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ABSTRACT

Feedforward control provides a means for compensating measurable disturbances before the
process output is affected. A novel tuning strategy for tuning feedforward controllers in
frequency domain is developed in this thesis. The adaptive method consists of continuous
identification of process transfer function(G,) and disturbance transfer function(Gg4) by the
extended recursive least squares technique and subsequent tuning of a gain with lead-lag
compensator(Gys) by minimizing the function Gy + -g': in frequency domain. The effec-
tiveness of the tuning approach is compared with Shinskey’s tuning rule based controllers in
frequency domain for the nine possible dynamic combinations. For cases where dead time
in the manipulated path is greater than or equal to that of the dead time in disturbance
path, the frequency domain tuning of Gy results in as good or better fit to the theoretical
frequency response of —‘ required for perfect cancellation, compared to Shinskey’s tuning.
For cases where the dead time in manipulated path is less than that of the disturbance path,
considerable improvement in the fit of frequency response is observed with frequency domain
tuning compared to Shinskey’s tuning rule based controllers. The validity of these simula-
tions is tested for one dynamic combination by experimental work on a methanol-water
distillation column.

Different alternatives of obtaining the -gf ratio through closed loop identification tech-
niques and subsequent tuning of feedforward controllers have also been studied by simula-
tions.
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Chapter 1

An introduction to feedforward
control and its tuning methods

1.1 Introduction

All control loops in a plant are normally subjected to various disturbances. The traditional
PI/PID feedback controller rejects these disturbances by applying proper control action on
the basis of the error e, computed as e = r — y, the difference between the setpoint(r) and
the disturbance affected process output(y). Quite often it is possible to measure some of the
disturbances entering the control loop. Application of feedforward control provides the means
for compensating such measurable disturbances before they effect the process output. The
feedback part of the control system is retained in almost all cases to keep the process output
under control in the presence of other unmeasurable and random disturbances. Examples of
feedforward control in process industries include, compensation for variation in feed flow rate
or feed concentration in the composition control of a distillation column and compensation
for deviations in flow rates/concentrations of the feed components in the mixture composition
control of a blending system.

A typical feedforward control system is shown in Figure 1.1. It is a common practice
in process control to characterize most chemical processes in terms of First Order Plus
Dead Time(FOPDT) models. For perfect cancellation of the disturbance, the feedforward
controller should be of the form shown in Equation 1.1:
Gd Kq (T mS -+ 1)
Geyp=— == €

G, Ky (148 +1)

Application of feedforward controllers using the above representation is effective only for
the cases where 74, — T4m >= 0, i.e. the cases where the dead time in the disturbance path is
as much or greater than that of the process path. Further, it is not reasonable to implement
the controllers in the cases where the lead time is much greater than lag time(7y, >> 7,)
as lead dominant controllers are known to amplify noise. Such controllers also result in
a rapid change in the manipulated variable making them not practical to implement in
process industries. In order to attain the best possible cancellation of the disturbance,
accurate identification of process transfer function, G, and disturbance transfer function,

~(rdg =7am)s (1.1)

1
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Figure 1.1: Typical structure of a feedforward plus feedback control system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Gg are needed. It has been shown[l] that significant errors in the determination of lead
time(7q), lag time(r;,) and feedforward gain(Kjyy) can still decrease the Integrated Absolute
Error(IAE) significantly when compared to the application of feedback control alone.

1.2 System Identification

Conventionally, process models are identified by fitting FOPDT models to step responseg.
Similar approaches can also be used in identifying the models for feedforward control. Tun-
ing is often based on the judgement of these parameters by the operator or by trial and
error. Chemical process dynamics are influenced by various factors and they change with
time. Adaptive controllers provide better performance in such cases than using fixed gain
controllers[2]. Numerous adaptive control strategies have been developed in the literature
for feedback control. But adaptive tuning strategies for feedforward control have gained
very little attention. Tuning feedforward controllers manually is an alternative, but it is
not always possible to manipulate the disturbances that enter the loop for a tuning trial.
Hence to tune for such disturbances the operator has to wait for the disturbances to occur
and cause significant transients in the controlled variable. On the other hand, it is rather
convenient to evaluate and tune feedback controllers, as the required setpoint variation for
such purposes is in the hands of the operator. Application of adaptive control algorithms
which continuously monitor and compensate the disturbances are therefore particularly suit-
able for feedforward control[6,10]. It is a common practice in adaptive control to design the
controller on the basis of the estimated model using the certainty equivalence principle[2].
Hence accurate identification of process models is a prerequisite for achieving satisfactory
performance through adaptive control techniques.

Application of Recursive Least Squares(RLS) techniques for online process identification
is a well explored field[2,6,7,18]. This method is simple and convenient for use in adaptive
control techniques. It provides a means for estimating the parameters at time instant k on
the basis of the measurement at time k and the estimate at the previous time instant, k-1.
This estimation procedure gives unbiased estimates provided the error e is of zero mean, ¢;
and e;._, are uncorrelated and the elements of the regression vector are uncorrelated. If these
conditions are not satisfied, the recursive least squares scheme results in biased estimates.
Several alternatives to overcome this problem have been proposed in the literature[2]. The
recursive least squares algorithm used in this thesis is summarized in the following set of
equations[2]:

6(t) = b(t - 1) + K(t)(y(t) - " (1) - 1))
K(t) = P(t)p(t) = P(t = D)e()(M + T ($)P(t - De(t)) ™! (1.2)

P(t) = (I - K@) ®)P(t—1)/A
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where:

K (t) is the gain at discrete time instant, ¢
A is the forgetting factor, I is the Identity matrix
6(t),8(t — 1) are the parameter estimates at time instants ¢ and ¢ — 1 respectively
P(t), P(t — 1) are the co-variance at time instants ¢ and ¢ — 1 respectively
©(t), v(t — 1) are the regressor vectors at time instants £ and ¢ — 1 respectively
%

It has also been noticed that the estimator results in the true value of the estimate as
the data set used for estimation tends to infinity. In practice, the quantity of data used for
estimation is determined by the forgetting factor A. Typical values of A range from 0.95
to 0.99. A forgetting factor of one implies no forgetting and is suitable when the process
conditions do not change. But if the process conditions change, the RLS estimation can
adjust to these changes and provide accurate estimation results only when A is less than one.
Several alternatives to overcome the slow convergence of recursive least squares have been
proposed in the literature. One such approach is to use variable forgetting factor(7]. In this
approach the forgetting factor of the algorithm is decreased to a small value, like 0.4 or so
when the process changes such that the most recent data alone is taken into consideration
for estimation. Other methods that enhance the speed of the recursive least squares schemes
include co-variance resetting in which the co-variance matrix of estimation is reset at regular
intervals, which is based on how fast the process changes[2]. All such methods require an
indication of change in process conditions such as a limit on the error bound, limit on the
co-variance of the estimates, etc.

In this thesis, different approaches are taken in the estimation of the process and distur-
bance transfer functions. In the first approach, an extended least squares type of estimation
is used to continuously estimate both the process and disturbance transfer functions. Such an
approach can take changes in both the process and disturbance characteristics into account
simultaneously. The second set of approaches utilize recursive least squares in a number of
closed loop identification structures. Recursive least squares techniques require the order
of the discrete transfer function to be estimated. Accurate knowledge of the order of the
system is indicated to be necessary in order to obtain unbiased estimates of the transfer
function[12]. The representation of process models by FOPDT sufficiently indicates the
order of the denominator polynomial of the discrete time transfer function as one. The
order of the numerator polynomial will be a function of the time delay and the sampling
period. Hence it is logical to get around the problem of accurate determination of the order
of the system by sufficiently overparameterizing the transfer function polynomials. Overpa-
rameterizing the numerator polynomial of discrete time transfer functions for systems with
unknown dead time has been well explored by Lee and Hang[8]. Such an overparameter-
ized RLS estimation is often quite sensitive to moderate levels of noise and presence of step
like disturbances. Alternatives like recursive instrumental variable method, extended least
squares method etc. have been suggested by these authors. It has also been shown in their
work that the overparameterized transfer function coefficients take fairly large samples to
converge in the presence of disturbances when compared to estimation with the true order
of the system. The significant advantage of over-parameterization is in the presence of un-

4
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modelled dynamics. Over-parameterization is equivalent to implicit filtering of data, which
makes the residuals white thereby resulting in unbiased estimates[9). The major drawback of
over-parameterization method is the computational overhead. Model reduction techniques
overcome this problem. Marques da costa et ol[9] provided a moments based method for
this purpose. These authors also proposed a method based on prefiltering to reduce the
order of the overparameterized least squares.

In this thesis the overparameterized models are used to obtain the frequency response of
the system. Using this approach, after convergence of the frequency response of the systeln
it is always possible to reparameterize the model based on the obtained frequency response.
Especially in process control systems where very fast Distributed Control Systems(DCS) are
in use, the approach of obtaining the frequency response of the system is rather useful. The
speed of DCS’s virtually makes it possible to consider the processes as continuous. Hence the
operator has the convenience of obtaining the continuous time parameters from the frequency
response and to tune the loop subsequently.

1.3 Feedforward controller tuning techniques in time
domain

The rapid progress of adaptive control research resulted in a wide variety of controller tuning
strategies. Broadly all such tuning methods can be divided into two categories, time domain
and frequency domain. One of the early works in the feedforward control tuning is by Astrom
and Wittenmark[5]. Minimum variance control is a well developed tuning strategy. The
extension of minimum variance feedback control principle to feedforward control has been
indicated in this work. Astrom and Wittenmark[5] also indicate the drawback of this strategy
for non-minimum phase systems where it is found to be extremely sensitive to variation of
parameters. The authors also suggest several ways to overcome this problem like using sub-
optimal strategies. The characterization of process models in this thesis as FOPDT type
and subsequent over-parameterization of the numerator polynomial for variable delay could
give rise to non-minimum phase systems. In addition, rapid change in the control output
as a result of the application of minimum variance control is a major drawback. Several
parameter optimizing algorithms for adaptive feedforward control tuning in the absence of
feedback have been explored by Schumann and Christ[6]. In their work, the identification of
the process and disturbance transfer functions are done using recursive least squares. The
tuning methods studied include complete dynamic, static, partial static, minimum variance,
extended minimum variance, minimum time and deadbeat feedforward control methods.
These controllers are designed on the basis of the certainty equivalence principle. Schumann
and Christ[6] indicated that in almost all cases the adaptive controller performs better than
the constant gain feedforward controllers. Again this work is based on the knowledge of
the system order and time delays. The approach of over-parameterization of system models
would result in slow convergence of parameters when compared to the models with known
order. Hence the design of controllers on the basis of such parameters would take a large
amount of time for convergence in addition to the specific problems of time domain strategies.

It is also a common practice to tune controllers on the basis of various performance criteria
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like Integrated Absolute Error(IAE), Integrated Error(IE) etc. Tuning rules for feedforward
control on the basis of these criteria were designed by Shinskey[3]. Based on the point
where the disturbance enters a loop with respect to the process input, there are 9 possible
dynamic combinations of process and disturbance dynamics. Shinskey characterized all such
combinations on the basis of the step response in the presence of static feedforward control.
Table 1.1 shows the list of possible combinations and the type of controller required for
perfect cancellation of the disturbance for different combinations. The simplest of all these
combinations is Case I b, where the dead times and time constants in both the paths ark
equal. Perfect cancellation of disturbance is theoretically possible in this case with a simple
gain compensator. Cases III b and II b, in which the dead times are equal but the time
constants vary in either direction result in a rounded deviation with a gain compensator. It is
possible to achieve perfect compensation in these cases, through the application of dynamic
compensation using a gain with lead-lag compensator. Cases II a and II ¢ processes, where
the dead time in the disturbance path is greater than that of the manipulated variable path
require dead time compensation. In the absence of a dead time compensator, the lead-lag
compensator can provide an approximation of dead time through negative lead. The most
significant advantage of dynamic compensation is perceptible in Case III processes, where
the dead time in the manipulated variable path is greater than that of the disturbance path.
Application of dynamic compensation is found to considerably decrease the IAE in the loop
for these type of processes[1]. Shinskey[3] derived a set of empirical rules for these cases in
order to drive the IE in the loop to zero and to minimize the IAE. Table 1.2 gives a list
of Shinskey’s tuning rules for the different dynamic combinations. These rules were derived
empirically to fit experimental results.

1.4 Feedforward controller tuning in frequency domain

Representation of processes by parametric transfer functions is common and widely used in
designing adaptive controllers. Such representations of process models have some significant
shortcomings. Design of adaptive controllers on the basis of such transfer functions result
in lack of robustness for the adaptive controllers[10]. Such an estimation is often extremely
sensitive to unmodelled dynamics. Further it is possible for the parameters of a transfer
function to change rapidly without changing the transmission properties of the system. This
can particularly happen when poles and zeros of a transfer function are close[10]. One of the
drawbacks of over-parameterization approach is the problem of pole-zero cancellation and
hence the parameters of such transfer functions may vary rapidly. Tuning controllers on the
basis of such rapidly varying parameters would result in rapid change in controller gains.
Representation of systems by frequency response is convinient and accurate. Design of
control systems on the basis of frequency response characteristics is becoming widely popu-
lar. Earlier methods of using frequency response information are oriented towards obtaining
a single point on the frequency response and subsequent design of controllers based upon
this information. These methods became popular in industry as it is easy to obtain a single
point on frequency response. The relay feedback technique developed by Astrom and Witten-
mark(2] is a significant contribution towards this methodology. However design of controllers
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Case Process dead time(74y,) Process time constant(r,,) Nature of controller
- Disturbance dead time(y4,) | - Disturbance time constant(r,) required
IMec >0 >0 Lead + Prediction
Ic =0 >0 Lead
Ic <0 >0 Lead + Dead time
IIIb >0 =0 Prediction
Ib =0 =0 -
IIb <0 =0 Dead time
III a >0 <0 Lag -+ Prediction
Ia =0 <0 Lag
IIa <0 <0 Lag + Dead time

Table 1.1: All possible dynamic combinations for feedforward control and theoretical con-
troller required for complete cancellation of disturbance for different combinations

Case Lead time(ng) Lag time(7,)

IIl ¢ | 0.87 + 0.4(Tdm — Taq) | T — 0.27m — 0.6(Tam — Tdq)
Ic Tm Tq

IIc Tm + Tdm Tq + Tdg

IIIb 1.1(Tam — Tag) T1a/10

Ib Trm Tq

II'b —(Tag = Tam) /2 (Tag = Tam)/2

Illa Tm + Tdm Tq+ Tag

Ia Tm Tq

IMa | 7m— 1.4(74g — Tdm) Tq — 0.4(Tag — Tam)

Table 1.2: Shinskey’s tuning rules for lead-lag feedforward compensators
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on the basis of a single frequency point is found to result in a crude controller. Such a con-
troller might accurately satisfy the open-loop performance specifications like gain-margin or
phase-margin but can result in poor closed-loop performance. Using multiple points on the
frequency response for controller tuning purposes has been proposed by Goberdhansingh et
al.[13], Barnes et al.[14]. Several ways to obtain multiple frequency response points have
been explored in the literature. Wang et al.[15] proposed a method for obtaining multiple
frequency response points on the basis of relay feedback method. Natarajan and Gilbert[16]
developed a parallel band pass filter approach for obtaining multiple frequency response
points, where the identification at each frequency is independent of the identification at
other frequencies.

Alternatively, the frequency response of a process can be obtained from its respective
discrete transfer function coefficients, which can be estimated using standard recursive least
squares techniques. Such an approach has been successfully implemented for the design of
model reference adaptive systems using frequency domain performance specifications by Pa-
tel{4]. This thesis extends these frequency domain principles to feedforward control. The
discrete time parameters of the process and disturbance transfer functions are used in gener-
ating the frequency responses. The feedforward controllers are designed by minimizing the
function Gyy + (G4/G,) over the frequency range of interest. A gain and lead-lag compen-
sator of the form shown in Equation 1.3 is designed using Nelder-Mead sequential simplex
method based optimization[17].

(Tgs + 1)

Gys(s) = Kyy (s +1)

(1.3)
Several different identification structures and their effectiveness in tuning feedforward con-
trollers in frequency domain are studied in this work.

1.5 Overview of the thesis

Literature survey done in the field of RLS identification and frequency domain control strate-
gies is presented in this chapter. Chapter 2 illustrates the simultaneous identification of Gy
and G4 and subsequent frequency domain feedforward control. Chapter 3 compares the ef-
fectiveness of three different closed loop identification and tuning combinations for frequency
domain feedforward control. Chapter 4 tests the adaptive strategy illustrated in Chapter 2
on the lower temperature loop of a methanol-water distillation column. Chapter 5 summa-
rizes the results and conclusions of this thesis along with future work that can be undertaken
in this area.
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Chapter 2

Frequency domain feedforward
control tuning based on simultaneous
identification of process(Gp) and
disturbance(G,) transfer functions

2.1 Introduction

Continuous online identification of processes is a key step in adaptive control. Feedforward
control design requires information of both process and disturbance dynamics. It is possible
in practical situations for the dynamics in either path to change with time. In such cases,
an adaptive strategy based on continuous estimation of both process and disturbance char-
acteristics will be effective. In this chapter, an extended recursive least squares technique
which simultaneously identifies both process and disturbance transfer functions is used. The
regressor vector for recursive estimation consists of the process outputs(y), process inputs(u)
and disturbance measurements(d) respectively. The process input u, is the sum of the control
effort from the feedback and feedforward controllers. A familiar drawback of online identi-
fication techniques is the necessity for advance knowledge of model structure. In recursive
least squares identification the model order should also be chosen appropriately. The choice
of model order is usually a trade off between accuracy of estimation and speed of estimation.
As explained in the previous chapter, in this work the need for accurate knowledge of order
of the system is avoided by using the overparameterization approach to account for changes
in system dynamics.

2.2 Continuous G, and G, identification and frequency
domain feedforward control - Simulation results

In this section, the simulation results for joint identification of process and disturbance
transfer functions and subsequent frequency domain adaptive feedforward controller design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



based on this estimation is presented. The process and disturbance models, G, and G4 that
are used in the simulation are of the form shown below:
Km g~ TdmS Kq @~ Tdg®
P ras+1 4T s+ 1
where:
K, and K, are the process and disturbance gains
Tam and 74, are the process and disturbance dead times L
Tm and 7, are the process and disturbance time constants

The process and disturbance transfer functions are simulated with a time step of 0.001
sec. The RLS identification and control is performed with a sampling period of 0.05 sec.
The process simulation time is chosen 50 times slower than the identification rate in order
to simulate the process as continuous. The process parameters taken in the simulation are
Ky = 2, T, = 0.4 sec and 74, = 0.6 sec and these parameters are unchanged throughout
the simulation. The disturbance gain is kept constant at K, = 2. Dynamic parameters of
the disturbance process 7, and 74, are varied during the simulation as shown in Table 2.1 in
order to simulate various dynamic combinations shown in Table 1.1.

Joint identification of process and disturbance transfer functions using extended least
squares type of estimation necessitates a common denominator polynomial for both the
transfer functions. As all the process and disturbance characteristics considered are of first
order type, it is natural to choose either one or two coefficients in the denominator poly-
nomial. However, in this set of simulations, the number of coefficients in the denominator
polynomial is taken to be five. In the presence of measurement noise, the frequency response
obtained from the recursive least squares coefficients is accurate with more coefficients in the
denominator. As the process conditions are assumed to be constant, the number of coeffi-
cients for numerator of the process is taken to be three. Hence the discrete transfer function
used for the estimation of the process dynamics is of the form given below in Equation 2.1:

| G,,(z'l) - _1{ - _ 2—12(b0—+ blz‘l:’.. b2z“2-)- _ (2.1)

v (I4+az7'+az72 +a3z-3 +a427* + a5279)

The z~!2 factor corresponds to the continuous time process delay of 0.6 sec, sampled at 0.05
sec. On the other hand, the numerator polynomial of the disturbance transfer function G4
is significantly over-parameterized to account for changes in the time delay. In this run,
the number of numerator coefficients for G, is taken as fourteen. A few more coeflicients
than actually required are added to the numerator polynomial in order to obtain better
estimate of frequency response of the disturbance transfer function. The discrete version of
the disturbance transfer function G4 used in the estimation has the following structure:

278+ azl + ez i+ ... + 1327 18)
(1481271 + 6272 + a3z~3 + a4z~ + a5z~%)
In Equation 2.2, the z~8 factor corresponds to the lower limit of continuous time distur-
bance delay of 0.4 sec, sampled at 0.05 sec. The parameter vector of the extended re-

cursive least squares is made up of the common denominator coefficients, process trans-
fer function numerator coefficients and disturbance transfer function numerator coefficients

Gulz™) = 5= (2.2)
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Simulation | 744 Tq
time (sec) | (sec) | (sec) | Case

300 04 | 025 |Illc
500 06 025 | Ic
700 0.8 {025 | Ilc

900 04 | 04 [IIID
1100 06 | 04 | IDb
1300 08 | 04 |[IID b
1500 04 | 05 |IlIa
1700 06 | 06 | Ia
1900 08 | 05 | Ila

Table 2.1: Changes in disturbance dynamics introduced during the simulation with 7,,, = 0.4
sec, Tam = 0.6 sec, K, = K¢ = 2

respectively. Hence the process output(y;) at time instant k depends on the previous
process outputs(yx—1, Yx—2, -..), previous process inputs(Ux—dm, Yk-dm-1, ---) and disturbance
measurements(dg—dg, dk—dg—1, ---) as shown below:

y=Gpu+Gyd (2.3)
y= 2—12(b0 + blz’l -+ bzz'2) A Z_B(Co -+ 012_1 -+ 622—2 T + 6132_13)
(1+a1z7  + 6272 + a3z 3 + a4z~ + asz~®) (1 + a1z~ + @272 + 03273 + asz~* + as5275)
(2.4)
Ye = f(Uko15 Yb=2s +ovr Uk—12, Yk—13) -+ Tk—8; Dk, --) (2.5)

All estimated coefficients are initialized to zero at the beginning of the simulation. An
exponential forgetting factor()) of 0.999 is used. The initial values of the diagonal elements
of the covariance matrix are taken as 100. It is assumed that the process and measurement
noise present in the system is Gaussian and the measured output used in the estimation
procedure is taken to be the sum of the actual process output and the measurement noise.
The noise used in the simulation has a standard deviation of 0.05. The setpoint excitation
used is of square wave type with a period of 20 sec. This period is chosen so that the square
wave cycle has enough harmonics in the frequency range over the process to be estimated.
The nature of disturbance used in the simulations is also of square wave type with a period
of 15 sec. On the basis of the range over which the disturbance dynamics are varied, a square
wave with a period of 15 sec is needed to provide enough harmonics in the frequency range
of interest. The very low frequency disturbances are attenuated through the integral action
of the PI controller and the high frequency disturbances are attenuated by the disturbance
process itself. Therefore the actual requirement for feedforward control arises omly in a
limited frequency range. The disturbance sensitivity function magnitude plot provides an
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Figure 2.1: Magnitude plot of the actual disturbance sensitivity function corresponding to
Case Ill ¢
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Figure 2.2: Phase plot of the actual disturbance sensitivity function corresponding to Case
IMic
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indication of this frequency range. Hence the magnitude plot of the frequency response of
disturbance sensitivity functions are observed over the range of disturbance dynamics used in
this simulation in order to obtain the window of frequencies over which feedforward control
is needed. The magnitude plot in Figure 2.1 illustrates the above discussion. An observation
of such plots for all the cases as given in Table 2.1, showed a requirement for feedforward
control in the frequency range of 0.5 - 6 rad/sec.

The feedback PI controller used in all the simulations in this chapter and in the next
chapter is of constant gain type and it is tuned on the basis of Cianconne tuning rules[H.
The value of the controller proportional gain(Kp) calculated from the above mentioned
process parameters is 0.325 and that of the integral gain(K7j) is 0.4924. The feedforward
controller is designed at each control sampling instant by means of minimizing the magnitude
of the function Gys + (G4/Gyp)(where Gy; is the lead-lag with gain compensator shown in
Equation 1.3) over the desired frequency range using sequential simplex optimization method.
At each instant, the discrete frequency response of the process and disturbance transfer
functions are obtained from the overparameterized recursive least squares coefficients. The
discrete version of the feedforward controller is obtained from the continuous lead-lag with
gain compensator shown in Equation 1.3 using the approximation s = 3:—;—_-1 as shown in
Equation 2.6.

Kpy(na(S52) +1) _ Kpp(%+1) = Kpy ()27
(ng (1) +1) (F+1)- ()

The value of the magnitude of the function Gy + (G4/G,) is evaluated at a set of
normalized frequencies in the interval of interest and the sum of the value of the function at
each frequency weighted by the normalized frequency(wT) is minimized using the sequential
simplex optimization routine. The minimization involved is three dimensional and hence
the shape of the simplex is a tetrahedron. Initial simplex is taken as a regular tetrahedron
of size 0.5 with one of the vertices being (0.4, 0.4, -1.0). The optimization routine starts
at the same initial point with the simplex of same dimension at every control instant in
order to prevent the simplex from converging into a local minimum and not being able to
adapt to the changing parameters. The maximum number of function evaluations for the
optimization is chosen to be 200. The maximum function tolerance is taken to be 0.01. The
optimization routine stops when it satisfies either of the above two conditions. The closed
loop stability is guaranteed through out the set of simulations in this chapter and the next
chapter, by imposing the condition that the lag time(n,) is always greater than zero. This is
implemented by imposing a huge penalty on the function value, every time the optimization
routine returns a value for lag time less than zero.

The simulation run is started with equal process and disturbance parameters, K,,, = K, =
2, Tm = 7q = 0.4 sec, T4y = T4y = 0.6 sec. The square wave setpoint changes with a period of
20 sec is carried out throughout the length of the simulation. The constant gain PI feedback
controller is implemented with a sampling period of 0.05 sec, with P and I gains remaining
the same. The square wave disturbance with a period of 15 sec is introduced at 60 sec and a
constant parameter feedforward controller with parameters of Ky; = —1.0, 714 = 0.4 sec and
Ty = 0.5 sec is switched on at the same time. After the RLS estimation sufficiently converges

Gyr(z™h) = (2.6)
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initially, the frequency domain feedforward control is switched on and the effectiveness of the
adaptive control strategy is tested by introducing changes in the disturbance dynamics as
given in Table 2.1. The adaptive feedforward control is started at 120 sec. From this point,
to the end of simulation the RLS estimation and subsequent frequency domain feedforward
control takes place at every controller sampling period of 0.05 sec in conjunction with the
constant gain PI controller.

The simulation results indicate that the overparameterized recursive least squares strat-
egy employed accurately estimates both the disturbance and process dynamics in the pred-
ence of moderate levels of noise. Table 2.2 lists the error in the estimated process and
disturbance frequency responses for all cases. The error(G) is calculated by subtracting the
magnitude/phase of the RLS estimated frequency response from that of the actual frequency
response. Clearly, the estimated process and disturbance characteristics are accurate to 1
dB in magnitude and 15 deg in the phase in a majority of cases in the frequency range of 0.5
- 6 rad/sec where the feedforward control is implemented. The corresponding H,, and H,
errors in the estimated process and disturbance frequency responses are given in Table 2.3.
The H,, error is calculated as the maximum error in the frequency range, and H, error is
calculated as the square root of sum of the square of the errors at three distinct points in
the frequency range. In a majority of the cases these values are < 1 dB in magnitude and
< 15deg in phase angle. The feedforward controllers are designed in the frequency domain
by minimizing the magnitude of the function G5+ (G4/G,) in the frequency interval of 0.5
- 6 rad/sec. The ratio (G4/G,) is therefore of equal importance to the accuracy of the indi-
vidual factors, G, and G4 in the design of feedforward controllers. The estimated magnitude
and phase characteristics of (G4/G,) are given in Table 2.4. These estimation results are
accurate to 1 dB in the magnitude plot and to 10deg in the phase plot for almost all the
cases in the frequency range of 0.5 - 6 rad/sec where the feedforward control is implemented.

The first change in the disturbance dynamics is introduced at 300 sec which corresponds
to the dynamic combination Case III c. The magnitude plot and phase plot of the estimated
process transfer function are shown in Figure 2.3 and Figure 2.4. The corresponding plots for
the disturbance transfer function are shown in Figure 2.5 and Figure 2.6. These frequency
response plots are obtained after 3000 samples by which time both the process and distur-
bance frequency responses converge. Bias changes in the process input that develop because
of changes in the dynamics affect the convergence speed of the recursive least squares esti-
mation. This is obvious in all the sets of simulations indicated in this chapter as well as in
the next chapter. Hence all the frequency response plots that are included in this chapter are
shown after 3000 samples(150 sec) following the change in dynamics. Figure 2.7 shows the
magnitude plot and Figure 2.8 shows the phase plot of the feedforward controller obtained
from the frequency domain design method, along with the theoretical controller required for
perfect cancellation and the frequency response of the controller based on Shinskey’s tuning
rules. Figure 2.9 shows the magnitude plot of the distubance sensitivity function with and
without feedforward control and Figure 2.10 shows the corresponding phase plot. Figure 2.11
shows the setpoint, process output and the disturbance introduced in the simulation. It is
clear that feedforward control is not effective in completely eliminating the disturbance ef-
fect in this case because of the larger dead time in the manipulated variable path compared
to that of the load path. The difference in magnitude and phase characteristics of actual
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(Ga/G,) ratio required for perfect cancellation and the feedforward controllers designed in
frequency domain(based on the the (G4/G,) ratio obtained from individual RLS estima-
tion of Gy, Gy coefficients) at three distinct frequencies in the interval of interest is given in
Table 2.5. This difference is compared with the frequency response difference between the
actual (G4/G,) ratio and a lead-lag with gain feedforward controller tuned using Shinskey’s
rules. These results for various dynamic combinations obtained by changing the disturbance
dynamics as shown in Table 2.1 can be summarized as follows:

1. For Case III c, the frequency domain tuning method results in a better fit of the
magnitude plot compared to Shinskey’s tuning rules over all frequencies, where as the fit of
the phase plot of Shinskey’s tuning is better than that of the frequency domain method at
low frequencies.

2. For Case I c, this method provides almost exact fit with both the theoretical magnitude
and phase plots resulting in complete cancellation of the disturbance.

3. For Case II ¢, both the magnitude and phase plots resulted by the frequency domain
method are close to the theoretical over all frequencies compared to Shinskey’s tuning rules.
A significant improvement in phase plot is observed particularly in the frequency domain
approach. '

4. For Case III b, the frequency domain method provides a significantly better magnitude
fit to the theoretical than Shinskey’s tuning rule based controller at high frequencies whereas
both the methods result in almost identical phase plots.

5. For Case I b, the magnitude and phase plot of the feedforward controller designed
are shown in Figure 2.13 and Figure 2.14. As it is seen the designed controller accurately
matches the theoretical and hence complete compensation is obtained in this case. The
corresponding time response is shown in Figure 2.12.

6. For Case II b, the frequency domain approach matches the theoretical over all the
frequencies in both the magnitude and phase plots indicating complete cancellation of dis-
turbance.

7. For Case III a, the frequency domain fit very closely approximates Shinskey’s fit as
indicated in Table 2.5 both giving a large phase error. This indicates the shortcoming of the
nature of the lead-lag controller not being able to provide the required combination of lag
plus prediction.

8. For Case I a, the frequency domain design method is found to provide a very close fit to
the theoretical controller in both magnitude and phase plots indicating perfect cancellation.

9. For Case II a, the frequency response characteristics of the designed controller are
shown in Figure 2.15 and Figure 2.16. Clearly the frequency domain design provides a better
fit to the theoretical, in both the magnitude and phase plots compared to the controller based
on Shinskey’s rules.
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Figure 2.3: Magnitude plots of the estimated and actual process transfer function(G,) cor-
responding to Case III c in the desired frequency range of 0.5 - 6 rad/sec
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Figure 2.4: Phase plots of the estimated and actual process transfer function(G,) corre-
sponding to Case III ¢ in the desired frequency range of 0.5 - 6 rad/sec
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Figure 2.5: Magnitude plots of the estimated and actual disturbance transfer function(G,)
corresponding to Case III ¢ in the desired frequency range of 0.5 - 6 rad/sec
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Figure 2.6: Phase plots of the estimated and actual disturbance transfer function(G4) cor-
responding to Case III ¢ in the desired frequency range of 0.5 - 6 rad/sec
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Figure 2.7: Magnitude plots of the frequency domain tuned(Simultaneous G,, G, identifica-
tion), theoretical and Shinskey’s tuning rule based feedforward controllers for Case III ¢
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Figure 2.8: Phase plots of the frequency domain tuned(Simultaneous Gy, G4 identification),
theoretical and Shinskey’s tuning rule based feedforward controllers for Case III c
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Figure 2.9: Magnitude plot of the disturbance sensitivity function with and without feedfor-
ward control for Case III ¢
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Figure 2.10: Phase plot of the disturbance sensitivity function with and without feedforward
control for Case Il ¢
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Figure 2.11: Time response for Case III ¢ using frequency domain(Simultaneous G,, G4
identification) approach
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Figure 2.12: Time response for Case I b using frequency domain(Simultaneous Gy, G4 iden-
tification) approach

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 -
» Estimated
+ Shinskeys
~-— Theoretical
)
k) %
g 0 e e s S S T S S L S ¥ Y 4
=
[o2]
€0
=
=5 -1 ‘o = 1
10 10 10

Frequency (rad/sec)

Figure 2.13: Magnitude plots of the frequency domain tuned(Simultaneous G,, G4 identifi-
cation), theoretical and Shinskey’s tuning rule based feedforward controllers for Case I b
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Figure 2.14: Phase plots of the frequency domain tuned(Simultaneous G,, G4 identification),
theoretical and Shinskey’s tuning rule based feedforward controllers for Case I b
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Figure 2.15: Magnitude plots of the frequency domain tuned(Simultaneous Gy, G4 identifi-
cation), theoretical and Shinskey’s tuning rule based feedforward controllers for Case II a
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Figure 2.16: Phase plots of the frequency domain tuned(Simultaneous G, G4 identification),
theoretical and Shinskey’s tuning rule based feedforward controllers for Case II a
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Figure 2.17: Time response for Case II a using frequency domain(Simultaneous G,, G4 iden-
tification) approach .

w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec

Case ép G~p G~d G~¢ ép G~p G~d éd G~p ép éd éd
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)

Mic| 005} 20 | 005 | 20 0.1 4.0 | 046 | 5.0 | 030 | 135 | 043 | 9.0
Ic 1002 10 | 005 1.50 | 0.15 | 3.0 0.5 2.0 | 042 | 850 | 0.40 | 2.50
IIc {1 005|050 | 00 | 0.50 {040 | 2.0 [ 020 | 2.0 | 0.07 | 17.0 | 0.30 | 17.0
Imm» | 002 | 05 [ 005| 20 [005| 30 {001, 50 03 | 130 | 095 | 13.0
Ib 001050 {002| 10 [013| 2.0 0.2 1.0 {015 7.0 | 0.50 | 3.50
b 002 1.0 {002 20 [ 021|350 030 30 |047 | 90 | 085 | 18.0
IMTa| 002 20 002} 1.0 | 001} 45 | 020 80 | 032 16.0 | 2.60 | 11.0
Ia 003 1.0 0.1 | 030 |020| 30 [022 180|038 | 9.0 |1.20 |12.50
IIa {005 30 {010 | 1.0 |0.75 | 6.50 | 013 | 40 [ 135 9.0 | 0.95 | 24.0

Table 2.2: Difference in magnitude and phase plots between the actual and estimated,

process(ép) and disturbance(Gg) frequency responses for the 9 possible combinations
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H, error H, error

Case| G, | Gy | Ca | Gs | G, ] G, | Ga | Go
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
Mc| 03 | 135 [ 055 | 9.0 | 0.32 | 14.22 | 0.63 | 10.49
Ic 1042 | 85 [ 068 ] 2.5 {045 | 9.07 | 0.64 | 3.54
IIc {055 ) 17 | 035 | 17.0 { 0.41 | 17.10| 0.36 | 17.10
IMlb {030 13.0 [ 0.95 | 13.0 | 0.31 | 13.35| 0.95 | 14.07
Ib {0620 7.0 | 050 | 3.50  0.20 | 7.30 | 0.54 | 3.78
IIb {047 | 90 | 0.8 | 180 | 0.52 | 9.71 | 0.90 | 18.36
ITa | 032 160 | 260 | 16.0 | 0.32 | 16.74 | 2.61 | 13.64
Ta 1038) 90 | 120 125 | 043 | 954 | 1.22 | 12.63
ITa {135 90 [ 095 | 240 | 1.55 | 11.5 | 0.96 | 24.36

Table 2.3: Hy and H; error in magnitude and phase plots between the actual and estimated,
process(G,) and disturbance(Gg) frequency responses for the 9 possible combinations

w = 0.5 rad/sec | w = 2 rad/sec | w = 6 rad/sec | Ho error H, error

G| & | & || & |&| & |88 &5
(dB) | (deg) |(dB)| (deg) |(dB) | (deg) | (dB) | (deg) | (dB) | (deg)
IllTc | 0.01 1.0 0.35 1.0 0.13 4.0 040 | 40 | 037 | 4.24
Ic |0.01 0.50 0.38 1.0 0.01 5.9 045 | 61 | 038 6.0
IIc | 0.01 1.0 0.60 020 022 080 | 090 | 550 | 0.64 | 1.30
Imb| 00 0.50 0.10 2.0 0.65 0.0 065 | 3.5 | 0.66 | 2.06
Ib | 00 0.10 008 | 120 038 3.50 | 038 3.50 | 0.39 | 3.70
IIb | 0.0 0.10 0051 0.80 | 040 9.0 040 | 9.0 | 040 | 9.04
IITa| 0.01 0.2 015 | 2.80 |235| 425 | 235 6.25 | 2.35 | 5.09
ITa | 0.04 1.50 0.42 130 [ 082} 3.50 |0.82] 3.75 | 0.92 | 4.02
ITa {010 1.80 060 | 2.78 | 048 | 158 | 0.88 | 158 | 0.77 | 16.14

Table 2.4: Difference in magnitude and phase plots between the actual and estimated along
with the corresponding H,, and H; error for (G4/Gp) frequency responses for the 9 possible

combinations
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w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec

Case| F | F | § S | F | F | § S F | F S S
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
IlIcj 010 20 |005] 00 | 001 5.0 04 20 | 280 | 170 | 475 | 29.0
Ic 0.0 1.0 0.0 00 | 042 050 | 0.0 0.0 | 010 9.0 0.0 0.0
IIc¢ {010} 10 | 025 050 | 110 10 | 1.50 | 10.0 | 2.10 ; 20.0 | 3.60 | 58.0
IInTb ] 120 1.0 | 005 050 | 0.75 | 40 | 0.78 ] 2.0 3.1 | 19.0 } 425 | 23.0
Ib {003,020} 00| 00 { 00 {060 00 | 00 |010} 020 | 0.0 | G.0
IIb{ 00 | 010 | 0.0 00 1005 0.0 0.3 0.0 [ 085 | 3.0 0.0 | 6.75
IITa {020 1.0 | 025 | 20 {110 11.0 | 1.60 | 13.0 | 2.80 | 39.0 | 2.60 | 64.0
Ia {010| 10 [ 00 | 00 {035{050 | 00 00 {020 50 | 0.0 | 00
ITa {010 150 [ 0.10 | 0.0 | 080 | 250 | 123 | 3.0 2.0 | 8.50 | 5.20 | 41.0

Table 2.5: Difference in the magnitude and phase plots of theoretical and fre-

quency domain(Simultaneous Gy, G4 identification) method(F), theoretical and Shinskey’s
controllers(S), for the 9 possible cases

H, error H, error

Case| F | F 5 S | F | F S S
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
IMIc| 280 | 17.0 | 4.75 | 29.0 | 2.80 | 17.83 | 4.77 | 29.07
Ic {050} 90 { 00 | 0.0 [ 043|907 | 00 | 0.0
IIc | 210 | 20.0 | 3.60 | 58.0 | 2.37 | 20.05 | 3.91 | 58.86
IITb | 310 | 19.0 | 425 | 23.0 | 3.41 | 19.44 | 4.32 | 23.09

Ib |010] 020 | 00 { 00 {010} 066 | 00 | 00
IIb |08 | 30 | 00 | 675 | 085 | 3.0 | 0.0 | 6.76
IITa| 280 | 59.0 | 2.60 | 64.0 | 3.02 | 60.02 | 3.06 | 65.31

Ia {060 50 | 0.0 | 0.0 | 042 5.12 | 0.0 | 0.0
ITa | 20 | 850 | 520 | 41.0 | 2.16 | 8.99 | 5.30 | 41.10

Table 2.6: H,, and H; error in the magnitude and phase plots of theoretical and frequency do-
main(Simultaneous Gy, G4 identification) method(F), theoretical and Shinskey’s controllers

(S5), for the 9 possible cases
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Shinskey’s tuning | Frequency domain tuning

Case | 7 lead Tlag K ff | Tiead Tlag K if
(sec) | (sec) | (2) | (sec) | (sec) (2
IIlc | 040 | 0.05 | -1.0 | 0.29 | 0.0003 -0.98
Ic | 040 ] 025 |-1.0| 024 | 0.12 -1.00
IIc | 1.0 | 1.05 | -1.0 | -0.09 | 0.0002 -0.99
I b | 0.22 | 0.022 | -1.0 | 0.22 | 0.008 -0.86
Ib | 040 | 040 |-1.0 | 043 | 042 -0.99
IIb |-0.10} 0.10 | -1.0 {-0.12| 0.08 -1.00
IITa| 1.0 09 |-1.0]| 053 | 040 -0.94
Ia | 0401 050 |-1.0 | 0.12 ; 0.18 -0.98

IMa | 0.12 | 042 | -1.0 {-0.13| 0.11 -0.99

Table 2.7: Tuning parameter values for the 9 cases used in the simulation based on Shinskey’s
tuning rules and frequency domain(Simultaneous G,, G4 identification) method
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Chapter 3

Frequency domain feedforward
control tuning based on closed loop
identification techniques

3.1 Introduction

Almost all processes in a plant operate in closed loop for various reasons of safety, perfor-
mance etc. System identification in closed loop is explored by numerous authors in the litera-
ture and it is still an area of active research interest. In the previous chapter, the feedforward
controllers were tuned by direct estimation of the process and disturbance transfer functions
followed by frequency domain tuning based on the (G4/Gp) ratio. Perfect feedforward con-
trol under any dynamic combination requires a controller which closely approximates this
ratio. Hence the key step in designing feedforward controllers is the accurate estimation
of this ratio. In this chapter various alternatives to obtain this ratio are tested and their
effectiveness in designing feedforward controllers is studied.

The extended least squares type of estimation used in the previous chapter takes changes
in both process and disturbance dynamics into account, in order to design feedforward con-
trollers under various conditions. But in certain situations, the change in disturbance dy-
namics can be significant whereas the process dynamics can remain fairly constant. In such
situations it will be more appropriate to estimate the disturbance dynamics alone continu-
ously for the design of feedforward controllers.

In the closed loop system shown in Figure 1.1, two closed loop transfer functions are often
of significant interest, disturbance sensitivity function(S;) and complementary sensitivity
function(T"). The transfer function from the disturbance(d) to the process output(y) is
known as the disturbance sensitivity function and before introducing feedforward control it
has the transfer function of the form shown in Equation 3.1 below:

Gy

_¥__Gi _
5= =TT 6,6) (3:1)

The complementary sensitivity function is the transfer function from the setpoint(r) to
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the process output(y) and has the form shown in Equation 3.2:

=Y G,G.

r - 11G,6) (3-2)

Three different methods for obtaining the ratio (G4/G,) through the estimation of these
transfer functions are proposed in this chapter. In all the three methods it is assumed that the
process dynamics are constant and the disturbance dynamics vary with time. In situationg
where process dynamics also change along with the disturbance dynamics, sequential probing
and identification of process and disturbance dynamics can be carried out. In the first method
the disturbance sensitivity function is estimated and the previously computed process data
along with the knowledge of feedback controller are used to open this disturbance sensitivity
function in order to obtain the disturbance transfer function, G4. In the second method, an
alternative to opening the closed loop disturbance sensitivity function is proposed by tuning
the feedforward controller on the basis of the ratio (S;C/T) where S; is the disturbance
sensitivity function shown in Equation 3.1, T is the complementary sensitivity function
shown in Equation 3.2 and C is the PI feedback controller. In the third approach, the
ratio of the transfer functions from the disturbance(d) to process input(u) and the transfer
function from the setpoint(r) to process output(y), which is mathematically equivalent to
the required ratio (G4/Gp) is used for tuning.

3.2 Frequency domain tuning based on extraction of
G4 from the disturbance sensitivity function - Sim-
ulation results

The effect of disturbance on any controlled variable can be characterized by the relevant
disturbance sensitivity function. Frequency response of such a function is a convenient
way of analyzing the effect of various frequency disturbances on the controlled variable.
In this simulation, initially the square wave setpoint changes with a period of 20 sec is
introduced. The process transfer function{G,) estimation is carried out using the recursive
least squares approach on the process input(u) and the process output(y). During this stage
no disturbances are introduced in the loop and the output is only under the influence of
the Gaussian measurement noise and the constant gain PI feedback controller. The process
parameters, feedback controller gains, as well as RLS parameters and the various initial
values are chosen the same as mentioned in Chapter 2. Unlike the case where G, and G4
are estimated simultaneously, in this type of estimation the denominator coefficients of the
two transfer functions can be chosen independently. As the process dynamics are not being
varied, 3 coefficients in the numerator and 2 coefficients in the denominator are used in the
discrete version of the estimated process transfer function as shown in Equation 3.3.

G,(z!) = y(z7h) - 27 2(by + byz7! + bp2™?)
¥ T u(z7l) T (14 a7 +agz7?)

(3.3)
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The z7!% term in the numerator corresponds to the continuous time process delay of
0.6 sec, discretized at a sampling period of 0.05 sec. After the process transfer function
estimation has sufficiently converged indicated by the convergence of its frequency response,
the estimation of G, and changes in setpoint are stopped. Square wave disturbance with
a period of 15 sec is introduced at 300 sec. From this point, the recursive least squares
estimation is carried on the disturbance(d) and process output(y) so as to estimate the
disturbance sensitivity function. The model of the discrete time disturbance sensitivity
function used in the estimation is as shown in equation 3.4. A

_y(z™) ot eazr T+ +ogz™)
Td(z7l) T (1+diz7t +dez 2 + .+ dgoz~?0)

The choice of the z~® factor in the numerator is based on the presence of the G, term
in the numerator of the disturbance sensitivity function(Equation 3.1), for which the lower
limit of the continuous time delay is 0.4 sec sampled at 0.05 sec. The choice of 15 coefficients
in the numerator is based upon the change in disturbance delay during the simulation. 20
coefficients are taken in the denominator to account for the presence of discrete process and
controller transfer functions in Equation 3.1. A few more coefficients than actually needed
are taken in both the numerator and denominator polynomials, as it is has been noticed
to result in an accurate estimate of the frequency response in the presence of measurement
noise. The recursive identification(of disturbance sensitivity function) is carried out only in
the presence of the feedback controller. After the disturbance sensitivity function identifi-
cation converges sufficiently in each case(as indicated by the convergence of the frequency
response) the identification is stopped and the tuning is performed. The process frequency
response is computed using the recursive least squares coefficients estimated during the pro-
cess estimation stage. On the other hand, the disturbance frequency response is calculated
in two stages. In the first stage the identified parameters of disturbance sensitivity function
are used in calculating its frequency response. The knowledge of the PI gain values of the
feedback controller is utilized in computing the controller frequency response. The second
stage involves deriving the disturbance frequency response from the disturbance sensitivity
function, process and controller frequency responses as shown below:

Ga(w)

14 Gp(w)G (w)

The frequency response of the discrete lead-lag with gain feedforward controller is cal-
culated using Equation 2.6. The value of the magnitude of the function Gs; + (G4/G,)
is computed at various frequencies in the normalized frequency(wT’) range of 0.025 to 0.3
rads which corresponds to the unnormalized frequency of 0.5 to 6 rad/sec. The weighted
sum of the magnitude of function at each frequency is minimized by using Nelder-Mead’s
simplex method. The weighting factor used is of the type '—"-17., so that lower frequencies get
more weighting compared to the higher frequencies. The various constraints imposed on the
optimization routine are the same as mentioned in the previous chapter.

Initially the process transfer function G, is estimated as before using the discrete time
model shown in Equation 3.3. The magnitude plot of the estimated process is shown in
Figure 3.1 and the phase plot of the process is shown in Figure 3.2. In all the sets of

Sd(z‘l) (3'4)

Sa(w) = = Ga(w) = Saw) x [1 + Gy(w)Ga(w)] (3.5)
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simulations in this chapter, the disturbance dynamics are changed according to Table 2.1.
The disturbance dynamics are changed every 200 sec in order to simulate the various cases.
In each interval of 200 sec, the disturbance sensitivity function estimation is carried out for
the first 150 sec, so that its frequency response converges sufficiently in all the cases and
the frequency domain feedforward control tuning is applied during the next 50 sec. At 300
sec, the disturbance dynamics correspond to the dynamic combination Case III c. The RLS
identification of the disturbance sensitivity function is performed until 450 sec, and at 450 sec
the RLS identification is turned off and the frequency domain tuning as well as feedforwarll
control on the basis of the tuning values returned by the optimization routine is applied. The
magnitude and phase plots of the frequency response of the disturbance sensitivity function
are shown in Figure 3.3 and Figure 3.4. The disturbance frequency response derived by
opening the disturbance sensitivity function is shown in the magnitude plot, Figure 3.5 and
phase plot, Figure 3.6.

The value of the disturbance sensitivity function magnitude is very small at very low
frequencies because of the I gain of the PI feedback controller. On the other hand, the value
of the disturbance sensitivity function magnitude also becomes very small value at higher
frequencies because of the first order lag characteristic present in the disturbance process,
Gg4. Hence the magnitude of disturbance sensitivity function is above 0 dB only in a certain
frequency range and this is the frequency range in which accurate estimation of disturbance
sensitivity function is carried out for feedforward control. In all the cases that are considered
in this simulation, this range of frequencies is observed to be 0.5 to 6 rad/sec. Hence all the
frequency response plots that are shown in this chapter are plotted in this frequency range.
The results of the estimation of the disturbance sensitivity function and the disturbance
process frequency responses are tabulated in Table 3.1 and Table 3.2. It is clear that all the
estimation of frequency responses are accurate to 1.5 dB in the magnitude plot and about
10 degrees in phase plot, for all the cases.

1. For Case III c, the feedforward controller magnitude plot is shown in Figure 3.7 and
the phase plot is shown in Figure 3.8. It is clear that feedforward control is not effective
in cancelling the disturbances at all frequencies because of the theoretical requirement of
a lead plus prediction based controller. The frequency response of Shinskey’s tuning based
controller is close to the theoretical compared to the frequency domain method at low fre-
quencies. Time response of the frequency domain tuned controller for this case is given in
Figure 3.9 and the time response using Shinskey’s tuning rules is given in Figure 3.10. As in-
dicated in the fit of the frequency response, Shinskey’s tuning provides better time response
compared to the frequency domain method for this case.

2. For Case I ¢, both the approaches provide almost perfect cancellation of disturbance as
observed through the fit of the frequency response of the controllers(Table 3.3 and Table 3.4).

3. For Case II ¢, the frequency domain approach provides a better fit of both the mag-
nitude and the phase plots compared to Shinskey’s tuning.

4. For Case III b, this method provides a better fit of the magnitude plot compared to
Shinskey’s fit at the expense of the phase plot.

5. For Case I b, both the magnitude and phase plots of the two methods match with the
flat theoretical plots as can be seen in Figure 3.11 and Figure 3.12. The complete cancellation
of disturbance is also obvious in the time response shown in Figure 3.13.
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6. For Case II b, the magnitude and phase plots of both the frequency domain method
and Shinskey’s method very well match with the theoretical.

7. For Case III a, the theoretical controller calls for a combination of lag and prediction.
With the nature of the controller used, both the Shinskey’s and frequency domain tuning
approach provide very close results indicating the conflicting requirement of lag along with
lead for prediction.

8. For Case I a, both the methods provide accurate fit of magnitude and phase plots to
the theoretical, providing complete cancellation of the disturbance. L

9. For Case II a, the theoretical controller calls for a combination of lag plus dead time.
The frequency domain method tuning used provides a better fit in the magnitude as well as
the phase plots as shown in Figure 3.15 and Figure 3.16. The effectiveness of this method is
also illustrated by comparing the time responses using this method in Figure 3.17 with that
of Shinskey’s tuning in Figure 3.18.
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Figure 3.1: Magnitude plots of the estimated and actual process(G,) in the desired frequency
range of 0.5 to 6 rad/sec
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Figure 3.2: Phase plots of the estimated and actual process(Gp) in the desired frequency
range of 0.5 to 6 rad/sec
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Figure 3.3: Magnitude plots of the estimated and actual disturbance sensitivity function(Sy)
corresponding to Case III ¢ in the desired frequency range of 0.5 to 6 rad/sec
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Figure 3.4: Phase plots of the estimated and actual disturbance sensitivity function(Sy)
corresponding to Case III ¢ in the desired frequency range of 0.5 to 6 rad/sec
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Figure 3.5: Magnitude plots of the derived(from S;) and actual disturbance transfer
function(Gy) corresponding to Case III ¢
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Figure 3.6: Phase plots of the derived(from S;) and actual disturbance transfer function(Gg)
corresponding to Case III ¢
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Figure 3.7: Magnitude plots of the frequency domain tuned(using G4 from Sy method),
theoretical and Shinskey’s tuning rule based feedforward controllers for Case III ¢

- Estimated
x  Shinskeys
— Theoretical

3

g e

N
(=]

Phase angle(deg)
@
(=]

S

Py
[=]

10° 10"
Frequency (rad/sec)

Figure 3.8: Phase plots of the frequency domain tuned(using G4 from S; method), theoretical
and Shinskey’s tuning rule based feedforward controllers for Case Il ¢
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Figure 3.9: Time response for Case III ¢ using frequency domain(G, from S;) approach
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Figure 3.10: Time response for Case III ¢ using Shinskey’s tuning rules

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10 v
o Estimated
x  Shinskeys
—— Theoretical
= 5 r h
g
-~ %
]
©
2
=
&
=
53 s 1
10 10 10
Frequency (rad/sec)

Figure 3.11: Magnitude plots of the frequency domain tuned(using G4 from S; method),
theoretical and Shinskey’s tuning rule based feedforward controllers for Case I b
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Figure 3.12: Phase plots of the frequency domain tuned(using Gy from S; method), theo-
retical and Shinskey’s tuning rule based feedforward controllers for Case I b
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Figure 3.13: Time response for Case I b using frequency domain(Gy from S4) approach
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Figure 3.14: Time response for Case I b using Shinskey’s tuning rules
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Figure 3.15: Magnitude plots of the frequency domain tuned(using G4 from S; method),
theoretical and Shinskey’s tuning rule based feedforward controllers for Case II a
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Figure 3.16: Phase plots of the frequency domain tuned(using G4 from S; method), theo-
retical and Shinskey’s tuning rule based feedforward controllers for Case Il a
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Figure 3.17: Time response for Case II a using frequency domain(Gy from S;) approach

5 T T ¥ T T
- Disturbance
4t —— Process Output

-1t

=2t i

-3} -

4t .

i Y

—5 r A s
2070 2075 2080 2085 2080 2095 2100
Time

Figure 3.18: Time response for Case II a using Shinskey’s tuning rules
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w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec

Cese| S | § |Gy | Ga | § | § | Ga| Ga | § | & | Gy Gy
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)

MIc 025 1.0 {023 | 20 040 | 20 025 40 | 030 | 00 | 0.10 | 0.0
Ic |050 1.0 {050 20 {025 1.0 | 0.0 | 30 | 055 | 0.0 {025 | 0.0
IIc | 060 | 050 {060 | 1.0 {020 20 | 00 | 00 | 110 7.0 | 075 | 7.0
IMb|060| 00 050 | 10 [ 020 225 | 0.0 | 4.50 | 0.75 | 6.50 | 0.40 | 7.0
Ib {035 1.0 {030 | 1.0 | 022|125 |015| 1.0 [ 058 | 1.50 {020 | 1.0
IIb | 075 | 280 | 070 | 1.0 | 010 3.75 | 0.15 | 1.75 | 0.90 | 4.25 | 0.60 | 4.50
IlTa|050 | 025 | 043 | 050 {018 | 2.0 | 0.0 | 425 | 1.10 | 5.0 | 0.63 | 5.25
Ia 040 025 | 035 | 050 {025 | 150 {018 | 10 | 050 | 1.0 |0.18 | 1.0
ITa {075 | 275 { 0.75 | 2.30 | 015 | 5.0 | 0.25 | 2.75 | 1.25 | 3.0 | 0.95 | 3.50

Table 3.1: Difference in magnitude and phase plots between the actual and estimated, dis-
turbance sensitivity(S;) and disturbance(G4) frequency responses for the 9 possible combi-

nations

H, error H, error

Case 5’ 5 éd éd S’ S’ G~d éd
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)

ITc {045 | 2.0 | 0.60 | 4.0 | 0.56 | 2.24 | 0.35 | 4.47
Ic |055] 3.0 |060| 50 | 0.78 | 141 | 0.56 | 3.61
IMI¢ 110, 70 |075| 70 (098 | 73 | 096 | 7.0
b {075 | 650 1060 70 | 098 | 6.88 | 0.64 | 8.38
Ib {058 230 | 050 50 | 071 219 | 0.39 | 1.73
IIb | 1.10 | 4.25 | 0.90 | 450 | 1.18 | 6.32 | 0.93 | 4.93
IMTa | 110 50 | 065 | 5.25 | 1.22 | 5.39 | 0.76 | 6.77
Ia {050 30 |[060| 5.0 | 069 | 1.82 | 0.43 | 1.50
ITa [ 135 550 | 1.25 | 4.80 | 1.47 | 6.45 | 1.20 | 5.01

Table 3.2: Hy and H; error in magnitude and phase plots between the actual and estimated,
disturbance sensitivity(S;) and disturbance(G) frequency responses for the 9 possible com-
binations
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w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec

Case | F | F | § S | F| F | S § | F | F S S
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
MMlc| 04 20 {005 00 {034 ] 60 | 040} 2.0 24 | 210 | 475 | 28.0
Ic | 04 10 |00} 00 [015| 1.0 | 00 | 00 [ 060 40 | 00 | 0.0
IMc | 070 | 40 |0.25 | 0.50 | 1.30 | 8.50 | 1.50 | 10.0 | 0.55 | 11.0 | 3.60 | 580
IIfb {070 | 20 (005 050 | 0.50 | 140 [ 078 | 2.0 | 1.5 | 63.0 | 4.25 | 23.0
Ib {025 00 | 00 | 00 |025| 00 | 00 | 00 025 0.0 | 0.0 | 0.0
IIb | 060 010 | 00O | 00 {050 (030 | 00 [ 030 {010 575 | 0.0 | 6.75
IMTa|055) 020 | 025|020 | 1.0 | 11.0 | 1.60 | 13.0 | 240 | 620 | 2.6 | 64.0
Ia | 005|275 | 060 | 00 | 075|625 | 00 | 00 |1.70| 425 | 0.0 | 0.0
ITa {08 | 1.0 [ 010| 00 | 040 | 1.0 | 123 | 3.0 | 170 | 1.0 | 520 | 41.0

Table 3.3: Difference in the magnitude and phase plots of theoretical and frequency
domain(Gy from S;) method(F'), theoretical and Shinskey’s controllers(S), for the 9 pos-
sible cases

H,, error H, error

Case| F | F | §| 8§ | F| F | § | §
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
Ilc | 240 | 21.0 | 4.75 | 29.0 | 2.46 | 21.93 | 4.77 | 29.07

Ic 060 48 | 00 | 00 |0.74| 424 | 0.0 | 0.0
IMMc | 150 { 11.0 | 3.60 | 58.0 | 1.58 | 14.46 | 3.91 | 58.86
IIIb| 150 | 63.0 | 425 | 23.0 | 1.73 | 64.57 | 4.32 | 23.09

Ib 025 00 | 00 ; 00O |043 | 00 | 0.0 | 0.0
IIb | 060 | 575 | 00 | 675 | 0.79 | 5.76 | 0.0 | 6.76
IITa| 240 | 62.0 | 2.60 | 64.0 | 2.66 | 62.97 | 3.06 | 65.31
Ia |170 | 650 | 00 | 00 | 186|804 | 00 | 0.0
ITa [ 170 | 2.0 | 52 | 410 | 1.92 | 1.73 | 5.30 | 41.1

Table 3.4: Ho, and H; error in the magnitude and phase plots of theoretical and frequency
domain(Gy from S;) method(F), theoretical and Shinskey’s controllers (S), for the 9 possible

cases
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Shinskey’s tuning | Frequency domain tuning

Case | Tieaa | Tiag | Kff | Tiead | Tiag Ky
(sec) | (sec) | () | (sec) | (sec) (%)
IMlc{040 | 005 | -1.0 | 0.29 | 0.0006 -0.96
Ic {040 | 025 | -1.0| 0.55 0.37 -0.94
JIR 1.0 1.05 | -1.0 | -0.18 | 0.0003 -0.93
IIIb| 022 |0.022 ] -1.0 | 0.573 | 0.42 -0.91
Ib | 040 | 0.40 | -1.0 | 0.48 0.48 -0.97
IIb |-0.10] 0.10 | -1.0 | -0.12 0.09 -0.94
Ifa] 1.0 09 |-1.0| 061 0.51 -0.92
Ia {040 | 050 |-1.0| 043 0.55 -0.97
IIa | 012 | 042 | -1.0 |-0.075| 0.18 -0.91

Table 3.5: Tuning parameter values for the 9 cases used in the simulation based on Shinskey's
tuning rules and frequency domain(G4 from S;) method
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3.3 Frequency domain feedforward control tuning based
on %‘g— ratio - Simulation results

The previous section illustrated the application of feedforward control through disturbance
sensitivity function estimation. The tuning was based on deriving the disturbance transfer
function(Gg4) frequency response from that of the disturbance sensitivity function(Ss) and
subsequent evaluation of the required ratio (G4/Gp). Alternatively, this ratio of transfer
functions can also be obtained with out the individual components, G, and Gy through
two closed loop procedures. One such procedure is to tune the feedforward controllers on
the basis of the ratio (S4C/T) where Sy is the disturbance sensitivity function from d to y
given in Equation 3.1 and T is the complementary sensitivity function from r to y given in
Equation 3.2, which is mathematically equivalent to (G3/G,) as shown below:

SiC _ (reies)(Go) _ G (356)
T (aigey G

In this section, the effectiveness of tuning the feedforward controllers in the frequency
domain on the basis of this closed loop ratio is tested. Initially, the recursive least squares es-
timation of the complementary sensitivity function is carried out using the process output(y)
and the setpoint(r). The model of the discrete time transfer function used during the esti-

mation is as shown below:

Z-w(bo -+ blz“‘ -+ bgz")

T(zH =
(™) (1+az7 1+ a3z~ 2+ azz~3 +.... + a32713)

(3.7)

The selection of the 2712 term in the numerator is based on the continucus time process
delay of 0.6 sec, sampled at 0.05 sec. Three coefficients are taken in the numerator and
thirteen coefficients are taken in the denominator. The setpoint changes are introduced
with a period of 20 sec and in this stage the process output is only under the influence of
the measurement noise and the feedback PI controller. No disturbances are introduced at
this stage. At 300 sec, the setpoint changes as well as the RLS estimation of the closed
loop transfer function from r to y is stopped. At this point, the square wave disturbance
with a period of 15 sec is introduced and the disturbance dynamics are changed as given in
Table 2.1. As in the previous section, the estimation of the disturbance sensitivity function
is carried for the first 150 seconds in each interval and the tuning is performed during the
next 50 seconds. The model of the estimated discrete time disturbance sensitivity transfer
function is taken as the same as in previous section, given in Equation 3.4. The frequency
domain tuning used involves the evaluation of the frequency response of the ratio (SqC/T)
over the normalized frequency range of 0.025 to 3.0 rads with a step size of 0.05 rads, which is
equivalent to unnormalized frequency of 0.5 to 6 rads/sec. The (1/wT) weighted sum of the
magnitude of G4s + (S4C/T) at these set of frequencies is minimized using the Nelder-Mead
simplex method. All the parameters and constraints of the optimization are taken the same
as mentioned in the Chapter 2.

The frequency response of the estimated and true complementary sensitivity function(T)
are shown in Figure 3.19 and Figure 3.20. Since the process dynamics are unchanged, this
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estimated frequency response of T is used for tuning purposes throughout the length of this
simulation. Since the disturbance dynamics that are considered in this section are the same
as in the previous section, the estimated disturbance sensitivity function magnitude and
phase characteristics remain the same as given in Table 3.1 and Table 3.2 respectively. The
feedforward controller magnitude and phase plot characteristics that are designed using this
method are tabulated for the various combinations. Table 3.6 shows the difference between
the theoretical and (S4C/T) approach compared to the difference between the theoretical
and Shinskey’s tuning rules in the frequency domain at three distinct frequencies in th®
interval of interest, 0.5 - 6 rad/sec. Table 3.7 compares the equivalent difference using H
and H, criteria. The simulation results for tuning feedforward controllers in this manner can
be summarized as follows:

1. For Case I1I ¢, (54C/T) tuning method provides better fit to the theoretical in both
the magnitude and phase plots compared to Shinskey’s tuning rules. The magnitude and
phase plots of the feedforward controller designed using (SqC/T") tuning compared to the
theoretical and Shinskey’s tuning rules are shown in Figure 3.21 and Figure 3.22. The time
response is shown in Figure 3.25.

2. For Case I ¢, both (S4C/T) and Shinskey’s tuning rules provide close magnitude
and phase plots to the theoretical indicating complete cancellation of disturbances in this
frequency range.

3. Case II ¢ requires a combination of lead plus dead time for perfect cancellation.
Both the (S4C/T) approach and Shinskey’s tuning rules fail to provide a good fit in both
magnitude and phase plots for this case. Interestingly, both the methods show a similar
trend of lag dominant controller. Whereas the frequency domain approach tends to fit both
the magnitude and phase plots close to the theoretical, Shinskey’s controller tend to favour
the magnitude response at the expense of the phase plot.

4. For Case III b, both the tuning methods provide identical phase plot fit whereas the
magnitude fit of the frequency domain tuning is better than that of Shinskey’s tuning.

5. For Case I b, this method provides a perfect flat magnitude and phase characteristic,
close to the theoretical and Shinskey’s controller.

6. For Case II b, this method provides a reasonably accurate fit in the magnitude plot
compared to the theoretical. Both the methods provide identical phase response fit.

7. For Case III a, this method provides a better fit in the magnitude plot compared to
Shinskey’s tuning at the expense of the phase plot.

8. For Case I a, both the methods provide good fit of the magnitude and phase plots
close to the theoretical.

9. For Case II a, this method results in a better fit in both magnitude and phase
plots to the theoretical compared to Shinskey’s tuning method as shown in Figure 3.23 and
Figure 3.24. The time response is shown in Figure 3.26.
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Figure 3.19: Magnitude plots of the estimated and actual closed loop complementary sensi-
tivity function(T)
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Figure 3.20: Phase plots of the estimated and actual closed loop complementary sensitivity
function(T)
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Figure 3.21: Magnitude plots of the frequency domain tuned(using (S4C/T) method), the-
oretical and Shinskey’s tuning rule based feedforward controllers for Case III ¢
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Figure 3.22: Phase plots of the frequency domain tuned(using (S;C/T") method), theoretical
and Shinskey’s tuning rule based feedforward controllers for Case III ¢
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Figure 3.23: Magnitude plots of the frequency domain tuned(using (S3C/T) method), the-
oretical and Shinskey’s tuning rule based feedforward controllers for Case Il a
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Figure 3.24: Phase plots of the frequency domain tuned(using (S4C/T) method), theoretical
and Shinskey’s tuning rule based feedforward controllers for Case II a
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Figure 3.25: Time response for Case III ¢ using frequency domain(S;C/T) approach
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Figure 3.26: Time response for Case II a using frequency domain(S;C/T) approach
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w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec
Case | F F | § S | F | F S S | F | F S S

(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)

IMc | 110] 1.0 [005| 00 |070| 20 04 | 2.0 | 270 | 18.0 | 4.75 | 29.0

Ic | 055} 198 | 00 | 00 010} 130 00 | 0.0 | 0.15] 220 | 0.0 0.0

Ilc | 0.45 | 0.50 | 0.25 | 0.50 | 2.15 | 6.0 | 1.50 | 10.0 | 4.75 | 55.0 | 3.6 | 580

Ilb | 0.78 | 1.0 | 0.05 | 0.50 | 0.30 | 340 | 0.78 | 2.0 | 2.53 | 22.50 | 4.25 | 23.0

Ib {050 010} 00 | 00 {045 {030 }| 00 | 00 | 040} 020} 0.0 | 0.0

IIb 1100675 | 00 | 00 {090 240 00 | 030 | 035 2.0 | 0.0 | 6.75

IMla 065| 30 | 025 020|010 | 17.0 | 1.60 | 13.0 | 0.95 | 65.0 | 2.60 | 64.0

Ia 010|280 | 00 | 00 [ 085|630 00 | 00 | 165} 420 | 0.0 | 0.0

ITa { 1.05 | 1.40 | 010 | 00 [ 040 | 1.70 | 1.23 | 3.0 | 0.25 | 0.30 | 5.20 | 41.0

Table 3.6: Difference in_the magnitude and phase plots of theoretical and frequency
domain(S;C/T) method(F), theoretical and Shinskey’s controllers(S), for the 9 possible
cases

H, error H, error

. o~ - r P ~ ~ ~

Case| F | F | §| § | F| F | S| §
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
Tlc|270 | 18.0 | 4.75 | 29.0 | 2.99 | 18.14 | 4.77 | 29.07
Ic [055| 220 00| 00 |058|318 | 0.0 | 0.0
Ilc | 475 | 55.0 | 3.60 | 58.0 | 5.23 | 55.33 | 3.91 | 58.86
IMb | 253 | 22.5 | 425 | 23.0 | 2.66 | 22.78 | 4.32 | 23.09
Ib {050 (030 | 00 | 00 |0.78] 037 | 00 | 0.0
IIb|110] 30 | 0.0 | 6.75 | 1.46 | 3.21 | 0.0 | 6.76
Ila|095| 650 | 2.60 | 64.0 | 1.16 | 67.25 | 3.06 | 65.31
Ia |165| 44 | 0.0 | 0.0 |1.86| 807 | 0.0 | 0.0
Ila |1.05| 220 | 52 | 41.0 | 1.15 | 2.22 | 5.30 | 41.10

Table 3.7: Hy, and H; error in the magnitude and phase plots of theoretical and frequency
domain(S¢C/T") method(F'), theoretical and Shinskey’s controllers (S), for the 9 possible
cases
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Shinskey’s tuning | Frequency domain tuning

Case | Tiead | Tiag | Kfsr | Tiead | Tiag Ky
(sec) | (sec) | (&) | (sec) | (sec) 2)
IIc | 040 | 005 | -1.0 | 0.33 | 0.004 -0.88

Ic | 040 ) 025 |-1.0} 0.59 | 0.36 -0.93
Mec | 1.0 | 1.05 | -1.0 | 043 | 0.51 -0.97
b | 022 | 0.022 | -1.0 | 0.18 | 0.002 -0.91
Ib | 040 | 040 | -1.0| 046 | 045 -0.95
IIb |-010 0.10 | -1.0 | -0.14 | 0.08 -0.88
IMMa | 1.0 09 |-1.0) 0.56 | 0.56 -0.92
Ia | 040 0.50 | -1.0 | 0.47 | 0.59 -0.96
ITa | 012 | 042 | -1.0 |-0.11 0.14 -0.88

Table 3.8: Tuning parameter values for the 9 cases used in the simulation based on Shinskey’s
tuning rules and frequency domain(S;C/T) method
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3.4 Frequency domain feedforward control tuning based
on % estimation - Simulation results

A different procedure to obtain the (G4/G,) ratio by closed loop identification is tested in
this section. This method also utilizes the closed loop identification of the complementary
sensitivity function(T") from r to y shown in Equation 3.2 as the initial step. Unlike the
previous sections of this chapter where the disturbance sensitivity function from d to y ig
estimated, in this method the transfer function from the disturbance, d to process input,
u is used as an alternative. In the absence of feedforward control, the closed loop transfer
function from d to u with the process just under feedback control is as shown in Equation 3.8.

E _ GdGc
d  (1+G,G,)

This transfer function can be utilized in obtaining the required ratio for feedforward
control tuning, (G4/G,), as shown in Equation 3.9

(3.8)

v G o

= et =g (39)
¥ c :

r (1+G3Ge) G”

There are two reasons for using an estimation of this type.

1. The computed frequency response of the ratio (G3/G,) through this method is found
to be more accurate compared to that of using the ratio (S;C/T). This is clearly noticeable
by comparing the frequency response of the ratio computed by the two methods. The
magnitude plots of the ratio for Case III ¢ are shown in Figure 3.27 and Figure 3.28 and the
phase plots are shown in Figure 3.29 and Figure 3.30. Similar trend has also been observed
in all other cases.

2. Because of the presence of the feedback PI controller G, in the numerator of the closed
loop transfer function from d to u, the signal in the frequency range of interest using this
ratio is stronger compared to that of d to y and hence the RLS convergence of (u/d) ratio is
found to be faster than that of the disturbance sensitivity function.

Initially the complementary semsitivity function is estimated with a discrete transfer
function model of the form shown in Equation 3.7. All the conditions during this estimation
are taken the same as in the previous sections. At the time instant of 300 sec, square
wave disturbance changes are introduced along with changes in disturbance dynamics at an
interval of every 200 sec as shown in Table 2.1. During the first 150 seconds in each interval,
the estimation from the disturbance(d) to process input(u) is carried out using a discrete
transfer function of the type shown below in Equation 3.10.

u_ et arl +ar? 4. 46270
d~ (1+diz-l +dyz~2 +d3z~3 + ... + di52715)
The z~® factor in the numerator corresponds to the presence of the disturbance transfer

function G4 in the numerator, with a lower limit of continuous time delay of 0.4 sec sampled
at 0.05 sec. The variation of disturbance delay from 0.4 to 0.8 sec during the simulation

(3.10)
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necessitates the presence of 10 coefficients in the numerator. 15 coefficients are used in the
denominator polynomial to account for the 1 + G,G. term. In the next 50 second, the
estimated coefficients are used in obtaining the frequency response of the transfer function
(u/d) in the normalized frequency(wT') range of interest, 0.025-0.3 rads(0.5-6 rad/sec). The
tuning is performed by minimizing the sum of the weighted magnitude function of Gs +
((u/d)/(y/7)) in this frequency range using (1/wT) frequency waiting.

The magnitude plot of the frequency response of the estimated transfer function from d
to u for Case III ¢ is shown in Figure 3.31 and the phase plot is shown in Figure 3.32 alony
with the true frequency response based on the actual process and controller parameters.
The estimation details of the (u/d) frequency response for the other cases are summarized
in Table 3.9 and Table 3.10. The details of the designed frequency domain feedforward
controllers are tabulated in Table 3.11 and Table 3.12. The controllers designed in various
cases show the same characteristics as mentioned in the earlier section. The difference is that
the fit of the frequency response compared to the theoretical controller using this approach
differs from that of the tuning using the ratio (S4C/T’) for various cases. This difference for
various cases is summarized in the following discussion.

1. For Case III ¢, no improvement is observed in the fit of the magnitude plot of the
controller whereas the fit of the phase plot is improved at low frequencies. The corresponding
time response is shown in Figure 3.37.

2. For Case I ¢, improvement in the magnitude plot of the controller as well as the phase
plot is observed at low frequencies.

3. For Case II ¢, improvement in magnitude and phase plots is observed over all frequen-
cies.

4. For Case III b, minor improvement in magnitude plot is observed at low frequencies
whereas the fit of phase plot is improved over all frequencies.

5. For Case I b, improvement in both magnitude and phase plots is produced over all
frequencies.

6. For Case II b, both the magnitude and phase plot fits are improved at low frequencies
at the expense of the fit at high frequencies.

7. For Case III a, improvement of magnitude plot fit is observed at low frequencies at the
expense of high frequencies, whereas the fit of the phase plot is improved over all frequencies.

8. For Case I a, the magnitude plot is improved over all frequencies whereas the phase
plot is improved at low frequencies at the expense of the high frequencies. This can be
observed by comparing the corresponding magnitude plots for both cases in Figure 3.33 and
Figure 3.34 and phase plots in Figure 3.35 and Figure 3.36.

8. For Case II a, both the magnitude and phase plot designs are improved at low fre-
quencies at the expense of high frequencies. The corresponding time response is shown in
Figure 3.38.
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Figure 3.27: Magnitude plot of the estimated ratio ((u/d)/(y/r)) equivalent to (G4/G,),
corresponding to Case Il ¢
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Figure 3.28: Magnitude plot of the estimated ratio (SgC/T) equivalent to (G4/G,), corre-
sponding to Case III ¢
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Figure 3.29: Phase plot of the estimated ratio ((u/d)/(y/r)) equivalent to (G4/G,), corre-
sponding to Case IIl ¢
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Figure 3.30: Phase plot of the estimated ratio (S4C/T’) equivalent to (G4/G,), corresponding
to Case Il ¢
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Figure 3.31: Magnitude plots of the estimated and actual (u/d) ratio corresponding to Case
IMlc
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Figure 3.32: Phase plots of the estimated and actual (u/d) ratio corresponding to Case Il ¢

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5
Estimated
x  Shinskeys
- Theoretical
. or .
g '\\MN
: ® L o g on ‘
n ® op
£
=
o]
[}
=
-5k
-10 2 - 1
10~ 10 10

Frequency {rad/sec)

Figure 3.33: Magnitude plots of the frequency domain tuned(using (S4C/T) method), the-
oretical and Shinskey’s tuning rule based feedforward controllers for Case I a
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Figure 3.34: Magnitude plots of the frequency domain tuned(using (u/d) estimation), theo-
retical and Shinskey’s tuning rule based feedforward controllers for Case I a
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Figure 3.35: Phase plots of the frequency domain tuned(using (S;C/T) method), theoretical
and Shinskey’s tuning rule based feedforward controllers for Case I a
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Figure 3.36: Phase plots of the frequency domain tuned(using (u/d) estimation), theoretical
and Shinskey’s tuning rule based feedforward controllers for Case I a
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Figure 3.37: Time response for Case III ¢ using frequency domain({u/d)/(y/r)) approach
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Figure 3.38: Time response for Case II a using frequency domain((u/d)/(y/r)) approach
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w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec

Cose| 3 | G | & | & | s | 8|8 & |55 |88
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
IMlc|003| 20 |{010}| 10 |018| 60 | 0.13| 3.7 | 0.01| 9.50 | 0.38 | 5.50
Ic 1007|225 | 012 | 020 | 0.14 | 5.10 | 0.10 | 4.30 | 0.05 | 10.25 | 0.40 | 6.0
Ilc {004 2.0 [ 013|040 | 015|520 | 012 | 420 | 018 | 22.0 | 0.52 | 18.0
b |008 18 (010 1.0 | 002|820 |005| 140 { 0.8 | 155 | 1.15 | 11.0
Ib | 008|220 |011 | 020 | 008|610 | 009 | 340 | 0.12 | 11.8 | 0.22 | 7.80
IIb 005|230 | 013|025 | 00 | 70 | 002 3.0 |0.38| 22.0 | 0.01 | 175
MMa|010| 1.80 | 0.10 | 1.20 | 0.20 | 8.80 | 0.23 | 0.65 | 0.72 | 12.6 | 1.10 | 8.25
Ia | 008|225 {011 | 020 018 70 {019 ] 2.25 | 038 | 13.2 | 0.01 | 9.0
ITa | 007 | 250 | 0.10 | 0.20 | 0.18 | 7.80 | 018 | 2.0 | 010 | 21.5 | 0.23 | 17.5

Table 3.9: Difference in magnitude and phase plots between the actual and estimated, (u/d)
ratio and (G4/G,) ratio frequency responses for the 9 possible combinations

H,, error H, error

SRR AR ARARRE AR
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
Mic|060| 950 | 110 8.60 | 0.20 | 11.41 | 0.41 | 6.70
Ic |0601025| 1.0 | 7.0 | 0.16 | 11.67 | 0.43 | 7.38
IIc | 06 | 22.0 | 1.10 | 18.0 | 0.24 | 22.69 | 0.55 | 18.50
HNIb | 0.80 {1550 | 1.15 | 142 | 0.80 | 17.63 | 1.16 | 11.13
Ib | 062 11.8 | 0.79 | 7.80 | 0.17 | 1346 | 0.26 | 8.50
ITb | 064 | 220 | 0.82 | 175 | 0.38 | 23.2 | 0.13 | 17.76
Ila} 075 126 | 1.10 | 11.20 | 0.75 | 15.47 | 1.13 | 8.36
Ta | 082 132 | 080 | 9.0 | 0.43 |15.11| 0.22 | 9.28
ITa | 0.84 {2150 0.75 | 17.5 | 0.22 | 23.0 | 0.31 | 17.61

Table 3.10: H,, and H, error in magnitude and phase plots between the actual and estimated,
(u/d) ratio and (G4/G,) ratio frequency responses for the 9 possible combinations
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w = 0.5 rad/sec w = 2 rad/sec w = 6 rad/sec

Cse| F |\ F | §| 8§ | F | F | 8§ | 8§ | F|F |5 | S8
(dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg) | (dB) | (deg)
IMlc {240 | 20 | 005} 00 {120 3.0 {040 2.0 | 3.20 | 180 | 4.75 | 29.0
Ic {015 1.0 0.0 00 | 018 0.10 | 0.0 0.0 | 020} 250 | 0.0 0.0
Ilc | 013] 050 | 0.25 | 050 | 1.75 | 6.25 | 1.50 | 10.0 | 4.30 | 55.0 | 3.60 | 580
IIIb{0.72 | 050 ;| 0.05 | 0.50 | 0.15 | 260 | 0.78 | 2.0 | 2.85 | 21.0 | 4.25 | 23.0
Ib {010] 002 | 0.0 00 | 010 002 | 0.0 00 | 010 | 002 | 0.0 0.0
ITb | 0.10 | 040 | 0.0 00 | 016078 | 00 | 030 | 1.83 | 650 | 0.0 | 6.75
IMla|005]| 150 {025 02 |1.13 | 13.0 | 1.60 | 13.0 | 2.50 | 62.0 | 2.60 | 64.0
Ia | 010} 280 | 0.0 00 |08 | 630 | 0.0 0.0 | 1.70 | 420 | 0.0 0.0
ITa | 015|010 | 0.10 | 00 | 060 | 1.25 | 1.23 | 3.0 | 1.20 | 5.80 | 5.20 | 41.0

Table 3.11: Difference in the magnitude and phase plots of theoretical and frequency do-
main(from (u/d) estimation) method(F), theoretical and Shinskey’s controllers(S), for the
9 possible cases

H, error

Case

=

F
(dB)

(deg)

5
(deg)

F
(dB)

F
(deg)

=

3
(dB)

-

5
(deg)

Il ¢

3.20

18.0

29.0

4.17

18.36

4.77

29.07

Ic

0.25

2.50

0.0

0.31

2.69

0.0

0.0

IIc

4.30

55.0

58.0

4.64

55.30

3.91

58.86

III b

2.85

21.0

4.25

23.0

2.94

21.17

4.32

23.08

Ib

0.10

0.02

0.0

0.0

0.17

0.03

0.0

0.0

IIb

1.83

6.50

0.0

6.75

1.84

6.56

0.0

6.76

IIT a

2.50

62.0

2.60

64.0

2.74

63.37

3.06

65.31

la

1.70

4.20

0.0

0.0

1.90

8.07

0.0

0.0

II a

1.2

7.0

5.20

41.0

1.35

5.93

5.30

41.10

Table 3.12: Hy and H; error in the magnitude and phase plots of theoretical and frequency
domain(from (u/d) estimation) method(F’), theoretical and Shinskey’s controllers(S), for the
9 possible cases
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Shinskey’s tuning | Frequency domain tuning

Case | Tiead | Tiag | Krf | Tiead | Tiag Ky
(sec) | (sec) | (&) | (sec) | (sec) 2)
IIc | 040 | 0.05 | -1.0 | 0.44 | 0.02 -0.75
Ic {040 025 |-1.0}| 0.53 | 0.34 -0.98
IIc¢ | 1.0 | 1.05 | -1.0 | 043 | 0.51 -1.00
IHIb | 0.22 | 0.022 | -1.0 | 0.19 | 0.002 -0.92
Ib | 0.40 | 0.40 | -1.0 | 0.49 | 0.49 -0.99
b |-0.10| 0.10 | -1.0 | -0.15{ 0.06 -0.98
IIa| 1.0 09 |-1.0|047 | 041 -0.98
Ia | 040 050 | -1.0 | 0.48 | 0.59 -0.99
IIa 012 ] 042 |-1.0]-0.14| 0.14 -0.97

Table 3.13: Tuning parameter values for the 9 cases used in the simulation based on
Shinskey’s tuning rules and frequency domain((u/d)/(y/r)) method
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Chapter 4

%

Frequency domain feedforward control
tuning based on simultaneous process
and disturbance transfer function
identification - Experimental results

In chapters 2 and 3, the frequency domain tuning method has been tested in simulations.
In this chapter the simultaneous identification and adaptive tuning strategy of chapter 2 is
tested on an experimental distillation column. The tuning strategy is implemented on the
lower temperature control loop of the column.

4.1 Experimental setup

The experimental work is performed on a methanol - water distillation column. The column
is a Q.V.F.T™ pyrex column supplied by Pegasus Ltd., Agincourt, Ontario. It is 10 cm in
diameter and consists of 11 trays. The bottom composition is controlled through temperature
on the 2nd tray(from the bottom) which is cascaded to the steam flow controller of the
reboiler. The top tray(tray 11 from the bottom) temperature is controlled by adjusting the
reflux rate. The feed flow rate is controlled by adjusting the feed valve. The level of the
reboiler is controlled by adjusting the flow of the bottom product. The distillation column
control structure is shown in Appendix A. The data acquisition from the column, RLS
Identification, tuning strategy and subsequent control implementation is done using a Bailey
NETWORK 90" Distributed Control System(DCS). The RLS identification and frequency
domain tuning is performed through real time C code on the Multi Function Controller(MFC)
of the DCS. The management of C program on the MFC is done using Bailey C Utility
Program(CUP) on a laptop computer(Commodore™ C386SX-LT) communicating with the
MFC through a serial port. The control strategy is implemented on Module 10 of the DCS.
The configuration of various loops on different modules of the DCS are attached in Appendix
A and a flow sheet describing the algorithm of the C program running in the MFC is shown
in Appendix B.
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4.2 RLS identification and feedforward controller tun-
ing

The lower temperature loop is the feedback loop under control. Changes in the feed flow
rate is a common disturbance to the lower temperature loop and is easily measurable. Hence
feedforward control is implemented by measuring the feed flow rate and compensating for
these changes through a combination of gain and lead-lag compensator. Square wave set
point changes are induced by varying the setpoint of the lower temperature loop from 97°
to 98°C. Disturbance changes are induced by changing the setpoint of the feed flow controller
from 0.40 L/min to 0.45 L/min. The feed flow output is measured as the disturbance. The
upper temperature loop is kept on manual in order to eliminate the effect of changes in the
upper temperature control output on the lower temperature.

Initially, the upper temperature is set at 65°C by adjusting the reflux rate. The lower
temperature is brought to a setpoint of 97°C with appropriate tuning for the feedback con-
troller. The process is run at a feed flow rate of 0.4 L/min. The feedback control used is of
the standard PI type as shown in Equation 4.1.

Ols) = Kp+ 1 (4.1)

where Kp is the proportional gain and K7 is the integral gain. The feedback controller
tuning parameters used in this experimental run are Kp=25 and K;=9.0 respectively.

The experimental data is sampled at 15 seconds. After 60 seconds, i.e. after 4 samples,
square wave setpoint changes from 97°C to 98°C are introduced with a period of 1200 sec. At
the end of the first cycle, i.e. at 84 samples, square wave disturbance changes in the feed flow
rate from 0.4 L/min to 0.45 L/min with a period of 1200 sec is introduced. During the second
setpoint cycle, i.e. from 84-164 samples, the process is under the influence of the square
wave disturbance with only the constant gain feedback controller. At sample 164, constant
gain feedforward control is introduced to compensate for the measurable disturbance. The
feedforward tuning parameters(chosen by the experience of the operator with the process)
used during the 3™ cycle are:

Kyp = 1.20 , Tieqq = 80 sec, 150 = 110 sec

Simultaneous identification of process and disturbance discrete time transfer functions is
also started along with the implementation of feedforward controller during the 3™ cycle.
The structures of the process and disturbance transfer functions used in the identification
are as shown in Equation 4.2 and Equation 4.3 respectively.

_ 2 b+ bzt + by27?)
T l4a1z7t +apz?

Gz ™) =2 (42)

-1 v z7Hep+ ozt 4z
G . == 4.
4(z") d 1+a127 +apz—2 (43)
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The bias in the process input and the measured disturbance is calculated by using a first
order filter of the form shown below:

Bk = Ole -+ (1 - a)Bk__l (44)

Where By, is the bias at time instant k, By.; is the bias at time instant k-1 and the M; is
the measured process variable at k. The filter factor, o is chosen to be 0.95. For the process
output, the last step is considered as the mean or reference, i.e. when the setpoint is 97°C
the reference is taken to be 98°C and vice versa. The bias removed process input, process
output and the disturbance variables are used in the RLS estimation of the transfer functions
G, and G,4. Initially all the RLS coefficients are initialized to zero. A forgetting factor of
0.999 is used. All the diagonal elements of the initial covariance matrix are initialized to
100. In the presence of feedforward and feedback control, the process output, process input
and the disturbance are related as shown in Equation 2.3.

At the end of the 3™ period, i.e. at sample number 244, frequency domain tuning is
started. The optimization is performed by minimizing the sum of the magnitude of the
function Gys + (G4/G,) over the normalized frequency(wT) range of 0.015 to 1.5 rads(i.e.
0.001 to 0.1 rad/sec) at 13 frequency points using Nelder-Mead sequential simplex method.
A weighting factor of (1/wT) is used so that the lower frequency estimates get higher weight-
ing compared to the noise affected high frequency estimates. The optimization routine is
initialized to the tuning parameters (80,110,1.2) as one vertex after each time it converges,
in order to prevent the optimization from falling into a false minimum. The initial simplex is
of size 0.5 units with one of the vertices chosen to be (0.4,0.4,1.0). As explained in Chapter
2, the optimization is three dimensional and the shape of simplex is a tetrahedron. Since
the process and disturbance dynamics and there by the feedforward control parameters vary
based on the operating conditions, the optimization routine is generalized by using appro-
priate scaling factors. In the beginning, the initial tuning parameters are scaled down to
the general starting simplex by using a scaling factor and the optimization is carried out.
After the optimization converges, the converged simplex vertices are scaled up based on the
scaling factor, to obtain the corresponding tuning constants as shown below:

Scaling factor = (Initial tuning parameter) / (Initial coordinate of the simplex vertex)
Final tuning parameter = (Final coordinate of simplex vertex) X (Scaling factor)

The optimization procedure is terminated when the number of iterations exceed 30
or when a function tolerance of 0.001 is reached. Because of the processing speed of the
MFC(MotorolaT™ 68000 processor) the optimization took about 6-8 samples to converge.
Hence the tuning parameters are adapted approximately every 6-8 samples. At the end of
the 4** cycle, i.e. at sample 324, the frequency domain tuning is replaced by constant gain
Shinskey’s tuning parameters.

Shinskey’s tuning rules are based on the parameters of the FOPDT models of process
and disturbance transfer functions. The frequency response of the process and disturbance
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transfer functions(obtained from the RLS estimation) at sampling instant 295 (Sample arbi-
trarily chosen after both the frequency responses converged) is used offline in obtaining the
FOPDT parameters. The low frequency peint in the magnitude plot is used in computing
the gain. The frequency at which the magnitude plot falls by 3 dB is equivalent to the
reciprocal of the time constant from which the time constant is calculated. The time delay is
calculated from the RLS estimated phase plot using the previously estimated time constant.

The FOPDT transfer functions that are fitted to the RLS estimate based frequency
response are as shown below:

6—153

Gy = 0.052—— (4.5)
8—15.1
= —(. 4.
G = ~0.063 (4.6)

From these estimates the process and disturbance dynamic combination corresponds to
Case I a(Table 1.1). The corresponding Shinskey’s tuning parameters(shown below) calcu-
lated from tuning rules given in Table 1.2 are used for tuning the feedforward controller
during the 5% cycle, i.e. from samples 324-403.

Kff = 1.21, Tjeaq = 63 sec, Tiag = 67 sec

4.3 Results and Discussion

The magnitude and phase plots of the process frequency response derived from the estimated
RLS coefficients are shown in Figure 4.1 and Figure 4.2 respectively. The corresponding
magnitude and phase plots of disturbance frequency response are shown in Figure 4.3 and
Figure 4.4. The magnitude and phase plots of the feedforward controllers designed using
frequency domain tuning along with the Shinskey’s tuning rule based feedforward controller
are shown in Figure 4.5 and Figure 4.6.

The time response of the lower temperature of the distillation column in the presence of
square wave setpoint and disturbance changes is shown in Figure 4.7. The first cycle indicates
the response to the setpoint changes from 97°C to 98°C in the presence of constant gain PI
feedback control(with no changes in feed flow rate). The second cycle(84-163 samples) shows
the effect of the square wave setpoint and feed flow rate disturbance on the lower temperature,
in the presence of constant gain feedback control alone. The third cycle(164-243 samples)
shows the lower temperature response to setpoint and disturbance square wave changes,
in the presence of constant gain tuned feedforward and feedback controllers. The fourth
cycle(244-323 samples) shows the lower temperature response in the presence of constant
gain feedback and frequency domain tuned feedforward controllers. The fifth cycle(324-403
samples) shows the response in the presence of constant gain feedback and Shinskey’s rule
based feedforward controllers.

The process and disturbance dynamics of the distillation column correspond to Case
I a(7m < 7Tq,Tdm = T4q). The tuning parameters returned by the frequency domain tuning
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method are Ky = 1.17, Tieaa = 124.44 sec, 715y = 124.88 sec. The frequency domain tuning
method returned a lead-lag compensator with almost equal lead and lag times indicating
the cancellation of the disturbance being dominated by the gain rather than through the
lead-lag combination. Cancellation of the disturbance is seen in the time response shown in
Figure 4.7 during the fourth cycle in the presence of frequency domain feedforward control.

The Shinskey’s tuning values of lead time and lag time are also almost equal(differing by
5 seconds). As observed in the time response(during cycles 4 and 5), both the Shinskey’s
tuning as well as the frequency domain tuning method provide almost identical setpoitk
response. This result is in agreement with the simulation results for Case I processes given
in Chapter 2. The presence of feedforward control provides significant improvement in the
lower temperature response as observed in the time response from 3 to 5 cycles, compared
to the lower temperature response with out feedforward controller during the 2™ cycle.

In order to test the effectiveness of the optimization based tuning strategy, another
experimental run is performed with different starting tuning parameters from the previous
run. The corresponding time response is shown in Figure 4.9. The first cycle shows the lower
temperature response with a constant gain PI feedback controller(K, = 18, K1 =9). The ond
and 3™ cycles shows the response in the presence of square wave disturbance and setpoint
changes, with constant gain PI and constant gain feedforward controller(Kys = 2.5, Tieaq =
50 sec, Tigy = 100 sec). The frequency domain tuning strategy with initial tuning parameters
of (30,30,2.5) is introduced during the fourth cycle. The final tuning parameters returned
by the optimization routine are Tieaq = 29 sec, 75y = 36 sec, Ky = 1.34. As observed from
the time response during the fourth cycle, the frequency domain tuning is able to cancel the
disturbance, irrespective of the point where the optimization routine is started.
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Figure 4.1: Magnitude plot of the RLS estimated process transfer function from 240-320
samples

Phase angle (deg)

-180

~180 - -
10 10 10
Frequency (rad/sec)

Figure 4.2: Phase plot of the RLS estimated process transfer function from 240-320 samples
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Figure 4.3: Magnitude plot of the RLS estimated disturbance transfer function from 240-320
samples
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Figure 4.4: Phase plot of the RLS estimated disturbance transfer function from 240-320
samples
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Figure 4.5: Magnitude plot of the frequency domain tuned(-) and Shinskey’s tuning based(o)
controllers
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Figure 4.6: Phase plot of the frequency domain tuned(-) and Shinskey’s tuning based(o)
controllers
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Figure 4.7: Lower temperature response in the presence of square wave setpoint and feed
flow disturbance changes. 4-84 samples: Setpoint changes with constant gain PI, 84-164
samples: Setpoint and disturbance changes with constant gain PI, 164-244 samples: Setpoint
and disturbance changes with constant gain PI and constant gain(untuned) feedforward
controllers, 244-324 samples: Setpoint and disturbance changes with constant gain PI and
frequency domain tuned feedforward controllers, 324-403 samples: Setpoint and disturbance
changes with constant gain PI and Shinskey’s rule tuned feedforward controllers
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Figure 4.8: Measured disturbance, i.e. the feed flow output for square wave setpoint changes
to the feed flow controller

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Q8 y T

Constant gain| Constant gain Pland  |Constant gain PI
PI constant gain and frequency
985} feedforward domain feedforwasd

W
]
1

A
W

Temperature(deg)
]
i)

Q
—

86.5¢ 4

96 A, ke o 'l v b1
0 50 100 150 200 250 300 350
Timesamples

Figure 4.9: Lower temperature response in the presence of square wave setpoint and feed flow
disturbance changes. 4-84 samples: Setpoint changes with constant gain PI, 84-244 samples:
Setpoint and disturbance changes with constant gain PI and constant gain(untuned) feed-
forward controllers, 244-324 samples: Setpoint and disturbance changes with constant gain
PI and frequency domain tuned feedforward controllers
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Figure 4.10: Measured disturbance during the second experimental run
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Chapter 5

Conclusions and Future work

In this chapter, a brief summary of the work done in the previous chapters and future work
that can be undertaken in this area is presented. Section 5.1 illustrates the conclusions of
the simulations in Chapters 2 and 3, along with the experimental work done in Chapter 4.
Section 5.2 indicates some suggestions for future work.

5.1 Summary and conclusions of the thesis

An introduction to feedforward control and its tuning methods is presented in Chapter 1.
Literature survey is performed in the areas of RLS based identification schemes and tuning
strategies in time and frequency domain pertaining to feedforward control.

In Chapter 2, the combined identification approach of process and disturbance transfer
function identification for adaptive feedforward control is presented. The efficiency of fre-
quency domain tuning approach is demonstrated by means of simulations. In almost all
cases, it can be infered that the frequency domain based tuning strategy gives accurate fit
of the controller phase plot when compared to Shinskey’s tuning. The magnitude fit of the
frequency domain based method is definitely as good or better than Shinskey’s controller fit
for Case IIT and Case I processes. Considerable improvement is obvious in Case II processes,
where the frequency domain tuning method provides a better fit than the corresponding
Shinskey’s controllers.

Different approaches for tuning feedforward controllers through closed loop identification
are presented in Chapter 3. The approach based on obtaining the disturbance frequency
response through the disturbance sensitivity function in Section 3.2 seems to be accurate
of all the methods. But this method could suffer in the presence of high noise levels as
the derivation of frequency response makes the disturbance frequency response(G4) at each
frequency dependent on all the frequencies of the disturbance sensitivity function from which
it is derived. The approach (u/d)/(y/r) in Section 3.4 seems to be the best in the presence
of high levels of noise. The effectiveness of the three methods(Based on the closeness of fit of
the controller frequency response to the theoretical (G4/G,) ratio) for all possible dynamic
combinations under the conditions used for simulation in this work are ranked in Table 5.1.
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Case | G4 from S method | (S4C/T) method | ((u/d)/(y/r)) method
MIc 1 2 3

Ic 1

Ifc 1

b 1

Ib 1

IIb 1

1

1

1

IIla
Ia
II a

i i W[ty Wit
WIN|NIND|NdDINdIN] N

Table 5.1: Effectiveness of the three closed loop methods for different dynamic combinations

In Chapter 4 the simulation results in Chapter 2 are tested experimentally on a distillation
column. With the delay in the process and disturbance paths of the column being equal, the
frequency domain strategy based on combined identification of G, and G, using recursive
least squares technique, is able to provide similar cancellation of the disturbance as with the
tuning based on Shinskey’s tuning rules. This is in agreement with the simulation results
presented in Chapter 2 for Case I a processes. The experimental results while confirming
validity for Case I a, yields validity to the simulations for the other cases which could not
be experimentally tried.

5.2 Future work

The adaptive frequency domain tuning method based on open loop identification of process
and disturbance transfer functions has been tested through experiments on the distillation
column for a single dynamic combination. Because of the nature of the apparatus available for
this work, experimental work is performed only for Case I a type combination. The method
needs to be tested experimentally for other and more complex dynamic combinations(Case
IT and III processes). The frequency domain tuning simulation results based on closed loop
identification techniques needs to be verified experimentally. The closed loop identification
is not truly adaptive in the sense that the tuning and identification are done sequentially,
instead of simultaneously. A continuous identification and tuning approach based on closed
loop identification needs to be developed.

For Case 111 processes, which need prediction for complete cancellation of the disturbance,
using a group of lead-lag compensators for feedforward control may give better fit in the
frequency response of the controllers instead of just one used in this work. FIR filters
and/or polynomial predictive filters can also be tested for performance improvement of Case
II and Case III processes.
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APPENDIX A

Distillation column control structure

and

Various module configuration diagrams
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Distillation column control structure

Cooling Water

Distillate <-__==J _, @
Feed
L)
Bottoms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T e g (€D !
—y : 6§ hlﬁ.m Nnod nooqu m OOM
— ] ‘d " IIIIIII R o.— mu 2
Y 12 *[*3
© MBS ey
w | S€ lgs VI gola—] 6D )
ov 1S 9% in ad of| ad s 10z Iv
1z L€ 18 ds Aj

( SINPOJA) MO[] PSS UWNOD UONE[MSI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwad noyum paugiyosd uononpoddas Jsyung “Jaumo buAdoo sy Jo uoissiwiad yum paonpoidey

Distillation Column Lower Temperature (Module 6)

Set Const 14
vy
|82 34
a1 |20 SLolpy PID |26 — T M 1 AO
—s3 1 $2
@7 __.iér——g @ - ‘"—““'8‘3‘”" M/A P / 29)
: — 0 e lA o
e [ e ' — S ol @1,
Mod 10 1 A1 s 55 alis o—
200 | same PCU - S6 plmi off—r
) $1 ol k1 Z 38
82 s (15
Si
Mod 10 = Kl Z 28 s1
Al 11 ! Sl 5
243 i PCU 2 |, 0 , | K X |48 st | a0
Mod 2 Al 40
33 same PCU
(25)
10 |©
Mod 2 DI 150 12
36 Mod bus Si Not
(a1) 33) .

211

212



(444

|3 ¥4

(92)
9 PON

€9 » (<)
s¢| ION IS og | WL IS
(€6 (s¢) R {74 @wn
P - L e T~
ov| JON 1S ¢g| WL s zz| MWV [T 1zl =~ Q| 000t
is _
¥ |
od s [(43] RN © . a (€
~— Dd owes
€| { mifegg o fmewr IS ]|y
(60) »
ov 1s (4] Ol
—p 10 g o |M A a~ (s2)
Nod swes
—i ] llmwu “.m IV
V (7 "My |— = = == -|--—-—-———
(4 e mE
62) Wl vIn MG ! a3y
m_a &m e G i) AN.NV
ov IS (Imlvleu ad @ (61 adfa—8 Iv
o . 01| aid ‘4 wm, 102
@
1| 80D 198

(g ompoN) axmerddws ], 1oddn uwinjo)) uoneusi(q

0T
0l PO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwgad Jnoyum paygiyoad uononpoudal Jeyung -Jaumo JybuAdoo ayp Jo uoissiwiad ypm paonpolday

Distillation Column Multifunction Controller (Module 10)
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APPENDIX B

A schematic of the DCS - Computer

interface and

A flow sheet of the algorithm implemented
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L START }

Is serial port NO
returning a

message?

Parse different messages and set different variables in the C
code as given in the messages

Is it time to do
setpoint changes
for different
loops?

NO

Do appropriate setpoint changes for different loops as
needed and calculate the bias of different process variables
needed
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Get process data from various blocks on different modules,
using NETWORK 90 specific function “bin”

enabled and If

NO
Check if its time
to report data
Write process data to Serial port and from the serial port to
the computer terminal/appropriate data files
Check if RLS is NO

its time to do
RLS
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Calculate appropriate deviation variables in percentage,
perform RLS identification and write the estimated RLS
coefficients to the serial port

Check if
adaptive tuning
is enabled

NO

Perform frequency domain feedforward control and write
the estimated gain, lead time and lag time to appropriate
blocks using “bout” function, and to the serial port

I v

Continue
to START
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