in regards to 

alkalinity levels compared to the other lakes. Thus typical of most granitic seepage lakes, 

Melchett would have relatively low acid neutralizing capability compared that of lakes in 

a karst topography. 

Concentrations of cations of magnesium and calcium are also commonly 

correlated with alkalinity as they are often associated with carbonate minerals. Results 

from the Kruskal-Wallis ANOVA indicate that calcium levels in Melchett Lake water 

rank significantly lower then other lakes, whereas Mg levels rank amongst the highest. 

Examination of XRD data illustrates that a number of minerals present within the 

Melchett Lake watershed contain Ca and Mg which may contribute to concentrations 

found in lake water. For example a number of the Albite minerals found within rocks 

from Melchett Lake were found to contain Ca, whereas the Mg bearing mineral 

Phlogopite was also present. 

Referring to the column data experiment calcium levels were found to be some of 

the lowest compared to the other lakes, whereas magnesium was somewhat moderate. A 
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reason that calcium maybe found in much lower concentrations compared to the other 

lakes is that most of calcium found is contained in Albite. Feldspar minerals such as 

Albite are a group of silicates that are fairly resistant to chemical weathering from water, 

especially the potassium felspars (Hem, 1989). Albite is the only source of calcium found 

in rock material, dissolution rates may be minimal, as exhibited by both lake chemistry 

and column experiment data. 

Discriminant function analysis isolated Melchett Lake from other lakes by high 

sulphur levels. These results are consistent with column experiment data where Melchett 

Lake finished with a sulphur concentration of 2.08mg/L, which was second only to 

Chaucer Lake. 

The majority of sulfur in a lake system comes from the weathering of sulphide 

bearing rock, which is then oxidized into sulphate in oxic lake conditions (Hem, 1989). 

Results from the XRD analysis found no sulphur was present in any of the minerals 

found in rock samples from Melchett Lake. Two possible explanations for this is the 

presence of elemental sulphur (not associated with mineralization) within the rocks, 

and/or the presence of organic sulphur compounds produced by bacteria. Hem 1989 

stated that native elemental sulphur is fairly common in igneous rocks, with average 

concentrations found to approximately 410ppm. Thus weathering and dissolution of rock 

containing uncomplexed native sulphur would contribute to concentrations found within 

lake water. 

Richards et al. ( 1991) found that complexed organic sulphur compounds can also 

contribute to sulphur levels within a lake. Studies indicated that organic sulphur 

compounds were bacterial dependent and have capability of adding fairly significant 
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amounts of S to a lake system. However because bacteria produce organic sulphur 

compounds, optimal conditions are needed. Bacterial productions of organic sulphur 

have been linked to lake depth and wetland/littoral area. 

DF A of lake water chemistry also suggests that potassium is a key function for 

discriminating among lakes. Discriminant function 1 suggests that Melchett Lake is 

defined by high potassium levels. Results from the Kruskal- Wallis ANOV A support this 

as Melchett Lake ranks among the highest in terms of K concentrations between lakes. 

Furthermore results from the water/rock interaction column experiments illustrate 

moderate amount of potassium being leached out the rock. Examination of the mineral 

composition from X-ray diffraction results illustrate an abundance of potassium bearing 

minerals, such Phlogopite (mica), Fluorranite (mica), and Microcline (feldspar). Thus as 

rock has been found to be a large source to aquatic systems it is evident that the chemical 

dissolution of potassium out of these minerals from rocks within the watershed are 

contributing to potassium levels within the lake water. 

2.3.2 Briarcliff Lake 

Discriminant function analysis of lake water chemistry illustrated that Briarcliff 

Lake is discriminated by the same variables as Melchett Lake. Thus it is characterized by 

low alkalinity, and high sulphur and potassium. 

Similar to that of Melchett Lake XRD analysis found no carbonate minerals 

present within rocks collected from the Briarcliff watershed. Coincidently results from 

the Kruskal- Wallis ANOV A test show that Briarcliff ranks second lowest in alkalinity 

concentrations, with only Melchett Lake ranked lower. 
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The Kruskal-Wallis ANOV A also illustrate that Briarcliff Lake ranks highest 

among lakes for Magnesium and Iron levels. When compared with final results from the 

column experiment, it appears consistent that Mg, and Fe levels in lake water appear to 

be influenced by surrounding geochemistry. The column from Briarcliff Lake finished 

the experiment with the highest concentration of Magnesium, and second highest level of 

Iron. 

XRD analysis of geochemical composition of rocks from the Briarcliff Lake 

watershed show a number of Mg and Fe bearing minerals. Clinochlore, Flourannite, and 

Koninckite, were all found to be present in rock samples from Briarcliff Lake, all of 

which contain Mg and/or Fe. Hrnce these minerals are influencing Mg and Fe levels in 

Briarcliff Lake by chemical dissolution through a water/rock interaction. 

Similar to Melchett Lake DFA picked out high potassium levels to discriminate 

Briarcliff from other lakes. Kruskal-Wallis ANOV A results coincide with this statement 

as lake water from Briarcliff ranked significantly higher in K concentrations when 

compared to the other study lakes. The main contributor of potassium to remote lakes are 

potassium bearing feldspars and micas. XRD analysis of rock samples from Briarcliff 

Lake illustrate that a variety of minerals containing K appear to be present. The minerals 

Fluorannite, Microcline, and Anorthoclase all contain K and were found throughout the 

sampling area. Thus the presence of these minerals in the watershed is influencing water 

chemistry throughout the aquatic system. 

2.3.3 Esnagami Lake 

Results from the discriminant function analysis suggest that Esnagami Lake is 

defined by high alkalinity, potassium and sulphur. Unlike other lakes thus far X-Ray 
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diffraction found traces of dolomite in rock samples from Esnagami Lake. As mentioned 

earlier lake alkalinity is based on the presence of bicarbonates and carbonates and the 

C02 -HC03 -co3 z_ equilibrium system (Wetzel, 2001 ). Dolomite and calcite are 

commonly found carbonate minerals, and are the main minerals found in limestone and 

its metamorphic equivalent marble (Dyar et al. 2008). The presence and chemical 

dissolution of these minerals would undoubtedly increase alkalinity within the lake. The 

presence of dolomite within the watershed would most likely also attribute to the 

statistically higher ranks of calcium found within the lakes water samples, as the 

disassociation of carbonate minerals would increase concentrations of calcium to the 

lake. 

In chapter 1, it was discussed that alkalinity inhibits mercury concentrations in 

aquatic systems, particularly in aquatic biota. Thus Walleye from Esnagami Lake were 

found to have the lowest mercury concentrations among all lakes sampled. The presence 

of dolomite and most likely calcite surrounding the lake may help control mercury 

concentrations within the fish population. 

Results from both Kruskal-Wallis and the DFA both suggest that Sulphur 

concentrations are among the highest within Esnagami Lake. However when comparing 

final sulphur concentrations in the column experiment, rocks from Esngami leached some 

of lowest levels of sulphur into the water (final column concentration of 0.62mg!L). This 

suggests that not only did the rock contain no sulphide mineralization it also contained 

the lowest levels of trace native sulphur. This suggests that sulphur concentrations in 

Esnagami Lake maybe highly dependent on the aforementioned organic sulphides 

produced within surrounding wetlands or in lake production within shallow littoral zones 
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and sediment. Another possibility maybe due to the vast size of Esnagami Lake in which 

only a small proportion of rock was sampled. Therefore isolated areas with higher levels 

of sulphur or sulphide minerals may have not been sampled, yet weathering of these 

rocks would contribute to levels in lake water. 

Discrimanant function 1 from the DFA suggests that Esnagami is discriminated 

by low potassium levels. Results from the Kruskal-Wallis ANOV A suggest that K 

concentrations in Esnagami lake are neither the lowest or highest among lakes .. 

Regardless potassium is present at fairly significant concentrations in all data from 

Esnagami Lake. Similar to other lakes, the best explanation for the source of potassium, 

is the presence of K-bearing minerals. X-Ray diffraction analysis on rock samples from 

Esnagami Lake illustrates that Flourannite (KFe3 AlSh 010 F2) was present in 2 of 3 

samples. Weathering of rock containing this mineral would likely contribute potassium to 

the receiving waterbody 

2.3.4 O'Sullivan Lake 

Discrimination of water chemistry indicated that 0' Sullivan closely followed that 

of Esnagami. Much like that of Esngami, 0' Sullivan Lake ranked high compared to 

other lakes in regards of alkalinity. However unlike Esnagami, 0' Sullivan Lake did not 

have any carbonate minerals present to contribute to alkalinity. However Ca 

concentrations ranked highest in O'Sullivan Lake. Results from the pairwise correlation 

from chapter 1 illustrated that calcium was highly correlated with alkalinity. This 

suggests that although no carbonate minerals were found in any of the samples, they still 

may be present within the watershed and contributing to alkalinity. Furthermore much 

like Esnagami, O'sullivan Lake is a vast waterbody, making it very possible to miss 
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sections of rock containing carbonate during sampling. Similar to other lakes in the 

region, weathering of common minerals such as Albite that also contain Ca would further 

increase concentrations to the lake. 

0' Sullivan Lake is also defined by high concentrations of S and low 

concentrations of K. The same processes (or a combination) explained previously most 

likely apply. When comparing results from the Kruskal-Wallis ANOVA, O'Sullivan 

Lake ranked very high in regards to numerous metal concentrations when compared with 

the other lakes. Included in this are the parameters iron, sodium, and aluminum. 

Both high iron and aluminum concentrations in lake water maybe explained by 

the presence of the mineral Clinochlore [(Mg Fe )6 ( Si Al )4 0 10( OH )8]. This 

particular mica was found in dominant proportions in all 4 rocks samples analyzed by 

XRD. Although the chemical weathering of micas are typically much slower then other 

minerals, the apparent abundance of Clinochlore in the area would likely contribute to 

iron and aluminum concentrations regardless of reaction rates. Furthermore the iron and 

aluminum bearing Koninckite [( PeAl ) P04 ·3H2 0] was found in moderate proportions 

in one sample, which again may contribute to increasing levels in lake water. The felspar 

Albite (Nao.9s Cao.o2 )( Al 1 .o2 Sh_gs Os ) which was found in moderate to dominate 

proportions in all samples also contains Al. Results from the column experiment agree 

with these suggestions as the O'Sullivan column some had some of the most dramatic 

increases of aluminum and iron concentrations. 

Sodium concentrations were found to rank amongst the highest in 0' Sullivan 

Lake compared to the other study lakes. The main source of Na to natural freshwaters is 

from the chemical weathering of sodium bearing felspars. Unlike potassium bearing 
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felspars, felspars containing Na and Ca are more prone to chemical weathering (Hem, 

1989). Again, Albite which was found in moderate to dominant proportions in all rock 

samples is most likely one of the largest contributors of Na to not only Esnagami Lake, 

but all study lakes. 

2.3.5 Chaucer Lake 

DFA found Chaucer Lake unique when compared to the other study lakes in 

regards to water chemistry. As Figure 2.0 displays Chaucer Lake clusters around the 

neutral mark of function 1 and significantly negative axis of function 2, signifying 

moderate alkalinity and potassium concentrations and low sulphur concentrations 

compared to the other lakes. When compared to the other lakes moderate potassium 

levels can be explained by the presence of the K-felspar mineral microcline in rock 

samples taken from the shoreline. K-felspars are sufficiently more resistant to chemical 

weathering then Ca-Mg felspars. If K-felspars are abundant in the area, the lake would 

most likely receive little K from these sources. Further evidence for this from the column 

experiment illustrates that very little calcium was leached from rock from Chaucer Lake 

in regards to the other columns. This suggests that K-felspars maybe predominant in the 

granitic rock from this area. 

Chaucer Lake was also found to stand out in regards to the water/rock interaction 

experiments performed in the columns. As Table 2.7 indicates a number of the 

parameters displayed sharp increases initially on day 1 of sampling and then gradually 

decreased throughout the experiment. Parameters that followed this pattern included; AI, 

Ba, Ca, Cu, Fe, Mg, Na, Ni, S, Zn. Although other columns displayed similar reductions 

for some parameters, none had as many Chaucer. These reductions of concentrations 
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over time maybe explained by changes of solubility. Solubility of metals in water is 

affected by numerous interacting factors. Oxidation or redox potential, pH, and activity 

of other ions within the water can all affect the solubility of metals within the column and 

on a larger scale within a lake (Hem, 1986)(Wagemann, R. 1978). Despite inability to 

pin-point what factor is influencing metal solubility within the Chaucer Lake column, 

evidently metal solubility decreased throughout the experiment causing metals to 

precipitate making them undetectable. 

2.3.6 Mercury Study 

The presence of sulphide minerals within surrounding lake geology should 

correspond to higher levels of mercury within the lake water and sediment. However 

XRD analysis found no sulphide bearing minerals within any of the samples. Even 

though no sulphide mineralization was found in XRD analysis, sulphides may have still 

been present at low concentrations. XRD analysis at Lakehead University's 

Instrumentation lab, detects minerals at approximately 5ppm. Minerals with low 

concentrations become overlapped by peaks of minerals with higher concentrations, and 

thus left out of analysis. This may explain the presence of S and Hg concentrations found 

throughout this experiment. 

Mercury is also present in moderate levels as a trace metal in it elemental form in 

geological material surrounding the lakes. These results are consistent from similar 

studies. Rasmussen et al. (1998) found that bedrock rock and glacial tills similar to that 

found in the Aroland region in Huntsville, Ontario typically had low concentrations of Hg 

(5ppb). Results from the column experiment displayed that leaching of mercury is 

occurring from rocks in the region. However as Fig 2.5 illustrates mercury concentrations 



64 

dramatically increased towards the latter part of the experiment, and appeared to still be 

increasing. This may be due to chemical changes within the columns, which increased 

the solubility of the Hg within the rocks. For example sudden decreases in pH within the 

columns would increase Hg mercury solubility and increase leaching from the rock, 

resulting in higher concentrations. Another explanation for the increases late in the 

experiment may be due to analytical or sampling errors during the experiment. Because 

detection limits of mercury analysis are so low, they are very prone to contamination, 

which could results in skewed data. Thus leaching of mercury from rock in the Aroland 

area most likely contributes only a small proportion the total Hg concentration of the 

aquatic systems. In order to make that available to aquatic biota, the Hg must be 

methylated. Thus regardless of the amount mercury added to a lake, methylation rates 

likely depict the amount of Hg that enters the food chain. 

As found by Shilts and Coker, (1995), and Loukola-Ruskeeniemi (1990), large 

mercury anomalies in some lakes have been attributed to chemical weathering of black 

shales and sulphide bearing minerals. This does not appear to be case in the Aroland 

region. Therefore the most likely source of mercury to these remote lakes is from the 

abundance of surrounding wetlands in the area. As discussed in chapter 1, wetlands and 

in particular the amount of wetlands in a watershed influence mercury concentrations in 

the aquatic environments. 

Conclusion 

It was hypothesized that lake chemistry should influence and closely resemble 

that of the geochemistry of the surrounding watershed. For the most part rocks found 

within each watershed were typical of that found in the Boreal forest; granites consisting 
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of mostly quartz, numerous types of feldspars (in particular Albite) and micas. It is 

feldspars and to a lesser extent micas that contribute a large proportion of K, Mg, and Ca 

to lakes in this particular region. Furthermore XRD analysis found that lakes (in 

particularly O'Sullivan Lake) with predominantly more minerals bearing elements such 

as iron and sodium typically had higher concentrations of the elements, indicating the 

influential role local geology plays. 

Local geology also influenced alkalinity in the study lakes. Lakes situated in or 

close proximity to carbonate bearing rock will typically have much higher alkalinities. 

Study lakes within the Aroland region follow this pattern as Esnagami, the only lake 

found with carbonate minerals present had the highest rank of alkalinity when compared 

to the other lakes without carbonates. Esnagami lake was also found to have the highest 

rank of Ca concentration, due to the presence of the Dolomite within the watershed. Thus 

elevated alkalinity and to a lesser extent calcium in Esngami lake can be attributed to the 

influence by surrounding geochemistry. 

Although it is difficult to quantify the exact extent watershed geology plays in 

lake water chemistry it does appear to play an important role. 

The presence of sulphide mineralization elevates levels of mercury within 

receiving lakes. Although XRD demonstrated that no sulphides were found to be present 

in any rocks samples taken from the study area, water/rock interaction experiments prove 

that leaching of Hg from surrounding rock still occurs in small quanitities. Such 

processes add to total mercury concentrations to a lake system, and under the proper 

conditions for methylation can increase mercury concentrations in aquatic biota. 
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However most of the mercury added to the Aroland lakes come from wetlands in the 

area. 

2.4 General Conclusion and Implications 

Like many before it, studies such this exemplify the complex nature of mercury 

contamination, and to a certain extent other toxins, The level of contamination is often 

associated with the interaction of a number of chemical, spatial, and biological factors. I 

found that the chemical characteristics and general health of remote lakes is due to a 

number of externals factors. In particularly important was wetland abundance and 

geochemistry of the surrounding watershed. Furthermore fluctuations of chemical 

constituents affected the levels of other parameters within individual lakes. This is best 

documented by the positive and negative relationships found between dissolved organic 

carbon and alkalinity in regards to THg concentrations in fish tissues from. 

Both natural and anthropogenic disturbance and their abilities to change water 

chemistry can increase levels of Hg within aquatic systems. Such studies will prove 

invaluable with the development of the "Ring of Fire" in Ontario's remote far north. The 

"Ring of Fire" is a 5120km2 area of land being touted as one of the richest chromite ore 

deposits on Earth. Furthermore economical quantities of copper sulphide and other 

significant ore mineralization have also been found to be present (Reynolds, 2008). 

Much of the deposit is situated underneath the peatlands and wetlands of the 

Hudson Bay Lowlands. With the development of open pit mines and mining 

infrastructure the area will undoubtedly be disrupted and the natural function of countless 

pristine lakes and streams affected. Without proper planning removal and harvesting the 

wetlands will drastically release and increase levels of DOC to surrounding lakes and 
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streams. As found in this study large fluxes of DOC to an aquatic system can potentially 

increase levels of mercury within them. Furthermore the oxidation of sulphide minerals 

and leaching of rock tailing piles have the potential to alter pH levels through acid mine 

drainage and increase the solubility of a variety of metals. Without proper management 

the transport of these leachates to aquatic systems, could have serious detrimental effects 

on both aquatic and terrestrial biota . 

The scientific knowledge gained in studies such as these can form the basis of 

environmental management for large-scale operations such as the Ring of Fire. Having 

the ability to predict the interactions and potential consequences involved with mining 

before they occur, allows managers to mitigate and minimize the amount of 

environmental damage. 
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Appendix 1. Complete Results from Water/Rock 
Column Interaction Experiments 
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Aluminum Concentration in Cloumn Experiment Vs. Ttme {Days) 

Aluminum 

Barium Concentra!ion in Column Experiments Vs. Time (Days) 

Barium 

Briarcliff 
5. Chaucer 

Esnagami 
Melchett 
OSullivan 

Briarcliff 
Chaucer 
Esnagami 
Melchett 

• OSullivan 



76 

COPP<l' Concentrations in Column Experiments Vs. Time {Days) 

Tin>e (Day•) 

Copper 

Iron Concentration in Column Experiments Vs. Time (Days) 

Iron 

c Briarcliff 
Chaucer 
Esnagami 
Melchetl 

• OSullivan 

Briarcliff 
L Chaucer 

Esnagami 
Melchett 

• OSullivan 
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Manganese Concentrations ln Column Experiments Vs. Time (Days} 

Manganese 

Nickel Concentrations in Column Experiments Vs� Time (Days) 

Nickel 

Briarcliff 
Chaucer 
Esnagami 
Melchett 

• OSullivan 

�u Briarcliff 
Chaucer 
Esnagami 
Melchett 

• OSullivan 
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Sodium Concentrations in Column Experiments Vs. Time (Days) 

Tlme (Oayol 

Sodium 

Strontium Concentrations in Column Experiments Vs. lime !Davsl 

Time {Oay�J 

Strontium 

Briarcliff 
Chaucer 
Esnagami 
Melchelt 

• OSullivan 

Brit 

Chi 

Esr 
Mel 

OS1 
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Zinc Concentrations i n  Column Experiments Vs. Time (Days) 

Zinc 

Briarcliff 

c Chaucer 

Esnagami 
Melchett 

• OSullivan 
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Appendix 2. Complete Results from XRD Analysis 
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Briarcliff Lake 

Sample #1 

Counts 
Br#l-201001 1 5  

6000 

4000 

2000 

1 0  20 30 40 50 60 70 

Position [02Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 01 -087-2096 75 a-Si 02 -0.005 0.987 Si 02 
* 00-04 1 -1 480 39 Albite, -0.01 6  0. 1 3 1  ( Na , Ca ) Al 

calcian, ( Si , AI )3 
ordered 08 

* 00-053- 1 1 88 22 Fluorannite -0.020 0.438 K Fe3 AI Si3 
0 1 0 F2 

* 00-037-0473 7 Hauyne 0.077 0.0 1 5  Na6 Ca2 Al6 
Si6 024 ( S 
04 )2 

* 01-079-2 1 76 2 1  Wustite, syn -0.044 0.033 Fe.922 0 
* 00-046-0362 7 Copper -0. 1 70 0.035 Cul .3 V9 

Vanadium 022 
Oxide 
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Sample #2 

Counts 
Br#2-201 001 1 5  

6000 

4000 -

2000 

0 

1 0  20 30 40 50 60 70 

Position ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t [02Th.] Formula 

* 0 1 -083-2465 68 silicon 0.000 0.834 Si 02 
dioxide 

* 00-009-0466 38 Albite, 0.000 0.228 Na Al Si3 
ordered 08 

* 00-022-0687 35 Microcline, 0.000 0. 1 17 K Al Si3 08 
ordered 

* 0 1 -080-1 286 1 4  Rho, 0.000 0.064 Sr4.0 Cs 1 . 1  ( 
strontium Al1 2  Si36 
cesium tecto- 096 ) 
alumosilicate 

* 00-020-0469 1 4  Hastingsite, 0.000 0.033 ( Ca , Na )2 ( 
magnesian Fe2 , Mg )5 ( 

Si , AI )8 
022 O H  
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Sample #3 

Counts 

4000 

3000 

2000 -

1000 --

1 0  20 30 40 50 60 70 

Position [02Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 0 1-087-2096 68 a-Si 02 0.000 0.99 1 Si 02 
* 00-041 - 1480 45 Albite, 0.000 0.3 17  ( Na ,  Ca ) AI 

calcian, ( Si , AI )3 
ordered 08 

* 00-029-0701 36 Clinochlore- 0.000 0. 1 1 5 ( Mg , Fe )6 ( 
1MIIb, Si , AI )4 
ferroan 010  ( 0 H )8 

* 01 -074-1 758 14 Dickite 0.000 0.276 Al2 Si2 05 ( 
O H )4 ( H C  
O N H2 )  

* 00-022-0339 21 Koninckite 0.000 0. 156 ( Fe ,  AI ) P 
04 ·3 H2 0 

* 00-009-0478 2 1  Anorthoclase 0.000 0.097 ( Na , K )  ( 
disordered Si3 AI 08 
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Chaucer Lake 

Sample #1 

Counts 

4000 

2000 

0 

1 0  2 0  3 0  4 0  5 0  6 0  70 

Posrtion [02Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 01-085-0797 7 1  Quartz, syn 1 .004 Si 02 
* 00-041 -1480 36 Albite, 0. 169 ( Na , Ca ) Al 

calcian, ( Si , AI )3 
ordered 08 

* 00-053- 1 1 88 26 Fiuorannite 0.000 0.386 K Fe3 AI Si3 
0 1 0 F2 

* 00-01 9-0926 32 Microcline, 0.000 0. 1 37 K Al Si3 08 
ordered 
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Sample #2 

Counts 

Ch#2-201 001 1 5  

4000 

3000 

2000 

1000 
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Sample #3 

Counts I l 
Ch#3-20100 1 1 5  

6000 

4000 -

2000 

0 -

1 0  20 30 40 50 60 70 

Position ['2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t [02Th.] Formula 

* 03-065-0466 68 Quartz low, 0.000 1 .002 02 Si 
syn 

* 00-009-0466 4 1  Albite, 0.000 0.30 1 Na AI Si3 
ordered 08 

* 00-029-0701 34 Clinochlore- 0.000 0.073 ( Mg , Fe )6 ( 
1 MIIb, Si , AI )4 
ferroan 0 1 0  ( 0 H )8 

* 00-058-20 1 6  27 Illite-2M2, 0.000 0.066 ( K ,  H30 ) 
glycolated Al2 ( Si3 AI 

) OI O ( O H  
·x H2 0  
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Sample #4 

Counts 
3000 - Ch#4-201 001 1 5  

2000 

1000 

0 -

1 0  20 30 40 50 60 70 

Position ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 0 1 -078- 1 252 60 a-si 02, 0.000 0.98 1 Si 02 
quartz low 
high HP, syn 

* 00-009-0466 37 Albite, 0.000 0.675 Na AI Si3 
ordered 08 

* 00-042-1437 39 Phlogopite- 0.000 0.593 K ( Mg , Fe 
1 M, ferroan )3 ( AI ,  Fe ) 

Si3 0 1 0 ( 0  
H , F )2 

* 01-075- 1092 1 2  calcium 0.000 0. 1 34 Ca Mg Si2 
magnesiUm 06 
catena-
silicate 
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Melchett Lake 

Sample #l 

Counts 

Me\#1-201 001 15  

8000 

6000 -

4000 --

2000 

1 0  20 30 40 50 60 70 

Position ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 01 -087-2096 80 a-Si 02 0.000 0.986 Si 02 
* 00-041 - 1480 46 Albite, 0.000 0. 156 ( Na , Ca ) AI 

calcian, ( Si , AI )3 
ordered 08 

* 01 -074-1758 24 Dickite 0.000 0.224 Al2 Si2 05 ( 
O H )4 ( H C  
O N H2 
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Sample #2 

Counts 

6000 

4000 

2000 � 

0 

1 0  20 30 40 50 60 70 

Position ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 0 1-083-2465 75 silicon 0.853 Si 02 
dioxide 

* 0 1-070-3752 36 Albite 0.005 0. 1 96 ( Na0.98 
Ca0.02 ) ( 
Al1 .02 
Si2.98 08 ) 

* 00-042-1437 22 Phlogopite- 0.047 0.2 1 3  K ( Mg , Fe 
1 M, ferroan )3 ( AI ,  Fe ) 

Si3 0 1 0 ( 0  
H F 
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Sample #3 

Counts 
Mel#3-201 001 1 5  

8000 

6000 -

4000 -

2000 -

0 -+ 

1 0  20 30 40 50 60 70 

Position ['2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displace men Scale Factor Chemical 
Name t Formula 

* 01 -087-2096 76 a-Si 02 0.000 0.985 Si 02 
* 00-041 -1480 36 Albite, 0.000 0. 1 25 ( Na , Ca ) AI 

calcian, ( Si , AI )3 
ordered 08 

* 00-053-1 1 88 22 Fluorannite 0.000 0.227 K Fe3 AI Si3 
0 1 0 F2 

* 00-022-0687 23 Microcline, 0.000 0.061 K AI Si3 08 
ordered 
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Sample #4 

Counts 

Mel#4-201 001 15  

8000 -

6000 

4000 -

2000 

0 

1 0  20 30 40 50 60 70 

Position ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 01-087-2096 78 a-Si 02 0.000 0.983 Si 02 
* 00-041 - 1480 4 1  Albite, 0.000 0.099 ( Na , Ca ) AI 

calcian, ( Si , AI )3 
ordered 08 

* 01 -074-1758 25 Dickite 0.000 0.443 AI2 Si2 05 ( 
O H )4 ( H C  
O N H2 )  

* 01 -079-1 969 25 0.000 0.027 Fe.920 0 



O'Sullivan Lake 

Sample #l 

Counts 

2000 � 

1000 

Visible 

* 

* 

* 

* 

t o  

Ref. Code 

00-029-0701 

01 -070-3755 
01 -070-3752 

00-0 12-0088 

00-023-0603 

20 

92 

3 0  4 0  50  

Position ["2Theta] (Copper (Cu)) 

Score Compound 
Name 

48 Clinochlore-
1Milb, 
ferroan 

40 Quartz 
1 8  Albite 

1 9  Ankerite 

36 Previously 
called 
tirodite, 
tirodite 

Displacemen 
t 

0.0 12  

0.0 1 1 
0.027 

0.026 

-0.056 

60 70 

Scale Factor Chemical 
Formula 

0.68 1 ( Mg , Fe )6 ( 
Si , Al )4 
0 1 0  ( 0 H )8 

0.550 Si 02 
0. 1 86 ( Na0.98 

Ca0.02 ) ( 
All .02 
Si2.98 08 ) 

0. 126 Ca ( Mg0.67 
Fe0.33 +2 ) ( 
c 03 )2 

0.599 ( Na , Ca )2 ( 
Mg , Mn , Fe 
)5 Si8 022 ( 
O H  
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Sample #2 

Counts 

4000 

2000 

0 -

PosRion ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t [02Th.] Formula 

* 00-029-0701  53  Clinochlore- 0.004 0.721 ( Mg , Fe )6 ( 
l MIIb, Si , AI )4 
ferroan 0 10 ( 0 H )8 

* 01 -085-0795 49 Quartz, syn -0.035 0.285 Si 02 
* 01-073-921 1  1 9  Carlinite 0.068 0. 105 Tl2 S 
* 01 -070-3752 26 Albite 0.009 0. 120 ( Na0.98 

Ca0.02 ) ( 
All .02 
Si2.98 08 ) 

* 00-022-0339 22 Koninckite -0.030 0.200 ( Fe ,  AI ) P 
04 ·3 H2 0 

* 01-073-6559 15  Marmetite -0.047 0.069 Zn0.73 
Fe0.27 S 

* 01-076-1 675 9 Serpierite 0. 1 17 0.093 Ca ( Cu0.66 
Zn0.34 )4 ( 
0 H )6 ( S 
04 )2 ( H2 0 
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Sample #3 

2000 -

1000 -

0 

1 0  20 30 40 50 60 70 

Position ["2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 03-065-0466 63 Quartz low, 0.000 0.967 02 Si 
syn 

* 00-029-0701 73 Clinochlore- 0.000 0.896 ( Mg , Fe )6 ( 
1 MIIb, Si , AI )4 
ferro an 010  ( 0 H )8 

* 01 -070-3752 21  Albite 0.000 0. 173 ( Na0.98 
Ca0.02 ) ( 
All .02 
Si2.98 08 ) 

* 01-073-921 1  8 Carlinite 0.000 0.041 Tl2 S 
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Sample #4 

Counts 

08#4-201 0 1 1 5  

4000 -

2000 

0 

1 0  20 30 40 50 60 70 

Position [02Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 01-085-0504 60 Quartz -0.008 0.3 1 6  Si 02 
* 00-029-0701 54 Clinochlore- 0.007 0.736 ( Mg , Fe )6 ( 

1 MIIb, Si , AI )4 
ferroan 010  ( 0 H )8 

* 01-073-921 1  1 5  Carlinite 0.063 0. 126 Tl2 S 
* 00-041 - 1480 1 7  Albite, -0.01 5  0.090 ( Na , Ca ) AI 

calcian, ( Si , AI )3 
ordered 08 
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Esnagami Lake 

Sample #1 

Counts 

3000 

2000 

1 000 

0 

10  20 30 40 50 60 70 

Position ['2Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t [02Th.] Formula 

* 0 1 -070-3755 64 Quartz 0.000 1 .0 1 6  Si 02 
* 00-036-0426 56 Dolomite 0.000 0.669 Ca Mg ( C  

03 )2 
* 00-029-070 1  30 Clinochlore- 0.000 0. 1 38 ( Mg , Fe )6 ( 

1 MIIb, Si , AI )4 
ferro an 0 1 0  ( 0 H )8 

* 00-020-0548 29 Albite, 0.000 0.224 ( Na , Ca ) ( 
calcian, Si , AI )4 08 
ordered 

* 00-053- 1 1 88 29 Fluorannite 0.000 0.267 K Fe3 AI Si3 
0 1 0 F2 

* 0 1 -07 1 -0688 1 0  Ferrotscherm 0.000 0. 1 05 ( Na.23 K. 1 4  
akite Ca1.86 ) ( 

Mg1 .22 
Fe2. 1 0  
Mn.02 Ti. IO 
Fe.30 Al 1 .30 
) Al2 Si6 
022 O H  
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Sample #2 

Counts 

4000 -

2000 

0 

1 0  20 30 40 50 60 70 

Position [02Theta] (Copper (Cu)) 

Visible Ref. Code Score Compound Displacemen Scale Factor Chemical 
Name t Formula 

* 03-065-0466 66 Quartz low, 0.000 0.997 02 Si 
syn 

* 00-009-0466 38 Albite, 0.000 0. 1 88 Na AI Si3 
ordered 08 

* 00-053- 1 1 88 38 Fluorannite 0.000 0.427 K Fe3 Al Si3 
0 1 0 F2 

* 0 1-086-0002 1 1  magnesium 0.000 0.075 ( Mg0.930 
iron calcium Fe0.070 ) ( 
sodium Ca0.770 
catena- Na0.21 4  
disilicate Fe0.0 1 6 ) ( 

Sil .78 
Al0.22 06 ) 

* 00-009-0478 1 8  Anorthoclase 0.000 0.072 ( Na , K )  ( 
disordered Si3 Al 08 



Sample #3 

Counts 

3000 

2000 

1 000 

0 

1 0  20 

Visible Code Score 

* 0 1 -087-2096 60 
* 00-029-0701 61  

* 0 1 -073-921 1  1 1  
* 01 -070-3752 20 

* 00-01 2-0088 17  

* 00-009-0436 16  

98 

30 40 50 

Posrtion ['2Theta] (Copper (Cu)) 

Compound Displacemen 
Name t 

a-Si 02 0.000 
Clinochlore- 0.000 
1MIIb, 
ferroan 
Carlinite 0.000 
Albite 0.000 

Ankerite 0.000 

Riebeckite 0.000 

60 70 

Scale Factor 

0.982 
0.592 

0.092 
0. 1 19 

0.042 

0. 1 22 

Chemical 
Formula 

Si 02 
( Mg , Fe )6 ( 
Si , AI )4 
0 10 ( 0 H )8 
Tl2 S 
( Na0.98 
Ca0.02 ) ( 
All .02 
Si2.98 08 ) 
Ca ( Mg0.67 
Fe0.33 +2 ) ( 
C 03 )2 
Na2 Fe3 Fe2 
Si8 022 ( 0 
H 
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