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Abstract

The 1-skate, 2-skate and offset techniques are the three most prevalent skate- 

skiing techniques used during cross-country ski racing. Although kinematic differences 

at maximum velocity have been observed between techniques (Bilodeau et al., 1991, 

1996), physiology based criteria for choosing between techniques during a race have 

not been examined.

The primary purpose of this study was to determine any differences in oxygen 

consumption between the 1-skate, 2-skate and offset when performed by highly trained 

cross-country ski racers over flat terrain at a submaximum velocity of 5.4 m *s '\ The 

secondary purpose was to identify the kinematic parameters that may be associated 

with economical skiing for each of the techniques by examining correlations between 

kinematic variables and economy fo r each of the techniques under the same conditions.

Eleven male sub-elite cross-country skiers skied behind a snow-machine at a 

submaximal velocity of 5.4 m*s'̂  using the 1-skate, 2-skate or offset exclusively.

Oxygen consumption was measured throughout each trial (KB1-C, AeroSport Inc.) to 

assess economy. Three-dimensional videography (Peak Performance Technologies) 

was used to measure kinematic parameters. A randomized block ANOVA and 

Scheffé’s test was used to assess differences in oxygen consumption between 

techniques. Correlation coefficients between economy (expressed as percentage of 

VOaMax and HR^ax) and selected kinematic parameters were examined to determine the 

kinematic performance variables associated with the economical performance of each 

technique.
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Minute ventilation was observed to be lower (p<0.05) during performance of the 

2-skate (84.77 L *min'^) than the 1-skate (91.37 L«min*’ ). This difference was attributed 

to the increased poling demands of the 1 -skate. Although no other significant 

physiological differences were observed between techniques, small differences in 

oxygen consumption between the 1 -skate and 2-skate, representing 2.5% o f VOzMax. 

could potentially be manifested in performance discrepancies at higher, race-specific 

velocities. Correlations observed between oxygen consumption and the kinematic 

parameters suggest that increased gliding time and more vigorous application of 

propulsive forces characterize more economical performance of the 2-skate.

Economical performance of the 1-skate appears to feature more sustained poling and 

increased side-to-side movement of the centre of mass.

Future study of between and within group differences for the 1 -skate and 2-skate 

should be completed at velocities approaching race pace. Few clear findings were 

observed with the offset and in the future it should be examined on uphill terrain where it 

is typically performed.
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CHAPTER 1

Introduction

Cross-country skiing has undergone a radical transformation over the past 

15 years with the proliferation of skate-skiing at all levels of racing. Skate-skiing, 

which resembles ice-skating, is performed on a flat groomed trail instead of on 

the prepared tracks that the traditional classic technique typically requires. In 

1986 the Fédération Intemationale de Ski (F.I.S.) acknowledged the legitimacy of 

skate-skiing by equally dividing World Cup competition into its current format of 

“freestyle” and “classic” technique races. Distinct technique variations of skate- 

skiing have rapidly evolved from their initial forms of the skate-tum and the 

marathon skate, into the 1 -skate, 2-skate and offset techniques performed today 

(Smith, Nelson, Feldman & Rankinen, 1989; Svensson, 1994). The question of 

technique selection during race situations has been inadequately addressed. 

Biomechanists have compared the maximum achievable velocity and other 

maximum velocity kinematic variables between techniques. (Bilodeau, Roy & 

Boulay, 1991; Boulay, Rundell & King, 1994). However, cross-country ski races 

vary in duration from approximately 15 minutes (5 km) to 2 hours (50 km) and 

therefore cannot be performed entirely at maximum intensity. This duration also 

dictates that the majority of metabolic energy required for cross-country ski 

racing must be derived aerobically. A comparison o f the differences in both 

kinematic parameters and physiological responses, specifically oxygen 

consumption (VOg), between the 1-skate, 2-skate and offset may provide more 

appropriate answers for the question of technique selection during racing.
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Rationale for the Study

The determination of which skate-skiing technique(s) to select during the 

various portions of a race has not been definitively established. Direct 

comparisons of either biomechanical or physiological performance variables 

between the 1-skate, 2-skate and offset to verify technique selection has 

received little attention. In a series o f studies directed by Bilodeau (1991,1992) 

and Boulay (1994), no differences in velocity or heart rate (HR) were observed 

between techniques during performance on slight downhill and flat terrains at 

both maximum and sub-meucimum efforts. However, the offset was faster for 

climbing steep slopes (Boulay et al., 1994) and the 2-skate was slower on 

moderate (Bilodeau et al., 1992) to steep (Boulay et al., 1994) uphill terrain. The 

heart rates recorded during Boulay"s study were lower during performance of the 

offset than for the 1-skate or 2-skate on steep uphills. Since the skiers in these 

studies performed at maximum intensity, different performance velocities were 

achieved based on individual differences between skiers and therefore a 

comparison of heart rate between techniques would not have been valid. The 

authors addressed this issue of individual differences by suggesting that 

technique selection was determined more by an “athlete’s fitness and ability.... 

and less by the attainable speed of each technique” (Bilodeau et al., 1992, p. 

924). Boulay et al., (1994) also cautioned that the “possible variable efficiency of 

skiers between techniques” (p.285) needs to be considered when comparing 

techniques. In other words, although two techniques yield the same top speed 

one may require less oxygen consumption for a particular athlete due to their 

fitness and/or their ability to efficiently perform a certain technique. The 

emergent problem appears to be the selection of technique(s) that allows the
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skier to perform at a desired velocity with the lowest possible oxygen 

consumption. Smith and Heagy (1994) suggested that:

“Further studies may elucidate the trade-offs skiers face in 
the choice of technique and how mechanical and physiological 
demands of the skating technique affect performance” (p.87).

To the researcher’s knowledge no study has been published which

compares the three main skate-skiing techniques on the basis of oxygen

consumption. Presumably, it should be advantageous during an event that lasts

longer than 10 minutes and requires between 85-98% contribution from the

aerobic energy systems (Eisenman, Johnson, Bainbridge & Zupan, 1989) to

choose the technique(s) that require the least oxygen consumption in order to

spare high energy metabolic reserves for the duration of the race (Norman &

Komi, 1987; Norman, Ounpuu, Fraser & Mitchell, 1989). Previous correlations

between specific kinematic variables and maodmum achievable velocity provide

insight into the mechanical demands of faster skiing using a particular technique.

However, these analyses did not address the underlying energy requirements,

represented by oxygen consumption, of performing a specific technique. Holding

the velocity constant across subjects and techniques allows for the identification

of between-subject differences in oxygen consumption against an equal workload

(i.e., velocity). Determining if one technique requires less oxygen consumption

than another (i.e., is more economical) would help to answer the question of

technique selection for races.

Secondly, to the researcher’s knowledge, no published study of skate-

skiing exists which correlates 1-skate, 2-skate and offset kinematic parameters

with values for oxygen consumption recorded during the performance of each
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technique. Differences in technique selection between skiers may exist due to 

individual differences in fitness and/or the technical ability to perform each 

technique. Cavanagh and Kram (1985) defined economy as the submaximum 

oxygen consumption per unit of body weight required to perform a given task. In 

previous research, differences in maximum performance velocities (i.e., task 

requirements) across athletes prevented the identification of differences in 

economy between athletes. Determining correlations between oxygen 

consumption and kinematic variables measured at an equal submaximum 

velocity could help to determine the preferred movement pattems associated with 

the economical performance of the 1 -skate, 2-skate and offset. This information 

could help an athlete to improve their performance of a specific technique and 

help to establish individual criteria for technique selection during races.

Puroose

The primary purpose of this research was to compare physiological 

performance variables, in particular oxygen consumption but also VE, RQ and 

HR, between three skate-skiing techniques, the 1-skate, 2-skate and offset, 

performed by highly-trained cross-country ski racers over flat terrain at a 

controlled constant velocity of 5.4m *s'\ The intention was to determine which 

technique(s) was the most economical (i.e., lowest oxygen consumption) and to 

explore the question of technique selection by examining any differences in 

oxygen consumption, VE RQ or HR in the context of any observed kinematic 

differences between techniques.
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The secondary purpose was to determine kinematic differences between 

techniques and to describe the relationships between kinematic variables and the 

oxygen consumption required to perform the 1-skate, 2-skate and offset 

techniques at a controlled constant velocity of 5.4m *s'\ The objective was to 

assess which movement pattems were associated with either increasing or 

decreasing the oxygen demand on flat terrain at a submaximum intensity on 

each of the three techniques.

Hvootheses

It was hypothesized that the 1-skate and 2-skate techniques would be 

observed to have lower values fo r oxygen consumption than the offset on flat 

terrain, regardless of snow conditions. These techniques have been observed to 

have proportionally longer cycle lengths than the offset due to a longer duration 

for the gliding phase (Bilodeau et al., 1992). Additionally, since the prevailing 

snow conditions on the test day were “fast” , lower values for oxygen consumption 

were expected for the 2-skate compared to the 1-skate. A skier’s velocity should 

tend to be maintained during these favourable gliding conditions with less 

mechanical work (i.e., poling) required for the 2-skate technique.

Finally, it was hypothesized that an inverse relationship between oxygen 

consumption and cycle lengths for each technique would be observed.

According to Bilodeau (1992) longer cycle lengths are associated with longer 

glide phases. At a controlled velocity, less mechanical work is required during
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these glide phases and it was therefore anticipated that lower oxygen 

consumption values would be observed.

Delimitations

The scope of this analysis was delim ited to:

1. Eleven highly trained male cross-country ski-racers ranging in age from 

20 - 27 years.

2. The performance of three distinct skate-skiing techniques: the 1-skate, 

2-skate and offset.

3. Kinematic measures taken from a single average or composite trial 

compiled from three-dimensional co-ordinates of three cycles of each technique 

acquired by digitizing two separate but synchronized video images of each 

subject.

4. Oxygen consumption values recorded by a portable metabolic system 

during the performance of each technique.

5. The accuracy of the researcher to  manually digitize the anatomical 

points of the computer-generated spatial model from video images of each 

subject.

6. The use of a centre of mass calculated from estimated segmental 

parameter values.

7. A controlled constant skiing velocity of 5.4m *s'\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lim itations

This study was conducted under the following limitations:

1. A relatively small sample of highly-trained male ski-racers.

2. The ability of the snow-machine operator to maintain a constant velocity 

of 5.4m*s'^ fo r each subject and throughout each trial.

3. The variation in snow temperature (-6.5° to -5.5°C), air temperature (-6° 

to -3°C), humidity (39.6 -  70%) and general weather conditions (overcast and 

breezy early to clear and calm later) throughout the day such that each subject 

may have performed over different snow conditions.

Definitions

Physiology

Economy is defined as the submaximum oxygen consumption per unit of 

body weight (i.e., VOgsubmax) required to perform a given task (Cavanagh & Kram, 

1985) such that the lower the oxygen consumption, the more economical is the 

movement,

Skate^skiing Techniques

The f-skate technique, also referred to as the V-2, is comprised of one 

double-symmetrical pole plant for each leg stride or skate (Bilodeau et al., 1992). 

The 2-skate, also referred to as the Gunde skate (Boulay et al., 1994), V-1 

alternate or open field technique (Smith & Heagy, 1994), consists of one double- 

symmetrical pole plant for every second leg stride (Bilodeau et al., 1996). The 

side o f the body on which poling occurs was denoted as the “poling side” and the
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Other side was referred to as the “non-poling side”. The o/fset technique, 

commonly referred to as the V-1, has nonsymmetrical leg strides with 

asynchronous pole plants (Bilodeau et al., 1996). The poling and non-poling 

sides fo r the offset were referred to in a sim ilar manner as the 2-skate.
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CHAPTER 2 -  REVIEW OF LITERATURE

Physiological Responses

Comparison Between Skating and Diagonal Stride

Several researchers have examined the differences in metabolic cost 

between the diagonal stride and skating techniques by comparing various 

physiological responses between the two disciplines at maximum and 

submaximum intensities. Physiological measures observed have included HR, 

VO2 , [La"], and minute ventilation (VE).

“Skating” (quotation marks used when specific skating technique was not 

indicated) has been observed to be faster than the diagonal stride at maximum 

intensity without differences between techniques for heart rate (Karvonen et al., 

1987,1989), blood lactate (Karvonen et al., 1987,1989; Saibene, Cortili, Roi, & 

Colombini, 1989) o r oxygen consumption (Saibena et al., 1989). Karvonen and 

colleagues (1989) observed HR values that were, on average, 20 beats*min'^ 

lower during “skating” compared to the diagonal stride at equal submaximum 

velocities. Zupan, Sheperd, and Eisenman (1988) reported 9.9% lower oxygen 

consumption values, 14.2% lower HR values and 5.6% lower VE values for the 

offset compared to the diagonal stride at equivalent submaximal velocities. 

Similarly, Saibene and colleagues (1989) reported that oxygen consumption and 

blood lactate values at equivalent submaximum velocities were 15 - 35% lower 

fo r “skating” compared to diagonal stride.

Hoffman and Clifford (1990) examined HR, VO2 and VE between all 

variations of classic and skating technique that existed at that tim e at 

submaximum intensities. Lower HR (5%), VO2 (19%) and VE (36%) values were
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observed for the offset and marathon skate techniques compared to the diagonal 

stride. Hoffman and Clifford attributed these differences to the lower dynamic 

frictional coefficient fo r skate-skis without kick-wax and the shorter time available 

for force application during the diagonal stride.

Rusko and colleagues (1992) incorporated a moderate hill climb into their 

examination of VO2, HR and [La*] responses between offset and diagonal stride 

performed at maximum intensity. Until that point in time all comparisons between 

skate-skiing and diagonal stride had been performed on flat terrain. These 

researchers also initiated the use of a portable metabolic measurement system 

(Cosmed K-2) to measure VO2 and HR. No differences in VO2 , HR or [La*] 

between the two techniques were observed. Mciximum velocities fo r each 

technique were not reported so it is unclear if the offset was faster and therefore 

more economical than the diagonal stride as reported in Hoffman and Clifford's 

research (1990) on flat terrain. Correlations between VO2 and velocity(r= 0.47, 

p<0.05) for diagonal stride were reported for both the entire sample and the 

subgroup of subjects (n=5) who's training emphasized classic skiing (r=0.95, 

p<0.05). A sim ilar relationship for the offset was not observed. Although 

discussion regarding this finding was not reported it seems to suggest that, unlike 

the diagonal stride, maximum achievable velocity for the offset may have been 

related to factors other than oxygen consumption, such as technical differences 

between skiers, which were not examined by Rusko and colleagues.

Several studies comparing physiological responses between classic and 

skate-skiing performed on rollerskis have also been perfomned. On-snow testing
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is typically complex because of the constant variations in the frictional drag of the 

ski associated with changes in air and snow temperatures, snow quality and 

grooming. Although rollerskis cannot replicate the frictional conditions of the 

snow-ski interface, the variation between subjects resultant from changing 

ambient conditions can be eliminated by studying skiing when performed on 

rollerskis (Hoffman, 1992). In comparison to on-snow research these studies 

have yielded some contradictory results. Stray-Gundersen and Ryschon (1987) 

observed higher VO2 , HR and [La*] values for “skating” compared to the diagonal 

stride when performed at equivalent treadmill velocities on rollerskis. The 

authors suggested that the absence of kick-wax and the greater capacity to use 

the arm and trunk musculature for propulsion might explain the superior “skating” 

performances typically observed on-snow.

The reasons provided in the literature for the higher economy (i.e., lower 

oxygen consumption) consistently observed for skating techniques over the 

diagonal stride on both level and moderate uphills tend to be mechanical in 

nature. It has been speculated that the propulsive forces, both kicking and 

poling, applied during skating are greater than those applied during diagonal 

stride (Hoffman & Clifford, 1990; Karvonen et al., 1987, 1989; Saibene et al., 

1989; Zupan et al., 1988). This improved propulsion for skate-skiing has been 

related to greater horizontal pole angles observed during the poling action 

(Karvonen et al., 1989) and greater propulsive forces exerted by the legs during 

the lateral push-off (Zupan et al., 1988). The increased trunk flexion at the hips 

and the lower trunk position inherent to skate-skiing apparently facilitate the
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application of these larger forces (Karvonen et al., 1987; Hoffman, 1992) while 

also reducing the force of wind drag against the skier (Karvonen et al., 1989; 

Saibene et al., 1988). It has also been suggested that skate-skiing is more 

efficient than diagonal stride because of reduced frictional drag on the ski due to 

the absence of kick-wax and the application of glide wax along the full length of 

the ski base (Hoffman & Clifford, 1990; Karvonen et al., 1989; Zupan et al.,

1988). Furthermore, it has been speculated that frictional drag is also reduced in 

skating because only one ski is in contact with the snow during the glide phase 

instead of two, as is the case with the diagonal stride technique (Karvonen et al., 

1987).

It is interesting that all of the reasons provided for the physiological 

differences between the two techniques were essentially mechanical in nature 

yet little research that examined both physiological and biomechanical factors 

simultaneously was completed.

Comparisons Between Different Skating Techniques

The direct scientific comparison o f the 1-skate, 2-skate and offset 

techniques has only recently been undertaken. Currently, the literature offers 

less than complete comparisons of physiological responses between skate-skiing 

techniques.

Bilodeau et al. (1991) compared heart rates between 1-skate, 2-skate and 

offset techniques. Ten elite male cross-country ski racers performed each 

technique exclusively at maximal intensity or “competition speed” on a 3.04 km 

loop which contained demarcated sections of flat, 5° uphill and 3° downhill
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terrain. Heart rates were recorded and oxygen consumption values fo r each trial 

was estimated from individual HR-VO2  curves calculated for each athlete from a 

previously completed treadmill running VOaMax test. There were no differences 

observed fo r velocity, HR or estimated VO2 between any of the skating 

techniques over each section of terrain. The order of terrains was not 

randomized across subjects such that each was skied in the same order as part 

of the loop. This potential methodological shortcoming was indicated by the 

significantly higher HR recorded for all techniques on the last section of the loop: 

the downhill section. Presumably the VO2 required to ski this easier terrain was 

affected by the demands of skiing the rest of the loop. The authors explained 

this “surprising” finding by suggesting that athletes may have pushed harder on 

the downhill section to increase speed (Bilodeau et al, 1991).

Boulay and colleagues (1994) recorded HR while comparing the effect of 

different slopes on maximal attainable velocity for the offset, 1-skate and 2-skate 

techniques. Nine top-level junior ski racers (2 females and 7 males) performed 

each technique over slopes of -1, 0, 6, 9 and 12°. The sections of terrain ranged 

in distance from 120 to 200 m. The duration of the trials ranged from 26 to 60 

seconds. Performance intensities reportedly ranged from 88-93% of HRmsx As 

slope increased HR increased for the 2-skate and 1-skate but not the offset. The 

offset also produced faster velocities than the 1-skate and 2-skate techniques on 

the steeper grades. Finally, despite the production of similar velocities, heart rate 

for 1-skate was significantly higher than 2-skate on the 9° slope. The authors 

were cautious, however, in inferring the apparent effectiveness and efficiency of
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the offset fo r generating faster velocities on moderate to steep uphill terrain. They 

cited the potential variable efficiency of each skier between techniques and/or the 

variation in anaerobic demands between terrains as likely contributors to the 

offset's faster velocities (Boulay et al., 1994). There were no reported 

differences in HR or velocity between techniques on the fla t terrain suggesting 

that technique selection was of “minor importance in maintaining maximal 

velocity” (Boulay et al., 1994, p. 285).

A brief summary of these two studies suggests that, at maximum intensity, 

performance of the 1-skate, 2-skate or offset over flat, mild uphill (5-6°) or slight 

downhill (-1 to -3°) terrain produces similar velocities with equivalent heart rates 

(Bilodeau et al., 1991 ; Boulay et al., 1994). The validity of Bilodeau and 

colleague’s 1991 findings is questionable due to their failure to control the 

confounding effects of one terrain upon another by not randomizing the order in 

which the different terrains were skied. The offset has been observed to be both 

faster and more economical (i.e., lower HR) than the 1-skate or 2-skate on 

moderate to steep (9-14°) uphill grades (Boulay et al., 1994). Finally, the 1-skate 

is more economical than the 2-skate on moderate (9°) uphills although it is still 

slower at maximum intensity than the offset (Boulay et al., 1994).

It appears that the comparison of economy between skate-skiing 

techniques based on oxygen consumption requires further investigation. This 

type of research has historically been restricted by the physical inability to 

continuously measure oxygen consumption in the field. Several methodologies 

have been used to measure or estimate oxygen consumption during the
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performance of cross-country skiing. Some researchers have used open circuit 

spirometry towards the end of a trial to collect expired air into either neoprene 

Douglass bags (MacDougall, Hughson, Sutton & Moroz, 1979) or meteorological 

balloons (Bedford, 1991; Hoffman & Clifford, 1990; Hoffman et al., 1990;

Hoffman et al., 1991; Saibene et al., 1989; Zupan et al., 1988). Other 

researchers have recorded heart rates during skiing and used HR-VOg cun/es 

from treadmill running to predict VOg (Bilodeau et al., 1991 ; Boulay et al., 1994). 

Oxygen consumption has also been estimated from the kinematic analyses of 

film of elite competitors (Norman & Komi, 1987; Norman et al., 1989). To the 

researcher’s knowledge only one study (Rusko et al., 1992), has used a portable 

metabolic system to directly measure oxygen consumption during the 

perfomiance of cross-country skiing. Recent advancements in this type of 

technology would seem to warrant its further use in the scientific investigation of 

cross-country skiing.

Kinematic and Temporal Research 

Kinematics of Skate-skiing

The majority of the biomechanical research of skate-skiing has sought to 

describe the unique kinematic and temporal characteristics of the offset 

technique.

Smith et al., (1988) filmed elite male skiers performing the offset up a 7° 

hill at a World Cup race in Oslo, Norway. Three-dimensional parameters were 

calculated for the analysis of 10 racers who were distributed across the entire
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performance range. A correlation (r=0.85, p<0.05) between cycle length (CL) 

and race velocity was observed. Faster skiers had longer cycle lengths than 

slower skiers while maintaining sim ilar cycle rates (CR). As well, the horizontal 

path of the faster skiers' centre of mass (CM) tended to be aligned more with the 

forward direction vector (i.e., less mediolateral movement). Finally, the faster 

skiers tended to place the “weak” side ski (i.e., non-poling side ski) more directly 

up the slope (i.e., less laterally). The authors concluded that the specific 

combination of longer CL and the ability to consistently direct motion in the 

forward direction were “distinguishing characteristics” o f more successful world 

class skiers.

Smith et al., (1989) filmed male and female skiers in the 50 km and 20 km 

(respectively) freestyle races at the 1988 Calgary Olympics and completed three- 

dimensional analyses of the offset on “moderate” (6 to 7°) and “steep” (10 to 11°) 

uphills. The m ajor finding in this study was that as grade increased skiers tended 

to maintain or increase cycle rate while decreasing cycle length. Associated with 

these uphill cycle adaptations was an increase in the duration of the propulsive 

phase and a decrease in the relative duration of the recovery or gliding phase. 

The authors concluded that there were two apparent strategies for maintaining 

velocity on steeper slopes. The first entailed emphasizing CL and glide. The 

increase in required mechanical energy would be manifest by the increased 

lateral motion o f the CM. The second strategy involved emphasizing CR and 

minimizing CM motion by changing pole orientations to a more forward direction. 

The increase in mechanical energy requirements for this approach would likely
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be related to the increase in muscular effort required by the arms. Males used 

both strategies while females mainly used the tactic that emphasized increased 

CR (Smith et al., 1989). Aro and colleagues (1990) used data from Smith’s 1989 

study to complete three-dimensional kinematic analyses of offset on 5-6° and 10- 

11° uphill slopes and observed a sim ilar increase in CR fo r males with concurrent 

decreases in CL and CV in response to steeper grades. These changes were 

related to increases in poling and non-poling side ski-edging angles, forward step 

displacement, and the skiers' stance width and a decrease in lateral CM 

movement. Also, increases in poling and non-poling side ski angles (i.e., the 

angle of the ski to the forward direction of travel vector) were observed. The 

researchers suggested that this non-poling side ski angle increased because, in 

lieu of a poling force, the skier attempted to maximize glide and velocity on this 

side by maintaining a relatively laterally oriented ski.

Gregory and colleagues (1994) performed a three-dimensional kinematic 

analysis of the offset performed by 16 female Olympians skiing over fla t terrain 

during the 30 km freestyle race at the 1992 Albertville Olympics. The movement 

pattems of eight finishers from the top half (“more successful skiers”) were 

compared with eight from the bottom half (“less successful skiers”). Cycle length 

was correlated with cycle rate (/&=-0.82, p<0.05) for the entire sample. Not 

surprisingly, the more successful skiers had faster cycle velocities, a finding 

which was attributed to larger poling and skating forces indicated by greater 

flexion of the trunk non-poling side elbow and knee (Gregory et al., 1994). No 

speculation was offered regarding the effect on oxygen consumption of
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generating larger propulsive forces. Humphreys and colleagues (1993) produced 

a three-dimensional kinematic analysis of the offset technique on a gradual uphill 

(no grade provided) from competitors in the same race. A 0.4m longer CL 

(p<0.05) with equivalent CR was noted as the distinguishing characteristic of a 

group of faster skiers over a group of slower skiers. Like Gregory’s 1994 study, 

the longer CL was attributed to greater propulsion, illustrated by greater (p<0.05) 

R.G.M. of the trunk (27° versus 23°) and non-poling side knee (38° versus 31°).

Rundell and McCarthy (1996) performed a kinematic analysis of women 

performing the offset up an 11-12° grade on two successive laps of a 10km 

freestyle race at the 1995 U.S. National Championships. Once again, cycle 

length was observed to be positively correlated (a=0.78, p<0.05) with velocity. 

Slower race velocities observed during the second lap were associated with 

lower cycle rates. The shorter cycle lengths exhibited by the slower competitors, 

particularly during the second lap, was attributed to a relative lack of fitness, 

specifically upper body muscular endurance (Rundell & McCarthy, 1996).

In a sim ilar offset study, Viitasalo, Norvapalo, Laakso, Leppavuori and 

Salo (1997) examined the effects o f a 50km race distance on kinematic 

parameters from three-dimensional data of five world-class skiers performing the 

offset up an 8° incline over three consecutive laps of the 1993 World 

Championships 50 km freestyle race. A decrease in cycle velocity, correlated 

with a reduction in cycle length accompanied successively lower lap times. 

Additionally, with each subsequent lap, greater mediolateral movement of the CM 

was observed. A sim ilar systematic increase in the vertical movements of the
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CM did not occur as the authors had hypothesized. The authors suggested, 

“energy at the end of the competition was wasted more in sideward movements 

than at the beginning” (Viitasalo et al., 1997, p. 95).

Smith and Nelson (1990), who investigated the effect of increased velocity 

on kinematic parameters, further corroborated the sim ilar results of these offset 

studies. Subjects were filmed skiing up a 7° pitch at three different perceived 

exertion levels: “training pace”, “marathon pace” and “5 kilometre (race) pace”. 

Three-dimensional co-ordinates for pole plant locations and displacement 

between pole plants were determined and CV, CR, and CL were calculated. 

Consistent with previous race-study findings (Smith et al., 1988; Smith et al.,

1989) cycle rate was sim ilar across subjects with the fastest skiers within each 

intensity condition producing the longest cycle lengths. Faster velocities were 

achieved, however, by increasing cycle rate and maintaining cycle length (Smith 

& Nelson, 1990).

In summary, the offset was one of the first commonly used skate-skiing 

techniques and it has received the most research attention. Most biomechanical 

investigation of this technique has described the kinematic factors that are most 

closely related to the production of faster velocities. The most often reported 

correlate of velocity for the offset technique was cycle length, on both flat terrain 

(Bilodeau et al., 1992; Bilodeau et al., 1996; Gregory et al., 1994; Humphreys et 

al., 1993) and uphills (Bilodeau et al., 1992; Bilodeau et al., 1996; Boulay et al., 

1994; Rundell & McCarthy, 1996; Smith et al., 1988; Smith & Nelson, 1990; 

Viitasalo et al., 1997). It has been reported that this correlation weakens as the
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terrain becomes steeper (Aro et al., 1990; Smith et al., 1989). Longer cycle 

lengths were generally attributed to the application of larger and more efficient 

(i.e., more direct line of application) propulsive forces indicated by the correlation 

of velocity with increased flexion of the weak-side elbow (Gregory et al., 1994), 

weak-side knee and trunk (Gregory et al., 1994; Humphreys et al., 1993). 

Additionally, the path of the CM fo r the fastest offset performances tends to be 

more closely aligned with the forward direction (i.e., less mediolateral 

displacement of the CM) (Smith et al., 1988; Viitasalo et al., 1997). Several 

studies have examined the changes in kinematic variables for the offset that 

occur as a skier encounters an increase in grade or slope. The most salient 

finding from these studies has been that faster skiers tend to maintain or 

increase their cycle rate (Bilodeau et al., 1992; Smith & Nelson, 1990) while 

generally reducing cycle length (Aro et al., 1990; Smith et al., 1989) in order to 

maintain velocity. This maintenance of velocity apparently requires the skier to 

increase the poling phase of each cycle (Bilodeau et al., 1992; Smith et al.,

1989). Other kinematic adaptations inherent to skiing faster while performing the 

offset uphill included a greater angle of the skis to the forward direction vector 

(Aro et al., 1990; Smith et al., 1989), increased ski edging angles (Aro et al.,

1990), increased forward step distance (Aro et al., 1990) and a w ider stance 

width (Aro et al., 1990).

2-skate

Smith and Heagy (1994) produced a three-dimensional kinematic analysis 

of the 2-skate performed on flat terrain during the men's 50 km freestyle race at
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the 1992 Albertville Olympics. Sim ilar to the offset, the fastest skiers had the 

longest CL {r=0.76, p<0.05). Poling side knee extension was correlated with CL 

(r=0.51, p<0.05) leading the researchers to suggest that this “more vigourous 

knee extension" was indicative o f larger propulsive forces and therefore longer 

cycle lengths for the faster skiers (Smith & Heagy, 1994, p.79). There was also 

an elevation of the skier’s CM at the end of the glide phase just prior to the poling 

action. There was a drop of the CM during the offset technique just prior to the 

poling action (Smith & Heagy, 1994). It was suggested that the energy required 

for this upwards movement of the CM during the 2-skate may be associated with 

increased energy demands (i.e., higher oxygen consumption) compared to the 

offset technique (Smith & Heagy, 1994).

1-skate

The researcher is not aware o f any published studies that solely describe 

the kinematics of the 1-skate. However, McPherson (1991) in a technical report 

based on the analysis of the top finishers in the World Nordic Championships 

described the movements involved in the performance o f the 1 -skate. Two- 

dimensional video recordings and a short field width made quantification difficult 

in this study.

C om parisons Between 1-skate, 2-skate and O ffset

Several studies have been published that compared kinematic parameters 

of the 1-skate, 2-skate and offset techniques (Bilodeau et ai., 1991, 1992; Boulay 

et al., 1994).
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Bilodeau et al., (1991 ) appear to be the first researchers to have directly 

compared the different skating techniques over various grades of terrain. The 

maximum achievable velocities for the 1-skate, 2-skate and offset were 

compared over flat, uphill (8°) and downhill (-5°) grades. Differences in 

maximum velocity between techniques were not observed over any of the 

terrains and no discussion concerning these findings was provided.

Bilodeau et al., (1992) compared the relative durations of the gliding and 

propulsive phases between the 1 -skate, 2-skate and offset techniques. Nine 

provincial and national level skiers were videotaped skiing at a self-prescribed 

80% of maximum intensify using each of the techniques on fla t and “low grade” 

uphill (5°) pitches. Cycle lengths were calculated from video analysis and times 

through a measured field were used to calculate velocities. Sim ilar to previous 

findings (Aro et al., 1990; Smith et al., 1988; Smith et. al., 1989; Smith & Nelson,

1990), faster velocities were correlated with longer cycle lengths on flats (r=0.34, 

fx0 .05 ) and uphills (f^O.87, p<0.05). Similar to the findings of Smith and Nelson 

(1990), an increase in cycle rate and not cycle length was required to maintain 

velocity on a steeper grade fo r all three skating techniques. This increase in CR 

on uphills was accompanied by an increase in the duration of the propulsive 

phase with a concurrent decrease in relative gliding time. Differences in velocity 

between the three techniques were not observed on flat terrain. However, a 

difference in cycle length between techniques was observed with the 1-skate 

producing the longest CL and the offset the shortest. A sim ilar difference was 

noted for the uphill condition. The 2-skate elicited a slower velocity than either

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

the 1-skate or offset on the uphill section. Regarding technique selection, it was 

suggested that the 2-skate was not well suited for uphill skiing as a slower 

velocity accompanied an increase in the duration of the propulsive phase 

(Bilodeau et al., 1992). No other recommendations fo r technique selection during 

racing were presented. However, it was suggested that fitness, technical ability, 

terrain profile and snow quality likely influenced technique selection more than a 

technique's maximum attainable speed and that further research was required to 

“fully document the efficiency o f the skating techniques” (Bilodeau et al., 1992, 

p.925).

Boulay and colleagues (1994) examined the effect of slope variation upon 

maximal attainable velocity during performance of the 1-skate, 2-skate and offset 

techniques. Nine junior ski racers were videotaped skiing at maximal velocity 

using each of the techniques over slopes of -1, 0, 6, 9, and 12°for analysis. Cycle 

lengths and CR were different (p<0.01 ) between techniques with the 1 -skate 

producing the longest CL followed by the 2-skate and offset. The inverse was 

found for cycle rate with the offset having the fastest and 1-skate the slowest 

values. Maximum velocity was related to CL but not CR for all three techniques.

A  reduction in cycle length and maintenance of cycle rates was observed as the 

incline increased. There were no differences in velocity reported for any of the 

techniques over the -1, 0 and 6° grades. However, the offset technique was 

observed to be faster than the 1-skate and 2-skate on the 9 and 12° uphills. The

1-skate was also faster than the 2-skate on the 9° ascent. The authors identified 

these differences as the study’s novel findings although they cautioned that
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confounding variables not examined nor controlled fo r including the “possible 

variable efficiency of skiers between techniques” (Boulay et al., 1994, p. 285) 

might have partially contributed to the faster speeds observed during 

performance of the offset.

Comparisons between the three skate-skiing techniques have revealed 

that there are no differences in the maximal achievable velocity over flats, 

downhills or moderate uphills (Bilodeau et al., 1991 ; Boulay et al., 1994). Self­

prescribed submaximal intensity velocities were also reported to be equivalent on 

fla t terrain (Bilodeau et al., 1992). Maximum velocity is positively correlated with 

cycle length for all three techniques (Bilodeau et al., 1996; Boulay et al., 1994) 

with the 1-skate producing the longest CL followed by the 2-skate and then offset 

on flats, uphills (Bilodeau et al., 1992, Boulay et al., 1994) and downhills (Boulay 

et al., 1994). Similarly, the quickest cycle rates were observed during 

performance of the offset and the slowest during the 1-skate (Boulay et al.,

1994). The 2-skate is slower a t maximum velocity compared to the 1 -skate on 

uphill terrain (Bilodeau et al., 1992; Boulay et al., 1994). Finally, the offset 

technique is significantly faster at maximum intensity on steep (9 -12°) uphills 

(Boulay et al., 1994).

There appears to be only a few suggestions provided in the literature for 

selecting a skate-skiing technique for racing based on kinematic factors. The 1- 

skate is preferred over the 2-skate on moderate to steep uphills although the 

offset is apparently preferable to  both for steeper climbs. A comparison of 

findings from Smith and Hoagy’s 1994 examination of the 2-skate with results
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from the previously discussed comparative studies reveals two particularly 

interesting points. First, compared to the offset, a larger vertical displacement of 

the CM was observed throughout one cycle o f the 2-skate. Second, the duration 

of skating phases for the 2-skate in two separate studies were practically the 

same: 55.0% of the cycle time (Smith and Heagy, 1994) and 54.1% of the cycle 

(Bilodeau et al., 1992). These values are greater than the 46.1% glide phase 

time reported fo r the offset by Bilodeau and associates (1992). Little speculation 

was offered in either study as to whether the greater vertical movement of the 

CM or the relatively longer gliding phase time offered the 2-skate a potential 

economical advantage or disadvantage over the offset. This problem could be 

addressed by comparing the oxygen consumption required for each technique at 

equal velocities. An examination of kinematic variables from the three skate- 

skiing techniques performed at a constant velocity over flat terrain could 

potentially answer some questions regarding technique selection for races. 

Additionally, potential solutions to the technique selection question could be 

found if the kinematic parameters unique to each technique were simultaneously 

examined and compared with the required oxygen consumption.
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CHAPTER 3 -  M ETHODOLOGY

Subjects

Eleven (11) highly trained male cross-country ski racers between the ages 

of 20-27 years, living and training in Thunder Bay, served as volunteer subjects. 

Seven subjects were members of Thunder Bay’s National Training Centre 

Development Team. All subjects were training 1-2 times per day (a minimum of 

400-700 training hours per year). Descriptive data for the subject pool is 

presented in Table 1. The mean VOgMax of 65.7 ml«kg'̂ »min'̂  is considerably less 

than the average value of 83.8 ml«kg'̂ «min'̂  for elite Swedish skiers reported by 

Bergh (1987). in this context the subjects can be characterized as highly trained 

although below the elite level. Each subject signed written informed consent 

documents after having the purpose of the study, their role as subjects and any 

potential personal risks and/or discomforts associated with their participation in 

this study explained to them (see Appendices 1,2 & 10). Prior to recruiting 

subjects ethical approval for this study was obtained from Lakehead University’s 

Ethics Advisory Committee.

Table 1 -  Descriptive statistics for oarticioatina subjects.

Variable Range Mean
Age (years) 2 0 -2 7 21.9
Skiing Experience (years) 3 -1 9 9.8
Height (cm) 169.9-190.0 177.2
Weight (kg) 67.6 -  86.6 74.2
VOgMax (ml«kg*’*min*^) 5 8 .9 -7 3 .5 65.7

General Field Procedures

Each subject skied in a counter-clockwise direction around a fla t oval track 

(=500 m in length) groomed for skating in the stadium at the Lappe Nordic Ski
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Centre in Thunder Bay, Ontario. Three consecutive trials were performed using

1-skate, 2-skate or offset exclusively for each trial. The order of techniques was 

randomly assigned and counterbalanced across subjects. Subjects maintained a 

constant velocity of 5.4 m«s'̂  by following a snow-machine equipped with a 

speedometer. The value of this velocity was determined in consultation with the 

coach of the National Training Centre Development Team to ensure that all 

subjects could maintain the constant speed and stay below 70% of maximum 

intensity while using each of the techniques. Criteria for selecting th is velocity 

included snow and weather conditions combined with the submaximum intensity 

requirement. Weather conditions over the 9 hour testing period remained 

remarkably static with the a ir temperature ranging from -6 to -3°C and the snow 

temperature ranging from -6.5 to -5.5°C. This relatively small range did not 

appear to cause changes in the structure or quality of the snow and therefore 

weather appeared to have no appreciable impact on any of the study’s predictor 

or outcome variables.

Each skier warmed-up individually for 20 minutes before his first trial.

Each trial lasted 5 to 6 minutes. There was a 5 minute rest period between each 

trial to download data and recalibrate the portable metabolic system. A ir and 

snow temperatures as well as ambient humidity were recorded prior to beginning 

each trial. The total time required to perform all three trials was between 20 and 

25 minutes per subject.

All subjects were instructed to abstain from consuming caffeine, food and 

alcohol 2 hours prior to their testing time. Subjects were also requested to avoid
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strenuous exercise 24 hours prior to testing. Additionally, subjects were 

requested to wax their skis with the same wax and using the same ski 

preparation techniques according to the day’s prevailing snow and environmental 

conditions.

Measurement of Oxvaen Consumption

Throughout each trial, each subject breathed into a portable metabolic 

measurement system (KB1-C, AeroSport Inc., Ann Arbor, Ml). The KB1-C 

measures and records VOg, VCOg, heart rate (HR), respiratory exchange ratio 

(RQ) and minute ventilation (VE). The system includes a facemask to collect 

expired air, a sensor system to measure ventilation, Og and COg concentrations, 

as well as a transmitter, a wireless heart rate electrode, rechargeable battery and 

receiver. The sensor system and gas sampler are connected to the facemask 

and hamessed to the subject’s back (total weight approximately 1.0 kg). 

Continuous proportional sampling, basically a variation of open circuit spirometry 

that eliminates the need for a large gas-mixing chamber, is constantly performed 

within the unit to determine the gas concentrations of the expired air (AeroSport 

Inc., 1995). The capacity of the technology utilized by the KB1-C to provide 

reliable and valid measurements of VOg at submaximum and maximum exercise 

intensities has been established (Melanson, Freedson, Hendelman & Debold, 

1996; Novitsky, Segal, Chatr-Aryamontri, Gukakov & Katch, 1995; Segal, Chatr- 

Aryamontri & Gukakov, 1994).
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The variable flow  pneumotach on the KB1-C was set to the “high” flow 

rating throughout the entire testing process. The high flow setting operates at a 

VE (STPD) range between 25 and 200 L«min ’ and is the manufacturer’s 

recommended setting for higher intensity exercise studies (AeroSport Inc., 1995). 

A flow calibration performed on the pneumotach using a 3 L syringe just before 

testing was accurate within ±3%. A gas calibration performed on the KB1-C with 

a calibration gas of 16% Og and 4% COg prior to testing was accurate to within 

less than ±1%. Immediately following the performance of each subject’s third 

and final technique an AutoCal (AeroSport Inc., 1995) was performed on the unit 

to purge all remaining expired air from the system and reset the sensors to the 

calibration settings.

Immediately following each trial the KB1-C was unhooked from the gas 

lines connected to the facemask. The physiological data from the trial was 

downloaded to a printer and quickly assessed to ensure that each subject had 

achieved and maintained steady state metabolism for the last 2 minutes of the 

trial. The KB1-C was programmed to record average values every 20 seconds, 

the lowest interval available. Steady state metabolism was defined as less than 

3% variation in VOg values (i.e., approximately ±120 ml). The steady state VOg 

values used for statistical analyses were calculated for each trial by averaging 

the values over the last minute of each trial. Following each download of 

physiological data the previously described AutoCal procedure was performed 

against ambient air. Subjects continued to wear the facemask between trials and 

were permitted to perform some light skiing if they desired.
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Laboratory Procedures

Within one week of the on-snow testing each subject completed a 

treadmill-running continuous graded-intensity VOgwax test. The KB1 -C was used 

to measure all expired gases for this procedure. The high setting on the 

pneumotach was utilized and the same calibration and verification procedures 

described for the on-snow testing were used prior to and following each VOgwax 

test. Subjects warmed up on the treadmill fo r ten minutes at either the initial 

speed employed fo r the test or just below. Each subject began the test running 

at 3.74 m*s'̂  on a level treadmill bed. The velocity was increased 0.29 m«s‘  ̂

each minute until a velocity of 5.76 m«s'̂  was reached. After this the incline o f 

the treadmill bed was increased 2° every minute until the subject achieved 

volitional exhaustion. VOgMax was determined as the highest 20 second VOg 

value at the point where VOg values stopped increasing. The entire test lasted 9 

to 13 minutes in duration.

Kinematic Data Capture

Each skier was videotaped throughout each trial as he passed through a 

demarcated 41.8 m field. Two digital video cameras (Panasonic CL-350) were 

positioned 25.6 m apart from one another and 13 m from the track (see Figure 1).
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Figure 1 -  Overhead diagram of video camera set-up.
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The cameras were genlocked to ensure that the recorded video images 

were synchronized in time. Each camera was affixed to a pan and tilt head 

(Peak Performance Technologies Inc., Englewood, CO) that was in tum attached 

to a tribrach via a fixed tribrach adapter. The tribrach, mounted on a surveying 

tripod, was used to level the pan and tilt heads in the horizontal and vertical 

planes. Skilled camera operators panned and tilted each camera to videotape 

the skier as he passed through the field. A fixed focal length fo r each camera 

was determined prior to videotaping by having the tallest subject stand on the 

track where the camera’s focal axis was perpendicular to the track (i.e., at the 

point closest to the camera or where the subject’s image size would be the 

largest during panning). The focal length was zoomed in or away from the
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subject until his image occupied roughly two-thirds o f the vertical aspect of the 

camera's viewing field. A previous pan and tilt pilot study of skate-skiing 

confirmed that this was the largest possible image size that allowed the camera 

operator to consistently follow the athlete without inadvertently cropping an 

essential distal portion of the image. Video images were captured at a speed of 

30 Hz with a shutter speed of 1/1000 seconds, the fastest that the prevailing 

ambient light permitted.

Prior to being recorded on videotape, video signals from each camera 

passed through a Digital Encoding Unit (DEU). The DEU, connected to the pan 

and tilt head, digitally imprinted the camera’s angular position (i.e., pan and tilt 

co-ordinates) on each video picture in the form of a bar code. This data was 

decoded and stored with the digitized data during the digitization process. The 

video signal also passed through a Time Code Generator (TCG) that imprinted a 

SMPTE time code window on each field of each picture of the videotape.

Subjects wore dark form fitting clothing to promote accurate digitization of 

the video pictures. Additionally, white contrasting tape was applied to the 

subjects’ clothing over the following joint centres: i) lateral epicondyle of the right 

knee, ii) right hip at the greater trochanter, iii) dorsal aspect of the right wrist, iv) 

lateral epicondyle of the right elbow, v) acromion process of the right shoulder, vi) 

medial epicondyle of the left knee, vii) anterior surface of the left wrist and viii) 

medial epicondyle of the left elbow. Additionally, black contrasting tape was 

applied on subjects’ ski boots over the lateral malleolus of the right foot and the 

medial malleolus of the left foot to facilitate digitization of the ankle joints.
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Immediately following completion of all trials four 365.76 cm surveying 

calibration rods were erected vertically using a level 10 m apart. The distance 

between the two furthest distinguishable vertical points on each rod was 

determined and videotaped fo r calibration purposes. The points were later 

digitized. The co-ordinates o f these known interpoint distances were used to 

calculate the three dimensional image space and its associated co-ordinate 

system (Peaks User’s Reference Manual, 1995).

Kinematic Data Analvsis

Analysis of each subject’s technique entailed digitizing of the recorded 

video pictures using the Pan & T ilt module of the PeakS System (Peak 

Performance Technologies Inc., Englewood, CO). Three full cycles of each 

technique were digitized from each camera view. For the 1-skate technique 

analysis of the cycle began and ended with pole plants on the right aspect of the 

skier, the side that was adjacent to the cameras. In this way one cycle of 1-skate 

included two pole plants and two leg strides, one on each side (Bilodeau et al.,

1992). For the 2-skate technique, analysis of the cycle began and ended with 

successive pole plants (Bilodeau et al., 1992). For the offset technique analysis 

of one cycle began and ended with successive pole plants on the poling side 

(Bilodeau et al., 1996). Critical events were identified for each cycle during the 

digitizing process. These included the initiation and release of pole contact with 

the snow for each pole as well as the beginning and end of ski-snow contact for 

each ski.
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Video pictures were digitized at a sampling rate of 30 Hz (i.e., only the first 

field of each video frame). A 26-point 16-segment model was digitized (see 

Figure 2) which included the head, neck, shoulders, elbows, wrists, hips (greater 

trochanter), knee, ankles, heels, toes, ski tips, ski tails, top of pole grips and pole 

baskets. Hinrichs’ revised body segment parameter data (1990), modified to 

account for ski, boot and pole masses, were used to calculate the body’s centre 

of mass (CM). The raw data was smoothed using a Butterworth digital filte r at a 

cut-off frequency determined by spectral analysis and a follow-up visual 

comparison of raw and smoothed data. The cut-off frequency varied according 

to the rate of movement of the specific point and ranged between 3 to 7 Hz.

Three extra pictures were digitized at the beginning and end of each cycle to 

minimize end point effects with the Butterworth algorithm during the smoothing 

process (Smith & Heagy, 1994). The PeakS analysis software used the direct 

linear transformation method (DLT) to calculate the 3-D co-ordinates from the 

two conditioned trials. The three cycles of each technique were subsequently 

“averaged” using the Trial Averaging Module of the Peaks system, a process that 

generates a representative or “average” cycle. This computation essentially 

reduces the deleterious statistical effects of any kinematic “abnormalities” 

present during the performance of a particular cycle and produces a cycle that is 

more representative of each subject’s technique (PeakS User’s Reference 

Manual, 199S). This average cycle was used to calculate all kinematic variables 

and temporal phases.
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Figure 2 - 26-point spatial model.

Kinematic Variables

The kinematic variables investigated included cycle length, cycle time and 

cycle rate. For the 1-skate technique the cycle began and ended with the pole 

plants on the side of the skier that was adjacent to the cameras (i.e., right side). 

In this way one cycle of 1 -skate included two pole plants and two leg strides, one 

on each side (Bilodeau et al., 1992). For the 2-skate technique, the cycle began 

and ended with successive pole plants (Bilodeau et al., 1992). For the offset 

technique, a cycle began and ended with successive pole plants on the poling 

side (Bilodeau et. al., 1996). Cycle length was measured as the distance each 

skier’s centre of mass (CM) travelled in the forward direction. Cycle time was 

measured as the time in seconds to complete one cycle and cycle rate.
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expressed in hertz (Hz) was calculated as the number of cycles completed per 

second.

In addition to these basic cycle characteristics, several temporal measures 

were calculated, specifically the relative durations of the propulsive and gliding 

phases fo r one cycle of each technique. The propulsive phase was defined as 

the portion of the skating cycle that included poling and/or knee extension of the 

leg applying a skate force. The glide phase was defined as the period o f the 

cycle that included gliding on the leading ski without any concurrent propulsive 

activity. Critical events were identified fo r each cycle during the digitizing 

process. These included the initiation and release of pole contact with the snow 

for each pole as well as the beginning and end of ski-snow contact for each ski. 

The elapsed time between these events was used to calculate the relative timing 

of the glide and propulsion phases for each technique for each subject.

The joint angles measured included the minimum, maximum and 

range of motion (ROM) during: flexion/extension of the elbows (see Figure 3) and 

shoulder extension during poling; flexion and extension of the trunk, at the hips, 

relative to the horizontal plane during poling (see Figure 6); and flexion/extension 

of the knees and ankles (see Figure 4) as well as abduction/adduction of the hips 

(see Figure 5) during the skating phase. The ankle flexion/extension was defined 

as the as the angular displacement between the tibia and the segment between 

the malleolus and the toe. The ski angle, measured as the angle between the ski 

and the forward direction of travel vector, as the ski touched down to initiate the 

glide phase (see Figure 7) and just prior to the release of the ski from the snow
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were recorded. The vertical pole Inclinations as poling was Initiated were also 

measured In both the sagittal (see Figure 8) and transverse planes. The vertical 

and lateral displacements as well as the horizontal acceleration of the skier’s 

centre of mass (CM) throughout one complete cycle were calculated for each 

technique. The average angle of the forward velocity vector was calculated as 

the angle between the resultant vector between cycle length and lateral 

displacement and cycle length. A smaller average angular displacement of the 

forward velocity vector would therefore be Indicative of a tendency to direct the 

body more In the forward direction and less from side to side throughout each 

cycle.

Figure 3 - R.O.M. at both Doling and non-oollna side elbows during oollno.

iling side elboi r

Non-pcwg side elbow
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Figure 4 — R.O.M. at both poling and non-polina side knees (flexion/extension) 

and ankles fdorsiflexion).

Non-poli 
side knee

I oling side knc

'oling side ani le

Non-poHng 
side a n k l^

Figure 5 — Non-poling side hip abduction, measured between the thigh and the 

sagittal plane.

N-P side h p 
abduction
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Figure 6 — Trunk flexion at the hip, measured as the angle between the trunk and 

the horizontal plane.

Trunk
flexion

Figure 7 — Angle between the poling-side ski and the forward direction of travel 

vector as the ski touches down to initiate the glide phase.

Angle between 
glide ski and 
direction of 
travel vector
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Figure 8 — Vertical pole inclinations at the initiation of poling.
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Statistical Analyses 

Between Techniques

A randomized block analysis of variance (ANOVA) was used to determine 

differences in VO2 between the three techniques. The F-ratio was adjusted using 

a Greenhouse-Geisser epsilon to control for within-subject effects across 

techniques. Scheffé’s Test (p < .05) was selected as the post hoc test to isolate 

significant differences.

W ithin Techniques

Bivariate correlations were calculated between oxygen consumption and 

heart rate (expressed as percentages of VOzMax and HRMax) and all kinematic 

performance variables to assess the strength of relationship between kinematic 

performance factors and those physiological response variables that represented 

economy. Additional correlation coefficients between economy and aerobic
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fitness, represented by VOzMax were also calculated to determine the relationship 

between fitness and the economical performance of each technique.
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CHAPTER 4  -  RESULTS

Between Techniques

The descriptive statistics fo r the physiological variables for each skate- 

skiing technique are presented in Table 2. Minute ventilation for the 2-skate 

(84.77 Mmin'̂ ) was lower (p<0.05, see Table 3) than the 1-skate (91.37 L*min'^). 

All other physiological variables, including relative VOz, VOz as a percentage of 

treadmill running VOzMax. heart rate and RQ were not significantly different 

between techniques.

Table 2 - Phvsiolooical variables: descriptive statistics for 1-skate. 2-skate and 

offset.

Variable 1-skate 2-skate Offset
Mean S.D. Mean S.D. Mean S.D.

O2 consumption (ml«kg'’»min*’) 44.89 2.49 43.23 1.63 43.77 4.77
O2 consumption (%V0 2 max) 68.51 4.54 66.04 4.52 66.60 5.36
CO2 production (ml«kg'’«min ’) 38.46 3.31 35.80 2.35 36.61 2.26
Heart rate (beats«min ’) 157.1 14.52 156.7 13.27 157.7 13.57
Heart rate (%HRMax) 81.1 7.43 80.9 7.15 80.9 7.11
•Minute ventilation (L«min'\ BTPS) 91.37 9.67 84.77 6.68 88.05 6.65
Respiratory Quotient (VCO2A/O2) .84 .05 .83 .04 .84 .05
'̂ Significant difference between techniques, see Teible 3. 

Table 3 — ANOVA summary for minute ventilation.

Source of 
Variation

Sum of 
Squares

df
(Corrected)*

Mean
Square

F Sig.

Between
Techniques

266.417 1.560 170.760 5.89 .016^

Within
Techniques

497.512 17.162 28.989

Total 763.929
*Greenhouse-Geisser epsilon -  .780 
^VE 2 skate less than 1-skate (pcO.05)

Kinematic and cycle characteristics fo r the 1 -skate, 2-skate and offset are 

presented in Table 4. The 1-skate had both the longest average cycle length and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

cycle time, the 2-skate the next longest, and the offset the shortest. Inversely, 

the slowest cycle rate was observed during performance of the 1 -skate, followed 

by the 2-skate with the offset requiring the fastest cycle rates. A ll observed 

between-technique differences were significant at the p<0.05 level.

Table 4 — Kinematic and cvcle characteristics for 1-skate. 2-skate and offset.

Variable 1-skate 2-skate Offset
Mean S.D. Mean S.D. Mean S.D.

Cycle length (m) 13.4^ 1.32 9.93^ 0.97 8.01^ 0.84
Cycle Rate (Hz) 0.41^ 0.03 0.54’ 0.06 0.69^ 0.06
%cycle time gliding 55.63 4.86 55.64 4.50 43.85^ 10.55
%cycle time poling 27.88’ 3.13 19.16’ 2.09 23.22^ 2.29
%cycle time skating 21.10^ 3.35 27.59’ 3.68 35.41^ 7.63
%cycle time in propulsion 44.37 4.70 44.36 4.50 56.15^ 10.55
Gliding time (s) 1.36’ 0.19 1.04’ 0.18 0.64^ 0.19
Poling time (s) 0.68 0.06 0.35 0.04 0.34 0.02
Skating time (s) 0.49 0.08 0.51 0.05 0.52 0.12
Total propulsion time (s) 1.08^ 0.09 0.82 0.07 0.82 0.15
Net vertical displacement of CM (m) 0.20 0.03 0.18 0.03 0.12" 0.04
Net lateral displacement of CM (m) 0.70’ 0.17 0.55’ 0.13 0.37’ 0.17
Average fonward velocity vector (=) 3.0 0.55 3.2 0.56 2.6^ 0.84
Weight shift toward poling side (m) 0.08 0.04 0.11 0.03 0.08 0.05
Weight shift toward nonpoling side (m) — — o.ir 0.04 0.24 0.05

‘differences exist between offset and 1-skate, offset and 2-skate (p<0.05) 
‘differences exist between 1-skate and 2-skate, 1-skate and offset (p<0.05) 
^difference exists between 2-skate and offset (pcO.OS)

The relative durations of each phase of the skating cycle fo r the three 

techniques are further illustrated in Figure 9. The percent duration of cycle time 

engaged in gliding was lower (p>0.05) for the offset compared to the 1-skate and

2-skate, which were practically equal. Consequently, a greater percentage of 

cycle time was required for propulsion during the offset compared to the 1-skate 

and 2-skate. The nature of this propulsion was observed to d iffe r between 

techniques (see Table 4, Figure 9). The duration of cycle time engaged in poling
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was greatest fo r the 1-skate and smallest for the 2-skate. The offset was seen to 

require the greatest percent o f cycle time for application of skating forces with the

1-skate requiring the least. A ll differences between techniques in percent cycle 

durations fo r application of propulsive forces were significant at the p<0.05 level. 

Fioure 9 - Relative phase durations fo r the 1-skate. 2-skate and offset 

technioues.

%Gliding%Propulsion %Poling %Skating 

1-skate H  2-skate H  Offset
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Figure 10 — Absolute phase durations for the 1 -skate. 2-skate and offset.

Cycle Glide Propulsion Poling Skating 

1-skate I  2-skate H  Offset

Absolute cycle times and absolute phase durations are illustrated in Figure 

10. Glide time was observed to  be the longest (pcO.OS) for 1-skate (1.36 s.), 

followed by 2-skate (1.04 s.) and offset (0.64 s.). The 1-skate required more time 

for propulsion per cycle then the 2-skate and offset techniques, which were 

observed to demand almost equal propulsion time (see Figure 10). Similarly, 

poling demanded approximately twice as much time per cycle of 1 -skate (0.69 s.) 

as either 2-skate (0.34 s.) or offset (0.35 s.). Finally, all three techniques utilized 

sim ilar amounts of time per cycle to apply skating forces (see Figure 10 and 

Table 4).

The net vertical displacement (see Figure 11) of the skier’s centre of mass 

was less (p<0.05) during performance of the offset (12 cm) compared to either
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the 1 -skate or 2-skate, which were not significantly different from one another (20 

and 18 centimetres respectively).

Figure 11 — Vertical displacement of the CM versus %cvcle time fo r the 1 -skate.

2-skate and offset techniques.
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Techniques 

H i  2-sketa Offset

The mediolateral CM was observed to be different (p<0.05) between all 

three techniques (see Figure 12). Performance of the 1-skate elicited the 

greatest lateral displacement and off set the least.
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Figure 12 — Medio-lateral CM displacement versus %cvcle time fo r the 1-skate.

2-skate and offset techniques.

1-skate

I I I I I I I I 

% Cycle tim e

Techniques 

H  2-skate Offset

Within Techniques

Significant (p<0.05) Pearson product correlations between %V02Max and 

%HRm3x and kinematic performance variables as well as fitness variables are 

presented in Tables 5 (1-skate), 6 (2-skate) and 7 (offset).
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Table 5 — Significant correlations between physiological variables and kinematic 

performance/fitness variables for the 1 -skate technique.

Physiological
Variable

Kinematic Performance/Fitness Variable r
(p<0.05)

%V02Max VOante^d-min’) -.68
VOz Max (ml«kg*’«min ’) -.60
PS poling time (s) -.74
Total poling time -.64
PS max. elbow flexion while poling on preferred side (°) -.68
PS elbow flexion ROM while poling on preferred side (°) -.62
PS shoulder extension at pole plant on preferred side (°) -.64

% HRwax VOzMaxd'min*’) -.66
VOz Max (ml«kg’’«min‘’) -.65
Ski angle at ski plant on preferred side (°) -.71
Ski angle at ski plant on non-preferred side (°) -.61
NP shoulder extension at pole release on non-pref. side (°) -.70
Angular velocity of NP hip abduction (®«s ’) -.70

Table 6 — Significant correlations between ohvsiological variables and kinematic 

performance/fitness variables fo r the 2-skate technique.

Physiological
Variable

Kinematic Performance/Fitness Variable r
(jxO.05)

%VOzMax VOz Max (ml«kg‘’*min'’) -.86
%cycle spent gliding on poling side -.62
Total time per cycle spent gliding on poling side -.58
Non-poling side elbow extension ROM during poling (°) -.63
Poling side hip abduction at ski release (°) -.60
Angular velocity of poling side hip abduction (“•s"̂ ) -.63
Non-poling side minimum hip abduction (°) -.63
Non-poling side knee flexion at ski plant (°) .63
Maximum poling side shoulder extension (°) -.66

% HRMax VOz Max (ml*kg'̂ *min’’) -.67
Average angle of fonward velocity vector (“) -.62
Poling side knee flexion at ski release (°) -.73
Maximum poling side elbow angle during poling (°) .64
Non-poling side shoulder extension at pole release (°) -.58
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Table 7 — Significant correlations between phvsioloaicat variables and kinematic 

performance/fitness variables for the offset technique.

Physiological
Variable

Kinematic Performance/Fitness Variabie r
(p<0.05)

%VOaMax Forward flexion of trunk at pole plant (°) -.60
Poling side lateral pole orientation at pole plant (°) .68
Non-poling side min. ankle dorsiflexion during skating (°) .68

% HRMax Net medio-lateral CM displacement per cycle (m) -.61
Average angle of forward velocity vector (“) -.64
Poling side vertical pole inclination at pole plant (°) -.62
Non-poling side max. ankle dorsiflexion during skating (°) .81
Non-poling side minimum hip abduction (°) -.70
Poling side hip abduction at ski release (°) -.86
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CHAPTER 5 -  DISCUSSION

Between Technique Comparisons based on Physiological Responses

This study appears to be the first to compare skate-skiing techniques 

performed a t equivalent submaximum intensities on the basis of simultaneously 

recorded physiological and kinematic measurements. Differences in jo int angles 

and other kinematic variables are explained in detail only to elucidate certain 

differences in economy (i.e., oxygen consumption) or other physiological 

mechanisms between the 1-skate, 2-skate and offset techniques. Discussions of 

kinematic differences independent of physiological consideration were not made 

and would be fairly tenuous because all skiers performed at an equal velocity of 

5.4m«s'\

The purpose of this comparison was to identify physiological differences 

between techniques to determine which technique(s) is the most economical. 

Economy is defined as the submaximum oxygen consumption required to 

complete a given task (Cavanagh & Kram, 1985). Since the constraints of the 

task in this study were held constant, any observed differences in oxygen 

consumption would therefore indicate a difference in movement economy 

between techniques. Economy also influences movement efficiency (Cavanagh 

& Kram, 1985). Efficiency is traditionally defined as the mechanical work 

performed (Force x distance) divided by the energy expended. Generally 

speaking, if oxygen consumption were taken to represent energy expended, a 

more economical technique would also be more efficient, in this study, 

mechanical work was not measured. However, the forces each athlete needed 

to overcome in order to move at the same velocity (distance/time) were
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controlled to be as similar as possible. These forces included the force required 

to overcome air resistance. Air resistance is related to surface area, surface 

drag and velocity. Velocity was equal across skiers and low enough that surface 

area and surface drag would be considered negligible. The other factor that 

potentially could have influenced velocity was the surface drag between the snow 

and the ski base, which would vary according to snow conditions and the ski 

base preparation. To control for this factor, athletes were instructed to prepare 

their ski bases in the same manner. Additionally, snow and weather conditions 

remained relatively constant throughout the day. Since these components of 

mechanical work were as sim ilar as possible any differences in oxygen 

consumption and efficiency could be attributed either to differences in the way 

athletes performed each technique (i.e., kinematic) or differences in aerobic 

fitness.

Oxygen C onsum ption

Average values for oxygen consumption were not significantly different 

between techniques ranging between 43.2 and 44.9 m l*kg'^*m in'\ These values 

were comparable to the offset values of 39.2 and 40.0 ml*kg'^*min‘  ̂observed by 

Hoffman and Clifford, (1990) and Saibene et al., (1989) respectively.

The actual values verified that, on average, subjects were performing all 

three techniques at the submaximum intensity o f less than 70% V02Max that is 

typically prescribed for extended duration aerobic training sessions (Bergh, 1987; 

Eisenman, Johnson, Bainbridge, & Zupan, 1989). The absence of any significant 

difference in oxygen consumption between the 1-skate, 2-skate, and offset
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indicates that any skate-skiing technique may be employed on flat terrain, 

exclusively or in combination, during training when the primary objective is to 

elicit an appropriate submaximum-intensity cardiovascular (i.e. primarily aerobic) 

training effect.

M inute V entlia tlon

The average minute ventilation values observed in this study ranged from 

84.8 to 91.4 L*m in '\ These values were comparable to the 96.0 and 82.0 L«min'̂  

observed by Hoffman et al., (1990) and Hoffman and Clifford, (1990) 

respectively, in two studies of rollerskiing performed at sim ilar low intensities.

The 1 -skate was observed to elicit a higher (p<0.05) VE than the 2-skate. 

This difference occurred despite no between-technique differences in VOz or the 

other physiological variables examined. The reasons for the disassociation 

between the typically linear VE-VOz relationship can be explained 

biomechanically. Faria (1994) observed greater minute ventilation from cross­

country skiers when they performed simulated poling actions versus upright 

cycling at equivalent submaximum rates of oxygen consumption. Faria attributed 

the higher VE to a higher breathing rate that served to  overcompensate for a 

lower tidal volume in order to meet each subject’s ventilatory needs. This 

reduction in tidal volume was attributed to the repeated trunk flexion and 

associated contraction of the abdominal musculature required for synchronous 

(i.e., double) poling (Faria, 1994). This movement could effectively reduce and 

constrict the action of the diaphragm during inspiration, thereby limiting the 

available tidal space and reducing the volume of air per breath (i.e., tidal volume)
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(Faria, 1994). Alternatively, the breathing rate could increase as it becomes 

entrained with the rhythms of peripheral limb movements, such as poling or 

skating, which occur at higher rates than the normal exercise breathing rate. This 

phenomenon has also been observed in the sport of rowing (Mahler, Shuhart, 

Brew, & Stukel, 1991).

In the present study, the absence of a meaningful Pearson-product 

correlation between minute ventilation and cycle rate for the 1-skate minimizes 

the likelihood that VE was higher for this technique due to the entrapment of 

breathing rate with poling. However, it seems plausible that the higher VE 

observed during performance of the 1 -skate would be related to its greater poling 

demands (27.9% of cycle time) compared to the 2-skate (19.2%) and the 

repeated trunk flexion associated with this action. These demands could 

generate a ventilatory response sim ilar to that described by Faria (1994) 

characterized by a reduced tidal volume due to constriction of the abdominal wall 

and a super-compensatory increase in breathing rate. A linear regression 

equation was derived to determine how much of the variance in 1 -skate VE was 

explained by variables related to trunk flexion and abdominal muscle co­

contraction during poling. A moderate relationship (adjusted = 0.67, p<0.05) 

was determined between VE (y) and the angles of trunk flexion at pole plant (xi) 

and pole release (xz) on the preferred side, and the angular velocity of trunk 

flexion during poling (xs) on the non-preferred side. This relationship is described 

by the following equation;

y = -2.34xi + 1.14xz -1.19xa + 228.91 Eq. 1
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The prediction of minute ventilation fo r the 1-skate using Eq. 1 involves a 

standard error of the estimate of ±5.55 L«min \  A similar relationship was not 

observed fo r the 2-skate despite the sim ilarities between the 1-skate and 2-skate 

on selected kinematic parameters related to poling including the trunk angle at 

pole plant, the angular velocity of trunk flexion during poling and the vertical 

inclination of the poles at pole plant (see Table 8). The absence of a relationship 

between minute ventilation and poling kinematics for the 2-skate may have been 

due to the reduced metabolic demands of this technique, resultant from requiring 

half as much poling as the 1-skate.

Table 8 - Selected poling kinematics for the 1-skate and 2-skate.

Poling Variabie 1-skate 2-skate

Preferred
side

Non-preferred
side

Trunk angle at pole plant (“) 66.19 64.59 62.63
Angular velocity of trunk flexion (“«s"’) 42.43 37.53 37.09
Vertical inclination of preferred side pole at pole 
plant (“)

13.61 14.47 14.03

Vertical inclination of non-preferred side pole at 
pole plant (°)

14.34 15.16 13.36

Heart Rates

Average heart rates were observed to be virtually identical between 

techniques as well as to heart rate value of 151 beats*min'^ observed by Hoffman 

and Clifford (1990) in a study of offset performed at a velocity of 3.94 m *s '\
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It is interesting to note that a difference in VE was observed between the

1-skate and 2-skate despite the presence of practically identical heart rates 

across techniques. This finding suggests that comparisons between skating 

techniques based only on HR reported in previous research (Bilodeau et al.,

1991,1996; Boulay et al., 1994) may not have been valid in terms of assessing 

the physiological component of the technique selection question.

R esp ira tory Q uotient

Virtually identical RQ values were observed for the 1-skate (0.84), 2-skate 

(0.83), and offset (0.84) techniques. Hoffman et al. (1991) reported higher RQ. 

values fo r performance of double poling over offset on rollerskis. The 

researchers suggested that this finding might have been due to greater 

carbohydrate utilization and lactate production from the ami muscles because of 

the upper body demands of double poling. In the present study, the absence of 

differences between techniques for RQ, VOz or HR suggests that the higher VE 

and the greater poling demands of the 1-skate did not manifest in greater energy 

demands.

Conclusions and Recommendations fo r Between Techniques Analvses

The results of this study indicate that performance of the 1-skate, 2-skate 

or offset at an equivalent submaximum velocity will elicit an aerobic training 

benefit. However, the question of selecting the most economical technique to 

optimize race perfomiance is less clear and warrants further discussion.

Although not a significant difference, the 2-skate required 1.7 ml*kg'^*min'^ less
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oxygen consumption than the 1-skate. This represented a difference of 2.5% of 

VOzMax between the two techniques. It has been reported that the offset is not 

slower than the 1-skate or 2-skate on fla t terrain at maximum intensity (Bilodeau 

et al., 1991 ; Boulay et al., 1994). However, the researchers of both of these 

studies failed to examine the performance of skate-skiing techniques at the 

submaximum velocities generated under race-specific intensities. Race-specific 

intensities would require a greater and more sustained contribution from the 

aerobic energy system than is required fo r the short duration full-out efforts 

studied by Bilodeau and colleagues (1991) and Boulay (1994). In such an 

instance, the physiological variables measured in this study, especially oxygen 

consumption, would be most appropriate as criteria for determining technique 

selection. Several of the subjects in this study reported that the offset is not 

employed over flat terrain during races because it is perceived to be slower than 

either the 1-skate or 2-skate at the required race-specific intensity. This 

perception was confirmed by Bilodeau and colleagues (1996) who reported that 

28 of 34 skiers used the 2-skate on a flat section of terrain during a 30 km 

skating race at the 1994 Canadian National Cross-Country Ski Championships.

It stands to reason that the inclusion of the offset technique in this analysis may 

have been unnecessary and may have added enough between subject variation 

to obscure a distinction in economy between the 1-skate and 2-skate at a 

submaximum intensity on flat terrain. A linear relationship between velocity and 

VOz has been observed in cross-country skiing for both skate-skiing (Bedford, 

1991; Saibene et al., 1989) and the classic technique (MacDougall et al., 1979;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Saibene et al., 1989). It is therefore not unlikely that the 2.5% difference 

between the 1-skate and 2-skate on fla t terrain observed in this study would be 

maintained as performance intensity increased up to race specific velocities. At 

race intensity, a 2.5% difference in VOz, particularly fo r men’s races longer than 

20 km (i.e. finish time > 50 minutes), would almost certainly affect energy system 

utilization, conservation of muscle glycogen and finishing times. Additionally, 

individual differences in fitness and/or technique might amplify any differences in 

economy between the 1-skate and 2-skate techniques. The question of 

technique selection between the 1-skate and 2-skate at race pace appears to be 

a feasible problem for future inquiry.

Within Technique Analvses

Within technique differences in economy between athletes were 

determined through examination of bivariate correlations between the percentage 

value of each athlete’s maximum oxygen consumption and kinematic variables.

A lower percentage of maximum oxygen consumption was indicative of more 

economical technique.

Within technique differences in percent of maximum heart rate (HRwax) 

based on correlations between percent HRmbx and kinematic performance 

variables were also completed. Most cross-country skiers rely on exercise heart 

rate to monitor their training intensity during training and the knowledge of any 

relationships between kinematic variables and heart rate would be useful 

information for coaches and athletes.
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2-skate

Significant negative correlations (p<0.05) were observed between 

%VOzMax during 2-skate performance and %cycle time spent gliding on the poling 

side ski as well as the total time spent gliding on the poling side glide ski. More 

economical performance of 2-skate at sub-maximal aerobic intensities appeared, 

therefore, to be related to the ability to glide for longer periods of time as well as 

for a greater percentage of each cycle.

A greater percentage of gliding time would be directly related to a smaller 

portion of each cycle spent in generating the propulsive forces o f poling and/or 

skating. There is some evidence that skating time was reduced fo r the 2-skate 

as indicated by the negative correlation between %VOzMax and the angular 

velocity of hip abduction of the poling side thigh. This would suggest that 

athletes who performed at a lower percentage of their VOzMax tended to more 

vigorously abduct their poling side thigh during the application of skating forces.

In the present study, longer gliding times were likely related to the ability to 

generate stronger propulsive forces during skating and/or poling. This was 

because all subjects skied at an equivalent velocity of 5.4 m*s'̂  and all ski bases 

were prepared identically to keep the force o f ski-snow friction equal. Some 

evidence of the relationship between stronger propulsive force application and 

improved 2-skate economy can be deduced from the negative correlations 

between %VOzMax and several kinematic variables. These included a greater 

range of motion during extension o f the non-poling side elbow during poling and 

more abduction of the poling side hip at ski release during skating.
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Sim ilar trends were observed in the correlations between %HRm3x and 

several kinematic variables. Greater knee extension of the poling side knee at 

ski release and greater shoulder extension of the non-poling side shoulder at 

pole release are indicative of the relationship between larger propulsive forces 

and reduced heart rate. Also, reduced heart rate was also related to  a greater 

average angle of the forward velocity vector. A greater deviation from the 

direction of travel during each 2-skate cycle could be a result of greater medio- 

lateral displacement of the CM resultant from longer periods of gliding during 

each cycle.

In their examination of the relationship between faster performance of the

2-skate and kinematic variables Smith and Heagy (1994) observed sim ilar 

patterns of longer glide times and stronger application of propulsive forces. The 

results of this study suggest that the most economical manner to perform the 2- 

skate might also be the fastest way to perform it.

Economical performance of the 2-skate appears to be related, at least in 

part, to an increased ability to glide which, due to experimental control of velocity 

and frictional forces, is likely due to an athlete’s ability to generate stronger poling 

and/or skating forces. However, a strong correlation (r=  -0.86, p<0.01) was 

observed between 2-skate economy (i.e., %V0 2 Max) and aerobic fitness as 

represented by maximum oxygen consumption (VOgwax). A sim ilar correlation 

was also observed between %HRm3x and VOzwax Several researchers (Bilodeau 

et al., 1992; Smith & Heagy, 1994) questioned whether differences in 2-skate 

performance between skiers were related to fitness or individual technique. It
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appears that fo r the 2-skate, technical economy is related to the ability to 

produce stronger propulsive forces and longer glide times which, in turn, requires 

a higher level of aerobic fitness. In the present study, a relatively small subject 

pool (n = 11 ) prohibited the use of a factor analysis to detemnine which kinematic 

and/or fitness factors were most closely related to 2-skate economy.

1-skate

Significant negative correlations were observed between 1 -skate economy 

(i.e., %VOzMax) and kinematic performance variables related to longer poling 

times, both on the preferred side (r=  -0.74, p<0.01) and for the combined poling 

time (r=  -0.64, p<0.05). The 1-skate technique differs from the 2-skate and 

offset in that there is basically twice as much poling per cycle and it could be 

expected that poling would be related to economy. The relationships cited 

suggest that a more sustained application of poling forces is more economical to 

1-skate performance at a submaximum aerobic intensity. This observation is 

supported by the significant correlations between 1-skate economy and other 

kinematic variables which emphasize an enhanced poling duration including 

greater extension (r=  -0.68, p<0.05) and ROM (r=  -0.62, fxO.QS) of the 

preferred side elbow while poling on the preferred side in addition to a more 

extended preferred side shoulder (r=  -0.64, p<0.05) at pole plant on the 

preferred side. These findings differ from the apparent need for more vigorous 

poling and longer glide times required during performance of the 2-skate in the 

present study. This difference may be attributable to the relatively low 

performance velocity used in this study. The 1-skate is typically employed for
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sprinting at higher velocities and a different ratio between poling and gliding 

times might then be utilized.

A theme different than the emphasis on poling time emerged from the 

significant correlations between percentage of maximum heart rate and 1 -skate 

kinematic variables. A lower heart rate was related to greater ski angles at ski 

plant on both the preferred (r=  -0.71, p<0.05) and non-preferred sides (r=  -0.61, 

p<0.05). Greater ski angles at ski plant would require increased lateral rotation 

of the hips and lead to a wider base of support which could, in turn, facilitate the 

balance necessary fo r applying the longer poling durations discussed above. 

Additionally, there was a significant correlation between faster abduction of the 

non-preferred side hip (r=  -0.70, p<0.05) during skating and lower heart rate. 

Faster hip abduction may be achieved with increased lateral hip rotation as this 

allows the vastus lateralis to assist the gluteals with abduction.

As with the 2-skate, increased 1-skate economy (i.e., %VOzMax) 

was related to higher aerobic fitness as defined by either absolute (r=  -0.68, 

p<0.05) or relative (r=  -0.60, p<0.05) VOzMax- Like the 2-skate, it appears that 

the kinematic parameters associated with the more economical performance of 

the 1-skate technique at a submaximum velocity, specifically sustained poling 

force application and increased hip rotation and abduction, require a higher level 

of aerobic fitness.

O ffset

Few correlations between economy (i.e., %VOzwax) and kinematic 

variables were observed with the performance of the offset technique. A more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

erect trunk at pole plant (r=  -0.60, p<0.05) and a more vertical lateral orientation 

of poling side pole at pole plant (r=  0.68, p<0.05) were observed to be related to 

improved economy. The nature of the relationship was that as a skier becomes 

more erect it could be expected that his poles would be more vertically oriented 

than if he had greater trunk flexion and greater body lean. However, the effect of 

a more erect posture on offset performance, specifically the ability to apply 

efficient poling or skating forces as discussed in previous research (Karvonen et 

al., 1987; Hoffman, 1992), is difficult to establish.

A clearer trend fo r the offset technique is apparent upon examination of 

the significant correlations between percentage o f maximum heart rate and 

kinematic performance variables. A lower exercise heart rate was associated 

with a greater net medio-lateral displacement of the CM (r=  -.61, p<0.05) and a 

larger average angle of the forward velocity vector (r=  -.64, p<0.05).

Additionally, a reduced heart rate during performance of the offset was correlated 

with greater abduction of the poling side hip at ski release (r=  -.86, p<0.01) and 

a greater minimum hip abduction on the non-poling side (r=  -.70, p<0.05). The 

tendency for increased side-to-side movement would be facilitated by greater 

abduction of the hips. These findings differ from the reduction in lateral 

movement associated with faster offset velocities on uphills observed in previous 

research (Smith et al., 1989; Arc et al., 1990). Viitasalo and colleagues (1997) 

suggested that energy was wasted due to increased lateral movements observed 

during the uphill performance of the offset in a race. The results of this study 

suggest that increased side-to-side movement may in fact be more economical.
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Unlike the 2-skate and 1-skate, there was no relationship between 

economical performance of the offset and aerobic fitness. The offset technique 

is rarely used on flat terrain under the low velocity conditions of this study and is 

acknowledged to be a technique reserved for climbing moderate to steep inclines 

(Bilodeau et al., 1996). Although individual differences in technique were related 

to differences in offset economy these were apparently achieved without a need 

for higher aerobic fitness. Further examinations of offset technique economy 

over terrains on which the technique is commonly employed might elicit a similar 

relationship as between fitness, economy and kinematic parameters as 

described in this study fo r the 1-skate and 2-skate.

Conclusions and Recommendations for W ithin Techniques Analvses

Within-techniques analyses revealed certain relationships between the 

economical performance of the 1-skate and 2-skate techniques and specific 

groups of kinematic performance variables. With the 1-skate, lower oxygen 

consumption was associated with longer poling times and increased hip rotation 

and hip abduction during skating. It is likely that these hip movements effectively 

widened the skier’s base of support thereby improving balance and facilitating 

the application of longer poling forces. During performance of the 2-skate, lower 

oxygen consumption was associated with both longer gliding times and a larger 

portion of the 2-skate cycle devoted to gliding. Since velocity and the magnitude 

of the ski-snow friction were constant across subjects the increased gliding was 

most likely achieved by the observed application of stronger and more vigourous
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poling and skating forces. A skier’s ability to perform both the 1-skate and 2- 

skate in a more economical fashion was also related to his possessing a higher 

level of aerobic fitness as defined by his VOzMax for treadmill running. It is 

plausible that the kinematic adjustments described above could only be achieved 

with increased aerobic fitness. Coaches and athletes should therefore consider 

an athlete’s aerobic fitness level when attempting to alter technique to improve 

performance. For example, the recommendation to emphasize increasing cycle 

length fo r the 2-skate made in previous research (Smith & Nelson, 1990) should 

likely only be made with co-requisite improvements in aerobic fitness.

Future study of economical performance of the 1-skate and 2-skate should 

likely be conducted at higher velocities that approach race specific velocities to 

determine if the relationships observed in this initial study hold at higher 

velocities. Additionally, it is probable that all skiers cannot perform comfortably at 

the same velocity. The velocity used in this study of 5.4 m*s‘  ̂may not have felt 

“natural” to any of the subjects and may have caused unusual performance of a 

certain technique and/or performance at a greater percentage of their maximum 

then they might otherwise at a higher velocity. This problem likely obscured 

numerous relationships between economical skiing and selected kinematic 

parameters. To overcome this dilemma, future study of 1-skate and 2-skate 

economy on flat terrain should employ a design where skiers perform at an 

equivalent submaximum intensity (e.g., 70% VOgwax) Economy could then be 

defined as velocity such that a higher velocity was more indicative of a greater 

economy. Each skier would be skiing at an individual velocity that is comfortable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

to them and the resulting within-technique relationships between economy and 

kinematic parameters m ight be more salient.

Less clear correlations between submaximum performance of the offset 

and kinematic variables were observed. Improved economy appeared to be 

associated with increased medio-lateral CM movement and a more erect 

posture. Although it is unclear what effect these changes would have on 

economy when the offset is performed on moderate to steep uphills where it is 

typically employed. Also, no relationship between economical performance of 

the offset and fitness was observed. Future study of the economical 

performance of the offset should be conducted on moderate to steep uphills. 

Under these conditions a relationship between aerobic fitness and economical 

movement might be established and the kinematic adaptations that can be 

achieved with improved fitness could be discemed.
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Appendix 1 -  Advance subject information letter

Thank you for your interest and involvement in this study. The purpose of this project is 
to determine the most economical technique(s) on flat terrain as well as the movement 
characteristics related to efficient and economical skate-skiing. During the testing 
process you will ski three trials, each lasting approximately 4 to 5 minutes, around the 
Lappe stadium. You will be instructed to employ a different skating technique for each 
trial. You will be following a snow machine which will be travelling at a constant velocity 
for each of the trials. Each trial will be videotaped by two cameras. Additionally you will 
be wearing a portable metabolic measurement device on your back and breathing all 
expired air into a facemask which will cover your mouth and nose. The entire device 
weighs approximately 1 kg. Please note the following conditions before your testing 
session:

- Wear tight black clothing for the testing. The videotape of each subject skiing will be 
digitized to generate a stick figure which will be used to calculate the various joint angles 
as well as the position of the centre of mass throughout each trial. The video image is 
black and white and the sharp contrast seen between black clothing and the white tape 
which will be applied over your joint centres promotes the quickest and most accurate 
digitizing. If you do not have black clothing then another dark solid colour is acceptable.

- Do not eat food or ingest caffeine 2 hours prior to your testing session. All of your 
metabolic measurements will be recorded during the testing process with a portable 
metabolic measurement device. The presence of recently ingested food will alter the 
way your body metabolizes available substrate and this will effect your oxygen 
consumption values.

- Please be on time. The earlier the entire testing process can be completed the less it 
will be effected by changes in temperature and weather conditions. Your help in this 
regard will be appreciated.

During the week of March 9 to 13 you will need to complete a treadmill-running VOzmax 
test. Your metabolic values need to be expressed as a percentage of your maximum. 
Sign-up times will be available on Wednesday.

Your participation is overwhelmingly appreciated. As a subject you will receive an 
individual biomechanical report of your skating performance as well as information 
regarding your capacity to consume oxygen at various heart rates which is essential to 
accurately determining your training zones. Please call me at 343-8187 (day) or 767- 
5735 (eve.) if you have any other questions, comments or concerns.

Thank you

Stephen Mcllwaine
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Appendix 2 - Subject Consent Form (On-snow Testing)

I_______________________________, hereby consent to  participate in
the on-snow portion o f th is study which seeks to  determ ine the m ost 
econom ical skate-skiing technique(s) on fla t te rra in  as well as the 
m ovem ent characteristics associated w ith e ffic ien t and econom ical skating.

I understand tha t I will be asked to  perform  three (3) consecutive on- 
snow  skiing tria ls  using each technique at a subm axim um  exercise 
intensity. I understand that I w ill be required to  breath into a facem ask that 
covers m y nose and mouth and wear a w ireless heart rate m onitor 
transm itter around m y chest throughout each test. A lthough unlikely, I 
understand tha t there may be some nausea, d ry mouth and throat o r some 
other m inor physical discom fort w hile wearing a face-m ask during 
approxim ately 20 to ta l m inutes o f skiing.

I understand th a t the direct benefits to  m e from  participating in this 
study include a com parative biom echanical assessm ent o f each my 
skating techniques and physiological inform ation regarding the 
establishm ent o f m y train ing zones. This inform ation w ill be provided to me 
in a  confidentia l m anner. I understand tha t these results w ill be preserved 
on disc w ith in the Departm ent o f K inesiology a t Lakehead U niversity for 
the next seven (7) years should I need to review  them  during th is tim e. I 
a lso understand tha t the final results o f th is study can be provided to  me at 
m y request. Finally, any publication of the fina l results w ill no t reveal my 
identity as I w ill be referenced by number.

S ignature of participant Date
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Appendix 3 -  Schedule for Subject Prep, and Metabolic Equipment Cleaning

7:45-7:55 Prepare Subject #1 (P-1, HR-1)

8:15-8:25 Prepare Subject #2 (P-2, HR-2)

8:25-8:35 Clean-up Subject #1, Disinfect P-1 & HR-1

8:45-8:55 Prepare Subject #3 (P-1, HR-1)

8:55-9:05 Clean-up Subject #2, Disinfect P-2 & HR-2

9:15-9:25 Prepare Subject #4 (P-2, HR-2)

9:25-9:35 Clean-up Subject #3, Disinfect P-1 & HR-1

9:45-9:55 Prepare Subject #5 (P-1, HR-1)

9:55-10:05 Clean-up Subject #4, Disinfect P-2 & HR-2

10:15-10:25 Prepare Subject #6 (P-2, HR-2)

10:25-10:35 Clean-up Subject #5, Disinfect P-1 & HR-1

10:45-10:55 Prepare Subject #7 (P-1, HR-1)

10:55-11:05 Clean-up Subject #6, Disinfect P-2 & HR-2

11:15-11:25 Prepare Subject #8 (P-2, HR-2)

11:25-11:35 Clean-up Subject #7, Disinfect P-1 & HR-1

11:45-11:55 Prepare Subject #9 (P-1, HR-1)

11:55-12:05 Clean-up Subject #8, Disinfect P-2 & HR-2

12:15-12:25 Prepare Subject #10 (P-2, HR-2)

12:25-12:35 Clean-up Subject #9, Disinfect P-1 & HR-1

12:45-12:55 Prepare Subject #11 (P-1, HR-1)

12:55-1:05 Clean-up Subject #10, Disinfect P-2 & HR-2

15-1:25 Prepare Subject #12 (P-2, HR-2)

25-1:35 Clean-up Subject #11, Disinfect P-1 & HR-1

55-2:05 Clean-up Subject #12, Disinfect P-2 & HR-21
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Appendix 4 -  On-snow subject data record

Subject #_ 

Name 

Exp._____

Height cm Weight________kg

Summer Address.

Time start

Air Temp._ 

Wind_____

®C Snow Temp._

Technique #!:_

4 minutes: HR_ 

FeCOa_________

VO2. VCOa.

Age.

“C Bar..

RQ.

Competitive

_mmHG

FeOa

Technique #2:_

4 minutes: HR.

FeCOa_________

VOa. VCOa RQ_ FeOa.

Technique #3:.

4 minutes: HR.

FeCOa_________

Comments:

(Post VCOa volts.

VOa_ VCOa. RQ_ FeOa_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

Appendix 5 -  instructions for Subject Preparation, Clean-up and Equipment

Disinfection

SUBJECT PREPARATION (10 minutes)
‘»*Have subject read and sign Informed Consent.
■^Record subject information; weight and height (no shoes), age, etc.
'^Have subject put on HR monitor chest strap
"^If subject is not wearing tight dark (preferably black) clothing then supply him with necessary 

pieces.
Affix joint markers on clothing over joint centres.

‘̂ Secure mask over face. Have subject cover adaptor hole and exhale to ensure that there is a 
seal.

"^Accompany subject up to stadium with data info sheet and disinfected pneumotach. 
cAccompany subject who has just finished previous test back to chalet.

SUBJECT CLEAN UP AND EQUIPMENT DISINFECTION (10-15 minutes)
Subject 

Ask subject if he is O.K.
''"Retrieve all equipment from subject.
‘̂ Help him to remove tape from clothing.
‘'"Lend him a  towel if he needs one to dry off.
"'"Assist subject in selecting a test time and give him pretest instructions with test time.
"'"Thank him, give him some cookies and juice, sit with and talk with him for a few minutes and 
if he indicates that he feels fine then thank him again and send him on his way!

Pneumotach and mask
"'"Remove adaptor ring from mask and place both pieces in Madicyde solution.
"'"Pull lines out of locking ring.
"'"Place locking ring, variable selector, pneumotach and plug cap separately (i.e., disassembled), 

as well as HR Monitor chest strap in Madicyde solution, soak for 5 minutes.
"'"Evacuate all water from lines with pump-syringe fi-om Luer end (3 to 4 pumps/line).
"'"Rinse all pieces soaked in Madicyde thoroughly with water (15 to 20 seconds).
"'"Wipe dry with paper towelling.
"'"Reinsert lines into locking ring (green on the outside). Purge lines once more to remove any 

water remaining in pins.
"'"Reassemble pneumotach with variable selector on “high”.
"'"Replace adaptor in mask.
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Appendix 6 - KB1-C Calibration Procedures

This procedure must be completed in the described order prior to each new subject using 
the pneumotach that will be employed for their test (very important).

1. Enter New Subject Data
"'"It is very important that the Barometric pressure is entered correctly.

2. Calibrate Gas Analyzers:
"'"Ensure that you are in the testing environment (i.e., outside) before begiiming 
this procedure. The entire calibration procedure should be performed outside. 
Check also that the red gas port on the KBl-C is completely free and unobstructed 
"'"From the HOME screen press CAL
"'"Enter the calibration gas values: 16% O2 & 4% CO2 (If an error is made in 
entering calibration gas values then press ENTER/EXIT to return to HOME 
screen and press CAL to repeat procedure correctly)
"'"Press O
'"KB 1-C will zero on the ambient air (90s.)
"'"When prompted coimect the calibration gas via the gas bladder bag to the 
centre gas port on the KB 1-C. Ensure that the bladder bag is completely empty 
before filling. Turn on the gas and fill the bag. Do not overfill the bag. Turn off 
the gas. Press START to initiate the calibration process (120 s.).
"'"Check the calibration values when the KBl-C has finished calibrating. If the 
O2 value is not between 15.91 and 16.09 and/or the CO2  is not between 2.91 and 
4.09 then press CAL to repeat the calibration procedure.
"'"Disconnect the gas supply and press START. The unit will now zero once 
more on the outside air (90 s.).

3. Calibrate Flowhead:
"'"Press FLOW.
"'"Choose the HIGH setting: 3.
"'"Enter either 21 L (7 pumps) or 24 L (8 pumps).
"'"Connect the pneumotach to the KB 1-C. hisert the open end of the pneumotach 
into the open end of the corrugated hosing from the 3 L syringe. Press START 
and pump the entered value during the 20 second countdown displayed on the 
KBl-C.
"'"fr the calibration values are within 10% of the entered values the KBl-C will go 
to the HOME screen at the end of the flow cal procedure, fr not, a message 
indicating that the calibration was not within acceptable limits will be displayed. 
Check that the lines are clear and the pneumotach is set to high and repeat the 
calibration.
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Appendix 7 -  Digitizing record for 1-skate
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Subject Id. #_

Trial#!

Picture i_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event#7_ 
Event #8_ 
Event #9_ 
Final Pic_

Master(#l)

_P ic.#_
_,Pic.#_
_,Pic.#_
_Pic.#_
_Pic.#_
_Pic.#_
_.Pic.#_
_,Pic.#_
_,Pic.#_

Picture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event#5_ 
Event#6_ 
Event#7_ 
Event#8_ 
Event #9_ 
Hnal Pic_

Slave(#2)

_.Pic.#_
_.Pic.#_

_ Pic. #_ 
_Pic.#_ 
_Pic.#_ 
_Pic.#_ 
_Pic.#_ 
_Pic.#_ 

Pic. #_

Trial #2_

Picture#!. 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event#7_ 
Event #8_ 
Event #9_ 
Final Pic_

Master(#l) Slave(#2)

.,Pic.#_ 

..P ic .# , 

..Pic.#_ 

.,Pic.#_ 

..P ic .# , 
_,Pic.#_ 
., Pic. #_ 
., Pic. #_ 
.,Pic.#_ 
..P ic .# ,

Picture 1, 
Event#!, 
Event #2, 
Event #3, 
Event #4, 
Event #5, 
Event #6, 
Event#7, 
Event #8,
Event #9, 
Final Pic,

,.P ic.#_
,.P ic.#_
,.P ic.#_
,.P ic.#_
,.P ic.#_
„P ic .#_
,.P ic.#_
,.P ic.#_
,.P ic.#_
,.P ic .# ,

Trial #3,

Picture#!. 
Event #!_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event #7_ 
Event #8_ 
Event#9_ 
RnalPic_

Master(#!)

,.P ic.#_
,.P ic.#_
,.P ic.#_
,.P ic.#_
. .P i c # ,
,.P ic.#_
,.P ic.#_
,.P ic .# ,
..P ic .# ,
..P ic .# ,

Picture ! ,  
Event # ! ,  
Event #2, 
Event#3, 
Event #4, 
Event#5, 
Event #6, 
Event #7, 
Event #8,
Event #9, 
Final Pic,

Slave(#2)

„P ic .#_  
,.P ic.#_ 
,.P ic.#_ 
,.P ic.#_ 
,.P ic.#_ 
_. Pic. #_ 
,.P ic.#_ 
_.Pic.#_ 
„ P ic .# ,  
,. Pic. #_
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Appendix 8 -  Digitizing Record for 2-skate
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Subject Id. #_

Trial#!

Picture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event #7_ 
Final Pic

Master(#l)

„  Pic. #_ 
„P ic .#_  
_,Pic.#_ 

Pic. #_ 
_,Pic.#_ 

Pic. #_ 
... Pic. #_ 
_. Pic. #_

Picture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event #7_ 
Hnal Pic

Slave(#2)

, ,  Pic. #_ 
Pic. #_ 
Pic. #_ 
Pic. #_ 

„H c .# _  
.... Pic. #_ 

Pic. #_ 
,, Pic. #_

Trial #2_

Picture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event #7_ 
Final Pic

Master(#l)

... He. #_ 
He. #_ 

...H e.#  
, .H c .#  
„  He. #_ 
,.P ic.#_ 
_,Hc.#_ 

He. #_

Hcture 1_ 
Event #1_ 
Event #2_ 
Event#3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event #7_ 
Final Pic_

Slave(#2)

... He. #_ 

.J Pic. #_ 
„  He. #_ 
_,Hc.#_ 
_. Pic. #_ 
,. He. #_ 

Pic. #_ 
„  He. #_

Trial #3_

Hcture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event#7_ 
Final Hc_

Master(#l)

„H c .# _
_.Pic.#_
.. He. #_
,.H c.#_
...H e.#
„H c.# _
„ H c .#
„ H c .#

Hcture 1_ 
Event #1_ 
Event #2_ 
Event#3_ 
Event #4_ 
Event#5_ 
Event #6_ 
Event #7_ 
Hnal Hc_

Slave(#2)

,, Pic. #_ 
„  He. #_ 
.. He. #_ 

He. #_ 
.. He. #_ 

Pic. # 
.. Pic. #_ 
.. Pic. #_
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Subject Id. #_

Trial#!

Picture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4_ 
Event #5_ 
Event #6_ 
Event #7_ 
Final Pic_

Master(#l)

_,Pic.#_
„P ic .#_
„P ic .#_
„P ic .#_
_,Pic.#_
...P ic .# .

Pic. #_ 
_.Pic.#_

Picture 1_ 
Event #1_ 
Event #2_ 
Event #3_ 
Event #4. 
Event #5. 
Event #6. 
Event #7. 
Final Pic.

Slave(#2)

Pic. #_ 
..P ic .# .  
. .P ic .# .  
. .P ic .# .  
. .P ic .# .  
„ P ic .# .  
. .P ic .# .  
. .P ic .# .

Trial #2.

Picture 1. 
Event #1. 
Event #2. 
Event #3. 
Event #4. 
Event #5 . 
Event #6 . 
Event #7 . 
Final Pic.

Master(#l)

..P ic .# .  
-. Pic. # . 
.. Pic. # .  
. .P ic .# .  
- .P ic .# . 
- .P ic .# . 
_. Pic. # .  
_ P ic .# .

Picture 1. 
Event #1. 
Event #2. 
Event #3. 
Event #4. 
Event #5. 
Event #6. 
Event#7. 
Final Pic.

Slave(#2)

., Pic. #_ 

.. Pic. # . 

.. Pic. # . 

. .P ic .# . 
_. Pic. # . 
_ .P ic.# . 
_. Pic. # .  

Pic. # .

Trial #3.

Picture 1. 
Event #1. 
Event #2. 
Event #3. 
Event #4. 
Event #5. 
Event #6 . 
Event #7 . 
Final Pic.

Master(#l)

., Pic. # . 
- P ic .# .  
- P ic .# .  
-  Pic. # .  
-P ic .# _  
- P ic .# .  
- P ic .# .  
- P ic .# .

Picture 1. 
Event #1. 
Event #2. 
Event #3. 
Event #4. 
Event #5. 
Event #6. 
Event #7. 
Hnal H e.

Slave(#2)

-  Pic. # .
-  Pic. # .
-  He. # .
-  He. #_
-  He. # .
-  Pic. # .  
- H e .# .  
-H c .# _
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Appendix 10 - Treadmill VOzMax Subject Consent Form

!_______________________________ , hereby consent to  participate in
the  VOzmax portion o f th is study which seeks to determ ine the m ost 
econom ical skate-skiing technique(s) on fla t terrain as w ell as the 
m ovem ent characteristics associated with effic ient and econom ical skating

I understand tha t I w ill be asked to perform  an exercise session to 
m axim um  in tensity on a m otorized treadm ill. The procedures involved in 
com pleting th is tes t have been thoroughly explained to  m e. The VOzmax 
te s t w ill entail running a t increasing workloads on a treadm ill until I am 
physica lly exhausted and unable to  continue. I understand tha t I w ill be 
required to  breath in to a  facem ask tha t covers my nose and m outh and 
w ear a w ire less heart rate m onitor transm itter around m y chest throughout 
the  test.

I understand tha t there m ay be some nausea and d iscom fort 
associated w ith running until physica lly unable to  continue. In healthy fit 
ind ividuals th is  type o f exercise carries very little  risk. I understand that a 
sm all short-term  deleterious im pact to  my regular tra in ing perform ance 
m ay resu lt from  com pleting a VO zMAX test.

I understand tha t the  on ly d irect benefit to  me from  participating in 
th is  portion of the  study w ill be the inform ation regarding m y fitness and 
tra in ing gathered from  com pleting the VOzMAX test. T h is inform ation w ill 
be provided to  me in a confidentia l manner. I understand tha t these results 
w ill be preserved on d isc w ith in the Departm ent o f K inesiology a t 
Lakehead U niversity fo r the next seven (7) years should I need to  review 
them  during th is  tim e. I a lso understand that the fina l results o f th is valid ity 
study can be provided to  me a t m y request. Finally, any publication of the 
fin a l results w ill not reveal m y iden tity  as I w ill be referenced by number.

S ignature o f participant Date
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Appendix 11 — Athlete preparation instructions for VOzmw

Your treadmill VO2MAX test is on_____________________, March_______at.

Please try to adhere to the following conditions to ensure an accurate determination of 
your aerobic capacity:

$Do not eat any food, or consume caffeinated beverages 2 hours prior to your test 
time.
0 DO not consume alcohol 12 hours prior to your test time.
$Do not perform a strenuous workout during the day prior to your test.

The test time will take approximately 45 minutes, including warm-up. Try to stay well 
hydrated prior to your test. Bring appropriate clothing and shoes for running.
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