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ABSTRACT

Four species of elaphostrongyline nematodes are known to infect cervids in North 

America. One species, Parelaphostrongylus tenuis, can cause neurologic disease 

(parelaphostrongylosis) in cervid hosts other than white tailed deer. Another, Elaphostrongylus 

rangiferi, can cause cerebrospinal elaphostrongylosis (CSE) in young, heavily infected caribou. 

The remaining species, P. andersoni and P. odocoilei do not cause neurologic disease but can 

cause verminuous pneumonia. Moreover, two European species, E. cervi and E. alces, are 

capable of infecting North American cervid populations if they enter with imported game 

animals, such as red deer. Differentiation of these species is problematic as they all produce first- 

stage larvae (LI) that are morphologically indistinguishable. This is a major concern for wildlife 

biologists who attempt to identify and limit the spread of pathogenic nematodes in North 

America.

This study improves upon existing methods of extraction and amplification of 

protostrongylid DNA by addressing the difficulties of obtaining DNA data from preserved as 

well as single nematodes, both adult and larval. A modified commercial kit extraction and 

purification procedure (QIAamp, Qiagen, Valencia, California) was developed and PCR 

parameters, such as cycling temperatures and times, were optimised to address these difficulties.

Second internal transcribed spacer (TTS-2) rDNA sequence data was obtained for all six 

elaphostrongyline species as well as an unidentified nematode from bighorn sheep in 

Washington. Elaphostrongylus cervi and E. rangiferi are both 585 base pairs (bp) long, E. alces 

is 575 bp, P. tenuis is 554 bp, P. andersoni is 545 bp, and P. odocoilei is 561 bp long. The 

unidentified nematode type 1 sequence from big hom sheep was 495 bp long. Identical ITS-2

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sequences for E. cervi and E. rangiferi raises uncertainty regarding their distinct taxonomic 

status. Intraspecies variation was seen among the sequences of Parelaphostrongylus, but not 

among Elaphostrongylus.

Sequencing of the ITS-2 region also revealed RFLP recognition sites that were useful in 

distinguishing most species of elaphostrongyline nematodes and may, therefore, be useful in the 

development of routine diagnostic tests. Double digestion of individual Parelaphostrongylus spp. 

with Msll and Fokl produced distinct banding patterns for all three species. Double digestion of 

Elaphostrongylus spp. with enzymes Msel and Fokl distinguished E. alces from E. cervi and E. 

rangiferi.

Phylogenetic analysis using nucleotide sequences of the ITS-2 region generated an 

optimal tree with similar topology to earlier studies, which used morphological data as the basis 

for comparison. The genera Elaphostrongylus and Parelaphostrongylus were both monophyletic. 

The topology presented in this study suggests that the “muscle worms” (P. andersoni and P. 

odocoilei) are sister species and the “meningeal worm” (P. tenuis) is basal to this clade.

Elaphostrongylus alces was clearly resolved as a separate species from E. cervi and E. 

rangiferi, with E. alces diverging from E. cervi and E. rangiferi by 7%. Elaphostrongylus cervi 

and E. rangiferi sequences were identical, however, and their relationship could not be resolved. 

Variants 1 and 2 of each Parelaphostrongylus spp. differed by less than 1%.

Future studies may resolve the genetic differences between E. cervi and E. rangiferi by 

examining more potentially polymorphic regions of DNA, such as ITS-1 or other types of non­

coding DNA, such as that found in the mitochondrial hypervariable region.

n
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CHAPTER 1: GENERAL INTRODUCTION

Elaphostrongyline nematodes (Protostrongylidae: Elaphostrongylinae) are parasitic 

roundworms that mature in the central nervous system and skeletal muscles of cervids (Boev and 

Schultz, 1950). Four species are known to infect North American populations, and at least two 

others are found in Europe and Asia (Lankester, 2001). Due to the growing importance of game 

ranching, wild cervid relocation programs, and demand for exotic imports, it is imperative that 

both domestic and foreign parasites be accurately diagnosed to prevent the spread of disease.

The goals of this study were to improve existing nematode DNA extraction procedures and 

to address the question of nematode species identification using molecular techniques, such as the 

polymerase chain reaction (PCR), DNA sequencing, and restriction fragment length 

polymorphism (RFLP). Furthermore, the DNA sequence data were used to assess phylogenetic 

relationships among six species of the genera Elaphostrongylus and Parelaphostrongylus.

Parelaphostrongylus tenuis (Doughtery, 1945) is a meningeal worm that was first 

described from white-tailed deer (Odocoileus virginianus). During the1960's and 70's, it was 

realized that P. tenuis causes severe neurologic disease (parelaphostrongylosis) in moose (Alces 

alces) and other wild cervids (Anderson 1964a, 1964b), wild and domestic bovids and camelids, 

and has been reported to cause paralysis in sheep (Anderson, 1963).

In eastern and central North America (Figure 1), P. tenuis occurs in white-tailed deer, their 

normal definitive hosts, and terrestrial gastropods, their intermediate hosts (Lankester, 2001). It is 

still not known why meningeal worm has not spread to the western areas of the continent even 

though white-tailed deer can be found there (Lankester, 2001).

The first-stage larvae (LI) of P. tenuis and other elaphostrongylines are passed in the

1
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FIGURE 1. Distribution of elaphostrongyline nematodes in North America. Modified from 

Lankester (2001).
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host’s feces and gastropods become infected in the foot when they crawl over the feces. In the 

gastropod, the parasite develops to the second-stage larvae (L2), followed by the infective, or L3, 

stage (Lankester, 2001). Common intermediate hosts of P. tenuis include Zonitoides spp., Discus 

cronkhitei, and Deroceras spp. (Lankester and Peterson, 1996).

Animals become infected when they ingest the L3-containing gastropod accidentally with 

food (Lankester, 2001). The L3s penetrate the wall of the abomasum and in the case of P. tenuis, 

migrate to the dorsal horns of grey matter in the spinal cord where they develop to the fourth (L4) 

and fifth stages (Anderson, 1968). In white-tailed deer, the fifth stage sub-adults leave the spinal 

cord, move anteriorly in the subdural space, and enter the cranial venuous sinuses. In abnormal 

hosts, such as moose, P. tennuis’ longer development time, larger size, and altered behaviour in 

the CNS are believed to be responsible for causing parelaphostrongylosis or “moose sickness” 

(Anderson, 1964a; 1964b). In white-tailed deer, adult nematodes reproduce and the host passes 

dorsal-spined larvae in the feces. In most abnormal hosts, however, either the worms or the host 

dies before larvae can be passed; although infected moose and elk (Cervus elaphus canadensis) 

will occasionally pass L is (Lankester, 2001).

Parelaphostrongylus andersoni (Prestwood, 1972) is a muscle worm that was first 

described from white-tailed deer from the southeastern United States including Alabama, 

Arkansas, Georgia, Louisiana, and North and South Carolinas (Prestwood et al., 1974; Anderson 

and Prestwood, 1981; Forrester, 1992). The parasite is also widely distributed in northern Canada, 

being reported additionally in woodland caribou {Rangifer tarandus caribou) of Newfoundland, 

Labrador, northern Quebec, northwestern Ontario, central Manitoba, and central Northwest 

Territories (Lankester and Hauta, 1989; Lankester and Fong, 1989; 1998). Further reports of P.

4
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andersoni suggest a discontinuous distribution across the range of white-tailed deer in North 

America with foci in Michigan (Pybus et al., 1990), southeastern and central British Columbia 

(Pybus and Samuel, 1981) and northeastern Wyoming (Edwards, 1995)(Figure 1).

Similarly to P. tenuis, gastropods are the intermediate hosts for P. andersoni (Anderson 

and Prestwood, 1981; Lankester and Fong, 1998) and infection of the final host occurs by 

accidental ingestion. Rather than moving to the central nervous system, P. andersoni matures in 

the host’s backstraps (longissimus dorsi), and other skeletal muscles (Pybus, 1983; Pybus and 

Samuel, 1984). Paired adult worms mate and females deposit eggs into small veins. The eggs are 

carried to the lungs where they hatch as Lis, migrate up the bronchial tree, are swallowed, and 

passed in feces (Lankester, 2001). The eggs of the parasite are responsible for disease, not the 

adults as with meningeal worm. Animals with low-level infections generally exhibit no signs of 

disease. (Prestwood et al., 1974; Lankester and Hauta, 1989). Heavy infections, however, result in 

large numbers of eggs and larvae in the lungs, which can cause respiratory distress and pneumonia 

(Prestwood and Nettles, 1977; Anderson, 2000). Wildlife biologists are interested in identifying P. 

andersoni infections because of their potential to mask P. tenuis infection where the ranges of 

these parasites overlap. In general, P. andersoni does not cause serious disease (Lankester, 2001).

Another muscle worm, P. odocoilei (Hobmaier and Hobmaier, 1934) was first described 

from Columbian black-tailed deer (Odocoileus columbianus), however, it has also been reported 

in mule deer (Odocoileus hemonius), mountain goat (Oreamnos americanus), and caribou 

(Rangifer tarandus caribou) (Pybus et al., 1984; Gray and Samuel, 1986). The parasite appears to 

have a strictly western distribution being known in mountain goats of northern Washington 

(Pybus et al., 1984), black-tailed deer (Odocoilelus coloumbianus) of British Columbia (Pybus et

5
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al., 1984), and in mule deer (Odocoileus hemonius) of Alberta and California (Hobmaier and 

Hobmaier, 1934; Samuel et al., 1985a) (Figure 1). It has recently been reported in Dali’s sheep 

(Ovis dalli dalli) of the Yukon and Northwest Territories (Kutz et al., 2001).

The life history of P. odocoilei closely resembles that of P. andersoni (Lankester, 2001). 

Parelaphostrongylus odocoilei also requires a gastropod intermediate host, which is accidentally 

ingested by the final host with vegetation. Likewise, the worms eventually mature in the skeletal 

muscles of the back (Lankester, 2001). Heavy infections are responsible for accumulations of 

large numbers of eggs and larvae in the lungs (Hobmaier and Hobmaier, 1934). Mule deer are 

thought to be particularly susceptible (Lankester, 2001).

Species of the genus Elaphostrongylus (Cameron, 1931) are generally restricted to 

Eurasia. The only member of this genus present in North America is E. rangiferi (Mitskevitch, 

1958,1964) known in caribou of Newfoundland (Lankester and Fong, 1989) (Figure 1). This 

parasite can also be found in wild and domestic reindeer of northern Fennoscandinavia and Russia 

(Lankester, 2001). Infection with E. rangiferi, or “brain worm”, causes cerebrospinal 

elaphostrongylosis (CSE), a neurologic disease that occurs most often in young, heavily infected 

caribou (Lankester and Fong, 1998). Signs of CSE include lack of fear, poor condition, lameness, 

poor coordination, ataxia, and weakness of the hindquarters (Lankester and Northcott, 1979; 

Lankester and Fong, 1998).

Similarly, L is of E. rangiferi require a gastropod intermediate host to develop to the L3 

stage, and the gastropods are consumed accidentally by the host with vegetation. The L3s reach 

adulthood and mate in the CNS (Handeland and Skorping, 1992), after which they migrate out of 

the cranium and spinal canal (Hemmingson et al., 1993; Handeland, 1994). Adults of this parasite

6
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can be found on or among muscles of the chest, abdomen, or hindlimbs (Lankester and Northcott, 

1979; Hemingsen et al., 1993).

Elaphostrongylus cervi, also called “tissue worm” (Lankester, 2001), was first described 

from red deer (Cervus elaphus) of Scotland (Cameron, 1931). To date, the taxonomy of this 

parasite remains controversial because there appears to be differences in pathogenicity across its 

range. In Fennoscandinavia, Europe, and New Zealand, infected hosts typically show no sign of 

disease; although in Asia, deer farms experience periodic epizootics that can cause considerable 

economic damage (Lankester, 2001). The form of E. cervi found in Siberian red deer was named 

E. panticola. However due to the lack of consistently diagnostic morphological differences 

between them, it is generally accepted that E. panticola is a synonym of E. cervi (Gibbons et al., 

1991).

As with other elaphostrongyline nematodes, E. cervi requires a gastropod intermediate 

host in which to develop to the L3 stage, and the infected gastropod must be ingested with 

vegetation. The L3s migrate into the thoracic cavity and then to the CNS via lateral nerves (Olssen 

et al., 1998). Anderson (1968) believed that some development might have to take place in the 

nerve tissue of the CNS before the worms can mature and move out into the skeletal muscles.

Regulatory agencies in both Canada (Gajadhar et al., 1994) and Australia (Presidente 

1986a, 1986b) have prevented the introduction of E. cervi at quarantine facilities. However, 

laboratory studies have shown that the North American species of terrestrial gastropods 

Triodopsis multilineata and Deroceras reticulum are suitable intermediate hosts (Gajadhar and 

Tessaro, 1995), thus, imported E. cervi could potentially become established in North America.

Elaphostrongylus alces (Steen et al., 1989), also called “brain worm” (Lankester, 2001), is

7
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known only in moose from Norway, Sweden, and Finland (Steen et al., 1989; Gibbons et al., 

1991). In this host, E. alces causes the neurological disease elaphostrongylosis and has been 

associated with the wasting and death of animals, particularly calves and yearlings (Steen et al.,

1998).

Moose become infected by ingesting infected gastropods. The L is undergo a tissue 

migration to the CNS as with E. rangiferi (Olsson et al., 1995). Unlike E. rangiferi, however, E. 

alces does not penetrate the dura (Steen 1991). Worms mature epidurally along the spinal canal 

and then leave to establish among muscles of the back and thighs. Phylogenetic analysis using 

DNA sequence data may help to clarify relationships among elaphostrongyline species.

Refinement and Standardization of Nematode DNA Extraction and Amplification 
Techniques

Prior to attempting DNA analysis on any sample, it is necessary to assess its condition, and 

to develop and employ standard methods of analysis so that DNA recovery can be maximized 

and work may be easily replicated. A number of studies exist documenting the extraction and 

amplification of the nematode second internal transcribed spacer (ITS-2), however, each study 

used a different DNA extraction method and PCR parameters to obtain product (Gasser et al., 

1993; Divina et al., 2000; Dallas et al., 2000; Gajadhar et al., 2000). For example, the melting 

temperatures of PCR primers are generally used to set the annealing temperature during a PCR 

reaction. Most protocols generally recommend using an annealing temperature of 2-5 °C below 

the melting temperatures of the primers to achieve optimum specificity (Henegairu et al., 1997). 

The studies cited above used annealing temperatures ranging from 55 to 60°C. The present study 

set out to determine the optimum PCR cycling times and temperatures for amplification of the

8
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elaphostrongyline ITS-2 rDNA region.

Gasser and colleagues (1993) reported difficulties obtaining pure Trichostrongylus spp. 

samples with sufficient template DNA to amplify by PCR; a general phenomenon that has also 

been reported elsewhere (Gasser, 2001). This failure to obtain amplifiable DNA from individual 

adults and larvae has been attributed to the presence of a tough cuticle (Gasser et al., 1993; 

Gasser, 2001). Furthermore, co-precipitating substances produced during extraction may inhibit 

subsequent PCR (Simpson et al., 1982; Gasser et al., 1993, Gasser, 2001).

Gajadhar and colleagues (2000) extracted and amplified DNA from adult 

elaphostrongylines, pooled Lis, and pooled L3s, however, their extraction protocol involved the 

use of organic solvents, including phenol and chloroform, and physical grinding of the 

nematodes that could result in shearing of the DNA (Gasser et al., 1993; Gasser, 2000). The 

protocols outlined in Gajadhar et al. (2000) are lengthy and did not address the problem of 

extracting DNA from individual larvae. Moreover, because of the use of organic solvents, 

laboratories lacking expensive fume hoods could not replicate the work. Other extraction 

procedures (Baneijee et al., 1995; Dallas et al., 2000) call for an even more lengthy proteinase K 

digestion in extraction buffer, which can require an 18 hour incubation step.

Several studies reported the use of the QIAamp Tissue Kit from Qiagen (Valencia, 

California), however, in all cases the extractions were conducted solely on fragments of adults or 

whole adult nematodes. No modifications to the manufacturer’s procedure were cited in these 

studies, nor were the nematodes reported to be fixed, only frozen (Heise et al., 1999; Hoglund et 

al., 1999; Divina et al., 2000). Studies of preserved human tissues indicate fixative time and 

fluid may affect the ability to amplify DNA (Greer et al., 1991; Gall et al., 1993; Isola et al.,

9
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1994; Coombs et al., 1999). Larval and adult nematodes are often fixed in preservatives such as 

formalin, ethanol, and glyceralcohol (Fagerholm, 1979), substances that could be responsible for 

the degradation of DNA and inhibition of the PCR (Greer et al., 1991; Coombs et al., 1999; 

Barnes et al., 2000).

First-stage protostrongylid larvae present a particular problem because the modified 

Baerman technique (Forrester and Lankester, 1997) lets particles of fecal material filter into the 

water along with the parasites. The resulting filtrate is a mixture of water, feces, and larvae. 

Humic substances and excess bacterial DNA contained in fecal material have been identified as 

potential inhibitors (Machiels et al., 2000) and must be removed from the sample prior to PCR.

This study focuses specifically on the ITS-2 region because ribosomal DNA serves as a 

taxonomic discriminator at the species and genus levels of micro-parasites (Newton et al., 1988a, 

1988b; Hoste et al., 1995; Dallas et al., 2000; Divina et al., 2000; Gadjadhar et al., 2000). 

Furthermore, the ITS-2 region is part of a tandem repeat (Ellis et al., 1986) and, because it is 

present in more than one copy, the region may amplify better from degraded samples than would a 

single copy gene.

The present study seeks to refine and standardize previously published protocols, and to 

retrieve amplifiable DNA from formalin, ethanol, and glyceralcohol fixed nematodes. Samples in 

this study, fixed for as long as seven years, were tested for successful extraction and amplification 

in an attempt to adduce the possibility of obtaining DNA from still older, archival, fixed 

specimens. Standard phenol-chloroform methods employed in previous studies (Gasser et al.,

1993; Gajadhar et al., 2000) were replaced by safer procedures reported in the literature (Newton 

et al., 1988a, 1988b; Hoste et al., 1995; Dallas et al., 2000; Divina et al., 2000) and here. A
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commercial kit format (QIAamp) was the optimal extraction method, as this would allow for 

relatively inexpensive and rapid extraction, and simultaneous purification of large numbers of 

samples.

Identification of Elaphostrongyline Nematodes Using Molecular Techniques

The geographic ranges of North American elaphostrongylines overlap in some areas 

(Lankester, 2001). Hence, any identification technique, including DNA analysis, must consider 

the possibility of mixed-species infections by being sufficiently specific to screen both pools of 

larvae and individual larvae. The most likely areas in which mixed infections occur will be in 

zones where parasite distributions of the overlap. In Newfoundland, P. andersoni co-occurs with 

E. rangiferi (Lankester and Fong, 1998). On the west coast, the distribution of P. andersoni can 

overlap with P. odocoilei (Ballantyne and Samuel, 1984). In the southeastern United States, P. 

andersoni may co-occur with P. tenuis (Prestwood et al., 1974) (Figure 1).

Isolation of adult elaphostrongylines for morphological identification is problematic 

because retrieval from the brain and back muscles of their hosts requires a difficult necropsy 

involving a search through the back-straps (longissmus dorsi), CNS, and other skeletal muscles 

of infected animals (Lankester, 2001). The identification of first-stage larvae (LI) can also be 

problematic due to the fact that the six elaphostrongyline species produce morphologically 

indistinguishable larvae with a dorsal spine (Lankester, 2001). To further compound the problem, 

all members of the family Protostrongylidae, except Protostrongylus spp. produce dorsal-spined 

larvae. Examples of such species that may occur in wild ungulates are Muelleruis capillar is, 

Umingmakstrongylus pallikukensis, Varestrongylus alpenae, and Orthostrongylus macrotis.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The larvae of elaphostrongyline parasites are ideal candidates for DNA identification 

because the Lis are easily collected from the host’s faeces (Forrester and Lankester, 1997), and 

the L3s can be recovered from enzymatically digested gastropod intermediate hosts (Lankester 

and Peterson, 1996; Lankester, 2001). A DNA test that identifies larvae would reduce the need to 

locate, euthanize, and necropsy infected animals.

In addition to four species currently found in North America, two European species -  E. 

alces and E. cervi -  were included in this study (1) to resolve the molecular-genetic relationship 

among E. cervi, E. rangiferi, and E. alces, and (2) because E. cervi could potentially be carried to 

North America in imported animals, such as red deer (Gajadhar et al., 1994).

Systematics of the Elaphostrongyline Nematodes

Previous studies examining the systematics of elaphostrongyline nematodes based on their 

morphology include a reconstruction of the genus Parelaphostrongylus by Carreno and Lankester 

(1994); an analysis of the relationships among elaphostrongyline nematodes, not including £. 

rangiferi or E. alces (Platt, 1984); an analysis of the morphological differences among 

Elaphostrongylus spp. (Gibbons et al., 1999), and a phylogeny of nematodes in the family 

Protostrongylidae, which included only E. cervi and P. odocoilei from the Elaphostrongylinae 

(Carreno and Hoberg, 1999).

The study by Platt (1984) found two equally parsimonius cladograms for P. tenuis, P. 

andersoni, and P. odocoilei. Elaphostrongylus cervi was the most pleisiomorphic species in the 

study and was used as the outgroup. The genus Parelaphostrongylus was monophyletic in both 

topologies, but the arrangement of taxa within the genus differed. One reconstruction paired P.
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andersoni and P. odocoilei (muscle worms) with P. tenuis (meningeal worm), sister to that clade. 

A second cladogram united P. tenuis and P. andersoni, both parasites of white-tailed deer, in the 

internal clade with P. odocoilei, a parasite of mule deer, in the basal position. Platt (1984) 

suggested that grouping of parasites based on the location of the parasite within the host (first 

reconstruction) was a more likely scenario, and thus favoured the muscle worm alliance. It is 

now known that P. andersoni is widespread in caribou of northern Canada, perhaps more so than 

in white-tailed deer (Lankester, 2001), which would call into question the idea of a close 

evolutionary relationship between P. andersoni and P. tenuis based on the fact that both species 

parasitize white-tailed deer.

Carreno and Lankester (1994) also demonstrated that the genus Parelaphostrongylus is 

monophyletic with an internal clade comprising muscle worms P. andersoni and P. odocoilei, 

with the meningeal worm P. tenuis basal to this pair. Elaphostrongylus rangiferi was used as an 

out-group.

Gibbons et al. (1991) revisited the morphological characteristics of the elaphostrongyline 

nematodes and concluded that E. panticola was a synonym of E. cervi, but that E. cervi, E. 

rangiferi, and E. alces should be considered distinct species. These ideas are both phylogenetic 

inferences, however, no statistical analyses were carried out on qualitative characteristics, and no 

tree was given.

The present study uses sequence data to (i) test the previous taxonomic inference of 

Parelaphostrongylus based on the location of the parasite within the host, and (ii) resolve the 

relationships among E. cervi, E. rangiferi, and E. alces by relating them to the other 

elaphostrongyline nematodes.
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Ribosomal DNA as a Species Identifier

In eukaryotic organisms, there exists multiple copies of highly conserved rRNA genes that 

code for ribosomal RNAs. These genes are often arranged in a series (tandem repeat) where each 

gene is separated from the next by a stretch of non-coding DNA, known as spacer DNA Spacer 

DNA is thought to play a role in the assembly of the primary RNA transcript, but it varies greatly 

in length and sequence depending on the organism in question (Alberts et al., 1994).

One complete tandem repeat on Caenorhabditis elegans chromosome 1 was sequenced by 

Ellis et al. (1986). This tandem repeat consisted of the external transcribed spacer (ETS) followed 

by (i) the 18s rRNA gene; (ii) the internal transcribed spacer 1 (ITS-1); (iii) the 5.8s rRNA gene; 

(iv) the internal transcribed spacer 2 (ITS-2); and (v) the 26s rRNA gene (homologous to 28s). 

Both the 5' and the 3' ends of the genes were found to have sequences that are conserved in several 

nematode species (Campbell et al., 1995; Gasser and Monti, 1997; Heise et al.,1999; Hung et al.,

1999). Universal primers NCI (5’ ACGTCTGGTTCAGGGTTGTT 3’) and (NC2 5’ 

TTAGTTTCTTTTCCTCCGC 3’) were developed from these regions of homology to amplify the 

ITS-2 region of nematodes (Ellis et al. 1986; Gadjadhar et al., 2000) (Figure 2).

Detecting Genetic Variation with Molecular Techniques

There are two general approaches to the problem of studying genes that may contain 

species-specific information. The first method, DNA-DNA hybridisation, relies on the premise 

that single-stranded DNA with sequence similarity (homology) of 60-70% will hybridize under 

appropriate conditions to form a stable, double-stranded molecule (Alberts et al., 1994; Potts, 

1996). The unknown species DNA can be tested for sequence homology based on how much
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FIGURE 2. Diagram of the linear organization of rRNA genes and their associated spacer DNA 

comprising a tandem repeat on C. elegans chromosome 1 (Ellis et al., 1986). The approximate 

locations of universal primers NCI and NC2 are indicated with arrows.
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DNA of each species has hybridised. This technique works well with large genes and genomic 

DNA. (Alberts et al., 1994; Potts, 1996).

For smaller genes, PCR based methods work especially well. In some cases, several taxa 

that contain the same gene can be amplified with a single primer pair -  called universal primers -  

because the primer sequence exists in all taxa of interest. PCR and gel electrophoresis of DNA 

fragments amplified by universal primer sets can sometimes reveal visible differences in the size 

of PCR products produced from different taxa, which can be used as a practical diagnostic tool, 

however, this procedure (Bowels and McManus, 1993). In taxa that are closely related, PCR and 

gel electrophoresis may not be sufficient to reveal diagnostic size differences on an 

electrophoretic gel. In other words, the greater the sequence homology between taxa, the more 

difficult it is to distinguish them with PCR and gel electrophoresis alone. In such cases, 

researchers must go beyond PCR and use techniques such as DNA sequencing, restriction 

fragment length polymorphism (RFLP), an examine other regions of the DNA to distinguish 

closely related taxa (Gasser, 2001).

DNA sequencing determines the exact order of nucleotide bases (adenine, thymine, 

cytosine, and guanine) that make up a gene or fragment of DNA. Once the base sequence of an 

organism’s DNA is known, it can be compared to that of other organisms. The species and 

relatedness of the organisms can then be investigated by phylogenetic analysis. Thus, DNA 

sequencing is the method that provides the finest resolution of all methods. In addition, recent 

technological advances in this area have resulted in the development of sequencing protocols that 

are less costly and time consuming. However, it is not always practical to sequence large numbers 

of samples in an attempt to identify species. If sequences can be obtained for the organisms of
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interest, this information can then be used to identify differences in base composition to develop 

and refine less expensive and time consuming methods of identification such as restriction 

fragment length polymorphism (RFLP) and species specific PCR primers.

The RFLP technique builds on the tendency for certain bacterial enzymes to cut DNA at 

specific base combinations (either combinations of four, six or eight bases) within a sequence. If 

the enzyme recognition sequences are variable between species in their presence or absence, 

number of recognition sequence occurrences, or length of fragment produced, then the enzyme 

may be used to distinguish species. When restricted PCR products are run on an electrophoretic 

gel, the variable size and number of fragments provide reliable taxonomic identifiers. The RFLP 

technique, thus, detects genetic variation rapidly without the need for reading the base 

composition throughout the entire region of interest.

In this study, PCRs of the second internal transcribed spacer (ITS-2) region were carried 

out with universal nematode primers developed by Ellis et al. (1986) and previously used by 

Gajadhar et al. (2000). The six species of elaphostrongyline nematodes could not be identified by 

the size of their ITS-2 PCR products alone, so the ITS-2 regions of all six species were sequenced. 

The sequence data provided potential RFLP recognition sites that could be used to distinguish 

between the species despite the highly conserved nature of the ITS-2 region in these taxa.

18
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CHAPTER 2: IMPROVED METHODS FOR THE EXTRACTION AND 
AMPLIFICATION OF ITS-2 rDNA FROM NEMATODES IN VARIOUS CONDITIONS

Sample Collection

First-stage dorsal-spined, protostrongylid larvae were isolated from faeces of individual 

cervids by Ahn Dao (2000), using the modified Baerman beaker technique (Forrester and 

Lankester, 1997). This method involves placing faeces in an envelope made from fibreglass 

window screening, which is submerged inside a water-filled beaker. Viable larvae pass through 

the screening, sink to the bottom of the beaker. After 6-24 hours, the water can be decanted and 

the larvae counted.

L3s were isolated by pepsin digest from gastropod intermediate hosts (Lankester and 

Peterson, 1996). L is and L2s were killed by the pepsin digest and only viable L3s were recovered 

using this method (Lankester and Anderson, 1968).

Individual larvae were removed from pooled samples of approximately 20-25 Lis or L3s 

by dispensing some of the storage media containing parasites into a small Petri dish and 

examining the sample with a stereomicroscope at 40X magnification. Single larvae were pipetted 

into a 1.5ml microcentrifuge tube. Adult nematodes were recovered from hosts at necropsy. In 

most cases, the posterior ends of adult males were kept for morphological identification and the 

anterior portion of the worm was processed for DNA analysis.

DNA Extraction Protocol

DNA was extracted from individual Lis and L3s, pooled samples of approximately 10-25 

Lis from individual cervids, pools of approximately 10-15 L3s, and anterior ends and middle
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fragments of adult nematodes, both male and female (See Appendix). Pooled samples refer to a 

collection of larvae from an individual host. Some donated samples were fixed in ethanol or 10% 

glyceralcohol made with 70% ethanol. Other samples, which were originally received in water or 

Baerman filtrate, were transferred to 10% formalin, where they remained fixed for two months 

before testing for positive PCR amplification.

A nematode sample and approximately lOOpl of its storage medium (See Appendix) were 

pipetted into a 1.5ml microcentrifuge tube and desiccated into a pellet in 20 minutes using a 

vacuum desiccator. DNA was extracted with QLAamp Tissue Kit from Qiagen (Valencia, 

California). The following modifications (underlined) were made to the manufacturers 

instructions:

I. Pelleted samples (including fecal particles) were washed twice with lOOul TE 

buffer (lOmM Tris -  HC1. ImM EDTA. pH 8.01 prior to QLAamp extraction, 

centrifuged for 5 min at full speed (-14.000 rpmt. and the supernatant removed and 

discarded. Residual TE did not affect subsequent steps.

II. 180pl of Buffer ATL was added to the pellet and pulse vortexed for approximately 

10 seconds.

III. 20}il of proteinase K was added to the sample/Buffer ATL mixture and incubated 

at 70°C for 3 hours and 1 additional hour at 95°C.

IV. After incubation, 20pl of RNAse and 200pl of Buffer AL were added to the sample 

mixture and pulse vortexed for approximately 10 seconds.

V. 200pl of molecular biology grade (96%) ethanol (Sigma, St. Louis, Missouri) was 

added to the sample mixture and pulse vortexed for approximately 10 seconds.
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VI. The mixture from step V (including the precipitate) was carefully applied to the 

QLAamp spin column and 500pl buffer AW1 was added. The solution was mixed 

well. The column was centrifuged at 8000rpm for 1 minute. The QLAamp spin 

column was placed in a new 2ml collection tube and the tube containing the filtrate 

was discarded.

VII. The QLAamp spin column was opened carefully and 500pl AW2 was added and 

the solution was mixed well. The column was centrifuged at full speed (~ 14,000 

rpm) for 1 minute. The tube containing the filtrate was discarded.

Vm. The QLAamp spin column was placed in a new 2ml collection tube and

centrifuged at full speed for 1 minute to eliminate buffer AW2 carry-over. The tube 

containing the filtrate was discarded.

IX. The QLAamp spin column was placed in a new 2ml centrifuge tube (to contain the 

final elutant) and 200jil of buffer AE was added and allowed to incubate at room 

temperature for 2 minutes. The column was centrifuged at 8000 rpm for 1 minute.

X. Step LX was repeated twice for a total of 600pl of purified DNA extract.

XI. For long-term storage, the DNA was eluted in buffer AE and placed at -20°C as per 

the manufacturer’s recommendations.

In addition, one hair root sample from each of muskox (Ovibos moschatus), elk (Cervus 

elaphus canadensis), white-tailed deer (Odocoileus virginianus), and moose (Alces alces) were 

extracted with this modified QLAamp procedure to ensure negative PCR amplification with the 

parasite primers NC1/NC2 (Ellis et al., 1986) used in this study.
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DNA Quantification and Absorbance at 260nm and 280nm

Samples were quantified and purity was checked using the Gene Quant II 

spectrophotometer (Pharmecia Biotech). QIAamp purified extract was diluted 1:10,1:100, and 

1:1000 in Buffer AE. For each dilution, 75pl of extract was pipetted into the cuvette and the 

absorbance and concentration values were read three times. The average concentration and 

absorbance readings of samples were calculated (Table 1). Elaphostrongyline ITS-2 PCR product 

of known concentration (200 ng/pl) was added to control samples of low, moderate, and high 

levels of fecal material, 10% formalin, 70% ethanol, 95% ethanol, and glyceralcohol (without any 

nematodes), and the absorbance and concentration of DNA was checked.

The A260/A280 absorbance ratios (indicator of purity) of the controls and of some 

samples were low indicating that impurities were likely present. An additional purification with 

p30 (BioRad Corporation) size exclusion columns and recheck of the A260/A280 absorbance 

ratio was carried out in these cases.

Polymerase Chain Reaction (PCR) Protocol

Initial PCR’s on QIAamp extracted nematodes were carried out according to the method 

outlined by Gajadjar et al. (2000), however, this combination of procedures produced excess DNA 

template and the PCR was optimized accordingly.

The Universal primers NCI and NC2, were constructed commercially, HPLC purified, 

and lyophilized by Operon Technologies (Almeda, California). Primers were resuspended in 

sterile, double distilled water to a concentration of 1 OpM each before use.

PCR reactions were carried out in a sterile hood physically separated from the extraction
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area, and the purification area to prevent cross contamination of sample DNA. A master mix of 

reagents was made containing 0.25 mM each of dATP, dCTP, dGTP, dTTP (New England 

Biolabs, Beverly, Massachusetts), 2 mM MgS0 4  (New England Biolabs), IX bovine serum 

albumin (New England Biolabs), IX thermopol reaction buffer containing 2 mM MgSC>4 (New 

England Biolabs), 0.2 pM primer (Operon Technologies), 2.5 units (U) of Deep Vent® DNA 

(exo-) polymerase (New England Biolabs), and sterile, double distilled water (Sigma, St. Louis, 

Missouri). Purified DNA extract was added at a volume of 1 pi to 49 pi of the master mix. All 

PCR preparations were carried out on ice to prevent the premature activation of Deep Vent® 

(exo-). Annealing temperature is among the most important parameters in a PCR reaction, 

therefore, the optimal annealing temperature for NC1/NC2 PCR reactions was determined by 

carrying out a gradient PCR in an Eppendorf Master Cycler Gradient thermocycler. Possible 

annealing temperatures from 53 °C to 64°C were tested. Cycling times of 15 and 30 seconds and 

one minute were tested over the course of several PCRs each with differing denaturation, 

annealing, and extension times. The optimal PCR parameters were as follows: (i) DNA was 

subjected to hot start at 96°C for 5 minutes, followed by (ii) 30 cycles of denaturation at 94°C for 

30 seconds, annealing at 54°C for 30 seconds, extension at 72°C for 30 seconds; and (iii) final 

hold at 4°C. High yield samples sometimes produced large, non-specific PCR artifacts that could 

interfere with sequencing. In these cases, purified sample was diluted 1:5 or 1:10 before use in 

PCR.

PCR amplification results were checked on a 5% polyacrylamide gel. The gels were 

stained for 25 minutes in an ethidium bromide solution consisting of 5 pi ethidium bromide in 100 

ml IX TBE buffer (Tris, Boric Acid, EDTA). All gels were visualized on a transilluminator, and
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photographed with a Polaroid Gel Cam (Polaroid Corp., Cambridge, Massachusetts).

Results

Adult nematodes, adult fragments, and pooled samples of 25 larvae generally produced 

extracts with higher amounts of DNA than samples of a single larva (Table 1). Samples that were 

fixed in 10% formalin yielded amounts of DNA similar to those from samples stored in water. 

However, samples in both 70% and 95% ethanol and in glyceralcohol yielded lower amounts of 

DNA than those in water or formalin (Table 1). Samples containing ethanol and glyceralcohol had 

low A260/A280 ratios indicating that impurities were present in the DNA extract. The Gene 

Quant II could not provide a DNA concentration value (read as concentration of 0 ng/pl) for 

theses samples until additional purifications with p30 columns were carried out. The 

concentration of control samples of unpurified storage media with 200 ng/pl PCR product added 

could not be read (0 ng/pl).

All samples (See Appendix) showed positive ITS-2 amplification bands on 

polyacrylamide gels. Some samples originally contained extremely high amounts of fecal material 

and potential PCR inhibitors such as ethanol and glyceralcohol, and additional purification with 

p30 gel filtration cartridges (BioRad Corporation, Hercules, California) was required before they 

would amplify. No amplification of host sample DNA was detected in any PCR amplification.

PCR reactions carried out on QIAamp extracted nematodes, using the parameters outlined 

by Gajadhar et al. (2000), produced excess template, and extremely high levels of high molecular 

weight non-specific PCR product (Figure 3), therefore, the PCR procedure was modified to 

compensate for the high amount of DNA obtained by QIAamp extraction. The results of the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

TABLE 1. Preservation conditions and time since collection in relation to the purity indicator (A260/A280 ratio) o f  selected samples. 
A sample with a ratio number at or below 1.8 is considered to contain impurities.

Sample # Sample ID Stage/Type Storage Media Collection Date Concentration (ng/ui) A260/A280 Ratio
la E. alces LI- Single Baerman filtrate* 1997 2.003 2.132
2a E. alces LI- Single Baerman filtrate* 1997 3.300 2.222
3a E. cervi LI- Single Baerman filtrate*** Jun.00 3.000 2.593
4a E. cervi LI- Single Baerman filtrate*** Jun.00 4.112 1.899
5 E. rangiferi Adult H20 Apr.01 30.200 1.195
6 E. rangiferi Adult H20 Apr.01 27.626 2.043
7 E. rangiferi Adult H20 Apr.01 25.595 2.045
8 E. rangiferi Adult Glyceralcohol Apr.01 0a/5 .574b 1.121a / 1.992b
9 E. rangiferi Adult Glyceralcohol Apr.01 0a/10.001b 1.021a/2.210b
10a E. rangiferi LI - Single Baerman filtrate* N/A 4.280 2.293
11 O. macrotis Adult Glyceralcohol 2001 0a / 9.159b 1.339a /2.001b
12 O. macrotis Adult H20 2001 19.650 1.189
13 O. macrotis L3 - Pooled H20 2001 21.200 1.176
14 P. andersoni Adult H20 Apr.01 20.001 2.155
15 P. andersoni Adult H20 Apr.01 23.430 2.176
17 P. andersoni LI - Pooled Baerman filtrate* Feb.00 22.008 2.211
18 P. andersoni LI - Pooled Baerman filtrate* Sep.99 27.612 2.035
21 P. odocoilei LI - Pooled Baerman filtrate* N/A 20.869 2.179
23 P. odocoilei Adult 10% Formalin 1990 23.537 2.168
24 P. odocoilei Adult 10% Formalin 1990 22.265 2.196
25 P. odocoilei Adult 10%Formailn 1990 27.380 2.178
26 P. odocoilei Adult H20 1990 24.052 2.170
27 P. odocoilei Adult H20 1990 19.436 2.204
28 P. odocoilei Adult H20 1990 20.675 2.034
32 P. tenuis Adult 70% Ethanol Jun.99 9.530 1.230

* Reading taken before additional purification with p30 columns,

b Reading taken after additional purification with p30 columns, * low fecal debris, ** moderate fecal debris, 
’** high fecal debris

K)



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

TABLE 1 continued. Preservation conditions and time since collection in relation to the purity indicator (A260/A280 ratio) o f selected 
samples. A sample with a ratio number at or below 1.8 is considered to contain impurities.

Sample # Sample ID Stage/Type Storage Media Collection Date Concentration (ng/ul) A260/A280 Ratio
33 P. tenuis Adult 70% Ethanol Jun.99 11.381 1.521
34 P. tenuis Adult 70% Ethanol Jun.99 0a/1 .115b 1.166a/1.541b
35 P. tenuis Adult 70% Ethanol Jun.99 Oa/ 8.808 1.105a/2.232b
36 P. tenuis Adult 70% Ethanol Jun.99 0a/0 .995b 1.292a/2.321b
40 P. tenuis Adult Glyceralcohol Jul.94 0a/7 .775b 1.111a/ 1.190b
41 P. tenuis Adult Glyceralcohol Jul.94 0a/12.130b 1.027a/2.234b
42 P. tenuis Adult Glyceralcohol Jul.94 Oa/9.954b 1.18a/2.312b
43 P. tenuis Adult Glyceralcohol Jul.94 0a/6 .250b 1.184a/2.222b
45 V. alpenae Adult Glyceralcohol 2001 0a / 7.600b 1.595a/1.994b
47 Putative P. tenuis LI - Pooled H20 Feb.00 6.955 1.598
47a Putative P. tenuis L I- Single H20 Feb.00 4.619 1.400
48a Putative P. tenuis L3 - Single 70% Ethanol Feb.00 0.862 1.253
48b Putative P. tenuis L3 - Single 70% Ethanol Feb.00 4.400 1.339
50a Unident. 1 L I- Single Baerman filtrate** Mar. 00 3.160 1.810
51a Unident.2 LI- Single Baerman filtrate** Mar.00 3.327 1.796
58 Unident.9 LI - Pooled Baerman filtrate* Feb.00 17.755 1.799
59a Unident. 10 L I- Single Baerman filtrate** Dec.99 5.931 2.199
65a Unident. 16 LI - Single Baerman filtrate** Feb.00 7.132 2.164
66 Unident. 17 LI - Pooled Baerman filtrate* Mar.00 23.705 2.137
67a Unident. 18 L I- Single Baerman filtrate* Nov.99 0.824 2.128
72a Unident.23 LI- Single Baerman filtrate* Nov.99 5.616 2.108
73 Unident.24 LI - Pooled Baerman filtrate* Nov.99 22.576 2.081
74 Unident.25 LI - Pooled Baerman filtrate* Nov.99 20.022 2.004
75 Unident.26 LI - Pooled Baerman filtrate* Nov.99 24.105 1.986
76a Unident.27 LI- Single Baerman filtrate* Mar.00 2.221 1.937
83a Unident.34 L I- Single Baerman filtrate* Aug.98 1.062 2.122

* Reading taken before additional purification with p30 columns,

b Reading taken after additional purification with p30 columns, * low fecal debris, ** moderate fecal debris, 
♦** high fecal debris

too\



FIGURE 3. Gel photograph (5% polyacrylamide) demonstrating excess ITS-2 PCR product and 

extremely high levels of high molecular weight non-specific product using parameters outlined by 

Gajadhar et al. (2000) on QIAamp extracted nematodes. Lanes 1 to 4: adult E. rangiferi (#5, #6, 

#7, #8). Lanes 5 and 6: E. cervi L i’s (#3, #4) Lanes 7 and 8: adult P. odocoilei #26 and #27, Lane 

9: negative extraction reagent control, Lane 10: negative PCR reagent control, Lane 11: molecular 

size marker pBR322/MspI digest.
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FIGURE 4. A representative gradient PCR (primers NCI and NC2) used to determine optimum 

annealing temperature (range: 53.0°C to 64.0°C). The sample used to determine optimal annealing 

temperature was adult P. odocoilei (#27) cycled using the following temperatures:Lane 1: 64.0°C, 

Lane 2: 63.8°C, Lane 3: 63.1°C, Lane 4: 62.3°C, Lane 5: 61.1°C, Lane 6: 59.6°C, Lane 7: 57.7°C, 

Lane 8: 56.1°C, Lane 9: 54.9°C, Lane 10: 54.0°C, Lane 11: 53.3°C. Lane 12: 53.0°C, Lane 13: 

molecular size marker pBR322/Mspl digest (New England Biolabs). Optimal temperature is 

shown in bold. Polyacrylamide gel concentration is 5%.
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gradient PCR, using P. odocoilei (sample 27) as the test specimen, are shown in Figure 4. The 

optimal annealing temperature for subsequent reactions was determined to be 54°C. At this 

temperature, there are no PCR artifacts or “satellite bands.” In gradient PCR’s, all other 

elaphostrongyline nematodes amplified well with a 54°C annealing temperature (data not shown).

Discussion

The difficulties of extracting DNA from single Lis and L3s (See Chapter 1) have been 

overcome by developing the methods outline above. The sensitivity and versatility of this 

technique also allows amplification of DNA from fixed archival samples that may have been 

previously passed over for study due to their preservation condition and time spent in storage, 

which increases the feasibility of obtaining viable ITS-2 sequences from more antiquated 

nematode collections. Individual and pooled Lis, L3s, adults, and fragments of adults suspended 

in 95% ethanol, 70% ethanol, glyceralcohol, 10% formalin, or distilled water can be extracted and 

amplified using this technique.

The nitrogenous bases in nucleotides have a light wavelength absorption maximum of 

about 260 nm. In contrast to nucleic acids, proteins have a UV absorption maximum of 280 nm 

due to tryptophan residues. The absorbance of a DNA sample at 280 nm gives an estimate of the 

protein contamination of the sample. The ratio of the absorbance at 260 nm/ absorbance at 280 nm 

is a measure of the purity of a DNA sample; it should be between 1.65 and 1.85. Some samples in 

this study had high A260/A280 ratios after additional purification with p30 size exclusion 

columns, however, the contaminating proteins did not affect the ability to amplify DNA. The 

A260/A280 absorbance ratios did not correlate with DNA concentration, and were more
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dependent on the presence of humic substances and other PCR inhibitors within the sample.

Given that ethanol is widely used in molecular biology procedures, the poor 

amplification of the ethanol fixed material versus the good amplification of the formalin-fixed 

specimens seems to be a surprising result. However, poor penetration of the ethanol could leave 

the interior of the sample biologically active and therefore subject to degradation by cellular 

nucleases which can remain active for a considerable amount of time, whereas the protein cross- 

linking effect created by formaldehyde fixation may avoid this process (Greer et al. 1990; Barnes 

et al. 2000). Furthermore, cell wall disruption caused by protein denaturation and ethanol leaching 

of lipid components could allow DNA to migrate into the surrounding medium and this 

phenomenon has been reported elsewhere (Greer et al. 1990; Barnes et al. 2000).

The QIAamp method utilizes a combination of extraction by digestion with proteinase K 

(PK) and purification with a silica-based spin column (QIAamp® Tissue Kit manufacturers 

instructions, 2000). It has been suggested that silica-based purification can remove PCR inhibitors 

(Yang et al., 1998). Moreover, the QIAamp method removes potentially interfering RNA and 

poses no risk to researchers because it does not involve the use of toxic organic substances. This 

technique has the advantage over those used by Gasser and colleagues (1993) and Gajadhar and 

colleagues (2000) by having extraction and purification combined in one simplified procedure. In 

addition, the optimal PCR cycling times and temperatures were found by carrying out a gradient 

PCR, which tested 12 different temperatures simultaneously. The assay specificity achieved using 

gradient optimized PCR parameters significantly reduces “satellite bands” reported in some PCR 

reactions (Gajadhar et al., 2000). An annealing temperature of 60°C and extension time of one 

minute, as used in Gajadhar et al. (2000), resulted in template overload and high molecular weight
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non-specific product that interfered greatly with subsequent sequencing attempts.

Furthermore, this rapid technique can increase laboratory sample throughput. This 

researcher found that batches of 25 samples can be extracted, purified, amplified, and sequenced 

in less than two working days. The protocol outlined above is more easily reproduced than those 

previously mentioned, and should enhance the ability of laboratories to accurately and rapidly 

screen larval samples, an important factor in the management of cervid parasites.

Extraction with QIAamp generally recovers high concentrations of DNA when only a 

small quantity (lpl) of sample is used in each 50pl reaction. In addition, the DNA extract can be 

stored long term at -20°C for later analysis. In some pooled samples, lpl of extract was too 

concentrated and required dilution of 1:5 or 1:10 before adding lpl to the PCR reaction. 

Concentrations of DNA template that were too high produced high molecular weight non-specific 

product that interfered in sequencing and restricting the sample.

Other changes from the protocol used by Gajadhar et al. (2000) were to the PCR 

annealing temperature and time, and choice of polymerase used to amplify the DNA. The 

annealing temperature was changed to 55°C based on sample amplification using gradient PCR 

because 55°C consistently did not produce “satellite bands.” The annealing time was also lowered 

to 30 seconds to reduce the possibility of PCR mis-priming that may result initially in non-specific 

product. Deep Vent® DNA (exo-) Polymerase (New England Biolabs) was chosen for this study 

because (i) it has a lower error rate than Taq polymerase, (ii) does not have the tendency to insert 

A’s at truncated locations in the sequence, and (iii) has a longer half-life than Taq polymerase 

(Jannasch et al., 1992). Use of Deep Vent® (exo-) Polymerase may reduce the number of 

polymerase-generated errors, especially when amplifying DNA from preserved, potentially
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degraded specimens.

In summary, there are several improvements provided by this protocol over previously 

published methods (Gasser et al., 1993; Hoste et al., 1995; Dallas et al., 2000; Divina et al., 2000; 

Gajadhar et al., 2000). The use of the modified QIAamp procedure eliminates the use of organic 

solvents and therefore, poses little health risk to researchers. The procedure saves time by 

incorporating extraction and purification in one simple procedure. It eliminates the grinding step 

included in many published procedures which avoids mechanical shearing of DNA by tools, such 

as zirconium beads (Gajadhar et al., 2000), glass rods, mortar and pestles (Gasser et al., 1993), 

and other types of tissue pulverizers. The PCR parameters used were specifically optimized to 

amplify the nematode species of interest. The modified extraction and PCR protocols outlined in 

this study address the difficulties of extracting and amplifying DNA from single larvae and 

preserved nematodes, problems that have not been addressed in detail by previous methods.
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CHAPTER 3: IDENTIFICATION OF 6 SPECIES OF ELAPHOSTRONGYLINE 
NEMATODES BY POLYMERASE CHAIN REACTION (PCR) AND RESTRICTION 

FRAGMENT LENGTH POLYMORPHISM (RFLP)

ITS-2 Sequencing Protocol

First-stage and third-stage larvae (approximately 10-25 pooled larvae and individual larva 

specimens), and adults (anterior ends, middle fragments, and whole adults) of known and 

unknown identification, were extracted using the modified QIAamp procedure and amplified with 

ITS-2 primers (See Chapter 2). ITS-2 lengths (bp) for species not sequenced in this study were 

estimated using a Kodak ID gel doc system that automatically compares PCR product to a 

molecular size marker. ITS-2 PCR product was purified with QIAquik (Qiagen, Valencia, 

California). Simulated mixed infections were created by adding lpl of P. andersoni DNA extract 

to lpl of either P. tenuis, P. odocoilei, or E. rangiferi DNA extract and lpl of the resulting 

mixture was used in a PCR using NCI and NC2 primers. These mixed samples were used to test 

the utility of the RFLP sites in cases of double infection.

Sequencing PCRs were set up using 4pl/reaction of 0.8pM of the universal primers NCI 

(forward) or NC2 (reverse) primer (Ellis et al., 1986). A Big Dye Terminator Sequencing Kit 

(Perkin Elmer Corporation, Foster City, California) provided a master mix of all necessary 

sequencing PCR reagents. Master mix was added at a volume of 8|xl/reaction, and sample PCR 

product (lOng/pl) was added at a volume of 8pl/reaction. Sequencing reactions were carried out 

for 25 cycles under the following parameters: denaturation at 96°C for 30 seconds, annealing at 

50°C for 15 seconds, extension at 60°C for four minutes, and final hold at 4°C. Sequencing PCRs 

were purified with AGCT columns (Edge Biostystems) before each strand was sequenced on an
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ABI3100 genetic analyzer (Perkin Elmer Corporation, Foster City, California). Forward and 

reverse strands from each sample were sequenced independently in three separate trials to confirm 

results.

Choosing Samples for Sequencing

ITS-2 sequences were obtained from samples positively identified by adult male 

morphology or sample identity was known because the larvae (Lis and L3s) were obtained from 

an experimentally infected host (See Appendix). In most cases, two individual Lis or L3s from 

pooled larval samples were sequenced and/or restricted separately to determine if intraspecific 

variation was present within the pooled sample and to check for the presence of mixed infections. 

An additional 2-5 larval nematodes were placed in 1.5 ml microcentrifuge tubes and frozen at -  

86°C for future examination. The remainder of the pooled samples (approx. 10-25 larvae) were 

extracted together.

In total, six samples of P. andersoni, nine samples of P. odocoilei, sixteen samples of P. 

tenuis, six samples of E. rangiferi, two samples of E. cervi Lis, and two samples of E. alces Lis, 

all of unequivocal species identification, from individual hosts, were sequenced and used to 

determine diagnostic RFLP sites. Unidentified nematode Lis from bighorn sheep (Ovis 

canadensis) were also sequenced because their ITS-2 region was found to be close in size to that 

of the elaphostrongylines.

The sequences were aligned with Clustal W (1.18) Multiple Alignment Software and 

restriction maps were created with Sequencher™ software. After the restriction sites were 

determined, they were tested on ITS-2 fragments from the six species as described below.
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Restriction Fragment Length Polymorphism (RFLP) Protocol

ITS-2 PCR products were concentrated from a volume of 50 pi to 20 pi in Nanosep (Pall 

Filtron) spin columns according to the manufacturer’s instructions. In two 0.5 pi microcentrifuge 

tubes, the Nanosep concentrated samples were divided into two 10 pi duplicates, one sample for 

digestion and one sample for an uncut control. Parelaphostrongylus spp. samples to be restricted 

were double-digested with a combination of 0.5 pi enzyme Msl I (New England Biolabs), 0.5 pi 

enzyme Fok I (New England Biolabs), and 2.0 pi NEB buffer 2. Elaphostrongylus spp. samples to 

be restricted were double-digested with a combination of 0.5pl enzyme Mse I (New England 

Biolabs), 0.5pl enzyme Fok I (New England Biolabs), and 2.0pl NEB buffer 2. All three enzymes 

used in this study have 100% activity in NEB buffer 2. ITS-2 PCR products were restricted 

overnight in a heated, dry bath at 37°C. The presence or absence of restriction sites and variation 

in size of the fragments were inferred from the size of the migrating bands on a 5% 

polyacrylamide gel. Mixed infection digestions contained several clustered fragments with sizes 

less than 300bp. Therefore, visualization of RFLP bands was attempted on 7% polyacrylamide 

gels to better resolve the location of many similarly-sized generated by digestion.

Results

Sequencing with primers NCI and NC2 provided the ITS-2 lengths for the known species: 

P. andersoni 545 base pairs (bp), P. odocoilei is 562 bp, P. tenuis is 554 bp, E. rangiferi and E. 

cervi are both 585 bp, and E. alces is 575 bp (Figure 5). ITS-2 sequences obtained in this study 

revealed intraspecific sequence variation within each of the three Parelaphostrongylus spp., with 

each species comprising two consistently distinct ITS-2 types (Figure 5). The genus

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 5. Sequence alignment of six species of elaphostrongyline nematodes using primers NCI 

and NC2. Sequence variants of Parelaphostrongylus spp. and the putative protostrongylid sp. are 

included. Primer NCI (Ellis et al., 1986) is indicated in underlined green uppercase letters and 

NC2 (Ellis et al., 1986) is indicated in underlined green lowercase letters. Primer PTP1 (Gajadhar 

et al., 2000) is indicated in underlined blue uppercase letters and PTP2 (Gajadhar et al., 2000) is 

indicated in underlined blue lowercase letters. Primer ECP1 (Gajadhar et al., 2000) is indicated in 

underlined uppercase magenta letters and ECP1R (Gajadhar et al., 2000) is indicated in lowercase 

magenta letters. Sequence identity: PT1 and PT2 - P. tenuis var.l and var. 2, POl and P02 -  P. 

odocoilei var. 1 and var. 2, PA1 and PA2 -  P. andersoni var. 1 and var.2, ER -  E. rangiferi, EC -  

E. cervi, EA -  E. alces, PMU -  putative protostrongylid sp. Note that primers ECP1 and ECP1R 

overlap in the center.
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Elaphostrongylus did not exhibit intraspecific variation. ITS-2 bands produced from amplification 

of simulated mixed infections did not resolve on gels, resembling single infection bands. A minor 

size difference in the initial ITS-2 PCR product was observed between the elaphostrongyline 

genera, however, species within Elaphostrongylus and Par elaphostrongylus were not readily 

distinguishable by gel electrophoresis (Figure 6). This result was also reported by Gajadhar et al. 

(2000).

Based on the DNA sequences (Figure 5), species-level diagnostic restriction sites were 

found at several positions. The RFLP sites distinguished P. tenuis, P. andersoni, and P. odocoilei 

(Figure 7). The sites could also distinguish E. alces from E. cervi and E. rangiferi, but could not 

distinguish between E. cervi and E. rangiferi (Figure 7). Mixed infections of P. odocoilei + P. 

andersoni, E. rangiferi + P. andersoni, and P. tenuis + P. andersoni could usually be detected 

during sequencing as overlapping sequence electropherograms, but the mixtures listed above 

produced a combination of RFLP fragment patterns that had unresolved bands. In addition, some 

smaller fragments ran off the polyacrylamide gels (data not shown). Restriction maps for 

Par elaphostrongylus spp. and Elaphostrongylus spp. are shown in Figures 8 and 9, respectively.

PCR with the universal primers NCI and NC2 and gel electrophoresis revealed three types 

of unidentified infections of dorsal-spined larvae (Figure 10). Unidentified type 1 was found to be 

495 base pairs by sequencing, unidentified type 2 was approximately 330 base pairs based on 

comparison with size standard pBR322/MspI digest, and unidentified type 3 was approximately 

220 base pairs based upon comparison with the same size standard (Figure 10). Only one natural 

double infection was detected by PCR with NCI and NC2. One band was consistent with 

Par elaphostrongylus spp., the other was the 220 bp unidentified type 3 infection. The

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 6. Gel photograph (5% polyacrylamide) showing ITS-2 bands for elaphostrongyline 

nematodes. Lane 1: molecular size marker pBR322/Mspl digest, Lane 2: negative PCR control, 

Lane 3: E. cervi single larvae (#3b), Lane 4: E. cervi single larvae (#4b), Lane 5: P. andersoni 

single larvae (#16b), Lane 6: P. odocoilei single larvae (#20b), Lane 7: P. odocoilei single larvae 

(#2lb), Lane 8: P. odocoilei pooled larvae (#20), Lane 9: P. tenuis pooled larvae (#44), Lane 10: 

E. alces pooled larvae (#1), Lane 11: E. alces pooled larvae (#2), Lane 12: P. andersoni pooled 

larvae (#16), Lane 13: E. rangiferi pooled larvae (#10), Lane 14: P. andersoni pooled larvae(#17), 

Lane 15: E. cervi pooled larvae (#3).
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FIGURE 7. Double digestion of elaphostrongyline nematode ITS-2 fragments. Lane 1: molecular 

size marker pBR233/Mspl, Lane 2: E. alces (# 1), Lane 3: E. cervi (# 3), Lane 4: E. rangiferi (# 

5), Lane 5: P. tenuis (#29), Lane 6: P. odocoilei (# 22), Lane 7: P. andersoni (#14).
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FIGURE 8. Restriction maps of Parelaphostrongylus spp. depicting digestion with Msl I and

Fokl. Numbers in brackets indicate nucleotide positions where the enzyme cuts the DNA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P. tenuis

-F ok l (75) - F o k l  (370)

1 .......................

P. odocoilei

- F o k l  (227) -  F o k l(377)

i _ . . .  . . - .......................................................  i

P. andersoni

-M sll(72) 
-Fokl (75) r Fokl (366) i—Msl I (445)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 9. Restriction maps of Elaphostrongylus spp. depicting digestion with enzymes Fok I

and Mse I. Numbers in brackets indicate nucleotide positions wbere the enzyme cuts the DNA.
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FIGURE 10. Gel photograph (polyacrylamide 5%) of NC1/NC2 PCR product from dorsal-spined 

larvae of unidentified protostrongylid nematodes. Lanes 1 and 2: Unidentified type 1 (#5 la  and 

#52a). Lane 3: natural mixed infection of unidentified type 1 and unidentified type 3 (#53). Lane 

4: natural mixed infection of P. odocoilei and an unidentified type 3 nematode (#50). Lanes 5 to 

9: elaphostrongyline nematodes for comparison. Lane 10: molecular size marker pBR322/Msp 1.
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Parelaphostrongylus spp. band was identified as P. odocoilei by RFLP. Orthostrongylus macrotis 

samples (#11, #12, and #13) each amplified one weak band of approximately 720bp. 

Varestrongylus alpenae (sample #45) amplified one slightly shorter band weak band of 

approximately 700bp. Nematode samples that were neither Elaphostrongylus nor 

Parelaphostrongylus were immediately recognized on gels because their ITS-2 products varied 

greatly in size; in some cases by more than one hundred bases (Figure 10).

Discussion

The RFLP test described above achieved the main goal of this study, which was to 

distinguish the four species of elaphostrongyline nematodes found in North America. Intraspecific 

variation occurs within the Parelaphostrongylinae, but it does not affect the RFLP test, as the cut 

sites apparently are not located at base positions so far seen to be polymorphic within species. The 

test also targeted specifically the mixed infections that wildlife biologists can expect based on the 

distribution of these parasites in North America. No natural mixed infections were detected with 

the RFLP. However, artificial mixed infections produced crowded and difficult to interpret RFLP 

patterns where small cut fragments frequently ran off the end of the gel. The optimal solution for 

accurately determining mixed infection composition may lie in the ability to identify individual 

larvae from the mixed infection. This would avoid crowded gels with many restriction fragments 

of less than 300bp, which require running a higher concentration of polyacrylamide gel.

Intraspecific variation was detected within the genus Parelaphostrongylus. Interestingly,

P. tenuis from eastern North America and P. tenuis from Costa Rica have identical ITS-2 

sequences (P. tenuis variant 1), but putative P. tenuis material from Marquette, Michigan (#46 and
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47) differed from the other P. tenuis samples by two transitions and two transversions (P. tenuis 

variant 2) (Figure 5). These were pooled samples of dorsal-spined Lis (Garvon, 2001, per. 

Comm.). They were 256-302 pm in length, which is somewhat shorter than measurements 

published for P. tenuis and P. andersoni (for a review see Lankester, 2001); although, alcohol 

shrinkage could have been responsible for their shorter length. Alternatively, they are approaching 

the shorter length of Varestrongylus Lis (Grey et al., 1985b). The samples from Marquette, 

Michigan were presumed to be P. tenuis and were named P. tenuis variant 2 based on the 

sequence length being identical to P. tenuis variant 1 (554bp) and differing only by 2 transitions 

and 2 transversions. Other specimens whose sequence matched P. tenuis variant 2 were two L3 

specimens (#48a and #48b), digested from Triodopsis sp. that were experimentally infected with 

Lis passed from white-tailed deer in the vicinity of Marquette (Garvon, 2001 per. comm.). The 

first L3 (#48a) measured 735 pm, which is somewhat small for P. tenuis and P. andersoni (900- 

1080 pm), but large for Varestrongylus alpenae. The second L3 (#48b) measured 935 pm, which 

is more consistent with P. tenuis L3s (Lankester, 2001). In addition, two L3s digested from A. 

altemata, 835 and 875 pm long, were also identified as P. tenuis variant 2. Hie slightly short 

measurement may be the result of alcohol shrinkage.

P. odocoilei ITS-2 sequences from mule deer in Alberta, Montana, and California were 

uniform (P. odocoilei variant 1). P. odocoilei variant 2 sequence from mule deer near Penticton, 

British Columbia differed from P. odocoilei variant 1 by 1 transition. It is interesting to note that 

this experimental infection was established with Lis from mule deer in the vicinity of Penticton, 

with adult P. odocoilei in muscles; however, the larvae in the feces were longer (range 395-460 

pm) than lengths published for this species (Hobmaier and Hobmaier, 1934). Gray and Samuel

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1986) found similarly long dorsal-spined larvae (415 +/-17 pm) in woodland caribou from 

northeastern Alberta.

Two variants of P. andersoni were also discovered by sequencing the ITS-2 region. P. 

andersoni variant 1 was found among all P. andersoni samples from caribou in Newfoundland, 

Canada. P. andersoni variant 2 differed from P. andersoni variant 1 by two transitions, and was 

the sequence found in the single source of Lis from mainland Canada (woodland caribou near 

Detour Lake, ON).

The ITS-2 region is a spacer DNA and is, therefore, more free to mutate than a functional 

RNA gene. This could explain the presence of intra-species variation seen among 

Parelaphostrongylus spp. The genotypic variants of Parelaphostrongylus, with the exception of 

P. andersoni variant 1 and 2, do not seem to correspond to geographic separation of the parasites 

(Figure 1; See Appendix) and may have arisen as a result of microenvironmental factors. 

Alternatively, the variants could represent different strains exhibiting different levels of virulence. 

Further sequencing studies of coding regions in the Protostrongylidae should be conducted to test 

this hypothesis. Species of the genus Elaphostrongylus did not exhibit intraspecific variation, but 

in the case of E. cervi and E. alces, this could be due to limited sample size. Only two fecal 

samples of these nematode species from single experimentally infected hosts were available for 

study.

Three consistently distinct ITS-2 types, shorter than those from V alpenae, O. macrotis 

(above) and the elaphostrongylines, were amplified from some unidentified Lis (See Appendix). 

Unidentified type 1 is 495 bp long and was found in bighorn sheep and muskox in Washington 

and Alaska, respectively. Unidentified type 2 is approximately 330 bp and was found in elk from
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Montana and one big horn sheep in Washington. Unidentified type 3 is 220 bp and was found 

with P. odocoilei in a black-tailed deer in Washington. A BLAST search revealed that none of the 

nematodes sequenced in this study matched the previously published Dictyocaulus ITS-2 

sequences (Genbank accession number: U37718). Furthermore, there are no other published 

protostrongylid ITS-2 sequences among the Genbank entries.

An attempt was made here to obtain and sequence Orthostrongylus macrotis and 

Varestrongylus alpenae because they are parasites of cervids that also produce dorsal-spined 

larvae. Orthostrongylus macrotis and V alpenae were each found to produce weak ITS-2 bands of 

approximately 700 bp, a length too large to match with any of three unidentified types of 

nematodes or elaphostrongylines. There was insufficient ITS-2 PCR product to sequence, but on 

polyacrylamide gels O. macrotis and V alpenae had bands consistently larger than any other 

species in this study. There could be several reasons for the poor amplification of O. macrotis and 

V. alpenae. Failed extractions, altered primer annealing sites, fixation time, fluid, and sub-optimal 

PCR conditions could all result in poor amplification. Although, the analysis protocols outlined in 

chapter 2 were optimized to account for these variables, it is not known why the amplification 

product in these samples was weak.

In future studies, positively identified adults of all potentially co-occurring nematodes 

should be obtained and sequenced to positively identify the three unidentified types of infections 

(See Appendix) occurring in wild ungulate feces.

The estimated ITS-2 region lengths given by Gajadhar et al. (2000) can be replaced by 

precise sizes determined from the DNA sequences as follows: Elaphostrongylus cervi and E. 

rangiferi 585 bp in length, E. alces 575 bp, P. tenuis 554 bp, P. andersoni 545 bp, and P.
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odocoilei 561 bp (Figure 5). Furthermore, as reported by Gajadhar et al. (2000), the entire ITS-2 

region (amplified with NCI and NC2) of Umingmakstrongyluspallikukensis was 445 bp long. 

However, they further stated that the amplification band for the combination of NC2 (universal 

reverse) and ECP1R (internal to ITS-2) was 699bp, which is larger than the entire ITS-2 region 

itself. Similarly, Epe and colleagues (1997) reported that Dictyocaulus viviparus has a total ITS-2 

length of 457 base pairs (Genbank accession number: U37718), but Gajadhar et al. (2000) 

reported two ITS-2 bands with sizes of 728 bp and 782 bp generated from NC2 and ECP1R 

(Figure 5) amplification of Dictyocaulus sp. If these results were correct, a subset of ITS-2 would 

be larger than the entire region. The ITS-2 sequence for Dictyocaulus sp. entered into Genbank 

(Genbank accession number: U37718) may be incomplete. The NC1/NC2 primer combination 

was used in the study (Epe et al., 1997) but neither primer appears in the sequence. It is imperative 

that these inconsistencies be resolved in future studies so that potentially co-occurring infections 

can be properly identified.

In conclusion, automated DNA sequencing is the best method by which to identify 

elaphostrongyline Lis and L3s, both single and pooled samples. Sequencing has the advantage of 

higher specificity over RFLP methods. It is also superior to species-specific primer methods, 

which do not identify sequence variants. Mixed infection sequences are easily identified on ABI 

Prism 3100 generated electropherograms because they look like overlapping electropherogram 

peaks. Due to recent technological advances, automated DNA sequencing is the method of choice 

for identifying useful genetic markers because it is now more rapid (2 hours for 16 sequence 

reads) and relatively inexpensive (at present, $5.00 per sample).
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CHAPTER 4: PHYLOGENY OF 6 SPECIES OF ELAPHOSTRONGYLINE 
NEMATODES INFERRED FROM THEIR ITS-2 SEQUENCES

Materials and Methods

Sequences of the ITS-2 region for P. tenuis, P. andersoni, P. odocoilei, E. rangiferi, E. 

cervi, and E. alces, were obtained using the protocols outlined in Chapter 2. Sample #51, #5la,

#5lb, #52, #53, #54, and #55 were collected from bighorn sheep in Washington by B. Foreyt 

(Appendix), and their 495bp ITS-2 region was sequenced. This sequence was tentatively 

identified by staff at the Canadian Food Inspection Agency, Centre for Animal Parasitology, 

Saskatchewan (Steeves-Gumsey, 2002: per. comm.), as that of a putative non-elaphostrongyline 

protostrongylid. This sequence was chosen as the outgroup to root the tree because published 

Dictyocaulus sp. sequences are incomplete (See Chapter 3). The sequence divergence between the 

putative protostrongylid sp. and the elaphostrongylines was less than the divergence between 

Dictyocaulus viviparus and the elaphostrongylines (data not shown), suggesting that the putative 

protostrongylid sp. is a closer genetic relative to the elaphostrongylines than Dictyocaulus spp.

Modeltest 3.0 (Posada and Crandall, 1998) software was used to determine the model of 

nucleotide substitution that best fit the data. Modeltest software also provides empirical values for 

nucleotide frequencies and substitution rates, and estimates the gamma distribution parameter of 

rate heterogeneity and the proportion of invariant sites. Trees were constructed by the maximum 

likelihood (ML) method using PAUP (Phylogenetic Analysis Using Parsimony) 4.0 (Swofford, 

1998) with the Hasegawa-Kishino-Yano (HKY) model of nucleotide substitution (Hasegawa, 

Kishino, and Yano, 1985) incorporating a gamma distribution value provided by Model Test. Four 

gamma rate categories were implemented. Sequence divergences between taxa were computed
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using the HKY85 distance.

Results

The base frequencies for the ITS-2 alignment of sequences used in this analysis were as 

follows: 34.75% A, 14.35% C, 19.20% G, and 31.69% T. The sequence divergences between all 

taxa are presented in Table 2. The optimal tree is presented in Figure 11. For simplicity, only 

variant one sequences from each taxon were represented as their sequences had divergences of 

less than 1% (Table 2). Results suggest that the genus Parelaphostrongylus is monophyletic. An 

internal clade contains the muscle worms P. andersoni and P. odocoilei, with meningeal worm P. 

tenuis basal to this pair. Species of the genus Elaphostrongylus formed a separate clade with E. 

rangiferi and E. cervi forming an internal clade, and E. alces as the basal species. The unidentified 

protostrongylid nematode was the most divergent species (Table 2). The monophyly of the 

Elaphostrongylinae is implied by these results, but cannot be confirmed, as E. panticola was not 

included in this study.

Discussion

The molecular data produced an optimal tree with similar topology to cladograms 

generated from morphological data by Platt (1984) and Carreno and Lankester (1994). The tree 

presented here places the “muscle worms” together with the “meningeal worm” as their sister 

group. This arrangement is biologically sound because P. tenuis survives best in its normal host, 

white-tailed deer, while P. odocoilei and P. andersoni can survive sufficiently in several suitable 

hosts (Lankester, 2001). Moreover, P. tenuis is known to cause severe neurological disease in 

abnormal hosts, while P. odocoilei and P. andersoni generally do not (Lankester, 2001).
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TABLE 2. HKY85 distance matrix depicting percentage of sequence divergence between taxa in this study. 
Percentages are given as decimals.

1 2 3 4 5 6 7 8 9 10
1. P. tenuis ; . ' P

2. P. tenuis 2 0.00726 7- : • i . f . .;•$ ’• ; ‘ • , ..
3. P. odocoilei 0.01844 0.01474 :
4. P. odocoilei 2 0.02025 0.01285 0.0018 . 4 '  v. v

5. P. andersoni 0.01482 0.01111 0.00938 0.01122 ' . '
6. P. andersoni 2 0.01858 0.01109 0.01314 0.01122 0.00369 ■ :> ' ' I  ;
7. E. rangiferi 0.15735 0.14801 0.15895 0.156 0.15009 0.15022
8. E. cervi 0.15735 0.14801 0.15895 0.156 0.15009 0.15022 0
9. E. alces 0.17454 0.1647 0.1766 0.1735 0.16472 0.15968 0.07826 0.07826 ■ r •' ■
10. Mullerius sp. 0.4233 0.42011 0.4304 0.43199 0.4225 0.41432 0.43243 0.43243 0.39404

O nU>



FIGURE 11. Optimal topology depicting phylogenetic relationships among six species of 

elaphostrongyline nematodes. Branch lengths are indicated at the nodes. The unidentified 

protostrongylid nematode sequence was used to root the tree.
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Elaphostrongylus alces was clearly resolved as a separate species from E. cervi and E. rangiferi, 

with E. alces diverging from E. cervi and E. rangiferi by 7% of its sequence (Table 2). However, 

E. cervi and E. rangiferi could not be distinguished from each other. The ITS-2 sequences for 

these taxa were identical (Figure 5; Table 2). Controversy surrounds E. rangiferi’s taxonomic 

status relative to E. cervi, and the ITS-2 rDNA sequence was not sufficient to distinguish them. 

Kutzer and Prosl (1975) considered both E. rangiferi and E. panticola to be synonyms of E. cervi.

Other researchers argue that E. cervi and E. rangiferi are separate species (Steen et al. 1989; 

Gibbons et al. 1991) based on subtle differences morphological characteristics and differences in 

hosts affected.

Morphological and molecular phylogeny, current geographic distribution, and host 

specificity combined make it tempting to suggest that Parelaphostrongylus spp. originated in the 

definitive host Odocoileus (Platt, 1984; Carreno and Lankester, 1994). A phylogenetic analysis 

using mitochondrial DNA (Cronin, 1991) suggested that Rangifer is a monophyletic group 

separate from the Cervinae and Odocoileinae. If this is correct, Elaphostrongylus may have 

speciated in Rangifer and Parelaphostrongylus speciated in Odocoileus. Platt (1984) believed that 

the speciation of P. tenuis occurred prior to the origin of extant Odocoileus spp., and that 

subsequently P. andersoni and P. odocoilei co-speciated along with the definitive hosts O. 

virginianus and O. hemonius, respectively. Lankester and Hauta (1989) found that P. andersoni 

was widespread in caribou of North America, and suggested that Rangifer might be the original 

host rather than white-tailed deer. The presence of P. andersoni in North American caribou can be 

explained by the parasites switching hosts when the distributions of caribou and white-tailed deer 

overlap (Carreno and Lankester, 1994). However, if P. andersoni speciated with Rangifer in the
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old world, we would expect to find P. andersoni in Europe (Carreno and Lankester, 1994). To 

date, no P. andersoni has been found in European cervids, however, more study, including DNA 

analysis, may be required to find them.

The identity and origins of a common ancestor between Elaphostrongylus spp. remain 

unclear as there is no variation between E. cervi and E. rangiferi, and E. panticola was not 

available for study. However, this study suggests that E. alces is distinct species from E. cervi and 

E. rangiferi, and that E. cervi and E. rangiferi likely share a Eurasian progenitor.

The common ancestor of Parelaphostrongylus spp. probably existed in an ancestral 

Odocoileus, perhaps with muscle worms and meningeal worms segregated in the host. Speciation 

of P. tenuis from the muscle worm progenitor may have occurred due to habitat specialization and 

physical isolation of meningeal worm from muscle worm in the same ancestral host. The further 

speciation of P. odocoilei and P. andersoni may have occurred upon speciation of mule deer and 

white-tailed deer hosts, respectively. It is thought that these two deer may have speciated due to 

allopatry (Tamarin 1996), perhaps as a result of isolation on both sides of the North American 

prairies (Carreno and Lankester, 1994). This scenario was supported by a comparison of 

phylogenies of the hosts with that of the parasites (Carreno and Lankester, 1994), and it is 

consistent with the results presented in this study.
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APPENDIX Summary of information about nematodes used as sources of DNA for this study.

Sample
#

Sample
ID

Stage/
Type

Host ITS-2
Lengthfbp)

ID Method Molecular ID Infection
Type

Location Donor Collection
Date

Storage Medium

1 £1 alces LI-Pooled Moose 575 Sequenced £  alces Exptl Sweden M. Steen * 1997 Baerman Filtrate*
la £  alces LI-Single Moose 575 Sequenced E. alces Exptl Sweden M. Steen * 1997 Baerman Filtrate*

lb £  alces Ll-Single Moose 575 Sequenced £  alces Exptl. Sweden M. Steen * 1997 Baerman Filtrate*
2 £  alces LI-Pooled Moose 575 Sequenced £  alces Exptl. Sweden M. Steen * 1997 Baerman Filtrate*

2a £  alces Ll-Single Moose 575 Sequenced £  alces Exptl Sweden M. Steen * 1997 Baerman Filtrate*
2b E. alces Ll-Single Moose 575 Sequenced £  alces Exptl Sweden M. Steen * 1997 Baerman Fihrate*
3 £  cervi LI-Pooled Red Deer 585 Sequenced £  cervi Exptl Center for Animal Parasitology, Saskatoon A. Gajadharb JunOO Baerman Filtrate***

3a £  cervi Ll-Single Red Deer 585 Sequenced £  cervi Exptl Center for Animal Parasitology, Saskatoon A. Gajadharb JunOO Baerman Filtrate***

3b £  cervi Ll-Single Red Deer 585 Sequenced £  cervi Exptl Center for Animal Parasitology, Saskatoon A. Gajadharb JunOO Baerman Filtrate***
4 £  cervi LI-Pooled Red Deer 585 Sequenced £  cervi Exptl Center for Animal Parasitology, Saskatoon A. Gajadharb JunOO Baerman Filtrate* * *

4a £  cervi Ll-Single Red Deer 585 Sequenced £  cervi Exptl Center for Animal Parasitology, Saskatoon A Gajadhar b Jun 00 Baerman Filtrate***

4b £  cervi Ll-Single Red Deer 585 Sequenced £  cervi Exptl Center for Animal Parasitology, Saskatoon A. Gajadharb JunOO Baerman Filtrate***
5 £  rangiferi Adult Caribou 585 Sequenced £  rangiferi Wild Avalon Herd. Newfoundland M. Lankester6 AprOI H20

6 £  rangiferi Adult Caribou 585 Sequenced £  rangiferi Wild Avalon Herd, Newfoundland M Lankester6 Apr 01 H20

7 £  rangiferi Adult Caribou 585 Sequenced £  rangiferi Wild Avalon Herd, Newfoundland M. Lankester6 AprOI H20

8 £  rangiferi Adult Caribou 585 Sequenced £  rangiferi Wild Avalon Herd, Newfoundland M. Lankester6 AprOI Glycer alcohol

9 £  rangiferi Adult Caribou 585 Sequenced £  rangiferi Wdd Avalon Herd, Newfoundland M. Lankester6 AprOI Glyceralcohol

10 £  rangiferi LI-Pooled Caribou 585 Sequenced £  rangiferi Wild Avalon Herd, Newfoundland M. Lankester6 N/A Baerman Filtrate*

10a £  rangiferi Ll-Single Caribou 585 Sequenced £  rangiferi Wild Avalon Herd, Newfoundland M. Lankester6 N/A Baerman Fihrate*

10b £  rangiferi LI -Single Caribou 585 Sequenced E. rangiferi Wild Avalon Herd, Newfoundland M. Lankester6 N/A Baerman Filtrate*

11 O. mocroiis Adult Mule Deer aprox.720 PCR Putative O. mocroiis N/A Alberta, Parasite Collection A. Shostakd 2001 Glyceralcobot

12 O. macrotis Adult Mule Deer aprox.720 PCR Putative O. macrotis N/A Alberta M. Pybus' 2001 H20

13 O. macrotis L3- Pooled Mule Deer aprox720 PCR Putative O. mocroiis N/A Alberta M Pybus' 2001 H20

14 P. andersoni Adult Caribou 545 Sequenced P. andersoni var 1 Wild Avalon Herd, Newfoundland M. Lankester4 AprOI H20

15 P. andersoni Aduh Caribou 545 Sequenced P. andersoni var 1 Wild Avalon Herd, Newfoundland M Lankester6 AprOI H20

16 P. andersoni LI-Pooled Caribou 545 Sequenced P. andersoni var I Wild Bay de Verde, Newfoundland M. Lankester6 Feb 00 Baerman FBtrate*

16a P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Bay de Verde, Newfoundland M Lankester* Feb 00 Baerman Filtrate*

16b P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Bay de Verde, Newfoundland M. Lankester* Feb 00 Baerman Filtrate*

17 P. andersoni Ll-Pooled Caribou 545 Sequenced P. tmdersoni var I Wild Bay de Verde, Newfoundland M. Lankester * Ftfe.OO Baerman Fihrate*
17a P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Bay de Verde, Newfoundland M. Lankester * Feb 00 Baerman Filtrate*
17b P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Bay de Verde, Newfoundland M. Lankester * FebOO Baerman Fihrate*
18 P. andersoni Ll-Pooled Caribou 545 Sequenced P. andersoni var 1 Wild Cape Shore, Newfoundland M. Lankester* Sep 99 Baerman Filtrate*

I8a P. andersoni Ll-Single Caribou 545 Sequenced P. m dersoni var 1 Wild Cape Shore, Newfoundland M. Lankester* Sep 99 Baerman Filtrate*

18b P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Cape Shore, Newfoundland M. Lankester * Sep 99 Baerman Fihrate*
19 P. andersoni Ll-Pooled Caribou 545 Sequenced P. andersoni var 1 Wild Cape Shore, Newfoundland M Lankester * Sep 99 Baerman Filtrate*
19a P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Cape Shore, Newfoundland M. Lankester * Sep 99 Baerman Fihrate*
19b P. andersoni Ll-Single Caribou 545 Sequenced P. andersoni var 1 Wild Cape Shore, Newfoundland M. Lankester* Sep 99 Baerman Fihrate*
20 P. odocoilei Ll-Pooled Mule Deer 561 Sequenced P. odocoilei var 1 Wild Alberta M Pybus' 2000 Baerman Fihrate**
20a P. odocoilei Ll-Single Mule Deer 561 Sequenced P. odocoilei var 1 Wild Alberta M Pybus' 2000 Baerman Filtrate**
20b P. odocoilei Ll-Single Mule Deer 561 Sequenced P. odocoilei var 1 Wild Alberta M Pybus' 2000 Baerman Fihrate**

1 Steen et al. 1997 
b Gajadhar et at. 1994 
'Lankester and Fong 1998 
4 Dr. A Shostak, University of Alberta, Edmonton 
‘Ball and Lankester, 2001

Os
00

rM. Pybus, Alberta Fish and Wildlife Division 
K R Caneno U.C Davis, California 
kW. Peterson, Libby, Montana 
‘ Lankester and Samuel (Unpublished) 
'Carreno et al. 2001
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