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ABSTRACT

Lockhart, L.M. 2003. Applications of satellite remote sensing to develop forest 
inventory for strategic-level planning. 103 pp.

Key Words: Indian Remote Sensing (IRS), Landsat 7 enhanced thematic
mapper, image merge, principle component substitution, forest unit, Forest 
Resource Inventory (FRI), image segmentation, accuracy assessment, 
user’s accuracy, producer’s accuracy, omission error, commission error.

Forest inventory is the fundamental base information for most decision­
making processes in today’s forest management planning. Recently in Ontario, 
with increasing industrial involvement, new environmental and multiple use 
issues, and rapidly developing technology, the requirement and opportunity for 
investigation into new inventory methods has increased. The method developed 
in this thesis focuses on the inventory requirements for large scale, strategic- 
level forest management for the boreal forest region. With recent improvement in 
satellite sensors and computer tools, the process of acquiring the imagery and 
analyzing the information has become significantly cheaper and faster. A multi­
source approach is used in this project to improve upon current forest 
classification attempts using satellite imagery. By merging the superior 
multispectral properties of Landsat 7 ETM+ (30 m multispectral) with the spatially 
detailed IRS-1 D panchromatic (5 m) imagery, an attempt is made to derive a 
species-level classification scheme. Image data merging techniques are 
explored and the utilization of image segmentation procedures is evaluated. 
Principle component substitution is used to integrate the imagery, and a nearest 
neighbour algorithm is used in an object-based classification system. Area- 
based accuracy assessment is used to test the success of the methods with 
reference derived from interpreted aerial photography. Accuracy assessments 
show satisfactory agreement between the thematic product and reference data, 
with overall accuracies reaching 72%. Pure species groups such as black 
spruce, jack pine and trembling aspen exhibited producer’s accuracies of 90%, 
83%, and 87%, respectively, with user’s accuracies as high as 73%, 75%, and 
61% respectively.
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INTRODUCTION

Forest inventory is the fundamental information base for decision-making 

in today’s forest management planning process. However, forest planning and 

the maintenance of Forest Resource Inventory (FRI) in Ontario are becoming 

costly. Inventory requirements are changing to meet the needs of evolving forest 

practices in the province, and therefore new inventory methods should be 

investigated.

A forest inventory must contain the essential data required to provide the 

information needed for forest resource decision-making on all management 

planning levels. For decades, forest managers have relied on FRI as the 

principle base for decision-making in all levels of management. This inventory 

has been the most cost-effective and appropriate descriptor of Ontario’s forests 

for many decades. Recently, with increasing industrial involvement, new 

environmental and multiple use issues, and rapidly developing technology, the 

requirement for new inventory development methods has grown stronger (Leckie 

and Gillis 1995).

Approximately 38% of Ontario’s land base is managed by industry (Leckie 

and Gillis 1995), in the form of Sustainable Forest Licences (SFLs). These SFLs 

can occupy millions of hectares of land, managed as a single unit. An important 

element of controlling such large areas is regular updates of change in the forest. 

With the recent appointment of these SFL areas, the onus has been placed on 

the licensee to cooperate with government agencies to gather information 

facilitating inventory update. Until recently, this joint effort by the government
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and industry has met the needs of inventory requirements. However, like many 

forest operations in Ontario, the role of forest companies in FRI development has 

been evolving (Gillis and Leckie 1996), and will continue to do so. Keeping 

business sense in mind, industrial partners will likely begin to take advantage of 

new methods for collecting information required for inventory update, including 

the provision of funds for new research initiatives. Investigated methods should 

not only be more cost-effective, but also meet the demands of environmental 

issues and both timber and non-timber related management objectives and 

concerns. At present, forest companies currently pay for stand level details in 

FRI that are not used for strategic planning purposes. These stand level details 

are often not accurate enough for operational planning. If cost savings could be 

accrued from more efficient FRI systems, it might be possible to invest in more 

detailed inventories to support operational planning.

As a result, the forest industry’s growing role in the assembly of forest 

inventory in Ontario, and society’s demands for more holistic management of the 

forest, has increased pressure to reduce cost and increase efficiency in 

development methods. Areas such as parks and reserves are important 

elements in the large-scale strategies of forest management, but many parks 

have outdated inventory and some have never been inventoried. Inventory is 

inadequate in these areas due the high costs associated with inventory 

development. The assembly of inexpensive methods must occur to facilitate 

planning in Ontario’s parks and reserves. In addition, the idea of landscape 

management of a large-scale ecological process such as fire or large ranging
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feature species requires forest inventory that can be applied to both protected 

and licensed areas.

More efficient methods should allow more frequent update of inventory, 

facilitating better large-scale strategic planning of the forest on a regional and 

sub-regional scale. Higher precision of the inventory is also becoming more 

important as Global Positioning Systems (GPS) play a more integral role in the 

operational aspects of forest management. The development of new 

technologies with regards to geographic information systems, image analysis and 

remote sensing has increased the possible pathways through which inventories 

might be created.

With recent improvement in satellite sensors and computer compilation, 

analysis and application tools, the process of acquiring the imagery and 

analyzing the information has become significantly faster and cheaper. Many 

current sensors provide adequate data on several dates throughout the leaf-on 

period of the year. Semi-automated computer procedures allow classification to 

occur within weeks of the data acquisition date. The turnover time for forest 

inventory development using satellite data should theoretically be a fraction of 

this. Semi-automated processes also decrease the level of subjectivity apparent 

in many manually interpreted photo-based inventories. Guidance from the user 

is provided for computer applications, but most of the decisions are made in an 

unbiased systematic fashion by software. In addition to objectivity, semi­

automated procedures can be recorded and reproduced. If need be, processes 

can be slightly altered to meet a desired criteria and re-applied for new results.
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Using digital processes to develop forest inventory will increase the 

precision of the map output. Conventional map-making involves various transfer 

stages (photo -  paper map -  digitized coverage), that digital imagery does not 

require. Once imagery is rectified and classified, areas become digital polygons 

immediately, reducing positional error resulting from the transfer stages of 

traditional FRI methods. This increased precision allows for better integration of 

GPS to manage, operate and monitor forested landscapes.

The approach of this project is to combine the best qualities of two satellite 

imagery datasets in order to determine if improvements upon current satellite- 

based forest classification attempts are possible. The first type, Landsat 7 ETM+ 

data, is utilized to gain the spectral leverage required to answer questions about 

the landscape. Landsat 7 possesses multi-spectral capabilities that outweigh 

any of its competitors at a fraction of the cost. However, the 30-metre spatial 

resolution of Landsat limits its spatial capability in terms of practical use in 

forestry application. What is needed to improve the effectiveness of this type of 

multi-spectral data is higher spatial resolution that may be used with the newest 

knowledge classifiers available. This project will investigate the benefits of the 

Indian Remote Sensing (IRS) satellite, a 5m resolution dataset covering a much 

greater area per scene (4900 km2) than most high resolution sensors available 

today. The intent is that the enhanced spatial resolution of IRS integrated with 

the Landsat multi-spectral data may provide better information about the forest 

canopy, not available from each of the datasets alone. The abundance of 

sensors available for use, at a reasonable cost/km2, has resulted in the ease of
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providing multi-source classification methods enabling datasets from different 

sensors to complement one another (Czaplewski 1999).

The combination of Landsat and IRS may be the solution to providing a 

rapid, detailed inventory turnover for large license areas. Furthermore, 

assessment of this dataset may give an initial indication of the potential of new 

sensor data (0.65-4m) presently on the market, however currently too expensive 

for wide area use.

The major goal of this work is to provide a new method for creating large 

scale (e.g. SFLs) forest management-level inventory that has:

- increased spatial accuracy as well as adequate level of information and 
reliability for strategic planning purposes;

- a higher cost-efficiency than current forest inventory requirements; and,

- a considerably shorter turnover than traditional methods of current 
inventory development in Ontario.

Two supporting objectives are to:

-Test the benefits and limitations of the IRS-1 D Panchromatic sensor data 
as a complementary data set to Landsat 7 Thematic Mapper data; and,

-Test a new classification concept - image object segmentation to stratify 
the forest into forest units with similar levels of accuracy presently 
achieved through FRI-based methods.
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LITERATURE REVIEW

FOREST INVENTORY

New government initiatives, shifting social values and increased use of 

forest inventories have forced a re-evaluation of the current forest inventory 

practices. More accurate, reliable, and timely inventories are required to 

accommodate public expectations, interest and involvement in land and resource 

management decisions, timber supply reviews, and new forest practices 

legislation (Gillis and Leckie 1996). This shift in social values increases the 

number of users of the forest inventory such as tourism outfitters, biologists and 

private landowners. These users have very little involvement in the creation of 

inventory, but depend on its range, reliability and accuracy.

Leckie and Gillis (1995) place forest inventories into three categories: 

extensive reconnaissance-level inventories; operational-level inventories; and, 

forest management-level inventories. Extensive reconnaissance-level inventories 

provide the manager with general strategic level information, whereas the 

operational-level inventories provide the user with location specific estimates 

required for harvest planning on commercially forested land. The current Ontario 

FRI was originally designed with the intent to assist primarily with timber supply 

characteristics of forest cover for commercial operational-level inventories (Treitz 

and Howarth 2000). Forest management-level inventories, on the other hand, 

contain information useful in terms of long-term planning and decision making for 

all types of forest use. The current cycle for management-level inventory update 

in Ontario takes place in 20-year interval (Gillis and Leckie 1993). The entire
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inventory procedure for an average sized management unit in the province takes 

approximately three years to complete (Gillis and Leckie 1993).

Presently, 9x9 inch (23cm x 23cm) aerial photography and human 

interpretation combined with targeted reconnaissance fieldwork help to create the 

current forest inventory for managed forests in Ontario (Gillis and Leckie 1996). 

Since the development of FRI in Ontario in 1946, aerial photography has been 

the most affordable method of remote sensing available to the government.

In Ontario, a scale of 1:20,000 is photographed using black and white, 

stereo, aerial photography and interpreted into stand-level segments, or 

polygons, with the help of field data collected by ground crews as truth 

information. This level of inventory contains details about the current state of the 

forest such as tree species, age, height, stocking and site class at the stand level 

(Gillis and Leckie 1993). In Ontario information is compiled into homogeneous 

groups, or forest units, for planning purposes. Forest units are aggregations of 

forest stands, which normally have similar species composition, develop in a 

similar manner (both naturally and in response to silvicultural treatments) and are 

managed under the same silvicultural system (OMNR 1996). Although space 

borne remote sensing media has not achieved the detail and detection 

capabilities of finely delineated forest stand structure distinguished by aerial 

photography, it is hypothesized that certain media and methods may allow 

detection of forest unit (i.e. Jack Pine Pure, Black Spruce Lowland, Mixed 

Hardwood, etc.) and serai stage (immature, mature, over mature) delineation.
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Expectations of satellite data in the development of forest inventory were 

high in the 1970’s. However, limited properties of available sensors lead to 

disappointing results. These shortcomings caused hesitation into the use of new 

sensors that have emerged in the last 20 years. In recent years, the cost of 

space borne imagery has decreased significantly, and technological 

advancements have enabled sensors to collect imagery with extraordinary 

resolution. These new capabilities for higher resolution are now becoming the 

focus of many researchers interested in attaining information about forested 

landscapes. As technological advances further improve these tools, their 

capabilities must be constantly tested to determine how they will fit in the 

development of forest inventory now and in the future (Pitt et at. 1997). In 

addition, the decreasing cost of the imagery is making research into high 

resolution satellite data more plausible and attractive for industrial partners. 

HISTORIC REVIEW OF SATELLITE REMOTE SENSING

Differences between space-borne sensors occur primarily in their spectral 

and spatial properties. Multispectral sensors collect various types of reflectance 

of the earth’s surface in the form of image bands. These bands are used 

individually or integrated together to delineate different features of the landscape. 

Spatial detail of an image is often referred to as its resolution, or area scanned 

on the ground by the sensor, and then contained in a single pixel of the image. A 

pixel of an image possesses a digital number or brightness value associated with 

the reflectance properties of the area in which it represents on the ground. Pixel
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properties vary in size, depending on the resolution capabilities of a sensor, and 

brightness, depending on the multi-spectral characteristics of the sensor.

The first challenge with current remote sensing tools is acquiring large 

areas of multispectral data, with an acceptable level of spatial detail for detecting 

the differences in forest structure. The next challenge lies in the repeatability of 

the classification system developed in order to reproduce consistent, continuous 

landscape assessments to facilitate large areas (Franklin et al. 2002b), such as 

northern Ontario. With a classification system in place in one region of the 

province, other regions may follow suit, with limited field verification.

A few issues currently exist with regard to forest mapping at regional 

levels using satellite remotely sensed data. Martin et al. (1998), King et al.

(1999) and Franklin etal. (2001) have explored the benefits of high resolution 

multispectral and hyperspectral data for forest mapping using various types of 

sensors. Hyperspectral imaging, which can also be referred to as imaging 

spectrometry, differs from conventional remote sensing in that it covers many 

narrowly defined spectral channels, where as, conventional remote sensing looks 

at several broadly defined spectral regions (Jenson 1996). Each of these 

studies succeeded in semi-automated delineation of forest structure at the 

species and age-class level; yet, cost of imagery has limited these studies to 

achieving their successes allowing only small subsets of data. The decreasing 

cost of medium resolution satellite imagery (e.g. Landsat 7, SPOT 4) has 

stimulated many research projects involving large scale forest classification in the 

past 10 years. Many of these studies have taken advantage of multi-source
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image approaches, either in a multi-temporal context using same sensor data 

from different dates (Bauer etal. 1994; Schrieverand Congalton 1995; Mickelson 

et al. 1998), or in a multi-sensor circumstance capitalizing on the benefits from 

different sensors and their respective resolutions and spectral ranges (Schistad 

Solberg et al. 1994 and Vrabel 1996). Both pathways have had individual 

successes in enhancing the effectiveness of Landsat TM in terms of forest 

landscape classification. In current literature, medium resolution (10 to 30m) 

satellite data has not been the choice tool for ageclass determination in forest 

stand structure. Successful studies in determining significant results when 

developing and monitoring age of forests have used high resolution data to make 

accurate conclusions (Shugart et al 2000). In light of these discoveries, one may 

conclude that 5m resolution data may be challenged when asked to disclose age 

information within forest stands.

Multispectral Remote Sensing

Landsat data have proven to be a valuable source of satellite data for 

many classification studies in the last 30 years, primarily due to its large array of 

spectral properties, and vast coverage area for a fraction of the cost compared to 

other sensors (Karteris 1990; Scott et al. 1996; Homer et al. 1997 and Pax-Lenny 

et al. 2001). The Landsat TM provides images approximately 180x180 km at a 

very affordable cost ($0.05/km2, Canadian Dollars (CAD)), and although Landsat 

TM data is superior to any sensor currently on the market as far as multispectral 

imagery is concerned, this superiority is accompanied by a disadvantage. The 

resolution of 30m limits the data to identifying and mapping only a few broad
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categories of forest cover on its own (Jakubauskas 1997 and Czaplewski 1999). 

In a forest understory research project, Ghitter et al. (1995) suggest that 

improvements in the use of TM data may be derived from image texture analysis, 

due to the patchy nature of the regeneration and variable species mixture in the 

overstory. The relatively coarse resolution of these data is prone to pixel noise, 

or spectral response of two or more classes in one pixel.

In Ontario, an attempt to classify at a large scale was recently made in the 

Ontario Land Cover Database (OLCD). Landsat 5 Thematic Mapper (TM), a 

multispectral, medium (approx 30 metre) resolution sensor, allowed the OLCD to 

avoid traditional turnover and cost issues related to aerial photography based 

inventory. While the results of the classification provided a consistent thematic 

landscape cover of the entire province, the data permitted only broad-level 

classification of the forested landscape. This should be expected as literature 

illustrates that even the relatively coarse resolution (30 m) of the Landsat 7 

sensor has had little success classifying to levels beyond Anderson level II 

(conifer and deciduous) in single date imagery studies (Wolter et al. 1995). The 

Landsat 7 satellite also possesses a 15m resolution panchromatic band which 

has been merged with the 30m spectral resolution in recent studies (Liu 2000). 

Recent trends (Mickelson et al. 1998) focusing on the use of Landsat’s spectral 

imagery from different dates throughout the snow free time of year have 

incorporated a multi-temporal component into their method of classifying 

hardwoods in northern Massachusetts to accuracies as high as 79%. The 

combination of six reflective bands each from spring, summer, and fall Landsat
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TM images to create an 18-band composite allowed for genus level forest 

classification. The study was able to delineate a total of 33 forests types, 20 of 

these dominant and the remainder sub-classes representing differing understory 

components within the 20 dominant classes.

Schriever and Congalton (1995) found that advances in spatial and 

spectral properties of satellite data (the progression from Landsat 1,2,3 MSS to 

Landsat 4,5 TM) allowed them to analyze the same scene from three separate 

dates (spring, summer, and fall) to explore whether leaf phenology assisted in 

the classification of northeastern hardwoods. Through the use of different 

combinations of bands from each image and experimenting with multiple types of 

classification systems, the study determined that seasonal variability assisted in 

the 74% overall accuracy result. A common denominator among these studies is 

the fact that they all used study areas consisting largely of hardwood species, to 

enhance the effect of phenological processes on different dates of satellite 

imagery. Although effective in hardwood dominated forests, the northern boreal 

forest is dominated by conifer species small windows of visible phenological 

reaction to the change of season are difficult to capture with satellite visits, and 

may not be suited for this type of image analysis.

Hyperspectral Data

Martin et al. (1998) demonstrated species separation with accuracies of 

75% for 11 forest class types, including pure and mixed stand of deciduous and 

conifer species. The data used in this study were collected by an Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, and analyzed at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

hyperspectral level. Hyperspectral sensors also have a high cost/km2 associated 

with their data collection, thus making them useful for small sample areas, and 

not very practical for large continuous coverage.

High Resolution Data

The most significant advance in multispectral sensor resolution initiated 

with the IKONOS-2 satellite project which was launched in the summer of 2000. 

This sensor collects four multispectral bands at a 4m resolution, along with a 

single band of panchromatic 1 m data. Panchromatic capability is present on 

many sensors available today, often at a higher resolution than the spectral 

scanning capability of the satellite. The panchromatic band of data is created by 

a sensor scanning a wide section of the colour spectrum from approximately 500 

nanometres (nm) to 750 nm (varies with each sensor), resulting in an image with 

higher resolution. The image is a single band, allowing it more spatial detail, 

without compromising storage space on board the sensor. Data from IKONOS 

are currently priced at $18.00 to $27.00/km2 (CAD), often too expensive for large 

area use. Regardless, research trends show that as image texture increases in 

forest conditions, more detailed information may be extracted from the data. 

Franklin et al. (2001) used the panchromatic data successfully to separate age 

classes within Douglas Fir (Pseudotsuga menziesii (Mirb.) Franco) using various 

texture measures.

Using a pixel-based classifier and small subsets of Russian MK-4 

multispectral satellite photography in eastern Ontario, King etal. (1999) achieved 

an overall accuracy as high as 48% with some forest classes between 50% and
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75% in user’s and producer’s accuracy. The resolution of this data was 

approximately 7.5 m in resolution. The modest overall accuracies were attributed 

to lack of classification and accuracy methods sensitive to the spatial variance of 

such high resolution data.

The IRS project serves as an important national goal in India, in terms of 

providing continuous, operational services for the management of the natural 

resources of that country (Chandrasekhar et al. 1996). For the purpose of this 

study only IRS-1 C/1 D will be discussed in detail. These sensors were launched 

in 1995 and 1997 respectively, and each satellite possesses three different types 

of sensors. Chandrasekhar et al. (1996) describe the first as a multispectral 

Linear Imaging Self-Scanner (LISS-III) in visible and near-IR spectral bands with 

a spatial resolution of 23 m. The second is a Wide-Field sensor in visible and 

near-IR bands, with a spatial resolution of 188 m and a swath width of 

approximately 800 km. The third sensor, most applicable to this study is a 5.8 m 

6-bit panchromatic sensor with across track stereo viewing capability, and a 

swath width of 70 km. The cost of this data is approximately $1.00/km2. This 

panchromatic data is of interest for this study as an enhancement tool to Landsat 

spectral data. Each panchromatic sensor has a 48-day revisit capability, 

providing 24-day revisit coverage as the two sensors are staggered evenly in 

orbit.

In the past, IRS-1 C panchromatic images have been used in forest 

mapping applications overseas in Europe and Asia (Roy et al. 1996; Rao et al. 

1996; Krishna Prasad et al. 1998 and Saraf 1999) as well as in Canada (Savopol
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and Armenakis 1998 and Armenakis and Savopol 1998). In North America, IRS 

panchromatic has been used extensively as an image backdrop tool, but little as 

an accompanying texture in classification processes. The province of Alberta 

has used this type of imagery to create an image mosaic of the entire province, 

and is currently using the data to assist with update of roads, oil exploration, and 

agriculture developments. The state of New Mexico has recently used the data 

for the same purpose.

Several forest product companies in northwestern Ontario have used the 

imagery to map forest depletion (e.g. harvest areas, natural disturbances). Data 

vendors currently offer a 5m orthorectified colour product, using IRS 

panchromatic data in combination with Landsat 7 spectral data. Cheng and 

Toutin (1998) discuss some of the advantages of IRS-1 C, including its large 

scale of coverage, while still maintaining a relatively fine resolution. They also 

briefly discuss positive results for mapping and classification methods using IRS- 

1C in Germany and Switzerland.

Recently, Hoffman etal. (2001) experimented with the IRS-1 C 

panchromatic sensor in a study that compared the effectiveness of its qualities 

against those of IKONOS-2. LISS-III bands were merged and re-sampled to 5 m 

with the panchromatic band, and then tested against the IKONOS-2 data. 

Although the study concluded that IKONOS-2 performed slightly better in certain 

circumstances, it also pointed out the effectiveness of IRS-1 C, especially when 

detecting land cover or land use change. Certain features of the landscape did
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cause problems for classification of the IRS-1 C data merge, possibly due to the 

lack of spectral information in the LISS-III data.

Multi-Source Remote Sensing

The goal of multi-source remote sensing is to collect an accompanying 

sample of imagery with additional information (higher resolution or a new spectral 

band), and improve the capabilities of the classification system (Czaplewski 

1999). In order to gain full multi-source coverage of an area, the auxiliary data 

must be carefully selected. Also, the method of integration of multi-source data 

should be selected depending on the properties of data, to avoid image artifacts 

and error associate with atmospheric or sensor angle differences (Pohl and Van 

Genderen 1998).

Many scientists have attempted to gain better results by simply 

accompanying the high resolution data with larger scale medium resolution. A 

current study by Mizon (2003) uses IKONOS-2 4m multispectral subsets (5 

subsets x 100 km2) within the extent of a Landsat 7 coverage. Attempts were 

made to classify each subset into forest units, and then incorporate these 

thematic results as training areas within the Landsat data.

In a study using 2.5m resolution multispectral Compact Airborne 

Spectrographic Imager (CASI) data, Franklin et al. (1994) worked on separating 

pure and mixedwood stands of different densities and heights. Various 

combinations of the CASI and Landsat TM data yielded accuracies above 90% in 

the Sub-alpine Forest Region west of Calgary, Alberta. Recently, incorporating 

spectral and textural data from 8m resolution airborne multispectral video
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images, Franklin etal. (2000) have achieved 65% accuracies in species level 

classification in both Alberta and New Brunswick.

In the past, a cheaper multi-source classification system included data 

from Landsat TM and SPOT-PAN, a single panchromatic channel collecting a 

resolution of 10m (Chavez etal. 1991; Shettigara 1992; Pellemans etal. 1993). 

Munechika et al. (1993) improved the accuracy of a general Landsat TM 

classification by six percent while testing new merging methods for fusing the 

panchromatic SPOT band to the Landsat TM data set. More recently, Salajanu 

and Olson (2001) attained an accuracy of 60% for a 19-class species level 

classification by integrating SPOT-PAN with Landsat 7. The classifier used was 

a supervised maximum likelihood decision rule, based on individual pixel values.

Shaban and Dikshit (2002) completed an urban classification study using 

multispectral (20m resolution) and panchromatic (10 m resolution) data from 

SPOT 4 as merged data. The study experimented with various merging 

algorithms such as the Price algorithm and high pass filters of various windows 

sizes, along with the effects of simply including the high resolution textural band 

with the spectral data. The study concluded that the addition of the SPOT 4 

panchromatic band to spectral bands of lower resolution significantly increases 

the classification accuracy compared to a classification using only original 

spectral bands. It also concluded that both of the merged datasets possessed 

inter-class variance problems, enhanced by the heterogeneous patterns of urban 

landscape, consequently confusing the per-pixel classifier. This inter-class 

variation is not uncommon in high resolution imagery covering forested
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landscape, and must be resolved in order to take advantage of new satellite 

image products.

Image Texture

Image texture is defined in many different ways, depending on the data 

and goals of the research project. Franklin etal. (2000) provide a definition that 

is most applicable to this study when they state “...texture information represents 

the spatial variation in image tone (i.e. digital grey values) that is the result of the 

arrangement of forest vegetation and other objects in a digital image.” Individual 

pixels carry these digital grey values, and with increased texture in imagery the 

importance of quantifying the surface patterns created by pixel groupings has 

increased, in order to avoid confusion among classifiers traditionally caused by 

high spatial variance (Blaschke and Stroble 2001). Smith and Fuller (2001) 

briefly address the difficulties of successfully classifying high resolution imagery 

with traditional per pixel classifiers. Some studies have used smoothing filters to 

eliminate this high spatial variance in order to improve classification results 

(Cushnie 1987). On the other hand, image texture information has been 

extracted using filter algorithms of various window sizes (Kushwaha et al. 1994; 

Ryherd and Woodcock 1996 and Kiema 2002), as well as Grey Level Co­

occurrence Matrices (GCLM). Filter methods measure the pixel and its 

neighbourhood to assess the variance of the pixel grouping and then use the 

variance as a value for the single pixel. GCLMs use second order probabilities to 

identify periodicity and structure within object texture through a variety of texture 

matrices (Marceau et al. 1990; Kushwaha etal. 1994; Franklin etal. 2001).
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Narasimha Rao et al. (2002) have reported success in a general landscape 

analysis (plantation, shrub, sparse forest, dense forest) using the IRS-1 D 

panchromatic sensor to identify patterns in second order texture measure 

computed by GCLM. The resulting image, produced by filters or the GCLM 

method, containing more generalized textural information, can be used as an 

accompanying data layer in a classification. Although utilization of texture has 

been successful in most cases, the previous examples represent only initial 

attempts to increase the benefits of high resolution data.

For instance, classifiers that assign classes to pixels based on not only 

their immediate neighbours, but also proximity to relevant objects in the image, 

are called contextual classifiers. Recently, (Debeir et al. 2002) demonstrated 

the improvement to accuracies by introducing context into their classification 

system. The study proved that contextual classification had limitations when 

tested window sizes were inadequate for varying sizes of homogeneous spectral 

zones, causing misclassification along the edges of these regions. The study 

also concluded that the introduction of textural and contextual might have 

contributed to some image artefacts, leading to problems with the final 

classification. (Stuckens et al. 2000) also confirmed the benefits of using 

contextual classifiers when they improved the accuracy of their classification by 

5.8%.

The traditional methods of using textural information to create new 

auxiliary layer containing surface pattern information has intiated the importance 

of shape recognition in new classifiers (Green 2000). Intelligent classifiers, with
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human-like decision recognition capabilities are beginning to revolutionize the 

way finely textured data is used in classification systems. The term 

“segmentation” has been used to describe this sort of shape delineation. 

Segmentation can also be defined as the grouping of pixels forming areas with 

common criteria of homogeneity (Willhauck 2000).

Image Segmentation

Nel et al. (1994) pointed out the weaknesses of texture when used in the 

traditional pixel based supervised classification methods. Incorporation of texture 

into the classification did not improve differentiation between old growth and 

younger stands. This indicates that traditional classifier may not be taking 

advantage of the additional information contained in higher resolution imagery.

Traditional pixel based classification methods, which use only the spectral 

information from each pixel to allocate it to a certain class, subdivide the 

landscape into an arbitrary grid system inadequately related to the actual 

landscape structure (Smith and Fuller 2001). The resulting classification of higher 

resolution data takes on a “salt and pepper” appearance. By grouping these 

pixels into more meaningful relationships, image segmentation attempts to 

eliminate pixel noise problems. Once pixel groupings occur the user is left with 

meaningful polygons that may be integrated into GIS inventory for creation or 

update purposes.

Object orientated segmentation has been applied successfully in many 

agriculture and urban studies (Blaschke and Hay 2001, Schiewe etal. 2001), 

where object shapes and boundaries are more concrete and relatively simple to
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classify. In data where object shapes and boundaries are not as obvious, a key 

to correctly applying image segmentation is choice of scale. The extraction of 

meaningful image objects needs to take into account at what scale the problem 

may best be analyzed (Baatz and Schape 2000). A difficulty of using image 

segmentation for forested land cover is deciding what scale is appropriate for 

each problem. For example, inconsistency in stand size and composition make it 

difficult to assess the quality of the segmentation results for a forested image.

For this reason, visual inspection is still a reliable practice in high resolution 

image classification (de Kok et al. 1999). Also, the level of operator 

understanding as well as prior knowledge of the properties and potential of 

segmentation can assist in deciding whether its use is warranted (Stuckens et al. 

2000).

IMAGE MERGING

With the increasing availability of satellite data, fusion of digital image data 

has become a helpful tool for evaluation of remotely sensed imagery. As each 

sensor is designed with specific strengths, data from multiple sensors may 

compliment one another when fused correctly. Finding the method that suits 

each combination of sensors and the particular images being used can be 

challenging. Pohl and Genderen (1998) advise the user to ask the following 

questions before choosing the data and the method of fusion:

1) What is the objective/application of the user?

2) Which types of data are most useful for meeting these needs?
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3) Which is the best “technique” of fusing these data types for that particular 

application?

4) What are the necessary pre-processing steps involved?

Also highlighted, are the three levels in which a fusion may take place 

from small scale to large scale: the pixel, the feature, and, the decision level.

The pixel level fusion simply incorporates the measured physical parameter of 

pixels from each image, while the feature level uses previously extracted objects 

corresponding to characteristics in each dataset, otherwise referred to as 

segments. Similar objects from multiple sources are assigned to each other and 

then fused for further assessment using statistical techniques such as Artificial 

Neural Networks (ANN) or Grey Level Co-occurrence Matrices (Paola and 

Schowengerdt 1997). Decision level fusion uses value added data where the 

images are processed individually for information extraction. The information is 

then combined applying decision rules to reinforce common interpretation and 

resolve differences (Shen 1990). In Shen’s study, fusion at the pixel level was 

used to derive more meaningful objects from a combination of the pixel data 

using both images. Fusing pixels before extracting features from each dataset 

avoided potential boundary discrepancies when fusion took place. Pixel fusion 

will be described in more detail than the other two levels.

When attempting a pixel level fusion of two or more images, image 

acquisition plays a significant role success of the fusion. Changes in the area 

between the acquisition dates of the imagery may influence success of the fusion 

product (Pohl 1996). Quality of the fused product will increase as the interval
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between image dates grows closer. Also, geometric accuracy should be high in 

order to avoid image artefacts and misinterpretation in pixel based fusion results 

(Pohl and van Genderen 1998). Pixels registered to each other should refer to 

the same object on the ground. Another pre-processing step important to the 

final results of the fusion is radiometric correction or normalization. Sensor- 

specific differences as well as atmospheric variations between dates may cause 

problems with fusion results (Pohl 1996). To properly monitor the effects of 

spatial enhancements including filters and edge enhancements on the properties 

of each image, these procedures should take place before the image merging 

process (Pohl 1996).

The idea of merging multi-sensor data has been implemented by 

researchers for a number of years (Dougay et al. 1987; Essadiki 1987; Harris et 

al. 1990 and Ehlers 1991). Merging has been used in the past with two 

objectives in mind. The first, for an end product that is more visually interpretable 

(Van Der Meer 1997), and the second, for semi-automated classification 

procedure enhancements (Munechika et al. 1993). Most merging methods use 

similar concepts when integrating data; however, some are more appropriate for 

each of the previously mentioned objectives. Multispectral images are composed 

of two main elements, spectral and spatial components (Munechika etal. 1993). 

When attempting to create a product that is visually more effective, the user has 

little concern for subtle spectral alterations to the original dataset, as long as 

what the interpreter’s eye detects makes sense. However, when attempting to 

achieve the second objective, often performed statistically in a computer process,
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these subtle spectral alterations may cause spectrally separable targets in the 

original data to become inseparable (Chavez et al. 1991). When testing various 

fusion methods, trends show that with the increase of spatial resolution, a 

relationship exists in terms of the effect on colour saturation, or spectral 

properties of the image (Tu et al., 2001). The goal of the fusion is to increase the 

spatial resolution of the dataset, while limiting the distortion of the original 

spectral characteristics of the data (Shettigara 1992).

A review of the merging techniques used by other researchers is required 

to determine which method is best suited for the data used and objectives stated 

in this report. More recent methods include: Intensity Hue Saturation (IHS); 

Principle Component Substitution (PCS); Wavelet transforms; and, Brovey 

transforms.

The Intensity Hue Saturation merging method uses a colour transform, 

whereby the Red-Green-Blue colour space of the spectral image to be enhanced 

is transformed mathematically into the Intensity-Hue-Saturation colour space.

The band of interest is the intensity layer, which by definition represents the 

spatial variation, or high frequency data, from the image (Pohl 1999). These high 

frequency data contain many of the same properties as the panchromatic data, 

however, at a much lower resolution. The panchromatic image is then 

substituted for the intensity layer and the colour space is then transformed back 

to the original RGB colour space. The result is a new image, with high resolution 

intensity properties (Carper et al. 1990). A drawback of using this method is 

noted, as the colour space transformation allows only three multispectral bands
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to be included in the process. This omits potential information stored in the 

remaining three bands not included in the transformation. The process may be 

repeated on the other three bands, but all six bands will never interact 

simultaneously in the transformation to develop the intensity layer.

The PCS method is similar to the IHS merging technique, in that a 

transformation and substitution of bands also takes place. However, rather than 

being limited to a three channel transformation, all available bands may be 

included in a principle component transformation of the multispectral image. The 

first principle component (PC1) of the transformed image is said to account for 

large amounts of variation in the data (Ricotta and Avena 1999). This variation 

can be described as similar to the intensity information produced by an IHS 

transformation, and furthermore, comparable characteristics to the associated 

panchromatic data (Chavez et al. 1991). In fact, it has been documented that the 

PC1 layer is often better correlated to the panchromatic data than is the intensity 

image in many previous studies and for this reason is generally more successful 

at minimizing the spectral distortion common to merging methods (Chavez et al. 

1991). A substitution of the PC1 layer by the panchromatic data takes place, and 

the inverse principle component transformation is created. Like the IHS merge, 

the new data preserves the spectral characteristics of the original data with the 

spatial properties found in the panchromatic data. The PCS method has been 

criticized in the past for an uneven mixture of the TM bands in the first principle 

component, thought by Zhou et al. (1998), to lead to variations in spectral and 

spatial quality in some bands. However, others have praised this method for
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achieving better results than the IHS merging technique, as well as other 

methods tested (Chavez et al., 1991; Tu et al. 2001).

Another commonly applied merging technique involves layer ratios and 

multipliers to gain a sharper image appearance. Brovey transforms have been 

used in previous studies (Van Der Meer 1997) and although the results are 

impressive visually when compared to other methods, Brovey Transform tends to 

have difficulty maintaining image properties. It was originally developed to 

visually increase contrast in the low and high ends of an image’s histogram (Van 

Der Meer 1997), allowing for more appealing visual image characteristics.

There have been many models created by researchers over the years that 

use the concept of differentiating high frequency image properties from low 

frequency image properties (Zhou et al. 1998, Sanjeevi et al. 2001). Wavelet 

merging techniques are based on the principle of removing the low frequency 

data from the high resolution data and using only the high frequency data in the 

merging process. It is thought that the low frequency data contained in the high 

resolution data is the cause of radiometric distortion. There are two types of 

similar wavelet methods, additive and substitution. Both involve the subtraction 

of the panchromatic layer from a smoothed version of itself to obtain only the 

high frequency data, also thought of as texture or heterogeneous data. The 

substitution method replaces the high frequency details of multi-spectral images 

with the panchromatic image. The resulting data are then re-combined with the 

residual low frequency of the multispectral image, also thought of as colour
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saturation or homogeneous data. Additive methods add the high frequencies of 

the panchromatic image to the high frequencies of the multi-spectral image.

In contrast to other merging techniques, the level of detail in wavelet 

transforms is adjustable rather than fixed, as it is controlled by the level of high 

frequency data extracted from the high resolution data in both substitution and 

addition methods. The additive method appears faster, more efficient, and unlike 

the substitution method, next to no decomposition of the multi-spectral data 

occurs. However, there is a cost associated with wavelet transformations. The 

total preservation of radiometric properties in each of these cases reduces the 

level of spatial enhancement of the final product. When performing an image 

merge, the challenge is to find an acceptable limit to radiometric distortion of the 

image, while concurrently finding a balance between radiometric loss and spatial 

gain.

At present, researchers have documented few quantitative methods to 

evaluate the performance of various image fusion techniques; most evaluation is 

based on visual inspection. Correlation has been used by a few to justify best 

relationships between data sets (Carper et al. 1990; Pohl and Van Genderen 

1998; Tu etal. 2001 and Teming etal. 2001). Once a successful evaluation of 

each method is accomplished, the data may hold new information, useful to a 

classifier.

ACCURACY ASSESSMENT

The final but very essential aspect of any landscape classification involves 

the evaluation of the resulting thematic layer product by assessing the
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information assigned within each pixel or polygon as well as the spatial accuracy 

of mapped elements. Both quantitative and qualitative methods have been used 

to evaluate map integrity. Traditional quantitative methods usually involve point- 

based error matrix calculations and have been widely utilized to evaluate the 

accuracy of thematic maps created by satellite imagery on a pixel-by-pixel basis 

(Foody 2002). Qualitative methods to validate work have historically consisted of 

general visual inspection of mapping results (Congalton 1994). For the purpose 

of this study an attempt to quantitatively assess the error has been attempted.

The method of classification is an important consideration when deciding 

an appropriate quantitative accuracy assessment strategy. Congalton and Green 

(1999) point out that evaluation using polygon-based sample units is acceptable 

and may be more suited to users more interested in polygon detail. For the 

purposes of this study, a polygon-based error assessment may be required due 

to the nature of the segment object-based classification methods.

The reference data may be collected from the ground, and although 

expensive, gives the users a “true” indication of landscape information. A less 

costly means of collecting this reference data may include interpretation of aerial 

photographs, depending on the required level of detail by the user (Congalton 

and Green 1999). Franklin et al. (2002a) found that comparison of ground areas 

from satellite-derived classification to identical areas on orthophotographs by 

means of visual interpretation gave a more representative estimation of map 

quality. The report added that per-pixel map accuracy compilations did not 

always provide an understanding of the spatial distribution of map error.
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METHODS

STUDY AREA

The study area is located within the Caribou Forest, under licence to 

Bowater Pulp and Paper Canada Inc., in the northwestern portion of the province 

of Ontario (Figure 1) and was selected for a number of reasons. First, the 

Caribou Forest possesses a relatively low intensity of forest management activity 

compared to other forest licenses in northwestern Ontario. This is important in 

terms of data acquisition, especially when using imagery from two or more dates, 

as differences in ground properties between images will increase error in the 

integration process.

t
Caribou Forest

Thunder Bay N

Figure 1. The Caribou Forest licence.
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The second reason for selection pertains to the recent focus by the 

provincial government to garner wood supply from more northerly areas and to 

manage parks with regard to biophysical characteristics. It was selected to relate 

the results to many more future large-scale inventory projects expected to take 

place in areas in the Northern Boreal region of Ontario with similar landscape 

characteristics. The “Northern Boreal Initiative” (NBI) involves a vast area of land 

north of existing forest licenses in Ontario for forest management. The area 

covered by NBI is one of the world's last great intact forests and is part of a 6,500 

kilometre arc of frontier (large, ecologically intact and largely undisturbed by 

industrial activities) forest from Newfoundland to Alaska. Located north of 

approximately 51 degrees latitude, this area is approximately 37 million hectares 

is size (Wildlands League 2002). Forest inventory for this area has not yet been 

developed, and is an ideal subject for satellite remote sensing, primarily due to its 

lack of access. Developing the area north of the 50th parallel has become a 

factor in the province’s future plans for wood allocation. Classification of this 

forest will allow for better understanding of the challenges associated with 

attaining satellite imagery based inventories further to the north. A crucial step in 

the NBI will be the creation of inventories for areas of the far north, generating 

the need for exploration into new inventory methods designed for these areas.

Further, new initiatives to develop management strategies in the 

province’s parks have instigated the need for updated forest inventories for these 

parks. As the Caribou Forest is adjacent to Wabakimi Provincial Park, results
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from this study would apply to possible inventory development designs in this 

and potentially other park reserves in the province.

The fourth reason for conducting the study in the Caribou Forest relates to 

the abundance of existing ground control data stemming from initiatives taken on 

by the licensee.

Figure 2 shows the Caribou Forest limit and lakes exclusively with the 

study area boundary included. The study area encompasses approximately 

174,792 hectares of the total 547,460 hectares of forested land within the 

licence. The composition of the Caribou, based on the current forest 

management plan, is dominated heavily by conifer species. Black spruce (P/cea 

mariana (Mill) BSP.) is the primary conifer species, and accounts for 

approximately 75% of the total forest composition. Jack pine (Pinus banksiana 

Lamb.) is the second most significant conifer.

7,

s ' *  *

Figure 2. The study area contained within the Caribou Forest.
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White birch (Betula papyrifera Marsh.), balsam poplar (Populus balsamifera L.) 

and trembling aspen (Populus tremuloides Michx.) make up all hardwood stands. 

Table 1 provides information for the species found in this forest at the working 

group level.

Table 1. Caribou forest working groups by area.
Working 

Group (Wg)
Hectares

(Ha) %
Black Spruce 413888 75.60%
Jack Pine 84385 15.41%
Poplar 39293 7.18%
Birch 6942 1.27%
Cedar 1453 0.27%
Balsam Fir 1090 0.20%
Larch 373 0.07%
White Spruce 37 0.01%

Total 547,460 100%  i

SOFTWARE TOOLS

A number of software tools are used in the data preparation and analysis 

stages of this project. Software packages by Environmental Systems Research 

Institute (ESRI) - ArcGIS and Arcview were used to manage vector database 

information. Erdas Imagine 8.5 was used for pre-processing and accuracy 

assessment stages of the process. Segmentation and classification of the 

imagery was performed using Ecognition 2.0. General data compilation and 

analysis was performed using SPSS 9.0 and Microsoft Access 2002.

FOREST CLASS DESCRIPTIONS

The forest cover was grouped into classes referred to as forest units. 

These forest units were derived based on FRI characteristics created to group 

areas that can be managed using similar silviculture prescriptions. Forest unit 

agglomerations were made using species composition as a primary indicator, as
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well as ecosite classification, to distinguish between forest units. Table 2 

provides information of the forest units present in this forest as well as the FRI 

parameters used to assign these designations.

Table 2. Common1 forest units and corresponding FRI parameters in the Caribou 
forest.

Forest Unit Code Main Working 
Group

FRI
Parameters

Spruce Lowland SPL Spruce Ecosite in (3 4 ,3 5 ,36 ) or Ecosite = 37 and Sb >= 7

Spruce Upland SPU Spruce Wg = Sb o r Sw, and Sb+Sw >= 70% and P o +Bw <= 20%

Jack Pine PJ1 Jack Pine Pj >= 60%  and P o <= 20%

Poplar POI Poplar Po >= 70%

Mixed Conifer 1 MC1 Mixed Conifer 50%>=,and P o<= 20% and Po-»Bw<= 30%

Mixed Confier 2 MC2 Mixed C onifer >= 60%, o r Conifer >= 5 0% and working group is conifer sp.

Mixed Hardwood MH1 Mixed Po+Bw+OH >= 50%

of the forest and were removed from the analysis.

The groups used for the classification (Table 3) begin as broad level forest 

distinctions, historically detected by Landsat data alone, and are then broken 

down into finer classes based on forest units. Stand age was not considered in 

the classification hierarchy as initial trials determined this element was confusing 

the classifier and producing negative results. Focus was placed on attaining 

meaningful forest unit level delineation.

Table 3. Classification structure targeted by methodology.

Broad Level Forest Unit 
Level

Species
Level

Conifer SPL Sb
SPU Sb, Sw

Conifer Mixedwood PJ1 Pj
MC1 Mixed

Deciduous P01 Po
Deciduous Mixedwood MH1 Mixed
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DATA PREPARATION 

Image Acquisition

Landsat 7 data and IRS panchromatic data were used for this study. The 

Landsat data, acquired on July 5th, 2001, possesses 6 multi-spectral bands of 

information and scanned at a ground resolution of 30 m. Full coverage of the 

study area was available with no cloud or haze interference. The IRS 

panchromatic image, acquired on June 7th, 2001, possesses a single band of 

data scanned at a resolution of 5.8 m, and then re-sampled to 5 m pixels at the 

processing stage. The image was archived with Space Imaging (the vendor), 

with a 10% cloud cover categorization. Upon further observation of the scene, it 

was determined that haze in the south west corner of the image accounted for 

most of the 10%. This region was then excluded from the study area to minimize 

error in processing steps to follow. Cloud cover remaining after finalized 

boundaries consisted of three local “popcorn” formations, predicted as being 

easily isolated and removed from the data. Landsat Multispectral Scanner (MSS) 

as well as Landsat 5 TM were used to extract historic disturbance information 

from the forest, dated as far back as 28 years. Sensor specifications for all 

Landsat sensors used and the IRS-1 D sensor can be found in Table 4.
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Table 4. Image specifications of data used in thematic map production.

Sensor Band Number Spectral Range
(microns)

Pixel 
Resolution (m)

Study Area 
Coverage Date Aquired

2 .525 to .605 30 Full Jul-01
3 .63 to .690 30 Full Jul-01

Landsat 7 TM 4 .75 to .90 30 Full Jul-01
5 1.55 to 1.75 30 Full Jul-01
7 2.09 to 2.35 30 Full Jul-01

Indian Remote Sensing 
Project IRS-1 D

1 .500 to .750 5.8 Full Jun-01

Green to Middle IR 30 Full Jul-95
Landsat 5 TM 2,3,4.5 Green to Middle IR 30 Full Aug-91

Blue to Middle IR 30 Full Oct-85

Green to Near IR 79 Full Aug-84
Landsat MSS Green to Near IR 79 Full Jun-83

Green to Near IR 79 Full Aug-74

Image Rectification

All current database coverages for the Caribou Forest were provided by 

the provincial government (Ontario Base Map Series), and used in the 

rectification process. The images are georeferenced to a UTM (m) coordinate 

system (Zone 15 North) using the NAD 83 datum. Georeferencing of all Landsat 

data and IRS data were performed using provincial drainage vector data as a 

geographic reference. Both images were rectified with RMS errors of less than a 

pixel, conforming to standards used in image analysis literature (Jenson 1996). 

IMAGE MERGING 

Trial Design

In order to select an appropriate merging method for this dataset, a trial 

was performed on two subsets of the study area. These areas were selected to 

represent all of the characteristics of the entire image to observe how different 

features in the image reacted to different merging methods. Figure 3 illustrates 

the location of the subsets.
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Figure 3. Subset areas for merging method analysis 

Subset study area 1 contains a forest cover consistent with the rest of the 

study area, while subset study area 2 possesses some similar forest cover with 

the addition of some cutover coverage. This type of disturbed area occurs in 

other parts of the study area, and appears to contrast general spectral properties 

of the forested areas. It was felt that this contrast in spectral properties should 

be a part of one of the subsets to determine its response to the merging 

methods.

Brovey transforms, Wavelet transforms, IHS, and PCS are four of the 

most widely utilized methods when fusing satellite imagery. These four systems 

were tested using the selected subsets. Figures 4 and 5 outline the steps taken 

to determine the most effective merging technique for this study.
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Figure 4. Steps for merging trial using 4 methods and subset 1.
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integration 
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imagery

Figure 5. Steps for merging trial using 2 methods and subset 2.

Brovey Transform

This resolution merge is found as a default in many image analysis 

software packages, and uses simple ratio and multiplicative techniques to 

achieve a resolution merge. The algorithm used in the model is as follows: 

[DNR/(DNR+DNG+DNB)] x DNirs-pan = DNR-new; 

[DNG/(DNR+DNG+DNB)] x DNirs-pan = DNG-new; 

[DNB/(DNR+DNG+DNB)] x DNirs-pan = DNB-new;

where;

R,G,B = red, green, and blue bands of the image;

DN = Digital Number (brightness value of pixel); 

and irs-pan = Panchromatic image

The Brovey transform is used primarily for producing RGB images with a 

higher degree of contrast, and also for producing visually appealing images. No
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literature was found supporting its use for computer assisted image analysis in 

forested landscapes. Consequently, mediocre results were expected from this 

method using this dataset. Testing was performed using this merging method to 

observe how the data used in this study would react in the transform.

Wavelet Transforms

For this trial, an additive wavelet transform seemed more suited to the 

data being used in the fusion process. Substitution methods resulted in little 

change to the Landsat image in attempts to integrate the panchromatic data. It 

was thought that the substitution method might be better suited to lower ratios of 

spatial difference between the products to be fused. In order to monitor the 

effects of altering the filter size in the substitution transform, two different filters 

were used in two separate substitution attempts. The first filter uses a window of 

5 pixels, and the second filter uses a window of 15 pixels. The smoothed images 

were then subtracted from the original panchromatic data. The result of this 

subtraction, containing the high frequency data, was added to the bands of the 

low resolution multispectral data, combining the high frequency data from both 

sets of imagery. The expected result was a sharper, more detailed multispectral 

image.

Intensitv-Hue-Saturation

A colour transform was applied to the low resolution Landsat data, and its 

properties were converted from RGB colour space to IHS colour space. Before 

the panchromatic image was substituted for the intensity layer, a normalization 

procedure was applied to ensure that specific image properties (e.g.
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atmospheric) did not interfere with the merge. The transformation was then 

reversed with the substituted data, and the result was a spatially enhanced, 

multispectral image. Testing this method involved several different combinations 

of bands transformed into IHS space, to determine if any combination of three 

bands might be superior.

Principle Component Substitution

Using the PCS method, the data contained in the original Landsat bands 

were transformed using a principle component transformation. The IRS 

panchromatic was then normalized to the first principle component (PC1), and 

then substituted in place of PC1. As indicated by past research, the properties of 

the first component are more often highly correlated to the properties of the 

panchromatic data. If true, the PCS method may cause less image property 

distortion than the IHS method. The data was then transformed to its original 

state using an inverse principle component transformation, resulting in a new 

spatially enhanced Landsat image.

Image Normalization

When using satellite data from different dates it is important to consider 

atmospheric differences between the datasets. When using data from two or 

more different sensors, variation between sensor properties may cause 

inaccuracies during data processing. Normalization of the data is used to 

minimize this effect by eliminating inconsistencies in pixel values. In order to 

proceed with the last two methods in this trial, normalization of the panchromatic 

data must precede the substitution stage. In the case of the IHS merging
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system, the panchromatic image had to be normalized with the intensity layer 

before it could be substituted, and for the PCS method, the first component had 

to be matched. A random sample of the pixel values was taken of the IRS image 

and the images to be substituted from each method. A regression curve was 

generated and applied to the high resolution panchromatic data in each case. 

Image Evaluation

An evaluation of each merging method for the two subsets consisted of a 

general visual inspection, as well as a correlation assessment of each band from 

the enhanced product against the original band of Landsat data. Determination 

of the appropriate sample size to collect from each image was necessary, as the 

correlation coefficient resulting from a Pearson Correlation would be influenced 

differently with varying sample sizes, [Mackereth (pers. comm., 10 April, 2002)]. 

The formula used in the test measures the strength of the linear relationship 

between two random variables. The equation is as follows:

Where

SSxy = the sum of products of distances of x and y measurements 
from their means;

SSxx = the sum of squares of the distances between x measurements and 
their means;

SSyy = the sum of squares of the distances between y measurements and 
their means.
As the sample size increased the denominator term also increased, as 

degrees of freedom (df) increased, and the Pearson Correlation Co-efficient (r)

r  =
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decreased if all else was constant. However, it is unlikely that the numerator 

term would remain constant as sample size increased so it was not immediately 

clear how the r term was influenced. Therefore, the significance level of 

correlation with a sample of 10 pixels was not really comparable to that of a 

sample of 1,000 pixels. Since the sample size was constant for the various 

bands all correlations and associated significance tests should be comparable. 

However, if the sample size was too small the predictions of r may not be 

accurate. In order to test that sample sizes from the images were not influencing 

the resulting r value, verification that the sample was giving a stable estimate of 

standard deviation was required [Mackereth (pers. comm., 10 April, 2002)]. As 

sample size increased the estimate of mean and variance should fluctuate about 

the true population value and eventually stabilize. A collection of sample sizes 

for three of the six bands from the merged data were collected and plotted to 

determine the point of standard deviation stability.

Once the appropriate sample size was determined the results of each 

merging trial could now be evaluated. The correlation coefficient is an indicator 

of how well the product of the merge maintained its spectral properties. None of 

the products were expected to perfectly correlate to the original image, as 

changes in texture have occurred. However, it was assumed that the product 

with the highest average (from multiple bands) correlation coefficient indicated 

that the image was suitable for further analysis.
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CLASSIFICATION METHOD 

Image Segmentation

The goal of image segmentation is to extract from the image, areas with 

consistent image properties. Segmentation attempts to simplify the 

heterogeneity of finely resolved imagery that has historically caused classification 

error. In simple delineation situations, this may lead to areas of homogeneous 

characteristics being separated from areas with heterogeneous characteristics.

In the case of forest structure, differences in image properties may be less 

obvious than this and require separation of two heterogeneous areas based on a 

small difference in spectral and spatial properties. The end result of 

segmentation is a set of image objects to be further processed as whole units, 

rather than the traditional pixel by pixel classification. The segmentation 

algorithm allows the user to control object spectral properties and shape by 

adjusting parameters in combination with a scale parameter that controls the 

average size of image objects. Figure 6 outlines the segmentation process.

Individual 
Layer Weighting
Value between 

0 and 1

♦
Scale factor 

Abstract Wlue

Spatial 
Heterogeneity 

Criterion 
i.e. 20%

Weighted as %

Spectral 
Heterogeneity 

Criterion 
i.e. 80%

Smoothness 
of Shape 
Le. 90%

Weighted as %

Compacteess 
of Shape 
Le. 10%

Segmented
Image

Figure 6. Segmentation parameters and process.
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The procedure of image segmentation can be described as a region 

merging technique, whereby objects begin at the pixel level and are merged with 

one another based on a set of decision criteria (Baatz and Schape 2000). The 

merging decision, or fusion value, is based on the previously mentioned local 

criteria or parameters, describing the similarity of adjacent image objects. In 

many cases the exclusive minimization of spectral heterogeneity leads to 

branched segments or to image objects with fractally shaped borderlines. By 

mixing the spectral heterogeneity with a criterion for spatial heterogeneity, the 

shape of each image object may be controlled. The spatial heterogeneity may 

be further defined by its smoothness (creates long, diverse, irregularly shaped 

objects) or compactness (creates systematic, consistently shaped objects). 

Balancing these spatial parameters allows for flexibility in shape properties. In 

addition, the scale parameter sets the measure for the maximum change in 

heterogeneity that may occur when merging to image objects.

Stratification of the imagery into these objects was based on a trial and 

error system and satisfaction of the segments was based on the user’s 

interpretation of what appropriate level will suit the classification. The 

segmentation is repeatable. Therefore the user may grow accustomed to the 

parameters and how each one affects the segmentation of the data in question. 

Although time consuming, the satisfactory image objects are the basis of the 

remaining classification procedures, and will assist in dealing with image texture 

appropriately. Care was taken to ensure proper segmentation of the layers.
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At first glance of the newly merged data, the human eye delineates 

features on the image that appear to be different, especially features such as 

wetlands, roads, or disturbance patterns. Differences in forest structure were 

also apparent in many cases, often when hardwood and softwood components 

varied within the stand. The aim of the segmentation was to imitate these human 

perceptions using the segmentation algorithm (Baatz and Schape 2000). Using 

the green, red and near infrared bands evenly weighted, along with a Normalized 

Difference Vegetation Index (NDVI) and certain band ratios, the segmentation 

was performed altering one parameter at a time, until user satisfaction was 

achieved. Allowing the algorithm to make decisions on boundary placements, 

but not letting it change the perception of what the user visualizes as important. 

The user should maintain control in terms of what should and should not be 

delineated.

It is important to note that the selected scale factor ultimately decides how 

large a segment can be, and therefore a larger forest stand that is not 

necessarily different may be split by the segmentation. Large, homogeneous 

areas on the image that exceed the limitations of the scale parameter, are split 

into image objects, by the segmentation process, that meet the requirements of 

the scale parameter selected. Possessing similar statistical properties, these 

image objects will be classified together and later rejoined as one unit. For this 

reason, choice of scale in the case of this data was always set smaller, in order 

to ensure that smaller groups of different forest types were not combined.
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It is also crucial to understand that the algorithm does not segment an 

image object based on the knowledge of a previously non-neighbouring 

segmented object. Image objects are selected for separation depending only on 

the difference in spatial properties of the object or objects neighbouring the 

object in question. Figure 7 displays an example of the segmentation used for 

this classification.

Figure 7. Subset of image objects, yellow polygons resulting from analysis of 
Landsat data merged with IRS panchromatic data. Image displayed 
using near IR, middle IR, and red ordered as RGB.

Ground Truth Data

The data used to train this classifier consists of existing field point clusters 

overlain across the image in a two-kilometre grid system. Field plot data was 

collected in 1996 by Bowater Pulp and Paper Canada Inc. Each cluster contains 

four sample points spread 200m apart from one another. Each sample point
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(2m2/ha BAF prisms) recorded various stand structure variables such as basal 

area, height, age, and species composition. This field point data was used by a 

photo interpreter to develop a polygon layer possessing the current FRI 

interpreted polygons, generalized into the operational forest units currently used 

in the Caribou Forest for management purposes. Training sites were selected 

from these datasets based on an agreement of image object dimensions to the 

polygon layer, and then reaffirmed using the data from field plots to ensure 

correct representation of the forest class (Figure 8). Verification of these truth 

areas were also reaffirmed using field visits during the training process to ensure 

that classes were being accurately represented on the image.

Figure 8. Forest unit grid (bright green = SPU), field data points, and image 
objects (red polygons) overlaid in training stage.
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Image Classification

In order to produce statistically valid results from the classifier, it is 

important to meet certain requirements when training the classifier. In order to 

successfully train the classifier, careful attention to consistency when selecting 

sample areas, as well as sampling from a diverse representation of each class is 

necessary. The classifier used in this study is a supervised nearest neighbour 

algorithm, with the ability manipulate membership functions depending on the 

dimensions of the data.

Using the truth data described in the previous section as well as general 

knowledge of obvious image features, image objects were selected and assigned 

to their respective forest unit classes. The image objects selected as samples 

contribute more diverse information to the classifier than simply pixel brightness 

used in single pixel classifiers. The relationship of pixels contained within an 

image object creates measured properties in terms of colour, shape, and spatial 

information relating to each image object. When introducing samples to each 

class, it was important to ensure that representative samples were being used, 

as one unrepresentative sample may throw the balance of the classifier off very 

easily. The use of image objects allows for an iterative cycle of adding and 

removing sample objects as the user sees fit. When a class was poorly 

represented in the feature space, more samples were added to strengthen the 

classification. Likewise, an unrepresentative sample was removed if the sample 

was felt to be confusing the classifier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

The selected samples create multi-dimensional feature spaces of known 

classes. The classifier then placed remaining image objects into these known 

classes using membership functions. Membership functions are a simple form of 

translating an arbitrary feature range into a uniform range between 0 and 1, 

where 0 represents no membership to a class, and 1 represents full membership 

to a class. The use of membership functions are most effective in situations 

where a class may be separated from other classes by just a few features or 

perhaps only one feature. For instance, removing a water class or clouded areas 

initially by implementing cut-off ranges of image object means using just the 

infrared channels in the data, is a common example of manipulating the 

membership functions of the classifier. When dealing with more complex feature 

space (e.g. spruce and pine classes), user designated membership functions 

may lead to large overlap regions in the feature space, and therefore these 

classes may only be separated using the nearest neighbour algorithm.

Once a typical representation of each class is established, the nearest 

neighbour algorithm looks for the closest sample object in the feature space for 

each unclassified image object. The classifier measures distance of image 

object to sample object using the equation:
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where;

d = distance between sample objects;

= Feature value of sample object for feature / ;

= Feature value of image object for feature / ;  and,

( j  f  = Standard deviation of the feature values for feature / .

Once the distance in feature space is determined for an image object it used with 

a Gaussian function, where the function slope value controls the assignment of 

the image object. The function slope uses the distance of the object to the 

sample, weighted by the standard deviation of all samples in the class. The 

result of this equation assigns the image object with a value between 0 and 1, 

referred to hereafter in as the membership value of an object. This function 

slope can be adjusted to allow for more stringent or more lenient group 

memberships. The algorithm will give the image object a membership value for 

each of the classes and report the best membership (closest to value 1) to a 

class as well as how the image object fit into the remaining classes. This feature 

of the algorithm allows the user to take advantage of the fuzzy logic classification 

theory.

Fuzzy logic is a classification term that encompasses the mathematical 

approach to quantifying uncertain statements (Foody 1999). Rather than
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assigning either 1 (full membership) or 0 (no membership), the algorithm instead 

calculates the degree of membership (value between 0 and 1) of the image 

object to any possible classified group. Due to its abstract nature and frequently 

argued applicability (Runesson 2001), it is used in this classification as a guide to 

indicate where confusion between classes may be occurring.

Image layers used in the classifier extended beyond just the spatially 

enhanced Landsat data layers. A NDVI was created and added, as well as some 

commonly used ratios including the near infrared band divided by each of the 

green (4/2) and red (4/3) channels of the Landsat sensor. These ratios and 

transformations have been known to increase separability between vegetation 

classes in other studies (Jensen 1996), and may add to the dimensions of the 

feature space.

Accuracy Assessment

Problems assessing area-based classifications with point-based accuracy 

reference data have lead to poor accuracy results in past studies (Boudewyn et 

al. 2000). Therefore, an area-based reference set was used to assess the 

quality of the IRS/Landsat 7 classification. Medium scale, black and white 

photography (1:20,000) taken in 1997, was used primarily for the assessment 

stage of the process. The photographs were interpreted to a forest unit level 

using the predetermined boundaries created in the image segmentation stage of 

the system, to ensure consistent evaluation of species composition in similar 

areas. Transparencies containing image objects were overlaid on the 

photographs and areas within the boundaries of each object were interpreted and
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given a species composition. A subset of the study area (Figure 9) was selected 

for photo interpretation, providing a continuous and diverse measurement of 

ground properties on approximately 20% of the land cover in a centralized region 

of the Caribou forest.

The photo interpreter selected to interpret image object polygons was 

provided by Bowater Pulp and Paper Canada Inc., and possessed over 30 years

Figure 9. Extent of photo interpreted area (yellow polygons)

of experience interpreting photography in the boreal forest, particularly in 

Bowater’s forest licenses. The interpreter also took part in the field check work 

during the photo inventory of the Caribou Forest license in the 1970’s.
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Collecting appropriate reference data for use in an error matrix reinforces 

the integrity of the evaluation of the thematic product. Criteria such as the data’s 

sample size as well as sample stratification can affect the results of an accuracy 

assessment. Congalton and Green (1999) suggest a minimum sample size of 50 

reference areas or points for most classifications to provide a good balance 

between statistical validity and practicality. In this study, sample size was 

achieved for all classes with exception of the pure trembling aspen class due to 

lack of this cover type in the study area. For the purpose of this study, it was 

practical to collect more than 50 area samples for all other classes.

Proper sample stratification is often compromised when trying to save time 

and money in the sampling procedures. Ideally, the photo interpreter should 

sample random segmented polygons from the entire study area overlain on 

photography, however, this Was not possible due to budget constraints of the 

study. Instead, the sample was taken randomly from the continuously interpreted 

area (20% of study area), and used in the error matrices. All areas used in the 

error matrices are selected randomly within classes.

Accuracy assessments in remote sensing research traditionally use three 

primary measures to assess the degree of success for a classifier: a user’s 

accuracy, a producer’s accuracy, and an overall accuracy. Producer’s accuracy 

is a ratio designed to indicate the proportion of each class being correctly 

classified on the map as indicated by the reference data. User’s accuracy 

extracts a ratio of per class of agreement of the thematic product to what might 

actually exist on the ground. Overall accuracy is simply the sum of correctly
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classified sample units divided by the total reference points, and is thought to 

take both producer’s and user’s accuracy into account. An error matrix is used to 

tabulate these measures, and displays errors of omission and commission from 

each class. Omission errors indicate when a reference area was incorrectly 

excluded from its correct class. Errors of commission indicate reference areas 

incorrectly assigned to a particular class that actually belong in other classes.

A Kappa statistic was also calculated for every matrix as a fourth measure 

of the thematic product. Calculating the Kappa statistic incorporates the user’s, 

producer’s and overall accuracy totals, and is used widely by the remote sensing 

community. It is a statistic used to measure the agreement, beyond chance, 

between two maps (e.g. output map of a classification and ground-truthed map). 

Correctly assigned areas may have been assigned by chance and not based on 

the classification decision rule. The Kappa value indicates how accurate the 

classification output is after this chance, or random, portion has been removed 

(Congalton and Green 1999). A formal equation for Kappa is represented by:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55
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where; r  = the number of rows in the error matrix;

X = the number of observations in row / and column j, on the

major diagonal;

= total number of observations in row

X  = total number of observations in column j;

and, N = the total number of observations included in the matrix.

To obtain comparison, the remaining field point data (not used in training 

stage) will be used in a secondary assessment to determine whether the point- 

based accuracy assessment is adequate for this study.

All of the components described this far combine to form the primary 

method for developing a strategic forest inventory. Figure 10 shows how the 

components fit together. In addition to the primary method, an alternative 

method was also tested.
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Figure 10. Primary method used in the study of classifying imagery into forest 
inventory.
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ALTERNATIVE METHOD

The reference (photo interpreted) might also act as an effective tool for

training the classifier. Its ability to train the classifier was examined, as an

alternative to the existing field points and forest unit grid used in the primary

method. If successful, it could be included in the process of training an area that

has limited field point data or inventory coverage. For both the primary and

alternative method, the original (and less expensive) Landsat data was used as a

control to help gauge the level of improvement achieved from merging.

Table 5. Summary of alternative classification attempts and respective satellite 
data, ground truth, and reference methods.

Classification Method Satellite Data Ground Truth Reference

Primary Method Merged IRS/Landsat
2 km Stratified Field Plots (Field 

Crew Collected) & Forest Unit Photo Interpreted Segments

Primary Method Control Landsat

Grid

2 km Stratified Field Plots (Field Aspatial Comparison

Alternative Method Merged IRS/Landsat

Crew Collected) & Forest Unit 
Grid

Photo Interpreted Segments Aspatial Comparison

Alternative Method Contra Landsat Photo Interpreted Segments Aspatial Comparison

The results of classifications performed using alternative methods were 

measured aspatially with the merged classification result and each other. Area 

based spatial assessment was only performed on the merged data due to budget 

constraints. These alternative method results will be compared to the 

IRS/Landsat result using non-site specific area assessment, based on class area 

totals within the study area.
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COST COMPARISON

A cost analysis was performed to illustrate a comparison between 

traditional FRI methods and the procedures used in this thesis. Costs for each 

stage of conventional FRI methods were attained from local contractors based on 

1:20,000 scale, black and white photography, for an average sized SFL in 

northwestern Ontario. Cost for satellite inventory methods were derived based 

on the estimated time required to complete a project. Accuracy assessment 

stages of the primary method were not included in the cost, as practical 

applications of satellite-derived inventory usually assume accuracy based on 

previous research into the methods.
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RESULTS 

IMAGE FUSION - PRIMARY METHOD 

Correlation Sample Size

A variety of pixel sample sizes were tested in order to verify at what point 

the sample was giving a stable estimate of standard deviation. Brightness values 

from three bands from the Landsat image were used to graph the results.

Figures 11-13 show the results of the plotted standard deviation results from 

samples taken in 1 % pixel sample divisions. Sample pixels were selected 

randomly excluding any points that occurred in water. Sample sizes of up to 20% 

of the total population were tested. In all three cases the standard deviation 

appeared to stabilize at a sample size of 10%. Throughout the rest of the 

procedure a sample of at least 10% of any image was used to statistically 

evaluate all merging techniques.
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Figure 11. Fluctuation of standard deviation for varying sample sizes of Band 4.
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Figure 12. Fluctuation of standard deviation for varying sample sizes of Band 3.
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Figure 13. Fluctuation of standard deviation for varying sample sizes of Band 2.
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Normalization

Normalization procedures took place in all of the merging procedures. 

However, the presentation of results for each normalization attempt is not 

necessary to compare successes and failures of each merging technique. For 

the PCS merge of the full study area, all results of the merging process are 

presented in full.

Preliminary Image Fusion -  Subset Study Area 1

The first trial including all of the merging methods and was intended to

determine weaker methods for this data set. Table 6 provides a description of

the correlation to the original Landsat band results in more detail. The variable

being compared in the correlation is pixel brightness. Due to the limitations of

IHS and Brovey methods using band combinations possessing only three bands,

the green, red and near infrared bands were used for comparison.

Table 6. Correlation of brightness values of merge product bands with original 
Landsat bands in subset 1.

Fusion Method Band 4 (r) Band 3 (r) Band 2 (r) Average (r)
"IHS" 0.91 0.71 0.63 0.75
"PCs- 0.88 0.95 0.90 0.91
Brovey 0.79 0.62 0.71 0.71
Wavelet 15x15 0.99 0.95 0.93 0.95
Wavelet 5x5 1.00 0.97 0.97 0.98

Both wavelet methods along with principle component substitution have 

the highest correlated with the bands of the original image. However, upon 

visual inspection, it was noted that wavelet transforms had little effect on the 

image in terms of textural enhancement. Table 7 displays the relationship of the
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texture product from each method, correlated back to the original IRS 

panchromatic image.

Table 7. Correlation of brightness values of merged product textural features with 
original IRS panchromatic band.

Fusion Method IRS PAN (r)
"IHS" 0.97
"PCS" 0.96
Brovey 0.93
Wavelet 15x15 0.72
Wavelet 5x5 0.69

PCS and IHS continued to hold the textural integrity of the IRS 

panchromatic data, as well as the Brovey transform at 0.93. Wavelet transform 

subsets found in figures 12 and 13 degraded the texture of the high resolution 

data, resulting in better radiometric preservation, however adding little new 

information to the image. Figure 14 exhibit the results of the Brovey transform, 

which correlated well texturally, but was unsuccessful at maintaining the spectral 

integrity of the original image in all bands as expected. Although not obviously 

apparent in the small samples of subset 1 (Figures 14-19), in-depth visual 

inspection of the images agreed with statistical analysis, confirming Brovey and 

Wavelet transforms as unsuited for this data. Although the IHS method compared 

texturally in the correlation tests quite well, it possessed an average radiometric 

correlation of only 0.75, with the near infrared band respectively high, but the red 

and green somewhat lower. Further testing with IHS method on this subset, 

using a different band combination of the two middle infrared channels, and the 

near infrared (band 7, band 5, and band 4), showed improved correlations (r
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Figure 14. Original Landsat bands 4,3,2. Figure 15. Wavelet 5x5; Bands 4,3,2.

Figure 16. Wavelet 15x15; Bands 4,3,2. Figure 17. Brovey; Bands 4,3,2.

Figure 18. IHS merge; 4,3,2. Figure 19. PCS merge; Bands 4,3,2.
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value) of 0.77, 0.82, and 0.81 respectively, for an average of 0.80. The PCS 

method correlated well in all respects.

Preliminary Image Fusion -  Subset Study Area 2

The second subset was used to test IHS and PCS merging method 

further. All available three-band combinations using the IHS method were used 

and compared to the PCS method. Results of the correlations are displayed in 

Table 8. Once again, the PCS product correlations (average 0.89) were 

consistently superior to those of IHS products.

Table 8. PCS and HIS brightness values (various band combinations)
correlations to original Landsat bands.

Fusion Method Band 2 (r) Band 3 (r) Band 4 (r) Band 5 (r) Band 7 (r) Average (r)
PCS 0.87 0.91 0.88 0.84 0.93 0.89
IHS432 0.60 0.89 0.89 0.79
IHS532 0.45 0.72 0.86 0.68
IHS542 0.61 0.87 0.91 0.79
IHS 543 0.80 0.86 0.89 0.85
IHS754 0.84 0.85 0.86 0.85

The highest correlations for IHS occur with the combination of bands 5, 4 

and 3 as well as bands 7, 5 and 4, at and average of 0.85. The green and red 

bands continued to compare lower values in the correlation. Figures 20-22 

display a small portion of the subset study area 2 with the merge products as well 

as the original Landsat bands middle infrared (5) as red display, near infrared (4) 

as green display, and red (3) as blue display.

The PCS method consistently ranked high (r2 = 0.88-0.95) in most band 

comparisons to the original data. The IHS method is limited to a three-band 

combination, and the variation in these combinations caused changes in band 

correlations. Because it is difficult to identify what effects different band 

combinations have on the quality of the merge, error caused in the classification
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by the merging method may be more difficult to isolate and control. For both of 

these reasons, PCS method was selected as the appropriate merging method for 

this dataset, and was used exclusively to merge data for the entire study area.

Figure 20. Original Landsat bands 5,4,3. Figure 21. IHS merge; bands 5,4,3.

Figure 22. PCS merge; bands 5,4,3.

Secondary Image Fusion -  Full Study Area

In order to normalize the IRS panchromatic image to the first component 

(PC1) of the transformed Landsat data, a quadratic (second order) equation was 

developed using regression techniques. A random sample of pixels (10% of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

pixel population) coinciding from both images was collected from non-water 

locations, and regressed to develop the quadratic curve found in Figure 23.
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Figure 23. Quadratic curve regressed from pixels of IRS and Landsat 
PC1.

The resulting formula to be applied to the IRS image generated by the 

curve is as follows:

y = (-0.0151 )x2 + (4.2436) x -145.46
where;

y = normalized IRS pixel; and, 

x = original IRS pixel.

The r2 value for the curve, indicating the regression model’s prediction

capacity is equal to 0.73.

Found below in figures 24-26 are the histograms of the first principle

component as well as the pre-normalized IRS image, followed by the normalized

IRS panchromatic data. In each of the graphs, the x-axis represents the

brightness level. The y-axis represent the total number of pixels in each

category.
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Figure 26. Histogram of normalized IRS PAN data.
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The PC1 band from the Landsat image possessed a mean pixel value of 

79.58 as well as a standard deviation of 28.07. The original IRS contained 

values of 72.56 and 10.86 respectively before applying the quadratic equation. 

The normalized image resulting was a closer match to the PC1 band with a mean 

pixel value of 80.53 and a standard deviation of 23. Visual inspection of both 

images indicated satisfactory balance in preparation for substitution.

Correlation Test

Once the merge was completed, the test of correlation took place to 

determine the success of maintaining as many of the original spectral properties 

as possible from the Landsat data. Correlation tests similar to those in the first 

trials were carried out. The correlation results for brightness values of bands 

two, three, four, five, and seven possessed correlation coefficients of 0.81, 0.85, 

0.91, 0.86 and 0.90 respectively for an average of 0.87.

CLASSIFICATION RESULTS 

Segmentation Parameters

After many executions of the segmentation procedure, a set of parameters 

was selected for final segmentation forest units. A multi-layer image consisting 

of Landsat/IRS merged bands 2-7, NDVI and ratios (Band 4/Band 2, Band 

4/Band 3) were weighted all with values of 1. A scale factor of 50 was selected 

to represent the most ideal size cut-off for segments. Spectral and spatial 

heterogeneity were weighted as 80% and 20% respectively, and finally 

smoothness and compactness of shape were ideal at 90% and 10%. These
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settings produced the most realistic delineation of forest units to the user’s 

satisfaction.

Segmentation Analysis

Most of the evaluations to assess the results of the image segmentation 

were visual. However, one measure to confirm the segmentation’s suitability 

beyond visual inspection was to compare the average segmented object size to 

the average FRI polygon size. The average image object polygon was 23.4 ha, 

compared to the average polygon size of 21.5 ha in the current FRI coverage.

An example of visual inspection of the image segmentation stage is 

displayed in Figure 27. Two stands meeting the minimum requirement for 

operational scale were identified by the segmentation algorithm and separated 

appropriately. Field plots confirm that these areas were indeed hardwood 

dominated stands, and different than neighbouring mixed-wood stands.

As well as interpreting the composition within the segmented boundaries, 

the interpreter was also asked to evaluate the effectiveness of the boundary 

placement derived from the image segmentation. Instructions were given to 

highlight the boundaries where problems may exist with the segmentation. No 

significant problems with the segmentation were identified by the interpreter 

through visual inspection of the stratification.
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Figure 27. Example of segmentation results; yellow field plots indicate 
one forest type, while green indicate another; blue lined 
polygons represent image segmentation.

Classification of Image Objects

Once training of each class was completed, using ground truth data, a 

statistical description of each class is developed by the classifier. During final 

classification of the image objects, the description of each class is compared to 

each object, assigning a membership value to the object for each class (varying 

between 0 and 1). The object is then integrated into the class with highest 

assignment of membership. A default minimum membership to each group was 

set to 0.5 to monitor those objects that had little agreement with any of the 

classes.
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Non-Spatial Assessment

The thematic map product resulting from the classification of the merged 

data showed great potential in terms of forest unit distribution. It should be 

noted, that initial results were based on the classifications performed with the 

field plot and forest unit grid data as a training set. A non-spatial comparison of 

the two classifications, merged IRS/Landsat and raw Landsat satellite data, to 

original forest unit coverage (determined by the FRI) had good agreement in 

terms of proportional area in relation to the FRI (Table 9). In all classes the 

IRS/Landsat data showed better agreement with FRI than the Landsat data 

alone. Proportions of mature forest cover in the broad classes indicate a slight 

shift towards the mixed conifer class, as well as a decrease in the pure hardwood 

class when comparing the merged data against FRI. It is possible that the 

classifier was unable to distinguish between a stand with 70% spruce 

composition and a stand with slightly less spruce (i.e. 60% spruce, 40% other 

conifer). This increase in conifer mixed-wood is much more pronounced in the 

classification made by the Landsat data alone.

Table 9. Non-spatial comparison of broad forest cover categories.

Broad Forest IRS/Landsat Landsat Raw
Cover

Ha % Ha % Ha %

Conifer 130833 74.85% 126090 72.14% 104910 60.02%

Mixed Conifer 32696 18.71% 40579 23.22% 59744 34.18%

Hardwood 3981 2.28% 1733 0.99% 1398 0.80%

Mixed Hardwood 7282 4.17% 6390 3.66% 8740 5.00%

Totals 174792 100.00% 174792 100.00% 174792 100.00%
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A similar pattern of improved classification using the merged data was 

found for forest unit level classifications with the exception of jack pine. Both 

classifications show proportionally more jack pine area compared to the FRI data 

source. Spruce lowland area decreased substantially when using the raw 

Landsat data, most likely associated with the increase in mixed conifer 

composition.

Table 10. Non-spatial comparison of forest unit level classification.

Forest Unit FRI IRS/Landsat 
(Primary Method)

Landsat Raw 
(Alternative Method #2)

Cover Area (Ha) % Area (Ha) % Area (Ha) %

SPU 65813 37.65% 60159 34.42% 56773 32.48%

SPL 44394 25.40% 39970 22.87% 25519 14.60%

PJ1 19989 11.44% 25456 14.56% 22083 12.63%

OC1 637 0.36% 504 0.29% 542 0.31%

POI 3981 2.28% 1733 0.99% 1398 0.80%

MC1 32696 18.71% 40579 23.22% 60810 34.79%

MH1 7282 4.17% 6390 3.66% 8740 5.00%

Totals 174792 100.00% 174792 100.00% 174792 100.00%

Spatial Accuracy

Area-Based Assessment

An area-based assessment of image objects was performed to calculate 

the spatial integrity of the classification using IRS/Landsat merged data. 

Interpretation of the image objects using medium scale (1:20,000), black and 

white photographs allowed for a more consistent evaluation of spatial 

relationships between ground area composition and image object allocation, 

compared to evaluation using non-spatial assessments. The construction of a 

new matrix (Table 11) contains promising results, using the area based reference 

system. Units used in the matrix represent number of polygons counted. Low
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sample references to hardwood based forest stands were attributed to a limited 

presence of hardwoods in study area.

Table 11. Spatial error matrix using photo interpreted reference.

Reference (Photo Interpretation)

SPU SPL MC1 PJ1 P01 MH1 Row Total User's
SPU 135 12 40 29 1 4 221 61.09%
SPL 98 101 25 25 2 0 251 40.24%

IRS/Landsat MC1 37 10 67 29 5 6 154 43.51%
Class PJ1 16 1 38 181 0 3 239 75.73%

P01 2 0 3 0 17 6 28 60.71%
MH1 0 4 5 2 6 52 69 75.36%

Column Total 288 128 178 266 31 71 962
Producer's 46.88% 78.91% 37.64% 68.05% 54.84% 73.24% Overall = 5<

Using the area-based accuracy assessment an overall accuracy of 58% 

resulted. Calculation of the Kappa statistic revealed Khat = 0.46. The Kappa 

statistic indicates that, beyond chance, the classification agrees with the photo 

interpreted reference 46% of the time. Classes contributing to this decrease in 

overall accuracy were most likely the spruce classes as well as the mixed forest 

classes, confirming the observations made in the non-spatial comparisons. 

Positives were observed as lowland spruce classes approach 80% in the 

producer’s column, as well as pine just under 70% and mixed hardwood at 73%.

To explore the possibility that the classifier was able to allocate spruce 

correctly, the matrix was reconstructed grouping the spruce upland and spruce 

lowland classes. Table 12 presents the result of this restructuring. By combining 

the spruce classes together, overall accuracy of the matrix increased 10% to 

68%, with Khat = 0.55. Spruce combined into one class was differentiated 

correctly 83% of the time. Upon further exploration of the stands classified 

incorrectly, it was noted that many of the omission errors were attributed to
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stands with less than 80% pure species composition. The matrix was again

restructured, omitting stands with mixed species tendencies in Table 13, to

evaluate the classifier’s ability to distinguish stands approaching pure conditions.

Table 12. Spatial error matrix using photo interpreted reference and spruce 
classes combined.

Reference (Photo Interpreted)

IRS/Landsat
Class

SB MC1 PJ1 P01 MH1 Row Total User's
SB 346 65 54 3 4 472 73.31%

MC1 47 67 29 5 6 154 43.51%
PJ1 17 38 181 0 3 239 75.73%
P01 2 3 0 17 6 28 60.71%
MH1 4 5 2 6 52 69 75.36%

416 178 266 31 71 962
83.17% 37.64% 68.05% 54.84% 73.24% Overall = 68%

Column Total 
Producer's

Table 13. Spatial error matrix using photo interpreted reference where pure 
stands exhibit working groups greater than 80%.

Reference (Photo Interpreted)

SPU SPL MC1 PJ1 P01 MH1 Row Total User's
SPU 65 11 40 2 0 4 122 53.28%
SPL 35 91 25 6 0 0 157 57.96%

IRS/Landsat MC1 5 9 67 6 0 6 93 72.04%
Class PJ1 5 1 38 69 0 3 116 59.48%

POI 1 0 3 0 14 6 24 58.33%
MH1 0 2 5 0 2 52 61 85.25%

Oolumn Total 111 114 178 83 16 71 573
3roducer's 58.56% 79.82% 37.64% 83.13% 87.50% 73.24% Overall = 62%

Overall accuracy for this matrix totalled 62% (Khat = 0.54). Decreases in 

user’s accuracy for these classes appeared to be predominantly attributed to 

commission of stands to both mixed forest classes. Confusion in upland spruce 

stands can be explained by high commission error (approximately 30%) to the 

lowland spruce class. However, this misclassification did not seem to work both 

ways. Other notable improvements were made in the pine and trembling aspen 

classes of 83% and 87% respectively. This matrix was restructured (Table 14) to
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include spruce classes together, for a measure of the classifications ability to 

allocate spruce in general.

Table 14. Spatial error matrix using photo interpreted reference where pure
stands exhibit working groups greater than 80%, and spruce classes 
combined.

Reference (Photo Interpreted)

IRS/Landsat
Class

Column Total 
Producer's

SB MC1 PJ1 P01 MH1 Row Total User's
SB 202 65 8 0 4 279 72.40%
MC1 14 67 6 0 6 93 72.04%
PJ1 6 38 69 0 3 116 59.48%
P01 1 3 0 14 6 24 58.33%
MH1 0 5 0 2 52 59 88.14%

223 178 83 16 71 571
90.58% 37.64% 83.13% 87.50% 73.24% Overall = 72%

The overall accuracy for this matrix was 72% (Khat = 0.72), and 

demonstrated the ability of the classifier to separate forest stands approaching 

pure conditions to a very acceptable level of accuracy. As expected, both mixed 

wood classes tend to absorb the majority of commission errors from these 

stands.

Point-Based Assessment

Initially, the remaining field plot data (points not used in training stage) 

were hypothesized to be adequate to construct this error matrix. However, 

results of this matrix were not reflective of the successes presented in the 

aspatial evaluation or the photo-based spatial accuracy assessment.

Table 15 shows poor correspondence between the classification and the 

reference derived from these remaining field plots. An imbalance in reference 

points (i.e. hardwood vs. conifer classes) was caused by a general lack of 

hardwood cover in the study area.
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Table 15. Spatial error matrix evaluating IRS/Landsat integrated data using field 
plot reference data.

R eference (F ie ld  P lots)

S P U S P L M C1 PJ1 P O I M H1 R ow  Total User's
S P U 7 8 24 69 40 1 4 216 3 6 .1 1 %
S P L 45 6 3 54 42 4 0 208 3 0 .2 9 %

IR S /Landsat MC1 47 36 1 0 5 24 10 6 228 4 6 .0 5 %
Class PJ1 24 1 59 5 7 0 7 148 38 .5 1 %

P 0 1 2 0 10 0 1 0 10 32 3 1 .2 5 %
M H1 0 4 10 2 6 4 0 62 6 4 .5 2 %

Colum n Total 196 128 307 165 31 67 8 9 4
Producer's 39 .80% 49 .2 2 % 34 .20% 3 4 .5 5 % 3 2 .2 6 % 5 9 .7 0 % O v e r a l l  =  4 2 %

Calculating user’s and producer’s accuracy, as well as an overall 

percentage of 42% for this matrix indicated poor classification results. A Kappa 

statistic of 0.23 reaffirms the poor agreement within the error matrix. However, 

upon visual inspection of the classification, results displayed by this table did not 

represent visual quality of the thematic product.

Upon closer evaluation of reference data, inconsistencies were observed 

in terms of scale, as well as point location (i.e. distance from boundaries). This 

indicates a point-based accuracy assessment was not the most appropriate 

means to evaluate a classification system based on image objects.

Alternative Classification Method

Most forests in Ontario do not have a grid of point data to train a classifier. 

In many areas, photo interpretation might be used on portions of the forest to 

train a classifier. A non-site specific assessment was performed to test a 

classification using the photo-interpreted area as a training set to the classifier, 

as an alternative to using field point data for training. The alternative method 

uses the IRS/Landsat merged data, and with training data from photo-interpreted 

data. A control test, using only Landsat data, was also performed for this
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method. The results are compared in Table 16 to the original classification, and 

also summarized in bar graph format in Figure 25. Attempts to classify the 

Landsat data in its raw form were also made, first, using the field plot and forest 

unit grid data as training, and second, using the photo interpreted data to train.

Table 16. Non-site specific assessment of alternative classification method.

Image Data Class
Training 

Field Point Data/Grid 
Total Area (%)

Method
Photo Interpreted Based 

Total Area (%)
SPU 34.4% 39.30%
SPL 22.9% 17.68%

IRS/Landsat
PJ1 14.6% 18.38%
P01 1.0% 1.03%
MC1 23.2% 19.73%
MH1 3.7% 3.88%
SPU 32.5% 36.2%
SPL 14.6% 12.5%

Landsat PJ1 12.6% 14.1%
(Control) P01 0.8% 1.6%

MC1 34.8% 31.1%
MH1 5.0% 4.5%
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Figure 28. Graphical presentation of non-site specific assessment for 
alternative method.

Using the photo-interpreted reference data as a training set produces similar 

results when compared to classifications trained with the primary method. The
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classification derived from the merged product showed a decrease of nearly 

3.5% in the mixed conifer class using the photo interpretation training, as well as 

an approximate 4% increase in overall jack pine composition. An increase of 5% 

was observed in upland spruce classes, accompanied by a decrease of 5% in 

the lowland spruce class. Comparison of each training method used in 

conjunction with the Landsat data exclusively indicated little variation between 

results. Most notable fluctuation occurred in the upland spruce class, as the 

photo trained classification increases this composition a total of 4.3%.

While training methods provided relatively small fluctuations between 

classes, this was not the case when comparisons were made between image 

data sets. Large increases of approximately 10% were present in mixed conifer 

classes for both training methods using the Landsat data alone. Mixed hardwood 

classes also increased in both cases. Pure spruce and pine classes decline in all 

cases, most likely shifting into the mixed conifer category. Observations were 

made for these spruce and pine classes to determine if incorrectly allocated 

stands were indeed shifting into mixed-wood stands. A total of 30 randomly 

selected stands from spruce upland, spruce lowland, and jack pine were visited 

on the thematic map produced from a Landsat image classification. The stands 

were then compared to the original forest unit grid. The comparison can only be 

made generally, as stand boundary discrepancies occur between the stands in 

almost every case, however, Table 17 gives a good indication that the shift of 

some pure stand area into mixed-conifer area is occurring.
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Table 17. Illustration of misclassifications using Landsat control classification.

FRI Stand
Stand Type SPU SPL MC1 PJ1 PQ1 MH1 Total

SPU 17 2 8 2 0 1 30
Landsat (Control) SPL 7 11 9 2 0 1 30

PJ1 7 3 4 14 0 2 30

COST COMPARISON

The cost of this procedure is a fraction of traditional FRI methods, with 

cost reduction for image acquisition costs, and elimination of much of the GIS 

data loading stage. Table 18 summarizes costs associated with each method. 

Table 18. Cost comparison different inventory development methods.

Item
Study IRS/Landsat 

(CAD)

Conventional FRI 
Producing FU 

Map (CAD)

Conventional FRI 
(CAD)

Image/Photo Acquisition $0.03/ha $0.14/ha $0.07/ha

Ground Truth $0.14/ha $0.14/ha $0.21/ha

Image Analysis/Software/Photo 
Interpretation

$0.03/ha $0.05/ha $0.22/ha

GIS Data Load $0.00/ha $0.10/ha $0.15/ha
Totals $0.20/ha $0.43/ha $0.65/ha

The FRI delivers much more information about forest stands, such as 

species composition, age, height and stocking. However, only the forest unit and 

age class levels of detail are used for strategic planning. Table 18 also 

demonstrates the hypothetical cost of achieving forest unit level classification 

using traditional FRI methods and materials. The cost savings report at this 

stage could allow the forest unit map to form the basis for stratified random 

samples to determine other values of interest, such as stocking, volume or age of
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the forest. Once areas have been selected for operation, more detailed inventory 

would target those areas to better guide forest operations in terms of forecasting 

wildlife habitat quality, timber availability or forest renewal needs. Costs are 

reported based on past forest inventory project proposals and contracted cost 

research.
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DISCUSSION

The classification system implemented in this thesis shows the benefits of 

multi-source, space-borne approach when considering the assembly of reliable 

and cost-effective forest inventory. Using the various strengths of different 

sensors in an integrated fashion can improve capabilities of inventory 

development for strategic level planning at decreased costs and with shorter 

production periods than traditional methods.

PRE-CLASSIFICATION 

Image Acquisition

The acquisition process of Landsat 7 data was very reliable, with many 

occurrences of leaf-on, cloud-free images per season. With a 16-day revisit 

cycle, an abundance of data was available. The same cannot be said for the 

IRS-1 C and IRS-1 D panchromatic sensor, particularly in northwestern Ontario. 

Although the revisit cycle is speculated to be every 48 days for each sensor (2 

images every 48 days), many of these re-visits to northwestern Ontario by each 

sensor produced no results without apparent reason. No image was produced 

from the visit in June 2003, speculated to be due to transmission errors during 

down-linking phase, but no confirmation that this actually caused the problem. 

Another random problem, exclusive to the IRS-1 D sensor, occurred specifically 

with the left array of the sensor. On more than one occasion, an image was 

compromised by a loss of data collection on the left third of the image. The 

vendor, Space Imaging Inc., suggests that this was a problem with the sensor
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itself and not the downlink process. When considering IRS for a project, 

ensuring an image is available is highly recommended.

Since the initiation of this project, a new SPOT sensor has entered the 

market offering panchromatic products similar to the properties of IRS-1C and 

IRS-1 D. The SPOT 5 sensor is equipped with two panchromatic sensors, the 

first scanning at 5m resolution with 8-bit spectral detail, and the second scanning 

at 2.5m resolution at an equivalent bit rating. Scene sizes for both types of 

SPOT 5 products are comparable to IRS at 60 x 60 km. The 5 m data is more 

expensive than IRS at approximately $2.21/km2 (CAD), and the 2.5 m data is 

double the cost at approximately $4.42/km2 (CAD). Substituting this data for the 

IRS imagery used in this thesis would have increased costs slightly but would still 

remain significantly less expensive than conventional FRI. Either of these 

sensors could be utilized to achieve the same goals while producing forest 

inventories in the future.

Data Merging

Principle component substitution proved to be the most efficient means to 

integrate the spectral properties of the Landsat 7 system with the spatial 

properties of the IRS panchromatic data. In terms of image preservation, 

correlation evaluation showed only marginal differences between PCS and IHS 

merging methods with PCS performing better in all cases. When transforming 

the data using the IHS transformation, uncertainty arose regarding the effects of 

transforming only three bands at a time, and then later combining several 

transformations to form an enhanced, six-band composite. PCS avoided this
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uncertainty by transforming all six spectral bands of the Landsat scene at once, 

including all spatial variation in the first component. The correlation results 

accompanied by the transformation limitations of IHS (only three bands at a time) 

provided adequate reason to select PCS as the most appropriate integration 

method. Visual inspection of each product was also performed and agreed with 

all statistical evaluations.

Integrating the properties of the panchromatic data offered two types of 

improvement to the spectral data of Landsat. First, enhanced edges of forest 

stands were more clearly distinguished in the merged product. This 

improvement should minimize the traditional problem of mixed pixels (Foody 

1999) in raw Landsat 7 data, removing some of the fuzziness commonly 

associated with boundary placement in terms of medium resolution satellite data 

delineation. Second, from a visual standpoint, new features in forest cover were 

now present in the merged data. In most cases this was attributed to varying 

density distribution from stand to stand, as well as crown dimension differences. 

In stands with less dense canopies, it was easily determined whether understory 

features were contributing to the spectral properties of the stand, rather than tree 

crowns. When observing these same stands using the Landsat 7 data it was 

unclear whether spectral properties were attributed to overstory or understory 

characteristics. Judging by the results of the classifier these two enhancements 

of the Landsat data are as detectable both statistically and visually.
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Image Segmentation

Segmentation of the merged product was successful in isolating important 

features of the image. From an operational standpoint, the results presented 

many successes in terms parameter selection and its affect on delineation 

quality.

POST- CLASSIFICATION

Developing meaningful age data from the merged product returned 

negative results in pre-study trials with the data. Now ruling out this data for a 

source of age information, it was necessary to find other ways of age 

determination in order to justify the data developed by methodology used in this 

study. A number of sources could be used to determine broad age classes to 

assist with strategic management planning, depending on the type of landbase in 

question. For areas with no inventory such as parks or conservation reserves 

historic fire data can be used as a base provide strategic direction. In areas that 

possess current inventories, natural and man made disturbances are being 

documented every year, and in some ways this documentation should be 

considered one of the most accurate inventory methods to date. In terms of non­

disturbed forest area, this data can be grown from year to year in our information 

systems until depletion occurs and area is placed back into zero ageclass. In 

light of these ideas, it was decided to carry on with a forest unit focused 

classification, and consider other ways to attain age information to use in 

conjunction with the positive species results.
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Site-Specific Assessment

Area-Based Spatial Assessment

The results of the area-based error matrix performed on the classification 

performed using the merged data were indeed positive. All matrices presented a 

general confusion in the mixedwood conifer class with omission errors 

accumulating in other conifer based forest units when compared to photo 

interpreted segments. Upon further exploration, confusion was predominantly 

attributed to spectral overlap occurring in forest stands with species compositions 

with 59% of one conifer species, dominating the canopy, and therefore forcing a 

mixed conifer into the pure class of that species. The same can be said for forest 

stands with 60% to 70% pure spruce or pine compositions committing to the 

mixed conifer class. Perhaps this data was unable to assess these transitional 

stages adequately.

Within the matrices measuring success of lowland versus upland spruce 

classes a moderate level of accuracy (producer’s SPU 58.5%, SPL 79.82% and 

users 53.3% and 57.96%) was achieved when stands with working groups 

greater than 80% were isolated in the matrix. This achievement could be an 

important component of a strategic management decision process in terms of the 

allocation of winter and summer harvest operations within the SFL. In terms of 

the errors, the lowland spruce class absorbed a high percentage of omission 

errors of upland spruce. This was expected, as much of the spectral and textural 

component of each class would be relatively similar. Canopy differences at this 

scale might not be adequate in distinguishing these types of forest as effectively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 6

as they could be distinguished from photos or field plots. It should be pointed out 

that many of the incorrectly allocated spruce upland stands possessed a small 

element of hardwood in the canopy. The inclusion of a hardwood component in 

these upland sites may have increased the brightness in the canopy enough to 

shift the classification of upland sites into spruce lowland classes. Many lowland 

spruce sites visited in the Caribou Forest possessed little canopy closure, and 

therefore, may be showing more understory in the Landsat spectral data. This 

understory is often composed of Alder (Alnus rugosa (Betulaceae)) and Labrador 

Tea ((Ledum groenlandicum (Oeder.)), which may reflect in a manner similar to 

the reflectance properties in hardwood crowns.

The ability of the classifier to distinguish spruce in general was reaffirmed 

in the second matrix (Table 13) when lowland and upland sites were combined, 

resulting in an 83% producer’s success rate.

In the third matrix (Table 14), an attempt to determine what type of forest 

cover were committing to mixed classes from the omissions of pure forest unit 

classes. By re-sampling the reference data of only stands possessing greater 

than 80% of a pure species, it was confirmed that compositions less pure were 

contributing to most of the error in the matrix. Increases to 83% in the pine class, 

as well as 87% in the poplar class were apparent in forests with 20% or less 

mixed wood characteristics. Transitional stages from pure to mixed stand 

condition were obviously difficult for the classification to define.

Confusion of mixed conifer stands by the classifier was not a surprising 

find in terms of this classification method. The appearance of mixed-wood
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stands will vary from site to site in any satellite image, regardless of its spectral 

or spatial properties. In this study, a mixed conifer stand possessed less than 

30% hardwood composition, with the remaining composition made up of any 

conifer species. The remaining conifer composition could not exceed 59% of any 

particular species. If exceeded, the stand became a pure stand of that species.

In other words, 70% of this composition can be made up of any combination of 

two or more species. In many cases, a stand defined as mixed wood conifer, 

may have possessed up to 60% spruce and 40% pine, or vice versa. In terms of 

training the classifier, many of these stands shared the same spectral and 

textural properties of stands with 70% spruce and 30% pine compositions, which 

are classed as either upland or lowland spruce in the classification scheme.

Variation of mixed stands introduced difficulty into the training and 

decision rule creation of image classification (Franklin et al. 2001), and for this 

reason was attributed for much of the misclassifications in this study. Martin et 

al. (1998) encountered similar problems identifying mixed conifer classes using 

high resolution data, and suggest that difficulty in training site selection as the 

cause. More descriptions of canopy structure in field data collection may be 

required to accurately map these types of forests. However, this type of forest 

structure measurement is notoriously difficult to measure in the field (Congalton 

1991). Furthermore, the interpreter’s ability to assess these 10% transition areas 

between a pure and mixedwood condition may also lead to subjectivity in the 

reference data. Although the classification algorithm is based upon
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distinguishing species composition to within 10% of total basal area, photo 

interpreters may not be able to reliably distinguish this level of detail.

On the other hand, considering how similarly these mixed wood conifer 

stands will be managed when compared to a pure conifer stand, this weakness 

of the classifier would not lead to inappropriate forest management decisions.

Point-Based Spatial Assessment

Assessment of the classification using existing forest inventory plots and 

grids was attempted in order to remove the photo interpretation stage out of the 

classification procedure. Many problems with point-based accuracy assessment 

have been documented (Congalton and Green 1999; Boudewyn et al. 2000) as 

problematic for the evaluation of thematic products (e.g. satellite images). The 

results were no different in this study, as the error matrix displayed poor results in 

all classes.

Initially, all points derived from sample data not used in the training stage 

of the classification methods were included in the spatial assessment of the 

classification. After satisfactory results were observed, investigation into 

individual point placement indicated that points located along boundaries of 

classified stands resulted in misclassification error in many situations. An 

example of this incidence is observed in Figure 26. Field crews measuring forest 

structure in transitional areas of the forest were not necessarily incorrect. 

However, the location of the plot did not correspond exactly to where the 

classifier selected the boundary placement between two different stands. The 

yellow point shown in Figure 29 provides an example of this occurrence and
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represents forest information from the mixed hardwood class (beige colour). 

However, the point has fallen on the outside of this stand, and into its 

neighbouring stand. This neighbouring stand, classified as mixed conifer (blue 

polygons), may be correct, but was misclassified due to this point location. 

Another source of error could also have occurred during GIS data loading of the 

sample point locations. Field crews merely “pin-pricked” aerial photography 

while at the point location. This point was later transferred from photo to map 

with the FRI interpretation, leaving two potential sources of inaccuracy. Points 

falling in areas close to, or inside of stand transition may lead to misclassification, 

compromising accuracy of the thematic product.

Boudewyn et at. (2000) conclude that buffering the stands in order to 

exclude these points located in transitional areas had no overall positive or 

negative effect on classification accuracy. Results from this study reaffirm these 

findings. All attempts made to buffer regions of transitions to exclude these field 

plots were unsuccessful at improving the matrix results.
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Figure 29. Example of plot location in transitional area.

Exploring the results of the buffering attempts brought forth a new 

discovery. Figure 30 demonstrates another problem related to point-based 

accuracy assessment, in that field points may have been representative of a 

small area within the image object (i.e. forest stand), but did not correctly 

represent the entire image object (blue polygon features depict image object 

boundaries). Although the field point located within the segment may accurately 

describe the forest unit within sampled trees, it is misrepresenting the broader 

elements of the image object. In this example, the plot was not in a location 

excluded by the buffering process, and consequently, remained in the 

assessment.

Developing an area-based assessment using the current forest unit grid 

was also attempted with little success. First, it should be understood that in most 

cases the boundaries delineated by the FRI interpreter (from which the forest unit
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grid was created) differed in varying degrees from the boundaries delineated by 

the segmentation software. These differences may cause fluctuation in species 

composition, leading to changes in polygon composition. For this reason, it was 

determined that these inconsistencies could be contributing to errors when 

testing accuracy of classification.

Figure 30. Field data located in small mixed hardwood area;
located in upland spruce dominated image object.

These discoveries are influential in ruling out the possibility of using 

existing FRI data as a testing component of classifications to follow this one.

New reference data creation is recommended, preferably utilizing predetermined 

image objects to assess the truth source.
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Aerial Photography-Based Spatial Assessment 

In light of issues with point-based spatial assessment of an area-based 

classification system, and alternative method to assessing the classification was 

required. Interpretation of aerial photography may be susceptible to error when 

attempting to determine stand age, height, understory, etc., depending on the 

scale of the photos and skill of the interpreter. However, delineating to the forest 

unit level is considerably less demanding, and can be completed accurately by 

an experienced interpreter. The interpreter used in this study possessed over 30 

years of experience interpreting aerial photography in the boreal forest and 

therefore was quite confident in his ability to distinguish forest unit level 

interpretation. From this interpretation, a reliable truth dataset emerged, allowing 

direct comparison of ground properties to classification result.

Non-Site Specific Assessment

Non-site specific assessments were carried out as accompanying 

assessments to the site specific assessment performed with the classification. 

Past literature (Congalton 1991; Jensen 1996) has criticized studies that use this 

method exclusively to determine whether a classifier has achieved acceptable 

results. However, if used properly, this assessment can provide insight into the 

successes and failures of a classification. For example, comparing two maps, 

where one is deemed to be acceptable and the other is to be tested against it, 

can provide an indication whether the map being tested is providing some 

positive results. The map created by the classification of the merged data was 

deemed successful. This allowed other classifications performed with different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

data sets to be compared to this initial classification, for an indication of 

achievements and failures.

Important conclusions can be made from the classifier’s success using 

merged data in conjunction with photo-interpreted training data. Mild but 

significant fluctuations in compositions were observed in all conifer classes, most 

notably, the increase in pine and spruce classes. These changes may be a 

result of inadequate coverage of photo-interpreted area with respect to image 

data extent. Photo interpretation may still be an acceptable substitution for 

existing FRI in the training stages of this system. However, broader coverage of 

the entire area may be required to select a larger, more representative set of 

training for the forest class signatures. This will increase the cost of obtaining the 

training data, but will likely be cheaper than collecting field data.

The IRS/Landsat merged data consistently performed better than the 

Landsat alone in classifying forest units similar to the FRI standard. When 

compared with merged product, observations of significantly increased mixed 

conifer composition were noted in each control classification. Furthermore, 

mixed hardwood composition also increased in both cases. From this, it can be 

assumed that the increased spatial detail provided by the IRS panchromatic 

allowed the classifier to better distinguish these stands, particularly when a single 

species was more dominant in a mixedwood state.

In terms of cost, the methods in this thesis should allow the forest 

manager the ability to spend less to gain strategic level forest inventory data for 

the entire area of interest. By spending less at this intial stage, forest managers
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now have the option to focus more detailed inventory efforts on target areas for 

operation. For example, stratified random field samples of forest units and forest 

unit serai stage combinations would generate empirical yield table and habitat 

structure matrices. These tables and matrices would be sufficient to forecast 

current and future forest conditions that are forest management planning 

requirements in Ontario (OMNR 1996). These tables would be statistically 

verifiable and the data collection cost would be less than the current, non- 

verifiable procedures used with conventional FRI.
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CONCLUSION

The primary method developed in this thesis accomplished the main goal 

of providing a new process for creating large scale forest management-level 

inventory in five components. These components and a description of how they 

were addressed are discussed below.

1. Adequate level of information and reliability -  Classification consisted of 

forest unit cover classes, including spruce upland and lowland, jack pine, 

mixed conifer, poplar and mixed hardwoods. This level of species cover 

can be used for landscape and sub-regional planning. The overall 

accuracy of this classification was 72%, with highlights in black spruce 

(overall 90%), jack pine (83%) and poplar (83%). While age was not 

developed directly from the data, age determination was considered from 

other sources.

2. Higher cost-efficiency than current forest inventory requirements -  Total 

cost for new method was considerably lower than conventional FRI 

development procedures by approximately $65.00/km2 (Canadian 

Dollars). The speed and cost efficient means of classifying merged image 

objects to forest units offers several possibilities to enhance forest 

management. These savings would allow for inventory dollars to be 

reallocated for areas selected for operations to further refine operational 

decisions.

3. Shorter turnover than traditional methods -  using conventional inventory 

methods, it takes three years to complete an FRI for an average forest
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licence in northwestern Ontario. Mapping the Caribou Forest using the 

methods described in this work was completed in less time than the 

summer season in a research stage of development. Much of the time 

taken in this period related to learning the system, and when removing the 

learning curve, this process may be completed in a matter of weeks. 

Resulting classification is ready for implementation into a GIS database, 

with polygons containing the attributes of the inventory, immediately after 

it is deemed acceptable.

4. Semi-automated techniques reduce the level of subjectivity often prone to 

traditional FRI methods. Processes are repeatable, and for this reason, 

can be adjusted and re-applied to meet user needs.

5. The increased availability of satellite data allows for flexibility when 

choosing imagery suited for the targeted inventory. Sensors with different 

strengths can be integrated to meet the needs of many different levels of 

inventory.

While achieving these goals, two accompanying objectives were formed and met 

by this thesis. Explanation of the goals and how they were achieved are as 

follows:

1. Testing IRS-1 D as a complementary dataset to Landsat 7 TM data -  The 

results of the merging trial showed promising preservation of the spectral 

and spatial properties of each image when integrated with each other. 

Principle component substitution proved to integrate the data most
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effectively, and lead to satisfactory delineation of the forest into forest 

units.

2. Testing a new classification technique, image segmentation -  the 

segmentation portion of the process is crucial to the results of the 

classifier. Gained understanding of significant features for the 

segmentation process occurred. The concept of image segmentation 

undoubtedly dealt with textural features more effectively than traditional 

classification tools. The segmentation results were observed by a trained 

photo interpreter, and deemed representative to what was occurring in the 

corresponding aerial photography.

The methods provided in this thesis allow the forest manager to now make 

choices for alternate forest inventory schemes. The forest information provided 

by the method may assist the forestry community to progress with changes 

occurring in how the forest will be managed and where operations will occur in 

the coming years in Canada.
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