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Chapter 1

Introduction

The quadrotor aircraft has seen a growing interest in the research community over 

the past few years, with a focus on modeling and control however. Early rotating 

wing aircraft pioneers designed similar four-rotor aircraft with varied success over a 

number of years. With the introduction of new lightweight sensors for measuring 

the attitude and angular velocity of a rigid body, model sized versions of traditional 

helicopters with autonomous capabilities have emerged, with the advantage of vertical 

take-off and landing (VTOL) over fixed wing aircraft. The quadrotor aircraft, with 

its symmetrical design, has a potential advantage with respect to the traditional 

helicopter in terms of maneuverability and mechanical simplicity. In fact, autonomous 

unmanned aerial vehicles (UAV’s) have gained popularity for their numerous potential 

applications where human interaction is difficult or hazardous. Attitude stabihzation, 

which could be considered the most important component for flight control, is essential 

for autonomous or even pilotable aircraft such as the quadrotor, as their designs are 

inherently unstable. As the literature suggests, a number of control algorithms have 

been proposed for the attitude control of a rigid body. In this thesis, a control strategy 

for the attitude stabilization of the quadrotor aircraft as well as some simulation and 

experimental results are presented.
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1.1 Brief Quadrotor History

Over the past one hundred years rotor-crafts have been under extensive research and 

much time, effort and money have been invested into a wide variety of designs. In 

the early twentieth century, rotor-craft designs were driven by the desire to build a 

machine capable of vertical take-off and landing and the ability to hover. After much 

trial and error, rotor-crafts of all kinds were having limited success at sustained flight. 

However, it wasn't until the 1930’s that significant advances were made involving fully 

controlled flight.

The four-rotor style aircraft, called the quadrotor, has had a somewhat long and 

discontinuous history in its research and development. Different variations of the 

quadrotor design are seen as far back as 1907 with the development of the Gyroplane 

built by Louis and Jacques Breguet in conjunction with Professor Charles Richet 

(Leishman 2000). This particular model consisted of a square central chassis with 

an arm attached to each corner supporting a 4-blade biplane rotor. One pair of 

diagonally opposing rotors rotated in a clockwise direction, while the remaining pair 

rotated in a counterclockwise direction. Many assisted hover flights were attained at 

low altitudes however, the aircraft was not practical as it lacked stability and proper 

control.

In 1922, another quadrotor style aircraft was built by Georges de Bothezat, and was 

one of the largest helicopters at the time (Leishman 2000; Gessow and Meyers 1967). 

This machine, which was under contract to the US Army, consisted of two intersecting 

beams in the shape of an 'x' or a cross with one rotor located at each end. Control of 

the aircraft was achieved by collective and differential collective thrust control, and 

cyclic rotor pitch variations for directional control. This particular quadrotor design 

flew successfully on a number of occasions but at low altitudes and forward speed. 

Due to its insufficient performance, high cost and the popularity of autogiros at the 

time, the US military lost interest and withdrew its funding resulting in the demise 

of the aircraft.

The most successful quadrotor design was flown in 1956 by designer and pilot D. H.
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Kaplan, and was funded by the Convertawings company in Amity ville, New York. 

This quadrotor differed from the previous designs in that the rotors were placed 

in an ’H’ configuration. This was an appealing design because the need for cyclic 

pitch control was eliminated, and various combinations of collective pitch changes 

between the four rotors yielded a highly controllable aircraft (Gablehouse 1969). The 

project endured successful testing and development until military support for the 

Quadrotor was lost after spending cutbacks. However, ideas from the design and 

control system were used for future vertical short take-off and landing (VSTOL) 

aircraft designs utilizing four ducts, fans or jets. Currently there is no commercially 

available quadrotor style aircraft for human flight, and the available literature suggests 

that this was the last pilot carrying pure quadrotor aircraft to fly.

After many years, and technological advances in sensor capability such as the Micro- 

Electro-Mechanical-Systems (MEMS) packages for gyroscopes and accelerometers, a 

renewed interest in the quadrotor design has emerged in the form of smaller model 

sized operational aircraft. In fact, just recently a Canadian company named RC Toys 

in Saskatoon, Saskatchewan developed a commercially available quadrotor aircraft 

model for remote control (RC) enthusiasts (http://www.rctoys.com). This particular 

quadrotor, dubbed the Draganflyer, is driven by four electrically powered DC motors, 

with a rigid ’x’ frame similar to the 1922 de Bothezat design. With lightweight, inex­

pensive onboard piezoelectric gyroscopes, the angular velocity of the aircraft is used 

as a feedback to a simple derivative controller to aid the remote pilot in stabilizing 

and flying the quadrotor aircraft. However, for inexperienced RC pilots, the first few 

fhghts can be quite challenging and require time and patience. Even with experience, 

a stable hover is virtually unattainable without constant control corrections, and a 

dedicated focus.

During the past few years, a growing interest in the quadrotor design has been seen, 

focusing on modeling and control (Hamel et al. 2002; Pounds et al. 2002; Castillo 

et al. 2003; Altug et al. 2002). This has been mainly due to the fact that it is 

now possible to control a model version, such as the Draganflyer, thanks to smaller
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lightweight gyroscopes. However, it is important to highlight the motivation driving 

this recent quadrotor research, considering the traditional helicopter has enjoyed rea­

sonable success for both pilotable and scale model designs.

1.2 M otivation

In recent years, UAV’s have received a lot of attention for both fixed wing and ro­

tating wing aircraft for a number of potential applications, and are essential where 

human interaction is difficult or hazardous. Some examples include high building and 

monument investigation, reconnaissance and surveillance, movie filming, search and 

rescue aid and meteorological surveys. Reasonable success has been achieved with 

fixed wing UAV’s however, a great interest has been placed on scale model versions of 

traditional hehcopters for their ability to hover and maneuver in confined or restricted 

areas, and for vertical take-off and landing ability. The interest in traditional scale 

model autonomous helicopters has been seen in a number of publications including 

(Shim et al. 1998; Avila Vilchis et d . 2003; Frazzoli et al. 2000; Mahony and Hamel 

2001; Mahony et al. 1999).

However, the question remains: Are there considerable advantages, such as controlla­

bility, maneuverability and efficiency that make the quadrotor design desirable over a 

traditional design, on even a scale model? Although no experimental testing has been 

done here to draw quantitative comparisons between the two different designs, the 

following discussion will help illustrate some of the more obvious differences affecting 

performance.

There are a number of interesting observations to be made when comparing a quadro­

tor design with a traditional helicopter. For example, a traditional helicopter com­

pensates the reactive torque produced from the main rotor by using a tail rotor to 

eliminate unwanted yaw motion. This energy spent on the tail rotor makes no con­

tribution to the upward thrust of the aircraft. Comparatively, the reactive torques 

generated by the rotors of the quadrotor aircraft are effectively canceled as two rotors
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rotate in one direction, and the other two rotate in the opposite direction, and all 

energy exerted from the four rotors contributes to upward thrust. A traditional heli­

copter must also consider unwanted gyroscopic torques during maneuvering, whereas 

the quadrotor, during trimmed flight has the gyroscopic torques canceled due to its 

configuration (Castillo et al. 2003).

Traditional helicopters require a relatively large main rotor, while the quadrotor uti­

lizes four rotors which may be designed quite smaller in comparison, and driven at 

higher velocities helping to reduce mechanical vibrations and increase efficiency. Ad­

ditionally, traditional helicopters have somewhat complicated mechanisms for achiev­

ing controlled flight. Control of the upward thrust is accomplished by governing and 

maintaining a constant main rotor speed while varying the pitch angle of the rotor 

blades, termed collective pitch, effectively increasing the thrust. Although the model 

version of the quadrotor used for experimental testing has fixed pitch rotor blades, a 

pilotable sized version could also use collective pitch to obtain control of the thrust. It 

begins to get mechanically complicated for a traditional helicopter when considering 

cyclic pitch of the main rotor. Essentially, cyclic pitch control is the ability to tilt the 

main rotor gear in the direction of desired flight. This mechanism is not necessary 

for the quadrotor, as controlled flight is achieved by variations in thrust between the 

four rotors, reducing mechanical complexities.

From a maneuverability perspective, the quadrotor has a clear advantage. Since the 

aircraft is symmetrical, there is technically no front, rear, right or left. This means 

the quadrotor has the ability to initiate and maintain flight in any given direction the 

same as it would for forward flight. A traditional helicopter however, cannot fly to the 

left or right, while maintaining the same orientation, with the same rigor as forward 

flight. Again due to its configuration, the quadrotor is capable of fantastic aerobatic 

maneuvers. A traditional helicopter, while still agile, is somewhat constrained by its 

physical configuration.
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1.3 The A ttitude Stabilization Problem

Attitude stabilization could be considered the single most important component of 

flight control for any aircraft. Many aircraft are inherently unstable in their design, 

making them much more maneuverable, yet difficult to control. Flight control of a 

quadrotor aircraft on a scale model or pilotable version is virtually impossible without 

the aid of a feedback controller. Similarly, UAV’s and autonomous aircraft of any kind 

must be able to stabilize their attitude before controlled fhght is attained.

It should be noted that attitude control is not limited to aircraft alone. In fact, the 

attitude control problem is the same for any rigid body and has been investigated by 

several researchers (Crouch 1984; Wie et al. 1989; Wen and Kreutz-Delgado 1991; 

Joshi et al. 1995; Lizarraide and Wen 1996). This includes for example, aircraft, 

mobile/walking robots, or underwater vehicles.

One challenge for the attitude stabilization problem arises from the need to use the 

attitude of the rigid body as feedback in the control algorithm. The angular velocity 

of the rigid body may not be simply integrated to obtain the attitude of the body, 

as they are linked dynamically and nonlinearly (Crouch 1984; Joshi et al. 1995). 

A number of other challenges are faced when considering the attitude stabilization 

problem. For instance, a global representation of the rigid body attitude is essential 

for full control, but is not always possible. Attitude representation can be achieved 

by a number of methods including Euler angles, quaternions, or the Direction Cosine 

Matrix, each with disadvantages including singularities, redundancies, and computa­

tional challenges (Wertz 1978; Hughes 1986; Spong and Vidyasagar 1989). Without a 

global mathematical representation of the aircraft attitude it is impossible to design 

a global control solution which can stabilize the aircraft from any attitude. However, 

most existing controllers are based on the four parameter quaternion representation 

which can be used to describe all possible orientations of the rigid body while avoid­

ing the singularities existing in the aforementioned representations (Kane 1973; Ickes 

1970).
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A number of control algorithms guaranteeing global asymptotic stability, and under 

restricted conditions, local exponential stability for the attitude control problem, have 

been proposed in (Wen and Kreutz-Delgado 1991), however, only asymptotic stabil­

ity is guaranteed for the other papers in the literature (Joshi et al. 1995; Wie et al. 

1989; Lizarraide and Wen 1996). Most of the existing control algorithms are based 

on PD  feedback control with Coriolis torques compensation, where the proportional 

action is in terms of the vector-quatemion, and the derivative action is in terms of 

the angular velocity of the rigid body.

In Chapter 3, the dynamical model for the quadrotor aircraft is developed in detail. 

With the exception of the gyroscopic term, the model equations reduce to the well 

known model for the dynamics of a rigid body. Chapter 4 shows the development 

of two main theorems: Theorem 1, developed using a Lyapunov function described 

in (Tayebi and McGilvray 2004), is model-dependent and guarantees global expo­

nential stability for this problem. This theorem is based on the compensation of 

the gyroscopic and Coriolis torques, and has a FD^ feedback structure, where the 

proportional action is in terms of the vector-quaternion, and the two derivative ac­

tions are in terms of the airframe angular velocity, and the vector-quaternion velocity. 

Theorem 2 is based on the classical model-independent PD  controller and provides 

asymptotic stability for this problem. Modifications to both control algorithms will 

be discussed and will take form by either adding or removing compensation terms 

for the gyroscopic and Coriolis torques to give good comparisons of each controller 

developed. The advantage of the model-dependent controller developed in Theorem 

1 is not fully evident in the simulation or experimental results, however, in practical 

applications considering large angles and aggressive maneuvers this controller will 

provide superior results in terms of disturbance rejection and attitude stabilization 

m ostly due to  th e com pensation of the gyroscopic and coriolis torques, and the addi­

tional vector-quaternion velocity feedback term.

A control algorithm has been developed to control the altitude of the aircraft once 

under attitude stabilization. This is an interesting feature as it allows a pilot to hover
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the aircraft hands-free once a desired altitude has been chosen. Also, the solution 

to the attitude set-point regulation problem has been proposed by simply using the 

attitude error of the Euler angles to produce the quaternion used for feedback. 

Simulations have been performed for both theorems and their modified counterparts. 

These include stabilization from initial angles, as well as altitude stabilization, and 

attitude set-point regulation performance. In the chapter following the simulation re­

sults, the experimental setup of a model quadrotor aircraft is described while details 

regarding attitude measurement and sensor fusion are presented. In fact, the atti­

tude measurement of the quadrotor aircraft proved to be most challenging. Finally, 

experimental results have been performed on both theorems and modified theorems, 

and the results are given in graphical format.
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Chapter 2

A ttitude Representation

Attitude representation of a rigid body in three dimensional space can be achieved by 

a number of methods, each having its advantages and disadvantages. By using one 

of the many parameterization methods, we strive to transform a set of orthonormal 

reference axes in inertial space to a set of axes attached to the aircraft. The methods 

to be described here are important for the approach taken in the development of a 

control solution for the quadrotor attitude stabilization as will be seen in the coming 

chapters. There are many existing methods including the direction cosine matrix, 

Euler angles, quaternions, Gibbs vector and Euler axis/angle representation. Each 

parameterization method serves the same purpose of attitude representation, but each 

has its advantages and disadvantages such as the number of parameters required or 

existing singularities.

Consider an inertially fixed frame J  described by three orthonormal unit vectors 

Xj, yx and and a body-attached frame A  attached to the aircraft with origin 

at the center of mass described by three orthonormal unit vectors and

as seen in Figure 2.1. The main objective of each attitude representation method 

is to relate the frame X  to the frame A  through some transformation. Ideally, we 

would like to be able to represent the attitude of a rigid body with as few parameters 

as possible, avoiding singular conditions. However, mathematical manipulation of 

a potential representation must also be considered. Also, some representations give
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clear physical meanings to their quantities, while others have no easily identifiable 

meaning.

Figure 2.1: Inertially Fixed Frame %, and Aircraft Body-Attached Frame A.

2.1 Euler Angles

Representation of the attitude of an aircraft using Euler angles is one of the more 

common methods employed for this task. Interpretation of the Euler angles generally 

has a clear physical meaning and can be visualized with ease, making this method 

advantageous over others. Given the fact that only three parameters are required to 

represent the aircraft attitude gives this method another advantage. However, disad­

vantages that arise from using this method are evident when numerical computations 

are required to calculate successive rotations, as no convenient product rule exists. 

The Euler angles are generally described as three successive rotations about the in­

ertial frame or body-attached frame axes. (Spong and Vidyasagar 1989; Wertz 1978; 

Hughes 1986). All rotations herein are taken in the direction using the right-hand rule, 

therefore when looking at an axis of rotation, the rotation is in the counter-clockwise 

direction. It should be noted however, that these notations are not uniform, and in 

many cases vary in the literature. When specifying the Euler angle representation, it 

is important to state the order of rotations and whether these rotations were made

10
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around the inertial frame axes, or the body-attached frame axes. The Euler angles 

may be specified in many different sequences. In fact, for any given orientation there 

exist 12 possible axis sequences divided into two classes (Wertz 1978), and paired for 

descriptive purposes. These are given as follows 

Classl:

Pair 1: .x — y — z, z — y — x  

Pair 2: y — z — x, x  — z — y 

Pair 3: z — x  — y ,y  — x — z

Class2:

Pair 4: z  — x — z, x  — z — x  

Pair 5: x — y — x ,y  — x — y 

Pair 6: y — z — y, z  — y — z

For a sequence in Class 1, each rotation is given about a unique axis. When these 

rotations are taken around the inertial frame axes there are of course 6 possible out­

comes. When rotated about the body-attached frame axes the same six orientations 

are represented, but each sequence now represents the orientation its pair represented 

for the inertial frame reference rotations. For example, rotations in the x  — y — z 

sequence about the inertial frame axes give the same orientation as using the same 

rotations in the z — y — x  sequence about the body-attached frame axes.

The sequences described in Class 2 are all given with the third axis identical to the 

first. This indicates, for example, a rotation first about the z j  axis, followed by a 

rotation about the x j  axis, and finally another rotation about the z% axis. 

Classically, Euler angles are given specifically as a z — y — z sequence about the body- 

attached frame axes (Spong and Vidyasagar 1989; Hughes 1986), but any sequence 

described above can be considered Euler angles since the principle is the same. Class 

2 sequences are not well suited to describing the attitude of an aircraft due to a sin­

gularity that occurs when the second rotation 6 — 0 (or 6 = 180°), which happens

11
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to be at the flight reference orientation. It is obvious that when the second rotation 

0 =  0, the axis of rotation for the first rotation (j> and the third rotation ip in the 

given sequence is the same axis for the inertial frame and for the body-attached frame 

(they are parallel). This means only a combination of the first and third rotational 

quantities (p + ip is known reducing these two degrees of freedom to one. Although 

this singularity cannot be avoided using Euler angle representation, it can be moved 

to a more convenient location by choosing a Class 1 sequence.

- Pitch e
Yaw I//

Figure 2.2: Roll, Pitch and Yaw Aircraft Planar Rotations

The X — y  — z  sequence about the inertial frame axes is known as roll - pitch - yaw 

rotations (Spong and Vidyasagar 1989). This means the aircraft orientation is defined 

as a roll (p about followed by a pitch 9 about yj, followed by a yaw ip about z j  

in this given order. The illustration seen in Figure (2.2) gives a clear example of roll, 

pitch and yaw movements of the quadrotor aircraft, where the front of the aircraft is 

indicated by the solid colour rotor. As mentioned previously, the same representation 

is achieved by using the z  — y  — x  sequence about the body-attached frame axes. 

Choosing the roll - pitch - yaw sequence from Class 1, moves the singularity. In 

some applications, the aircraft will never operate near this condition. However, this 

singularity must not be forgotten or ignored for control algorithms requiring global 

representation of the aircraft attitude free of singularities.

12
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2.2 Direction Cosine M atrix (DCM)

The direction cosine matrix (DCM), also known as the rotation matrix R, is con­

sidered the fundamental quantity which represents the attitude of a rigid body in 3 

dimensional space, and belongs to the set of matrices of order three 50(3). In fact, 

successive rotations are easily computed by matrix multiplication of principal rotation 

matrices, and any number of rotations can be combined to produce a single rotation 

matrix defining the attitude of a rigid body. However, the rotation matrix R  contains 

9 terms, an obvious disadvantage when considering attitude feedback control. 

Consider an inertial frame T, and a body-attached frame A  as seen in Figure (2.1). 

The rotation matrix which transforms the inertial frame to the body-attached frame 

attached to the aircraft is expressed as

R { x i  y i  zx )  =  {x a  Va  z a )

and can therefore be defined as

^  X a - X j  y  a - X j  Za - X j ^

^  — ^ A ’ Vi Va 'Vi  z a - yx (2-1)

X a -  Zx y A '  Zx Z a '  Zx y

Consider a rotation of the rigid body about the axis by the angle ijj. This implies

Zx remains orthogonal to Xa and y  a, and za  remains orthogonal to Xx  and y x  and of 

course z x  and za  remain parallel therefore yielding

&■ Xa =  0 

h - V a  =  0  

z a ' Xx = 0 

ZA-yx  =  0 

zx - za  = 1-

Using the fact that, given two unit vectors u and v we may write

Û - V  =  l lû l l  • | | 'O | | c o s 0  

=  C O S 0 ,

13
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gives
=  COSlj)

V a - V x  =  c o s 'll)

XA-yx = cos{il) + 1 ) =  -sin'll)

Va 'Xx = cos{ip -  f  ) =  sin'll).

Therefore we can construct the principal rotation matrix for a rotation about the z 

axis by ■0 as

s.\j) Cjjj 0

0 0 1

(2 .2)

where the shorthand notation used is as follows: Cx =  coa(z), Sx =  sin{x), x  E

Similarly, the principal rotation matrices for a rotation about the x  axis and for a 

rotation about the ÿ axis are constructed and given as

Ry,9  —

1 0 0

0  Cÿ —

y 0 S(̂  C(p j

^ ce 0 Sfl

0 1 0

 ̂ —Se 0 Cgy

(2.3)

(2.4)

It should be noted that considering R  is a real orthogonal matrix requires the trans­

pose to be equal to the inverse, i.e., RF = R~^.

For a given orientation, represented by any Euler angle sequence, using either the 

inertial or body-attached frame as a reference, the resulting rotation matrix will give 

the same quantifiable result, and is computed by matrix multiplication of (2.2), (2.3) 

and (2.4). The order of multiplication follows the Euler angle sequence when rotations 

are taken about the body-attached frame axes, and in reverse order when taken about 

the inertial frame axes.

14
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The rotation matrix for the Euler angle x  — y — z sequence or roll-pitch-yaw about 

the inertial frame axes, to be used throughout this report, is calculated as follows

R  — Rx^.\jjRy^0Rx,<j> 

/

V

C0 —sy, 0

0\jj 0 

0 0 1

Ce 0 Se 

0 1 0 

—Se 0 Ce

01 0

0 C(ĵ S(̂

 ̂ 0 S(̂  C(̂  y (2.5)

ceCip c^ses^ ŝ p̂ĉ  -j-

Ces.,p s.,pSeSfi) ŝ ĵ seĉ p ĉ psp

~se S(pce Cfpce

For a given rotation matrix

\

R  = i?2i R 22 R 23 

 ̂ A31 i?32 R 33 y

it may be necessary to extract the Euler angles corresponding to the orientation 

represented by R. For the x  — y — z  sequence about the inertial frame axes as 

described by (2.5), it is possible to extract the Euler angles from the given matrix 

R  as described in (Spong and Vidyasagar 1989; Akella et al. 2003; Wertz 1978) as 

follows
/  \  /  _  \  r

0 <  0 < 360°

-90° <  6> <  90°s m '^ ( - i? 3i)

0 < 0  < 360°

(2 .6)

Similarly, using the Class 2 Euler angle sequence z — x — z as an example, the corre-

spending Euler angles are €

e —

(am X & )
COS“^(J?33)

0 < 0 < 360°

0 < e < 180° > (2.7)

0 < 0 < 360°

15
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If we were to restrict the Class 1 representation and make it valid only for —90° < 

0 < +90°, it will avoid the singularity existing when 6 =  ±90°. Of course, to obtain 

a full unrestricted 360° unique non-singular representation, other methods must be 

considered. The quaternion representation, for example, reduces not only the number 

of parameters used for attitude representation, but avoids singularities inherent with 

the rotation matrix. However, the quaternion representation also has drawbacks 

associated with it that will be discussed in the coming section.

2.3 Quaternion Representation

The quaternion is yet another method of representing the orientation of a rigid body 

in space. Using the minimum number of parameters to globally represent orientation, 

with only four, makes this method advantageous over the rotation matrix. Addition­

ally, the quaternion is free from singularities making this the method of choice (Wen 

and Kreutz-Delgado 1991; Kane 1973; Klumpp 1976; Wie et al. 1989; Joshi et al. 

1995; Tayebi and McGilvray 2004).

The quaternion is also known as Euler Parameters, or Euler Symmetric Parameters 

because, as indicated by (Wertz 1978; Hughes 1986), the term quaternion was coined 

by Hamilton and strictly speaking this type of attitude representation can only be 

referred to as quaternions if Hamilton’s notation is used. However, the following no­

tation has been used extensively for aircraft attitude representation, and will continue 

to be referred to as the quaternion herein.

The quaternion is defined as

Q

/  \ /  .  \
qo c o g :

91 k x s in ^

J 92 k yS in ^

\  93 j  ̂ k z s i n \  y

(2 .8)

where 7 represents a rotation about an axis defined by the unit vector k = (k, ky 

kz), qo represents the scalar portion of the quaternion, and q represents the vector

16
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portion of the quaternion herein called the vector-quaternion. Considering that gen­

eral angular displacement has only three degrees of freedom, the four-parameter set 

is therefore not independent, and is subject to the constraint

9o +  9i +  92 +  93 =  9 9 +  9o =  1- (2.9)

Any number of successive rotations represented by quaternions may be multiplied to 

give one quaternion for the resulting orientation, similar to the rotation matrix. This 

is achieved through the quaternion multiplication (Hughes 1986; Wertz 1978) given 

as
9o9o — 9" 9 

9o9 +  9o9 +  9 X 9
QQ = (2 .10)

9o 9owhere Q and Q are two quaternions such that Q = \ I and < 5 = 1  | , and
9 /  \  9

X denotes the cross product. However, it may also be convenient to express the 

quaternion multiplication in matrix form (Wertz 1978) given as

Q Q  =

(  n /  \
9o 93 —92 9i 9o

—qs qo 9i 92 9i

92 ~ 9 i  qo % 92

~ 9 i  —92 —93 9b y \  3̂ J

(2 .11)

The rotation matrix can be expressed in terms of the quaternion (Wertz 1978; Hughes 

1986) as follows

\

R ( Q )  =

92 “  9s 2(gi%  +  qsqo) 2(gi%  — 9290)

(212)2 (9192 — 9a9o) 9o “  9i +  92 — 9s 2(9293 +  9i9o)

^ 2 ( 9 1 9 3  +  929o )  2 ( 9 2 9 3  — 9i 9o )  9o “  9i  ~  92 +  9 3  y

Therefore using (2.12) we can transform a given quaternion representation into the 

rotation matrix equivalent. However, if it is desirable to use the quaternion to rep­

resent aircraft orientation, one must consider that the mathematical model for the 

attitude dynamics for most rigid body problems include the use of the rotation ma­

trix. Therefore, a transformation from the rotation matrix to the quaternion may

17
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also be necessary.

Consider the relation between the rotation matrix R  and the quaternion Q, made 

through Rodriguez formula as described in (Spong and Vidyasagar 1989; Hughes 

1986) and given as

a: =  /  +  29o;9(g) +  2.9(9)2 ^

=  I  + sin'yS{k) + {1 — cos'^)S{k)^

where S{v) is defined as the skew symmetric matrix for a given vector v =  (ui,

Vs) given as

;s(0) =

/

V

0 —Vs V2

Vs 0 - V i

—V2 Vi 0 /

(2.14)

A method of extracting the quaternion from R  is presented in (Klumpp 1976), and 

shown in (Lizarraide and Wen 1996) as follows

1
S{q) = (2.15)

2 \/ l  +  trR

where one can obtain q from S{q), and finally qo by using (2.9).

The above method is mathematically equivalent to the transformation discussed in 

(Wertz 1978; Hughes 1986) given as

9o =  ± | ( 1  +  7?ii +  i ?22 +

 ̂T?23 — R 32 ^
q = 4go

V

(2.16)

/

i ?31 — R is

R \2  — R21

These transformations are valid provided that % f  0. Numerical inaccuracies can also 

arise when % is close to zero. For the condition where 90 =  0, the vector-quaternion 

9 is determined by (Hughes 1986)

/  j l / 2  \

9 =  ± (l± A 2)i/2 . (2.17)

± (i± |aa)i/2

18
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It should be noted that there is a sign ambiguity present in the quaternion repre­

sentation. By inspection of (2.12), it can be easily seen that by changing the sign of 

all four quaternion parameters has no effect on the outcome of the rotation matrix 

R. For example, the quaternion (%, 9) leads to the same orientation as ( —90, —9). 

However, this ambiguity can be resolved by using the following differential equations 

(Hughes 1986; Wen and Kreutz-Delgado 1991)

9 =  | ( ‘S'(9) +  9o-̂ 3x3)̂ ,̂ (2 18)

9o =  —§9^^,

where J3X3 is a 3 x 3 identity matrix, and Cl is the angular velocity of the rigid body.

Assuming most aircraft are likely to use sensors to measure the Euler angles, either 

directly or indirectly, a transformation of the Euler angles to the quaternion is conve­

nient. The quaternion may be computed from given Euler angles using the following 

formula
( c o s( |)co s( |)co 5 ( |)  +  sm (f  ) s m ( |) s m ( |) \

(2.19)
sm (|)cos(|)co5 (|) -  c o s ( |)sm (|)sm (|)  

co s( |)sm (|)co s( |)  +  sm (f )co5(|)sm (|)  

cos(|)co s(|)sm (f ) -  sm (|)sm (|)c o s ( |)

In fact, (2.19) is obtained by using the quaternion multiplication given in (2.10), i.e.,
\ /

(2 .20)

where Qe and Qp represent the quaternions for the roll (0), pitch (0) and yaw 

(0 ) angles respectively, and using (2.8), i.e.,

cos(|) ^  ^  co s( |)

0
Q<t> =

coa(^)

sin{i)

\

0

0

=

/ V 0

) Qip —
0

0

/

(2 .21)

V am (^)

Note that the order of rotation follows the same rules as the rotation matrix (multiply 

quaternions in direct order of Euler angle sequence for rotations about the body- 

attached frame, and in reverse order for rotations about the inertial frame).

19
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In summary, the quaternion provides a non-singular representation of the attitude 

of a rigid body, and is prefered to the rotation matrix because of its more compact 

form, requiring only four parameters as opposed to nine. Successive rotations are 

also calculated using a multiplication method involving no trigonometric functions, 

reducing the complexity of the computations. Physically, there are no sensors that 

can be mounted to directly give the quaternions representing the attitude of the 

quadrotor aircraft. The sensors involved will yield, indirectly, the Euler angles of the 

aircraft, and since the quaternion representation is desirable for the feedback control 

design, the transformation from Euler angles to quaternion, provided in this chapter, 

is necessary.

20
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Chapter 3

The Quadrotor M odel

The quadrotor aerial robot under examination consists of a rigid cross frame with 

four rotors; one attached at each end of the frame and geared to a DC permanent 

magnet motor as seen in Figure (3.1). The design is symmetrical and therefore the 

quadrotor has no obvious front or rear however, to avoid confusion the front rotor 

on the physical model is indicated by a different colour. One significant difference 

between this aircraft and a traditional hehcopter is how dynamic flight is achieved. 

A traditional helicopter uses cyclic pitch control to slightly change the degree of 

the axis of rotation of the main rotor gear, allowing the aircraft to pitch and roll. 

Collective pitch control is used to change the pitch angle of the actual rotor blades, 

and if done while the speed is maintained constant, will control the thrust of the 

main rotor. However, the quadrotor model has neither collective nor cyclic pitch 

capabilities. This creates a much simpler aircraft in terms of actuator control as 

cyclic and collective pitch of a rotor creates mechanical complexities and challenges 

in the design. Therefore, variations in thrust to each rotor are applied by varying 

the rotor speed. This particular design allows for vertical take-off and landing flight 

similar to a traditional helicopter. Basic flight maneuvers are not entirely obvious, 

and are explained in detail in the following section.
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3.1 Properties of Flight

As seen in Figure (3.1) the front and rear rotors, numbered 1 and 3 rotate in a 

counter-clockwise direction, while the left and right rotors, numbered 2 and 4 rotate 

in a clockwise direction. The rotors spin only in the direction indicated, and will 

not reverse direction. Of course this limits the possibility of ’upside down’ flight, or 

some aggressive maneuvers requiring positive and negative thrust capabilities from 

the rotors.

To understand the properties of flight of the quadrotor, first consider a static attitude

Rotor 4: Right

Rotor 1: Front

Rotor 2: Left

Rotor 3: R ear

Body-Attached F ra m e iM )

Inertial Frame: { /}

Figure 3.1: Quadrotor Model

at zero, or hover orientation. Vertical flight is achieved by increasing (decreasing) the 

speed of each rotor by the same proportion. This will increase (decrease) the overall 

thrust applied to the airframe allowing the aircraft to ascend (descend).

The roll motion of the quadrotor is achieved by increasing the thrust to rotor 2 (4) 

and decreasing the thrust to rotor 4 (2) to obtain a positive (negative) roll to the right

22
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(left). Similarly, the pitch motion of the quadrotor is achieved by increasing the thnist 

to rotor 1 (3) and decreasing the thrust to rotor 3 (1) to obtain a positive (negative) 

pitch up (down). For both the roll and the pitch motion, the thrust increase to one 

rotor is exactly proportional to the thnist decrease for the opposite rotor to maintain 

the same overall thrust, since the overall thnist is simply the sum of the thrust from 

the four rotors.

The yaw motion of the quadrotor, similar to a traditional helicopter, takes advantage 

of the effects of the reactive torque. On a traditional helicopter, the reactive torque 

from the main rotor is applied to the airframe in the opposite direction to the spin of 

the rotor, causing the aircraft to yaw. However, the tail rotor compensates for this 

reactive torque, and once in equilibrium no yaw motion is present. The quadrotor 

aircraft has a combined reactive torque from all four rotors. The reactive torques from 

rotors 1 and 3 combine to create a positive yaw torque, while the reactive torques 

from rotors 2 and 4 combine to create a negative yaw torque. Therefore, when the 

sum of the reactive torques from rotors 1 and 3 equals that of rotors 2 and 4, there 

is no yaw action. When a yaw motion is desired, the rotor pair 1 and 3 (2 and 4) 

increase (decrease) by the same proportion while the rotor pair 2 and 4 (1 and 3) 

decrease (increase) by the same proportion. This will result in a yaw motion in the 

positive (negative) direction without pitching or rolling the aircraft, and while still 

maintaining the same overall aircraft thrust.

3.2 Dynamical M odel

The dynamical model of the quadrotor aircraft as described in (Hamel et al. 2002; 

Tayebi and McGilvray 2004) is based on using Newton’s equations of motion. The 

quadrotor dynamical model described in (Castillo et al. 2003) has been derived using 

the Lagrangian approach however, the result is nearly identical to the model derived 

using Newton’s equations. In fact, the first approach has been taken here, and is 

developed as follows:
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Let X  =  {xx, yx, &} denote a right-hand inertially fixed frame where z% =  (0, 0,1)^ 

is a vertical vector pointing towards the earth, and A  =  {x^, z^}  denotes a right-

hand inertial body-attached frame with origin at the center of mass. Using Newton’s

equations of motion, a dynamical model for the quadrotor is given as (Hamel et al. 

2002)

p = v, (3.1)

V -  gzx -  ^ T R z x ,  (3.2)

R  = RS{Ü), (3.3)

IfÙ = —Cî X IfCï — G a  +  T a , (3.4)

Irâli = Ti — Qi, i E {1,2,3,4} (3.5)

where the vector p =  (x, y, zY  denotes the position of the origin of the body-attached

frame A  at the center of mass of the quadrotor expressed in the inertial frame X, the

vector V denotes the linear velocity of the origin of A  expressed in X, g denotes the 

acceleration due to gravity, m denotes the mass of the aircraft, T  denotes the total 

thrust applied to the airframe by the four rotors, R  E 50(3) denotes the rotation 

matrix which describes the orientation of the body-attached frame A  expressed in X. 

The vector Cl denotes the angular velocity of the quadrotor expressed in the body- 

attached frame A, S{Cl) denotes the skew-symmetric matrix associated to Cl such that 

S{Cl)V =  Q X U for any vector V  E R^, where x denotes the vector cross-product. 

I f  E R®’̂  ̂ denotes the constant inertia matrix around the center of mass, denotes 

the gyroscopic torques applied to the airframe from the four rotors, j a  denotes the 

torques applied to the airframe by the four rotors. R ,  uJi,  n  and Q i  denote the rotor 

inertia, the rotor velocity, the torque and reactive torque generated by the rotor i, 

respectively.

The thrust applied to the airframe from the four rotors is given by

T  =  ( 3 -6 )
i —1 i = l
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where R = —fewf i j  is the lift generated by the rotor i in free air, and 6 is a propor­

tionality constant dependent on factors such as the density of air, the number, shape, 

radius and pitch of the rotor blades as described in (Hamel et al. 2002; Prouty 1995) 

in more detail.

The rotation matrix describing the orientation of the quadrotor aircraft is developed 

from the Euler x — y — z sequence about the inertial frame axes as described in (2.5) 

and is given as

R  =

CeĈ p C,pSQS(p Ŝ ipCfp C^pSyCp + S.ipS(p 

+  ĈpC/p S.,pSQCtp ĈpSp

y —Se spCe cpce y

(3.7)

The Euler angles representing the roll, pitch and yaw orientation of the quadrotor are 

denoted as 0 , 6 and 0 .

Equation (3.4) equates the airframe torques IfÙ  to the applied airframe torques Ta

with the subtraction of the Coriolis torques {Cl x I f  Cl) and gyroscopic torques G a

where the gyroscopic torques are given as

4
G. = ^ 7 ,(0  X &)(-l)'+:(j(, (3.8)

i= l

and the airframe torques applied by the rotors are given as

T  ̂ = db{u)l-ujl)

tI = db[ul-u}l)  (3.9)

Tf =  k{ojI + ujI -  u l  -  Lol)

where d denotes the distance from the rotor center to the center of mass of the aircraft 

at the origin of the body-attached frame A,  and k denotes a proportionality constant 

also dependent on a number of factors as described for the constant b.

The reactive torque generated by the rotor i, in free air, due to rotor drag is given by

Qi — Kuf. (3.10)
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The dynamical equation describing the angular attitude given by (3.3), may also 

be described in terms of the roll-pitch-yaw Euler angles by the following kinematic 

equation (Crouch 1984; Rehbinder and Hu 2003; Rehbinder and Hu 2000)

^ Hi ^

O2 

\C ls  /

0

\ 0 /

+
1 0 0

0 Cp —Sp

 ̂ 0 sp C(p j

1 0  0

+  0 Cÿ —Sp

^ 0  sp C(p y

^ \  0 -gfl ^

0  C(p SfpCQ

 ̂ 0 —s^ cpce y 

Inversion of the above matrix gives

\  / o \

e

\ 0 /

Cg 0 S g

0 1 0

^ — S g  0 Cg J

0

/

\  / o \

è

^ 1 sin<f)tanO cos(j)tan6 ^

0

0 cos(j) —sin(f>

0 sin(f)sec6 cos(j>secO

CI2 

\  ^3 /

(3.11)

(3.12)

where f2i,Q2 and Cls represent the angular velocity of the aircraft around the body- 

attached frame x^, and 2^  axes respectively. It is clear that the above kinematic 

equation is only valid for —90° < 9 < 90°. It is also apparent from the above equation 

that for a single planar rotation about one axis, when starting with zero initial angles, 

the angular velocity about the body-attached axis is linear with respect to the inertial 

frame axis. However, for any combination of angles and angular velocity, the result 

is truly nonlinear. This is important to consider for practical implementation, as 

gyroscopic sensors mounted on the orthonormal axes measure the angular velocity 

of the aircraft rotations around the body-attached frame axes, and do not directly 

represent the Euler angle velocity, however it may be necessary to quantify the angular
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velocity of the Euler angles of the aircraft, making this relationship essential.

The model equations given in (3.1) - (3.5) describe the dynamical model for the 

quadrotor aircraft, but are not much different from the model of a traditional heli­

copter seen in (Mahony and Hamel 2001; Mahony et al. 1999; Frazzoli et al. 2000). 

In fact, the first four equations of the quadrotor model, with the exception of the 

gyroscopic torque term Ga is almost identical to the model proposed in (Mahony and 

Hamel 2001).

Again, with exception of the gyroscopic torque Ga, equations (3.3) and (3.4) describe 

the attitude dynamics of a rigid body in three dimensional space. The input to these 

two equations Ta, represents the torque applied around the three primary axes of rota­

tion. The model does not become specific to the quadrotor aircraft until the equation 

for Ta is defined in (3.9) and equation (3.5) is introduced.

As previously mentioned, the development of the quadrotor model as described 

in (Castillo et al. 2003) yields a similar result while taking a somewhat different 

approach. The general idea, using a Lagrangian approach, considers the translational 

kinetic energy, the rotational kinetic energy, and the gravitational potential energy 

and is given as
L{c,c) = K . + K . - P ,

=  Imp^p + ^rf l f f ]  -  mgz 

where Kt, and Pg represent the translational kinetic energy, rotational kinetic 

energy, and the gravitational potential energy. The vector 77 =  (0, B, 0) represents 

the Euler angles, while c =  (p, rj).

Further development of the model which includes the full quadrotor dynamics, uses 

the Euler-Lagrange equations with external generalized force and yields

 ̂ —sinO ^ /  n \

Tnp =  T  œs6sin(j) +  

cosBœscf)\ /

0

0 (3.14)

y - m g
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I  fi) = -C{r],r])r) + Ta,  (3.15)

where C{r],r)) is defined as containing the Coriolis and gyroscopic terms. Prom in­

spection it is clear to see that (3.15) is representing the same dynamics as (3.4) given 

in the original model development. Similarly, the dynamics represented by (3.14) are 

also described by the original model in (3.2).

Some possible disadvantages could arise from the use of this particular dynamical 

model. Specifically, there is no development of a unique gyroscopic term, only a com­

bined Coriolis and gyroscopic term. In fact, compensation of these individual terms 

is necessary for a more rigorous control design as will be seen in a coming chapter.
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Chapter 4

Control Design

The main objective of the controllers to be developed in this chapter, is to stabilize 

the attitude of the quadrotor aircraft. Additional objectives include the stabilization 

of the quadrotor aircraft to a desired altitude, and developing a solution to the atti­

tude set-point regulation problem.

The attitude stabilization objective has been met and is presented in two theorems 

listed as Theorem 1, and Theorem 2. The controller in Theorem 1 is model-dependent 

and slightly more complex however, it guarantees exponential stability, while the con­

troller in Theorem 2 is model-independent and guarantees asymptotic stability.

The general attitude stabilization control design will be divided into two main sec­

tions. The first section deals with the design of the airframe torques r^. The second 

section will show the development of the control design for the rotor torques r,. 

Additional sections are presented in this chapter which include the development of 

an altitude controller, and a solution to the attitude set-point regulation problem.

4.1 Airframe Torques Design

Considering the model equations (3.3) and (3.4), and using Ta as an input, the ob­

jective is to design a controller to stabilize the attitude of the quadrotor aircraft
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to a hover orientation. Depending on the attitude representation under considera­

tion, this hover orientation is at the equilibrium point given by (0 , 9,0 , Q) =  0 or 

{R = I,Cl = 0), which is equivalent to {q = 0,qo — ±1, Q =  0).

Recalling the definition for the quaternion given in (2.8), we can see that a rotation 

by 7 =  0 around k corresponds to % =  1, and a rotation by 7 =  360° around k 

corresponds to % =  —1, but actually represents the same physical equilibrium point 

at i? =  7. To avoid this redundancy, the control design has been developed while re­

stricting the Euler roll-pitch-yaw angles, and the equivalent rotation angle 7 around 

k between —180° and 180°. This restricts the scalar portion of the quaternion to 

0 < 9o < 1 avoiding the redundancy previously mentioned.

The first theorem, developed in (Tayebi and McGilvray 2004), is given as follows:

4.1.1 Theorem  1

Consider the quadrotor model equations (3.3) and (3.4) under the following control 

law

Tg =  (D  X IfCÏ)  +  G a  +  I f Ù  — P2Ô — E gg , (4.1)

where
Q =  Cl — Cl 

Cl =  —r  i9

and using equation (2.18) for the quaternion derivative we have

Cl = —r  i9

=  —^Ti{S{q) + qoIsx3}Cl.

The control design parameters Fi, T2 and Fg are as follows: F1 is a 3 x 3 symmetric 

positive definite matrix, Fg, and Fg are 3 x 3 diagonal positive definite matrices when 

the matrix defining the aircraft inertia I f  is diagonal. If 7/ is not diagonal, the matrix 

Fg must be a 3 X 3 symmetric positive definite matrix, and Fg =  a7gxg where a  is a 

positive scalar.

Therefore, considering the above, the equilibrium point described by {R = I ,  Cl = 0)
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is globally exponentially stable.

Proof of Theorem 1

The control law given in (4.1) has been developed using the backstepping method 

for nonlinear control design. The following details will show how the control law was 

developed.

Recall the differential equations for the quaternion given in (2.18). The first objective 

is to force q 0 and % 1 as t > oo, by using Q as a virtual control variable. The

second objective is to force the error term given as Q =  f2 — H to zero by using Tq as 

the control input.

Consider the following positive definite Lyapunov function candidate

ki =  q^q +  (qo — 1) -̂ (4.2)

Using the quaternion constraint (2.9), the above reduces to

Vi =  2(1 — qo),

whose time derivative is given as

Vi — —2%.

Substituting for % in (2.18) gives

Ûi =  q ^ n .  (4.3)

The virtual control variable is now designed as

Cl =  —r  iq

and substituting this into (4.3) we have

V i  =  - q ' ^ T i q ,  (4 .4)

which is negative semi-definite. However, to realize this result, we must now ensure 

that Q Q as t CO which is achieved by forcing Q —>• 0.
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The angular velocity error is defined as

Ù  =  Cl — Ù ,

whose time derivative is given by

Ô — Ô — D. (4.5)

Using Cl from the model equation (3.4) into the above gives

Cl = I f  ^ { { — Cl X I f C l )  — G a  +  Ta) — Cl. (4.6)

A second positive definite Lyapunov function candidate is given as

V ,  =  (4.7)

whose time derivative is given by

Û2 =  (4.8)

Using Q from (4.5) into (4.8) above gives

Û2 =  T g  V / ( ( / y X - n  X  7 / 0 )  -  G .  +  T . )  -  Ô )

=  ^( —( —Cl X I fC Ï )  —  G a  +  Ta) — I f C l ) .

Now, combining the two Lyapunov functions gives

V  =  U1 +  U2

=  2(1 — 9o) +  ^0  ̂Fg ^7/0, 

whose time derivative is given as

V  =  Y  (fi +  H ) +  Cl^ F g  ^( —(Q X I f C l )  — G a  +  Ta — I f Ù ) .  (4.11)

Finally, the input Ta appears in the above equation allowing the control law given

in (4.1) to be designed. Using this control law and substituting it into (4.11) above 

yields

Û =  -9^F i9  -  Ô^FgTgÔ, (4.12)

32

(4.9)

(4.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is negative semi-definite.

The proof for the exponential convergence is shown as follows: Using the constraint 

11%II < 1 stated previously, and the quaternion restriction given in (2.9), we have

\\q\\  ̂= l - q l > l - q o  (4.13)

Therefore, V  can be bounded as follows

y  < max{2, - -- ^ ' ^ ^ ) }(||g||^ +  l l i i f  ). (4.14)

Similarly V  can be bounded as follows

Û <  -m m {A ^i„(ri),A ^i„(r3-ir2)}(||9f +  ||Q f) . (4.15)

Therefore, using (4.14) and (4.15) above, we can conclude that

V  < -I3V, (4.16)

where /? =  , with Amm(*) and A„ax(*) denote, respectively, the

minimum and maximum eigenvalue of (*).

It should be noted that control law (4.1) developed in Theorem 1 can be rewritten 

in the following form:

Ta =  Cl X I f C l  + Ga  — (Fg +  F2F 1)9 — F2D — 7/F  19. (4.17)

From the rearranged control law above, we can see clearly that we have direct com­

pensation for the Coriolis and gyroscopic torques. The remaining terms could be 

thought of as a PD^ feedback (Tayebi and McGilvray 2004), as we have proportional 

feedback from the vector-quaternion 9 , derivative feedback from the angular velocity 

term Cl, and an additional derivative feedback from the vector-quaternion velocity 9.

If we consider the quadrotor aircraft to have an attitude such that (0, 6,0) are close 

to zero, and Cl is relatively small, the Coriolis and gyroscopic torques will also be 

sufficiently small, and can be neglected. The elimination of these terms from the
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control law reduces the complexity of the controller, while still guaranteeing local 

stability (Tayebi and McGilvray 2004). The new controller is given as follows;

Ta =  I f Ù  — r gô — FgÇ, (4.18)

and wiU be referred to as Modified Theorem 1.

As previously mentioned, both control laws given in Theorem 1 and Modified The­

orem 1 rely on the knowledge of the airframe inertia I f ,  and are therefore considered 

model-dependent. In the following section, it will be shown that the classical PD  

feedback controller, without Coriolis and gyroscopic torques compensation and there­

fore model-independent, can provide asymptotic stability for the attitude stabilization 

problem for the quadrotor aircraft. This classical PD  feedback controller, developed 

in (Tayebi and McGilvray 2004), is given as follows:

4.1.2 Theorem  2

Consider the quadrotor model equations (3.3) and (3.4) under the following control 

law

Ta = —F^fl — aq, (4.19)

where F4 is a 3 x 3 symmetric positive definite matrix and a  is a positive scalar pa­

rameter. Then, the equilibrium point (R =  7, Q =  0) is globally asymptotically stable.

Proof of Theorem 2

Consider the following positive definite Lyapunov function candidate

V  = Oiq̂  q +  oi{qo — 1)  ̂+  —Cl  ̂IfCl. (4.20) 

Using the quaternion constraint (2.9), the above reduces to

V  =  2a( l  — qo) +  —Cl  ̂IfCl, (4.21)

whose time derivative is given as

V  = -2aqo + lQ'^'IfÙ + IÙ'^'IfÙ 

=  —2aqo + Ci  ̂I f Ù ,
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and using (2.18) for % we have

Û =  - 2 a { - l Y 'ü )  + ÇÏ^TfÙ
(4.23)

=  aq^Cl +  ÇÏ^IfÙ.

Rearranging model equation (3.4) to get

Q =  I j \ - n  X I f Q )  -  i f G a  +  I f  Ta  (4.24)

and using the above into (4.23) gives

V  =  O Lcf Cl +  C l^ ( ( — Cl X I fCÏ )  — Ga  +  T a ) -  (4.25)

It is clear from the above terms that Cf'(—Cl xlfCl) =  0 and —Cf^Ga =  —CF ^  Ir{Cl x
i = \

zx)[—Vf'^^Ui =  0 due to the fact that the dot product of two orthogonal vectors is 

equal to zero. Therefore we are left with

V  — aq^Cl +  Cl^Ta- (4.26)

Using the control law (4.19) into the above gives

Û =  -Cl^TiQ  (4.27)

which is negative semi-definite. Therefore, from (4.21) and (4.27) we can conclude 

that Cl, q and % are bounded. Using La Salle’s invariance theorem we can show that 

the equilibrium point (g =  0, go =  ± 1, 0  =  0) is asymptotically stable.

In fact, it is obvious from (4.21) and (4.27) that lim Cl(t) = 0, which leads to

lim Cl{t) = 0. From the above, and using the model equation (3.4) we have lim Ta(t) =
t —+00 t —*oo

0, and using control law (4.19) we have hm q{t) = 0. Finally, using (2.9), we can 

conclude that lim qo(t) =  ± 1.
t —►OO

Theorem 2 guarantees asymptotic stability of the equilibrium point {q =  0, % =  

±1, Q =  0). However, the speed of convergence, or the way in which these variables 

will converge has not been determined. In fact, it is possible that Theorem 2 will pro­

vide exponential convergence for the variables in question, but this is not guaranteed, 

and is not proven mathematically.
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It is quite obvious from control law (4.19) that there is no compensation for the Cori­

olis and gyroscopic torques, imlike the control law developed in Theorem 1. However, 

the addition of the compensation terms for the Coriolis and gyroscopic torques to 

control law (4.19), while adding complexity to the controller, will still provide global 

asymptotic stability. Consider the new control law:

To =  (n  X I fCÏ )  +  G a  — — ùq (4.28)

where P4 and â  are 3 x 3 diagonal positive definite matrices when / / i s  diagonal. 

However, when / / i s  not diagonal, P4 must be a 3 x 3 symmetric positive definite 

matrix and â  =  a/gxs, where a  is a positive scalar. The above controller will be 

referred to as Modified Theorem 2.

The control law developed in Theorem 2 is model-independent, therefore no knowledge 

of the model parameters is necessary. However, the addition of the compensation 

terms for the Coriolis and gyroscopic torques in Modified Theorem 2 again requires 

the knowledge of the quadrotor aircraft inertia I f .  The main reason to propose the 

Modified Theorem 1 is to be able to compare a reduced complexity controller with 

the controller proposed in Theorem 1. Similarly, Modified Theorem 2, although more 

complex, gives a controller with which to compare experimentally and in simulation to 

help understand the importance of the Coriolis and gyroscopic torques compensation, 

and allows to explore the benefits of using a matrix gain â  as opposed to a scalar 

gain a  used in the control law in Theorem 1.

The controller proposed in Theorem 2 is a classical P D  feedback controller, where the 

proportional feedback is in terms of the quaternion, and the derivative feedback is in 

terms of the angular velocity CÏ. This controller is similar to the control law proposed 

in (Joshi et al. 1995; Lizarraide and Wen 1996; Wie et al. 1989). As stated previously, 

the advantage of the control law proposed in Theorem 2 is its simplicity, and the fact 

that no knowledge of the model parameters is required. However, the control law 

proposed in Theorem 1 has the advantage of guaranteed exponential stability, and 

the ability to use a matrix gain Fg as opposed to a scalar gain for the quaternion 

feedback, adding more fiexibility to the controller.
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4.2 Rotor Torques Design

The control inputs to the entire set of model equations (3.1)-(3.5) are the rotor torques 

Tj. To design the rotor torques, the desired rotor velocity u)d,i must be determined, 

and one requirement necessary to obtain the desired rotor velocities is the total thrust 

T. The desired rotor velocity may then be obtained from (3.6) and (3.9), that is 

üd = with û)d = (w3,i,w3_2,w3̂ ,w^4)^, /z =  and

/

M  =

\

0 db 0 —db

db 0 —db 0

K —K K —K

b b b b

(4.29)

where M  is nonsingular as long as dbn 0.

Now, the objective is to design a controller to force w* Ud,i as t —> oo by using r* 

as the control input. First, the rotor speed error is defined as

U i =  U J i —  UJd,i , (4.30)

whose time derivative is given as

UJi =  U J i —  UJd,i- (4.31)

Using model equation (3.5) and the above we have

R ^ i  — Ti Qi RuJd̂ i (4.32)

Therefore, a control law may be developed (Tayebi and McGilvray 2004) from the 

above equation as follows:

Ti =  Qi +  RuJd,i RuJi, (4.33)

where fc», i E {1,2,3,4} are four positive design parameters. Applying the above 

controller to (4.32) gives

(4.34)
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which shows the exponential convergence of w, to Wj,, as f —> oo. This means the 

convergence of the quadrotor airframe torques to the desired values will be achieved 

leading to the stabilization of the quadrotor aircraft to the desired equilibrium point.

The physical quadrotor under consideration is powered by four voltage controlled 

permanent magnet DC motors. Therefore, it is necessary to relate the designed rotor 

torque T* to the appropriate motor voltage. Assuming negligible armature inductance, 

the mathematical model of the motor (Fitzgerald et al. 1990) is given by

ki =  RaR  +  KjnOJm,ii (4.35)

where Ra, R , Km and are the motor resistance, armature current, motor constant, 

and the motor speed respectively. The equation for the motor torque is given as 

follows

Tm =  K m R .  (4.36)

The rotor torque T* can be related to the motor torque Tm,i, using the gear ratio Kg 

as follows

Tm,i — (4.37)

Similarly, the rotor speed Ui can be related to the motor speed Um,i using the gear

ratio Kg to give

OJm,i ~  KgUl%. (4.38)

Using (4.36), (4.37) and (4.38) into (5.5) gives an equation for the motor voltage in 

terms of the rotor torque, rotor speed, and known constants, and is given as

Vi =  Ra r J f  +  KmKgUJi- (4.39)

Since the four motors are the same, the parameters and constants remain the same. 

Now that the motor voltage has been determined, it can be converted into a PWM 

signal to control each motor.

Note that for better transient performance, the convergence rate of the actual rotor 

speed UJi to the desired rotor speed ujd,i should be faster than the convergence rate
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of the aircraft attitude to the desired orientation. This is somewhat obvious as the 

rate of convergence of the aircraft attitude hinges upon the convergence of uji to Ud,i- 

Essentially, one must ensure that ^  defined in (4.34) is greater than /? defined in

(4.16).

4.3 A ltitude Control Design

Controlling the altitude of the quadrotor aircraft can be achieved assuming the aircraft 

has been stabilized to a hover attitude R  = I. Recall in the previous section, a 

value for the total thrust T  is necessary to calculate the desired rotor velocities. When 

not under altitude control, the total thrust T  is user defined, however, it is possible to 

design a linear feedback controller using the thrust as a control input to the system, 

and control the altitude of the quadrotor aircraft (Tayebi and McGilvray 2004). The 

objective is to stabihze the altitude of the aircraft to the desired altitude z —> zj as 

t 00. From (3.1) and (3.2), i.e., assuming that R  fa I  and eliminating the x  and y 

coordinates, one can obtain

(4.40)
i)z — Vj

where u = g — We can design a controller of the form

T  = m  + kiz  + -  ks j { z d  -  z (r))d r^  , (4.41)

where K  = [fci, k^, —fcs] are designed to ensure that {A — B K )  is stable, where

/

V

0 1 0

0 0 0

- 1 0  0

\

, 5  =

Under a well designed attitude stabilization controller, this altitude controller will 

allow the quadrotor aircraft to hover autonomously at a given desired altitude. This 

is interesting for a number of reasons; the addition of a simple pilot interface could 

make use of an auto-pilot hover feature when there are no commands being given to
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the aircraft. Additionally, achieving an accurate altitude may also be an objective 

and can be made possible by this linear feedback controller.

4.4 A ttitude Set-Point Regulation

The physical quadrotor aircraft can be flown by pilot input in conjunction with the 

attitude stabilization control algorithm. In fact, if the pilot wishes to stabilize the 

aircraft at a desired orientation (</>d, V'd), this may be achieved by first defining an

error vector for the Euler angles given as

( n
} = 0 — Od (4.42)

U J i’d !

Recall that each attitude controller guarantees asymptotic or exponential stability of 

the equilibrium point (g =  0, % =  ±1, D — 0). Hence, if the quaternion used in the 

feedback is generated from the error vector (4.42), one can conclude that

lim
t —>00

and therefore

61(f) = 0 (44%

 ̂ %&(*) y V O /

= Ôd (4.44)

y i ’d,limt—>0O

The desired Euler angles from the pilot may come in the form of numerical input, or 

from a control stick. This gives the pilot the ability to maneuver the quadrotor aircraft 

with precise attitude control, and with a spring-loaded self zeroing control stick, for 

example, the pilot may let go of the control stick at anytime and the attitude controller 

will ensure the quadrotor aircraft will stabilize at the desired hover orientation.
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Chapter 5 

Determ ination of M odel 

Parameters

The knowledge of certain model parameters is necessary for use in simulations and 

experiments involving the quadrotor aircraft. Of course some parameters, such as 

acceleration due to gravity, require little if any measurement or experimentation to 

determine, while others such as the inertia of the airframe require a slightly more 

complex experimental approach to obtain a reasonable estimate of the parameter 

value. Although Theorem 2 discussed in Chapter 4 is model-independent, the inclu­

sion of the motor torques design makes it necessary to know some parameters for 

the control feedback, therefore both Theorem 1 and 2 require some knowledge of the 

model parameters.

A controller which can provide good performance while requiring little knowledge of 

the model parameters is ideal. However, it is not always possible to design model- 

independent controllers, and becomes even more difficult once the actuators have 

been considered. In fact, a robust design should be able to accommodate for errors 

in the determination of the parameters while still guaranteeing stability. With this 

in mind, the determination of the model parameters has been performed to obtain 

reasonable estimates.

Table (5.1), presented below, gives all of the necessary model parameters for both
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simulation and experimentation. Each section following will give details on how the 

parameters were obtained. The following parameters, not previously defined, //^, If^ 

and If^ denote the inertia of the airframe in the roll, pitch and yaw rotational direc­

tions, i.e., I f  = diag{If^,Ifg,If^). In fact. I f  is assumed to be diagonal to simplify 

the result.

Parameter Description Value Units

9 Gravity 9 . 8 1 m/s^

m Mass 0 . 4 6 8 kg

d Distance 0 . 2 2 5 m

Ir Rotor Inertia 3 . 3 5 7  X  1 0 - 5 kg •

l u Roll Inertia 4 . 8 5 6  X  1 0 - 3 kg • m^

Ife Pitch Inertia 4 . 8 5 6  X  1 0 - 3 kg ■ m?

Yaw Inertia 8 . 8 0 1  X 1 0 - 3 kg • rn?

Ra Motor Resistance 0 . 6 7 Ü

km Motor Constant 4 . 2 5  X  1 0 - 3 N  • m /A

kg Gear Ratio 5 . 6

b Proportionality Constant 2 . 9 2 3  X  1 0 - 5

K Proportionality Constant 1 . 1 2 0  X 1 0 - 5

Table 5.1: Quadrotor Aircraft Model Parameters

5.1 Basic M odel Parameters

Some parameters that require little to no measurement are described in this section. 

The acceleration due to gravity is given as p =  9.81m/s^ while the distance from the 

rotor center to the center of mass of the aircraft has been measured as d =  0.225m. 

The mass was determined by simply weighing the aircraft on a scale and was found 

to be m =  0.468A: .̂ The gear ratio linking the motor to the rotor was measured by 

counting the munber of teeth on each gear and is given as kg =  5.6. The average
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armature resistance of the four motors was measured with an ohmmeter to be =  

0.67Q.

5.2 Airframe and Rotor Inertia

The calculation of the inertia for any 3-dimensional geometrically complex object can 

be extremely difficult. However, there exists experimental methods that can yield 

relatively accurate results, and is some cases is the only option to obtain a reasonable 

inertia estimate. The airframe inertia, denoted as If = diag{If^, Ifg, If^), can be 

determined through experimentation. Due to symmetry only two moments of inertia 

need to be measured, as the inertia around the roll and pitch Ifg axes is identical. 

The experiment involves making a pendulum of the aircraft to find the mass moment 

of inertia as described in (Riley and Sturges 1996). The natural frequency of oscilla­

tion of the pendulum, combined with setup measurements allows the mass moment 

of inertia to be determined about the point of oscillation. By using the parallel axis 

theorem, the mass moment of inertia about the center of mass can be calculated from 

the previously measured information.

There are two possible pendulum designs that could yield the necessary information 

to calculate the mass moment of inertia. The first is a compound pendulum which 

requires the object, or in this case the aircraft, to oscillate on a vertical plane about a 

fixed point on the aircraft. The second is a tri-suspension torsional pendulum which 

requires a special circular platform to be suspended from 3 guides. The aircraft is 

placed on the platform, and the rotational oscillations are measured on a horizontal 

plane. Inertia estimates require oscillation frequencies to be recorded for both the 

platform alone, and the combination of the platform and aircraft combined. However, 

the complexity of the torsional pendulum, and the difficulty in obtaining the roll or 

pitch inertia with this method made choosing the compound pendulum experiment 

an easy choice.

The compound pendulum experiment setup is quite simple and involves hanging the
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aircraft from one end of the airframe, and allowing it to swing around the axis of in­

terest. An example of this setup can be seen in Figure 5.1 below. The mass moment

of Oscillation

/ / / / / / / / / / / / /

Rotor 3

Center of Mass

Rotor 1

Rotor 2

Figure 5.1: Quadrotor Compound Pendulum - Oscillating Around Yaw Axis

of inertia can then be determined from

(5.1)

where Jg denotes the inertia around the center of gravity, m denotes the aircraft 

mass, g denotes acceleration due to gravity, I denotes the distance from the center of 

gravity to the point of oscillation, u>n denotes the natural frequency of oscillation. In 

fact, (5.1) has been obtained using the parallel axis theorem where

Jg =  J o  — r n f  (5.2)

where Jq represents the mass moment of inertia around the point of oscillation. The 

above has been obtain using the fact that

r  =  mglsinO,
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and Newton’s second law of rotation given as

S r  =  J6,

which gives

J6 — —mglsinO.

Considering only small angles of 6 we can assume sinO ~  6 therefore giving

ë - ^ 9  = 0, (5.3)
J

and comparing (5.3) with a standard form second order differential equation for simple 

harmonic motion given as

9 +  iJiO =  0,

we have

= (5.4)

The mass m  and the length I remain constant for determining both the inertia around 

the pitch axis Ifg and the inertia around the yaw axis If^. The mass of the aircraft 

was determined with a scale and is given as m = OAQSkg. The length from the 

point of oscillation to the center of gravity was found to be Z =  0.29m, and the 

acceleration due to gravity g is given as g = 9.81m/s^. Experimental testing yielded 

results given in Table 5.2. Using a timer and starting the oscillations by hand, a 

time was recorded for exactly 4 cycles for 7 separate trials. To determine the natural 

frequency of oscillation for the yaw axis, the highest (trial 3) and lowest (trial 

4) measurements have been disregarded. The average time for the remaining trials is 

then found to be Tave,ii> = 4.78s, which yields a natural frequency of =  5.26rad/s.

Using (5.1) the mass moment of inertia If^ is found to be

4 ,  .  -  (0.468)(0.29,= -  8.801 x 1 0 - . ,  •

To determine the natural frequency of oscillation for the pitch axis, the highest 

(trial 2) and lowest (trial 5) measurements have been disregarded. The average time 

for the remaining trials is then found to be Tave,e =  4.58s, which yields a natural
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Trial '̂ 4cycles,ip (sGC) ' îcydes,6 (sec)

1 4.82 4.55

2 4.76 4.68

3 4.74 4.55

4 4.91 4.56

5 4.79 4.46

6 4.77 4.62

7 4.76 4.62

Table 5.2: Oscillation Time Trials, Airframe (sec)

frequency of =  5.49rad/s. Using (5.1) the mass moment of inertia 7/̂  is found to 

be
(0.468) (9.81) (0.29) _2

he = (0.468) (0.29)^ =  4.856 x IQ- îfcp •(5.49)2

Subsequently, due to symmetry, we can conclude that the mass moment of inertia 

around the roll axis is identical to that around the pitch axis giving

If^ =  Ifg = 4.856 X \ Q ~ ^ k g  •

Therefore the mass moment of inertia for the aircraft is given as

If  =  diag{If^,Ifg,If^) = dzap(4.856,4.856,8.801) x 10“®.

The mass moment of inertia of each rotor blade Ir has also been determined using 

the same compound pendulum method. The mass m and the length I are given as 

m  = 0.00671fcp, and I = 0.15m respectively. Experimental testing yielded results 

given in Table 5.3. Again, using a timer and starting the oscillations by hand, a 

time was recorded for exactly 4 cycles for 7 separate trials. To determine the natural 

frequency of oscillation for the rotor blade, the highest (trial 6) and lowest (trial 

7) measurements have been disregarded. The average time for the remaining trials is 

then found to be Tave,r =  3.436s, which yields a natural frequency of u>n,r =  7.31rad/s.
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Trial Ticy des,rotor (sec)

1 3.43

2 3.47

3 3.47

4 3.40

5 3.41

6 3.48

7 3.39

Table 5.3: Oscillation Time Trials, Rotor Blade (sec)

Using (5.1) the mass moment of inertia Ir is found to be 

(0.00671) (9.81) (0.15)
Ir = -  (0.00671)(0.15)® =  3.357 x 10~^kg ■ rrf(7.31)2

5.3 M otor Constant

To determine the proportionality constant k in the coming section, the motor constant 

km is first required. A direct approach has been taken to measuring and calculating 

the motor constant as will be detailed below. Assuming that the current drawn by 

one motor can be measured, we can write

Tm — km ■ Iai (5.5)

where Tm, km and I a are the motor torque in iV • m, motor constant in N  • m /A  and 

motor current in (A) respectively. The above assumes ideal parameters with no loss 

due to heat or friction and does not include stored energy. Again, assuming no losses, 

the electrical input power must be equal to the mechanical output power (Fitzgerald 

et al. 1990) and can be written as

^ a Ia — '^m^v (5 6)
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where Va is the armature voltage and is the angular velocity of the motor. Rear­

ranging (5.6) and using (5.5) we have

Therefore, the motor constant is determined by driving the motor under no-load 

conditions, assuming no losses, and recording the angular velocity and back emf or 

Va generated at the armature for different motor speeds. The results of the test are 

seen in Table (5.4). The highest and lowest calculated values are removed and the

%4(V) Um (rad/s) km {N • m/A)

0.5 76.2 0.0066

1.0 187.6 0.0053

1.5 304.9 0.0049

2.0 410.5 0.0049

2.5 519.0 0.0048

3.0 621.6 0.0048

3.5 738.9 0.0047

4.0 850.3 0.0047

4.5 950.0 0.0047

5.0 1055 0.0047

Table 5.4: Reqmred Measurements for Motor Constant Determination 

remaining values are averaged to yield km = 0.0049 (N • m/A).

5.4 Proportionality Constant b

The constant b is dependent on factors such as the density of air, the number, shape, 

radius and pitch of the rotor blades, and appears in the equation given for airframe 

torque as

r  =  Ê l / i l  =  i> Ê UJt
i= l i=l

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An experiment has been performed to determine the value of b, and is detailed below. 

Initially the quadrotor aircraft was placed on a scale with a fixed hover orientation 

and the weight was recorded as a reference. Then, by driving all four rotors at the 

same angular velocity and weighing the structure again, the value for b was obtained 

as follows

b
T

where T  is given in Newtons. The value for T  is determined by the weight in kg 

times the acceleration due to gravity g. The experimental results are given in Table 

(5.5) along with the corresponding calculated value for b. Averaging these calculated 

values gives a final result b =  2.923 x 10“®.

uJi (rad/s) T (N) b

52.36 0.3139 2.862 X 10®

62.83 0.4659 2.951 X 10®

73.30 0.6475 3.013 X 10-®

83.78 0.8044 2.865 X 10-®

94.25 1.0301 2.899 X 10-®

104.7 1.3047 2.974 X 10-®

115.2 1.5696 2.957 X 10-®

125.6 1.8639 2.954 X 10-®

136.1 2.0601 2.780 X 10®

Table 5.5: Required Measurements for b Determination

5.5 Proportionality Constant k

The constant k, appearing in the equation given for reactive torque, is dependent 

on a number of factors such as the density of air, the number, shape and radius of 

the rotor blades, but particularly the pitch angle of the blade. To physically measure

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this value an experiment must be performed which directly or indirectly measures the 

reactive torque of the rotors. Initially, one particular method to obtain an estimate 

of K was tried without success. This method essentially involved measuring and com­

paring the increase in current to each motor with loaded tests (rotor blade present), 

and no-load tests (no rotor blade present). Through some calculation an estimate of 

K was determined, but with a large error.

A new experimental method was devised to accurately measure the proportionality 

constant k. A simple drawing in Figure 5.2 depicts this particular setup. By rotating

Rotor 2: Left

A
Rotor 3: Rear

Rotor 4: Right

Rotor 1: Front

/7 7 7 T 7

Figure 5.2: Quadrotor Configuration for Measurement of k,

rotors 2 and 4 to generate a combined thrust in the negative yaw direction, and using 

the combined reactive torques from rotors 1 and 3, an accurate value for k can be 

calculated. During experimentation the speed of each rotor was closely monitored, 

and the aircraft was stabilized by hand on a ball joint base. Once it was determined 

that the yaw motion was in equilibrium the rotor speeds were recorded. From Fig­

ure 5.2 it can be seen that the equation for airframe torques in the yaw direction may
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be written as

I 1"̂—v e | “  d b { ù J 2 “F  ^ 4 )  “  k (c c I j  “h CJg )

Using (5.8) we can isolate k to get

Measured rotor velocities were recorded once the yaw was in equilibrium, and can be 

seen in Table (5.6), along with the corresponding calculated values for k. Averaging

(5 80

(5.9)

uJi (rad/s) UJ2 (rad/s) Us (rad/s) U4 (rad/s) K

1950 750 1715 760 1.1119 X 10-®

2230 890 1979 850 1.1206 X 10-®

Table 5.6: Measured Rotor Speeds for k Determination

the K values we find k =  1.12 x 10 ®.

Therefore, all of the model parameters necessary for both simulations and exper­

imentation have been determined, and the final list is tabulated in Table 5.1. As 

previously mentioned, the model parameters are not required to be perfectly accu­

rate, as the control design should be able to compensate for any possible inaccuracies.
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Chapter 6

Simulation results

To explore the performance of each controller, a number of simulations have been per­

formed in Simulink. The results of each simulation allow a comparison to be made 

between theorems, helping illustrate similarities or differences in graphical results. 

All simulations have been performed using the model parameters given in Table 5.1. 

Controller gains for all theorems tested were obtained through trial and error and are 

given as follows: Ti =  5/ 3x3, ^ 2  = O.I/3X3, ^ 3  = hxs,  F4 =  O.I/3X3, h  = 0.002 and 

a  =  1.3. The desired thrust for each simulation is given as T  =  15A. The controller 

gains for the altitude control law (4.41) are developed in Chapter 7, and are given as 

Â  =  [20.74,9.35,-19.49].

6.1 Simulation 1

The objective of this simulation is to show the stabilization of the quadrotor attitude 

from some given initial angles for each proposed theorem. Initial conditions are set 

for the aircraft angles as roll (p = —25°, pitch 6 — 25° and yaw ip = —15°, and 

the simulation time is 2 seconds. Simulation 1 has been performed on Theorem 1 

(Figures 6.1- 6.6), Modified Theorem 1 (Figures 6.7- 6.12), Theorem 2 (Figures 6.13-

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.18), and Modified Theorem 2 (Figures 6.19- 6.24). For each theorem tested, plots 

are given for the aircraft angles, the angular velocity of the aircraft and the control 

effort Ti of each motor normalized between 0 and 1.

Theorem 1 has guaranteed exponential convergence of the aircraft angles as discussed 

in the control design, and it can be clearly seen from the simulation results that 

this has been achieved. The results for Theorem 2 and both Modified Theorem 1 

and 2 however, also show very similar results. In fact, it appears from these results 

that exponential convergence has been achieved by all four controllers tested. This 

gives an indication that there may exist a mathematical proof which provides local 

exponential convergence for all Theorems tested.

6.2 Simulation 2

The objective of Simulation 2 is to show the effects of disturbances introduced into 

the system imder closed loop control after the aircraft attitude has stabilized from 

some given initial angles. The initial aircraft angles are given as roll (p = —25°, pitch 

6 = 25° and yaw ip =  —15°, and the simulation time is 5 seconds. Each disturbance 

was introduced to the system for a duration of 0.05 sec. They are given as follows: 

Roll-Disturbance =  —10° at time 2 seconds, Pitch-Disturbance =  —10° at time 3 

seconds, and Yaw-Disturbance =  10° at time 4 seconds. Simulation 2 has been per­

formed on Theorem 1 (Figures 6.25- 6.30) and Theorem 2 (Figures 6.31- 6.36). Plots 

are given for the aircraft angles, the angular velocity of the aircraft and the control 

effort Ti of each motor normalized between 0 and 1.

Again, from the plots for Theorem 1 and 2 the results are nearly identical. Stabiliza­

tion from the initial angles is exponential. For each disturbance introduced however, 

the recovery is rapid but with some overshoot. This slight overshoot could be reduced 

by adjusting the controller gains if required, but with some compromise to the rise 

time.

A sharp rise and fall in the control effort can be seen for each disturbance, as expected.
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6.3 Simulation 3

The objective of Simulation 3 is to show the stabilization of the quadrotor attitude 

from some given initial angles to given desired angles. Initial conditions are set for the 

aircraft angles as roll (p =  15°, pitch 6 = —15° and yaw ip = 15°, and the simulation 

time is 2 seconds. Desired aircraft angles are given as roll (p — —10°, pitch 6 = 10° 

and yaw ip = —10°. Simulation 3 has been performed on Theorem 1 (Figures 6.37- 

6.42) and Theorem 2 (Figures 6.43- 6.48) and plots are given for the aircraft angles, 

the angular velocity of the aircraft and the control effort T, of each motor normalized 

between 0 and 1.

The stabilization from the initial angles to the desired angles occurs exponentially 

and again without much difference between both theorems. The plots are similar for 

the angles, angular velocity and control effort for both theorems.

6.4 Simulation 4

The objective of Simulation 4 is to show the stabilization of the quadrotor attitude 

from some given initial angles, and the stabilization of the altitude or z  position to 

a desired altitude. Initial conditions are set for the aircraft angles as roll (p = —25°, 

pitch 6 — 25° and yaw ip = —15°, and the simulation time is 5 seconds. The desired 

altitude has been given as z =  2 meters. Simulation 4 has been performed on Theorem 

1 (Figures 6.49- 6.54) and Theorem 2 (Figures 6.55- 6.60) and plots are given for the 

aircraft angles, position in space or (x, y, z) coordinates of the aircraft and the control 

effort Ti of each motor normalized between 0 and 1.

Each plot for the aircraft angles shows stabilization in an identical fashion as that 

of Simulation 1, nearly unaffected by the control of the altitude. The position in 

space plots clearly show the convergence of the quadrotor’s altitude to the desired 2 

meters in just over 2 seconds. The x  and y positions are not controlled and are seen 

diverging.
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Chapter 7

Experimental Setup

This chapter details the physical setup used during the experimentation for the 

quadrotor aircraft under consideration. An explanation of the aircraft sensors is 

followed by a detailed presentation of the attitude estimation technique employed 

to obtain the quadrotor aircraft angles. The control implementation is shown in a 

block diagram format followed by the plotted experimental results at the end of this 

chapter.

7.1 Physical Setup

The experimental quadrotor aircraft is an “in-house” modified version of the Dra- 

ganflyer III from RC Toys (http://www.rctoys.com). In fact, we kept the airframe, 

the motors and the blades of the Draganflyer III and added our own sensors and 

electronic circuitry. Since, the objective was to safely test the attitude controller, we 

decided to use a stationary ball joint base, as shown in Figure 7.1. The ball joint is 

made from steel, while the lightweight socketed base is made from Teflon® to reduce 

the rotational friction. This base gives the aircraft unrestricted yaw movement and 

around ±30° of pitch and roll, while restricting the aircraft to a fixed point in three- 

dimensional space.
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Figure 7.1: Quadrotor Aircraft Experimental Setup

Experimental testing has been performed, with a sampling frequency of 2kHz, using a 

DS1104 dSPACE system, which consists of a Texas Instruments TMS320C31 floating 

point digital signal processor (DSP) and a user-friendly graphical interface (Control 

Desk). The dSPACE Control Desk software in combination with Mat lab/ Simulink /  

Real-time Workshop allows an easy implementation of the control algorithm in block 

diagram format via Simulink. After compilation, the program is downloaded into the 

DSP and the user has the possibility of real-time adjustment of the control gains. 

Two independent power sources are used for the aircraft and sensors. One 12V, 

7Amp-hour ’Gel-Cell’ sealed lead-acid battery, not attached to the aircraft, is used 

to power the four motors and the Hall Effect sensors, which share a common dig­

ital ground once interfaced to the acquisition board. A single 9V alkaline battery, 

regulated to 5V and attached to the airframe, is used to power 3 gyroscopes and 

a 2-axis accelerometer sharing a common analog ground. Experimental tests using 

one power source with a single common ground made it difficult to achieve accurate 

readings from the attitude sensors due to noise generated by the motors. Using two 

power sources allows the digital and analog grounds to be separated and eliminates 

excessive noise infiltrating the sensor signals from the motors.
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The four DC permanent magnet mini motors are geared to each rotor by a speed 

reduction ratio of 5.6:1. The motors are current amplified with a power MOSFET 

and driven by PWM signals at a frequency of 180Hz.

7.2 Sensors and A ttitude Estim ation

The rotor velocities w«, i E {1,2,3,4} are obtained from HaU Effect sensors in combi­

nation with earth magnets. In fact, two magnets, placed 180° apart from each other 

under the main rotor gear, pass above the sensor as the gear rotates. The normally 

high, -f5V, output signal pulses low, OV, as each magnet passes above. The angular 

velocity is then obtained by first measuring the ’On’ time, To„ when the signal is 

high between pulses. Referring to Figure 7.2, we know that Ton = 0.8737%» for any 

given frequency, where Tri is the time for one rotor revolution in seconds. This has 

been measured through experimentation and will remain constant for any frequency 

greater than zero. The time for one revolution of a rotor is given by

and finally the angular velocity for one rotor is given by

Ott
uj = — {rad/s) (7.2)

Tri

The resolution of this measurement depends on the sampling frequency and the rotor 

velocity. As the rotor velocity increases, the resolution of this measurement will 

decrease yet, with a suflBcient sampling frequency, accurate measurements can be 

obtained. The angular velocity w can only be calculated once Tri bas been determined. 

If the rotor is spinning very slowly, or has stopped, then the time %» cannot be 

determined, and the algorithm to calculate w will continue waiting. To avoid this 

problem, a maximum time Tri,max corresponding to a minimmn angular velocity is 

programmed into the calculation. If the calculation waits for a time greater than
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Figure 7.2: Rotor Velocity /  Hall Effect Sensor Timing Diagram

Tri,max: then the measured angular velocity of the rotor will be set to zero. The 

desired acceleration of each rotor ÙJd =  (wd,i, required for the motor

torques control design has been obtained by using a filtered derivative of the form 

[î d,i] where T/ =  0.008 represents a cutoff frequency of 20Hz.

The angular velocity of the aircraft Q is obtained from three orthogonally mounted 

gyroscopes. The gyroscopes employed are NEC/TOKIN CG-16D0 miniature ceramic 

gyros which have maximum detectable angular rates specified at ±90°/sec. The 

output sensitivity of each gyroscope is specified as l.lm V /deg/sec while the output 

voltage at a zero angular rate is specified at SOOmV at 25°C but can vary up to 800mV 

at any temperature. Inaccurate measurements can arise if variable temperatures 

occur in the testing environment however, calibrating the gyroscopes by measuring 

and removing the output oflfset prior to any experimentation, and allowing them to 

’warm-up’, has proven effective. High frequency noise is sufficiently removed from 

the Q measurement by adding first-order low-pass software filters each with a cutoff 

frequency of 20Hz.

The attitude estimation of the aircraft has proven to be a challenge. Accurate mea­

surements of the roll, pitch and yaw angles in real-time over a wide range of operating 

conditions is not easily achieved. Each gyroscope gives the rate of rotation around its 

respective axis, therefore simple integration should yield the desired angle for a planar 

rotation. In practice however, each signal contains a small amount of noise and offset
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error. The offset error can be removed before each experiment but temperature and 

other factors will contribute to this error and will cause the integrated signal to grow 

to infinity. This problem is known as integral drift and has been observed during 

experimentation.

Real-time planar attitude estimation has required fusing measurements from the gy­

roscopes with measurements from the accelerometers. Configuring the accelerometers 

along the and the axes as tilt meters and fusing this data with the measure­

ments from the two gyroscopes mounted along the same axes, by complementary 

filtering, yields relatively accurate and drift free pitch and roll angle measurements 

(Baerveldt and Klang 1997). Similar results are also possible for the yaw angle by 

fusing compass data with the yaw gyro signal, but have not been realized due to 

difficulties with compass readings.

A dual-axis accelerometer mounted to the aircraft has been positioned to measure 

the acceleration along the and yĴ  axes. Manufactured by Analog Devices, the 

ADXL202AE has a full-scale range of ±2p. This low-cost, low-power device is made 

with Micro-Electro-Mechanical System (MEMS) technology on a single IC and weighs 

less than 1 gram. The dual-axis accelerometer has been configured as a tilt meter to 

give the roll {<j>) and pitch {0) angles of the aircraft up to a maximum angle of ±90°. 

By using the force of gravity as an input vector, the dual-axis accelerometer can be 

configured as a tilt meter giving the angles of the rigid body or platform on which it 

is installed. The objective is to extract the angle of rotation with the knowledge of

the measured acceleration from the device. Assuming that the accelerations are due

to gravity only, and by using the equation for torque given as

r  =  mglsin6, (7.3)

and Newton’s second law of rotation given as

S r  =  Id, (7.4)

we can see that

10 =  mglsinO. (7.5)
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Normalizing the above by letting

9 = sin ^ - ^ 6 ,  (7.6)
mgl

leads to a simple expression of the angle as

9 ^ s i n - ^ t .  (7.7)
9s

The accelerometer sensitivity is denoted by 9s and is obtained through measurement 

as a voltage in mV. To obtain this data, the aircraft is set to a 0° position, and an 

acceleration measurement is taken. This value will be the offset bias, and will be 

removed so the measurement at 0° is always zero. The sensitivity is given by

s. = I W  I +  I I p

Normalizing the acceleration measurement gives a value between ±1 . However, care 

must be taken to ensure that this measurement is between -1 and +1 before com­

puting the arcsine function. This is achieved by placing limits on the normalized 

measurement.

The angle of rotation can be calculated with the knowledge of the measured accelera­

tion from the device, assuming that the acceleration is due only to gravity. However, 

accurate tilt angles are only possible with a relatively static platform. Large angular 

velocities as well as vibrations and translational motion of the aircraft make it difficult 

to read proper tilt angles. Placing a first order low-pass hardware filter on the analog 

output of the accelerometer with a cut-off frequency of 0.5 Hz effectively removes the 

unwanted noise due to high frequency vibration and angular velocities of the aircraft, 

and defines the dynamics of the device. Since the design of the complementary filters, 

to be discussed later, only requires the tilt meter to have effective dynamics in the 

lower frequency range, we can easily justify the use of this filter.

In fact, the roll and pitch are obtained, through the fusion process, as follows

x =  G f(s)M  +  Gg(s)[xJ,

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where x  denotes {(j)) or {9). The signal Xt is obtained from the tilt-meter and Xg is 

obtained from the gyroscope. The transfer functions Gt and Gg are calculated such 

that the following equality is satisfied (Baerveldt and Klang 1997)

^((a)Q (s) +  sjf,(s)Gg(s) =  1 (7.9)

where Ht and Hg denote the transfer functions describing the dynamics for the tilt 

meter and gyroscope respectively. Including the known dynamics for the tilt meter, 

and assuming ideal dynamics for the gyroscope, we have

Therefore, we can choose the filter transfer functions as

The high-pass filter on the gyro branch effectively removes the low frequency signal 

components at 40dB per decade, sufficiently reducing the effects of drift at lower 

frequencies. Similarly the low-pass filter on the tilt meter branch effectively removes 

the high frequency signal components at 20dB per decade.

In fact, the need for additional filtering has been observed and implemented on both 

the gyroscope and tilt meter measurements to obtain a cleaner fused signal. The 

additional first order low pass filters have cutoff frequencies set at 20Hz for the roll 

and pitch gyro signals, lOHz for the yaw gyro signal, and 2Hz for the roll and pitch 

tilt meter signals. The filter transfer functions are given as follows

"  0.08s+  1’ "  0.016s+  1’ "  0.008s-hi

where Ft and denote the transfer functions for the additional tilt meter filter 

and yaw gyroscope filter, and Fg denotes the transfer function for the roll and pitch 

gyro signals. Since the fusion process considers only the roll and pitch, the addition 

of the filter on the yaw gyro Fg,,p has no effect on the complimentary filtering results. 

However, the additional filtering on the roll and pitch gyros and tilt meter signals
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does indeed affect the overall result. Using (7.9) and the additional filter transfer 

funtions gives

;f((a)Q (3)f^(s) +  an/a)G g(g)f),(s) =  (7.13)

where Gd denotes the transfer function describing the dynamics of the final fused 

signal and is given by

125s3 +  1641s2 +  9888s +  15260
Gd = (7.14)s4 +  143.8s3 +  2432s2 +  11110s +  15260 

Bode plots showing the contribution of each branch after filtering as well as the final 

fused result may be seen in Figures 7.3 and 7.4 below.

t

I
I

10"’

-20

Frequency (rad/eec)

Figure 7.3: Bode Plot of Gyro and Tilt Meter. Figure 7.4; Bode Plot of Final Fused Signal.

This type of angle estimation through complementary filtering has proven effective 

for relatively small roll and pitch aircraft angles. However, this method is only the­

oretically justified for individual planar rotations. More complex rotations of simul­

taneous roll, pitch and yaw angles require a nonlinear fusion technique as described 

in (Rehbinder and Hu 2003; Rehbinder and Hu 2000), due to the relationship pre­

viously given in the kinematic equation (3.12). Considering the relative complexity, 

and restrictions of this method, and the fact that our experiments are controlled 

within restricted aircraft angles, the first linear fusion method described has proven 

the effective choice for the roll and pitch angles estimation.

Since the yaw angle of the aircraft is not measurable with a tilt meter, the use of a 

compass is a potential alternative to give an accurate yaw angle at lower frequencies.
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The compass employed for this task is a Dinsmore analog sensor No. R1655 which 

outputs a sine-cosine curve pair. It exhibits slightly slower dynamics compared with 

the configured tilt meter, in that the specified response time from a 90° displacement 

is 2.5 to 3.5 seconds without overshoot. The sensor is designed to measure the hori­

zontal component of the earth flux fields. However, experimental testing has shown 

that relatively small tilt angles, and vibrations from the four motors, induce large 

errors in the compass measurement. Experimentation with filtering and complex al­

gorithms to ignore compass data when a specified roll or pitch angle is detected has 

been tried without success. Therefore, the drift of the integrated yaw signal from 

the gyro alone has been noted and considered acceptable, and experimentation has 

continued without compensation for the yaw drift. The yaw angle estimation {̂ |;) is 

therefore achieved by

W (7.15)

where ip denotes the measured angular rate from the yaw gyroscope. Again, sim­

ple integration of the velocity signal as described above, is only theoretically valid 

for planar rotation due to the nonlinear relationship of (3.12). However, when the 

quadrotor aircraft is stabilized to the hover orientation, any yaw rotations are strictly 

planar.

7.3 Control Implem entation and Pilot Interface

The block diagram showing the implementation of the control algorithm with the 

pilot interface is seen in Figure 7.5. As discussed in Chapter 4, desired Euler angles 

may be specified numerically, or more practically, with a pilot interface such as a 

control-stick. Therefore, the pilot may use the control-stick to specify the desired 

altitude and vary the desired roll, pitch and yaw angles, to control the motion of the 

quadrotor aircraft in space. Used in conjuction with the attitude set-point regulation 

and altitude controller, the pilot now has an effective and stable means of controlling
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the quadrotor aircraft. In fact, if no pilot command is given, the quadrotor will ideally 

stabilize its attitude, and hover at the given desired altitude. The altitude controller

w

Quadrotor
Aircraft

Computation of D e ^ ed  
Motor Torques

Computation of Desired 
Rotor Velocities

Attitude C ontroller

Pilot
Control

Figure 7.5: Control Implementation

gains necessary for control law (4.41), are developed below. The controller has been 

designed for a 3 second settling time with 2% overshoot. From this information and 

the well known equations for settling time and percentage overshoot, the second order 

characteristic equation may be numerically developed as follows:

I {InP .O .f 
TT^ilnP.O.y

4

=  0.78

= -p f  =  1.709,

(7.16)

(7.17)

where T ,̂ P.O., Un and ^ denote the settling time, percentage overshoot, natural 

frequency and damping factor respectively for the characteristic equation given as

+  2.67s +  2.92 =  0 (7.18)
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The roots of the above equation are given below as Pi and P2, along with a third 

necessary pole P3 placed five times the real part of Pi and P2.

Pi =  -1.335 +  1.067;

P2 =  -1.335 -  1.067;

P3 =  -6.675.

The controller gains are then determined to be

X  =  [20.74,9.35,-19.49]. (7.19)

The attitude controller gains used for all experiments were set by trial and error 

through experimentation and simulation. The gains for controllers (4.1) and (4.18) 

of Theorem 1 and Modified Theorem 1 are given as: Fi =  (240,240,60), F2 =

0.0025/ 3x3 and F3 =  4/ 3x3. The gains for controller (4.19) and (4.28) of Theorem 

2 and Modified Theorem 2 are given as: F4 =  dm ;(0.5,0.5,0.2) and a = 4. The 

desired thrust T  and gain ki used for the motor torques control design were kept at 

T  = 1.5iV, ki =  0.002 respectively, while the initial roll, pitch and yaw angles varied 

only slightly.

7.4 Experimental Results

To explore the performance of each controller, three sets of experiments have been 

performed. The results of each experiment allow for a comparison to be made be­

tween theorems, helping illustrate similarities or difference in graphical results. All 

experiments have been performed using the model parameters given in Table 5.1, and 

controller gains given in the previous section.

7.4.1 Experim ent 1

The objective of experiment 1 is to show the stabilization of the quadrotor attitude 

from some initial angles for each controller. The initial conditions are roughly the
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same for each experiment. The experiment commences by turning the controller to 

the ’On’ state at time 0 seconds, and lasts total of 3 seconds. Experiment 1 has 

been performed on Theorem 1 (Figures 7.6- 7.11), Modified Theorem 1 (Figures 7.12- 

7.17), Theorem 2 (Figures 7.18- 7.23), and Modified Theorem 2 (Figures 7.24- 7.29). 

For each controller tested the aircraft angles, angular velocity and normalized control 

effort for each motor, are plotted separately.

From the results it appears that exponential convergence has been achieved for all 

controllers tested. Although not totally obvious, it appears that the controller of The­

orem 1 and Modified Theorem 1 have slightly superior performance for convergence 

of the aircraft angles, but with a slightly higher overall angular velocity.

7.4.2 Experim ent 2

In Experiment 2, the aircraft is started from an initial configuration, and then sta­

bilized to a zero attitude. Thereafter, disturbances are introduced on the pitch, roll 

and yaw to explore the disturbance rejection performance. Once the controller is 

turned to the ’On’ state at time 0 seconds, it lasts for a total of 10 seconds. Again, 

Experiment 2 has been performed on Theorem 1 (Figures 7.30- 7.35), Modified The­

orem 1 (Figures 7.36- 7.41), Theorem 2 (Figures 7.42- 7.47), and Modified Theorem 

2 (Figures 7.48- 7.53). For each controller tested the aircraft angles, angular velocity 

and normalized control effort for each motor, are plotted separately.

The plotted results show the disturbance rejection characteristics for each controller 

tested. Each disturbance was introduced to the aircraft by hand therefore, some are 

larger than others. However, the results are quite similar, and each controller handles 

the disturbances quite well, stabilizing the aircraft to the desired attitude.

7.4.3 Experim ent 3

The objective of experiment 3 is to show the stabilization of the quadrotor aircraft 

attitude from some initial angles to given desired angles. The experiment commences
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by turning the controller to the ’On’ state at time 0 seconds, and lasts total of 3 

seconds. Experiment 3 has been performed on the controller in Theorem 1 (Fig­

ures 7.54- 7.59) only, as a comparison between controllers for this experiment is not 

required. This experiment illustrates the attitude stabilization to the desired con­

figuration (0d =  —10°, =  10°, =  —10°). The results show the aircraft angles,

angular velocity and normahzed control efi'ort for each motor, plotted separately.
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Chapter 8

Conclusion

With the increasing popularity of UAV’s, the desire for VTOL style aircraft, and 

the availability of small lightweight sensors, the quadrotor has seen an overwhelming 

interest in recent years. In fact, the necessity for an attitude stabilizing controller for 

the quadrotor has proven to be the main motivation for this research.

A review on the attitude representation of a rigid body in space has been presented 

detailing necessary parameterizations required for the control design, including the 

Euler Angles, Direction Cosine Matrix and the non-singular four-parameter Quater­

nion representation. Also, Chapter 5 has been presented, detailing experiments and 

techniques used to determine the model parameters.

The development of the quadrotor dynamical model based on the Newton-Euler for­

mulation, has been presented. In Chapter 4, two main theorems are developed based 

on the work from (Tayebi and McGilvray 2004). The controller in Theorem 1 is 

model-dependent, and guarantees global exponential stability for the attitude stabi­

lization problem. This theorem is based on the compensation of the gyroscopic and 

Coriolis torques, and has a PD'^ feedback structure, where the proportional action 

is in terms of the vector-quaternion, and the two derivative actions are in terms of 

the airframe angular velocity, and the vector-quaternion velocity. In Theorem 2, a 

model-independent PD  controller, providing asymptotic stability, has been presented. 

Modifications to both theorems, by adding or removing compensation terms for the
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gyroscopic and Coriolis torques, have been discussed. Moreover, the altitude control 

and the attitude set-point regulation problems have been addresed.

Simulations have been performed using Simulink, and have provided graphical results 

for each controller discussed.

The experimental setup of a model quadrotor aircraft has been presented including 

details regarding sensors, attitude estimation and sensor fusion. In fact, as previ­

ously mentioned, the attitude estimation of the quadrotor aircraft proved to be most 

challenging. Details regarding the frequency domain approach to fusing signals from 

gyroscopes with accelerometers have been shown, and problems with this method 

have been revealed and discussed.

The experimental results for the attitude stabilization controller have proven to be 

quite similar in terms of convergence rates and disturbance rejection. Under the ex­

perimental conditions, it is difficult to see much difference between the controllers, 

in terms of performance, with or without gyroscopic and Coriolis torques compen­

sation. However, under larger initial conditions, higher speed, and more aggressive 

maneuvers, there is a greater influence from the gyroscopic and Coriolis torques, and 

although it was not possible to experiment under these conditions, it is believed that 

compensation of these terms will reveal the superior controller.

Upon completion of the experimental testing, a number of observations have been 

made. Considering any one of the attitude controllers developed in detail, there are 

a number of control parameters or gains that must be set for optimal performance. 

Of course, each of these gains have restrictions as described in the Control Design 

chapter, however, tuning each of these gains to give good results proved challenging, 

and was performed through simulation and trial and error.

Future work includes the programming of a microcontroller to allow untethered flight. 

W ith the addition of a lightweight Lithium battery pack supplying power to  the air­

craft and sensors, a lightweight landing gear for crash safety, and remote receiver for 

pilot input, flight testing would be possible. Adding an ultrasonic sensor to be used 

as an altimeter, could also allow the altitude controller to be tested experimentally.
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Developing a full control solution for the quadrotor attitude and position in space 

could yield a fully autonomous aircraft, capable of following programmed trajecto­

ries. Of course the requirement of a coordinate positioning system, such as GPS, 

would also be essential. Implementation of better fusion and attitude estimation 

techniques would be required for aggressive maneuvers and more dynamic flight. A 

larger, more powerful quadrotor aircraft could also be designed with gas powered 

rotors. Combined with collective pitch control, the thrust of the rotors could be re­

versed without reversing the rotating direction of the rotor, which could yield a highly 

maneuverable quadrotor aircraft capable of aerobatic flight.
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