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Abstract

An axially-moving cantilever beam is used to study identification of time-varying
systems. A circuitry for DC motor current control and sensor conditioning is built. The
circuitry meets the design requirement of controlling the axial motion of the beam and '
amplifying the sensor signals.

A linear time-varying model governing lateral vibration of the beam is developed.
Computer simulation is conducted to study the dynamic properties of the system, such as
transient responses, varying state transition matrices, “frozen” modal parameters,
“pseudo” modal parameters, etc.

A previously developed algorithm is applied to identify the system. Two identification
tasks are carried out. The system identification determines the discrete-time state space
model of the system. The modal parameter identification determines the “pseudo” modal
parameters of the system. In both cases, an ensemble of freely vibrating responses are
used. The study addresses several critical issues encountered in the experiment such as
excitation, data preprocessing, the beam motion control, etc. The study also investigates
several important factors that affect the accuracy of identification, such as the number of
necessary experiments, model order, the block row number, etc. An algorithm based on
the moving-average method is developed to select the “pseudo” natural frequencies of
vibratory modes. The study shows that the algorithm is capable of estimating the
“pseudo” natural frequencies of the vibratory modes, present in responses, while it fails

to give good estimates for the “pseudo” damping ratios.
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Chapter 1

Introduction

The dynamics of axially-moving cantilever beams and strings have received a good deal of
attention in connection with vibration problems of time-varying mechanical systems, such as
band saw blades, paper and magnetic tapes, threadline in textile industry, high-rise elevators,
spacecraft antennae and tethered satellite in space exploration, robotic arms with prismatic
joint [1-7]. This study is motivated to develop an axially-moving cantilever beam system for
study of identification and control of time-varying mechanical systems. The main task of the
research is to develop an experimental system, to develop an analytical model of the system,
and to identify the system.

The rest of this chapter is organized as follows: Section 1.1 overviews the previous studies
on axially-moving cantilever beams, Section 1.2 overviews the previous studies on time-varying
systems, Section 1.3 reviews identification methods of linear time-varying systems, Section 1.4

lists the objectives of the thesis research, and Section 1.5 outlines the thesis.

1.1 Overview of the Previous Studies on Axially-Moving Can-

tilever Beams

The studies on axially-moving cantilever beams can be classified into two areas: modeling
and control. Efforts in modeling have been made in two different aspects. One is analytical
modeling; The other is identification as described in section 1.3.

Studies dealing with the mathematical modeling of axially-moving cantilever beams are re-
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ported in [1-9]. The models are derived by applying Newton’s second law, extended Hamilton’s
principle or Lagrangian formulation based on the assumption that the deflection gradients of
the beam are small and the beam is axially rigid. The axial motion influences the dynamics of
the axially-moving cantilever beams. A positive damping effect is induced by axial extension
and a negative damping effect is induced by axial retraction respectively [2]. The extending
and retracting motions of a flexible robot arm have destabilizing and stabilizing effects on the
arm vibration based on the fact the deflection at the tip of the beam becomes large during axial
extension and small during axial retraction respectively [4]. The motion-induced vibration is
considerable and the vibration of the tail section of the robotic arm can cause appreciable posi-
tion errors [5]. The deflection and velocity of an axially-moving cantilever beam are simulated
numerically [7]. It is found that the axial extension increases the amplitude of the deflection
due to a reduced stiffness while the axial retraction reduces the deflection of the beam due to an
increased stiffness. Also, the axial extension decreases the amplitudes of the vibration velocity
because of dissipation of vibration energy while the axial retraction increases the amplitudes of
the vibration velocity because of absorption of vibration energy [7].

To date, little effort has been made in modeling the axially-moving cantilever beam systems
using state space representation. Also, little work has been done in analyzing the contributions
of generalized coordinates, generalized velocities, and/or vibratory modes to the transient re-
sponses including strain, deflection, velocity and acceleration in the axially-moving cantilever

beam system. This is the first motivation of the present study.

1.2 Overview of the Previous Studies on Time-Varying Systems

The studies on time-varying systems may be classified into two groups. One is the theoretical
analysis of controllability and observability of time-varying systems [10-13]. The other is the
analysis of modal parameters of time-varying systems. It is noted that a LTV ( linear time-
varying) system violates one of the assumptions of the conventional modal analysis, that is,
stationarity. The concept of the “pseudo” modal parameters was introduced in [14,16]. They
are obtained by conducting eigendecomposition of the varying discrete-time state transition

matrices [16]. The identification of the “pseudo” modal parameters for LTV systems was
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extended to the cases of forced responses and forcing inputs in [14]. The applicability of the
“pseudo” modal parameters based on the “pseudo” transfer function are also reported in time-
varying structures in [15]. However, the algorithms developed have only been verified using

computer simulation. To implement the algorithm experimentally is the second motivation of

this study.

1.3 Identification of Linear Time-Varying Systems

In order to design a high performance active control system, an accurate system model is a
prerequisite. It is difficult to obtain an accurate mathematical model due to the fact that
irregularities, including physical damping effect and nonlinear factors, exist in the system. On
the other hand, identification obtains a system model based on experimental data. Such a
model can represent the actual system better.

Adaptive method is a popular method in time-varying system identification. It uses recursive
algorithm to estimate or identify the time-dependent parameters of the model which is assumed
to be a polynomial. The feature of this method is the use of data from a single experiment {17].
Ensemble method is an alternative approach to time-varying system identification. The feature
of the method is the use of multiple input and output data from multiple experiments, and each
of the experiments must experience the same time-varying change. The key of the ensemble
method is concerned with three steps. First, a series of Hankel matrices are formed by an
ensemble of the freely vibrating responses from multiple experiments; Second, the varying state
transition matrix at each moment is estimated through the SVD (singular value decomposition)
of two successive Hankel matrices: Third, the “pseudo” modal parameters are obtained by
conducting the eigendecomposition of the varying state transition matrix [16]. The varying
state transition matrices can also be estimated using forced responses and forcing inputs. The
“pseudo” modal parameters are evaluated by conducting eigendecomposition of the varying
state transition matrices [14]. The identification algorithms mentioned in [14] and [16] have been
successfully verified using computer simulation. A wavelet-based approach for the identification
of a linear time-varying lumped-mass system is reported in [19]. However, it is noted that

experimental identification of LTV systems remains a relatively inactive area that deserves
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more attention. Meanwhile, little effort has been made to identify the axially-moving cantilever
beam system with time-varying state transition matrix and the time-varying output matrix.

To capture the dynamics of the system, the model to be identified should be overparameter-
ized [20-25]. The overparameterized model contains both the system modes and computatiopal
modes caused by the noise or irregularity of the system. It is important to distinguish between
these modes. To qualify the contribution of individual modes to pulse responses, mode singular
value is defined in [23]. Modal response magnitude is also proposed to qualify the maximum
contribution of the individual modes to the responses [21-22]. However, this research is limited
to time-invariant systems.

It can be inferred that the overparameterized model contains system modes and compu-
tational modes at each time moment if a system is time-varying. It is expected that for the
case of time-varving systems, selection of the system modes among the identified modes is more
challenging than the case of time-invariant systems as identification must be conducted at each
moment. An effective method to select vibratory modes remains to be found. This is the third

motivation for the present study.

1.4 Objectives of the Research

1. The first objective of the research is to build a motor current control and sensor signal
conditioning circuitry in order to control axial motion of the cantilever beam and amplify

the sensor signals.

(8]

The second objective of the research is to develop an analytical model and conduct a

computer simulation in order to understand the dynamics of the system.

3. The third objective of the research is to apply an identification algorithm to the axially-

moving cantilever beam system and to identify the model of the system.

1.5 Outline of the Thesis

The following chapters of the thesis are organized as follows: Chapter 2 describes the develop-

ment of the experimental system, Chapter 3 develops an analytical model for the axially-moving
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cantilever beam and presents some computer simulation results, Chapter 4 focuses on identifi-
cation of the system, and Chapter 5 draws the conclusions of the study and recommends future

work.
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Chapter 2

The Experimental System

This chapter presents the development of the experimental system. The entire system consists
of three subsystems: (1) an axially-moving cantilever beam apparatus, (2) a motor current
control and sensor signal conditioning circuitry, (3) the system of a data acquisition (DAQ) and

PC computer; all shown in Figure 2-1.

e
el [ . .| motorcurrent | |
| } ; control circuit )

_ [N@E,r,;'g‘;: e (electrical interface board)

[Computer |/ | *amtimier E1 |

.. Middle Strain Gauge

Figure 3.1 The experimental system

The chapter is organized as follows: Section 2.1 describes the axially-moving cantilever
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beam apparatus, section 2.2 describes the DAQ board and PC computer, section 2.3 presents

the development of the motor current control and sensor conditioning circuitry, and section 2.4

is a brief summary.

2.1 Axially-Moving Cantilever Beamn Apparatus

The apparatus was designed and built by Mr Ahmed Hage as his Bechelor Degree project [29).
It consists of a 12V DC permanent magnet reversible motor, a belt and pulley set, rack and
pinion, and the beam. The motor has a built-in gearbox with a transmission ratio of 13:1. The
motor idle speed is 180 rpm. The speed under a load of 24 in-lb on the shaft is 160 rpm @ 6.2
to 7.2 amps. Under a 45 in-1b load, the output speed is 145 rpm @ 10.5 to 11.6 amps. The
transmission ratio of the belt and pulley set can be 1.9, 2.9, or 5.2 by changing the large pulley.
The center distance of two pulley shafts is 3.96 inches. In order to measure the angular position
of the large pulley shaft, or the axial displacement of the cantilever beam, a pot is attached
at one end of the large pulley shaft. The cantilever beam is made from 6061-T6 aluminum-
magnesium-silicon alloy and its dimension are 1850 mm (length) x50.6 mm (width) x3.175 mm
(thickness). A clamp is used to ensure the boundary conditions at the clamped end. In order
to measure the lateral vibration signals of the beam, the strain gauge sensors are bonded on
the beam surface at two positions. One refers to as base strain gauge (BSG), the other refers

to as middle strain gauge (MSG).

2.2 DAQ Board and Computer

The computer used to control the system is a Pentium III with a speed of 1000MHz and 128MB
RAM. The DAQ board is a National Instruments PCI Series Model PCI-MIO-16E-4, which has
a resolution of 12 bits, 16 single-ended or 8 differential analog input channels with maximum
sampling rate of 500KS/s, 2 D/A output channels with a maximum update rate of 1MS/s, eight
digital 10s, and two counters. Labview is used for programing.

The voltage command from one of the analog output channels (DACO and DAC1) of the
DAQ board in the computer is referred to as setpoint. It serves as an input that can be

separated into two signals: one is the magnitude signal and the other is the direction signal in
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signal separation circuit (see in section 2.3.1). The magnitude and direction signals are used
to control the magnitude and direction of the motor current, respectively. The relationship
between motor current and the setpoint voltage is shown in Figure 2.2 and the testing method
is described in section 2.3.2. A proportional gain between the magnitude of the setpoint voltage
in Channel DACO and motor current is 0.5 A/V within the range of 0V to 3V. As long as the

setpoint voltage exceeds 3V, the motor current saturates.

motor curent (A)

o] 2 4 6 8 10
setpoint voltage (V)

Figure 2.2  Relationship between setpoint voltage and motor current
2.3 Motor Current Control and Sensor Signal Conditioning

Circuitry

One of the main tasks of this project is to build an electrical circuitry. The decision of building
the circuitry in house was due to the limited budget and a training opportunity for the author
to gain some practical experience in electrical engineering. The requirements for the circuitry

are
1. to control the magnitude and direction of motor currents;
2. to amplify the signals of potentiometer and strain gauges.

The circuitry design was based on the one used in previous projects [26-27]. Some mistakes
in the original schematic drawings have been found and corrected accordingly. The overall
circuitry. shown in Figure 2.3, consists of motor power supply module, bridge module, power

supply module, current control module, signal separation module, sensor modules including
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potentiometer circuit, strain gauge circuits.
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Figure 2.3 Motor current control and sensor conditioning circuitry

2.3.1 Description of Individual Circuits

(1) Motor Power Supply Module

The schematic of motor power supply circuit is shown in Figure A2.1 of Appendix A. The

module provides an DC power source to the current amplification circuit of transistor 2N6059

in bridge module in order to change the magnitude and direction of the motor current. It is

capable of providing maximum 5A DC currents at 12V. The module consists of a transformer,

a fuse. a diode bridge, a RC filter, and a current boost circuit. A transformed AC waveform

is rectified by the diode bridge. Then. the rectified DC waveform is passed through the RC

filter to obtain a smooth waveform. The transistor 2N6052 is used to amplify or to boost the

current. LM 317 is an adjustable voltage regulator and R3 pot resistor is used to obtain and

s
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adjust a desired output voltage. The voltage regulators 7805 and 7912 are used to obtain +5V

and -12V voltage respectively.

(2) Bridge Module

As shown in Figure A2.2 of Appendix, there are four MOSFETs ( Metal-Oxide Field-Effect
Transistors ) Q1, Q2, @3, and Q4 in the circuit. They are used to switch the current directions.
If Q,and Q3 are on, the motor current flows in one direction; If Q2 and Q4 are on, the motor
current flows in the opposite direction. Thus, the motor rotation can be reversed. The output of
the current control module is applied at the base of the transistor of 2N6059 to obtain a desired
current. The actual motor current is detected by measuring voltage of resistor Ry. Since there
is an extreme buildup of voltage during the MOSFET switching which can reduce MOSFET’s
life, the capacitors, resistors and diodes between drain and source of each MOSFET must be
used in order to damp high voltage buildup. The resistors at the gates of the MOSFETs are

used to damp the noise from the outputs of opto-isolation circuits.

(3) Current Control Module

The circuit is used to control the magnitude of the motor current. It is a proportional (P) and
integral (I) controller. The values of corresponding resistors and capacitors are given in the
schematic shown in Figure A2.3 of Appendix.

The voltage across 1€ resistor Ry in the bridge module shown in Figure A2.2 is fed to the
non-inverting terminal of the operational amplifier circuit consisting of an Opamp LM1458 and
the two resistors, Ry3 and Rj4, in the bridge module. The feedback gain is designed to be 2.
The output of the amplifier circuit is compared with the reference input from magnitude output

of the signal separation module. The output voltage of the current control module is given by

Ro 1 [*
we= (14 R12) (Rw& . Rio / edt) (2-1)
0

r— R e [
R’ \Rs Rs. | Ro ReC:.

where e is the error between the reference input and the feedback voltage. Riyo/Rg =
Rio/Ry = 1.2/1.2 = 1, R12/R11 = 5.6/82 = 0.0683, R7/Rs = 180/1200 = 0.15, and 1/ReC) =
1/(18000 x 1.2 x 107%) = 46269. Because ratio Rjp/Ryiis very small, the output voltage or

10
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control effort can be approximated by
t
u= Kpe+ K,-/ edt (2-2)
0
where K, = 0.15 is the proportional gain and K; = 46269 is the integral gain.

(4) Opto-Isolation Module

Figure A2.4 in Appendix A shows the schematic of the opto-isolation circuit. The function of
the module is to obtain two outputs that are inverted with each other, which can guarantee that
MOSFET’s pair (Q1& Q3) and (Q2 & Q4) in the bridge module do not turn on and off at the
same time. Thus, the direction control of the motor current can be realized in this way. There
are three opto-isolator circuits. As shown in Figure 2.3 of the overall circuitry, the output B and
its ground in opto-isolation circuit (2) are connected to Gate 1 and Source 1 of MOSFET @,
respectively. The output A and its ground in opto-isolation circuit (1) are connected to Gate 2
and Source 2 of MOSFET @ respectively. Since MOSFETs Q3 and @4 shares the same point
at the source. only one opto-isolation circuit (3) is needed. The output A, output B and their
shared ground in opto-isolation circuit (3) are connected to Gate 4 of MOSFET @4, the Gate 3
of MOSFET Q3. and the shared Source S3 & S4 of MOSFETSs @4 and Q3 respectively. Careful
grounding should be considered because the output grounds in three opto-isolation circuits are
independent with each other and they do not share the same ground as the common ground in
the circuitry. On the other hand, the magnitude of output voltage with respect to its ground
must be greater than 10V, because 10V voltage is needed to turn on MOSFETsSs fully.

DS0026CN is a clock chip which can drive capacitive load at the MOSFET with a peak
of one ampere. The opto-isolation chip is HP261A. The opto-isolation circuit must be able to
operate at high frequency, the same as the sampling frequency in data acquisition.

Since each of these circuits must be isolated with each other, they require different power

supplies. The +5V supply is used for HP261A opto-isolation and +12V for DS0026CN.

11
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(5) Signal Separation Module

The schematic is shown in Figure A2.5 of Appendix A. The function of the signal separation
circuit is to separate the command voltage from the DAQ board into a magnitude signal and
a direction signal. The gain Ry/R; = 1 and diode D, are used to rectify and to obtain the
absolute value of the command voltage. The direction output is a binary value. If the input

signal is positive, the direction output is zero because of the diode D, action; If input signal is

negative, the direction output value is

Ry

Br kst (2-2)

V:iir =

where V. is the output voltage of Opamp LM1458.

(6) Power Supply Module

Figure A2.6 in Appendix A shows the schematic of the power supply module. To provide
+12V and +5V DC voltages to various chips including opto-isolation chip HP261A, clock chip
DS0026C N, LM1458 opamps etc., four power supply modules are needed. The circuit consists

of a transformer, a diode bridge. voltage regulators, and capacitors.

(7) Sensor Module

The sensor module includes one potentiometer circuit, two strain gauge circuits.

A. Potentiometer Circuit Figure A2.7 in Appendix A shows the schematic of the poten-

tiometer circuit. The circuit is a simple voltage follower. The output voltage V(t) at time

instant ¢ can be expressed by

(Vi = W) N+ VaLy — V1L

rd J—
L(t)_Ll—L2x L,-L,

(2-3)

where V] is the voltage reading when the beam is Ly, V; is the voltage reading when the beam

is Lo, and z(t) is the axial position of the cantilever beam at time instant t.

12
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B. Strain Gauge Circuit Figure A2.8 in appendix shows the schematic of strain gauge
circuit. The function of the circuit is to amplify the strain gauge signals. The output V(t) of
the circuit is determined by

B
Rs

(Bay, - Bayry — 100 x 1011 - 1) (3-4)

V(t) = R R

where V; is the input from one terminal of the strain gauge sensor and V2 is the input from the

other terminal of the strain gauge sensor.

2.3.2 Testing Results of the Circuitry Board

After the circuits have been set up, they are tested individually. Then, the assembly circuitry

is tested. The testing results are presented below.

(1) Testing of the Bridge Module

Figure A2.9 in Appendix A shows the hookup for testing bridge module. The testing was done
by measuring the voltage between the gate and source of each MOSFET to make sure that
MOSFET’s pair (Q1& @3) and pair (Q2& @4) do not turn on and off at the same time. Note
that Case 1 is the testing condition for shorting common ground and input direction of one of
the opto-isolation modules, and Case 2 is the testing condition for shorting input direction and

+5V terminal of the module on the left. The results are shown in Table 2-1.

Table 2-1. Voltage between gate and source of MOSFET

MOSFET's No | Voltage in Case 1(V) | Voltage in Case 2 (V)
@ 11.53 0
Q2 0 10.86
@3 11.53 0
Q4 0 10.86

Meanwhile. the motor current can be read from the Amp meter by adjusting the voltage
from voltage source shown in Figure A2.9 of Appendix A. The relationship between the setpoint

voltage and the motor current is shown in Figure 2.2.

13
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It is found from testing that

1. MOSFET’s pairs do not turn on or off simultaneously.

The voltage between the gate and the source of each MOSFET is greater than 10V, which

o

can turn on MOSFET fully.

3. There is nearly linear relationship between the setpoint voltage and the motor current if
the setpoint voltage ranges from 0V to 3V. However, the linear relationship does not exist

if setpoint voltage is greater than 3V.

(2) Testing of the Motor Power Supply Module

The testing was done by measuring the output voltages 12V, -12V and +5V with respect to
their ground. The waveforms of three outputs were displayed on a Fluke scope. The testing

diagram is shown in Fig A2.10 of Appendix A.

(3) Testing of the Current Control Module

Figure A2.11 and Figure A2.12 in Appendix A show the hookup for testing the module. The
results are shown in Figure 2.4 and Figure 2.5 respectively. It is concluded that P control, I
control and PI effort have sensible output waveforms when 1V square waveform is input from
function generator. The output of proportional control has a ratio of 0.15 with respect to 1v
square input. The integral (I) waveform in Figure 2.4 are almost the same as the proportional

(P) and integral (I) waveform shown in Figure 2-5 when 1V square waveform is input to the

14
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circuit. which means that the integral (I) effort dominates control effort.
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Figure 2.4 The P effort and I effort for 1V square waveform input
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Figure 2.5 The 1V square waveform input and PI effort waveform
(4) Testing of the Opto-Isolation Module

The testing diagram is shown in Figure A2.13 of Appendix A. Figure 2.6 shows that output
A is out of phase with the input. Figure 2.7 shows that output B is in phase with the input.

Thus, outputs A and B are always inverted with each other so that switching MOSFET pair

15
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can be realized.
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Figure 2.6 Output A and 1V square input waveform
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Figure 2.7 Output B and 1V square input waveform
(5) Testing of the Signal Separation Module

Figure A2.14 of Appendix A shows the hookup for testing diagram of the circuit. Figure
2-8 shows the magnitude output and direction output waveforms when a 1V sine waveform
with 60Hz frequency from function generator is input to the circuit. It seems that the circuit
can behave as expected. i.e., producing a rectified waveform for the magnitude and a square

waveform for the direction.
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Figure 2.8 Rectified magnitude waveform and square waveform for direction

(6) Testing of the Power Supply Module

The testing method of power supply module is the same as that of testing motor power supply
module. It was done by measuring the voltage outputs marked as 12V, -12V and 5V. The

waveforms of three outputs were checked using a Fluke scope.
(7) Testing of the Sensor Modules
The experimental results are given as follows:

A. Potentiometer Circuit Figure A2.15 shows testing diagram of potentiometer circuit.
By turning the pot, output waveform is shown in Figure 2.9. The result shows that the circuit

can change angular position signal into voltage signal properly.
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Figure 2.9 Potentiometer output waveform

B. Strain Gauge Circuit The testing diagram of the circuit are shown in Figure A2.16.
Figure 2.10 shows strain gauge signals. When the beam was impacted, the amplified strain

gauge signals follow the oscillation of the beam, which indicates that the circuit works properly.
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JBV/RVA\VAVAVIAVA VALY BAVALVAL AAV/IAVAE

M~  MTB 200ms chilw
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Figure 2.10 The strain gauge signals at two positions

(8) Testing of the Overall Circuitry

The testing diagram of the overall circuit assembly is shown in Figure A2.17. Figure A.2.18 of
Appendix A. In the testing. the variable resistor was used as the motor. Figure 2-11 shows the
comparison between the setpoint waveform and feedback one. Figure 2-12 shows the compari-

son between the setpoint waveform and feedback one when magnitude of the setpoint changes.
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Figure 2-13 shows the comparison between the setpoint waveform and feedback one when fre-
quency of the setpoint changes. Figure 2-14 shows voltage waveforms of the setpoint and the
variable resistor. Figure 2-15 shows that saturation occurs when resistance of the variable

resistor and/or amplitude of the setpoint waveforms from function generator increases.
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Figure 2.11  Waveform comparison between setpoint and feedback
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Figure 2.12  Waveform comparison when setpoint amplitude changes
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Figure 2.13 Waveform comparison when setpoint frequency changes
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Figure 2.15 High-amplitude setpoint waveform and saturated feedback waveform

It is concluded that the output follows the setpoint no matter how frequency of the setpoint
changes and under the condition of small variations of the resistance of the motor and small
variations of setpoint amplitudes. However, the output does not follow the setpoint or saturation
occurs when the amplitudes of both the resistance of the motor and the setpoint become too

high.

2.4 Summary

The circuitry functions properly. It can meet the requirements of controlling the mangitude
and direction of the motor current and amplifying the sensor signals. The testing method is
useful in maintenance and troubleshooting for the circuitry. A valuable experience has been

obtained from the building and testing of the circuitry.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Dynamics of an Axially-Moving

Cantilever Beam

The second objective of the present work is to develop an analytical model to study the dynamics
of an axially-moving cantilever beam. First, the dynamics of a fixed-length cantilever beam
is briefly reviewed. Then, a state-space model is derived for a cantilever beam engaged in
axial motion. The model is time-varying as the system matrix, input matrix, output matrix
and direct transmission matrix are all functions of time when the beam is axially moving.
As an analytical solution of the model is not possible, a computer simulation is conducted.
The simulation results are given acccordingly to show how the axial motion of the cantilever
beam influences the dynamics of the system, including transient responses, “frozen” modal
parameters, and “pseudo” modal parameters.

The chapter is organized as follows: Section 3.1 reviews the dynamics of the fixed-length
cantilever beam, Section 3.2 describes the modeling of the axially-moving cantilever beam,
Section 3.3 shows the computer simulation results, Section 3.4 discusses the evaluation of varying

discrete-time transition matrix and “pseudo” modal parameters, and Section 3.5 is a brief

summary.
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3.1 Dynamics of the Fixed-Length Cantilever Beam

3.1.1 Mathematical Modeling

A schematic diagram of a‘ﬁxed-length cantilever beam is shown in Figure 3.1.1.
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S <45 ds+s

Figure 3.3.1 Lateral vibration of the cantilever beam and a free-body diagram of the beam element

To simplify the problem, the following assumptions are made:

(1) The beam is uniform along its longitudinal direction, both in mass distribution and

elastic properties.

(2) Rotary inertia and shear deformation can be neglected.

(3) The beam is composed of a linear, horhogeneous, isotropic, elastic material without axial

load such that plane sections remain plane and the plane of symmetry of the beam is also the

plane of vibration so that rotation and translation are decoupled.

The beam that satisfies the above assumptions is referred to as the Euler-Bernoulli beam.
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If a physical damping 7 (kg/m.s) exists in the system, a partial differential equation gov-

erning the motion of the beam element is given as [28]

O*w(s,t)  Ow(s,t) 0tw(s, )
a2 e T s

= f(s,t) (3-1-1)

where m (kg/m) is the length density of the beam, or m = pA,, A, (m?) is the cross-section
area of the beam, p (kg/m?) is the density of the beam material, E (N/m?) is Young’s modulus
of elasticity for the beam, I (m*) is the moment of inertia for the cross-sectional area, and
f(s,t) (N/m) is the applied external force per unit length of the beam.

To transform the partial differential equation (3-1-1) into a set of ordinary differential equa-

tions, it is assumed that the deflection w(s,t) can be expressed as

n

w(s, ) = 2(s)q(t) =) _ &;(s)q; (1) (3-1-2)

j=1
where q(t) = [q1(t) q2(t) ... gn(t)]T is a column vector of the generalized coordinates,
O(s) = [P1(s) P2(s) ... Pn(s)] is a row vector of mode shape functions, and n is the

number of the vibratory modes considered.

The mode shape function is expressed as
®;(s) = cosh(3;s) — cos(B;s) — 0 ;(sinh(B;s) — sin(B;s)) (3-1-3)

where 0; = [sinh(3;L) — sin(8,L)] / [cosh(B;L) + cos(3,L)] [28]. The values of the constants

3;L and o; for the first four modes are listed in Table 3.1.

Table 3.1  (3,L and o; of the first four modes

mode No 1 2 3 4
BjL 1.8751 | 4.69409 | 7.8547 | 10.9955
0 0.7341 | 1.0185 | 0.9992 | 1.0000
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The natural frequency of the jth mode is given as

fj=i<(ﬁjL))2 EI (3.14)

3.1.2 Response to a Concentrated Force

If a concentrated force F(t) is applied at sin, f(s,t) can be expressed by
f(s,t) = F(t)b(s — sin) (3-1-5)

where §(s — sin) is a Dirac Delta function.

Substituting equation (3-1-2) and (3-1-5) into equation (3-1-1) results in
m®(s) 4 (t) +v®(s) 4 (t) + EI®" (5)q(t) = F(t)é(s — sin) (3-1-6)

where dots denote derivatives with respect to time ¢t and primes derivatives with respect to s,

or
_ 9%q(1)

() = L 9alt) g gy - T20)

Os?

Premultiplying the above equation by ®7(s) and integrating it with respect to s from 0 to

L results in
L L L L
. . EI " F t
/ 8T ®ds § (t) + / dTdds g (t) + —/ ®Td " ds q(t) = L/ OT6(s — sin)ds.
J0 m Jo m Jjo m Jjo
Using the orthogonality of the mode shape functions, the following relations exist

L ' L
/ oTods =1 and A= / 878" ds = diag [(B,L),( BoL)* + ooy (BL)Y  (3-1-7)
JO JO

where I is an n x n identity matrix and A an n x n diagonal matrix.

Equation (3-1-6) becomes

q (t) + 73n-I q(t)+ %Aq(t) = ?%F(t). (3-1-8)
24
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The above equation can be rewritten into a state-space representation

z (t) = Az(t) + Bu(t) (3-1-9)
where the state vector is
t
z(t) = ?( ) : (3-1-10)
q(t)
the svstem matrix is
0 I
A= o , (3-1-11)
—(EHA  -1I
and the input matrix is
0.
B= <, (3-1-12)
%q)T(Sin)
and the input
u(t) = F(t). (3-1-13)

Here the convention 0;y; is adopted to denote an ¢ X j matrix of zeros.

It is noted that the number of state variables is n, = 2n. Several different responses or
outputs can be obtained. depending upon the means of measurement. If a strain gauge sensor
located at sqy¢ is used, the output will be a voltage signal proportional to the magnitude of the

strain at Sou:. In this case, the output is given as
y= A’sgq)”(sout)Q(t) (3'1'14)

where K,q is the gain of the strain gauge measurement system. If the deflection at s,y can be

measured, the output is

y = Ka®(sout)q(t) (3-1-15)

where K, is the gain of the deflection measurement system. If the velocity at s,u: can be

measured, the output is

y= K,w (sout,t) = qu)(sout) q (t) (3-1-16)
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where K, is the gain of the velocity measurement system. If the acceleration at s, can be

measured. the output is

y= K, w (so'uts t) = Kaé(sout) q (t) (3—1-17)

where R}, is the gain of the acceleration measurement system.

Substituting g (t) solved from equation (3-1-8) into equation (3-1-17) results in
. EI 0 : 1 T
y=Kg | ——P(Sout)Aq(t) — —P(Sout)L 4 (t) + —P(Sout)P" (8in)F(t)] . (3-1-18)
m m m
In general. the output vector is expressed as
y=Cz+ Du (3-1-19)

where C is the output matrix and D is the direct transmission matrix. For example, the use
of a strain sensor at Sey:1, a displacement sensor at seut2, a velocity sensor at spu3 and an

accelerometer at sq,14 results in

I\’sg(I)H(Soutl) len
C = A’dq)(soth) len (3_1_20)
len -qu)(soutB)
3 _I"a%q)(soum)A —Kagn‘q)(soutli)l ]
and . -
0
0
D= . (3-1-19)
0
L Ka%@(sm‘tci)q)T(sin) ]

3.1.3 Observability and Controllability of the System

The controllability matrix of the system with the system order n. is given by (36, 37]

Q=B AB 4B . . A="'B|. (3-1-20)
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The system is controllable if the matrix @ has full rank, i.e., rank[ Q | = n,.

The observability matrix of the system with the system order n, is given by [36, 37

C
CA

CcA?
P= . (3-1-21)

C A==l

The system is observable if the matrix P has full rank, i.e., rank[ P | = n,.
To understand these two important matrices, it is assumed that the system is excited by a
concentrated force at s;, and two strain gauge outputs are observed at sy,1 and Seyo positions,

respectively. The Q and P matrices are given by

Q——l— 0 x1 O (s47) T (s8in) .o BT (5:) (3.1.22)
M BT (sin) —Z®T(sin) (—2)*T(sin) . . (=2)"=710T(sin)
and - -
ngq)”(soutl) O1xn
ngq)"(souﬂ) O1xn
O1xn ngq)”(so‘utl)
01xn K@ (Sou
p= 1x sg (S t2) (3_1_23)
O1xn ng(I’”(sorutl)
len . ngq)"(soutZ)

The controllability depends on the mode shape function values at s;,, and the observability
depends on the values of the second derivatives of the mode shape functions at seyu1 and sgyeo.
Figure 3.1.2 shows the first three mode shape functions. It can be seen that if the force

is applied at one of the node points, such as s/L = 0.5,0.755 or 0.864 where the mode shape
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functions become zero, the system is uncontrollable.

) . ' Y T —
15 e e —— / ¢
o~ /
N T 4
1r N / N 4 h
R /
0.5 L T
~— P ’__,// N ,/
L gleis i > , 4
= . N
05} — 1st mode S ,.<\ .
--- 2nd mode N ‘ N
-1+ - - 3rd mode N . ’ s E
A5} Yo
_2 i ' i i a
0 0.2 0.4 0.6 0.8 1
ratio s/L

Figure 3.1.2  The first three mode shape functions

Figure 3.1.3 shows the second derivatives of the mode shape functions. It is noted that to
ensure the system to be observable, the strain gauge sensors cannot be placed at the location

” .
where @, (sout) is zero.

150 . : -
—— 15t mode
100} - -- 2nd mode PR 7
B - -  3rd mode o =
\ 4 N
A} 7/ "
50} Y -
v : ' ’
of - —
-50 i
-100 : ; ' ;
[o] 0.2 0.4 0.6 0.8 1
ratio s/L

Figure 3.1.3 The second derivatives of the first three mode shape functions
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3.2 Modeling of an Axially Moving Cantilever Beam

The apparatus of the axially-moving cantilever beam is shown in Figure 3.2.1.

Rol |l er s..ppor ------- ts : T ack
i L’
""" E— Pinion
z
A
.~
] 4 |/
1 —
Ve impact

L(t)

Figure 3.2.1 The apparatus of the axially-moving cantilever beam

It is noted that the lateral motion takes place on the horizontal plane such that gravity has
little effect on the motion. The beam is assumed to be an Euler-Bernoulli beam. In addition,
it is assumed that the axial motion of the beam is a function of time only.

Two modeling cases are considered: case one includes the contribution of the axial force to
the lateral vibration of the beam and case two does not. Each case is further divided into two

subcases. Subcase one considers the physical damping and subcase two does not.

3.2.1 Modeling: the Contribution of the Axial Force Considered

The following development is based on the work presented in [4]. Figure 3.2.2 (a) shows the
beam that is laterally deflected by w(s,t). Figure 3.2.2 (b) shows the free-body diagram of a
beam element As and Figure 3.2.2 (c) shows the remaining part of the beam, where V and M
are the shear force and bending moment respectively, T is the axial force acting on the beam
element As at s perpendicular to the face of the cross section, T} is the axial force acting at the

beam section at (s + As), § = dw/0z is the slope of the beam with respect to the undeformed
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elastic axis.
aw(s,t )

e
74

clamper — (W (s,1)

s As

(b)

> s+ As

Figure 3.2.2 (a) deformaion; (b) free-body diagram of As; (c) remaining part of the beam

Applying Newton's second law to the element As in the lateral direction gives

d*w(s,t ov 0
—1;%)— =V - (V+—As)+Tysin(0 + 6—As) —~T'sinf + f(s,t)As. (3-2-1-1)

mAs Os Os

It is assumed that 6,00/0s, and As are very small,

. 00 00 .
sin(6 + EAS) = (0+ b—;As) and sinf = 4.
Equation (3-2-1-1) can be changed into
d*w(s,t) ov 06
mAsT = —EAS + (1 =-T)8+Th ES-AS + f(s,t)As. (3-2-1-2)

Applving Newton’s second law to the element As in the axial direction gives

mAsL=T, - T. (3-2-1-3)
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If the rotatory inertia can be neglected, the summation of the moments induced by all

external forces and moment about any point equals zero, i.e.,

(M + %]llAs) ~-M-VAs=0 o V

_ M

=5 (3-2-1-4)

Applying Newton’s second law to the remaining beam (L — s) in the axial direction gives

pA(L — s5) L= -Th. (3-2-1-5)
It is noted that ,
o“w ow
1 = —_— d 0 I e ]
M=EI 532 an Ep (3-2-1-6)

where ET is the flexural rigidity of the beam.
Substituting equations (3-2-1-3), (3-2-1-4), (3-2-1-5), and (3-2-1-6) into equation (3-2-1-2)

gives

4 ; . 8%
9 w(s’t)As + mAs L 8_’!1, - m(L - 3) L MAS’*’ f(s,t)As.

d*w(s.t)
=—-FETI 552

mAsS— o5 952 Bs

Thus, the dynamic model, when damping is neglected, is expressed as

d*w(s,t) EId&w(s,t) . Ow . 02w f(s,t)
T_*_FT_LES_-*_(L_S)L——— . (3-2-1-7)

If the system damping v (kg/m.s) is considered, the vibration equation in lateral direction is

given as

d*w(s,t) 4 dw(s,t) EId&w(s,t) . Ow CPw  fls )
T T ad Lt Lgm = (3-2-1-8)

To transform the above partial differential equation into a set of ordinary differential equa-

tions. let

s=al 0<a<l. (3-2-1-9)
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Thus, the mode shape functions in terms of equation (3-1-3) becomes
®;(a) = cosh(8;La) — cos(8;La) — a;(sinh(;La) - sin(8;La))

and the value 3;L and o; are given in Table 3.1.

Now the beam deflection becomes

n

w(a,t) =) ®;(a)g;(t) = ®(a)q(t) (3-2-1-10)
=1
where ®(a) = [®1(a) DP2(a) ... Pn(a)]is the row vector of the mode shape functions in

terms of o .

The following relations exist

dw‘(i:,t) = ®(a)q(t) +® (a)q(t) &
200( s : !
Puls) _ & (0 )+ ) o
= ®(a)§ (t) +28'(a) 4 () & +8" (a)q(t) &* +® (a)q(t) &
@ = Z(-a) e
. -2
& = (1-a)(f -2y

where dots denote derivatives with respect to time ¢ and primes represent derivatives with
respect to variable a.

Assume that the force acting laterally F'(¢) is concentrated at s;, = a;nL

f(s.t) = F(t)é(a — ain) (3-2-1-12)

where 6{a — a;,) is a Dirac Delta function. It is noted that s;, is the axial distance between
the concentrated force and the clamp (see Figures 3.2.1 and 3.2.2) and it is a function of time.

The following relation exists

Sin+Tin=1L (3-2-1-13)
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where 7, is a constant axial distance between the concentrated force and the tip of the beam.

Thus, the variable a;, can be expressed as

—1_ Tin -1-
a;, =1 7 (3-2-1 14)

Substituting equations (3-2-1-11), (3-2-1-12), (3-2-1-13) into equation (3-2-1-8) , and rear-

ranging results in

. .9 .
B(a) d (1) + [2%(1 —a)®'(a) + %@(a)} 0 () + | Z7(1 - @) + (1 - )28 (a) | a(t)+
. .9 .
Lo @aw+ |- -5+ 10 - %] ¥ (@) = T ) (o515

Premultiplying both sides of the above equation by term ®7(a) and integrating it from 0

to 1 with respect to the variable « results in

. 2L .
A1 4 (t) -+ (TA2 + %z‘h) q (t)+

B 2
i .i° ai., 1, i L. EI F(t)
[(z e Q—L—— ;;—L‘)AQ - —A3 -+ L2A4 -+ LA5 + TAG q(t) = '—n-;—A7 (3-2-1-16)
where
1 1 I
A = / 87 (a)®(a)da Ap = / (1-0)87(a)% (a)da
0 0
1 1 "
Ay = / 37 (0)® (a)da A = / (1-a)28T(a)d (a)da
J0 0

fo= [(-aeT@e’ @i 4= [ & (@8 @ao

-1
A; = / @T(a)é(a — aip)da = <I>T(am) . (3-2-1-17)
Jo
Using the orthogonality of the mode shape functions ®(a), it can be proven that

A =1 A = diag [(B,L)*:--(8,L)"].
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A compact form of equation (3-2-1-16) is given
g (t) + Dy(t) q (t) + K (t)q(t) = Bi(t)u(t) (3-2-1-18)

where the time-varying parameter matrices Dy4(t), B1(t) and K(t) are defined as

1
Dy(t) = FAx+ —A By (t) = EcpT (atin) (3-2-1-19)
.. .2 . .. 2
. L L 7L L EI
I\(t) = (—L--‘Q-ﬁ-Faz)Az—zAs'*— A4+ A5+ L4A .

If the system is free of damping, the Dy(t) and K(t) matrices become

. .2 .. .2
2 L L L L L EI
Dq(t) = TLAQ K(t)=(7 - 273) A2~ TAs+ T5Ad+ T A5 + AL4A (3-2-1-20)

3.2.2 Modeling: the Contribution of the Axial Force Neglected

If the effect of the axial force is not considered, the lateral motion of the system is expressed
as follows (see equation 3-2-1-7)

du(s.t) | ydu(st) | E19w(st) _ f(st)

o
Td2 T m dt m 8% @ m (3-2-2-1)

The same equation as equation (3-2-1-18) is derived using the same procedure mentioned above.

However the Dy(t), Bi(t) and K(t) parameter matrices are different, as shown in the following

2L : 1
Dolt) = FAz+ lA1 Bi(t) = —2 (aun) (3-2-2-2)
. 2 2
, L L L L EI
K(t) = (f —2ﬁ + 1 )A2+ L2A4+ L4A

If the system is free of damping, the Dy(t) and K (t) matrices become

.2
L EI
T24a+ 7 4 (3-2-2-3)

JA2 + =5 3

Du(t) = L4y K(t) = (——2L
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3.2.3 Continuous-Time State Space Representation of the System

Let F(t) = u(t). The state space representation can be obtained from equation (3-2-1-18) as

follows
x (t) = A(t)z(t) + B(t)u(t) (3-2-3-1)
where
A(t) _ Onxn 1 B(t) _ Onxl
~K(t) —Da(t) Bu(t)

and z(t) = [¢T(t) ¢T()]7 is the state variable vector.

The output signals depend on the means of measurements. If a strain gauge sensor located
at Spur = QoL is used, the output is a voltage signal proportional to the magnitude of the
strain:

" 2 " ) q(t)
y(t) = Keg® (@out)q(t)/L* = [ Keq® (aout)/L* O1xn | i | (3-2-3-2)
If a deflection sensor located at squ: = aoutL is used, the output is a voltage signal proportional
to the magnitude of the deflection:

y(t) = Ka®(aout)q(t) = [ Kq®(0out) Oixn } ,q(t) . (3-2-3-3)

q ()

If a velocity sensor located at sout = @out L is used, the output is a voltage signal proportional

to the magnitude of the velocity:

7

¢ (awt)£(1 — aout)q(t) + Y(aout) 9 (t)}

i

y(t) K, I

= Ku[ ' (Crout) £ (1 — cout) @(awt)] ;1((’;)) , (3-2-3-4)

If an acceleration sensor located at Syt = oyt L is used, the output is voltage signal proportional

to the magnitude of the acceleration. Using the equation (3-2-1-11), the aceleration output is
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expressed as

y(t) = ﬁ‘gg—j’-t—) = ®(a) G (t) + 28 (a) 4 (1) & +®" (a)q(t) & +9'(a)q(t) & (3-2-3-5)

Substituting & and & in equation (3-2-1-11) and ¢ (t) solved from equantion (3-2-1-18) into

(3-2-3-5) results in

y(t) = Ka[ Cr(aout) Cal@out) } ?(t) +£(I)(aout)q)T(ain)u(t) (3-2-3-5)
q (t) m
where
Crlaout) = P (aout) 62y +¥' (Cout) Gout —P(aout) K (t) (3-2-3-6)

Cd(a(mt) = 2@1(6101“) do’ut —@(a(mt)Dd(t).
It i1s noted that a.y can also be expressed as

TO‘U,
Qout = 1 - Tt (3-2-3-7)

where 7, is the axial distance between the sensor and the tip of the beam and a constant. If
there are one strain gauge sensor at s, one deflection sensor at ayu2, a velocity sensor at
aout3s.and a acceleration sensor at aou4, the output matrix and the direct transmission matrix

are given as

I\’sgq)”(azmtl)/L2 O1xn 0
Kq®(aou 0 0
C(t) = e (@ouz) e and D(t) =
K,® (aout?,)%(l - aout3) Ku®(aous) 0
A Kack(aouM) KaCd(aauM) ] i Ka<I>(a0m4)<I>T(am)/m |
(3-2-3-8)
Generally. the output can be given as
y(t) = C(t)x(t) + D(t)u(t) (3-2-3-9)
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where C(t) is a time-varying output matrix and D(t) a time-varying direct transmission matrix.

3.2.4 “Frozen” Modal Parameters

The concept of the modal parameters, including natural frequencies and damping ratios, is no
longer valid for the time-varying system. Instead, the concept of the “frozen” modal parame-
ters can be used [14, 16]. If the system is considered to be frozen at a time instant t, the

eigendecompositon of A(t) becomes
At) = VOROV () (3-2-4-1)

where V(¢) is a “frozen” eigenvector matrix at the time instant ¢, A(t) = diag [Xl(t), Xa(t), -+, An, (t)]
is a “frozen” diagonal eigenvalues matrix at the time instant ¢. A pair of complex “frozen” eigen-

values can be expressed as

X (1) = =Ci(t)mi(t) £ j@i(t)y/1 - T, (t) (3-2-4-2)

where Uy, (t) is defined to be the ith “frozen” natural frequency at the time instant ¢, (;(t) is
defined to be the ith “frozen” damping ratio at the time instant ¢, and j = +/—1.

3.2.5 Controllability and Observability of the System

The controllability and observability of a time-varying system is no longer defined by the ranks
of the @ and P matrices in (3-1-20) and (3-1-21) respectively. However, for an approximate
analysis, the concept of the “frozen” system can be used again. The controllability matrix of

the time-varying system that is “frozen” at a time instant ¢ is defined as
Qt) = [ B(t) B(t)A(t) B(t)A%*(t) . . B(t)A™="1(t) ] (3-2-5-1)
The “frozen” system is controllable if the matrix Q(t) has a full rank at the time instant t | i.e.,

rank| Q(t) | = ng.

Similarly, the observability matrix of the time-varying system that is “frozen” at time instant
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t is defined as

C()
C(t)A()

P(t) = cOA (3-2-5-2)

C(t)A™=~1(¢)

The “frozen” system is observable if the matrix P(t) has a full rank at the time instant ¢, i.e.,
rank[ P(t) } = ng.

To understand these two important matrices, an example is used. In this example, the first
three vibratory modes are considered, or n = 3. Thus, the system order is 6, or n, = 6. The
trapezoid velocity profiles are used as axial motion profiles, as shown in Figure 3.2.3. Two kinds
of scenarios are considered. Scenario A: axial extension in which the beam length varies from
Lin to Liax; Scenario B: axial retraction in which the beam length varies from Lyax t0 Lmin.

In either case. Lyyjn= 0.66 m and L .x = 1.09 m.
Scenario A Scenario B

09
08}
07

06
o}

Q05 /

01

axjal disptacement (m)
a o
a o

axial displacement (m)

015

axial velocity (m/s)
~\,
\\
.
axial velocity (m/s)

62

01

01

=]

axial acceleration (mhz)
o

axial acceleration (mis?)
(=]

1 2 3 4 [ 2 3 4
time (sec) time (sec)

Figure 3.2.3  Axial motion profiles

The input is applied at r;;, = 0.528 m in scenario A and 75, = 0.875 m in scenario B respectively.
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The locations of two strain gauge sensors 74,1 and 74,2 are assumed to be 0.60 m and 0.30 m
respectively with respect to the tip of the beam, or roy; = 0.60 m and rout2 = 0.30 m. The

C(t), Q(t) and P(t) matrices are of the forms

Kog® (aou1)/L? 0 '
C(t) = g ”(01 1)/ 1x3 (3-2.5-3)
-K'sg(D (aout2)/L2 01x3
Q(t) 1 O3x1 o (am) QT(ain) QT(ain)
== 2
™| T(am) -2(£)0T(awm) (-2(§)) @7 (am) (—2(8))” 27 (aum)
(3-2-5-4)
and ) -
‘ngq)”(ao'utl)/]:/2 O1x3
ng¢’" (aout2)/L2 O1x3
0 K@ (Qounn)/L?
P(t) = e ? ,,( 2 (3-2-5.5)
O1x3 ngQ (aout2)/L2
01x3 I{sgq)”(ao'utl)/L2
L 01x3 I{sgéu(aouﬂ)/lz2 i

Obviously. the “frozen” controllability depends on the mode shape function values ®7(ayy).
The “frozen” observability depends on the values of ®" (agus)/L?,®" (aour2)/L%. Figure 3.2.4
shows ®;(qup) versus time. Figure 3.2.5 shows @i"(awtl) /L? and @;’(amm) /L? versus time.

In these figures, a solid line represents the first mode, a dashed line the second mode, and a
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dashdot line the third mode.

Aa,)
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ca

06

04

0.2

Scenario A

2
time (sec)

3

ofz,)

Scenario B

1

time 2(sec)

Figure 3.2.4  Varying magnitudes of ®(ay)

It can be seen from Figure 3.2.4 that in scenario A, the “frozen” system is temporarily uncon-

trollable at one time instant.

. H
Ksﬂo (CI)[5

p H
KWO (o,

Figure 3.2.5

Scenario A

time (sec)

xmwamm.’

" 2
K”O (2, L
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7
;
e
T J
~— - - ,/
-~ ,
~
~ 7
. /,
1 2 3 4
1 2 3 4
time (sec)

Varying magnitudes of ®”(aey1)/L? and " (aourz)/L?

It can be seen from Figure 3.2.5 that for the two scenarios, the “frozen” system becomes

temporarily unobservable at two time instants . It is interesting that such temporary unobserv-

ability occurs at the first sensor location, indicating that the axial position of the strain sensor

influences the “frozen” observability of the system. The closer to the clamp the strain sensor,
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the more unobservable the “frozen” system.

3.3 Simulation of the Axially-Moving Cantilever Beam

To understand how the axial motion influences the dynamics of the axially-moving cantilever
beam system, it is necessary to simulate the dynamic responses of the system. In the simulation,
the density p and the modulus E of elasticity of the beam material are 2800 kg/m3 and 70.9
GPa respectively. The thickness b and height k of the cross-section of the beam are 3.175 mm
and 50.6 mm respectively. The beam length varies from Ly, = 0.66 m to Lypax = 1.09 m. The
axial motion profiles used in the simulation are the same as those in subsection 3.2.4. The first
three flexible modes are considered in the simulation, i.e. the system order n, is 6. Since the
highest frequency. fuax is 110.66 Hz when L = Ly, the time step At is chosen to be 0.0005
second in order to capture the dynamics of the system.

The beam responses are observed at three locations. Location one is at 74, = 0.6435 m
and referred to as base location. Location two is at 72 = 0.335 m and referred to as middle
location. Location three is at ryy:3 = 0.0 m and referred to as tip location.

An impact with the magnitude of 10N is applied for a duration of 0.1 second. The beam is
forced to move axially after the impact,i.e., z(0) = Ogx1. To ensure that a;, = 0.25 for both
scenarios, the impact is applied at 7, = 0.495 m for scenario A, and at r;,, = 0.8175 m for
scneario B. The Runge-Kutta method is used to solve the equation numerically. The physical

damping » is not considered.

3.3.1 Influence of the Axial Force

In Section 3.2.1, two models are derived. Equation (3-2-1-7) is the model that considers the
contributioﬁ of the axial force. Equation (3-2-2-1) is the model that does not consider the
contribution of axial force. A natural question is how much the two models differ. To answer
this question, the “frozen” modal parameters of the two models are evaluated and compared.
Figures 3.3.1 and 3.3.2 show the “frozen” natural frequencies f and damping ratios ¢ based on
the two models in scenario A and scenario B respectively. In the figures, the solid lines denote

the “frozen” modal parameters based on the model without considering the contribution of the
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axial force: and the dotted lines denote the “frozen” modal parameters based on the model with

considering the contribution of the axial force.
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Figure 3.3.1  “Frozen” natural frequencies f and damping ratios ¢ for scenario A
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Figure 3.3.2  “Frozen” natural frequencies f and damping ratios ¢ for scenario B

From the figures, the following observations can be drawn:
(1) The axial force has little influence on the “frozen” modal parameters, as the two curves
in each figure overlap each other. Thus, the model not considering the contribution of the

axial force can be chosen in the following simulation, including the generalized coordinates
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and derivatives. transient responses, true “pseudo” modal paremeters and identified “pesudo”
modal parameters.

(2) The axial extension makes the “frozen” natural frequencies decrease and the axial re-
traction makes the “frozen” natural frequencies increase. Such behaviors are expected as the
variations of stiffness and mass of the beam. The stiffness of the beam decreases and the mass
of the beam increases as the beam extends. The stiffness of the beam increases and the mass
of the beam decreases as the beam retracts.

(3) The axial extension induces positive “frozen” damping ratios, and the axial retraction
induces negative “frozen” damping ratios. The reason for this is the sign of the damping matrix
Dy(t) =2 L Ay/L that depends on the sign of the axial velocity. Therefore, the axial extension
makes the system stable because of the positive damping effects, and the axial retraction make

the system unstable because of the negative damping effects.

3.3.2 Generalized Coordinates and Velocities

Figure 3.3.3 and Figure 3.3.4 show the generalized coordinates and velocities for the axial

extension and the axial retraction, respectively.
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Figure 3.3.3 The generalized coordinates and velocities for the axial extension
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Figure 3.3.4 The generalized coordinates and velocities for the axial retraction

From the figures, the following observations can be drawn.

(1) The magnitudes of the generalized coordinates and velocities in scenario B are greater
than those in scenario A. The reason for this is that the initial stiffness of the beam in scenario
B is smaller than that in scenario A, because the initial length of the beam in scenario B is
longer than that in scenario A.

(2) An axial extension results in an increase of the magnitude of the generalized coordinates
and a decrease of the magnitude of the generalized velocities. An axial retraction results in
a decrease of the generalized coordinates and an increase of the magnitude of the generalized
velocities. This can be explained by the variation of the beam stiffness K (t). The axial extension
reduces the stiffness of the beam, which makes the beam’s flexing easier. The axial retraction
increases the stiffness of the beam, which makes the beam’s flexing more difficult.

(3) The magnitude of the first mode is much greater than the magnitudes of the second and
the third modes in the generalized coordinates. The magnitude of the third mode is smaller

than the magnitudes of the first and second modes in the generalized velocities.
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3.3.3 Transient Responses

In the following, the simulation results of transient responses, including strain, deflection, veloc-
ity and acceleration signals at the three output positions namely the base location, the middle

location and the tip location are presented. In this case, the output matrix can be given as:

y(t) = C(t)x(t) + D(t)u(t) (3-4-1)

where u(t) is the distributed impact force, the output matrix C(t) with the dimension 12 x 6

is shown as _ -
"

Reproduced with permission of the copyright owner.
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Ksq® (aout1)/L? 01x3
Ksg®" (aour2)/L? O1x3
K@ (aouts)/ L? 01x3
Ky®(aoyt1) 0O1x3
Ka®(aout2) 01x3
cy=| e L) (342
K@ (0ounn) (1 — aounn)  Ku®(aout1)
Ko ® (aou2) £ (1~ aourz)  Ko®(Qour2)
K@ (0oua) ¥ (1 - aous)  Ko®(aouss)
KoCr(oou) KoCi(aout1)
KoCr(aout2) K.Ca(aout2)
i KoCr(aouts) KoCilaous) |



D(t) = = [Djj] (3-4-3)

0
0
0
0
0
0
0
0
0
Kaé(awtl)(DT(a,-n)/m

Ko®(0our2)®7 (qin)/m
i Kaé(awtg)éT(ain)/m i

and the output vector is given as

yt) =1 yi(t) ) w) vl yst) welt) () ys(t) yolt) wwolt) yu) ye@) I
(3-4-4)

where y;(t), y2(t) and y3(t) are the strain gauge outputs at the base location, the middle location
and the tip location. respectively: y4(t), y5(t) and yg(t) are the deflection outputs at the base
location. the middle location and the tip location, respectively; y7(t), ys(t) and yg(t) are the
velocity outputs at the base location, the middle location and the tip location, respectively;
and y10(t), y11(f) and y12(¢) are acceleration outputs at the base location, the middle location
and the tip location, respectively.

In order to understand how the vibratory modes, the generalized coordinates, and/or gener-

alized velocities make the contribution to the transient responses, the outputs can be expressed

as
y;(t) =) Ca(t)zi(t) =Z y5i(t)
i=1 i=1

In the following simulation. the gains of output measurements are Ks; = 1000 (V), K4 =1

(V/m), Ky, =1 (V/m.s™1), and K, = 0.01 (V/m.s™2).
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1) Strain Gauge Outputs

Figure 3.3.5 shows the strain outputs for motion scenario A and B respectively.
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Figure 3.3.5 Strain outputs for motion scenarios A and B

It can be seen that for the base and middle locations, the axial extension results in a decrease of
the magnitudes of the strain outputs while the axial retraction results in an increase of the mag-
nitudes of the strain outputs. The behavior can be explained by the variations of ®; (out)/L?
and generalized coordinates g(t). As the beam length increases, the term &, (aut)/L? and q(t)
becomes smaller. And as the beam length decreases, the term ®; (aoy)/L? and g(t) becomes
larger. For the tip location, the strain signals remain at zero as @;’(aouts) =0(i=1,2,3) be-
cause of a3 = 1. It is also noted that the magnitude of the strain signal at the base location
is greater than that at the middle location.

To see how the vibratory modes contribute to the strain output signals at the base and the
middle locations, the strain output components, or y;; and y»; (¢ = 1,2, 3), are plotted in the
following figures.

Figure 3.3.6 shows three components of the strain output at the base location for the two

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



motion scenarios.
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Figure 3.3.6  Strain output components y;;(¢ = 1,2,3) at the base location

It can be seen that the higher the mode index, the less it contributes to the total response. The
response components from the second and third modes become zero when the sensor location
coincides with the points where @;’(awt) = 0. The axial extension decreases the magnitude
of the first mode component y;; while the axial retraction increases the magnitude of the first
mode component 1.

Figure 3.3.7 shows the three components of the strain outputs at the middle location for the
two motion scenarios. It can be seen that the total response is dominated by the contribution
of the second mode. Only the third mode component experiences the instantaneous zero point
of @g(aout) = 0. The response components of the first mode and the second mode, or y2; and
Y22, decrease during the axial extension and increase during the axial retraction. However, it
seems that the component of the third mode, or y23, increases during the axial extension and

decreases during the axial retraction.
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2) Defiection Outputs

Figure 3.3.8 shows the deflection outputs at the three locations for the axial extension and the

axial retraction.
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Figure 3.3.8
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The figure shows that the axial extension results in an increase of the deflection responses and
axial retraction results in a decrease of the deflection responses. The further the observation
location away from the clamper, the larger the response magnitude. It should be pointed out
that the deflection outputs behave differently from the strain outputs. The former diverges as
the beam extends while the latter diverges as the beam retracts. The behavior of the deﬁectién
can be explained by the variation of the stiffness of the beam. The stiffness of the beam
decreases as the beam extends and increases as the beam retracts..

To evaluate how the vibratory modes contribute to the transient responses of deflections,
the magnitudes of deflection output components, or y4;, ys; and ye; (¢ = 1,2, 3) are plotted in
Figures 3.3.9, 3.3.10, and 3.3.11, showing the deflection output components at the base location,

the middle location and the tip location respectively.
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Figure 3.3.9 Deflection output components y4;(i = 1,2,3) at the base location
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Figure 3.3.10  Deflection output components ys;(i = 1,2,3) at the middle location
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Figure 3.3.11  Deflection output components yg:(i = 1,2, 3) at the tip location

As expected, it can be seen that the higher the mode index, the less it contributes to the
total response. The contribution of the first mode is dominant in the three deflection output
components. The further the observation location from the clamp, the greater the magnitudes
of the deflection output components. It can be explained that the magnitude of ®;(aout3)q1(t)

at the tip location is much larger than those of ®;(aous2)q1(t) and @1 (aout1)q1(t).
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3) Velocity Outputs

Figure 3.3.12 shows velocity outputs for the two motion scenarios.
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Figure 3.3.12  Velocity outputs for motion scenarios A and B

It can be seen that the further the observation from the clamp, the larger the magnitudes of

velocity responses. To see how the vibratory modes contribute to the velocity signals at the

base location. the middle loction and the tip location, the velocity output components, or y7;,

ys; and yg; (1 =1,2,3,4,5,6), are plotted in the following figures.

Figure 3.3.13 and Figure 3.3.14 show the velocity output components y7; (¢ = 1,2,3) and

the velocity output components y7; (¢ = 4,5,6) at the base location, respectively.
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Figure 3.3.13  Velocity output components y7;(i = 1,2,3) at the base location
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Figure 3.3.14  Velocity output components y7;(i = 4,5,6) at the base location

It is noted that the components y7; (i = 1,2,3) are induced by the axial motion and
such terms may be referred to as motion-induced terms. Compared with the components yz;
(7 = 4,5,6) that associated with the mode shape functions and generalized velocities, the
motion-induced terms have much smaller magnitudes.

Figure 3.3.15 and Figure 3.3.16 show the velocity components ys; (¢ = 1,2,3) and the

velocity components yg; (7 = 4,5,6) at the middle location respectively.
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Figure 3.3.15  Velocity output components ys;(z = 1,2, 3) at the middle location
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Figure 3.3.16  Velocity output components yg;(i = 4,5,6) at the middle location

Similarly, the magnitudes of motion-induced response components yg; (¢ = 1,2,3) are much
smaller than those of the components ys; (i = 4,5, 6) associated with the generalized velocities
and mode shape functions. For the motion-induced terms, the third mode makes larger con-
tribution to the responses than the first mode and the second mode do. For the components
yg: (i = 4,5,6) associated with generalized velocities, the contributions of the first mode and
second mode are dominant in the two scenarios. The third mode components experience a
temporary vanishing.

When agye3 = 1,the motion-induced velocity response components is zero due to fact that
d);-(aouw)%(l — aout3) = 0, and the components yo, (¢ = 4,5,6) associated with combination
between the generalized velocities and the mode shape function is constant. or ®(aeu3) = [2

—2  2]. Figure 3.3.17 shows such components. It is noted that none of them vanishes
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temporarily.
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Figure 3.3.17

4) Acceleration Outputs
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Velocity output components yg;(i = 4,5,6) at the tip location

Figure 3.3.18 shows the acceleration outputs for the two scenarios.
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It can be seen that the further the observation location from the clamp, the larger the mag-
nitudes of the acceleration responses. To evaluate how the vibratory modes contribute to the
acceleration signals at the base location, the middle loction and the tip location, the accelera-
tion output components, or ¥i0:, ¥11: and y12; (3 = 1,2,3,4,5,6), are plotted in the following
figures.

Figure 3.3.19 and Figure 3.3.20 show the acceleration output components y0; (: = 1,2,3)

and y10; (7 = 4,5,6) at the base location, respectively.
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Figure 3.3.19  Acceleration output components y10:(¢ = 1,2, 3) at the base location
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Figure 3.3.20  Acceleration output components y10:(¢ = 4,5, 6) at the base location

Obviously, under scenarios A and B, for the components y10; (i = 1,2, 3) associated with the
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generalized coordinates, the first mode makes a larger contribution to the response than the
second and third modes do; for the components y10:; (Z = 4, 5, 6) associated with the generalized
velocities, the contribution of the third mode to the response is the most dominant, and the
contribution of the first mode is the least dominant.

Figure 3.3.21 and Figure 3.3.22 show the acceleration components y11; (¢ = 1,2,3) and y114

(i = 4,5,6) at the middle locations.
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Figure 3.3.21  Acceleration output components y;1;(¢ = 1,2, 3) at the middle location
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Figure 3.3.22  Acceleration output components y11:(? = 4,5,6) at the middle location

For the components y;1; (i = 1,2,3) associated with the generalized coordinates, the magnitude
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of the second one is the larger than those of the first and third ones. For the components
y11: (i = 4,5,6) associated with the generalized velocities, the magnitude of the third one is
larger than those of the first and second ones. It should be pointed out the magnitude of the
second component associated with the generalized coordinates is much larger than the any other
components associated with the generalized coordinates and velocities. Thus, the second mode
associated with the generalized coordinates is dominant in the response.

Figure 3.3.23 and Figure 3.3.24 shows acceleration components y12; (¢ = 1,2,3) and y12

(1 = 4,5,6) at the tip location, respectively.
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Figure 3.3.23  Acceleration output components y19;(¢ = 1,2,3) at the tip location

x 10 * Scenurio A Scenario B
o X e+ o e o e 0.01
— 1 9 ~— 0.005
= o . =
- Op- x\/\/‘\/\/\/ NN N T L e ] - Lo e L NN N SN WA VAN AV AV
=3 -1 < .0.005
-2 -0.01
“ , 1 2 3 P o 1 2 3 “
1 i .
> x 10 . time Sscc) 0.01 tume V(vnec) .

o % 10° timme (soc) 0.01 ame (sec)
- 1 o~ ©.00S5
= =z
- © (] R
Pt
=T -1 -3 -0.005
2L e e -0.01
20 1 2 3 - o 1 2 3 -
wme {8cc) wune (sec)

Figure 3.3.24  Acceleration output components y;2;(¢ = 4,5, 6) at the tip location

o8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Similarly, for the components y12; (¢ = 1,2,3) associated with the generalized coordinates, the
magnitude of the third one is much larger than those of the first and second ones; for the
components y19; (i = 4,5,6) associated with the generalized coordinates, the magnitude of the
second one is larger than those of the first and the third ones. Apparently, the magnitude. of
the third component associated with the generalized coordinates is also much larger than that
of any other components associated with the generalized coordinates and velocities. Thus, the

third mode associated with the generalized coordinates is dominant in the response.

3.4 Evaluation of Varying Discrete-Time State Transition Ma-
trix

The concept of the “pseudo” modal parameters was proposed to characterize the global prop-
erties of a time-varying system in [14,16]. The “pseudo” modal parameters are based on the
eigenvalues of the discrete-time state transition matrix. This section defines the “pseudo” modal
parameters and evaluates them numerically for the model under study. A comparison between

the “pseudo” modal parameters and the “frozen” modal parameters is presented.

3.4.1 Discrete-Time State Transition Matrix and “ Pseudo” Modal Parame-

ters

A discrete-time state-space representation of a time-varying system under an initial condition
is given as [14]

2(k+1) = Gk + LK)z(k), z(0); y(k) = Clk)z(k) (3-4-1-1)

where G(k+1, k) is an ny X n, discrete-time state transition matrix. z(0) is the initial condition.

C(k) is an ny x n, output matrix. Note that the two important properties of G(k + 1,k) are
G(k+1,h)=G(k+1,k)G(k,h), k>h; G(hh)=1 (3-4-1-2)

If the varying discrete-time state transition matrix G(k + 1, k) is non-singular, the corre-
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sponding eigendecomposition exists, i.e.,
G(k+1,k) = V(K)A(k)V (k) (3-4-1-3)

where. V (k) is the eigenvector matrix and A(k) = diag [A1(k), Aa(k), ..., An(k)] is the eigenvalue
matrix. Since the elements of the G(k + 1,k) are real, the complex eigenvalues occur in pairs.

If the ith eigenvalue is complex, then the following relation can be used

M) = N, a(8) = e | (=G 0hs(h) £ (k)1 - G0 At] (341-4)

where (,;(k), w;(k) are defined as the ith “pseudo” damping ratio and “pseudo” natural frequency

respectively.

3.4.2 Numerical Evaluation of the Discrete-Time State Transition Matrix

The varying discrete-time state transition matrix G(k + 1, k) can be found using an ensemble

of n; sets of states since it satisfies a matrix equation given by
X(k+1)=Gk+1,k)X(k) (3-4-2-1)

where

is the state matrix at time instant k and
X(k+1)= [zl(k +1) x2(k +1),..., 2" (k + 1)]

is the state matrix at time instant k 4+ 1. Note that 27(k) is generated by an initial condition

z*(0). The transition matrix can be found by

Glk+1,k) = X(k+1)X"1(k). (3-4-2-2)
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To ensure the existence of X ~1(k), the n, states must be independent of one another. The n,

state sequences are numerically found by the Runge-Kutta algorithm.

3.4.3 Comparison between the “Frozen” and “Pseudo” Modal Parameters

To obtain “pseudo” modal parameters, including natural frequencies and damping ratios, the
true varying discrete-time state transition matrices are evaluated using an ensemble of n, sets
of states. The two scenarios mentioned in subsection 3.2.4 are used. The n, sets of initial
states are generalized randomly in order to ensure independence of the sets of initial states.
The parameters used in the simulation, including the duration of the axial motion, time step,
and system order n, etc., are the same as those used previously for the comparison. The n; sets
of states were numerically obtained using the Runge-Kutta method. The comparisons between
the “pseudo” and “frozen” modal parameters are shown in Figure 3.4.1 and Figure 3.4.2 for
axial extension and retraction. In these figures, a solid line represents the “pseudo” modal

parameters and a dashdot line represents the “frozen” modal parameters.
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Figure 3.4.1 The “pseudo” and “frozen” modal parameters for axial extension
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Figure 3.4.2 The “pseudo” and “frozen” modal parameters for axial retraction

The figures show that the curves representing the “pseudo” values and the curves repre-
senting the “frozen™ values virtually overlap each other except for a small discrepancy in the
damping ratios of the third mode. This indicates that the two types of the modal parameters
are almost identical for this particular system. The reason that the two types of the modal
parameters are identical can be explained by the slow variability of the system matrix A(t) [14].
An approximate form of a general discrete-time state transition matrix can be obtained using

a series expansion
Glk+1,k) = I+A(k)At+%[A2(k)+ A (k)]At2+%[A3(k)-+—A(k) A (K)+2 4 (K)+ A (k)] A+
(3-4-3-1)

If the derivatives A (k), A (k), ..., are small , the discrete-time state transition matrix G(k+1, k)

can be approximated by
1
(ﬂk+Lm=I+AMWM+%A%MAF+§A%MAF+"=eanHAw (3-4-3-2)

Thus. the evaluation of the “pseudo” modal parameters using this approximate transition ma-
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trix will result in the “frozen” modal parameters.

3.5 Conclusions

Based on the results presented in this chapter, it is concluded that

1. The model is a linear time-varying system. The contribution by the axial force to the

dynamics of the system is negligible.

2. The axial motion influences dynamics of the system, including “frozen” modal parameters,
generalized coordinates and velocities, as well as the transient responses. The contribu-
tions of individual vibratory modes to the transient responses are different for the different

types of sensors and their locations along the beam.

3. To evaluate the varying discrete-time transition state matrix numerically, the system
must undergo the same variation and an ensemble of n, sets of initial states must be
generated randomly. The “pseudo” modal parameters are very close to the “frozen”

modal parameters for the system under study.
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Chapter 4

Identification of the Axially-Moving

Cantilever Beam

The third objective of the thesis is to verify an identification algorithm using the axially-moving
cantilever beam system. The algorithm was presented in {16]. It identifies the discrete-time state
space model of a LTV system using an ensemble of freely vibrating responses. The ensemble
of the responses are obtained through multiple experiments on the system while the system
undergoes the same change.

The rest of the chapter is organized as follows: Section 4.1 reviews a subspace-based iden-
tification algorithm for linear time-invariant (LTI) systems; then, the algorithm was applied to
identify the fixed-length cantilever beam system. Section 4.2 briefly reviews the identification
algorithm using an ensemble of the responses, Section 4.3 presents the identification results
based on the freely vibrating responses from the analytical model, Section 4.4 presents the
identification results based on the experimental responses, Section 4.5 presents the identifica-
tion results of identified “pseudo” natural frequencies based on the experimental responses, and

Section 4.6 contains the conclusions.

4.1 A Subspace-Based Identification Algorithm
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4.1.1 State Space Representation of LTI Systems

The state space representation of an n; /2-degree-of-freedom freely vibrating LTI system is given

by
r(t)=Az(t), =(0); y(t)=Cxz(t) (4-1-1)

where z(t) is a vector of n, state variables, z(0) is the initial condition, A is an n; X n;
constant system matrix, C is an ny X n; output matrix, and y(t) is a vector of ny responses.

The corresponding discrete-time state space is expressed as
z(k+1)=Gz(k) =z(0); y(k)=Cz(k) (4-1-2)
where G is an n, X n, state transition matrix given by
G = exp(AAt) (4-1-3)
where At is the sampling interval. The solution of equation (4-1-2) is
y(k) = Cz(k) = CG*z(0). (4-1-4)

It is noted that the description of equation (4-1-2) is not unique. Let T be an n, x ng
non-singular matrix and define a new state vector z = Tx. Replacing by 77!z in equation
(4-1-2) results in

2(k+1)=Gz(k), y(k)=C(k)z(k) (4-1-5)

where

G=TGT™! and C=CT7. (4-1-6)

Equation (4-1-5) is another representation of the system defined by equation (4-1-2). Such
operation is referred to as similarity transformation. One of the important properties of the

similarity transformation is that G and G share the same eigenvalue, i.e.,

G=UAV! or G=(TYATY)! (4-1-7)
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where A = diag (A1, A2,...., An,) is the diagonal eigenvalue matrix and ¥ is the eigenvector
matrix. Note that for an underdamped vibratory system, the n, eigenvalues and eigenvectors

occur in complex conjugate pairs. Thus, the eigenvalues can be arranged as

Ai = /\:+n1/2 = exp [(—-(iwi + jwiy/1 - Cf) At] (4—1;8)

where j = /-1, (, is the ith damping ratio, and w; is the ith natural frequency.

4.1.2 Hankel Matrix and Observability Matrix

(1) Hankel Matrix

Using a series of freely vibrating responses y(k), k = 0,1,2,...K; — 1, and K is data length, a
block Hankel matrix is formed as

y(0) y(n) . . . yv-1)
y(1) y2) . . . y(N)
e . C . (&19)
L y(M-1) y(M) . . . y(M+N-2) |

where M is the block row number, and N is the column number. Using the relation of equation

(4-1-4), the Hankel matrix can be factored as

H=TX

where

cG
r= CG? (4-1-10)

cGM-1
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is the observability matrix of the system, and

X=[a0) 21) - =(N-1) |

(4-1-11)

is the state matrix. Define two matrices I'; and I'; which are obtained by retaining the first

(M — 1) blocks and the last (M — 1) blocks of the observability matrix T', i.e.,

~ - - -

C CcG

CG CG?

Iy = CG? Iy = CcG?
CGM—Z CGM—I

Therefore an estimate of the G matrix can be obtained by solving
G=[]"Iy
where {.)™ denotes the Moore-Penrose pseudo inverse.

(2) Extraction of the Range Space of the Observability Matrix

A matrix I is said to have the same range space as I, or i.e.,

(4-1-12)

(4-1-13)

(4-1-14)

if T is an ny X ng non-singular transformation matrix. Thus the first block row of T is C and

G is given as

g=[]"T
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where

C CG
CG ce
T,=| TG | ad To=| TG (4-1-16)
_ ooM-? - _ oocM-! ]
In practice, the measured responses are contaminated by noise such that
g(k) =yk)+wk) k=12 .., N (4-1-17)

where 7j(k) is the measured response vector and w(k) is the noise vector. The Hankel matrix

formed by the noisy responses becomes

50 g1 . .. gN-1) ]
51§52 .. . F)
H=H+W = ' T ' . (4-1-18)
| GM-1) GM) . . . GM+N-2)

The singular value decomposition (SVD) is used to extract the observability range space because
of its numerical stability. For the case where output measurements are free of noise, it can be
proved that [21, 23, 24]

Range [H H T] = Range (I (4-1-19)

where HHT is a covariance matrix. The above equality shows that the system observability
range space can be obtained from the Hankel matrix constructed from the experimental data.
In practice, Range [ﬁ H T] does not exactly equal to Range(I') due to the fact that the

measured output is contaminated by the noise. To estimate Range(T'), applying the SVD to

[HHT), ie.,
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where U,_ is an Mn, x n; matrix and Uy, is an Mn, x (Mn, — n;) matrix , Z,_ = diag [7]
is an ny x ng diagonal matrix of singular values o;, for ¢ = 1,2, ..n,, ¥, is an (Mny - ny)
x(Mny — n,) diagonal matrix of singular values Gn, 4, for i = 1,2,.., Mny — ny . Thus, the

identified system order n, can be estimated by the following criteria,

7 > 7 i=12 .0 (4-1-20)

Tpoii < O i=1,2,.,Mn, —ny

where 7 is a prespecified threshold. The estimation of the observability matrix I" of the system

is given as

Ql
Ql

U, ~T=IT'=| TG |. (4-1-21)

4.1.3 The Computation Procedure

1. Form the Hankel matrices H according to equation (4-1-18) using freely vibrating re-

sponses:

2. Apply the SVD to the covariance matrix HH T, obtain an estimate of the system order

n, by comparing the singular values to a prespecified threshold 7;
3. Partition U, into Ty and Ty according to equation (4-1-16);

4. Obtain C. Compute G using equation (4-1-15).
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4.1.4 Experimental Results

The experimental setup is shown in the Figure 4.1.1.

Sensor Amplifier

——————— Cantilever B

Impact lixcit:\tioni Cantilever Beam Circuit
. AD
: Computer Pentium [11 NI-DAQ
, Board
. 1
' 3 D/A -
: Data file Data acquisition

Figure 4.1.1 The experimental setup for a fixed-length cantilever beam

The outputs are two strain gauge outputs and one acceleration output, namely BSG (Base
Strain Gauge), MSG (Middle Strain Gauge), and TAC (Tip Accelerometer). The BSG and
MSG sensors are located at the positions of 0.642 m and 0.335 m with respect to the tip of the
beam, or i.e., Tous1 = 0.642 m and ryys0 = 0.335 m, respectively. The TAC sensor is located near
the tip of beam, or r43 = 0.003 m. The BSG, MSG and TAC signals are acquired through
channel 1, channel 2, and channel 3 of the NI-DAQ board. The six fixed lengths of the cantilever
beam are considered. The impact acts at s;, = 0.105 m from the clamp for all the beam lengths.
The sampling interval is At = 0.001 (sec). The data length is selected to be K, = 6000. The
block row number is chosen as A = 100 and the column number N = K, — M +1 = 5901. The

experimental results are given below.

A. Identified Modal Parameters

The identified system order n; = 8 is used for lengths of 0.66 m, 0.746 m and 0.832 m and
ny = 10 for lengths of 0.918 m, 1.004 m and 1.10 m, respectively. The modal parameters,
including the natural frequencies and damping ratios of vibratory modes are identified and
listed in Table 4.1. For each beam length, nine experiments were conducted. The results

in Table 4.1 are the average values of the nine experiments. The relative error between the
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identified and analytical natural frequencies is given as

fi = fire
1

fprue
1

A; = x 100 ( % ) (4-1-23)

where f; is the 7th identified natural frequency and f{™€ is the ith analytical natural frequency.

The analytical natural frequencies are evaluated using equation (3-1-4).

Figure 4.1 The identified natural frequencies and damping ratios

Fixed length (m)
Mode No. | Parameters 5 6600 | 0.7460 | 0.8320 | 0.9180 [0.1.004 | 1.0900
3 0.0100 | 0.0053 | 0.0064 | 0.0135 | 0.0105 | 0.0153
7 (Hz) | 49350 | 3.9610 | 3.2157 | 2.6615 | 2.2656 | 2.1723
Tf:fog‘ft e (Hz) | 59250 | 4.6376 | 3.7284 | 3.0625 | 2.5604 | 2.1723
A (%) | 16.704 [14.6010 [13.7550 [13.0950 [11.5130 | 9.6137
3 0.0100 | 0.0092 | 0.0082 | 0.0070 | 0.0063 | 0.0060
f,(Hz) | 31.535 | 25.190 | 20.470 | 17.006 | 14.400 | 12.389
The second
ode | fi(Hz) |37.130|29.063 | 23.365 | 19.190 | 16.046 | 13.613
A, (%) | 15.068 ] 13325 | 12.343 | 11.383 | 10.261 | 8.9885
3 0.0096 | 0.0093 | 0.0079 | 0.0063 | 0.0069 | 0.0052
hegig | J102) | 87.660 | 70017 | 62576 | 48.068 | 40.810 | 35.016

mode | fi“(Hz) | 103.97 | 81377 | 65.424 | 53.740 | 44.928 | 38.118
A, (%) | 15.687 | 12.731 | 43541 [10.5545 | 9.1669 | 8.1364
Z, N/A| N/A| N/A 00076 ] 0.0072 | 0.0065
Th;(f)‘;‘;“h f.(Hz) | N/A| N/A| N/A|99.553 | 80.810 | 68.449

e (Hz) | 203.73 | 159.48 | 128.41 | 105.31 | 88.041 | 74.496

4

A %) N/A| N/A| N/A| 9265 11.689 | 8.363

Based on the table, some observations can be drawn:

(1) As expected, the magnitudes of the natural frequencies decrease as the beam lengths
increase. Figure 4.1.2 shows a comparison between the identified natural frequencies and the
analytical ones, where “o” represents the identified values and “*” the true values. The relative
errors between the analytical and identified natural frequencies ranges from 4.58 to 16.7 percent.

It is noted that the identified natural frequencies are lower than the theoretical ones. Such

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



discrepancies may be due to the fact that the actual beam does not have an ideal clamp

boundary condition since there is a clearance needed between the beam and the guiding slot.

8 T T T T T T T T
‘;\J\ -
Thra—10V .
s . -
-
o
€
LFIR
0 ] ] ] L ) 1 | :
065 87 075 08 08 09 09% 1 105 11

8 &
|(\
i}

]
T

. and F¥€ (Hz)

2,
o
T

©
o
oy
o
~d
[=]
el I
w
[=]
[=
o
&
o
w
[=]
8
&

‘ “gv__'“-—_“‘%\' -

| i i § i i ! 1
07 075 08 085 09 0.95 1 105 1
Fixed Length of the Beam (m)

1, and *%(Hz)
oo 3 88 8838 N
¥
[eb
I
1

m
il

Figure 4.1.2 Comparison of analytical and identified natural frequencies

(2) The identified damping ratios ranges from 0.005 to 0.01. The beam is lightly damped.
(3) The longer the beam length. the more the vibratory modes can be excited while the

shorter the beam length. the fewer the vibratory modes are excited.

B. Simulated Responses

The identified model, i.e.. G and C can be used to generate responses. Such responses are
referred to as simulated responses. Figure 4.1.3 shows the FFT results of the measured and the
simulated responses when the beam is at the shortest length and longest length, respectively.

Figure 4.1.4 shows a comparison between the simulated and the measured responses for the
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shortest and the longest beam lengths.
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Figure 4.1.3 FFT plots of the transient responses at the three observed positions
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Figure 4.1.4 Comparison between the measured and simulated responses
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From these two sets of figures, it can be seen that

(1) At the shortest length, from the BSG and MSG outputs, the first two modes can be
observed, but the third mode is very weak. From the TAC output, all the three modes can be
observed. ‘

2) At the longest length, from the BSG and MSG outputs, the first three modes can be
observed, but the fourth mode is hardly observable. From the TAC output, the first four modes
can be observed.

3) The simulated responses agree well with the measured responses. However, there are
some phase shifts near the tail of the responses, shown in Figure 4.1.5. It is noted that the solid
lines represent the measured responses and the dashdot line represents the simulated responses.
The main reason is that the responses near the tails of the data records have a low SNR (signal-
to-noise ratio) as the response magnitudes decay toward the end of the data record. The poor
SNR responses used in identification result in a large error between the simulated responses

and the measured responses.
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Figure 4.1.5  Responses near the tail of the data records
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4.2 Identification Algorithms

4.2.1 Transition Matrix

The discrete-time state space representation of a LTV system subject to an initial condition is

given in equation (3-4-1) of subsection 3.4.1. The solution of equation (3-4-1) is given by
y(k) = C(k)G(k, 0)x(0), (4-2-1)

where G(k,0) is the initial state transition matrix. The similarity transformation matrix is no
longer constant for the LTV systems. If the non-singular matrices T'(k + 1) and T'(k) exist, the

similarity transformation is defined as
Gk +1,k)=T(k+1)G(k+1,k)T"Y k) C(k)=C(k)T (k) (4-2-2)

where G(k+1, k) and C(k) represent another realization of the system, G(k+1, k) is an n, xn,
state transition matrix of another realization of the system, C(k) is an n, x n, output matrix of
another realization of the system, T'(k + 1) is an n; x n, transformation matrix at time instant
k +1, and T(k) is an n; X n, transformation matrix at time instant k. A series of G(k + 1, k)
and C(k) can be identified using the algorithm presented in [16] if an ensemble of responses are
available. It is noted that G(k + 1,k) and G(k + 1,k) do not share the same eigenvalues. As
“pseudo” modal parameters are based on the eigenvalues of the matrix G(k+1, k), identification
of the “pseudo” modal parameter presents a challenge. To find the eigenvalues of G(k + 1, k),

a matrix is defined as

Gk +1) = T(k)G(k + 1, k)T~ (k) (4-2-3)

Thus. é(k + 1, k) can guarantee the invariability of the eigenvalues.
Generally, the C(k), G(k+1,k), and G (k+1,k) cannot be obtained through the data from

a single experiment, the identifications of these are conducted by the ensemble method.
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4.2.2 Identification of a LTV System Using an Ensemble of Freely Vibrating

Responses

It is assumed that N experiments have been conducted on the system whose parameters undergo

the same variation. A freely vibrating response vector is denoted by y7(k), where j = 1,2,...N

denotes the index of the experiments, k = 0,1, 2..., K; —1 denotes time instant k, and K is the

total length of data.

A general block Hankel matrix is formed using k to k + M — 1 successive responses of N

experiments, shown as follow

[ k) y*(k) yNk) ]
(k+1) y2(k) Nk +1)
H(k) = ' ' o ' . (4-2-4)
ylk+M-1) y*(k+M-1) . . . yV(k+M-1)

The matrix H(k) can be factored as
H(k)=T(k)[z'(k) 2*k) 23%k) .. zV(k) (4-2-5)
where the observability matrix I'(k) is given as

[ C(k)
Clk+1)G(k +1,k)
T(k) = C(k+ 2)G(k +2,k) . (4-2-6)

| C(k+M - 1)G(k+ M - 1,k) |
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Its corresponding range space becomes

C(k)
C(k+1)G(k+1,k)
T(k) =T(k)T™'(k) = C(k+2)G(k +2,k) . (42:7)

Clk+M-1)G(k+ M —1,k)

To extract G(k + 1,k), a successive Hankel matrix H(k + 1) is formed using the k + 1 to

k 4 M successive responses of N experiments. The matrix H(k + 1) can be factored as
Hk+1) =T+ Dzl k+1) 2Xk+1) 23k+1) .. zV(k+1) (4-2-8)

where I'(k + 1) has a similar form as equation (4-2-6) and its range space I'(k + 1) is given by

C(k+1)
Ck+2)G(k+2,k+1)
Ck+3)Gk+3,k+1) |. (4-2-9)

Th+1)=Tk+1)THk+1) = (k +

| C(k+ M)G(k+ M, k+1) |

Let T1(k + 1) be the first (M — 1) block rows of T(k + 1), and Ta(k) be the last (M — 1)
block rows of I'(k), i.e.,

r _ -

Ck+1)
| Clk+2)Ck+2,k+1)
Ty(k+1)= Clk+3)G(k +3,k+1) =Ty (k+ )T (k+1)  (4-2-10)

| Clk+M-1)Gk+M-1,k+1) |
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and

C(k+1)G(k+ 1,k)
C(k+2)G(k +2,k)
To(k) = Clk +3)G(k +3,k) =T (k)T (k) (4-2-11)

| Ck+M-1)G(k+M - 1,k) |
where

C(k+1)
Ck+2)G(k + 2,k +1)
Ck+3)G(k+3,k+1) (4-2-12)

r(k+ )=

Clk+M-1)G(k+M—1,k+1) |

and

C(k +1)G(k + 1,k)
Ck+2)G(k + 2,k)
To(k) = C(k + 3)G(k + 3,k) . (4-2-13)

| C(k+ M - 1)G(k+ M —1,k) |

Thus, the matrix G(k + 1, k) can be found by
G(k+1,k) = [T1(k + 1)]TTa(k). (4-2-14)

In computation, the range space matrices I'(k) and T'(k + 1) are extracted by the SVD of
H(k) and H(k + 1), i.e.,

H(k) =Uk)SK)V KT and Hk+1)=Uk+ 1)k +DV(k+1)7 . (4-2-15)

Let Uy, (k) be the first ny columns of U(k) and Uy, (k + 1) the first n; columns of U(k + 1).
Use the first (M — 1) block rows of Up, (k +1) as Up,1(k + 1) and the last (M — 1) block rows
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of Uy, (k) as Up_2(k). Invoking equation (4-2-14) results in
Gk +1,k) = [Un,1(k + 1)]TUn,a(k) = Tk + )G(k + 1, k)T (k) . (4-2-16)

However, since T'(k+1) and T'(k) are unavailable, the exact solution of G (k+1,k) cannot be
found. An approximate solution for G(k+1,k) is proposed in [16]. In this study, an alternative
solution is used. Instead of forming Un,1(k + 1) using the first (M —1) block rows of U,_(k+1),
let Up_1(k) be the first (M — 1) block rows of Uy, (k). Note that

Upa(k) =T1(k)T7'(k) and  Up,2(k) = To(k)T7' (k) (4-2-17)
where 3 )
C(k)
C(k+1)G(k + 1,k)
Ty(k) = . (4-2-18)
| Ck+M -2)G(k+ M —2,k) |
and

Clk+1)

Clk+2)Glk+2,k+1).

Fa(k) = G(k + 1,k). (4-2-18)

 Ck+M-1)G(k+M~-1,k+1) |
The following relation exists

o~

Gk+1,k) = [Una(k)] Un,2(k) = UL (k)Un 1 (k)] UL 1 (k) Up,2(k)
= [T7T(K)IT ()T (R)T (k) T T (k)TT (k)T (k)T (k)
= T(k)WH(k)Wa(k)G(k +1,k)T~1 (k) (4-2-19)

where

A-1
> GTk+5-1,k)CT(k+j-1)Ck+j—1)G(k+j—1,k)
j=1

I

Wi(k) =TT (k)T1(k)

(4-2-20)
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and

Af—1
Wa(k) = ZGT(k+j—l,k)CT(k+j—1)C(k+j)G(k+j-—1,k+1) ) (4-2-21)

=1

If the system variation from moment k to moment k + 1 is small, i.e., C(k) is close to C(k + 1)
and G(k+1,k) close to G(k+2, k+1), Wi (k) is close to Wa(k) or Wy (k)Wa(k) = I. Therefore,

an approximate solution of é(k +1,k) is given by
Gk + 1,k) = Gk + 1,k). (4-2-22)

4.2.3 Computational Procedure for the Identification algorithm
To identify C(k),G(k + 1,k) and G(k + 1,k), k=1,2,3.., K. — M - 1;

1. Form H(k). Conduct the SVD on H(k) to obtain U(k). Form U,_(k) by using the first

ng columns of U(k);

2. Form Uy, 2(k) ,Up,1(k) by retaining the last (M — 1) block rows of U, (k) and the first
(M — 1) block rows of Up, (k). Form C(k) by retaining the first block row of U,_(k);

3. Obtain G(k + 1,k) by using equation (4-2-19);

4. Form H(k + 1). Conduct the SVD on H(k + 1) to obtain U(k + 1). Form U,_(k + 1) by
extracting the first n, columns of the U(k + 1). Form Uy, 1(k + 1) by retaining the first
(M — 1) block row of U(k + 1);

5. Substitute Up, 2(k) and Un,1(k + 1) into equation (4-2-16) to obtain G(k + 1, k);

6. Up (k+1)in Up, (k). If k < K5 — M + 1, increase k by 1 and go to step 2.

4.2.4 Identified “Pseudo” Modal Parameters

The matrix W, (k)Wa(k)G(k+1, k) can be used to evaluate a set of identified “pseudo” modal

parameters. The eigendecomposition of the matrix is given as

Gk +1,k) = T(k)A(k) T~ (k) (4-2-23)
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where U(k) is defined as an identified “pseudo” eigenvector matrix and A(k) an identified

“pseudo” eigenvalue matrix formed by
Ak) = diag A1 (k), Aa(k), .oy A (K)]- (4-2-24)

Since the elements of G(k + 1,k) are real, the complex eigenvalues occur in pairs. If the ith

eigenvalue is complex, then the following relation can be used
R6) = N olh) = exp [ (<000 + 001 - Gk e s

where Z,-(k) and @;(k) are defined as the ith identified “pseudo” damping ratio and the ith

identified “pseudo” natural frequency, respectively.

4.3 Comparison of the True and Identified “Pseudo” Modal

Parameters

To compare the modal parameters based on eigendecomposition of W} (k)W (k)G(k + 1, k) or
G(k +1,k) and those based on eigendecomposition of G(k + 1,k) or G(k +1,k), the analytical
model developed in the previous chapter is used to compute these modal parameters numerically.
Again, two motion scenarios are considered, namely scenario A: axial extension in which the
beam length varies from Lp;, to Lmax and scenario B: axial retraction in which the beam
length varies from Lpyax 10 Lin- The values of Lyax to Lyin are the same as those in chapter 3.
The trapezoid velocity profiles are also used as the axial motion profiles. Two strain outputs,
namely BSG and MSG whose axial locations with respect to the tip of the beam are 0.643 m
and 0.335 m respectively are used. The system order n; is 6. A series of the matrices G(k+1,k)
are computed using an ensemble of n, sets of states that are generated randomly. A series of
the matrices C(k) can be determined in equation (3-2-3-3) according to the prespecified axial
motion profiles and strain sensor locations with respect to the tip of the beam. Thus, the
matrices Wi(k) and Wa(k) can be found. Figures 4.3.1 and 4.3.2 show a comparison of the
true “pseudo” modal parameters and identified “pseudo” ones for scenario A and scenario B,

respectively. In computation of @(k + 1, k), the block row number M = 35n, = 210 is used. It
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is noted that solid lines represent identified “pseudo” modal parameters and dashed lines the

true “pseudo” modal parameters.

Figure 4.
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Figure 4.3.2 Comparison of the true and identified “pseudo” modal parameters under scenario B

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It can be seen that the identified “pseudo” natural frequencies agree with the true values
well and the identified “pseudo” damping ratios deviate from the true values significantly.

A natural question is how the choice of M affects the “pseudo” modal parameters. To
evaluate the closeness between the identified “pseudo” modal parameters and true ones, two

dimensionless root-mean-square (RMS) error indices are defined as

K, ~ 2
I OESAC)
b = |
|
K, -~ 2
[¢ik) =Gt
&, = | i=1,2,..,ng/2 (4-3-1)
\ /;1 Ci(k)?

where 0y, and é¢, are the RMS error indices of the i¢th natural frequency and damping ratio
respectively, f;(k) and ﬁ( k) are the ith true “pseudo” natural frequency and identified “pseudo”
one, ¢;(k) and Zi(k) are the ¢th true “pseudo” damping ratio and identified “pseudo” one. Then,

two overall indices are defined as

9 nz/2 9 nz /2
(5f = TL—I Z; 6fi and (5( = n—x ; 6(1. (4—3—2)

1=

where é; and é; are the RMS error indices of the natural frequencies and damping ratios
respectively.

Figure 4.3.3 shows the relationship between the defined error indices and M. It can be seen
that, for the “pseudo” natural frequencies, the errors between approximate values and the true
ones increase with an increase of M; for the “pseudo” damping ratios, the errors between the
identified values and the true one decrease with an increase of M. It should be pointed out that
the errors between the identified “pseudo” damping ratios and true values are much greater that
the errors between the identified “pseudo” natural frequencies and true values. This indicates
that the matrix G (k+1,k) can give a good estimate of the “pseudo” natural frequencies, but it

cannot give a meaningful estimate of the “pseudo” damping ratios. It seems that the “pseudo”
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damping ratios are more sensitive to the modification on the matrix G(k + 1, k) caused by the

term W 1(k)W2(k) than the “pseudo” natural frequencies.
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Figure 4.3.3 Relationship between RMS error indices of modal parameters and varying M
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4.4 Experimental Identification of the System

This section presents the experimental identification results conducted on the axially-moving

cantilever beam apparatus. The experimental setup is shown in Figure 4.4.1.

G
; ‘ lmpacxlﬁxcilalion
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i . AD otor Current _ | Axially-Moving
.+ Command to the - / — . .- N
: Control Circuit Cantilever Beam
t - DC Motor ‘ i > c
. NI-DAQ|
Board | ' |
’ !
Data File e D/A :: Sensor Conditioning Circuit .4____.}

. Data Acquisition
Computer Pentium [HI 1

i
i

Figure 4.4.1

The experimental setup
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Once again, two motion scenarios are considered, namely, scenario A: axial extension and
scenario B: axial retraction. To command the DC motor to accomplish the desired axial motion
scenarios, a DC motor control strategy needs to be chosen. To this end, the relationship between
the command voltage generated by the DAQ board and the motor current was examined .by
connecting an ampere meter in series to the DC motor and applying a constant voltage input

to the motor current control circuit. Thus, the relationship between the command voltage and

motor current can be obtained and listed in Table 4.2.

Table 4.2 Relationship between command voltage and motor current

Scenario A Scenario B
Command | Peak/Steady motor current | Command | Peak/Steady motor current
voltage(V) (A) voltage (V) (A)
0.5 -0.245/0.245 -0.5 0.248 /0.248
1.0 -0.486 / 0.486 -1.0 0.495/0.495
1.5 -0.712/0.712 -1.5 0.743/0.743
2.0 -0.992 /0.992 -2.0 1.014/1.014
2.5 -1.211/1.211 -2.5 1.235/1.235
3.0 -1.463 /1.463 -3.0 1.485/1.485
3.5 -1.657/1.525 -3.5 1.701/1.520
4.0 -1.943/1.520 -4.0 1.975/1.525
4.5 -2.113/1.522 -4.5 2.210/1.523
5.0 -2.313/1.518 -5.0 2.342/1.519
5.5 -2.454/1.526 -5.5 2.473/1.516
6.0 -2.792/1.525 -6.0 2.682/1.525
6.5 -2.962/1.523 -6.5 3.023/1.523
7.0 -3.145/1.522 -7.0 3.203 /1.521

It is noted that a proportional relationship exists between the voltage and the steady current
up to 3V. A further increase in the applied voltage does not result in an increase in the steady

motor current. However, it was observed that when a voltage greater than 3V was applied, the
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motor current had a short-time surge and then quickly settled down at the steady value. Such a
surge in the motor current did result in a fast acceleration motion of the motor. It was desired
to use two motion speeds in the test. For the fast motion, it is desired that the beam completes
its motions in about 4.3 seconds in both scenarios. For the slow motion, the beam completes
its motions in about 9 seconds in both scenarios. After trial-and-error tests, a two-step control

strategy was employed. The command voltages used are shown in Figure 4.4.2.

Scenario A Scenario B
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Figure 4.4.2 Command voltage profiles

For scenario A of the fast motion, a voltage of 7V is applied first until the pot voltage reaches
4.3V and then a voltage of 1.5V is applied until the maximum beam length is obtained. For
scenario B of the fast motion, a voltage command of -7V is applied first until the pot voltage
reaches -4.3V, and then a voltage of -1.5V is applied until the minimum beam length is obtained.
For scenario A of the slow motion, a voltage of 2.8V is applied first until the pot voltage reaches
4.3V and then a voltage of 1.75V is applied until the maximum is obtained. For scenario B of
the slow motion, a voltage of -2.8V is applied first until the pot voltage reaches -4.3V and then
a voltage of -1.75V is applied until the minimum beam length is obtained. A Labview program

was used to execute such commands and collect data. Figure 4.4.3 shows the pot signal profiles
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obtained by such commands.
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Figure 4.4.3 Pot signal profiles

Three sensors were used. They are the base strain gauge (BSG) sensor located at 0.643 m,
the middle accelerometer (MAC) located at 0.335 m, and the tip accelerometer (TAC) located
at 0.004 m. All the sensor locations are measured with respect to the tip of the beam.

The accuracy of an identified model is measured by several dimensionless RMS error in-
dices. The indices are defined by comparing the measured responses with simulated responses
generated by an identified model G(k+1,k) and C(k). The closeness between the ith measured

response ﬂ{ (k) from the jth experiment and its simulated counterpart 3’];’ (k) is measured by

s Ts 2
Y [Ew-gw)
&= | = ,i=1,2,--,my, j=1,2,---N (4-4-1)

1 3 ]

————y

K
k

The closeness between all the measured responses from the jth experiment 3’ and their simu-
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lated counterpart 7’ is measured by

n.
. 1 < .
& =— 8. 4-4-2
- ; , (44-2)
The closeness between the ith measured response from all the experiments and their simulafed

counterparts is measured by

1 .
= - J 4-4-
8 ?_1 8! (4-4-3)

where §; denotes the overall measure using the BSG response, 62 overall measure using the
MAC response, and 83 overall measure using TAC response. An overall measure using the total

measurement is defined as

1 <
j -
6 N;lé' (4-4-4)

To generate an ensemble of freely vibrating responses, a proper initial excitation to the
beam is very critical. A suitable excitation must excite the system dynamics fully and ensure
the responses of current experiment to be independent of the previous ones. Each excitation
was produced by tapping the beam at a different location with a different magnitude of force
in the two different directions. After the beam was tapped, the Labview program was executed
to start the beam motion and the responses of each experiment were displayed and visually
examined to determine the suitability of the data.

Numerous experiments were conducted. In what follows, forty experiments are considered
for each combination of the motion speeds and the motion scenarios. The data acquired during
the experiment are referred to as original ensemble data.

The rest of the section is organized as follows. First, the identification results using original
ensemble data are presented in order to estimate the system order n., to understand some fac-
tors influencing the model accuracy. An ensemble of the responses data of twenty experiments
is selected from the original data of the forty experiments in order to reduce the computa-
tional time and to improve model accuracies. Second, using the selected ensemble data, the
relationship between the system order n, and the RMS error index are presented in order to
understand how the system order n, affects the model accuracy, and the relationship between

the block row number M and model accuracy are also given in order to understand how M
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affects the model accuracy. Meanwhile, the comparison between the simulated responses and

the measured ones are presented.

4.4.1 Identification Results Using the Original Ensemble Data

The identified model accuracies are influenced by the quality and independency of the measured
responses, as well as the used model order n; and block row number M [16]. Due to the fact that
the measured outputs are contaminated by noise or may be affected by the system nonlinearity,
the identified model should be overparameterized in order to catch the dynamics of the system
[24, 25]. In what follows, using the original ensemble data, first, the variation of singular
values obtained by the eigendecomposition of the Hankel matrix in (4-2-4) are discussed for
each combination of the motion scenarios and motion speeds, and a proper model order n, can
be estimated; Second, the model accuracies are calculated using the estimated model order for
various combinations of outputs used.

The singular values at time instant k are defined based on the SVD (singular value decom-

position) of Hankel matrix H(k) in (4-2-15), i.e.,
Hk) =Uk)S(k)VT(k) k=0,1,---K,—M~1 (4-4-1)

where U(k) is an ny M x nyM left singular vector matrix , V(k) is an N x N right singular
vector matrix. (k) is an n,M x N matrix and can be partitioned as

E(k) - [ZN(k)]NxN (4_4_2)

O(n, M—N)xN
where (k) = diag (01(k),02(k),---,on(k)) with o1(k) = o2(k) = -+ > on(k) = 0. The
number o;(k) is called the ith singular value at time instant k. Since the singular values are
varying, the average of the ith singular values o;(k) ranging from (1 < & < K;— M —1) is used

to describe its variation for the time-varying process of the system and defined as

1 K,—M-1
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Figurc 4.4.4 shows the variations of all singular values for each combination of the two
motion speeds and scenarios. Figure 4.4.5 shows the comparisons of the first twenty singular
values at time instant 1 = 0 (sec),? = 2 (sec), t = 4 (sec) and their averages for fast motion, at
time instant { = 0 (sec),? = 4.5 (sec), t = 8.9 (sec) and their averages for slow motion, for axjal

extension and retraction.
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Figure 4.4.4  The singular values for each combination of the motion scenarios and speeds
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Figure 4.4.5 Comparison of the first twenty singular values at different time instants and average

Obviously, the motion speeds and the motion scenarios affect the variations of singular
values. The magnitudes of singular values become small as the beam becomes longer. The
singular values for axial extension decrease much faster than those for axial retraction. This
indicates that the magnitudes of the modes present in the responses of axial extension reduces
faster than those in the responses of axial retractoin toward the end of the axial motion. They
reveal that the fewer modes are present in the responses of axial extension than in the responses
of axial retraction. Figure 4.4.6 shows the comparison of the first twenty average singular values
between scenarios A and B for the two motion speeds. Figure 4.4.7 shows the comparison of

magnitudes of the first twenty average singular values between the fast motion and slow motion
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under scenarios A and B.
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From Figures 4.4.6 and 4.4.7, it can also be seen that

1. On the average, the magnitudes of the singular values corresponding to scenario A are
smaller than those corresponding to scenario B for slow and fast motion, which indicates

that the effects of the vibratory modes in the responses under scenario A are weaker than

those under scenario B.

2. On the average, the mangitudes of the singular values corresponding to the slow motion
are smaller than those corresponding to the fast motion, which indicates that the effects
of vibratory modes in the responses under the slow motion are weaker than those under

the fast motion for the two motion scenarios.

However, for all combinations of the two motion speeds and the two scenarios, their model
orders are estimated to be n; = 14 because all the rest of the singular values are sufficiently
small during the axial motion. Meanwhile, to guarantee a full rank of the Hankel matrix, the
block number M must be greater than the upper bound of the system order n, [16]. Thus,
ny = 14 and M = 50 are chosen in the following analysis.

Using the original ensemble data, the identification computation was conducted for various

situations. Table 4.3 lists the overall RMS error indices é. Table 4.4 lists the RMS error indices
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6; based on individual responses.

Table 4.3 RMS error & for the models identified using the original ensemble data

Fast motion in

Slow motion

Fast motion in

Slow motion

Output used scenario A in scenario A scenario B in scenario B
BSG, MAC, TAC 0.2570 0.3769 0.3287 0.4962
BSG, MAC 0.2466 0.3790 0.3123 0.5386
MAC, TAC 0.2910 0.3880 0.5020 0.4749
BSG, TAC 0.2494 0.3536 0.4643 0.5587
BSG 0.3122 0.3615 0.6479 0.7541
MAC 0.5236 0.4517 0.6155 0.5702
TAC 0.5223 0.3737 0.5398 0.4933

Table 4.4 RMS error &, for the models identified using the original ensemble data

Output index | Fast motionin | Slow motion | Fast motionin | Slow motion
used scenario A in scenario A scenario B in scenario B
BSG, 5, 0.1971 0.3497 0.2959 0.6324

MAC, s, 0.2977 0.4189 0.3635 0.4347
TAC s, 0.2762 0.3620 0.3568 0.4214
BSG, 5, 0.1973 0.3455 0.2631 0.6391
MAC 5, 0.2959 0.4126 0.3616 0.4381

MAC, 5, 0.3012 0.4145 0.5229 0.4945
TAC 5, 0.2808 0.3615 0.4811 0.4554
BSG, 5 0.2144 0.3471 0.5263 0.6909
TAC 5, 0.2845 03602 0.4022 0.4266
BSG 5 0.3122 0.3615 0.6479 0.7541
MAC s, 0.5236 0.4517 0.6155 0.5702
TAC s, 0.5223 0.3737 0.5398 0.4933

Based on the Table 4.3 and Table 4.4, the following observation can be drawn.

1. The models identified using more than one response have a better accuracy than those
identified using only one response. It may be explained that the independencies of Hankel

matrix formed using only one response are poorer than those of Hankel matrix formed
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using more than one response. Thus, the models identified using only one responses

cannot represents the sensible models of the system.

2. Under the condition of using more than one response, the models identified using the data

of scenario A have a better accuracy than those identified using the data of scenario B.

3. Under the condition of using more than one response, the models identified using the data
of the fast motion have better model accuracies than those identified using the data of
slow motion. It may be explained that the models identified using the data of the fast
motion have lower accumulative errors between the measured responses and the simulated

ones than models identified using the data of the slow motion.

4.4.2 Identification Results Using the Selected Ensemble Data

The identification computation is very time-consuming as it deals with the singular value decom-
position of two successive Hankel matrices. The most effective way to reduce the computational
time is to reduce the experimental number /V or the column number of the Hankel matrix. The
number N must be greater than the model order n,. Based on a prior knowledge on the system
dynamics and the plots of the average singular values presented in earlier subsection, a number
of 20 was considered to be a proper choice for the number of experiments. The selection of
20 sets of the responses from 40 sets of the original responses was done in the following way.
The indices §’ were arranged in an ascending order. The experimental data sets corresponding
to the first 20 6’ indices were selected for further identification. The data set arranged in the
ascending order of the first 20 6’ indices is referred to as selected ensemble data.

Using this selected ensemble data, the same model order n, and block row number M, the
models were reidentified. The results are given in Table 4.5 and Table 4.6. As expected, the
model accuracies are greatly improved. It may be explained that the qualities and independency

of the measured responses from the selected ensemble data are better than those obtained from
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the original ensemble data.

Table 4.5 RMS error & for the models identified using the selected ensemble data

Fast motionin | Slow motion | Fast motionin | Slow motion
Output used scenario A | inscenario A | scenario B | inscenario B
BSG, MAC, TAC 0.1583 0.2680 0.2582 0.3337
BSG, MAC 0.1374 0.2491 0.2387 0.3635
MAC, TAC 0.1905 0.2635 0.2617 0.3332
BSG, TAC 0.1443 0.2293 0.2350 0.3961
BSG 0.1069 0.2020 0.4075 0.5985
MAC 0.2479 0.3254 0.4058 0.4042
TAC 0.2097 0.2595 0.3680 0.3640
Table 4.6 RMS error 8, for the models identified using the selected ensemble data
Output index | Fastmotionin | Slow motion | Fast motionin | Slow motion
used scenario A in scenario A scenario B in scenario B
BSG, S, 0.0944 0.2139 0.2415 0.4352
MAG, 5, 0.1938 0.3239 0.2789 0.2924
TAC
J, 0.1866 0.2660 0.2543 0.2735
BSG, J, 0.0834 0.2075 0.2066 0.4354
MAC 5 0.1914 0.2906 0.2709 0.2916
MAC, 6, 0.1923 0.2840 0.2718 0.3413
TAC 5, 0.1887 0.2430 0.2516 0.3231
BSG, S, 0.1031 0.2010 0.2248 0.4974
N 0.1885 02575 02452 0.2947
BSG J, 0.1069 0.2020 0.4075 0.5985
MAC S, 0.2479 0.3254 0.4058 0.4042
TAC S, 0.2097 0.2595 0.3680 0.3640

To obtain good model accuracies and capture the chacteristics of the dynamics of the system
as much as possible, it is necessary to use as many measured outputs as possible in identification,
because only one measured output may not reflect the dynamics of the system completely. Thus,

the selected ensemble data with three measured outputs are used in the following analysis.
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4.4.3 Relationships between the Model Order and Model Accuracy

In previous identification calculation, the model order has been chosen to be n, = 14 for all the
cases. This order may be too high for some cases. Meanwhile, to understand how the identified
system order n, affects the model accuracy, the relationship between the model order n, and
the model accuracy is examined.

Using the selected ensemble data with the three measured outputs and a block row number
of 50, a series of the models were identified by varying n, froﬁ 2 to 20 in a step size of 2.
Figure 4.4.8 plots the overall RMS error indices é vs the model order n, for each combination
of the two motion speeds and two scenarios. For both motion speeds of scenario A, a threshold
order is 4 as the model accuracies change little after n, = 4. Thus, the two vibratory modes
are excited in the measured outputs of scenario A; For scenario B, a higher order is needed as
more vibratory modes are excited. In the case of the fast motion, a threshold order is 12. In

the case of the slow motion, a threshold order is 14.
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Figure 4.4.8 (8 — ny) curves for each combination of the two motion speeds and two scenarios
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4.4.4 Relationships between the Block Row Number and Model Accuracy

The row block number M is another important parameter in the identification. To understand
how the block row number Af influences the model accuracy and output accuracies, the rela-
tionships between & and A/ are examined. The threshold model orders n; and selected ensemble

data are used in the following analysis.

Figure 4.4.9 shows comparison of the (6 — M) relationships for each combination of the two

motion speeds and two sceanrios.
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Figure 4.4.9 (6§ — M) curves for each combination of the two motion speeds and two scenarios

Thé greater the block row number A, the smaller the magnitudes of §, and the better the model
accuracies. However, for their thresholds of model order n;, the variations of magnitudes of é
are small when the A is greater than 20 for the fast motion and 32 for the slow motion under
scenario A, and 60 for the fast motion and 56 for the slow motion under scenario B. Thus, the
M has little effect on model accuracies as long as the M is greater than 20 for the fast motion
and 32 for the slow motion under scenario A, 60 for the fast motion and 56 for the slow motion

under scenario B.
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4.4.5 Comparison between the Measured and Simulated Responses

In the previous sections, the degree of agreement between the measured and simulated responses
was demonstrated using the defined RMS error indices. To have a visual comparison, Figures
4.4.10 and 4.4.11 display the comparisons between the simulated and measured responses for
each case. The selected ensemble data and thresholds model orders n, mentioned above are
used in the following simulations. In addition, the block row number M = 50 are used for the
fast and slow motions of scenario A. and M = 60 for the fast motion of scenario B and M = 70
for the slow motion of scenario B respectively. In the figures below, it is noted that a solid line

represents the simulated outputs and a dashdot line measured outputs.
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Figure 4.4.10 Comparison between the simulated and measured responses for scenario A
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Figure 4.4.11 Comparison between the simulated and measured responses for scenario B
It can be seen that the simulated outputs agree well with the measured ones. Obviously,
the outputs in scenario A decay faster than those in scenario B for the two motion speeds.
The main reason is that the positive damping effect under scenario A is greater than that
under scenario B since the axial extension causes the combination between the positive physical
damping effects and the positive motion-induced damping one and the axial retraction causes

the combination effect between the positive physical damping and the negative motion-induced

damping, respectively.

4.5 Experimental Identification of “Pseudo” Natural Frequen-
cies

In subsection 4.2.2, it was shown that the identified “pseudo” natural frequencies can be de-
termined by eigendecomposition of the identified matrices @(k + 1, k). Here, the experimental
identification of the “pseudo” natural frequencies is addressed. First, the identified “pseudo”
natural frequencies are presented using the selected ensemble data. Next, the moving-average

method is developed in order to select the “pseudo” natural frequencies of the vibratory modes.
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Finally, the results of selection of identified “pseudo” natural frequencies of the vibratory modes

are presented.

4.5.1 Identified “Pseudo” Natural Frequencies

Using the experimental data and the computational procedure in section 4.2.3, the matrix
G(k+1,k) in equation (4-2-19) can be obtained. Since the measured responses are contaminated
by the noise and other unknown irregularities, the identified “pseudo” eigenvalue matrix K(k)
contains the complex pairs of eigenvalues and the real eigenvalues. Thus, the eigenvalue matrix

./A\(k) in equation (4-4-24) can be represented in another form
AR =Rk %) - Fma®) I Fmaalk) o Sn () | (4-5-1)

where k = 0,1,---Ks — M — 1 is the time instant. It is assumed that there are n;/2 pairs
of complex eigenvalues and eigenvectors at each time instant k. Thus, Xi+1(k) = X: (k) for
i=1,3,---n;—1 are the pair of complex eigenvalues and eigenvectors, X,-(k) fori=n;+1,.---n
are real eigenvalues. As shown in (4-5-1), the eigenvalues are arranged in such a way that the
complex pairs of eigenvalues and real eigenvalues can be separated and grouped individually.
Thus. the identified “pseudo” natural frequencies corresponding to the complex pairs of eigen-

values can be arranged as

fw=[ Ak Bk - Fua® Ful | (45-2)

where

filk) = B4(k)/2x. (4-5-3)

To understand how the identified “pseudo” natural frequencies are influenced by model order
ng, the identified “pseudo” natural frequencies are shown in Figure 4.5.1 using the threshold
values of model order n; and the values of block row number M mentioned in section 4.4.5.
It is noted that the acronym IPNF; (ith identified “pseudo” natural frequencies) is used, or
IPNF,(k) = fi(k), in the following figures. It should be noted that the identified “pseudo”

natural frequencies were grouped by sorting them in an ascending order according to their
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magnitudes at each moment. The blue color represents the natural frequencies of the first
group, green color of the second group, red color of the third group, cyan color of the fourth
group, magenta color of the fifth group, yellow color of the sixth group, and black color of the

seventh group.
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Figure 4.5.1 Identified “pseudo” natural frequencies j”;(k) using the threholds n,

Based on Figure 4.5.1 and the true “pseudo” modal parameters in section 3.3, the following

observations can be drawn:

1. For scenario A, the identified “pseudo” natural frequency of the first vibratory mode can
be observed using the the model order n, = 4 while the “pseudo” natural frequency of

the second vibratory mode can be observed for a short time period in begining.

2. For the case of the fast motion in scenario B, the variation trends of the first three
“pseudo” natural frequencies are visible from clustering of the values of different groups.
For example, the natural frequency of the third vibratory mode mainly consists of the

values of the “cyan” group in begining, then the values of the “purple” group, finally the
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values of the “yellow” group. In the case of slow motion, the identified values appear even
more disorganized. This indicates that the sorting by magnitude ranking fails to group

the identified “pseudo” natural frequencies properly.

3. If the model order is low, such as the case of scenario A, only the first mode was identified
for the entire period of motion. In the case of scenario B, the model order of 12 was
used and the first three vibratory modes were captured. However, with an increase of the

model order, the computational modes were introduced.

fast motion slow motion
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20
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1
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IPNF. (Hz)
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Figure 4.5.2 Comparison of IPNF's for n, = 4 and n, = 12 under scenarios A

Figure 4.5.2 shows the comparison of the “pseudo” natural frequencies identified using
ng = 4 and ny = 12 for the fast and slow motions. It is noted that the color codes are the
same as those mentioned in Figure 4.5.1 except for the seventh group of natural frequencies.
This figure shows that the frequencies of the first three vibratory modes can be observed if the
overparameterized model order ny = 12 is used. From the observations, it is concluded that the

overparameterized model order should be used in order to observe the variations of identified
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“pseudo” natural frequencies of system vibratory modes.

4.5.2 Selection of the Identified “Pseudo” Natural Frequencies of the Vibra-
tory Modes

From the descriptions given previously, the identified “pseudo” natural frequencies correspond-
ing to the complex pairs of eigenvalues contain the natural frequencies of the vibratory modes
and the computational modes at each time instant & if an overparameterized model order n,

is used. A natural question to ask is how the identified “pseudo” natural frequencies of the

vibratory modes given by
ff(k) i=12,.n,andn<ny, k=0,1,.., K (4-5-5)

are selected from the identified “pseudo” natural frequencies corresponding to the complex pairs
of eigenvalues in equation (4-5-2), where n is the vibratory modes considered. The answer to
the question is that f7(k) can be determined based on the principle that the values of f#(k)
should be as close as possible to the reference values of the natural frequencies of the vibratory

modes given by
k) i=1,2,..,n. (4-5-6)

The reference values f7(k + 1) at the time instant k£ + 1 can be determined using the moving-
average method. The method is used to calculate the reference values of the natural frequencies
fl(k + 1), based on average of the identified “pseudo” natural frequencies of the vibratory
modes that are selected from the identified “pseudo” natural frequenices in the time period

block (k € k; €< k+ M — 1). The selected natural frequencies expressed in
flk) (k<ki<k+M-1) (4-5-7)

should be as close to the reference values f7(k) at time instant k; in the varying time period
block, where the M is the time period block number.

To select the “pseudo” natural frequencies of the vibratory modes given in (4-5-5) for k =

0,1,2,..Ks — M — 1, the following procedure is developed.
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1. Specify the initial reference values of the natural frequencies of vibratory modes f7(0);
2. Set up the time period block from k to k+ M; — 1;

3. Select all f%(k;) from f(kl) in (4-5-3) in the time period block (k < k; < K+ M; — 1)
based on the principles that all f*(k1) should be as close to the reference values f7(k) as
possible, calculate the average value of all f°(k;) in the time period block given as

k+M;-1

T, S (45:8)

F(k) = —

Ifk < K, — M — M; —1, increase k by 1, let f7(k+ 1) = fT(k), and go to step 2; If the
k=Ks— M- M -1, ff(k) are selected from f(k) based on the principle that f7(k)
should be as close to the reference values f/(K; — M — M) — 1) as possible in the time

period block (Ks — M — M; —1) < k< (Ks— M —1).

4.5.3 Results of Selection of the Natural Frequencies of the Vibratory Modes

The natural frequencies of the vibratory modes at the two extreme fixed lengths listed in
Table 4.1.1 are used as the initial reference values of the natural frequencies of the vibratory
modes. For three vibratory modes considered, or n = 3, the natural frequencies of the first three
vibratory modes at the shortest fixed length given by f7(0) = [4.9325 31.5350 87.66] are used
as the initial reference values for motion scenario A, and the natural frequencies of the first
three vibratory modes at the longest fixed length given by f"(0) = [1.9635 12.389 35.016]
are used as the initial reference values for motion scenario B.

Figure 4.5.3 and Figure 4.5.4 show the identified “pseudo” natural frequencies of the first
three vibratory modes considered using the parameters n, = 12 and M = 50 for the fast and
slow motions of scenario A, n, = 12 and M = 60 for the fast motion of scenaro B, n, = 14 and

M = 70 for the slow motion of scenario B. The time period block number Ay = 200 are also
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used.
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Figure 4.5.3 IPNFs of vibratory modes for fast motions under scenarios A and B
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Figure 4.5.4 IPNFs of vibratory modes for slow motions under scenarios A and B

It can be seen that the variations of the identified “pseudo” natural frequencies of the first
three vibratory modes are similar to those of the true values mentioned in Chapter 3, i.e., the
identified “pseudo” natural frequencies of the first three vibratory modes vary from high values

to low values for scenario A and from low values to high values for scenario B. It is noted that
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the identified “pseudo” natural frequencies of vibratory modes fluctuate around their overall
trends due to the fact that the measured outputs used in identification are contaminated by
the noise.

Meanwhile, A is an important parameter in selecting the identified “pseudo” natural f;e-
quencies of vibratory modes. Figures 4.5.5 and 4.5.6 show the comparison of the identified
“pseudo” natural frequencies of the vibratory modes for M; = 10 and M; = 50 for fast and
slow motions under scenario A, respectively. Figures 4.5.7 and 4.5.8 show the comparison of

the identified “pseudo” natural frequencies of vibratory modes for M; = 100 and M; = 200 for

fast and slow motions in scenario B, respectively.
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Figure 4.5.5 Selected frquencies using A;=10 and those using M;=>50 for fast motion of scenario A

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



) (Hz)
13 H)

s
'1

50 (H2)
130 tH2)

885
ti time (sec
150 ime (sec) 150 (sec)
5 100 .o g
am 50 we
o
0 3 6 8.95 0 3 [] 8.95
time (sec) time (sec)

Figure 4.5.6 Selected frquencies using M;=10 and those using M;=>50 for slow motion of scenario A
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Figure 4.5.7 Selected frquencies using M1=100 and those using M;=200 for fast motion of scenario B
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Figure 4.5.8 Selected frquencies using M;=100 and those using M;=200 for slow motion of scenario B

From the above figures, it is concluded that the identified “pseudo” natural frequencies of the
vibratory modes selected are not reasonable if M; values are too small. Similarly, the variations
of identified “pseudo” natural frequencies of the vibratory modes are also not reasonable if M;

is too large. How to determine a proper value of M is a topic for the future work.

4.6 Conclusions

Based on the results presented in this chapter, the following conclusions can be drawn:

1. The identification algorithm can only obtain a good approximation for the natural fre-
quencies of the vibratory modes. However, it cannot give a meaningful estimate of the

damping ratios of the vibratory modes.

2. To obtain the best identification results, it is necessary

(a) to ensure that the system must undergo the same time-varying variation;

(b) to generate the measured responses as independently as possibly;
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(c) to use the multiple measured outputs instead of one measured output;
(d) to force the measured responses to be zeros mean;

(e) to select a small set of ensemble data from the original ensemble data.

3. The motion speed and motion scenario have a direct effect on the model accuracies.

4. To observe as many “pseudo” natural frequencies of the vibratory modes as possible, it

is necessary to use the overparameterized model order.

5. The moving-average method obtains the sensible results for the variations of the identified
“pseudo” natural frequencies of the vibratory modes for each combination of the motion

speeds and the scenarios.
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Chapter 5

Summary and Future Work

The summary of the thesis study is described as follows

1. A circuitry for DC motor current control and sensor signal conditioning has been built.
The circuitry meets the requirements of controiling the axial motion of the cantilever

beam and amplifying the sensor signals.

2. An analytical modeling procedure has been conducted to model the lateral vibration of
an axially-moving cantilever beam. The simulation results confirm that the axial mo-
tion influences the dynamics of the system, including transient responses and “ frozen”
modal parameters. To evaluate the discrete-time state transition matrix reasonably, the
system must undergo the same variation and an ensemble of n, sets of initial states must
be generated randomly. The “pseudo” modal parameters are evaluated by conducting
eigendecomposition of the discrete-time state transition matrix. The simulation results
indicate that the “pseudo” modal parameters are almost identical to the “frozen” ones

for the system under study.

3. A previously developed algorithm has been applied to identify the system. The study
has addressed several important issues, such as the methods of exciting system, eval-
uation of model accuracies, factors influencing model accuracies, relationships between
model accuracies and parameters used in identification, selection of natural frequencies
of the vibratory modes from identified “pseudo” natural freqeuncies. It has also been

shown that the identification algorithm can provide a sensible approximation for natural
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frequencies of the vibratory modes but cannot provide a reasonable estimation for damp-
ing ratios. The moving-average algorithm can be used to select the identified “pseudo”

natural frequenciees of vibratory modes among the identifiled modes.
Recommendations for future work are:

1. to determine a proper value of time block number M; in order to obtain a better result

of identified “pseudo” natural frequenices of the vibratory modes.

2. to implement identification algorithms based on forced responses of the axially-moving

cantilever beam to ensure that the vibratory modes can be fully excited.

3. to develop a model reduction and updating method.
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