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ABSTRACT

Challen, L.D. 2001. Impacts of Timber Harvesting on Stream Macroinvertebrate
Communities at Different Spatial Scales in Ontario’s Boreal Forest
Supervisor: Dr. R.W. Mackereth, Committee Members: Dr. K Deacon and Dr. S Hecnar.

Key words: macroinvertebrate, stream size, catchment area, timber harvesting, 
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Macroinvertebrates were collected from fifty-six stream segments (study sites). In 

addition, collections were gathered from nine streams yearly and from five streams 

repeatedly throughout one season. All stream segments or study sites were classified 

according to catchment size and to disturbance adjacent to the stream (forested, harvested 

or burnt). The study had two components. The first component determined the 

effectiveness of macroinvertebrate based indices for monitoring the effects of timber 

harvesting on stream habitat in Ontario’s boreal forest. The yearly and seasonal 

variability (coefficient of variation (cv)) of various biomonitoring metrics were 

determined from yearly and seasonal data sets. Seasonal and year to year variability was 

high in all metrics except Percent Dominance, Percent Model Affinity and Percent 

Diptera. To assess the sensitivity of various metrics to impairment, metric values from 

disturbed sites were compared with values from reference sites and established scoring 

criteria. When considered as a group, harvested sites did not differ from reference sites 

for individual metrics. However, when sites were considered individually, impairment 

was detected at some harvested locations. To assess the influence of stream size on the 

various biomonitoring metrics two-way analysis of variance was used. All metrics 

differed among catchment areas. Similarly, classification of reference communities by 

catchment size reduced the standard error of metrics in many cases.
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The second component of this study used more detailed multivariate and taxonomic 

analyses to investigate harvesting impacts. Several specific questions were addressed. 

Firstly, do stream size and disturbance (timber harvesting or burning) influence 

macroinvertebrate community structure and physical habitat (discharge, temperature, 

closed cover and substrate profile)? Secondly, do the aforementioned physical variables 

influence macro invertebrate community structure? Finally, is the magnitude of a 

disturbance impact dependent upon the size of the stream and type o f disturbance? A 

relationship between macroinvertebrate community and disturbance adjacent to the 

stream (forested, harvested or burnt) was not detected. Invertebrate community structure 

was correlated to the physical habitat variables measured. Analyses detected variation in 

macroinvertebrate community and habitat structure in relation to catchment area. The 

variations observed in the macroinvertebrate community in relation to stream size were 

similar to macroinvertebrate communities influenced by size selective predation patterns 

in brook trout (Bechara et al. 1992).

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Ssdieo

1.0

2.1 
2 .1.1 
2 . 1.2 
2.1.3

3.0

3.1
3.1.1

3.1.2
3.1.2.1
3.1.2.2

3.1.3

3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3

3.2.2

3.3

Paoe
ABSTRACT 1

TABLE OF CONTENTS

TABLES v

FIGURES vii

GENERAL

GENERAL INTRODUCTION 1

GENERAL METHODS 8
Study Area and Site Classification 8
Benthic Invertebrate Collection and Identification 11
Transformations and Data Reduction 14

BIOMONITORING

INTRODUCTION -  BIOMONITORING 16

METHODS -  BIOMONITORING 21
Invertebrate Data Set Description 21

Natural Variability 21
Seasonal and Yearly 21
Stream Size (Catchment Area) 24

Comparison of Metrics 26

RESULTS -  BIOMONITORING 27
Natural Variability 27

Seasonal 27
Yearly 27
Stream Size (Catchment Area) 30

Comparison of Metrics 30

DISCUSSION- BIOMONITORING 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MULTIVARIATE ASSESSMENT

4.0 INTRODUCTION-MULTIVARIATE ASSESSMENT 45

4.1 METHODS -  MULTIVARIATE ASSESSMENT 49
4.1.1 Invertebrate Data Set Description 49

4.1.2 Instream Physical Habitat Data Collection 49

4.1.3 Statistical Analyses 51
4.1.3.1 Instream Physical Habitat 51
4.1.3.3 Macroinvertebrate Community and Instream Physical 53

Habitat Relationship
4.1.3.4 Invertebrate Community Composition 53

4.2 RESULTS-MULTIVARIATE ASSESSMENT 54
4.2.1 Instream Physical Habitat Data 54
4.2.1.1 Substrate Profile 54
4.2.1.2 Discharge and Temperature 57

4.2.2 Macroinvertebrate Community and Instream 57
Physical Habitat Relationship

4.2.3 Macroinvertebrate Community Characteristics 64
4.2.3.1 Taxonomic Group 64
4.2.3.2 Functional Feeding Group 66

4.3 DISCUSSION-MULTIVARIATE ASSESSMENT 70

5.0 SUMMARY OF FINDINGS 78

6.0 LITERATURE CITED 80

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLES
m k

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Eage

Number of sites sampled within each catchment area and disturbance 13
type for the sites visited

Explanations for macroinvertebrate metrics used and their expected 20
shift with habitat degradation.

Taxonomic descriptions of the four data sets used to calculate 22
biomonitoring metrics.

Sites belonging to the “Seasonal” data set and dates that they were 22
visited.

Sites belonging to the “Yearly” data set and the dates that they were 23
visited.

Criteria for characterization of biological condition (modified from 25
Plafkin et al. 1989).

Percent Model Affinity Scoring Assessment 25

Summary of the catchment area main effect two-way ANOVA results 31
for each metric, their direction of difference with catchment area and 
disturbance type combinations

Site assessments according to individual metrics (Plafkin et al. 1989). 36
Reference values were not calibrated to catchment size.

Site assessments according to individual metrics (Plafkin et al. 1989). 36
Reference values were calibrated to catchment size.

Summary of the disturbance type main effect two-way ANOVA results 38
for each metric, their direction of difference with catchment area and 
disturbance type combinations

Summary of the interaction effect two-way ANOVA results for each 38
metric, their direction of difference with catchment area and 
disturbance type combinations

Impaired sites according to RBPII (Plafkin et al. 1989). Reference 39
values were not calibrated to catchment size.

Impaired sites according to RBP II (Plafkin et al. 1989). Reference 39
values were calibrated to catchment size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.14 Impaired sites according to Percent Model Affinity scores (Novak and 
Bode 1992). Reference values were not calibrated to catchment size.

3.15 Impaired sites according to Percent Model Affinity scores (Novak and 
Bode 1992). Reference values were calibrated to catchment size.

4.1 Taxonomic Description of the three data sets used to examine the 
relationships between catchment area, disturbance type and 
macroinvertebrate community assemblage.

4.2 Modified Wentforth Classification

4.3 Variance explained by the function generate by the DFA. Sites were 
separated by catchment area and then characterized by substrate size 
class.

4.4 Significance of the functions generated by the DFA. Sites were 
separated by catchment area and then characterized by substrate size 
class.

4.5 Coefficient score of each taxonomic group in the first principal 
component generated from a principal component analysis of the 
taxonomic group matrix.

4.6 Coefficient score of each functional feeding group in the first principal 
component generated from a principal component analysis of the 
functional feeding group matrix.

4.7 Variance explained by the functions generated by the DFA. Sites were 
separated by catchment area and then characterized by the 
macroinvertebrate taxonomic groups.

4.8 Significance of the functions generated by the DFA. Sites were 
separated by catchment area and then characterized by the 
macroinvertebrate taxonomic groups.

4.9 Variance explained by the functions generated by the DFA. Sites were 
separated by catchment area and then characterized by the functional 
feeding groups.

4.10 Significance of the functions generated by the DFA. Sites were 
separated by catchment area and then characterized by the functional 
feeding groups.

40

40

50

52

55

55

60

62

65

65

68

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURES

Figure

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10 

4.1

Map of the north shore of Lake Superior and the watershed areas 
involved in the study.

Map of the location of sites used in this study.

A GIS generated map showing catchment delineation for study sites 
within the Mackenzie River Watershed.

Comparison of seasonal variability to between site variability for some 
commonly used metrics. Variability is represented by the coefficient of 
variation.

Comparison of yearly variability to between site variability for some 
commonly used metrics. Variability is represented by the coefficient of 
variation.

Taxa Richness mean and variability of taxa richness for each catchment 
area class and disturbance type.

Family Biotic Index mean and variability for each catchment area class 
and disturbance type.

Composite Normalized Metric mean and variability for each catchment 
area class and disturbance type.

Shannon-Weiner Measure of Diversity mean and variability for each 
catchment area class and disturbance type.

EPT/Chironomidae abundance mean and variability for each catchment 
area class and disturbance type.

Percent Dominance mean and variability for each catchment area class 
and disturbance type.

Scraper/Filterer mean and variability for each catchment area class and 
disturbance type.

EPT Richness mean and variability for each catchment area class and 
disturbance type.

DFA plot of study sites, characterized by substrate size class and 
separated by catchment area class.

vii

Page

9

10 

12

28

29

32

32

33

33

34

34

35 

35 

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Boxpiots of discharge by catchment area class and disturbance type. 58

4.3 Boxpiots of temperature by catchment area class and disturbance type. 58

4.4 Scatterplot of pebbles against the first principal component score 61
generated from the principal component analysis of the taxonomic
group matrix.

4.5 Scatterplot of pebbles against the first principle component score 63
generate from the principal component analysis of the functional
feeding group matrix.

4.6 DFA plot showing study sites, characterized by macroinvertebrate 67
taxonomic groups and separated by catchment area.

4.7 DFA plot showing study sites characterized by functional feeding group 69
and separated by catchment area.

4.8 Pie charts comparing relative contribution of each functional feeding 71
groups to total density across catchment area.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.0 GENERAL INTRODUCTION

Aquatic macro invertebrates are a diverse group of organisms, dependent on an aquatic 

environment at some stage of their life cycle. The prefix “macro” refers to those 

invertebrates that are visible to the unassisted eye. The group includes many arthropod 

taxa (Arachnida, Crustacea and Insecta) as well as nonarthropod groups (i.e. Porifera, 

Hydrozoa, Nematoda, Tricladida, Annellida and Mollusca etc.). Aquatic invertebrates 

serve as a trophic link between detritus, microorganisms, algae, plants and the higher 

trophic level vertebrates. In fact, macroinvertebrates are an important food source for 

most commercial and sport fish species. Aquatic macroinvertebrates have a diverse range 

of habitat requirements, methods of locomotion and feeding habits. Their distribution 

patterns may vary by season and from year to year. In stream environments, the 

temperature of the stream, hydrology, substrate profile, channel morphology, source of 

primary productivity, predation, colonization and the macroinvertebrate community 

upstream form a framework upon which the aquatic macroinvertebrate community 

organizes itself (Merrit and Cummins 1996a).

There is evidence that the removal of terrestrial vegetation and the physical disruption 

associated with timber harvesting can alter the physical habitat of streams. Changes 

following timber harvesting have been observed in substrate profile (Newbold et al.

1980, Haupt and Kidd 1965, Klock 1985, McCurk and Fong 1995, Vurori and Jeonsuu 

1996, Likens etal. 1970), stream hydrology (Garman and Moring 1991, Klock 1985, 

Webster 1990) nutrient input (Garman and Moring 1991; Webster 1990, Feller 1981), 

instream water temperature (McGurk and Fong 1995, Likens et al. 1970, Klock 1985)
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and turbidity (Likens et al. 1970, Vuori and Joensuu 1996, Cornish 1982). Shifts in 

species diversity (Newbold et al. 1980), dominance (Newbold et al. 1980, Gurtz and 

Wallace 1984, Garman and Moring 1993), functional feeding group proportion (Gurtz 

and Wallace 1984), density (Giroux 1994, Gurtz and Wallace 1984), biomass (Fuchs 

1999, Giroux 1994) and Family richness (Giroux 1994) following timber harvesting have 

been observed.

The removal of stream side vegetation has been shown to decrease slope stability after 

the root system has undergone decomposition (Klock 1985). Erosion can disrupt or 

smother macroinvertebrate habitat depending on the current velocity. A fast current can 

suspend large particles which have entered a stream through stream side erosion (Rabeni 

and Minshall 1977). Suspended particles scour the stream bed altering channel stability 

and the morphology of the stream (Newbold et al. 1980). The sliding and bouncing of 

suspended sediment along the benthic surface has caused physical stress to 

macroinvertebrates and shearing stress to the aquatic plants they feed on (Culp et al. 1986, 

Vuori and Joensuu 1996). Suspended particles also cause turbidity, reducing instream 

primary productivity upon which many macroinvertebrates depend (Newbold et al.

1980).

A slower moving stream will likely experience more sediment deposition after timber 

harvesting. Siltation and sedimentation can smother habitat (e.g. algae on rocks and 

interstitial spaces), restricting the mobility of many insects and changing the type and 

amount of suitable habitat patches (Minshall et al. 1983, Gurtz and Wallace 1984, Vuori

2
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and Joensuu 1996). Decreased benthic invertebrate density and a shift in species 

composition as a result of sedimentation and loss of interstitial spaces have been 

observed following harvest (Newbold et al. 1980, Vuori and Joensuu 1996).

Increased surface water runoff has been attributed to the removal of terrestrial 

vegetation, which when present, modifies runoff through uptake and evapo transpiration 

(Likens et al. 1970). Increased terrestrial runoff has increased water velocity and 

discharge in streams, carrying away benthic invertebrates not tolerant to fast currents 

(Rabeni and Minshall 1977).

Terrestrial runoff has increased nutrient leaching from the soil and raised nutrient input 

into water, promoting a switch from autochthonous to allochthonous primary production 

(Likens et al. 1970). Also, increased water velocity may export organic matter faster. 

Increased nutrient concentrations and organic matter export disturb the nutrient 

processing system of the stream community, which may require an adjustment in the 

benthic macroinvertebrate community feeding structure (Vannote et al. 1980).

Removal of riparian vegetation reduces shading effects and increases the influence of 

solar energy on the stream (Garman and Moring 1991). These changes can increase 

instream primary productivity, resulting in shifts in invertebrate feeding types (Garman 

and Moring 1991). Water temperature increases disrupt those species with metabolic 

optimums at lower temperatures (Vannote et al. 1980). Decomposition speeds up at

3
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higher temperatures (Garman and Moring 1991), altering nutrient processing even at the 

macroinvertebrate trophic level.

Stream macroinvertebrate communities are often effectively used for the assessment of 

impacts caused by point source pollution of local water quality (Merrit and Cummins 

1996a). Determining if biomonitoring metrics commonly used for point source pollution 

are also useful for detecting stream impairment due to timber harvesting is one question I 

addressed in this thesis. The potential impacts of catchment scale disturbances, such as 

timber harvesting, on stream habitat and the macroinvertebrate community are much 

more varied than point source pollution. It is unknown whether or not macroinvertebrate 

communities respond to timber harvesting practices in predictable ways, which are 

distinguishable from natural variability. Furthermore, whether or not a macroinvertebrate 

biomonitoring program can detect impairment following timber harvesting, has not been 

established.

Immense natural variability in the macroinvertebrate community structure (i.e. taxa 

density and taxa present) may limit the utility of aquatic macroinvertebrates in stream 

biomonitoring programs because of the difficulty involved in characterizing healthy 

community attributes. Natural variability among communities may prevent the detection 

of impairment by reducing the probability of detecting changes associated with 

harvesting. Taxonomic and density variability among streams and over time can be 

partitioned to ensure that “treatment” effects can be isolated from other influences. 

Partitioning can include characterization of ecoregion (Plafkin et al. 1989), season (Keup

4
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1988, Hilsenhoff 1982), year (Kerans et al. 1992), physical habitat (substrate profile, 

temperature, velocity, closed cover) (Richards et al. 1993) and stream size (Vannote et al. 

1980).

Yearly differences in macroinvertebrate communities are due to weather (factors such as 

temperature and precipitation) and other natural events. Life cycles of individuals in the 

same species may vary from one to three years depending on food availability and 

environmental conditions of those years (Kerans et al. 1992). This could lead to different 

community structure, depending on the year o f sampling. Water level, another variable 

that changes from year to year and is related to climate, also contributes to variability in 

community structure (Cowx et al. 1984). Confining sampling to one year is an effective 

way to control this type of variability. Alternatively, annual visits to selected sites could 

provide an estimation of yearly variability in community structure within a stream from 

which to calibrate other samples collected from a similar climatic region.

Time of emergence, hatching and cohort age also differ from season to season (Keup 

1988), which results in variation in community composition. For example, diversity and 

density in invertebrate communities peak in the fall, and are lowest in the summer when 

some species are in diapause (Keup 1988, Hilsenhoff 1982). Collection of 

macroinvertebrates within the shortest interval possible and within one season, is the 

most effective way to account for seasonal variation. Calibration of seasonal variation by 

monitoring sites throughout the year may also be effective.

5
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Ecoregions represent areas similar to each other with respect to geology, forest cover, 

agricultural potential, wetlands and waterbodies (Plafkin etal. 1989). Macroinvertebrate 

communities are expected to differ among ecoregions, but be relatively similar within an 

ecoregion (Lenat 1993). Biomonitoring efforts may be improved by comparing 

macroinvertebrate communities at test sites to those found in undisturbed reference 

streams similar in physical characteristics (Hughes et al. 1986, Plafkin et al. 1989, 

Hughes 1995, Glasby 1997).

The large scale characteristics of a stream catchment such as dominant bedrock (Richards 

and Host 1994), amount of wetland in the catchment, tenestrial vegetation (Frissel et al. 

1986), riparian vegetation and surficial geology (Richards et al. 1996) influence smaller 

scale characteristics within the stream such as instream substrate profile, nutrient regime, 

hydrology and stream morphometry. Thus these large-scale characteristics may also add 

to the variability among streams and macroinvertebrate communities. Physical habitat, 

which is tremendously variable among streams, may also account for variation in 

macroinvertebrate community composition. For example, the amount of canopy closure 

can influence shredder and detritivore numbers by controlling the quality and abundance 

of detrital inputs (Egglishaw 1964, Molles 1982, Corkum 1989). Macroinvertebrate 

community composition may differ among areas with different substrate patterns 

(Richards et al. 1993, Minshall et al. 1984). Attempts to partition variation in 

macroinvertebrate communities are often made by characterizing habitat, and confining 

sampling to stream sections with similar habitat characteristics (e.g. riffles, pools or 

runs).

6
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The River Continuum Concept (RCC) (Vannote et al. 1980) predicts that both the 

physical habitat and the macroinvertebrate community of a stream change from the 

headwater to the mouth of a river system. Since the conception of the RCC, direct 

relationships between stream size and both physical habitat (stream temperature, 

discharge and gradient) (Rankin 2000, Richards et al. 1996) and invertebrate community 

have been observed (Richards and Host 1994, Richards and Minshall 1992). Within the 

Salmon River, Idaho drainage macroinvertebrate functional groups and species richness 

differed from small to large streams (Bruns and Minshall 1985, Bruns et al. 1982, Bruns 

et al. 1987). Macroinvertebrate assemblages were distinct even between the narrow range 

of 2nd to 4th order streams (Bruns and Minshall 1985, Richards et al. 1996). Thus, 

characterization of a stream’s size (order or catchment area) may be an effective method 

of partitioning variation in macroinvertebrate communities and physical habitat.

This study had two components. In the first, I determined the effectiveness of 

macroinvertebrate-based indices for monitoring the effects of timber harvesting on stream 

habitat in Ontario’s boreal forest. The yearly and seasonal variability in various 

biomonitoring metrics was determined from yearly and seasonal data sets. To assess the 

sensitivity of various metrics to impairment, I compared metric values between disturbed 

sites and reference sites and established scoring criteria from the literature. The influence 

of stream size on the various biomonitoring metrics was also assessed.

The second component of this study used multivariate analyses to complement the 

findings of the biomonitoring chapter. I addressed three specific questions. First, does

7
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stream size and disturbance (timber harvesting or burning) influence macroinvertebrate 

community structure and physical habitat (discharge, temperature, closed cover and 

substrate profile)? Second, do the aforementioned physical variables influence 

macroinvertebrate community structure? Third, is the magnitude o f a disturbance impact 

dependent upon the size of the stream and type of disturbance?

2 .0  GENERAL METHODS

2.1 Study Area and Site Classification

The study area included the Wolf River (743.3 km2), Mackenzie River (369.6 km2), 

Spruce River (1063.9 km2) and Nipigon 10 Bum Zone Watersheds (Figure 2.1). These 

watersheds are tributaries of Lake Superior and lie within the Northwestern Ontario 

Boreal forest, near Thunder Bay, Ontario.

The study area lies in the Nipigon Plain Ecoregion (Wickware and Rubec 1989). Both 

undifferentiated igneous and metamorphic bedrock dominate the region. These types of 

rock are not very permeable and tend to form aquitards, permitting the storage of 

groundwater (Freeze and Cherry 1979, Picard 1995). Groundwater promotes stable 

hydrologic and thermal conditions in streams. The dominant surficial landforms are 

ground moraines and sandy glaciolacustrine plains. Ground moraines form a 

discontinuous mantle of silty to sandy till on bedrock. Typically the till is one metre 

thick, with large amounts of stone, boulder and gravel (Mollard 1979).
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Fifty-six stream reaches within the study area were established as sites (Figure 2.2). Sites 

were categorized based on catchment area and the type of disturbance in the catchment. 

Catchment area was treated as a categorical variable in order to reduce the sample size 

requirements of the study. The four catchment area size classes(Table 2.1) were: 1 km2 

(0.8 to 2.1 km2), 10 km2 (4.3-13.7 km2), 40 km2 (21.0 -64.7 km2) and 100 km2 (69.1 -

115.1 km2). Catchment delineation for each study site used a raster-based digital 

elevation model (DEM) generated through the use of the Environmental Systems 

Research Institutes (ESRI) geographic information systems (GIS) software packages 

ARC/INFO and ArcView (Figure 2.3).

Sites were also categorized based on the disturbance adjacent to the stream. Disturbance 

class (“cut'’, “burnt” or “uncut”) was defined by the condition of the area adjacent to the 

site (Table 2.1). “Cut” or “burnt” categorization required disturbance on at least one side 

of the stream. Often the area adjacent to a cut site included a reserve area. Reserve areas 

(buffer strips) are areas left uncut adjacent to streams with widths ranging from 30 to 

90m required by and based on “Timber Management Guidelines for the Protection of 

Fish Habitat” (OMNR 1988).

2.2 Benthic Invertebrate Collection and Identification

All macroinvertebrate samples were collected in riffle areas between May and September 

at base flow condition. Sampling was done within one ecoregion to control for broad 

scale geographic variability. The macroinvertebrate collection apparatus included a
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Table 2.1 Number o f sites sampled within each catchment area and disturbance 
type fo r the 56 sites visited

1km2 10 km2 40lun2 100 km2 Total

Uncut 9 10 7 3 29

Cut 4 7 4 5 20

Burnt 2 5 0 0 7

Total 15 22 11 8 56

13
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0.09 m2 quadrat and a D-shaped dip net. Using a nailbrush, the collector dislodged 

invertebrates from substrate lying within the quadrat while stream flow carried the 

invertebrates into the D-net placed directly downstream. This collection method was 

convenient (light weight and compact) and appropriate for Northwestern Ontario streams 

which are characterized by course substrate and are often in remote locations. All 

invertebrates were transferred to Nalgene sample bottles and preserved in 75% ethyl 

alcohol until processing. Three macroinvertebrate samples were collected from each 

study site and treated as subsamples in the analysis.

In the laboratory, macroinvertebrates were identified and enumerated with the aid of a 

dissection microscope. Macroinvertebrates were identified into taxonomic groups and 

functional feeding groups according to Merritt and Cummins (1996a, b) and Clifford 

(1991). Important taxonomic information may still be gained from this collection; 

therefore, biomass information, which destroys the specimens, was not determined.

2.3 Transformations and Data Reduction

SPSS (version 9) software was used for all statistical analyses. A probability of P<0.05 

determined significance in all statistical tests. Some of the variables required 

transformations to satisfy the normality assumptions of the analyses used. All of the 

variables within the functional feeding group data set, the taxonomic group data set, and 

the substrate data set were log transformed (logio(x+l)). Temperature and discharge 

could not be normalized; therefore they were analyzed with non-parametric tests.
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I examined the Pearson Product moment correlation matrices for taxonomic group, 

functional feeding group and substrate. No variables in any matrix were highly collinear 

and therefore, no variables were considered redundant within the matrices.

The original taxonomic group matrix consisted of 30 invertebrate taxa. If less than 10 

individuals in a taxonomic group existed in the entire data set, the group was considered 

rare (Somers et al. 2002) and removed. The final data set had 18 taxonomic groups.

Whenever the MANOVA detected a significant effect, I used a Discriminant Function 

Analysis (DFA) to identify variables important in differentiating among the groups. The 

DFA was interpreted as an exploratory tool, not as a significance test.
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3 .0  INTRODUCTION -  BIOMONITORING

Macro invertebrates lend themselves well to monitoring aquatic habitat integrity for a 

number of reasons. Macroinvertebrates are always present in permanent stream habitats. 

Within the macroinvertebrate community a range of responses to environmental stress are 

exhibited. For example, some taxonomic groups (e.g. Trichoptera, Ephemeroptera, 

Plecoptera) are know to be sensitive to organic pollution (Hilsenhoff 1982), while other 

(e.g. Chironomidae) are comparatively tolerant of such conditions (Plafkin et al. 1989). 

Macroinvertebrates have relatively small habitat ranges, allowing accurate local diagnosis 

of disturbance impacts. Their distribution reflects both biotic and abiotic factors present 

in the stream (McGurk and Fong 1995, Vuori and Joensuu 1996, Garman and Moring 

1993), and as such, can provide insight into the condition of these factors. Laboratory 

water quality analysis provide a point in time snapshot of a stream’s condition. In 

comparison, the macroinvertebrate community assemblage in a stream reflects current as 

well as historical conditions of a stream. Macroinvertebrate community patterns should 

be predictable (Vannote et al. 1980) because they capitalize on upstream processing 

inefficiencies and direct organic inputs. As such, the macroinvertebrate assemblage 

expected in a healthy stream can be compared to the actual assemblage present. For these 

reasons, aquatic macroinvertebrates may be useful when assessing impacts of landuse on 

stream environments.

Although there are many inherent characteristics of macroinvertebrate communities that 

lend themselves to biomonitoring, these communities are also highly variable in both
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species composition and the proportions of individual taxa in a stream. Stream 

macroinvertebrate community variability is associated with a large number of factors 

including season (Keup 1988, Hilsenhoff 1982), year (Kerans et al. 1992), ecoregion 

(Plafkin et al. 1989), habitat (substrate profile, temperature, velocity, closed cover) 

(Richards et al. 1993), size of the stream (Vannote et al. 1980, Frissel et al. 1986) and 

behavior (feeding, colonization, locomotion, vulnerability to predation, life cycle). For 

these reasons, it is often necessary to control natural variability in a biomonitoring 

program in order to detect disturbance signals.

A description of reference communities by region has been suggested as one means of 

accounting for natural variability in macroinvertebrate communities (Plafkin et al. 1989). 

Macroinvertebrate metric values from disturbed streams are compared to metric values 

found in undisturbed streams from the same region. However, in order to utilize 

biomonitoring techniques within a region such as Northwestern Ontario, other sources of 

natural variability in macroinvertebrate communities need to be assessed. 

Macroinvertebrate abundance and distribution may vary seasonally and yearly. For 

example, Hilsenhoff (1982) has found that his biotic index values are falsely high in 

summer, when many species are in diapause. Likewise, tolerance values require 

adjustment for seasonal differences in Southeastern United States (Lenat 1993). Yearly 

variability due to variation in climate and natural events is difficult to control for in 

biomonitoring programs. Nonetheless, an understanding of the potential range of this 

type of variability seems prudent.

17
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Stream size is another potential source of variability in stream invertebrate communities. 

Shifts in invertebrate community composition along the length of a river are predicted by 

the River Continuum Concept (Vannote et al. 1980). Differences in invertebrate 

community structure along a stream could result in false diagnosis when using 

biomonitoring metrics. For example, headwater streams fed by nutrient poor groundwater 

are naturally low in productivity and this is often reflected by low diversity and richness 

metric values (Pinder and Farr 1977, Plafkin et al. 1989). Ironically, these conditions are 

usually associated with poor water quality. Thus pristine headwater streams with low 

diversity could be misdiagnosed as impaired if its naturally low productivity is not 

accounted for in the original calculations.

Despite the many sources of variability, stream macroinvertebrate communities are often 

effectively used for the assessment of impacts caused by point source pollution on local 

water quality. However, I am interested in using stream dwelling macroinvertebrates for 

monitoring of the potential impacts of timber harvesting on stream habitat. Timber 

harvesting may induce impacts much more varied than point source pollution including 

changes in: substrate profile (Newbold etal. 1980, Haupt and Kidd 1965, Klock 1985, 

McGurk and Fong 1995, Vurori and Joensuu 1996, Likens et al. 1970), nutrient input 

(Garman and Moring 1991, Webster 1990, Feller 1981), stream hydrology (Garman and 

Moring 1991, Klock 1985, Webster 1990), instream water temperature (McGurk and 

Fong 1995, Likens et al. 1970, Klock 1985) and turbidity (Likens et al. 1970, Vurori and 

Joensuu 1996, Cornish 1982). A question that I address is if the biomonitoring metrics
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commonly used to monitor point source pollution are also useful for monitoring the many 

impacts associated with timber harvesting.

Family Biotic Index (Hilsenhoff 1982), functional feeding group ratios, dominance, 

diversity, abundance measures, Percent Model Affinity (Novak and Bode 1992) and 

Rapid Bioassessment Protocol (RBP) II (Plafkin et al. 1989) are some of the indices 

developed for biomonitoring. Table 3.1 provides summary descriptions of these indices 

and their predicted shift in degraded settings. The variability of a metric will be one 

measure of usefulness in this study. Likely, highly variable metrics would not be useful 

for detecting disturbance because the impacted stream values would be less likely to fall 

outside the naturally broad range. To assess the natural variability of a metric, a 

description of the metric’s range in a sample of the population can be used. Another way 

to assess metrics is by testing their ability to discriminate between a “known” healthy 

stream and a “known” impaired stream. If metric value distributions differ between these 

two known conditions, then the metric can be considered a valuable biomonitoring tool.

My exploration of the suitability of macroinvertebrate-based biomonitoring in 

Northwestern Ontario was guided by two objectives. The first objective was to assess and 

identify sources of natural variability in the macroinvertebrate community. Potential 

sources of variability such as season, year and catchment area were examined. This 

information could help partition or control variability in prospective biomonitoring 

efforts. The second objective was to compare the utility of various existing metrics for 

monitoring effects of timber harvesting in Northwestern Ontario’s Boreal Forest streams.
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Table 3.1 Explanations fo r macroinvertebrate metrics used and their expected shift with habitat degradation.

Macroinvertebrate
Metric

Explanation Expected shift with 
Habitat Degradation

Taxa Richness Total number of different taxa in a sample. D e c re a se  (Plafkin et al. 1989)

Diversity

A measure of taxa richness and evenness. 
Low diversity indicates that taxa are less 
evenly distributed.
FT' ^ . l o g p ,  
pi represents the proportion of 
the total number of individuals 
in the ^  taxonomic ftroun

Decrease

Total Density Total number of organisms in a sample Decrease

EPT Richness
Total number of Ephemeroptera, Plecoptcra 
and Trichoptera taxa in a sanplc (taxa tha are 
considered sensitive to water quality 
degradation)

D e c re a se  (Plafkin et al. 1989)

EPT Abundance Number of Ephemeroptera, Plecoptcra, and 
Trichoptera in a sample. Decrease

Percent Dominant Taxa Proportion of the entire community composed 
of the most abundant taxa.

Increase (Plaflcin et al. 1989)

HilsenhofTs Biotic Index 
(HBI or FBI)

Developed to detect organic pollution based 
on the indicator organism approach to water 
quality. Values on a scale of 0 to 10.
FBI -  1/NZat.
N = the total number of individuals in the 
sample
a -  the number of individuals in a family 
t, = the tolerance score for that Emily

Increase (Hilsenhoff 1982)

EPT :Chironomidae ratio

The ratio o f EPT to Chironomidae If the tatio 
is< 1.0, the community has a disproportionate 
number of Chironotnids relative to the more 
pollution-sensitive EPT taxa; Chironotnids 
tend to increase with increasing organic 
enrichment (Fcrringon, 1987)

D e c re a se  (Hilsenhoff 1982)

Composite Normalized 
Metric

An unweighted index of biointegrity 
(individual stream scores/max. score for all 
streams) = taxa richness + total dbundaancc + 
EPT taxa + EPT abundance + EPT 
chironomidae + % dominant taxa + 
scrapers:total organisms + shredderfiltering 
collectors

Increase (Rothrock et al. 1998)

ScrapenFiltering
Collectors

Shifts in functional feeding group 
composition indicate an overabundance of a 
particular food source. Scrapers increase with 
increasing diatoms. Filterers increase with 
increasing filamentous algae and aquatic 
mosses, but are sensitive to toxins.

Decrease
(Rothrock et al. 1998)

Shredders:Total
Organisms

Shredders are sensitive to riparian zone 
impacts and also can be indicators of toxins.

Decrease 
(Rothrock et al. 1998)

Percent Model Affinity

An index of macroinvertebrate community 
composition used to measure the affinity of a 
community to that of the expected, ideal 
community.
% Model Affinity = 100-0.5 l l a - b  1 
a = the percentage of individuals of a taxon in 
sample A, which is the model community 
value for a taxon
b = the percentage of the same taxon in 
sample B

Decrease (Novak and Bode 1992)
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The effectiveness of HilsenhofTs Biotic Index, diversity, richness, ratios, compilation 

metrics and similarity indices were compared. The variability of a metric and its ability to 

distinguish between disturbed and reference communities were the criteria used.

3 .1  METHODS - BIOMONITORING

3.1.1 Invertebrate Data Set Description

Survey information collected in the study was summarized in four data sets (Table 3.2). 

These were the “taxonomic”, “functional feeding group”, “seasonal” and “yearly” data 

sets. Taxonomic or functional feeding group abundance information was used in the data 

sets. The sites included in the seasonal and year to year data sets were sampled on a 

number of different dates (Tables 3.3 and 3.4).

3.1.2 Natural Variability

3.1.2.1 Seasonal and Yearly Variability

Percent dominance, % Diptera abundance, EPT /Chironomidae ratio, Total Density, 

Percent Model Affinity, and taxonomic group densities were calculated from the 

taxonomic group, seasonal and the yearly data sets. The coefficient of variation ((cv = 

standard deviation/mean)* 100) measured the seasonal and yearly variability in each 

metric, within each individual site. To assess the magnitude of the variability, I compared 

within site coefficients to between site coefficients generated from the taxonomic group 

matrix. Within site variability of the metrics was considered low if the metric’s 

coefficient of variation was under 50% (Barbour et al. 1992).
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Table 3.2 Taxonomic descriptions o f  the four data sets used to calculate biomonitoring 
metrics.

Data Set_____________ Visits/Site Taxonomic Description
“Taxonomic” 56 sites, one visit •  Diptera identified to Family

• Other Insects to Order
•  Non-insect groups

“Family” 30 sites, one visit • Insects identified to Family
•  Non-insect groups

“Seasonal” 5 sites, 4-6 visits per site 
(Table 3.3)

• Diptera identified to Family
• Other Insects to Order
•  Non-insect groups

“Yearly” 9 sites, 2-3 visits per site 
(Table 3.4)

•  Diptera identified to Family
• Other Insects to Order
•  Non-insect groups

Table 3.3 Sites belonging to the “Seasonal" data set and the dates they were sampled

Site
Name

Catchment 
Area Class

Type of 
Disturbance

Sampling Dates 
(day/month/year)

Walk 5.1 IK 1 km2 Unharvested 22/06/99,07/07/99,26/07/99, 
09/08/99,23/08/99,20/09/99

Walk 5.1 10K 10 km2 Unharvested 17/06/99,06/07/99,27/07/99, 
05/08/99,18/08/99,20/09/99

Settimio IK 1 km2 Unharvested 18/06/99,21/07/99,11/07/99, 
26/08/99

Settimio 10K 10 km2 Unharvested 14/06/99,30/06/99,20/07/99, 
03/08/99,27/08/99,24/09/99

Settimio Clearcut 1 km2 Harvested 15/06/99,01/07/99,22/07/99, 
04/08/99,24/08/99,28/08/99
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Table 3.4 Sites belonging to the “Yearly " data set, and dates they were sampled.

Site
Name

Catchment 
Area Class

Type of 
Disturbance

Sample Dates 
(day/month/year)

W 5.1 1 kmz Unharvested 29/07/97,26/07/99
M2 10 km2 Harvested 26/07/95,04/07/96, 15/07/97
W5 10 km2 Harvested 22/08/95, 17/07/97,08/05/98,
W2 10 km2 Harvested 18/07/95,08/08/97

Walkinshaw South 10 km2 Harvested 21/05/98,08/06/99
Walkinshaw North 10 km2 Harvested 20/08/98,08/06/99

East Loon 10 km2 Unharvested 31/07/95, 17/06/96,05/06/98,
Abigogami 40 km2 Harvested 09/06/95, 14/08/98

W1 100 km2 Unharvested 14/07/95,01/08/97
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3.1.2.2 Stream Size Variability (Catchment Area)

To determine whether or not metric values vary with the size of a stream’s catchment, the 

following metrics were calculated from the Family data set: Shannon-Weiner diversity 

index, Family Biotic Index, Composite Normalized Metric, Taxa Richness, 

EPT/Chironomidae abundance, EPT taxa richness, Percent Dominance, Filterer/Scraper 

and Shredder/Total abundance, Percent Model Affinity and RBPII. To determine if these 

metric values were different for small streams compared to large streams, two-way 

ANOVA was used. The data set included both harvested and forested sites. To control for 

harvesting effects on the metrics, disturbance type was included as the second factor in 

the analysis. To complement this information, individual site metric values were 

compared to published scoring criteria for individual metrics to determine how healthy 

these sites were considered (Tables 3.5 and 3.6). This was done by comparing harvested 

streams with uncut reference streams from all stream sizes and then comparing harvested 

streams with only uncut reference streams of a specific catchment size.

Both Percent Model Affinity and RBP II score are measures of the similarity of the 

stream in question to the values expected at a healthy stream (reference condition). 

Therefore, to determine the association between catchment area and these two metrics, 

several different reference conditions were calculated. An “all stream size” reference was 

determined by calculating the expected condition from all sizes of “forested” streams in 

the data se t Then reference conditions were calculated by including only streams 

belonging to a specific size class (1km2, 10 km2, 40 km2, 100 km2). The calculations of 

RBP and Percent Model Affinity scores for individual sites requires a reference (healthy
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Table 3.5 Criteria fo r  characterization o f  biological condition (modifiedfrom Plafkin et al. 1989)

Biological Condition Scoring Criteria_______________
Metric Non-impaired Impaired Severely Impaired

Taxa Richness<() >80% 4 0 -8 0 % <40%
Family Biotic Index(b) > 85% 50-85% <50%

ScrapenFilterers(,) >50% 25-50% <25%
EPT/Chironomidae w >75% 25 -  75% <25%

% Dominance w <30% 30-50% >50%
EPT richness(a) >90% 70 -  90% <70%

Shredders/Total(a) >50% 2 5-50% <25%

(a) score is a ratio of study site to reference site x 100
(b) score is a ratio of reference site to study site x 100

Table 3.6 Percent Model Affinity Scoring Assessment (Novak and Bode 1992)
Similarity to the Model Community Assessment

065% Non-impacted
50 -  64% Slightly impacted
35-49% Moderately impacted

< 35% Severely impacted
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condition) value in the equation. The reference values for RBP II and Percent Model 

Affinity were generated from the average of the uncut sites.

3.1.3 Comparison of Metrics

To determine whether or not metrics were sensitive to timber harvesting impacts, the 

following metrics were calculated from the Family data set: Shannon-Weiner diversity 

index, Family Biotic Index, Composite Normalized Metric, Taxa Richness, 

EPT/Chironomidae abundance, EPT taxa richness, Percent Dominance, Filterer/Scraper 

and Shredder/Total abundance, Percent Model Affinity and RBP II. To determine if these 

metric values were different in timber harvested streams compared to undisturbed 

streams, two-way ANOVA was used. The data set included both harvested and forested 

sites, but no burnt sites (Table 2.1). To control size effects on the metrics, catchment area 

was included as the second factor in the analysis. To complement this information, 

individual site metric values were compared to published scoring criteria for individual 

metrics (Tables 3.5 and 3.6). Reference values for RBP II and Percent Model Affinity 

were generated from the average of the uncut sites.
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3 .2  RESULTS -  BIOMONITORING

3.2.1 Natural Variability

3.2.1.1 Seasonal Variability

Seasonal variability (cv) was calculated at five sites and assessed both in relation to the 

variability found among all 56 sites combined and according to the criteria of Barbour et 

al. (1992). Seasonal variability was high for most metrics and equaled or exceeded 

between site variability for one or more of the sites considered (Figure 3.1). Metrics that 

had low seasonal variability according to Barbour’s criteria ' ( c v ’ s  < 50%) were Percent 

Dominance, Percent Model Affinity and Percent Dipterans. Seasonal variability for all 

other metrics was high (cv > 100%) for at least one of the sites considered, but on 

average, seasonal variability was less than between site variability in all cases. Figure 3.1 

compares the seasonal variability of some of the metrics calculated.

3.2.1.2 Yearly Variability

Yearly variability (cv) was calculated for nine sites and assessed both in relation to the 

variability found among all 56 sites combined and according to the criteria of Barbour et 

al. (1992). Yearly variability for density (individuals/ m2) metrics (Chironomidae, 

Ephemeroptera, Plecoptera, Trichoptera) was consistently lower than between site 

variability (Figure 3.2). In contrast, the yearly variability for other calculated metrics 

(Percent EPT, EPT/Chironomidae, Percent Dominance, Percent Diptera, Percent Model 

Affinity) equaled or exceeded between site variability (Figure 3.2). In general, all metrics 

except Percent Dominance and Percent Model Affinity had cv’s consistently exceeding 

50%, which is considered high (Barbour et al. 1992).
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3.2.1.3 Stream Size Variability (Catchment Area)

All indices differed among catchment size (Figure 3.3-3.10, Table 3.7). Although the 

direction of difference varied, in all cases 1 km2 and 40 km 2 were the most different with 

10 km2 and 100 km 2 being intermediate.

Impairment assessment (Plafkin et al. 1989) for individual sites were sensitive to the size 

of the streams (Tables 3.8 and 3.9). EPT richness values indicated severe impairment at 

some sites when not calibrated to catchment size, but moderate impairment at the same 

sites when calibrated to catchment size. EPT/Chironomidae ratio diagnosed two 1 km2 

sites as severely impaired when not calibrated to catchment size, but no impairment when 

calibrated to catchment size. The Scraper/Filterer metric diagnosed ten sites as impaired 

when not calibrated to catchment area, and only six when calibrated to catchment area.

RBP II scores also appeared sensitive to the size of the stream. One km2 site scores 

increased from 36% and 21% to 57% following the size calibration (Table 3.10 and 

3.11). Percent Model Affinity scores for disturbed sites also appeared to be sensitive to 

the size of the stream. The scores for all sites improved slightly with calibration to 

catchment size, and Abigogami and W5 changed ratings from moderately impacted to 

slightly impacted when calibrated to catchment size (Table 3.12 and 3.13).

3.2.2 Comparison of Metrics

In general, when harvested sites were considered as a group they did not differ 

significantly from unharvested sites according to the metrics considered (Figure 3.3-3.10,
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Table 3 .7 Summary o f  the catchment area main effect two-way ANOVA results fo r  each metric, their
direction o f  difference with catchment area, (degrees offreedom were F3,19 in all cases).

Metric Direction of Difference F Valne P
Taxa Richness increased with catchment area 7.93 0.007

Family Biotic Index decreased with catchment area 3.96 0.021
Composite Normalized Metric increased with catchment size 6.53 0.003

Shannon-Weiner Diversity increased with catchment size 14.79 0.0001
EPT /Chironomidae increased with catchment area 5.42 0.006
Percent Dominance decreased with catchment area 8.47 0.001
Scraper/Fiherer ratio increased with catchment area 4.00 0.021

EPT richness increased with catchment area 21.02 <0.0001
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Figure 3.3 Taxa richness mean and variability fo r  each catchment area and disturbance type. 
Different letters indicate catchment area classes that differ significantly (Tukey HSD, a  = 0.05).
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Figure 3.4 Family Biotic Index mean and variability fo r  each catchment area and disturbance type. 
Different letters indicate catchment area classes that differ significantly (Tukey HSD. a  = 0.05)
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Figure 3.5 Composite Normalized Metric mean and variability fo r  each catchment area and  
disturbance type. Different letters indicate catchment area classes differ significantly (Tukey HSD, 
a  = 0.05).
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Figure 3.6 Shamon-Weiner Measure o f  Diversity fo r  each catchment area and disturbance type. 
Different letters indicate catchment area classes that differ significantly (Tukey HSD, a  = 0.05)
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Figure 3 .7  EPT/Chironomidae abundance mean and variability fo r  each catchment area and 
disturbance type. Different letters indicate catchment area classes that differ significantly (Tukey 
HSD. a  = 0.05).
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Figure 3.8 Percent dominance mean and variability fo r  each catchment area and disturbance type. 
Different letters indicate catchment area classes that differ significantly (Tukey HSD, a  = 0.05)
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Figure 3.9 Scraper/Filterer mean and variability fo r  each catchment area and disturbance type. 
Different letters indicate catchment area classes that differ significantly (Tukey HSD, a  = 0.05).

Disturbance

Uncut

Cm

Catchment Area (km2)
Figure 3.10 EPT richness mean and variability fo r  each catchment area and disturbance type. 
Different letters indicate catchment area classes that differ significantly (Tukey HSD, a  = 0.05).
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Table 3.8 Site assessm ents according to individual metrics (Plafkin et al. 1989). Reference values were 
generated from  a ll sites (not calibrated to  catchment area). A ll sites in table were cut. Uncut sites were 
used as reference stream s (M oderately Im paired = M. Severely Impaired = S, Unim paired = blank cell)

Site & Catcbaeat Doauaaat ic ripen/ EFT/ shredders/

Area Tail fillercn RkhEPT Chir total RichTaia FBI

MadOK (It) S S M S M M

Ian aabara (1) S s S S S M

SettCat(l) S s s S M

W4.1 (I) s s s s M
Robia Rd (100) s M M M

Mac 2119(b) (10) s s M M

MaskratlOK (10) s M s
Maskrat River (109) s M s

BeckClear (40) s S
Moraiae (100) s M

WoifpaplOOK(lOO) s s
WlkMcClear (40) s
Mac2120(a) (10) s

AM (40)
WS(40)

Table 3.9 Site assessm ents according to  individual metrics (Plafkin et al. 1989). Reference values were 
calibrated to catchment area. A ll sites in table were cut. Uncut sites were used as reference streams. 
(M oderately Im paired = M, Severely Im paired = S. Unimpaired = blank cell)

Site & Catchaeat Doaiaaat sera pen/ EFT/ shredders/
Area Taxi liltercn RkhEPT Chir total RichTaia FBI

MaclOK(IO) S S M S M M
lars aabara (1) S M S M

SettCat(l) s s M M
W4.1 (1) s S M M

RoMa Rd (100) s M M
Mac 2110(b) (10) s s S M
MaakratlOK (10) s S

Maskrat River (100) s M s
BeckClear (40) s s
Moraiae (100) s M

WoifpaplOOK (100) s s
WlkMcClear (40) s
Mac2120(a) (10) s

AM (40) s
WS(40) s
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Table 3.10). No significant interaction effects between catchment area and disturbance 

were detected for any of the metrics (Figure 3.3-3.10, Table 3.11). However when 

individual sites were evaluated using the impairment criteria outlined by Plafkin et al. 

(1989) many sites were considered impaired to some degree (Table 3.8-3.9). Percent 

Model Affinity distinguished between severely, moderately, and slightly impaired, while 

RBPII rated most sites as moderately impaired (Tables 3.12 to 3.15). Percent Model 

Affinity also identified 3 sites (Abigogami, Moraine and W5) as impaired, whereas RBP 

II metric did not Although these three harvested sites were dissimilar to reference sites, 

their individual metric values were considered extremely healthy. For example, 

Abigogami had an unusually high taxa richness, which would be considered healthy, 

despite being dissimilar. Abigogami, Moraine and W5 were not considered impaired 

when the reference condition was calibrated to catchment area. Similarly, one site 

(Larson Unbumt 1 km2) was considered severely impaired by the RBP II, but not 

impaired when calibrated to catchment area

3 .3  DISCUSSION - BIOMONITORING

This study showed that the season, year and stream catchment area can all affect the 

numerical value of a macro invertebrate biomonitoring metric (Figures 3.1 and 3.2, Tables 

3.8-3.15). On average both seasonal and yearly variability were less at individual sites 

than the variability existing between sites. However, in some cases, both the seasonal and
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Table 3.10 Summary ofthe disturbance main effect two-way ANOVA results for each metric, their direction

o f difference with disturbance type, (degrees o f  freedom were F, #  in a ll cases)

Metric Direction of Difference F Value Significance
Taxa richness no difference 0.36 0.56

Family Biotic Index no difference 0.30 0.59
Composite Normalized Metric no difference 0.19 0.67

Shannon-Weiner Diversity no difference 3.06 0.09
EPT/Chironomidae abundance no difference 3.13 0.09

Scrapers/Filterers no difference 0.61 0.44
Shredders/Total no difference 0.02 0.90

RichEPT no difference 0.18 0.68
Dominant Taxa no difference 3.18 0.09

Table 3.11 Summary o f  the interaction effect two-way ANOVA results fo r  each m etric, their direction o f  
difference with catchment area and disturbance type combinations (degrees o f  freedom  were F329 in all 
cases)

Metric Direction of Difference F Value Significance
Taxa richness no difference 124 0.32

Family Biotic Index no difference 1.16 0.92
Composite Normalized Metric no difference 123 0.32

Shannon-Weiner Diversity no difference 1.01 0.19
EPT/Chironomidae abundance no difference 0.77 0.53

Scrapers/Filterers no difference 1.09 0.37
Shredders/Total no difference 0.51 0.68

Rich EPT no difference 2.54 0.08
Dominant Taxa no difference 1.79 0.18
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Table 3.12 Impaired sites according to RBP II. Reference values not calibrated to catchment size.

Similarity to the 
Reference Community

Assessment Site and Site Score Catchment Size and 
Disturbance Type

<21% Severely Impaired Larson Unbumt (21%) Cut, 1 km2
21-29% Severely to 

Moderately Impaired
None None

29-72% Moderately Impaired Settimio Cutover (36%) 
W 4.1(36%)

Mac 10K (36%) 
Mac 2110(b) (57%) 
Muskrat 10K (64%) 
Beck Clearcut (71%) 
Muskrat River (64%) 
Robin Road (64%) 

Wolfpup 100K(71%)

Cut, 1km2 
Cut, 1 Ion2 

Cut, 10 km2 
Cut, 10 km2 
Cut, 10 km2 
Cut, 40 km2 
Cut, 100 km2 
Cut, 100 km2 
Cut, 100 km2

Table 3.13 Im paired sites according to  RBP II. Reference values were calibrated to  catchment size.

Similarity to the 
Reference Community

Assessment Site and Site Score Catchment Size and 
Disturbance Type

<21% Severely Impaired None None
21-29% Severely to 

Moderately Impaired
None None

29-72% Moderately Impaired Larson Unbumt(57%) 
Settimio Cutover (37%) 

W 4.1 (57%)
Mac 10K (36%) 

Mac 2110(b) (50%) 
Muskrat 10K(71%) 
Beck Clearcut (71%) 
Muskrat River (64%) 
Robin Road (71%) 

Wolfpup 100K (71%)

Cut, 1 km2 
Cut, 1 km2 
Cut, 1 km2 

Cut, 10 km2 
Cut, 10 km2 
Cut, 10 km2 
Cut, 40 km2 

Cut, 100 km2 
Cut, 100 km2 
Cut, 100 km2
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Table 3 .14  Im paired sites according to  Percent M odel Affinity scores (Novak and Bode 1992). Reference 
values w ere not calibrated to  catchment size.

Similarity to the 
Reference Community

Assessment Site and Site Score Catchment Size and 
Disturbance Type

< 35% Severely Impacted Mac Lake (30.2%) 
Moraine (20.1%)

Cut, 10 km 
Cut, 100 km2

35-49% Moderately Impacted Abigogami (46.0%) 
W5 (46.0%)

Cut -  40 km2 
Cut-4 0  km2

50-64% Slightly Impacted Settimio Cutover (58.2%) 
Larson Unburnt (55.6%) 
Muskrat River (57.3%)

Cut -  1 km2 
C u t- 1 km2 

Cut -  10 km2

Table 3.15 Im paired sites according to  Percent M odel Affinity scores (Novak and Bode 1992). Reference 
values were calibrated to  catchment size

Similarity to the 
Reference Community

Assessment Site and Site Score Catchment Size and 
Disturbance Type

< 35% Severely Impacted Mac Lake (33.4%) 
Moraine (23.2%)

Cut, 10 km 
Cut, 100 km2

35-49% Moderately Impacted None
50-64% Slightly Impacted Settimio Cutover (62.4%) 

Larson Unburnt (60.2%) 
Mac 2110 (58.9%) 

Muskrat River 10K (57.1%) 
Abigogami (604%)

W5 (53.6%)

Cut, 1 km2 
Cut, 1 km2 

Cut, 10 km2 
Cut, 10 km2 
Cut, 40 km2 
Cut, 40 km2
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yearly variability of a metric exceeded between site variability. For example, the seasonal 

cv for Ephemeroptera density at Walk 5.1 lk exceeded between site variability, as did the 

seasonal variability of EPT/Chironomidae at Settimio lk (Figure 3.1). These metrics also 

had high cv (cv > 50%). values according to Barbour et al. (1992).

Metrics that tend to have high variability may provide inconsistent and unreliable 

information about a stream. For example, a stream may have a high density of 

Ephemeroptera early in the season due to a recent hatch, later in the season the 

Ephemeroptera numbers may decrease because of emergence. As a result, early in the 

season the Ephemeroptera metric may indicate a healthy stream, whereas late in the 

season the metric may indicate an unhealthy stream. Actually, the impaired assessment 

has nothing to do with stream health and everything to do with the life cycle of the 

Ephemeroptera.

The evidence of high seasonal variability in most of the metrics in this study emphasizes 

the need for researchers to sample during a short window of time. Hilsenhoff et al. (1982) 

acknowledged the influence of stream current, temperature and seasonal factors on biotic 

index values. His biotic index values are falsely high in summer, when he found that 

many species are in diapause. Lenat (1993) adjusts tolerance values to accommodate 

seasonal differences in Southeastern United States.

The consistent information derived from stable metrics may be an important component 

of biomonitoring programs. Metrics that had both low seasonal and yearly variability
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according to Barbour et al. (1992) criteria (cv < 50%) were Percent Dominance, Percent 

Model Affinity and Percent Dipterans. If highly variable metrics are used it should likely 

be in conjunction with more stable metrics.

Inconsistencies existed in the diagnosis of individual sites depending on how the 

reference condition was derived (Tables 3.7 to 3.12). Sites were often diagnosed 

differently when tested against reference values calculated from all sites rather than from 

a specific stream size class. More specifically, 1 km 2 sites appeared more prone to a 

severely impaired diagnosis when reference streams were not calibrated to catchment 

area. This diagnosis is likely due to low diversity and richness that characterized these 

smaller streams (Figure 3.3 and 3.6). Low diversity and low richness are considered signs 

of impairment (Plafkin et al. 1989). However, these characteristics were related to 

catchment size rather than disturbance (Table 3.7). Many authors have acknowledged that 

headwater streams fed by nutrient poor groundwater are naturally low in productivity. 

Low diversity and richness reflect this low productivity (Pinder and Farr 1977, Plafkin et 

al. 1989). To avoid misinterpretation of the health of small streams, calibration of 

reference metrics should be based on catchment size, especially when dealing with this 

size class of stream.

All metrics differed among catchment sizes (Table 3.7). This finding substantiates that 

classification of reference communities by catchment size may reduce natural variability. 

The average values for the metrics considered were different at smaller streams compared
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to larger ones. Calibrating metrics to catchment area is a simple way to improve the 

accuracy of the assessment

I assumed a priori to the tests that if streams were impacted by harvesting in the 

catchment, some or all of the metrics calculated would differ between harvested and 

forested streams. However, in all cases metric values did not differ among streams 

flowing through harvested and forested areas. There are three possible explanations for 

the results. First, harvesting has no influence on stream invertebrate communities, or not 

enough influence to show an impact. Second, harvesting in the catchment impacted a few 

sites; however, not enough sites to differentiate them from unimpaired, because the 

unimpaired sites are so variable. Third, the sites had been impacted but the metrics used 

in this study did not detect the impact.

Examination of metric scores at individual sites supported the second hypothesis that 

there were not enough impaired sites to differentiate them from unimpaired. Every metric 

identified impairment at some sites. Similarly, Percent Model Affinity and RBP II 

identified several sites as impaired. As mentioned in the previous chapter, there may be 

extensive variability in the proportion of disturbed area in the study catchments. Likely, 

the proportion of harvested area in the catchment is one factor that mediates the impacts 

of timber harvesting on a stream. Larger harvested areas could cause more of a disruption 

to a stream macroinvertebrate community. Thus, some sites may have been impaired, but 

variability in the disturbance area data could have masked the impairment in the 

ANOVA.
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The biomonitoring indices analyzed did not provide a clear evaluation of whether or not 

timber harvesting influenced stream macroinvertebrate communities. None of the indices 

differed between harvested and forested sites. However, all of the indices identified 

impairment at some individual sites. A more detailed investigation of the 

macroinvertebrate community composition in unharvested, forested and different sizes of 

streams may further verify one of the three explanations for the inability to detect harvest 

impacts. Further monitoring of some of these “impaired” streams to verify whether or not 

they should be considered impaired in terms of other values (fish presence, habitat 

characteristics) could be valuable.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 .0  INTRODUCTION -  MULTIVARIATE ASSESSMENT

Natural variability in stream dwelling benthic macroinvertebrate community composition 

is an obstacle when they are used for biomonitoring for stream impairment. 

Macroinvertebrate community assemblages differ both among streams and over time 

within the same stream. To use macroinvertebrates effectively for biomonitoring of 

stream habitat an awareness of the factors that determine the distribution of 

macroinvertebrates in an undisturbed setting is necessary. Factors that explain relatively 

large amounts of variability could be incorporated into a biomonitoring program in order 

to account for some variability in the data. In the previous chapter, stream size 

(catchment area) was identified as a factor that does account for variability in 

communities. Another factor that may be related to community is microhabitat (substrate 

profile, temperature and velocity).

The immense variation among macroinvertebrate communities is probably related, in 

part, to the variation in microhabitat characteristics among streams. Some influential 

microhabitat characteristics may be: substrate composition (Richard et al. 1993, Minshall 

et al. 1984) canopy characteristics, terrestrial organic inputs (Egglishaw 1964, Molles 

1982, Corkum 1992), temperature and hydrology (Merrit and Cummins 1996a). Attempts 

to partition variation in the macroinvertebrate community are often made by 

characterizing habitat, and sampling from similar habitats.

Consideration of factors, such as stream size, that control microhabitat characteristics 

may be another way to partition variability. Within my study area, instream temperature,
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discharge and gradient have all been shown to relate to the size of the stream (Rankin 

2000). Nutrient inputs, colonization rates and predation usually differ according to the 

size of a stream (Vannote et al. 1980).

The previous chapter determined that most macroinvertebrate biomonitoring metrics 

differ according to stream size. Analyses in this chapter complement this finding by 

exploring the invertebrate community and its relation to stream size and habitat using 

multivariate analyses. The multivariate analyses take correlation among variables into 

account. The multivariate method also identifies variables that effectively distinguish 

between groups. This avoids the subjective selection of indices and the construction of 

scoring criteria (Somers et al. 2002). The multivariate exploration of the 

macroinvertebrate community may provide greater understanding of how individual taxa 

are affected by stream size and in turn how this effect of stream size influences the 

metrics used in the previous chapter.

Stream size can be expressed as “stream order” (Vannote et al. 1980) or by “catchment 

area” (Frissel et al. 1986). Catchment area may be more accurate and useful for 

comparisons between streams, because it is an objective measurement, independent of 

flow fluctuations and can be calculated by GIS computer software. In addition, 

“catchment area” is not related to map scale or mapping accuracy, whereas “stream 

order” is.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Disturbance to the forest adjacent to a stream may also influence stream habitat and thus 

the macroinvertebrate community dwelling within that habitat Human landuse (e.g. 

timber harvesting) has been shown to have a strong influence on instream habitat by 

increasing the rate of water and nutrient movement into the stream and by inducing 

erosion and sedimentation (Allan et al. 1997, Richards et al. 19%, Rothrock et al. 1998). 

Besides timber harvesting, other disturbances such as forest fire may also influence the 

instream macro invertebrate communities that directly utilize this habitat

On average, metrics did not differ between harvested and forested streams. However, 

when examined individually, some sites were considered impaired. In the previous 

chapter, three possible explanations for this result were given: 1) none of the streams 

were impaired by harvesting, 2) some were impaired but too few or too moderately to 

influence the analysis, or 3) that most sites were actually impaired but the metrics used 

were not sensitive enough to detect impairment caused by harvesting. In this chapter, the 

influence of timber harvested on both the macroinvertebrate community and the habitat 

structure of the stream will be examined using multivariate analysis.

Other studies have found that exploratory multivariate methods based on community 

composition were sensitive to stress-induced changes in aquatic communities and 

detected differences that were not reflected by biomonitoring metrics (Somers et al. 2002, 

Warwick and Clarice 1991, Yan et al. 1996). Possibly, the examination of 

macroinvertebrate communities as a whole may support one of the hypotheses generated 

in the previous chapter.
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The study presented in this chapter had three objectives. The first objective was to verify 

that invertebrate community structure is related to physical habitat variables in 

Northwestern Ontario streams. Macroinvertebrate community structure was expected to 

relate to differences found among stream substrate profile, instream temperature and 

discharge.

The second objective was to investigate if macroinvertebrate community and instream 

physical habitat characteristics differ with the size of the stream (catchment area). 

Instream habitat variables were expected to differ among streams of different sizes. 

Discharge and temperature were predicted to increase with stream size. The relative 

abundance of substrate size classes was predicted to shift as stream size increased. 

Streams with larger catchment area would have a greater discharge, which would 

suspend and carry away fine sediment leaving behind a more coarse substrate profile. 

Streams with smaller catchment areas would have less powerful discharge and likely a 

finer sediment profile as fine sediments would settle out of the water column.

Macroinvertebrate community structure was expected to relate to catchment area (stream 

size) according to the predictions of the River Continuum Concept (Vannote et al. 1980). 

Taxonomic differences as well as shifts in functional feeding groups were expected. 

Shredders were expected to be co-dominant with collectors in the headwaters. With 

increasing stream size, collectors (grazers and filterers) become more dominant. Scrapers 

are adapted for shearing attached algae from surfaces and their relative abundance was
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expected to peak in mid-sized rivers. Predators abundance was expected to remain 

constant with stream size changes (Vannote et al. 1980).

The third objective was to determine if the macroinvertebrate community and habitat 

were influenced by timber harvesting for any or all stream sizes. Vulnerability of these 

instream variables to the effects of timber harvesting was expected to vary with the size 

of the catchment, with smaller streams being more vulnerable. Increased discharge and a 

shift in the sediment profile were expected after timber harvesting and burning. 

Invertebrate community structure in streams with adjacent disturbance (timber harvest 

and fire) was expected to differ from streams with no adjacent disturbance.

4 .1  METHODS -  MULTIVARIATE ASSESSMENT

4.1.1 Invertebrate Data Set Description

Three macroinvertebrate data sets were created (“Taxonomic”, “Family” and “Functional 

Feeding Group”) (Table 4.1). For the multivariate analyses, the “Taxonomic” and 

“Functional Feeding Group” data sets were used, but not the “Family” data set. The 

information in the “Family” data set was necessary only for the creation of the 

“Functional Feeding Group” data set

4.1.2 Instream Physical Habitat Data Collection

All habitat data were collected from May to September, in base flow conditions. Instream 

temperature and discharge were measured at each site. Discharge was calculated by
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Table 4.1 Taxonomic Description o f  the three data sets used to  examine the relationships between 
catchment area, disturbance type and m acroinvertebrate community assemblage.

Data Set Visits/Site Sampling Periods Taxonomic
Description

“Taxonomic”

“Family”

“Functional 
Feeding Group”, 

(based on 
“Family” dataset)

56 sites, one visit

30 sites, one visit 

30 sites, one visit

4 sites in 1995
5 sites in 1997 

20 sites in 1998 
27 sites in 1999

4 sites in 1995 
11 sites in 1998 
15 sites in 1999

4 sites in 1995 
11 sites in 1998 
15 sites in 1999

• Insects to Order
•  Non-insect groups 

more generalized

• Insects to Family
• Non-insect groups 

more generalized

• All taxa 
categorized into 
functional feeding 
groups (Merrit and 
Cummins 1996b)
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measuring water velocity at 60% water column depth at 20 points across a transect (Bain 

and Stevenson 1999). Cross-sectional flow was relatively uniform at the chosen transect 

Discharge was then calculated using the formula:

20

Q = £  (interpoint distance x depth x velocity)
i -  I

To characterize stream substrate 110 to 180 pebbles were measured at each site. A reach 

of approximately 40 metres long was sectioned by 10 to 12 transects. At 3 to 5 points 

along each transect 3 pebbles were randomly selected. The median axis length was 

measured to the nearest millimeter. I grouped pebbles according to Wentworth 

classification (Cummins 1962) (Table 4.2). The data were then compiled and converted 

to a percentage of total number of pebbles counted.

4.1.3 Statistical Analyses

4.1.3.1 Instream Physical Habitat Data

To test for differences in pebble size classes among streams with different catchment 

sizes and disturbance activities, I used a MANOVA (multivariate analysis of variance). 

This procedure tested for differences among the main effects (area class and disturbance 

type) as well as the interaction between the main effects. Area classes included 1,10,40 

and 100 km2 sites. Disturbance type included undisturbed, timber harvested or burnt sites. 

The hypothesis that disturbance impacts are dependent upon catchment size was tested 

with the interaction term in the MANOVA. If a significant effect was detected by the 

MANOVA, variables important in differentiating among the groups (catchment and
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Table 4.2 Modified Wentworth Classification (Cummins 1962)
Substrate type Particle size ranee (mm)
Bedrock >1001
Boulder 256-1000
Cobble 64-256
Pebble 16-63
Gravel 2-15
Sand 0.06-1
Silt/Clay <0.059
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disturbance) were identified using a Discriminant Function Analysis (DFA). To explore 

differences in temperature and discharge among treatments, I used a Kruskal Wallis non- 

parametric test because transformations did not normalize the discharge data.

4.1.3.2 Macroinvertebrate Community and Instream Habitat Relationship

To relate environmental variables to invertebrate community structure, I first summarized 

the macroinvertebrate information using principal component analyses on both the 

taxonomic and functional feeding group matrix. The first principal component generated 

from each analysis was regressed against substrate size classes, temperature and 

discharge.

4.1.3.3 Invertebrate Community Composition

To test for differences in macroinvertebrate communities (Taxonomic Group, Functional 

Feeding Group) among streams with different sized catchment areas and streams with 

cut, uncut catchments, I used a MANOVA. Burnt sites were also included in the 

taxonomic group MANOVA as a factor in the disturbance type main effect This 

procedure tested for differences among the main effects (area class and disturbance type) 

as well as the interaction between the main effects. The hypothesis that disturbance 

impacts are dependent upon catchment size was tested with the interaction term in the 

MANOVA. To identify variables important in differentiating among the groups when a 

significant effect was detected by the MANOVA, I used a Discriminant Function 

Analysis (DFA).
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4 .2  RESULTS -  MULTIVARIATE ASSESSMENT

4.2.1 Instream Physical Habitat Data

4.2.1.1 Substrate

Substrate class composition differed significantly among streams with different sized 

catchment areas (MANOVA, F2U 13 = 1.657, p = 0.049). There was no difference in 

substrate class among disturbance type (MANOVA, F 14,78= 0.828, p = 0.637). As well, 

no interaction between catchment area and disturbance type was detected (MANOVA 

F28.142 = 0.842, p = 0.695). Substrate classes important in differentiating among 

catchment area classes were identified using a DFA. One significant function generated 

by the analysis explained 45% of variance among group centroids and accounted for 82% 

of the variability explained by the analysis (canonical correlation = 0.674) (Tables 4.3 

and 4.4).

Group centroids indicated that Function 1 discriminated most effectively between one 

km2 sites (1.275) and 100 km2 sites (-1.093) (Figure 4.1). One km2 sites were 

characterized by higher percentages of sand (standardized CDF coefficient = 0.587) and 

silt (standardized CDF coefficient = 0.550). Forty and 100 km2 sites clustered towards the 

negative end of Function 1 (Figure 4.1) and were characterized by boulders (standardized 

CDF coefficient = -0.298) and pebbles (standardized CDF coefficient =

-0.318). Ten km2 sites did not form a cohesive group along Function 1 ’s axis (Figure 

4.1).
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Table 4.3 Variance explained by the Junction generated by the DFA. Sites were grouped by catchment 
area and then characterized by substrate size  class

Function Eigenvalue % of Variance Cumulative % Canonical Correlation
1 0.833 82.0 82.0 0.674
2 0.119 11.7 93.8 0.326
3 0.063 6.2 100.0 0.244

Table 4.4 Significance o fth e functions generated by the DFA. Sites were grouped by catchment area  
and then characterized by substrate size class

Test of Functions Wilk’s Lambda Chi-Square df Significance
1 through 3 0.458 37.835 21 0.013
2 through 3 0.843 8.442 12 0.750

3 0.940 2.979 5 0.703
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4.2.1.2 Discharge and Temperature

Discharge and temperature showed a pattern similar to substrate. Median discharge 

values were 1 km2 = 0.00149592 m3/second, 10 km2 = 0.010752 m3/second, 40km2 = 

0.0167 m3/second, and 100 km2 = 0.120741 m3/second. Discharge significantly 

increased with catchment area (Kruskal-Wallace, p < 0.0001, n = 54, Figure 4.2). 

Discharge did not differ significantly among disturbance groups (Kruskal-Wallace, p = 

0.481, n = 54).

Temperature significantly increased with increasing catchment areas (Kruskal-Wallace, 

p < 0.0001, n = 54). Median temperatures were 1 km2= 13,10 km2 = 15,40km2 = 17, and 

100 km2 = 20 (Figure 4.3). Temperature did not differ significantly among disturbance 

groups (Kruskal-Wallace, p = 0.596, n = 54).

4.2.2 Macroinvertebrate Community Relationship with Instream 

Physical Habitat Variables

To relate environmental variables to invertebrate community structure, I used two 

stepwise regression analyses. The first regression related environmental variables to 

taxonomic group structure. As the dependent variable in the regression, I used the first 

principal component scores generated from a Principal Component Analysis of the 

taxonomic group matrix (PCI(taxonomic group)). This principal component accounted 

for 34.83% of the variability in the taxonomic group structure among sites. Higher 

numbers of Ephemeroptera and Trichoptera characterized sites with positive values of the
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Figure 4.2 Boxplot o f  discharge by catchment area class and disturbance type. Outliers 
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Figure 4.3 Boxplot o f  temperature by catchment area class and disturbance type, (line = 
median, box is 25-75 quartiie, whisker = 95% C .l.)
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principal component, while high numbers of Amphipoda characterized sites with 

negative values (Table 4.5). Independent variables in the regression were each substrate 

class (percentage of silt/clay, sand, gravel, pebble, cobble, boulder, bedrock), 

temperature and discharge. The regression analysis generated a significant model (F =

11.446, P = 0.001) that explained 16.5% (adjusted R2) of the original variability in the 

data (Figure 4.4). The regression equation was:

PCI (taxonomic group) = -0.917 + 0.898 Ig pebble

Environmental variables were related to functional feeding group structure with the 

second regression analysis. As the dependent variable in the regression I used the first 

principal component score for each site from a Principal Component Analysis on the 

functional feeding group matrix (PCI(functional feeding group)). This principal 

component accounted for 43.5% of the variability in functional feeding group 

composition among sites. High numbers of predators and filterers characterized sites with 

high component scores, while high numbers of shredders characterized sites with low 

scores (Table 4.6). Independent variables in the regression were substrate (percentage of 

silt/clay, sand, gravel, pebble, cobble, boulder, bedrock), temperature and discharge. The 

regression analysis generated a significant model (F = 6.022, P = 0.021), that explained 

15% (adjusted R square) o f the original variability in the data (Figure 4.5). The regression 

equation was

PCI (functional feeding group) = -0.963 + 0.950 lg pebble
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Table 4.5 Coefficient scores o f each taxonomic group in the first principal component generatedfrom
a principal component analysis o f the taxonomic group matrix.

Variable Coefficient Score
lg Ephemeroptera .843

Ig Trichoptera .820
IgPlecoptera .788

IgDiptera .759
Ig Coleoptera .745
lg Anisopteia .692

Ig Hydracarina .618
IgHirudinea .345

Ig Gastropoda .254
lg Pelecypoda .182
Ig Nematoda .091

Ig Oligochaeta .053
Ig Amphipoda -.216
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Table 4.6 Coefficient scores o f each functionalfeeding group on the first principal component
generated from a principal component analysis ofthe functionalfeeding group matrix.

Variable Coefficient
lg Predator .902
lg Filterer .824

lg Gatherer .714
lg Scraper .572
lg Parasitic .465
lg Shredder .290
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63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.3 Macroinvertebrate Community Characteristics

As with habitat variables, the macroinvertebrate communities differed among catchment 

areas and did not differ among disturbance types.

4.2.3.1 Taxonomic Group

Macroinvertebrate taxonomic group structure differed significantly among streams with 

different sized catchment areas (1,10,40 and 100 km2) (MANOVA, F39,ioi =1.808, P = 

0.010). There was no difference in macroinvertebrate community among disturbance type 

(cut, uncut, burnt) (MANOVA, F26.68 = 0.789, P = .749). As well, no interaction effect 

between catchment area and disturbance type was detected (MANOVA, Fs2,i34=1.129, P 

= 0.288). Taxonomic groups important in differentiating among catchment areas were 

identified using a Discriminant Function Analysis. One significant function generated by 

the analysis explained 55.9% (canonical correlation = 0.748) of the variance among 

group centroids and accounted for approximately 66.4% of total variance explained by 

the model (Tables 4.7 and 4.8). Box’s M test indicated that covariance matrices differed 

among groups (F = 3.139, P < 0.0001), which is a violation of the assumption of the 

DFA. However, because the DFA was used as an exploratory test and not a test of 

significance, the Box’s M result was not a concern.

Group centroids indicated that Function 1 discriminated most effectively between 1 km2 

(1.774) and 100 km2 sites (-1.249). One km2 sites were characterized by Diptera 

(standardized CDF coefficient =1.174) and Amphipoda (standardized CDF coefficient = 

0.483). Ten, 40 and 100 km2 sites clustered toward the negative end of Function 1 (group
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Table 4.7 Variance explained by the functions generated by the DFA. Sites were separated by catchment
area and then characterized by the macroinvertebrate taxonomic groups

Function Eigenvalue % of Variance Cumulative % Canonical Correlation
1 1.271 66.4 66.4 0.748
2 0.482 25.2 91.6 0.570
3 0.160 8.4 100.0 0.372

Table 4.8 Significance ofthe functions generated by the DFA. Sites were separated by 
catchment area and then characterized by the macroinvertebrate taxonomic groups

Test of Functions Wilk’s Lambda Chi-Square df Significance
1 through 3 0.256 63.344 39 0.008
2 through 3 0.582 25.207 24 0.395

3 0.862 6.909 11 0.806
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centroids = -0.513, -0.444, and -1.249 respectively) (Figure 4.6). These sites were 

characterized by Ephemeroptera and Trichoptera (standardized CDF coefficients = -1.048 

and -0.382).

4.2.3.2 Functional Feeding Group

Macroinvertebrate functional feeding group structure differed significantly among 

catchment areas (MANOVA, F 15,50 =3.728, P < .0001). There were no differences in 

functional feeding group structure among disturbance types (MANOVA, F5,ig = 1.812, P 

= 0.156). There was no significant two-way interaction between catchment area and 

disturbance type (uncut or cut) (MANOVA, F^so = 0.872, P = 0.612).

Functional feeding groups important in differentiating among catchment area classes 

were identified using a Discriminant Function Analysis. Two significant functions were 

generated by the analysis: Function 1 explained 6 8  % (canonical correlation = 0.823) of 

variability among group centroids and Function 2 explained 61 % of the remaining 

variability among group centroids (Tables 4.9 and 4.10). One km2 sites were separated 

most effectively (group centroid = -2.218) from 40 km2 (group centroid = 1.562) by 

Function 1 (Figure 4.7). One km2 sites were characterized by high numbers of predators 

(standardized CDF coefficient = -0.600) while 40 km2 sites were characterized by higher 

numbers of scrapers (standardized CDF coefficient = 1.305) (Figure 4.7). Ten km2 (group 

centroid = -1.904) sites were separated from 1,40 and 100 km2 sites (group centroids = 

0.531,0.720,0.822 respectively) along Function 2. Ten km2 sites were characterized by 

higher numbers of gatherers (standardized CDF coefficient = -1.562), while 1,40, and
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Figure 4.6 DFA scatter plot shawingfunction 1 and 2 scores o f  each study site. Function I represents a 
gradient o f  sites dominated by Diptera and Amphipoda to sites dominated by Ephemperoptera and 
Trichoptera. 100, 40 and 10 km 2 sites generally had more Ephemeroptera and Trichoptera, while 1 km2 
sites had higher numbers o f  Diptera and Amphipoda. Ten km2 sites were intermediate. Function 2 was 
not significant.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.9 Variance explained by the functions generated by the DFA. Sites were separated by
catchment area and then characterized by the functional feeding groups

Function Eigenvalue %  of Variance Cumulative % Canonical Correlation
1 2.101 55.9 55.9 0.823
2 1.533 40.8 96.8 0.778
3 0.122 3.2 100.0 0.330

Table 4.10 Significance ofthe functions generated by the DFA. Sites were separated by catchment area 
and then characterized by the functional feeding groups

Test of Functions W ilk’s Lambda Chi-Square df Significance
1 through 3 0.113 52.225 18 <0.0001
2 through 3 0.352 25.067 10 0.005

3 0.891 2.763 4 0.598
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100 km2 sites were characterized by higher numbers of predators (standardized CDF 

coefficient = 1.973) (Figure 4.7).

The contribution of each functional feeding group to total density was compared using 

pie graphs (Figure 4.8). Shredder and predator contributions to total density remained 

constant among catchment sizes. Gatherer proportion diminished as streams increased in 

size. Filterer and scraper contribution increased with increase in catchment size. Scraper 

numbers peaked at 40 km2 sites.

4 .3  DISCUSSION -  MULTIVARIATE ASSESSMENT

Macroinvertebrate community composition was associated with instream habitat 

variables such as substrate, temperature and discharge. Both macroinvertebrate 

community and instream habitat variables differed significantly among different sized 

streams. They did not differ among undisturbed streams and those with adjacent 

harvesting. Shifts in macroinvertebrate community structure have been observed 

following timber harvesting in a number of studies (Newbold et al. 1980, Adams 1988, 

Gurtz and Wallace 1984, Garman and Moring 1993, Feller 1981, Vuori and Joensuu 

1996, Wallace and Gurtz 1986, Fuchs 1999, Giroux 1994). However, in this study, the 

macroinvertebrate community was not shown to be affected by timber harvesting or 

burning. There may be several reasons that differences were not observed.

First, the lack of observed impact to the macroinvertebrate community could indicate that 

careful logging practices, particularly the forested reserve areas along streams, protect
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the macroinvertebrate community in Northwestern Ontario. This idea is supported by the 

lack of differences observed in macroinvertebrate community habitat following 

harvesting. Substrate characteristics, temperature and discharge in streams with adjacent 

harvesting or burning also did not differ from undisturbed streams. However, careful 

logging practices do not explain the lack of community differences in streams disturbed 

by fires. Reserve areas are not left by natural burns. Fire can bum to the edge o f a stream.

Second, the effects of timber harvesting and burning may not have been clear because of 

variability in the age of the disturbances. Disturbance effects are most often observed in 

recently harvested sites (Fuchs 1999, Giroux 1994), but it is estimated that in this study 

the streams could have been disturbed up to five years prior to measurements. It is 

possible that some of these streams were impaired but have since recovered or that the 

communities are at different stages of recovery (Wallace and Gurtz 1984, Fuchs 1999, 

Giroux 1994). The biomonitoring indices presented in the previous chapter support this 

idea. When the sites were examined individually, several were identified as moderately 

impaired and one was identified as severely impaired. Restricting the analysis to recently 

harvested areas or increasing sample size and stratifying by time since disturbance may 

have prevented this confounding factor.

Last, harvesting and fire disturbance may have affected the macroinvertebrate community 

but the response could not be distinguished from natural variability. This study revealed 

that macroinvertebrate communities differ significantly from season to season, year to 

year, and from small to large streams. Even when catchment size was controlled by
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subdividing the data into size class, disturbance impacts were not detected. As such, 

methods of controlling macroinvertebrate community variability may need to be more 

extensive in biomonitoring programs.

Effects may have been detected if the macroinvertebrates had been identified to a greater 

taxonomic resolution, such as genus. Even if effects could be detected at the genus level, 

the effort required to gain this information for a biomonitoring program may be toe 

expensive. One of the main benefits of existing biomonitoring programs using 

macroinvertebrates is the low taxonomic resolution required and the speed with which a 

diagnosis can be attained. However, the macroinvertebrate community may not be a 

suitable indictor of non-point source impacts such as timber harvesting.

Even though macroinvertebrate community composition did not appear to respond to 

timber harvesting, the community composition differed among catchment areas. Patterns 

in the functional feeding group structure among stream size emerged and loosely 

followed the predictions of the River Continuum Concept (Vannote et al. 1980). The 

River Continuum Concepts predicts that shredders, gatherers and filterers dominate the 

headwater communities. Gatherers and filterers dominate large rivers, while scrapers 

peak in mid-sized rivers. Predator proportions are predicted to remain constant from 

headwater to mouth. In this study, as stream size increased, shredder proportions 

remained constant; gatherers decreased; filterers increased; scraper proportions peaked at 

40 km2; and predator proportions remained constant
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Change in functional feeding group composition along the length of a river is likely an 

indication of changing food resources. The River Continuum Concept predicts changes 

along an entire stream system; from headwater to mouth. In this study, only a small 

portion of the stream sizes were examined. As such, it was not expected that the shifts 

observed would follow the RCC exactly. The changes observed in this study support the 

idea that food resources change with stream size.

Small 1 km2 streams were characterized by high relative abundance of Diptera and 

Amphiboda (Table 4.5 and Figure 4.4). A breakdown of the Dipteran groups into Family 

indicated that Chironomidae and Simuliidae dominated the numbers in this Order. The 

larger 40 to 100 km2 streams and a to a lesser degree the 10 km2 streams were 

characterized by the high relative abundance of Ephemeroptera and Trichoptera. This 

pattern may be explained in several ways. The first explanation is that the physical 

habitat variables of a stream influence macroinvertebrate community structure and these 

habitat variables differ with the size of the stream. This explanation was substantiated by 

the significant relationships detected between habitat and the macroinvertebrate 

community and the observation that habitat variables differed with catchment area.

Temperature and discharge increased as catchment area increased. This observation is 

likely related to groundwater inputs common in Northwestern Ontario streams. Cold 

ground water and shade provided by high closed cover likely maintain low temperatures 

of small streams. In contrast, streams with larger catchment areas are wider and receive 

more direct sunlight and may have less cold groundwater influence. Small streams fed by
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nutrient poor groundwater are naturally low in productivity. Macroinvertebrate taxa 

richness tends to be low in small streams because the community is restricted to only 

those species which can function within this narrow temperature range and low 

productivity setting (Vannote et al. 1980, Plafkin et al. 1989). This could explain the 

dominance of Chironomidae and Simuliidae in the small 1 km2 streams, as these groups 

are known to be tolerant generalists (Plafkin et al. 1989).

Substrate composition was also related to catchment area. Small streams had more sand 

and silt, while larger streams had more cobbles and boulders. More fines typically occur 

in slower reaches due to the sediment poor quality of Northwestern Ontario streams. Fine 

sediment settles out in small, slow moving streams, but is carried away by the greater 

discharge of larger streams, exposing cobbles, boulders and bedrock. Relationships 

between macroinvertebrate community and substrate were detected in this study. For 

example, Ephemeroptera, Trichoptera, Predators and Filterers increased with increasing 

proportions of pebbles in the stream.

The second explanation relates to stream health. It is believed that good biotic condition 

is reflected in communities with an even distribution among Chironomidae, 

Ephemeratopera, Plecoptera and Trichoptera (Plafkin et al. 1989). Skewed populations 

having a disproportionate number of the Chironomidae relative to the more sensitive 

insect groups (EPT) may indicate environmental stress. Chironomids tend to become 

increasingly dominant as streams become increasingly impaired (Hilsenhoff 1982,

Plafkin et al. 1989). However, this possibility is refuted by the test o f disturbance effects.
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The observed pattern in the invertebrate community was related to catchment area, not to 

disturbance or even to a disturbance/catchment area interaction.

A third explanation links stream size to fish predation patterns. Bechara et al. (1992) 

observed a remarkably similar pattern in the macroinvertebrate community related to fish 

predation. The biomass of small insects such as Chironomidae was always higher in the 

presence of, rather than in the absence of, fish, while the biomass of larger invertebrates 

such as Ephemeroptera and Trichoptera was reduced in the presence of fish (Bechara et 

al. 1992). Becara’s results suggest that size selective predation by fish can cause changes 

in the structure of macroinvertebrate communities similar to the pattern seen in this study. 

Size selective fish predation patterns in relation to stream size would be of particular 

interest and could explain the patterns seen in this study.

Studies often classify all headwater streams into one like group for comparison (Novak 

and Bode 1992, Barton 1996, Fore and Karr 1996, Growns et al. 1997, Maude and Di 

Maio 1999, Trayler and Davis 1998, Newbold et al. 1980, Stout et al. 1993). But, this 

classification combines First, Second and Third Order streams into one group (Vannote et 

al. 1980). In this study, 1 km2, 10 km2, 40 km2 and 100 km2 stream communities differed 

significantly and catchment area accounted for a substantial amount of community 

variability. These catchment sizes are comparable to 1st to 4th Order stream categories at a 

1:20 000 map scale. Similarly, the largest portion o f changes in the Salmon River 

taxonomic groups occurred over headwater and small stream sizes (Bruns and Minshall 

1982). Stream comparison should be refined to more specific size classifications.
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Catchment area delineation is a precise and accurate classification method that may 

improve stream research and management

This study detected differences in macroinvertebrate community relating to stream size 

but not to harvesting or burning. Therefore, sites are either not influenced by harvesting 

or burning or the extent of the effect is less than natural differences in macroinvertebrate 

community due to stream size. Regardless, the results of this study emphasize that the 

consideration of stream catchment area when using invertebrates for biomonitoring is 

imperative.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 .0  SUMMARY OF FINDINGS

The study had two components. The first component determined the effectiveness of 

macroinvertebrate based indices for monitoring the effects of timber harvesting on stream 

habitat in Ontario's boreal forest Seasonal and yearly variability (cv) was high in all 

metrics except Percent Dominance, Percent Model Affinity and Percent Diptera. When 

considered as a group, harvested sites did not differ from reference sites for individual 

metrics. However, when harvested sites were considered individually, impairment was 

detected at some locations. All metrics differed among catchment areas. Similarly, 

classification of reference communities by catchment size reduced the standard error of 

metrics in many cases. Calculating reference metric values according to catchment size 

may be one method of controlling for natural variability in biomonitoring efforts.

Relationships among stream dwelling macroinvertebrate community structure, physical 

habitat and catchment characteristics were revealed by this study. Both macroinvertebrate 

community structure and physical habitat variables varied in relation to the size of the 

stream catchment Relatively low diversity, Diptera, Amphipoda and gatherer functional 

feeding group characterized 1 km2 catchment streams. As streams became larger the 

macroinvertebrate communities inhabiting them become more complex with higher 

diversity and taxa richness. Ephemeroptera, Trichoptera and scrapers characterized the 

larger 40 and 100 km2 sites. These findings are consistent with River Continuum Concept 

predictions regarding shifts in invertebrate community down the length of a stream, and
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the prediction that catchment characteristics influence macroinvertebrate community 

(Frissel etal. 1986).

As well, temperature and discharge increased with increase in catchment area. Sand and 

silt characterized small 1 km2 catchments, while boulders and cobbles characterized 

larger 40 and 100 km2 catchments. Macroinvertebrate community characteristics were 

related to these environmental variables. However, a low R2 in the regression analysis 

indicated that other unidentified variables not measured influence the community as well.

Differences in macroinvertebrate community structure and physical habitat variables 

between forested, harvested and burnt catchments were not detected. Similarly, a 

relationship between the size of a stream catchment and the magnitude o f impacts from 

deforestation on macroinvertebrate community or physical habitat variables was not 

detected. A pattern of high proportions o f Ephemeroptera, Plecoptera and Trichoptera in 

larger streams and higher proportions of Chironomidae in small streams was observed. 

This pattern is similar to patterns observed in macroinvertebrate community structure 

related to size selection predation in fish (Bechara et al. 1992).
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