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Abstract

In  th is thesis, we present a  theoretical model of Self-consistent driven Bloch oscillations ( SCD 
BO ) of different types of charge carriers in biased semiconductor superlattices photoexcited 
via ultra-short near-bandgap optical pulses. In  this work, we wish to  assess th e  influence of 
th e  unbound continuum excitonic states on the Is  excitons. This is modelled by calculating 
th e  full dynamics of Is  excitons and  free electron-hole pairs, including the Coulomb interaction 
in a  mean-field approxim ation. All the calculations are based on a  recently-developed Quasi- 
bosonic treatm ent, by which we can study SCD BO to infinite order in optical field without 
loosing the crucial intraexcitonic electron-hole correlations. The interaction of Is  excitons with 
free electron-hole pairs is stud ied  in  bo th  coherent and non-coherent systems. The numerical 
results obtained are found to  be partially in agreement with the  experimental results reported 
by F. Loser et al. [ Phys. Rev. Lett. 85, 4763 (2000) ]. However, we find several serious 
discrepancies tha t indicate th a t  a  more complete treatm ent may have to be adopted  in future 
work. Despite this, th e  work in  this thesis provides some useful insights to th e  coherent response 
of photoexcited semiconductor superlattices, and lays the ground work for fu tu re  study.
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Chapter 1

Introduction

The behavior of electrons in periodic potentials in  the presence of external DC and AC electric 

fields has a ttracted  a  lot of attention over the  past 60 years or so. One of the im portant 

effects studied in th is  area was Bloch Oscillations (BO). BO involve the dynam ic behavior of 

electrons in a periodic potential in the presence o f a uniform, static electric field. They were 

first predicted by Zener in  1934 based on Bloch’s work [1, 2].

A simple semiclassical model can account for th e  basic features of Bloch oscillations. In this 

model, the time evolution of the position and wave vector of an electron in a  given band are 

determined by the  following semiclassical equations of m otion [3]:

(1.1)

/Ik =  —e E (r,t)4 -^ v (k ) X H (r,t) (1.30

where E (r,t) and H (r ,t )  are  the  external electric and  magnetic fields and e(k) is the  dispersion 

relation for the  given band. Consider now the ID  case w ith a uniform, sta tic  electric field 

E  = F qî, and no m agnetic field. If we assume a tight-binding dispersion relation of the  form

e{kz) =£0—ycos(fczd), (1.3)
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where A. is the  bandwidth. T hen Eqs. (1.1) and (1.2) can be rew ritten as

z=Vz{kz) = ^ ^ n ( k z d ) ,  (1-4)

hkz= —cFq. (1-5)

Solving Eq. (1.5), we have,
I. —u f __

h

Substituting Eq. (1.6) into Eq. (1.4) gives

k z = k o ~ - ^ - -  (1-5)

Z —

A d  . f  ed F o t\
=  — s m [ k o d - ~ )

=  —^  sin (wgf — , (1-^)

where

WB =  ^  (1-8)
n

is called Bloch frequency. Finally, the  time-dependent function z(t)  can be obtained by solving 

Eq. (1.7), i. e.,

z  =  zq +  cos(w_B( — kod)

=  zq +  Lcos(ujBt — kod), (1-9)

where L  =  is the  so called Wannier-Stark localization length. It can be seen from

Eq. (1.9) th a t in configuration space, the  electron is localized, oscillating back and forth from 

its initial position to an end point, w ith the distance between the  two points being inversely 

proportional to  the field strength.

The semiclassical model provides an intuitive way o f understanding the basic principles 

of BO and is useful in estim ating the most im portant features of a  system before complete

analysis is followed. However, a t high fields, the validity o f a  semiclassical approach to  derive

the electronic motion is doubtful. James argued [4], already in 1949, th a t in a solid an electric

10
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field would break the  continuum  of band states into a  series o f levels with an equidistant energy 

separation proportional to  the  field. When the separation between these states is larger th an  

the ir broadening, then  a  quantum-mechanical approach ra th e r th an  a  semiclassical approach is 

necessary [5]. A Semiclassical model wül also encounter problems when it is used to  describe 

the  BO in superlattices [6].

Beyond the above semiclassical model, BO correspond actually  to  the behavior of a  wavepacket 

th a t  consists of a superposition of stationary states of th e  electron in the static  field. These 

stationary states are known as the  Wannier-Stark ladder (W SL). After James, W annier la ter 

studied ^stem atically  th e  m otion of electrons in a periodic potential of period d  in the  presence 

of a  constant electric field [7], showing th a t if ip{z) is a  solution of the Schrodinger equation 

w ith energy Eo, then ip{z—nd) is also a solution of the equation., w ith  energy Eo+neFod, where 

Fq is the applied constant electric field and n  is an integer. This set of solutions constitute the 

WSL of energy levels, whose separation, eFod, can be w ritten  in  terms of the Bloch frequency 

a>B as defined in Eq. (1.8), i. e., eFod =  Hu b - Thus in  BO the  wavepacket is oscillating in 

configuration space w ith the  intrinsic Bloch frequency w g, given by the energy separation of 

WSL levels.

From above argum ents, it can be seen th a t the determ ination of the WSL states of a 

system is the most im portan t basis for the  study of BO . The knowledge people have about 

BO is virtually always in  parallel with those about the  W SL. In Chapter 2, we wiU review the 

approaches for determ ining the  WSL.

We should m ention here the  definition and calculation of the  polarization of bulk crystalline 

materials tha t is related to  th e  BO discussed above. W hen periodic boundary conditions are 

used, the polarization is actually  not well defined [8, 9]. This difficulty can be overcome by 

using the prescription o f Blount for interband polarization, which is the usual approach for the 

seminconductor optical interaction. In addition, for neutral particles such as excitons discussed 

in this thesis, the m atrix  elements for intraband polarization become well defined. Electron-hole 

separation is well defined even if their center of mass is not.

Now let’s tu rn  our a tten tion  to the experimental evidence for the WSL and BO. Although 

the WSL was predicted way back to 1949, it was not experim entally observed until late 1980’s. 

Several experiments in 1960’s and 1970’s [10,11,12,13] were explained in terms of the  formation

11
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of Stark ladders in bu lk  semiconductors. However, their results were not conclusive due to  the  

smallness of the  observed effects. The main problem w ith the bulk semiconductor is: for 

reasonable electric-ffeld strength, scattering will destroy the  coherences needed for forming 

either WSL or BO . This is all due to  the  small period of the  crystal lattice, which is related  

inversely to the  electric field for producing the BO. For a  scattering time r ,  the critical field 

th a t can produce B O  is defined as jjiTed ’ which is qu ite  large a  value (typically on th e  order 

of 10® kV/cm) [14] for typical crystal lattice constant d.

The situation in  th e  early 1970’s changed with the initial proposal by Esaki and T su  th a t 

one could observe such effects in superlattices [15]. In  semiconductor superlattices, because of 

their long periodicity and  possible long scattering times, the  critical fields could be orders of 

magnitude smaller [16, 17]. The first convincing dem onstration of the  existence of the  W SL was 

obtained in photo-current experiments in GaAs-GaAlAs superlattices [18]. For a certain  range 

of fields, the  heavy-hole states in this material system are fully localized whereas the  electron 

states are still partia lly  extended. In  the experiments, photo-current spectra were obtained 

by measuring the current as a  function of the frequency of the applied CW  light, which is 

nearly resonant w ith  th e  bandgap. Because the current is proportional to the absorption, the  

current spectra is closely related to  the  absorption spectra  of the  system. Therefore, peaks 

occur in the photo-current at frequencies corresponding to  the  transitions from a n  =  0 hole 

state  to 72 =  0, ± :1 ,± 2 ... states, w ith the strength of a  current peak being proportional to  the 

electron-hole overlap. Thus the  well-defined photo-current spectra, where the spectral lines 

would be equidistant in  energy w ith separation being th e  Stark energy, constitu te the

evidence for the  existence of a  WSL. O ther optical interband transitions involving WSL sta tes 

have also been observed using optical techniques such as electro-refiectance [19] and direct 

absorption [20]. However, theoretical models based on single-particles can not explain such 

experimental phenom ena as the sharp peaks in the photo-current, unequal ladder spacing, 

and absorption asym m etry which actually arise from th e  excitonic effect neglected in th e  non-

interacting pictures. Thus to account for the carriers in th is  system requires a more com plete 

theoretical model which includes excitonic effects, i. e., electron-hole Coulomb interaction [21]. 

The excitonic W SL will be discussed in detail in C hapter 2.

After the  initial theoretical proposals for the observation of BO in superlattices by Bastard.

12
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[22] and Plessen  [23] etc., th e  first observations o f BO by four-wave mixing in superlattices 

were m ade by Feldmann et al. and  Leo et aL in 1992 [24, 25], about four years after th e  first 

conclusive observation of th e  W SL. O ther approaches for observing BO include the measurement 

of the  terahertz  radiation given off by the oscillating dipole [26], and the observation of a  shift 

of th e  W annier-Stark ladder sta tes due to the self-induced in traband dipole field [27, 28].

There are a number of approaches for trea ting  the  dynamics of electrons and holes in 

photoexcited semiconductor superlattices. One of the m ost common and successful approaches 

involves th e  Semiconductor Bloch Equations (SBEs) [29] - [35]. These equations enable one 

to  tre a t the  nonlinear optical responses in the  presence of constant electric fields under fuU 

inclusion of the Coulomb interaction. In other words, th e  SBEs make it possible to  evaluate 

the coherent effects to  aU orders in the optical field and  include the Coulomb interaction. 

W ithin a density m atrix formalism, this model reduces the  infinite hierarchy via a H artree- 

Fock decoupling scheme to  only two-point correlations. T hree im portant observables, electron 

densities, hole densities and polarizations can be obtained by solving the SBEs.

However, SBEs can run into problems due to  the  use of the  random phase approximation 

(RPA). This approximation does not comprise system atic control criteria for the approxim ation 

w ith respect to the key experim entally controllable param eter: optical field strength [36, 37, 38]. 

A lthough descriptions neglecting higher order contributions are sometimes in good agreement 

w ith the  experiments [39, 40, 41], there are still other experim ents clearly marking the limits of 

SBEs treatm ent [42, 43, 44]. All these limitations are due to  the  fact that SBEs are based on 

an ill-controlled Hartree-Fock approximation. W ith SBEs, problems arise even to  second-order 

in  the  optical field. The factorization procedure due to  RPA results in incorrect decay rates 

and  quantitatively incorrect behavior in the calculation of the  intraband current [45]. Thus, 

although SBEs were initially derived to evaluate the  coherent effects to any order in optical 

field, the factorization of higher order correlations into polarization and number parts by RFA 

makes the method in  good agreement generally with only the  lowest order optical response. 

Beyond th e  first order response, e.g. in the study  of in traband  polarization in superlattices, 

SBEs m ay encounter problems. This limitation of SBEs arises in essence from the RPA-like 

factorization, the validity of which needs justification in m any cases. This will be discussed in 

some detail in Chapter 3.

13
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To overcome the  difficulties encountered by th e  SBEs, an  alternative approach called Dy-

namically Controlled Truncation (DCT), was derived by  A xt et al [36, 37, 38]. W hile SBEs 

try  to  describe th e  coherent response to  infinite order in  optical field bu t lose correlations by 

factorization, D C T makes a  compromise by m aintaining correct correlations but describing the 

coherent response of a  semiconductor to a  prescribed order of the optical field. The idea of 

D CT relies on the  observation th a t a complete calculation of th e  nonlinear optical response of a 

semiconductor to  any prescribed order in the driving field can be achieved by considering only 

a  finite set of electronic correlation functions [36, 37, 38]. SBEs and D CT predict sim ilar re-

sults in many experim ental situations. However, severe deviations or even contradictory results 

may occur in some cases when SBEs and DCT are employed respectively [44]. One im portant 

example is in fact the  second-order response of a  sem iconductor superlattice in a  sta tic  electric 

field, which is th e  system considered here. These different predictions are a  direct consequence 

of the Hartree-Fock approximation in the SBEs, which replaces the long-lived fourth-order 

density-like source for the excitonic contributions in the  equations of motion by a short-lived 

second-order transition-like amplitude. This replacement causes the loss of correlation within 

an electron-hole pair.

While D CT is very successful in accounting for experim ental phenomena th a t SBEs can not 

explain, it has two m ain limitations. First, it is usually derived in a  basis of non-interacting 

electrons and holes eigenstates in the absence of a DC field w ith some sort of phenomenological 

decay/dephasing. However, in the  absence of th e  optical field, the eigenstates to  which the 

system will relax are the  excitonic states in a  DC field. Thus, the non-interacting basis will not 

model the phenomenological dephasing in an appropriate way. The other lim itation of DCT 

is: although it can be used to  describe the coherent response to any order in optical field, 

in practice it has to  be term inated to a prescribed finite order so as to  maintain the  correct 

correlation.

Based on SBEs, Dignam  developed a set of equations of motion describing the coherent 

dynamics of excitons in a  semiconductor superlattice in the  presence of both constant and 

time-dependent electric fields [34]. Rather than employing the  k^-state basis as usually done in 

SBEs, the equations of motion is developed in a basis of single-particle one-band WSL states 

th a t make the  basic physical effect of the terahertz field especially transparent. This was the

14
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first a ttem pt trying to  address the dynam ics of such a system where b o th  constant and AC 

fields are applied.

To address the problem  with the non-interacting electrons and holes basis, Hawton and 

Nelson [45] developed a theory  of quasibosonic excitons th a t is based on use of exciton creation 

operators to describe interband and in traband  polarization. The resulting expansion in powers 

o f the optical field is analogous to D C T b u t takes a simpler form. T his was applied to  the 

biased superlattice in an external terahertz  field by Lachaine et al. [46]. D ignam  and Hawton 

further developed a theory [47], also w ithin th e  same excitonic basis and w ith  bosonic treatm ent, 

th a t can describe the coherent response to  infinite order in optical field b u t retain  the crucial 

intraexcitonic electron-hole correlations. In  C hapter 3, this theory will be briefly described.

Elxcitonic BO in photoexcited sem iconductor superlattices are in essence the  relative oscil-

latory  motion of electron-hole pairs. According to  the classical electrom agnetic theory, these 

accelerated charge carriers will generate in traband  polarization in the  superlattice. The electric 

fields generated by this in traband polarization, which is in the  terahertz regime, will inevitably 

infiuence the relative m otion of electrons and  holes tha t generate the  fields. T he first experi-

m ent showing the existence of terahertz rad iation  due to intraband polarization was made by 

Waschke et al [26]. O ther experiments also showed that the self-induced terahertz  fields would 

shift the energy level of th e  original WSL [27, 28].

Recently, experimental work has been done trying to address the  problem  of the Shapiro 

effect which is the analog of the  corresponding effect in Josephson junctions. In the  experiment, 

the  BO were found to  be accompanied by  a  coherent quasi-DC current th a t  was attributed to 

the  interaction of the  charge carriers w ith  the self-induced field [48]. This was observed by a 

quasi-linear change in th e  intraband polarization. The theoretical trea tm en t of this effect in 

Ref. [48] required the transfer of energy between the coherent Is excitons and a background 

incoherent plasma. This involved a vastly simplified semiclassical model for the  plasma tha t 

clearly needs improvement. In  an a ttem p t to  be tter understand the dynam ics of th e  interaction 

of the  coherent excitons w ith the continuum  plasma, we here use a  full quantum-mechanical 

model for both the Is excitons and the continuum  states.

In order to  give a realistic description of BO in photoexcited sem iconductor superlattices 

w ith the self-induced fields, a  theoretical approach tha t can model b o th  sta tic  and  AC electric
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fields is necessary. As it tu rn s  out, th e  electric fields generated by charge carriers o ther th an  

Is  excitons play a  m ore im portan t role in  the interaction. In  th is thesis, we wiU try  to  model 

the  influence of th e  unbound continuum  excitonic sta tes  on th e  Is excitons. This is one step 

further forward try ing  to  describe the coherent effects in  superlattices in a  more realistic way. 

The excitons are to  be self-consistent driven by the  terahertz  fields due to  the polarization of 

excitons and unbound continuum  excitonic states. The s tu d y  of the  interaction of excitons w ith 

self-induced fields requires th e  inclusion of at least 3rd order or above response to an optical field 

in  the  equations of m otion [47]. We will treat th e  self-induced electric fields in a  self-consistent 

way, which is equivalent to  treating  th e  response to  infinite order in the  optical field. The 

BO and its interaction w ith  self-induced fields, hereafter referred to as self-consistent driven 

(SCD) BO , will be studied in  detail in  Chapter 4 and 5. This is different from the  theoretical 

treatm ent for the  system  as in Refe. [34, 46], where th e  external terahertz field ra th e r th an  

the system-self-induced field, is applied. The work in th is  thesis will provide a basis for a  more 

complete, realistic description for the BO in photoexcited semiconductor superlattices.

The plan of th is thesis is as follows. A brief introduction to  the approaches for calculating 

the WSL in semiconductor superlattices will be given in  C hapter 2. The m ethods based on 

single-particle and excitonic pictures are to be introduced respectively. The calculated exci-

tonic WSL states wül be employed as the basis in solving problems concerning th e  dynamics 

of excitons and firee electron-hole pairs in later chapters. In  Chapter 3, the  theoretical tre a t-

m ent of the excitonic dynamics in  photoexcited sem iconductor superlattices is presented. The 

time-dependent behavior of electrons and holes, ra ther th a n  the stationary states discussed in 

Chapter 2, will be discussed in detail. First, the  approaches involving SBEs are reviewed, and 

the ir shortcomings discussed in the  context of determ ining the nonlinear optical response of 

a  semiconductor superlattice in applied along-axis s ta tic  and terahertz electric fields. Then, 

excitonic dynamics using the  quasibosonic treatm ent is introduced and taken as th e  theoret-

ical background for our SCD Bloch oscillations. In C hapter 4, the Hamiltonian for the  free 

electron-hole pairs in the  superlattice potential in  the presence of the external optical, DC and 

terahertz electric fields will be derived. Then, the  equations of motion for electron-hole pairs 

are obtained by using Heisenberg equations of motion. This constitutes the background for 

studying the infiuence of free pairs on excitons. In  C hapter 5, the  interaction between excitons
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and free electron-hole pairs will be studied in detail. The SCD effect, in which the electric fields 

due to charge carriers in teract w ith these carriers themselves, is the  main subject. The SCD 

phenomena in the  coherent regime will be studied first and th en  followed by the more realistic 

cases in which there is dephasing. Energy conservation in the  coherent regime and energy ex-

change in cases where there is dephasing, together with the driving effect of self-induced electric 

fields will be studied in SCD phenomena. Finally, in C hapter 6, we will summarize and give 

th e  conclusions of the thesis.

17
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Chapter 2

Wannier-Stark Ladder(WSL) in A 

Semiconductor Superlattice

2.1 Introduction

As already mentioned in C hapter 1, the  study of the WSL is closely related to  the study of 

Bloch Oscillations (BO). Calculating the stationary WSL states in  a  semiconductor superlattice 

is the  most essential p a rt in studying the  dynamics of electrons and holes in  this system. Only 

after these states are properly understood can we study dynamic behavior of electrons and holes 

on these states.

The effect of a s ta tic  electric field on electronic states in solids is quite an old topic and 

has been studied theoretically since late 1940’s [4, 7, 49]. However, the  topic was intensively 

studied [50]-[62] only after the  initial proposal of the superlattice by Esaki and Tsu in early 

1970’s [15]. After the  first observation of a  WSL in superlattices [18], several other experiments 

also unambiguously showed the existence of a WSL [19, 20, 63, 64, 65, 66].

A brief introduction to  the approaches for calculating the  WSL in semiconductor super-

lattices is presented in th is chapter. The methods based on a  single-particle picture and on 

an excitonic picture are introduced separately in two sections. The calculated excitonic and 

non-interacting electron-hole WSL states will be employed as the basis in  solving problems 

concerning the dynamics of excitons and firee pairs in later chapters.
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2.2 Calculating the Wannier-Stark Ladder in A Single-particle 

Picture

The method for calculating th e  W SL of superlattices belongs to  th e  category of effective mass 

theory [67], or envelope function approximation, which is suitable for dealing with slowly- 

varying local potentials such as those in semiconductor superlattices, quantum  wells, etc. This 

allows us to  deal w ith th e  effects of the  band-edge discontinuities a t heterojunctions without 

worrying about the  potential fluctuations tha t occur on the atom ic scale.

The earliest calculation of W SL for superlattices was borrowed from  the  simple theory 

originally developed for bulk crystals [68] which can account for m ost features of the  Stark- 

localization phenom enon in  superlattices. For semiconductor superlattices, it was predicted 

long ago th a t a  strong electric field would localize an electron w ithin a  period [69, 70]. A tight- 

binding formalism for th e  superlattice envelope wavefunctions also predicted the field-induced 

localization of th e  sta tes and  was used to calculate the electro-absorption, which revealed a blue 

shift of the absorption edge between the  zero and high-field limits and  oscillations periodic in the 

inverse of the  field [50]. These general results were also obtained by  employing other formalisms 

such as a  variational calculation [71], a  finite Kronig-Penney model w ith  a  superimposed linearly 

varying potential [72], and  a split-tim e scheme [73].

In the early stages, m ost theoretical work for calculating WSL had  been done in the single-

particle picture, i.e. no effect o f Coulomb interaction between electrons and  holes was included. 

W hen working w ithin th e  envelope function approximation and neglecting band nonparabol- 

icities and valence-band mixing, it  has been shown th a t [49, 74], w ithin  one-miniband (first 

superlattice minibands in either conduction or valence band) approxim ation, the eigenstates 

for non-interacting electrons in  a  static electric field, Fo , are spatially  localized in the z- 

direction and have equal energy spacings of eFod, where d is th e  period of the superlattice. 

The corresponding wavefunctions for the conduction band and  valence band electrons in a 

static along-axis electric field have the  forms [34]

^ rc i- .k )  =  p -i)

where c (v) refers to  conduction (valence) band electrons, r is a  three-dimensional position
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vector, p is the corresponding two-dimensional position vector in  the  (x,y)  plane, k is the  

two-dimensional in-plane wave vector, A  is the in-plane norm alization area, and the v^^(r)  are 

the  periodic portions of th e  bu lk  Bloch functions a t the  conduction and valence band extrem a 

respectively (assumed to  be th e  sam e for both m aterials in th e  superlattice). The functions, 

%^^(z) =  %n^(z), are so-called W SL states, which are the  eigenstates of the one-dimensional 

Hamiltonians,

in the  single-miniband approxim ation, where m%'^{z) is the layer-dependent along-axis effective 

mass for the  electrons or holes, is the superlattice potential experienced by the electrons

or holes due to bandgap discontinuities (with U^^{z)  =  0 in  th e  wells), =  —e and qf  ̂=  e are

the  charges of the electrons and  holes respectively, and e is th e  modulus of the charge on an 

electron. W ithin the  one-m iniband approximation, these W SL eigenstates can be expanded in 

the  basis of m iniband W annier states, a^{z), localized a t different sites :

jdlOO == --n td ) , (2.3)
m

xf:(z) == (z -- nzd!) , (2.4)
m

where the expansion coeSicients satisfy the summation relations [34] :

E < ^ ’'^+P =  '5p-0" (2-5)

K  -  «P.O'S] ' (2-6)

where e® =  ^  e®(fcz)e'**P^ is the  Fourier component o f th e  along-axis energy dispersion,

£®(fcz), for the electron or hole miniband when applied sta tic  field Fo =  0.

In the nearest-neighbor tight-binding approximation, the  W SL sta tes in Eqs. (2.3) and (2.4) 

are replaced by the single-site groundstates and one finds th a t

C t t n  =  ^m-n(0e,a) (2.7a)
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where Jm(de,h) is a Bessel function of the first kind of order m  [34], and 0e,h =  Ae,hf2qe,hFod, 

where Ae,h is the bandw idth of the electron or hole m iniband.

The single-particle W SL energies for electrons and holes are given respectively by

+  +  (2 -8 )

and

2mfl(z)=  TTTâTTT +  ^ 0  -  eF^nd, (2.9)

where Fgap is the  bandgap of the bulk semiconductor in th e  wells, n  is an  integer, and 

are the n  =  0 eigenenergies of the one-dimensional single-particle Hamiltonians, H ^^{z) of Eq.

(2.2).

WSL based on th e  single-particle picture can account for many features in the optical 

transition experiment about semiconductor superlattices. We will use these states in Chapters 

4 and 5 to treat the  dynam ics of continuum states. However, as already m entioned in Chapter 

1 , all experiments in which a  Stark ladder has been identified have been perform ed on undoped 

semiconductor superlattices in which electrons and holes have been photoinjected. The resulting 

WSLs are therefore excitonic Stark ladders, rather th an  single-particle ladders. Moreover, WSL 

based on the single-particle picture can not account for some detailed effects in the optical 

transition experiment, such as the peaks in the absorption or photo-current spectra and the 

deviations from field linearity in the energy fan charts.

2.3 Excitonic Ŵ SL

In this section, we introduce the basic methods for calculating the excitonic WSL that include 

Coulomb interaction between electrons and holes. The consequences of th e  Coulomb interaction 

between an electron and  a  hole are particularly significant when an electric field is applied to a 

superlattice because of the  strong modification of this interaction by the  field. In  the absence 

of the field, both  electron and hole wavefunctions are delocalized and the ir interaction is similar 

to  that in bulk semiconductors. However, under high fields the electron and  hole wavefunctions 

are confined to  single wells and their excitonic binding energies have been found to be greatly
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enhanced [63],

There are a  variety of approaches for calculating excitonic WSL. For example, calculations 

th a t use numerically obtained  electron and hole wavefunctions and one-param eter variational 

excitonic wavefunctions, w ith  th e  basis limited to Is  exciton states, accounted well for the field- 

induced enhancement of th e  binding energy [75]. A  simpler model, based on a  tight-binding 

approach for the  electronic wavefunctions, found a  binding energy th a t varied quadraticaily 

w ith the confinement factor o f the  electrons [60]. A n alternative formalism, using a scattering 

phase-shift trea tm en t of th e  S tark  states, has yielded results also in good agreement with 

experimental d a ta  [76]. A more elaborate calculation, in which the  Is  exciton eigenstates of 

the  superlattices are expanded in  terms of localized exciton wavefunctions, has explained many 

of the low-field efiects observed experimentally, e.g., the  absorption asym m etry of the  upper 

and lower branches of the  S tark  ladder and the nonlinear dependence of the  excitonic S tark 

transitions on the  s tren g th  of the  field [21, 59]. T his approach is to  be used to  calculate the 

excitonic WSL used in  la te r chapters as the basis in  studying dynamics of electrons and holes 

in semiconductor superlattices. A brief outline of th is approach is presented next.

First, two im portan t theories are used in the following calculation of exciton sta tes in semi-

conductor superlattices; tight-binding theory and  effective mass theory. T he tight-binding 

method, which was used by F . Bloch in 1929 [1 ], is basically a method th a t uses the  linear 

combination of atom ic orbitals as the basis. The central idea of this m ethod is the fact th a t in 

some cases, e.g. insulator and  semiconductor, the  electronic state of the solid is not so different 

from the electronic s ta te  of the  free atom. Thus, according to the superposition principle in 

quantum  mechanics, we may use the linear com bination of these atomic sta tes to  approxim ate 

the electronic states in the  corresponding sohd. I t  is an especially good approxim ation for low 

orbitals th a t has not too  large overlap between atom ic orbitals [77]. In the  following calcula-

tion, the eigenstates o f th e  systems are expanded in term s of localized exciton wavefunctions, 

which is in the  spirit of th e  tight-binding procedure. The second im portant theory employed in 

the  following m ethod is effective-mass theory, which is very useful in dealing with the  problem 

where a slowly-varying local potential is involved.

Using the effective mass theory, the Ham iltonian for the envelope function describing an
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exciton in the  presence o f a  s ta tic  electric field m ay be w ritten as [58, 59]

H {ze, Zh., p) =  flo(ze, Zfe, p) 4- U^{ze) +  U^{zh) -f- epQZ, (2.10)

where i/®(ze)[i/^(zft)] is th e  superlattice potential for th e  electron (hole) and Ho takes the  form

XT r \ 1 d d  1  d
2 dze m ^(Z e) dZe

2 dzh m l^(zfi) dzh e{pP- +  z^) V2 '

Here, Zg and z/i are th e  z  coordinates of the electron and hole respectively, z  =  Zg — z^, p 

denotes the  electron-hole separation in the x y  plane. The layer-dependent transverse electron- 

hole-reduced effective m ass m|| is defined by

+  (2.12)
” î|| T"e||(%) 'mhwi.ZhY

where me||(zg) and Trif^\\{zh) are the  transverse electron and hole effective masses respectively. 

The layer-dependent effective mass for the  electron and hole in the z direction is denoted by 

f^ezize) and TTihz{zh) respectively. Finally, e is an  average static dielectric constant of the 

structure, e is the m odulus o f the  charge on an electron, and Fq is the applied s ta tic  electric 

field strength.

Note th a t the  field te rm  in Eq. (2.10) is dependent only on z. Thus th e  Hamiltonian 

Lf(zg, Zfi, p) is invariant under simultaneous translation  of the electron and hole coordinates by 

nd  even in the presence of an  applied electric field, where d  is the superlattice period and  n  is an 

integer. This is equivalent to  a  translation of the  exciton center of mass by nd. Therefore, the 

exciton wavefunction is not S tark  localized but com pletely delocalized. This is no t so surprising 

because the exciton is a  neutra l particle.

Using the above transla tion  symmetry, the exciton envelope function can b e  w ritten  as [2 1 ]

-tplize, Zh, P) =  5 ^  e ^ '^ W n { p ,  Zg -  md, z^ -  m d) (2.13)
^  m

where m  is an integer, q is the  exciton wave num ber in  the  z  direction, and W n(p, Zg, zY) is an
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electric-field-dependent exciton W annier function. The index n  is a  discrete quantum  number 

of longitudinal motion th a t, in th e  high field limit, gives the approxim ate separation of the 

electron and hole in units of the  SL period.

The problem now is to  find expressions for the  exciton W annier functions Zg, z^) in

Eq. (2.13). Those states for which the exciton Wannier functions are well localized will be 

calculated because they  are the  states of interest, i.e., they are th e  ones which are optically 

created. Dignam  and Svpe [21] expanded the Wannier functions W n{p, z^, Zh.) in term s of the 

eigenstates of the electric-field-dependent two-well Hamiltonian. These eigenstates are obtained 

variationally by using the  wave function

$ 7  (zg, Zfe, p) =  (pj(p)f^(zg -  l d ) f \ z h ) . (2.14)

The state, $ 7  (ẑ e, p ), is an  approxim ate eigenstate of a  two-well Hamiltonian which only

includes the  band-edge potential for the hole well a t z/i =  0  and the  electron well a t Zg =  Id 

along w ith  the electron-hole Coulomb interaction. The quantum  num ber 7  (which could be 

Is, 2p etc.) is the in-plane excitation quantum  number for the  two-well eigenstate. The 

functions f®(zg) and f^(zft) are the  single-particle electron and hole ID  eigenstates respectively 

of isolated wells centered at z =  0. In  practice, the ipjip) are variational functions with 

variational parameters th a t are determ ined by minimizing the energy of the  given two-well 

exciton Hamiltonian as described in Ref. [21].

By expanding the W annier functions H ^(p , Zg, z/i) in term s of th e  eigenfunction $7  (ze, Zh, p), 

th e  exciton envelope wavefunction in  Eq. (2.13) is written as [21]

g, Zft, P) =  ^ ^  g ; ^ e ^ $ 7  -  m d, zn -  m d, p) (2.15)
^  m ,l

where are expansion coefficients determ ined by diagonalizing the  full exciton Hamiltonian 

in  the two-well basis.

The excitonic envelope wavefunctions in Eq. (2.15) provide a  more realistic description of 

the  WSL in superlattices than  th e  wavefunctions obtained within the  single-particle picture. 

They can account for m any detailed experim ental aspects th a t the  WSL states based on a 

single-particles picture can not explain. In  this work, we will only consider the Is excitons

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



( 7  = ls ) ,  for which [2 1 ]

l l / 2
Ae-^^f«(zg -  Id)f^(zn), (2.16)

where A is the variational param eter which depends on I. Using the collective index p  to 

replace (n.q) and considering only Is  excitons, we obtain the  exciton envelope function with 

zero center of mass m otion ( This is good approximation because we consider only excitons 

th a t are optically created.)

V^(zg, Zft, =  (% -  m d, Zf, -  m d, p ) . (2.17)
mj.

Considering only Is excitons in a  superlattice system  can be justified by the  fact that Is excitons 

dom inate the linear optical response, and are the  only excitonic states with an appreciable 

binding energy. Some o ther more complete theories [78, 79, 80] th a t go beyond Is excitons 

recently have been used to  calculate the  linear optical response. However, they are extremely 

compUcated and are not suitable for calculating nonlinear dynamics.
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Chapter 3

Dynamics of Excitons Near 

Semiconductor Band Edge

3.1 Introduction

In this chapter, we present th e  theoretical treatm ent of th e  coherent effects in photoexcited 

semiconductor superlattices, where excitons are created by using u ltrashort optical pulses with 

photon energies roughly equal to  the  bandgap energy. In  o ther words, we will be studying the 

time-dependent behavior of electrons and holes rather th a n  the stationary  states discussed in 

C hapter 2. The stationary  s ta tes  determ ined in C hapter 2 will be employed as the basis states 

for solving equations of motion.

There have been a relatively large number of theoretical treatm ents of the coherent dynam-

ics in  semiconductor nanostructures over the past 15 years, w ith the  most popular methods 

originated from the application of the  Semiconductor Bloch Equations (SBEs) [29] - [35] . In 

recent years, some other approaches have been developed to  try  to  overcome the limitations 

of these methods based on th e  SBEs. These approaches include those based on the Dynam-

ically Controlled Truncation (D CT) technique [37, 38] and  those based on the  Quasi-Bosonic 

treatm ent of Hawton and Nelson [45, 47].

A brief review of the  theoretical treatm ents of the  coherent response of photoexcited semi-

conductor superlattices is given in  Section 3.2. The SBEs approach is first discussed, and its 

shortcomings discussed in the  context of determining the  nonlinear optical response of a semi-
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conductor superlattice in applied along-axis sta tic  and terahertz electric fields. Then, the  DCT 

approach to  the  coherent dynam ics is briefly introduced. Its advantages in  comparison w ith the 

SBEs and its  disadvantages in  th e  basis choice is discussed in detail. Finally, excitonic dynamics 

using the  quasibosonic treatm ent is introduced in  Section 3.3 [45, 47]. A part firom the applied 

terahertz  field, the terahertz field induced by the  polarization of charge carriers will also be 

included in th is treatm ent. T his final trea tm ent, which is derived in  a  more appropriate basis 

and could be used to analyze th e  coherent response to  any order in th e  optical field, constitutes 

the  theoretical background for th e  SCD Bloch oscillations of C hapter 4 and 5.

3.2 Review of the Excitonic Dynamics in Semiconductor Su­

perlattices

Although th e  linear optical response of a  photoexcited semiconductor in the presence of static 

electric fields and Coulomb interaction has been relatively well understood for a long time, there 

were no complete theoretical trea tm en ts  of the  nonlinear coherent response for such a system 

until the  early 1990’s. Based on sem iconductor Bloch equations (SBEs), Koch and M eier et oL 

developed a  method to  consistently describe the  coherent optical phenom ena in semiconductors 

[29] - [35]. T he dynamic equations obtained, hereafter referred to  as SBEs, include the  Coulomb 

interaction in  the Hartree-Fock approxim ation, and beyond, depending on the treatm ent of the 

carrier relaxation and dephasing processes. Beyond perturbation theory, SBEs make it possible 

to  evaluate the  coherent response to  infinite order in the optical field. SBEs were derived from 

the following Hamiltonian, which is based on a  two-band approximation[29, 31]

H  = Hs-p - f  Hcoui 4- Hdip (3.1)

where H s-p, Hcaui and H^ip are single-particle. Coulomb and dipole interacting Hamiltonians 

and respectively take the  forms,

Hs—p =  ^  4- , (2-2)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(3 3)
k,k',q#0

and

Hdip =  — ̂  A^Eop(t) +  “v,k“cjc] ~  ^  |zeF(t) • Vk| A, k'> a][,^aA,k, (3.4)
k k,k',A=c,u

where E -y  and Ey ^ are single particle energies for electrons in conduction band and holes in 

valence band respectively; is th e  Coulomb interacting potential; and aA,k (A =  c,v) 

are electron and hole creation and annihilation operators which anticom m ute in the  usual way; 

Eyp(t) and F (t) are optical field and electrical field respectively; and finally, fj. is the optical 

dipole element.

Using the above Hamiltonian Eq. (3.1), the SBEs can be used to  describe the dynamics 

of populations ric,u(k,i) and in terband polarization P (k , £) using the Heisenberg equation of 

m otion [31]:

f _ d _ e  
\ &t  h F ( t) -V k - - ^ [e c ( k .

=  -  [nc(k, t) — riy(k, t)\ 0 (k, t) 4 -

,£ ) - e y ( k ,£ ) ] jp ( k ,£ )

0 P (k ,£ ) '
dt

_ _ _ F ( t ) . V k rzc(k,£) =  --Im [fi(k ,£ )P * (k ,£ )] 4 -

coll 

dricÇk, t)

and

£  -  |F ( t )  • Vkj n^(k, t) =  | l m  [0(k ,£)P*(k ,£)] +  ■

d t

<@7%o(k, t)
d t

J coll

coll

(&5)

(3.6)

(3.7)

Here, ng(k,£) =  ^a^O c,k ), nr,(k,£) =  (a î,k “v,k) , P (k ,£) =  ( 4 ,k “c,k); Cc(k,£) =  Eg,k -  

U (k,k ')nc(k ',£) and e„(k,£) =  E„,k — S k '  U(k,kQny(k',£) are the Coulomb-renormalized 

energies of electrons and holes respectively, and fl(k,£) =  //Eop(t) 4- %2k' ^ (^ )  k ')P (k ', t) is the 

generalized Rabi frequency; V (k, k ') is the Coulomb interaction. Note th a t in the derivation of 

the  above equations of motion, a  random  phase approximation (RFA) [81, 82, 83] is made to
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split the  four-operator terms into product o f densities and interbeind polarizations, for example,

~  P (k , £)nc(k, £)^k—q,k'. (3-8)

The explicit term s in Eqs. (3.5), (3.6) and  (3.7) denote the results obtained in the  time- 

dependent Hartree-Fock approximation, whereas the  terras with subscript coll refers to  many- 

body collision term s beyond the  Hartree-Fock approximation, and to  o ther dephasing mecha-

nism such as carrier-phonon scattering. Usually, these undetermined term s are simplified by 

adding phenomenological dephasing tim e constants. T hat is, the  collision term s in Eqs. (3.5),

(3.6) and (3.7) are replaced in practice by and respectively.

Although SBEs were derived to evaluate the  coherent effects to any orders in optical field, 

the  factorization of higher order correlations into polarization and num ber parts  by RPA makes 

the m ethod in good agreement generally w ith  only the lowest order optical response. Beyond 

the first order response, e.g. in the  study  of intraband polarization in superlattices, SBEs 

may encounter problems. For example, th e  factorization of higher order correlations into in-

terband  polarization and number parts  makes some of the decay tim e constants wrong. The 

Coulomb coupling of the electron and hole w ithin a  pair in the SBEs decays faster than  the 

in traband polarization [38], since factorization implies that in traband process decay twice as 

fast as interband processes [45]. Thus, th e  prediction by the SBEs th a t  terahertz  emission is 

characteristic of free electrons and holes ra ther th an  excitons is not in  agreement with both 

theoretical prediction [21] and experim ental results [38].

Axt et al developed an alternative approach called Dynamically Controlled Truncation 

(DCT) to  address the problems the  SBEls encountered [36, 37, 38]. W hile the SBEs try  to 

describe the  coherent response to infinite order in optical field but lose correlations by fac-

torization, D C T makes a compromise by m aintaining correct correlations but describing the 

coherent response of a  semiconductor wdthin a  prescribed order of th e  optical field. The idea 

of the  D CT technique relies on the observation th a t a complete calculation of the nonlinear 

optical response of a semiconductor to  any  prescribed order in the driving field can be achieved 

by considering only a finite set of electronic correlation functions [36, 37, 38]. B oth DCT theory 

and SBEs can predict similar results for linear response of a superlattice. However, DCT can
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also explain the experimental results th a t  SBEs can not explain [44].

DCT still has lim itations because it is usually derived in a  basis of electron-hole pairs created 

a t a  fixed lattice sites or in fcz-state basis b u t these basis are actually  no t appropriate to describe 

th e  coherent response in sem iconductor superlattices. Thus, th e  use o f phenomenological decay 

and  dephasing term s in D CT theorj- can not be properly justified because the free electron 

states are not even close to  being th e  eigenstates of the system ( in  th e  absence of terahertz and 

optical fields). Dignam  [34] tried  to  address this problem by employing a  basis of single-particle 

one-band WSL states [Eqs. (2.3) and  (2.4)] in  the presence of s ta tic  electric field. Because these 

non-interacting states are much closer to  the actual excitonic s tates, th e  physical significance 

of term s is much more transparen t. Moreover, the electrons and  holes are spatially localized 

in  2  direction in the  WSL basis, th e  only states th a t are optically excited are those with an 

appreciable electron-hole overlap integral. Therefore, one need only calculate those WSL states 

for which the electron-hole overlap is significant.

In summary, SBEs are successful in  accounting for the lowest-order coherent responses in a 

photoexcited semiconductor superlattice. Although it was originally developed to account for 

the  higher order effects, it is not so successful due to the  use of RPA. T he crux is: while RFA 

successfully reduces the infinite hierarchy via a Hartree-Fock decoupling to  much simplified 

polarization and number parts, it also removes some crucial electron-hole correlations. DCT, 

however, makes a compromise by m aintaining correct correlations b u t describing the coherent 

response of a semiconductor w ithin a  prescribed order of th e  optical field. In practice, it 

will have to  be term inated to  a  prescribed finite order so as to  m aintain  the  correct correlation. 

Moreover, the DCT is usually derived in a  kz-state basis th a t is not suitable for the photoexcited 

semiconductor superlattices. From  above, it can be seen tha t, to  give a  more realistic picture of 

th e  dynamics of electrons and holes, we need an approach th a t has the  following characteristics: 

can account for the nonlinear coherent response but not lose th e  correct correlations, and above 

all, the  method should be derived in a  more appropriate basis. This is th e  approach introduced 

in the  next section with a quasibosonic treatm ent.
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3.3 Quasibosonic Exciton Dynamics and SCD Bloch Oscilla­

tions

3.3.1 Equations of M otion for Excitons in the Quasibosonic Treatment

In this section, the  equations of motion for SCD Bloch oscillations are derived by using a 

quasibosonic treatm ent by  Hawton  and Nelson [45]. This is based on the  fact th a t excitons 

are bosons at low densities and  the ir creation and destruction operators satisfy the bosonic 

commutation relations to  a  first approximation [84]. The m ain idea behind this treatm ent 

is to  use the excitonic s ta tes  ra ther than  the single-particle one-band WSL states as a  basis. 

This quasibosonic picture of excitons provides us w ith a  physically transparent treatm ent of 

optical processes of sem iconductors near the band edge, and can be successfully applied with 

phenomenological dephasing up to  third-order in optical field and  beyond.

First, an exciton operator É t  which can create an exciton in  v  s tate  ( w ith zero center of 

mass momentum) can be introduced as a linear combination of a  set of pair operators [45],

=  p .9 )
k

where is the  fc-space representation of the exciton basis, is the  quasi-bosonic pair opera-

to r obtained firom Fermion operators (the product of electron and hole operator) by using Usui’s 

transformation [85]. I t can  be shown th a t exciton operators satisfy the  following commutation 

relations [45],

[b Î , ,B Î ,]  =  =  0, (3.10)

[ b , „ B Î J  - 2  Y ,  (3.11)
ml,m2

where

=  E  ̂ ni.kV’na.kV'ma.kV'mi.ki (3-12)
k

and 0 !e =  n ie lM , =  m ^ j M ,  and mg, m/i and M  are the  electron, hole and total masses 

respectively. The % param eters in Eq. (3.12) describe phase-space filling and can be calculated 

for any particular exciton basis. Commutation relations (3.10) and (3.11), and the definition

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(3.12) are the basic relations th a t are needed to derive the equations of m otion for excitons 

below.

It has been shown by Dignam  and  Haviton [47] tha t, w ith th e  above treatm ent the  Hamil-

tonian  for the exciton system can be  w ritten  to  a good approximation as

pea: pex
• P “  4- V ^irvtra^ (3.13)

2 eo^

where

is the  energy of the excitons in the superlattice in the presence of the  applied DC field, B^  and 

Bfj, are excitonic creation and annihilation operators which create and destroy excitons in the 

sta te  in the presence of an applied field F q ,  E  (£) =  Egpt (£) 4- E ^ ^ ^  (t) is the  sum of the 

applied external optical and THz fields, and P®® =  P ^ ^ a  4- P ^ te r  the  to ta l polarization due 

to  the  excitons, where

=  (3-M)V

is the  intraband polarization and

=  p .i5 )

is the  interband polarization. M “  is th e  interband dipole m atrix  element for the  exciton 

and  is given by [34]

M “  =  J d z ^ \ z ,  z , 0), (3.16)

where M o is the bulk dipole m atrix  element between the conduction and valence bands and 

'4)^{ze,Zh_,p) is defined in Eq. (2.15). is the intraband dipole m atrix  element and takes

th e  form

=  ( ^ ( z e ,  Zh, p) |-e ( re  -  rh)|V;''(zg, z*, p ) ) . (3.17)

T he calculation of these m atrix elem ents has been discussed by previous authors [34, 46]. 

Finally, V  is the volume of the system  (assumed to be very large relative to  th e  superlattice
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period and exciton Bohr radius) and  e is th e  dielectric constant of th e  semiconductor due 

to  all the  bound charges in the  system . T he exciton-exciton interaction in  th is Hamiltonian 

resides in the  last term . T he exact expression for th is term  is obtained if is replaced

by the  exact polarization ra ther th an  th e  polarization in  the dipole approxim ation, and the 

electron-hole Coulomb interaction w ithin a  given exciton is subtracted ou t. Because we are 

not concerned w ith exciton-exciton correlations in this work, we replace th e  exact polarization 

by the  long-wavelength dipole approxim ation as in Eq. (3.15). This is essentially equivalent 

to  treating exciton-exciton interactions in a  mean-field approach. We emphasize, however, 

th a t th e  electron-hole interaction w ithin an exciton is included in H ^ ,  an d  th is allows for the 

electron-hole correlations which yield W annier excitons in the usual way.

Rrom this, one can derive the  following equation of motion:

4-
dt =  E,'opt M r - 2  E

2

The term s containing the are due to  phase-space filling and arise from  the  commutation

relations of excitonic operators as in Eq. (3.12). These terms have been shown to be small [47j 

relative to  the other nonlinear term s, and  hence can be safely ignored. In  th is approximation, 

the  equation of motion simplifies to

+  htOpBl =  -b
p e i

E e x t in tra
T H z -----------------------€oe E G ? . X "

m'

It is seen here th a t the net effect of the  exciton-exciton interactions in th is dipole approximation 

is to  replace the  applied external field w ith the  to ta l THz field, which is given by the sum of
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the  applied field and the excitonic in traband  field

pex
= ---------------------------------------------------------- (3-18)

Coe

However, we must remember th a t a t th is point is in fact an opera to r which can be written

in term s of the excitonic destruction and  creation operators.

Now, taking the expectation value o f th e  above equation, and  adding a  phenomenological 

interband dephasing tim e constant, 7)^, we obtain

M r  +  . g  ( g ; . , )

To solve th is equation, we would in general have to  have the  equation of m otion for 

To avoid this difficulty, we employ the  following approximate factorization:

This amounts to using the physical approxim ation

= <P.%„) ( s ^ ) .

This approximation can be shown to  be valid as long as the optical pulse duration is much 

less th an  the dephasing times [47], which it  is for the situations discussed here. Note tha t this 

approximation is different from th a t used in  the  SBEs in th a t th e  electron-hole correlations 

w ithin each exciton are included before th e  factorization. Using th is  factorization, we obtain:

+  « ( “ <• +  f )  ®  +  [ E r a .  (<) +  <ES™>] ■ E  %  ■

(3.19)
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The intraband equation of m otion w ithin the same set of approximations is then  seen to be

+  [ 1 % ,  (!) +  ( % r . ) ]  E  . (3-20)

where we have used the factorization =  (E ^tra) problem

of determining the in traband polarization dynamics reduces to  solving the above two sets of 

equations where is defined in Eq. (3.18).

In later chapters, because we are only interested in the  driving effect from the fields due 

to  charge carriers, i.e. SCD Bloch oscillations, we will omit the  applied Terahertz portion, 

^TH z (Y) 5 retain only ( E ^ , .^ ) . Note tha t Eqs. (3.19) and (3.20) are to  infinite order in 

optical field, and hence are in sp irit similar to the SBEs. T hat is, like SBEs, one does not have 

to  use perturbation theory. However, because they employ an exciton basis and treat intraband 

and interband processes separately, they  do not have the same problems encountered by the 

SBEs.

3.3.2 Dimensionless Equations for Excitons;

To move to dimensionless equations th a t do not contain the factors such as Volume in the 

definition of the polarization ( thus we need not to worry about the  volume of interest in 

the numerical calculation but ju s t  get the physical quantities per unit volume ), we make the 

following definitions:

M “  =  M o S p y J ^

=  (3.21)

where

Sp — OoSp = J  dzipf^{p =  0, z, z).

where ^ ( p ,  z, z) is defined in Eq. (2.15). The main purpose of th is re-definition and other 

definitions is to  effect the  removal of the factor of 1 /V  in the definition of polarization. W ith
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these factors gone, the above elements are easily computed and the  equations of motion can be 

solved on the computer.

Now, we make the following definitions:

(S „ ) ( t / ^ b ) =  (3.22)

( g t B . )  (T /w s) =

where r  =  wg£. This makes K p{r)  and K * K u(t ) into slowdy-varying quantities suitable for 

solving on a  com puter using a  Runge K u tta  procedure. Finally, we define

=  uJsTp.

with similar definitions for th e  other dephasing times. Using these definitions in  equations of 

motion (3.19) and  (3.20), we obtain:

d T  Tfj, ^  ^ e h u B d o

(3.23)

and

=  - ~ K Z K u  ■ SZ K,(mT r  GnLU qCLq

+ iE ( t)e < - ‘̂ ‘= ^ ° ) ‘ ■ FZ
ehujsao ^

 £ (Efntra)
huJB

. (3.24)
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In  term s of these quantities, the  intraband polarization is given by

; ^  (3.25)

l/fj.

Eqs. (3.23), (3.24) and (3.25) form the basic frame work for calculations of the Is  excitonic 

portion in the SCD Bloch oscillations in Chapter 5.
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Chapter 4

Dynamics of Free Electron-hole 

Pairs in Semiconductor Superlattice

In th is chapter, we wish to  account for the  influence of the  unbound continuum excitonic states 

on th e  Is excitons as described on Chapter 3. However, calculating the dynamics of these 

continuum states would involve very intensive calculations due to  the continuum nature of these 

unbound excitonic states. Therefore we will instead calculate the  influence of free electron-hole 

pairs, i.e., pairs of non-interacting electrons and holes, to  approxim ate these continuum states. 

Although it is known th a t th e  Coulomb interaction has a  ra ther large effect on the  linear 

optical properties of semiconductor, the goal here is to investigate the general feature of the  

interaction of Is excitons w ith  the  continuum to obtain quantita tive  results. Thus we expect 

this approximation to be satisfactory for our purpose.

However, it is known th a t the  electron-hole Coulomb interaction enhances the absorption 

due to  continuum states [29]. To account for the influence o f these carriers on the Is excitons, we 

must first derive the equations of m otion of the free electron-hole pairs. To obtain the equations 

of motion of these free electron-hole pairs in a superlattice, we need the full Hamiltonian of the  

system. In this chapter, we first derive the Hamiltonian for the  free electron-hole pairs in the  

superlattice potential in the  presence of the external optical, DC and terahertz electric fields. 

Using this, the equations of m otion for electron-hole pairs are  obtained by using the Heisenberg 

equations of motion. After th a t, the  corresponding simplified and dimensionless equations
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th a t are favorable for numerical calculation are derived by  defining new variables. Finally, 

some results in a few limiting cases are calculated to  dem onstrate  the validity of numerical 

calculations by comparison w ith analytical results in these cases.

4.1 Hamiltonian for Electron-hole Pairs in External Optical and 

Terahertz fields

The fuU Hamiltonian of the  system  for free electron-hole pairs takes the form

p*/ . p /
=  H i +  (4.1)

where h I  =  YZy. hu}fj,BpBp. This is identical to  the  definition of Hamiltonian for the  excitonic 

case as in Eq. (3.13) except th a t we omit the Coulomb in teraction between the electron and hole 

within each pair in Ho - As a  result, the  5^  are now free electron-hole pair creation operators. 

Correspondingly, the  quantities such as and in th e  definitions of and

^Wtra  the excitonic case become Mp and G{iv in th e  free electron-hole pair case. Although 

these term s are similar in definitions, they are actually different and have to  be re-calculated. 

Also, in the  absence of the electron-hole Coulomb interaction, the  along-axis in-plane motions

decouple and we index a free pair state  by double indices {n, k} ra ther than a  single index fi as

in excitonic case, where n  labels the WSL index and k labels the  in-plane relative wavevector.

The wavefunction for the  free electron-hole pair ( w ith  zero center of mass momentum ) 

corresponding to an eigenstate of H q can be w ritten as

Zh,p) = P ^  Xo (zft -  TTid)x%.{ze -  md), (4.2)
*  ̂ m

where p  refers to the two-dimensional position vector in th e  (ar, y) plane, k is the two-dimensional 

in-plane wave vector, and A  is the in-plane norm alization area. The functions, Xo(-^k) 

X^(zg) are WSL states, which have the same definitions as in Eqs. (2.3) and (2.4). The corre-

sponding eigenenergy for the  above wavefunction is

LL k =  ^ 0  +  nfiujB -b %---- , (4.3)
2 m||
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where tkjQ is the energy for n  =  0 , k  =  0  state, and  m || is defined as ^  ~ T j^  +  î ï^ *

W ith  the wavefunction defined in Eq. (4.2), the  expression for the in traband dipole m atrix  

element can thus be w ritten  as,

k ') =  -  e(%  -  )  - (4-4)

Inserting the wavefunction Eq. (4.2) into Eq. (4.4), we have,

G j,(k ,k ')  =  - e k

=  f  Y  %o"(% -  - m d )
^ m,Tn'

•(Ze — %)%o(% — m 'd )x f{ze  — m 'd ) . (4.5)

W ithin the one-miniband approximation, the WSL eigenstates Xo{zh) and Xn(ze) can be ex-

panded in the basis of th e  W annier states, a^(z), of th e  lowest minibands (superscript A refers 

to  electron or hole),

Inserting Eq.(2.3) and  Eq. (2.4) into Eq.(4.5) gives,

G ^ (k ,k ')  =  f  C ^ u a -* { z , ,-m d -m " d )C ^ „ ,_ , ,
m .,m ',m " ,TTi'" ,Tn4,m s

-a'^(ze — m d — m'"d){ze — z^.)

■cl^d"(zh. — m 'd  -  m^d)C%_^_ia\ze. — m 'd  — m^d). (4.6)

After re-indexation, m "  —>• m " — m , m '"  —► m "' — m , TTI4  —> m ^ — m ' and ms —»■ m s — m ', Eq.

(4.6) becomes.
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^ f M  T V ) /  r r > / /  r r » / / /  - r r i .»  t d b tm^m\Tn:' , m " '  ,7714,7715  

*G ^'"-m -na‘̂ (^e “  rn!"d){ze -  2fe)

-C^-TTk'a"(% -  -  msd)

= f  d p é ' f ^ ■ E
 ̂ m,m',Tn",m'",TM4,Tns

r y-koo f-Wo
• I  dz-n.a *̂{zh. — m "d)d"{zh  —  m 4<Z ) • I  d z e O ^ ( z g  —  • Zg • a ‘̂ ( z g  —  m^d)

L*/—00  V—00

— f  dze(f*{z^— rn'''d)a‘̂ {zc. — rri5d)
J  — 0 0

/H-oo
- I  dzhoy*{zf,_ — Tn"d) • Zfe • a”(z/i — 7714d)
y —00

(4.7)

In  order to  continue our derivation, we will first evaluate the integral w ith the following
'4-1 
2

^  / , rn +  p ^  « / , , rn +  p^

form by defining zf =  z  —

J  dza*(z — m d )za (z  — pd) =- — md) • (z'--j----- ^ ^ d )

-a(z ' -b —pd)

=  (4.8)

where integral f  dzfa*{d4-^^ ^ d ) • d  •a{z! — ^ ^ d )  must be zero as long as th e  miniband Wan-

nier functions have definite parity. This will be true for superlattice potentials with inversion 

sym m etry [34].

Using Eq. (4.8) and integrating over dO, the in traband dipole moments Eq. (4.7) can be 

further simplified as,
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Ĉ (k,k') = EJV̂  m ,m ',m "  ,Tn'" ,Tn4,ms

• [ t t i  d ô -m " T r tn ^ n i '" T n s  m  ^T n '^ T n g]

=  Y  C S,^C S„_.„_„C '„_„pC 4„,_„,_,(m "'-m "). (4.9)
Tn,m.',m" ,m'"

Using the sum m ation relations Eqs. (2.5) and (2.6) for expansion coefficients, we arrive at,

53  ̂ ^ -rrS ^ -m ! ~  53 =  T̂n,m'7
n n'

n Ti'

= E +'"E
n' n'

— ëË~d ~^m —ni'.o^oj +^^m ,Tn'-

Thus we finally get the  in traband dipole moments.
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edÔ)
N z

eFod

eddjjk'
iV;r -{e

I m

-1
eFod

a

(e^-/ ~  ^n/So) +

m,m'
eddt,v

eFod

n  4- eFod 
e

— m  —

= d,

- 5 ^ 1 —

=  dkk- { - e d  -  4 - J  +  ( ^ +  }
=  dk^k'ffnZ-

eFod

(4.10)

In the nearest tight-binding approximation, by using =  £o^ri,o +  ̂ ^^S n ,n ± i, where A \  = 

Ag 4- A/i, the m atrix element in Eq. (4.10) can be further simplified as.

(4.11)

where 6 =  9e — Oh, 6e,h =  Ae,h/^qe,hFod, where Ae,h is the  bandw idth of the electron or hole 

miniband [34]. This result can also be obtained alternatively by a  simple derivation using the 

nearest-neighbor tight-binding approximation. In th is situation, the  expansion coefficients in 

Eqs. (2.3) and (2.4) are replaced by Bessel function of the  first kind of order m  as in Eq. (2.7a).
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Therefore, we have.

9rU = —ed  ■ 5 3  PJy-n (0) Jp-i (^) 
p

=  —ed ■ ^ 3  Jp-n{^)[Jp-ii.^) (P — 0  +  I'Jp-ii^)]
p

=  - e d -  5 3 '^p-n{0){.-^[Jp—i+i{^) + -7p_i_i(0)] +  lJp-i{0)]}
p

=  —ed{—[6n^i-i-\-6n^i+.^+l6rd}- (4-12)

However, for a more complete calculation, the  m atrix  element g„i defined in  Eq. (4.10) rather 

th a n  in Eq. (4.11) should be used.

B y using the above in traband  dipole m atrix  element Eq. (4.10), the  in traband  polarization 

p er un it volume takes the  form

^intTa M  — Y  5 3
n,k,ra',k'

Y  5  ] dfc^k'ffnn'^nk- '̂i'k'
n,k,n'^'

^  E  (4.13)
n,k,n'

and therefore the interacting Ham iltonian for an  electron-hole pair and T erahertz field is written 

as,

= '̂̂ întTa ■ ̂ intra

=  -E L ™  ■ E  (4.14)
Ti,k,rt'

where E ^ ,.^  =

We now turn our a tten tion  to  the  in terband polarization which can be w ritten  as

p L p t =  ^  E  {mLbL + , (4.15)
n,k
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where has the sim ilar definition as in Eq. (3.16) for exciton case bu t w ith z, 0) as

defined by Eq. (2.15) replaced by  z, 0) as defined by Eq. (4.2). T h a t is,

=  J  d z e*  ° ̂ X ^ ( z h  -  rnd)x^(ze -  m d)

=  M o—^  f  d z Y ^ x ^ { .Z h - m d ) x V { z ^ - ‘̂ )
V Z  J  771

=  M l

So we see th a t m I ^  is actually independent of k. Thus the  interacting Hamiltonian with the 

optical field is w ritten as

in te r

=  -K E .p .( ( )  - ^  g
n.k

=  +  (4.16)
n,k

4.2 Equations of M otion for Free Electron-hole Pairs

B y using the Hamiltonian defined in Eq. (4.1), the equations of motion for free electron-hole 

pairs can be derived from the Heisenberg equations of m otion. T he only ex tra  ingredients 

we need are the  com m utation relations introduced in Eqs. (3.10) and (3.11). Neglecting the 

phase-space filling effects as we did for the  excitonic case and through elem entary but lengthy 

derivations, we obtain the following interband and intraband equations of motion.

=  -E 7 ik B L  +  Eopt(É) . M l*  4- B irU ra  ■ 9 n 'n B l^ ,  (4.17)dt

=  { E r r ^ - E r , V , ) B l _ ^ B r r ^ - ^ i n t r a - Y } 9 r n n ' B i ^ B r , ^ - g n ' n B i , y , B ^ ^ \

nl
-E opt(t) • [M l^B l^ -  M l* B ^ \ .  (4.18)
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Eqs. (4.17) and (4.18) are the  basic equations for studying the dynamic behavior of free electron- 

hole pairs. In the  next section, we will try  to  simplify the equation w ithin the  ro tating  wave 

approximation and obtained the dimensionless equations suitable for numerical calculation.

4.3 Solving the Equations of Motion Numerically

4.3.1 Simplified Equations o f M otion

Assuming th a t there is no external terahertz  field and th a t the optical field consists of a pulse 

of the  form

Eopt(t) =E(t)e-^-= '-t-c.c,

and including phenomenological dam ping, as was done for the Is  excitons, we obtain  the fol-

lowing expressions for the equations of m otion within the rotating wave approxim ation:

( K 'k )  . (4-19)

d 1 . /  t \
^  =  (^rnk -  Bnk -  ^ r ^ )  (B „k Bmk)

. M ):;: (Bmk) -E ( t) e -^ '= 'A /;^

4 -  ( E i u t r a )  • ^ 2  \9 n 'n  ~  9 n 'm  '  ( 4 . 2 0 )

These are the  sets of equations th a t need to  be solved simultaneously to  ob tain  the second 

order in traband polarization. Because th e  k  in the above equations is a  2D vector, it therefore 

can be a big burden for numerical calculation. We will try  to  simplify the  Eqs. (4.19) and

(4.20) so as to  make the problem more com putationally tractable.

We begin by defining:

=  (4.21)
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and
r2xJ rZTt

I  (BUc) d4>, (4.22)
0

where k  =  (fc ,0 ). Now, we assume th a t D i(k) =2)i(k, ̂ ) is independent of (f) and Dim(k) 

is independent of k . This is a good approxim ation because it is reasonable to  assume the  

scattering w ithin th e  plane is isotropic, and  for the  relatively small k  considered here, the  

dependence on k  should be small. W ith  the above assumptions, the num ber of equations to  be 

solved is significantly reduced. Moreover, the  in traband polarization is seen to  depend only on

^ï**i£ra) — Y
n,k,mjc'

=  -ÿ̂  (4.23)
n ,m

Using these definitions, Eqs. (4.19) and (4.20) become:

(s) =  -2 7 rE (t)e -^ = ‘ • -  ( E ^ r . )  • Y 2 ( e ) , (4.24)

dt

where

and

where

=  ( ï i ü J m - f u ^ n -  7^1  Y r^m  +  H  d s [ £ * ( t ) e ^ ^ ^  ■ M l * C m  (s )
V inm/ (27T) Jo

-E(t)e-^<=^M ‘̂ ,„C*(£)]

4" (J^intra) ' ^   ̂{^-nf,tiY ti',m 8 n',m^^,n') > (4-25)
n'

fkJne =  ^ 0  4- nhujB 4- £ (4.26)

fkjJn =  nhùJB,

e  =
2 mi|

(4.27)
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is the  in-plane dispersion relation w ith  4- .W ith the simplification m ade above, the

number of differential equations to  be solved is greatly  reduced and hence makes the  problem 

tractable. To proceed to  use these equations in a  computer program, they m ust first be put 

into dimensionless form and the tim e dependence factored out in a  way sim ilar to  th a t which 

was done for the exciton equations.

4.3.2 Dimensionless Equations

We now wish to  move to  dimensionless equations which do not contain the  factors of area .4 

and volume V . We note th a t th e  volume is given by

V  =  AJV^d.

W e  begin by defining

=  M oSnW

In these definitions, M<, is the  bulk  dipole m atrix  element between the conduction and valence 

bands (units of charge times length) and

Bn = J  < k $ ^ ( p  =  0 , z, z),

w ith units of one over length, where =  0, z, z) is defined in Eq. (4.2). T hus by defining

we obtain

=  M . o S n y / ^ -

For simplicity, we will confine our calculations to the  tight-binding approxim ation. In this case, 

Xn(z) in Eq. (4.2) can be w ritten  as

%»(z) =  E  (4.28)
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and the redefined dimensionless interband dipole m atrix can be simplified as,

=  ^ J p - n { e , ) J A ^ n )  [ d z f ^ { z - p d ) f ^ { z - p ' d )
P . P '

~  ^  V Bp—n (9e)dpf (fih)Spff
P,P'

=  ^ 2  Bp-Ti(^e)Bp(0 /i)
P

=  J-n{9e — 9h)

=  B -n(^), (4.29)

where 6 =&e — Oh =  2 ^ 5  ~  (zefbd) ~
Now, we make the following definitions to remove A and V  from the  equations and to remove 

fast tim e dependence:

C7„(e =  x h o j B ;  t  =  t / u j b ) =  ^  ̂ / K K r , { x ,  (4.30)

and

=  T/wa) =  (4.31)

where r  =  wgt, and
£

X  =
fkuB '

and

^ n x
hu)B 

~  fÿXB
_ h u j Q n h u  B ^  

hu,'B 
=  Wo -|- Ti 4- X,
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where wq  =  ^ .  Finally, we define

Ftix — 

r  n m  ~

Using these definitions in Eqs. (4.24) and (4.25), we obtain:

=  - : ^ i < : „ ( x ) + i 2 7 r E ( t ) e - " ‘(5= -2> o-n-x)T .
CtT* r  fyfr GCLuijiJ Q

■ E  W  (4.32)

dX n ,m  _ — [ ° ° dx  [g"(t)e '(= '= -^-':-')"5 ;A rn . (x)
r e m  ( 27t )  R " ^ e  V o  LdT  Fnm  ̂ (27t)^

-E ( t)e -^ (= ': -^ -" '-= :) " '5 L ^  (r)]

(g»-, . (4.33)
®  n .'

To solve these equations, it  is necessary to  discretize x. We let x  =  Xj =  where

j  =  1,2, ...M , and x^æc is the  upper lim it for the integral in Eq. (4.33). The appropriate 

value for Xmax will be discussed in next section. Once the time-dependent reduced matrix 

elements X„^rn and  K n(x )  are obtained by solving the above equations of motion, physical 

quantities such as interband and in traband polarization, absorption, etc., can be arrived a t by 

straightforward calculations. We finally note th a t by using the  definition in Eq. (4.31), the 

intraband polarization in Eq. (4.23) can be rew ritten as,

(pL„) M =  (4.34)

4.3.3 Solving the Dimensionless Equations for Free Electron-hole Pairs

Although it seems th a t the equations of motion for a  free electron-hole pair are very similar to 

the exciton equations, there are some im portant differences. The tricky part of the  problem is 

this: in the  first-order exciton equation, the number of equations is same as the number of
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and the  number of Wc — , i.e. they are all indexed by the same index (z which runs from 1

to N ,  the  total num ber o f exciton states in the  superlattice; however, th is is not the  case in 

free electron-hole pair. W hile th e  number of Sn remains the same as in  the  exciton case, 

the  number of equations an d  the  number Wc ~  wq — n  — Xj are different from their exciton 

counterparts. Therefore, we m ust re-index the  first-order free electron-hole pair equation so as 

to  make them  parallel w ith  the  exciton equations.

The number o f equations for free electron-hole pairs is M  times its excitonic counterpart. 

A good way to  solve these equations is to  transfer the two dimensional arrays indexed by n  and 

j  to  one dimensional arrays indexed by

J = { j - l ) N - h n ,  (4.35)

where j  runs from 1  to  M  and n  runs from 1 to  N.  Another tricky problem in solving equations 

of m otion lies in evaluating th e  integral p a rt in Eq. (4.33). This will be addressed in the next 

section, where we will discuss th e  convergence and relevant numerical results for th is integral.

4.4 Testing of the Numerical Method

4.4.1 The Convergence o f the Integral in the Second-order Equation

Because the integral lim its in  th e  second-order equation (4.33) are from zero to  infinity, we will 

first test the convergence o f th is integral so as to make sure our m ethod is accurate.

We define a  new variable:

Bn

Then we have:

=  - - j - W n  (x) -h z27rE(t)e-^'(‘̂ ’=-^°-^-^)^ •
r  7IX €.dLTujj Q

• E ( x ) (4. 36) 
^  n'  Bn
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T lyT n  ___ ___

d r  r,nm  (27T) fi^e Jo >-

(4.37)

Note th a t in the  absence of th e  THz field (Bintra), th e  equations for all Wn are identical except 

for the shift of x  by n . We define

/ ( ^ ) = 2 7 r J ^ ^ E ( t )
edUwB

and assume a G aussian field of the  form

E (t)  =  E exp(i0 ) exp (—O ^r^/2) (4.38)

such tha t

where

f i f )  = fo exp(i0 ) exp (— r~ / 2 ) ,

fo =  27T
B lM cl

(4.39)

(4.40)
edhuJB

is a  real constant, and  Q characterizes the exciting optical pulse width. Then, when there is no 

dephasing and no TH z field, the  solution of Eq. (4.36) is:

W n  (x, r )  =  exp(i0 ) exp
(wc — wq — n  — x) ' 

2 ^ 2

(4.41)

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using this result, we see th a t th e  second term  in Eq. (4.37) is proportional to

- i  £ °  dx£*{t) (a;, r )  -  (x, r ) ]

=  - i exp ( -n ^ T ^ /2 ) SnSm  dx  (a;, r )  -  e-f(wc-ao-"i-T)Tpp^ (a;, r ) ]

=  C  dx{e^^
Jo

%(Wc-W0 - 7Z -x)Tg^ _ ( c ^ ~  WO - m  -  x)

•exp (wg — Wo — ri — x)*

2 ^ 2

_j_ g — i ( “ c —2 o — m — x ) x

2 0 2
erf c

i  (wc — wq — n  — x)
- 1

where C  is a real constant. Now, for large values of \z\, the asymptotic form of the error 

function is:

erf (z) =  1  —
y/% Z

Thus, in the limit tha t x  becomes very large, the integrand above takes the form:

I{x)  ~
o*(t5c—Dq—71—x)r

exp
(wc — Wo — m  — x)^

2 0 2

-exp
- (

—rO^ — i  (wc — Wo — m  — x)
V2Q

—x 0 2  — i  (wc — 05o — m  — x) '' ^
V 50

g—%(wc—WQ —m—x)t

vÆ
exp ( W c  —  W o  —  Tl —  x)*

2 Ô2

•exp
—tQ 2  4 - i  (wc — Wo — n  — x)

v^O

—rO^ 4- i  (wc — Wo — n  — x) '' ^
V20

g,:(Wc—wo—Tl—x)T
=  — exp [—7—0  / 2 ] {---------^=------- exp iv ^ rO  (wc — wo —m  — x)

—rQ 2 — 2 (wc — Wo — m, — x) 1 e ^
4------

•exp

-v /5 0  J  i/ÿ r

—rO ^ 4- 2 (wc — Wo — — x)  ̂
^  .

iv ^ t O (wc  — Wo — n - X ) ] . [ :

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, there is no problem with convergence of th e  term s which are proportional to  1 /z^ , however 

the  terms which are proportional to  1 / x  would seem  to  pose a problem. Collecting those term s 

we have

h {x )  =  exp [—r^ O ^ /2 ] \^iy/2rQ . (wc — wq — m  — x ) |

_g-t((*»c-u;o-Tn-x)7- (Wc —  U J Q — n —  x ) |  I  .

The first term  is proportional to

e x p  ĵ —z ^1 — V 2 0 j  r x j  / x .

This integral is convergent unless y/2Ct. =  1 , or r  =  0. However, if r  =  0 then we have

.y/20.
I—

=  0 .

If \/2f2 =  1 , th en  we have

h { x )  =  exp [ - t 2 / 4 ] ^  ^é(^rn-n)T _  g_i(m -n)x |

=  —2 — exp [—r^ /4 ] —̂  sin [(n — m) r ] .
X  ■’ y/TV

l i m ^ n  and 12 =  ; ^ ,  the integral will be divergent. B ut we are not in this situation. Therefore, 

we expect no convergence problems in our calculation.

4.4.2 Convergence Test by Numerical Calculation

Considering a  GaAs/GaAlAs superlattice, we calculate the real part of the integral

hip:) =  exp [—r ^ f i^ / 2 ] ^  { 1  — 1 }

Jo

in Eq. (4.33) w ith the related parameters in Table 4.1. Here, Eq is the  applied s ta tic  field; d  is 

the period of the  superlattice; Sc is the  energy ( relative to  the n  =  0  S tark  ladder ) corresponding
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Fo(kV/cm) d ( 1 0  ^°m) £ c ( n ie V ) Eop(GV/m ) Tl 7^/
2inter 2inter

15 84 0 1 x 1 0 “ ^ oo 2 0 1 0

Table 4.1: Param eters for Testing Integral Convergence

to the exciting center laser frequency; Eop is the  exciting optical field strength of the  exciting 

laser pulse; and 7 ^ ^ ^  are respectively th e  in terband  and  intraband dephasing constants

for free electron-hole pairs; T \  denote the population decay constant for both excitons and  free 

electron-hole pairs. O ther param eters th a t are applicable to  aU the calculations in this work 

include: dielectric constant e is taken as 12.5 for th e  GaAS/GaALAs superlattice system; th e  

param eter characterizing th e  optical pulse w idth is 0.964; the  transverse electron and hole 

effective masses (mg|| and  m/iy) are respectively 0.0665 and 0.115 ( in units of free electron 

mass), from which the layer-dependent transverse electron-hole-reduced effective mass my can 

be calculated by using Eq. (2.12).

As shown in Fig. 4-1, we evaluate the real p a rt o f the  integral (p)

a t r  =  14 for all the s ta tes  m  using a trapezoidal rule. In  th e  program, the optical pulse is 

introduced a t tim e point r  =  1 0  and then the  pulse has passed a t the evaluation tim e point 

T =  14. The integrals converge very well as long as the  upper limit is beyond 126 meV. In 

the remainder of this work we use x^ax =  ISOmeV. I t  is found th a t the number of discretized 

points should be more th a n  50 for convergence. In  th e  com puter program, we take this num ber 

as 102. Finally, we find th a t  the  imaginary p a rt of the  integral also converges very well.

4.4.3 Testing the Numerical Calculation in a Coherent Limit

The numerical results will be tested by assuming there  is no dephasing, i.e., in the  coherent 

limit. In this situation, Yn,m defined in Eq. (4.21) takes th e  form,

Y-n̂ rn
k

— (Bmk)
k

(4.42)
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Figure 4-1: Integral evaluations for different excitonic states for diffirent Xmax 

Using the definition for Cn (s ) , Eq. (4.22), we may also get,

=  27rjT #  ( ^ n k )  (^Tnk).

Combining the above two equations, we have,

A

(4.43)

(27t )3

|M ^ |-

Jo

(4.44)
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Fo(kV/cm) d ( 1 0  ^°m) £c(meV) Bop(GV/m) Tl ■^linter
rpf
■‘■‘Zinter

15 84 0 1 x 1 0 -^ o o OO OO

Table 4.2: Param eters for Testing Eq. (4.45) in the Coherent Limit 

where the definitions in Eqs. (4.30) and  (4.31) have been used. Finally we arrive at,

d P -
dk-kIQ {x,T)Km {p:-,T)

«(2 v r F  r °  ’

(27t )3
TTl\\UJBdP f°°

(4.45)

where we use

dx =
d s  

flWB 
d  hkr  

hüJB 2 m||

ri
(4.46)

where m\\ is the reduced mass of the  electron and hole in the plane. We can use Eq. (4.45) to 

te st the numerical calculation. The RHS of Eq. (4.45), which can be obtained by integrating 

over the results from solving first-order equation of motion, should be equal to  the LHS of 

the equation which is obtained by solving the second-order equation. T he following are some 

examples for such verification.

Considering the same GaAs/G aA lA s superlattice discussed in Section 4.4.2, we calculate 

the  real parts of the RHS and LHS of Eq. (4.45) with the related param eters in Table 4.2. 

As shown in Fig. 4-2, after the optical is gone, [here we take the  RHS and LHS of the Eq. 

(4.45) a t time point t  =  94; the exciting optical pulse is a t tim e point t  =  10. ], the  curves 

corresponding to  the real parts of the  LHS and RHS of Eq. (4.45) are exactly overlapped to 

within the plot resolution and hence dem onstrate the numerical validity in calculating both 

first-order and second-order equations of motion in the coherent lim it (similar results can be 

obtained for imaginary parts). Note th a t  we compare the two 2D arrays by transforming them  

into ID arrays.

If we do not choose the coherent lim it case bu t calculate w ith the parameters in Table 4.1.
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Figure 4-2: LHS and RHS of Eq. (4.45)

i.e. w ith dephasing, then  we can not get the  same results as in  Eq. 4.45. As shown in Figs. 4-3 

and 4-4, the  calculated LHS and  RHS of Eq.(4.45) are quite different.

4.4.4 Comparing the Analytical and Numerical Results for the Population 

in A Limiting Ceise

Under some circumstances, analytical results can be obtained by solving the equations of mo-

tion. We may compare these analytical results with the numerical ones in these situations and 

thereby check the numerical m ethods employed in the com puter program. W hen there is no 

dephasing and no Terahertz field, we may get the analytical results for the electron-hole pair 

population long after the  optical pulse has passed.

We assume th a t the optical field takes the  Gaussian form.

E(t) = (4.47)

Note th a t here we use 7 , ra th e r th an  in Eq. (4.38), to  characterize the optical pulse w idth so 

as to  be consistent with the  param eter used in the com puter program . The relation between 7
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Figure 4-3: LHS of Eq. (4.45)
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Figure 4^4: RHS of Eq. (4.45)
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and Cl is

2  ' r 2 - (4.48)

Then, when there are no dephasing and  no Terahertz field, the  first-order equation of motion 

becomes,

(4.49)
d r  edriujB

The solution for K-n (x) long after the optical pulse has passed is,

Kr, (x) =  r  dT- (4.50)
J - o o  edfküB

where we integrate from minus infinity to  plus infinity because the  system  has experienced a 

whole Gaussian pulse rather than  a  half one as when we let the  integral lim its to be from zero 

to  plus infinity. Now we continue to  evaluate the solution for K n (x) by changing variables,

Kr, (x) =  Sn r°° . g-T^g-i(wc-wo-n-T)nrr' ( I  — ,  r ')
edfkjB J-oo 7

_  Z ^ E o p  \ M o \  S n  r°° . g-i(Dc-5o-n-x)v^Tr --- >  Jy/ïï)
J  —OOedhojB

z27rÆop|Mo[ Sn r  . g-i27rT(wc-wo-n-r)^0^
edtiuJB 7-00 

|2
i2TrEop | M o |  Sny/^'Y _ g - r - r ^  -̂i2irTs

edfküB £
_  i2TvEop lNIo[~ Sny/^'Y

edhuB

where s =  (w^ — wg —n  — x)  Therefore, the population of the free electron-hole pair per
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unit volume in this situation  has the  form,

. J ^ X n r .  (4-52)

7 i,k

e2

m o r d '

w ç r

2dh^ujB J qn
2

_ v ^ m | [ Æ ^ | M o | _ 5 ^ 7  y -  g - [ ;^ (O c -w o -n -% )f  _ ^ 7  (^5^ -  w o  -  n  -  x )  x  
2dhru,'B Jo V 2

—  Z  /  .
„  V - o o

Adh^ujB 71

1  -f- erf ^^[(^c — ̂ o ) — ri] Wc — Wo %>

1 Wc — Wq =  n  (4.53)

1  — erf — (wc — Wo)] Wc — wo n

T he results obtained w ith  the  above analytical expression are in agreem ent with the one 

obtained by numerical calculation to  w ithin roughly 0.01%. As shown in Fig. 4-5, the analytical 

and numerical results for a  population o f free electron-hole pairs excited w ith  different Wc =  E d h  

are exactly overlapped to w ithin the plot resolution. The numerical calculations are made by 

using the same physical param eters as in Table 4.2 except th a t  Eop =  4 x  10~"‘(GV/cm) 

here. Because the superlattice is only optically excited and therefore th e  population of free 

electron-hole pairs is proportional to  th e  photo-current induced in the superlattice, the curve 

in Fig. 4-5 provides actually  the "background" photo-current spectra  underlying the excitonic 

photocurrent spectra.

We have presented in th is chapter the  basic derivations of the  equations of motion for free 

electron-hole pairs. Some examples were also provided to check th e  validity of these equations. 

In next chapter, these equations will be used to  study the behavior of free electron-hole pairs 

and their interaction w ith  excitons.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6x10'

CJO
CD 3x10'3
g-
Û- 2x10'

40 80-60 200

Energy Corresponding to C enter L aser Frequency (meV)

Figure 4-5: Population as function of cen ter laser frequency
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Chapter 5

Interaction of Excitons and Free 

Electron-hole Pairs

W ith the  theories concerning excitons in chapter 3 and  free electron-hole pairs in chapter 4, 

we now tu rn  our attention to the  study of th e  interaction between these two sets of charge 

carriers and its consequences. The SOD effect, in which the electric fields due to  the  charge 

carriers interact w ith these carriers themselves, is the  main subject of th is chapter. Some 

experimental results for which we make our theoretical models will be introduced first. Then 

the SCD phenom ena in the coherent regime will be studied in detail, from which some basic 

mechanisms of SCD will be discussed and dem onstrated. Finally, we will apply our theory to 

the  more realistic case, in which there is dephasing.

5.1 Experimental Results and Proposed Theoretical Models

As already discussed in Chapter 1 , terahertz radiation is given off by the oscillating charge 

carriers such as excitons and free electron-hole pairs in  a  superlattice system. It is through the 

terahertz  fields due to  this radiation th a t different types of charge carriers interact with one 

another and substantially  change their individual behavior. The first experiment dem onstrating 

the existence of terahertz  radiation due to  in traband  polarization was made by Waschke et al 

[26]. In  o ther work, the  self-induced terahertz  fields were shown to be able to  shift the energy 

level of the  original WSL [27, 28]. However, in  this work, we will focus on accounting for the
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Shapiro effect in the  sem iconductor superlattice system. In this effect, the  BO were found to 

be accompanied by a  coherent quasi-DC current tha t was a ttribu ted  to  the  interaction of the 

charge carriers with th e  self-induced field [48]. This was observed by an  apparently quasi-linear 

change in the intraband polarization.

The observed quasi-linear change in  the intraband polarization of Is  excitons must require 

the  transfer of energy betw een the coherent Is  excitons and the fields due to other types of 

charge carriers. The net energy transfer, however, needs a  phase shift between the  polarization 

due to Is  excitons and  th e  fields driving them , as will be shown in next section. In this work, 

we will model two types of carriers ( Is excitons and free electron-hole pairs ) and then study 

th e ir interaction. We will use a  full quantum-mechanical model for b o th  the Is  excitons and the 

free electron-hole pairs. A lthough th is work is motivated by the experim ental results described 

above, it  is not limited to  th is situation. W ith  our model, some other phenomena can be 

predicted in a  photoexcited superlattice system. Moreover, a  clearer physical picture on the 

basic interaction mechanisms among different types of carriers can be obtained by this model.

5.2 Full Hamiltonian of the interacting System

The fuU Hamiltonian of th e  interacting system when both excitons and free pairs are considered 

is

=  H ^  +  H^ -  VE(t) • ( P ^  +  P-^) 4- , (5.1)
2€qC

where all the terms have been defined in either Chapter 3 or 4 except th a t 'Pintra here is defined

by

Pintra =  P ^ r a + P L r a -  (5-2)

E (t)  is the  sum of exciting optical field and external terahertz field, i.e., £ '( i)=  Eop(t) H -E ^ ( t) .  

In  the following sections, we will use the above Hamiltonian and  the equations of motions 

defined in Chapters 3 and  4 to  study the interaction of excitons and free electron-hole pairs in 

a  photoexcited superlattice system.
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5.3 SCD Phenomena in the Coherent Regime

Although there is seldom such a  case as a perfectly coherent system , much can be learned 

about the  dynamics by  studying this case. For example, solving the  equations of motion for 

two-level system in th e  coherent lim it can account for m any aspects o f th e  phenomena such as 

R abi oscillation, photon echo, etc. Moreover, as can be seen in this section, the  study of SCD 

phenomena in th e  coherent limit will help us to  understand  the  basic principles underlying the 

SCD Bloch Oscillations th a t may be obscured when th e  dephasing is introduced.

5.3.1 Simplified Interpretation of SCD BO w ith a Semiclassical Model

Before we go into the  details of th e  study of SCD BO w ith  the quantum-mechanical model, we 

will first present a  semiclassical model so as to  have a sim ple but general understanding of the 

SCD BO. The basic tasks in  the  study of SCD BO are to  explore such phenomena as energy 

exchange, driving mechanism etc. between different types of charge carriers. As mentioned 

in Chapter 1  (Page 10), although the validity of a  semiclassical approach for derivations of

th e  electronic motion is very limited for various reasons, it does provide an intuitive way of

understanding the  basic principles of BO and is useful in  estim ating the  most important features 

of a  system before com plete analysis is followed.

We assume the polarization due to  one type of charge carriers to  be a  classical dipole th a t 

is oscillating w ith tim e, and  has some sort of natural frequency. Then, we take the THz field 

due to  the other charge carriers to  be an external field which drives this dipole. Consider now 

th a t  the  polarization is sim ply a  sinusoidal function o f tim e with frequency wg,

p =  Po sin (wgt) , (5.3)

and the THz field is also sinusoidal w ith the same frequency, and a  relative phase shift, 0 ,

E  (t) =  Eo sin (w gt 4- 4>). (5.4)
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In  th is  case, the rate  a t  which work is done by the  field on th e  dipole is simply

d W  dz
dt dt

=  -^1
=  B %  (5.5)

where F  — —e E  is the  applied force, E  is the  associated electric field, and p  is the  dipole

m oment. Using the  above expressions for the field and  polarization, we obtain

=  E oPo<̂b  cos {uJBt) sin  (w gt 4- <p). (5.6)

Now, we take the tim e averaged power by averaging th e  above expression over one BO period:

{ ^ )  j  dt  cos {ojat) sin {LJBt + (i>)

=  (5.7)

Thus, we see tha t as long as th e  phase difference between the  polarization and the driving field 

is no t zero or a multiple of tt, then  work will be done on th e  dipole. Depending on th e  value of 

d>, work may be done on th e  dipole or work may be done by the  dipole on the field. However, 

from Eq. (5.7) we note th a t if there is no phase difference between the field and the  oscillating 

dipole, then  there will be no net energy exchanged between the  two types of charge carriers. As 

a TesuU, the field due to the polarization o f one type o f charge carrier vuill do no n e t work on 

these carriers themselves since E { t )  =  — Wor k can only be done if e is dispersive, in which 

case a  phase shift is in troduced between excitons and  free electron-hole pairs. In Ref. [48], it 

was assumed th a t this shift can arise from the screening effect of the continuum carriers on the 

excitonic polarization. Here we take the effect of these carriers into account through their full 

dynamics.

The above simple semiclassical model of an oscillating dipole appears to be sim ilar to a 

harmonic oscillator. However, there are a number o f key differences. The most im portan t one 

is th a t the  effect of doing work on the BO carriers is not to  increase the am plitude of the
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oscillations, bu t ra th e r to  change the  average m agnitude of the polarization. Thus, when work 

is done by the field, we m ay expect th a t the time-dependent function of either polarization or 

energy acquire an overall slope in its average value. T he  sign of this slope determines whether 

work is being done on  the  polarization by the field or on the field by the polarization.

5.4 Energy Conservation in SCD Bloch Oscillations

Checking energy conservation in some special cases is a  good way to test the  validity of both 

the  theoretical models and the numerical methods being used. Moreover, this is also helpful in 

understanding the essence of the  SCD effect. Energy conservation in the coherent limit will be 

studied in this section.

W hen there is no external terahertz field, the  optical part in the full Hamiltonian in Eq. 

(5.1) depends explicitly on time. Therefore, the system  is not conserved if this optical part is 

included. However, because the excited pulse is much shorter than  the tim e span of interest, 

we may study the  energy conservation after the optical pulse has passed. In this case and also 

in the  coherent limit, the  Hamiltonian in Eq. (5.1) is conservative. The to ta l energy per unit 

volume of the SCD system  then has the form,

#  =  +  (5-8)
Ot

where a  refers to  excitons and free electron-hole pairs. (Pintra) is total polarization due to 

excitons and free electron-hole pairs. The specific forms of the  first term  in Eq. (5.8) for 

excitons and free pairs in the coherent limit are respectively,

V

^  (5.9)
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Fo(kV/cm) d ( 1 0  ^°m) ec(meV) Fop(GV/m) 'Ihnnter T2intra Tx 'J'f2inter rpfWinter
15 84 0 1 x 1 0 "^ OO OO oo OO OO

Table 5.1: Param eters for Calculations in th e  Coherent Case

n,k

{nHhia +  *
n,kn~,k "

^  I  y  „ |K -„(a;)|2da:+  r  a: |K"„(x)l2 d x j  , (5.10)
|M o| (27r)3 ^  LVo Vo J

where relations (3.22), (4.22), (4.27) and (4.30) have been used.

Considering a G aA s/G aA lA s superlattice and using th e  param eters as in Table, 5.1, we get 

the  numerical results for energy conservation shown in Fig. 5-1. Here, Teinter and Tointra a.re 

respectively the  in terband and  in traband dephasing constants for excitons. Other param eters 

are the  same as described in  Section 4.4.2. Param eters in Table 5.1 wiU be used for all the 

calculations in  the  coherent lim it in Section 5.3, except th a t Sc may change in some calculations.

25 - I
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E xdtons 
F ree  Pairs 
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c
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2000 15050 100

Time (tau)

Figure 5-1: Energy conservation of self-driving system
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As can be seen from Fig. 5-1, the  tw o sets of carriers drive each other and therefore the ir 

energies vary with tim e. We will tu rn  to  th is point shortly. However, the to ta l energy of the  

system  is conserved after the  optical pulse has passed at tim e po in t 10. This is expected when 

Eopi(t) =  0 and the  Ham iltonian is conserved.

5.4.1 Bloch Oscillations Driven by Fields due to  Different Types of Charge 

Carriers

To examine the physical mechanism of SCD Bloch oscillation, th ree  driving sources will be 

studied separately in detail in the  following three subsections: th e  excitonic polarization, the  

polarization due to  free electron-hole pairs, and the to ta l polarization. The most im portant 

conclusion arrived is: in Bloch oscillations, the  energy of a  certain  kind of charge carriers can 

not be driven up or down by the field induced by themselves, i.e., the energy is a constant. 

However, the different kinds of charge carriers can drive one another up or down in energy.

Driving by Polarization of Excitons only

W hen both excitons and free electron-hole pairs are driven by  th e  field induced by excitons only, 

we obtain following results. The energy of excitons is constan t after the optical pulse is gone, 

w ith or without the  driving force, as shown in Fig. 5-2. N ote  the two curves are overlapped 

exactly to within the  plot resolution.

The energy of free electron-hole pairs behaves differently as compared to  excitons when 

the  external driving force is only from excitonic polarization. T he excitonic polarization field, 

causes the  free pair energy to  oscillate as shown in Fig. 5-3. The crucial point here 

is th a t there is a  phase shift between th e  oscillating free electron-hole pairs and the field from 

excitons. It is this phase shift th a t causes the  energy change of free electron-hole pairs, as we 

discussed in the semiclassical model in Section 5.3.1. Moreover, th is phase shift also varies w ith 

tim e in the driving process because th e  oscillating frequencies for the  two sets of charge carriers 

are not equal. Thus excitons and free electron-hole pairs exchange energy tim e-dependently 

as shown in Fig. 5-3. The polarization due to  excitons w ith  or without driving by { E ^ ^ a )  

are shown in Fig. 5-4. From Fig. 5-4, i t  can be seen th a t  th e  polarization of excitons, unlike 

energy, is affected by SCD field. Also we note tha t the driven polarization does not m aintain
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Figure 5-2: Excitons energy with or without self-driving from excitons
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Figure 5-3: Energy of free pairs with or w ithout driving from excitons
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Figure 5-4; Polarization of excitons w ith or without driving from excitons

a slope relative to the  non-driven polarization w ithin the beating period. However, this is not 

the  case for free electron pairs when they are driven by excitons, as in Fig. 5-5. T hat is, the 

driven polarization of free electron pairs keeps a  big slope relative to  the non-driven one when 

they  are driven by excitons, ra ther than  themselves. Thus, we arrive a t the  following general 

conclusions: in Bloch oscillations, the  energy of a  given type of charge carrier remains constant 

if the  driving field is only due to  their own polarization. The energy only changes when the 

charge carriers are driven by the  o ther group of charge carriers. The polarization, however, 

changes even with the driving field due to  themselves, although the driving eflfect is not as 

appreciable as when driven by o ther types of charge carriers. These general conclusions will be 

further verified in the  next subsections.

Driving by Polarization of Free Electron-hole Pairs only

W hen both  excitons and free electron-hole pairs are driven by the field induced by free electron- 

hole pairs only, , the  energy of excitons is no longer a  constant after th e  optical pulse

is gone bu t oscillates as in Fig. 5-6. Unlike the  case when driven by the field due to  excitons 

themselves (Fig. 5-2), the  energy of excitons now changes due to  the  driving from the  field due
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Figure 5-5: Polarization of free pairs w ith or w ithout driving from excitons

to  the  free electron-hole pairs. Again the reason for such a change is th a t there is an phase 

shift between the oscillating excitons and the  field from free electron-hole pairs, as we discussed 

in Section 5.3.1 and  Section 5.4.1. This time-dependent phase shift ( due to  the diflferent 

frequencies of the  two sets of carriers ) causes the  energy of excitons to  oscillate as shown in 

Fig. 5-6. The energy of free electron-hole pairs, however, remains as a constant when driven 

by as shown in Fig. 5-7. Also note th a t the  two curves for driven and non-driven

cases overlap exactly to  w ithin the  plot resolution. As for polarization, unlike the results in 

Section 5.4.1, the polarization due to  excitons with or w ithout driving behaves much differently 

because it is driven now by polarization due to  the other type o f charge carriers rather than 

due to themselves, as in  Fig. 5-8. As predicted, the polarization due to  free electron-hole pairs 

with SCD field does no t change much as shown in Fig. 5-9. Now we are further convinced of 

the  conclusion we arrived a t in the  last subsection. The energy or polarization of a  given type 

of charge carrier can no t be modified significantly by the field induced by themselves. This is 

simply a consequence of the  fact th a t the uncoupled Hamiltonians for an  exciton and a free 

electron-hole pair are b o th  conservative. Any appreciable changes in  energy or in the shape of 

the  intraband polarization will be due to the fields from other types of charge carriers, rather
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Figure 5-6: Energy of excitons with or without driving from free pairs
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Figure 5-7: Energy o f free pairs w ith and w ithout driving from free pairs
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Figure 5-9: Polarization of free pairs w ith and without driving from free pairs
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th a n  themselves.

Driving by Polarization due to Both Excitons and Free Electron-hole Pairs

Finally, we tu rn  to the  case in  which charge carriers are driven by the to ta l fields induced by 

bo th  excitons and firee electron-hole pairs. Because the field due to  one type o f carriers does 

not affect these carriers too m uch as compared to  the  field due to  other types of carriers, the 

to ta l polarization when driven by fields induced by both excitons and free pairs is sim ilar to 

th e  combination of the  results o f the  last two subsections. For instance, the polarization of free 

electron pairs with the  driving of fields from both excitons and free pairs is much sim ilar to  that 

driven by the field from excitons only. Similar results can also be obtained for th e  polarization 

of excitons. We have shown all these are true by numerical calculations. T he following figures 

include the effects of the to ta l polarization due to  both  excitons and free electron-hole pairs. 

T he polarization of excitons, free electron-hole pairs and their combination are shown in Fig. 

5-10, aU w ith driving fields due to  both types of charge carriers. The to ta l polarization with 

and  w ithout driving fields is shown in Fig. 5-11. As can be seen from Fig. 5-11, the  total 

polarization with self-induced driving field does not maintain an  appreciable slope as compared 

to  the  to ta l polarization w ithout self-induced driving field. This is different from the  case where 

the  polarization of either free electron-hole pairs or excitons is considered individually. In the 

la ter case, the polarization o f either excitons or free electron-hole pairs with driving has a slope 

as compared to the polarization w ithout driving, as shown in  Figs. 5-5 and 5-8. This can be 

understood by the energy conservation relation shown in Fig. 5-1. Although the  energy of 

e ither excitons or free electron-hole pairs is not conserved due to  the driving force from other 

types of charge carriers, the  to ta l energy of excitons and free electron-hole pairs a fter th e  optical 

pulse is gone maintains a constant. Therefore th e  to ta l polarization %ith driving does not have 

a  slope in comparison w ith th e  to ta l polarization w ithout driving.

O f central importance here is the fact th a t the  average dipole of each of the  two sets of 

carriers and energy are changing in tim e as seen in Figs. 5-1 and  5-10. Thus there is a  quasi-DC 

current due to the excitons which is opposed by a  s i m i l a r  current due to the  free electron-hole 

pairs. Recall tha t in the experim ents by F. Loser et al [48], th e  average in traband  polarization 

appears to  change quasi-linearly in tim e. One hypothesis for th is  experimental result is that,
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because the continuum carriers are in ” contact” with the  doped reservoirs a t th e  superlattice 

ends, no quasi-Iinear polarization develops due to  these carriers. Thus one only observes the 

polarization due to  excitons, which does have a quasi-linear component. This explanation has 

to  be investigated via fu ture experiments.
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Figure 5-10; Polarizations of excitons, free pairs and their combination

5.4.2 Influence of the Different Positions of Central Frequency of the Laser

Because the population of charge carriers in the system of in terest strongly depends on  the ex-

citing center laser frequency Ec and  the  F^-dependences for excitons and free pairs are different 

( as shown in Fig. 5-12 ), different Ec must have an im portan t influence on the interaction of 

the  two sets of charge carriers. Moreover, different Ec will also strongly influence the  average 

amplitude of BO as studied by Dignam, Sipe and Shah in 1994 [6 ]. They found th a t when 

neglecting the  Coulomb interaction between electron-hole pairs, a  different value of Ec may 

cause the am plitude of BO to  vary between zero (breathing mode) and the value predicted by a 

semiclassical model. W hen th e  Coulomb interaction is included, the  results arc still valid except 

th a t there exists no such ”breath ing  mode” . Combining the  above influences o f different Ec 

on both population and BO am plitude of charge carriers, we know that Ec m ust have a  strong
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Figure 5-11: Total polarization w ith or w ithout driving from excitons and free pairs

influence on the  interaction between the two sets of charge carriers. As can be seen in  Fig. 5-13, 

for the  system param eters as described in Table 5.1, the exciton energy is driven appreciably 

only when the center laser frequency is near th e  n  =  0 Stark-ladder state . W hen the laser 

frequency goes to  the higher end of the  excitonic states, the  polarization due to free pairs does 

not drive the excitons so m uch although the free pairs gain appreciably in population. This is 

due to the fact th a t the to ta l dipole amplitude created by free pairs is also a strong function of 

as is true for excitons discussed earlier. In th e  following sections, we will focus on the cases 

in which Ec is near zero W SL state, since we are interested in large interactions.

One im portant point th a t  should be noticed is th a t in Fig. 5-13, the slope (if there  is one) 

of the time-dependent energy curve takes only negative values regardless of the Ec value. Thus, 

the corresponding slope of th e  time-dependent polarization curve takes only positive values for 

different Ec~ This is not in  agreement with the experimental results as described in Ref. [48], 

where a  change of slope sign was observed. T his lack of sign change is due to two cancelling 

factors for the  system studied. F irst the sign o f w g  changes as Ec changes sign, where

is the average excitonic BO frequency. T h is would be expected to change th e  sign of the 

average phase shift in <̂ (£) in  excitonic BO. However, (P ^tra) &lso undergoes a  vr phase shift
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when Ec changes sign [34]. These two effects cancel each other to  give no change in  sign. We 

note th a t the coincidence of these two effects may not occur in all systems. This may be a 

partia l explanation of the  experim ents reported  in Ref. [48].
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Figure 5-12: Population for excitons and free pairs vs laser central frequency

5.4.3 Influence of the Relative Phase Shift between Excitons and Free Pairs

We now tu rn  to an interesting SCD phenomenon in which the  self-induced driving field due 

to  free electron-hole pairs can drive the  time-dependent energy or polarization of excitons in 

different directions. This phenomenon is related to  such experiments as th e  Shapiro effect etc, 

as we already discussed in C hapter 1 [48]. This can be realized by introducing different phase 

shifts between the polarizations of excitons and free electron-hole pairs. In  the  tim e domain, 

th is is equivalent to  introducing different tim e delays respectively in th e  optical fields exciting 

the  excitons and free electron-hole pairs. These optical fields th a t can excite charge carriers 

dom inated by either Is  excitons or free electron-hole pairs can be achieved by using pulse- 

shaping technique. For example, we m ay introduce a time delay Ta in the  optical field exciting 

free electron-hole pairs: E ^ ( £ )  =  (£ — 2 ^)6 ““^= -̂fc.c, where £ ^ { t—Ta) is usually a  Gaussian

form as in Eq. (4.47). In  the  coherent lim it, we simulate this situation by using the  same system
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Figure 5-13: Energy of excitons excited by different laser frequency
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Table 5.2: Param eters for Calculations in Non-coherent Case

param eters as in Table 5.1. For different tim e delay Ta =  —3, —2, —1,0, we get the energies of 

excitons as functions of tim e as shown in Fig. 5-14. Obviously, th e  time-dependent energies 

of excitons are driven by free electron-hole pairs in different directions (w ith different slopes). 

The slopes of time-dependent energy curves for =  —3 and 2^ =  0 cases are even opposite in 

sign. Their corresponding polarizations are also driven in different directions as shown in Fig. 

5-15.

5.5 SCD Phenomena in Systems with Dephasing Mechanism

In  this section, we tu rn  to  the more realistic cases of SCD Bloch Oscillations in the systems 

w ith  dephasing. We will use the  param eters as in Table 5.2 for our numerical calculations. As 

can be seen, the dephasing tim e constants for both excitons and free pairs are introduced.
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Figure 5-14: Energy of excitons driven by polarization of free pairs w ith different Ts
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Figure 5-15: Polarization of excitons driven by free pairs with different Ts
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5.5.1 Choosing the Best Basis States to Solve the Equations of Motion when 

There Is Dephasing

In  order to  solve Eqs. (3.23) and  (3.24) for excitons, Eqs. (4.32) and  (4.33) for free electron-hole 

pairs, we need to choose an appropriate set of basis states. As discussed in Chapters 3 and 4, we 

choose the  basis states to be th e  exciton or free electron-hole pair eigenstates in a superlattice 

potential with an applied DC field Fq. Consider the  case in which th e  applied DC field is Fapp 

and  the SCD field is

<E i„„) (!) =  - Æ ü iis l .

Under many conditions, when the  optical field is strong, there will be an induced DC field 

arising from the excitonic in traband  polarization. In this case, (^intra) (() can be writcen as

(Einira) (*) =  F-DC + FAc{i)-

In the absence of dephasing, we could choose

Fq — Fapp and Eamp(t) =  (Eintra) {t) = E qC +  ^Ac(^)

as we did in the previous sections. Alternatively, we could choose

Fq =  Fapp 4" E q c  and Ecoup(t) =  E/^gr(t)

and the results would be the  sam e when there is no dephasing since the  same fundamental basis 

of two-well exciton states would be used in bo th  cases. However, th is freedom concerning the 

choice of basis states has to  be restricted when dephasing is introduced.

If we have the full Ham iltonian then  the basis does not m atter as long as it is complete, even 

if dephasing is introduced. However, given th a t we will never know the  full Hamiltonian and will 

likely have to  introduce some phenomenological dephasing and decay constants, it is im portant 

th a t we choose a basis which best approximates the eigenstates of the  excited system. This 

way, it is reasonable to  assume th a t the populations will relax to  some sort of quasi-equilibrium 

distribution on a time scale o f 2 \  and th a t the  coherences between the  eigenstates will decay
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on some other (faster) tim e scale. I t  is clear tha t the  eigenstates of th e  SL in  th e  applied field 

are not good approximations to  th e  system  if the induced DC field is large. In such a  case, it 

seems th a t it would be preferable to  choose the basis states to  be the  eigenstates of the total 

DC field.

The first thing we need to  do is to  arrive at a definition of th e  to ta l DC field th a t we wish to 

use. We will try  to  determ ine th e  DC field at the tim e ju st a fter th e  optical pulse has passed. 

This is non-trivial as there is a  TH z portion in addition to  the  D C  portion of th e  induced field. 

Let Ti {i =  1 ,2 ,3 ,...)  be the  tim es a t which (Pi„tra) (() achieves its various extrema, where 

TiA-i >  v,-. We shall take the  D C portion of the induced field to  be the  average of the field 

between the times t ’2  and 7*3 . This ensures tha t the average is being taken  over one oscillation 

after the  optical pulse has passed. Let us call this calculated field E o c  ■

GGo J t2 T3  — 7*2

Now, we calculate a  new set of excitonic basis states, which are the  eigenstates of the SL in 

the  to ta l DC field:

Eq =  Fapp 4 -  E o c -  ( 5 - 1 1 )

We use this basis, with the  newly calculated energies, Hujfi, and  m atrix  elements, Gf^, and Sfj, 

to  calculate the full evolution. In  doing so we must also modify the  equations of motion so 

th a t the  SCD field becomes:

(Firura) (t) = _  _  ^ dC- ( 5 - 1 2 )C€q

This solution is not perfect in  th a t we are not sure th a t we have the correct DC field, and we 

are not treating the effects of the  AC field on the phenomenological decay. However, we find 

th a t in  practice it works well over a range of E d c  values.

Now we consider a  specific exam ple to  show the im portance of basis choice. We use the same 

parameters as in  Table 5.2 except th a t here we assume a  big optical field strength E„p =  3 x 

10“ ^(GV/m). As can be shown by the  numerical calculation, th e  to ta l induced DC electric field 

is around —4.07(0V /m ). This induced D C electric field can appreciably m odify the eigenstates
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of th e  superlattice system and thus cause the  problem we described above. As shown in Figs. 

5-16 and 5-17, the tim e-dependent polarization and energy of excitons are both continuously 

driven by the free electron-hole pairs even long after the typical dephasing time. While the 

coherences should die out due to  dephasing, they do not because o f the  wrong basis we are 

using. In this basis, the population ( which does not decay since T i =  oo ) can be transformed 

into coherences and therefore we get th e  perm anent driving situa tion  th a t is obviously a  non-

physical phenomenon. However, if we modify the  basis by considering th e  induced static  electric 

field and modify Fq and {^intra) (() according to  Eqs. (5.11) and  (5.12) respectively, we may 

get the  time-dependent energy and  polarization of excitons as shown in Figs. 5-18 and 5-19. 

As already mentioned, the  solutions in  the  modified basis are no t th e  exact solutions because 

we are not sure th a t we have th e  correct DC field, and we are no t trea ting  the effects of the 

AC field on th e  phenomenological decay. However, to  do so probably  requires a full treatm ent 

of the  dephasing/decay mechanisms. Note th a t Eop is very large here. The problem is not so 

obvious for lower optical field streng th .
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Figure 5-16: Energy of excitons in the w rong basis
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Figure 5-17: Polarization of excitons in the  wrong basis

0 .5 -I

QO -

- 0 . 5 -

OJ -1-0 -
c
.■2

o

0) -2.5

-3 0

- 3 5 -

XDZ) 4) 800 @0

Time (tau)

Figure 5-18: Energy of excitons in the  modified basis
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Figure 5-19; Polarization of excitons in the  modified basis

5.5.2 Energy Evolution in Non-Coherent Case

W hen the dephasing factor is introduced, it is obvious firom th e  Heisenberg equation th a t the  

to ta l energy is not conserved. However, we may study the evolution of energy to verify the  

validity of our equations. In the coherent limit, what we have done about energy conservation 

can be used to  verify the  validity of the first-order equations. This is because only first-order 

equations are involved when calculating energy in the coherent lim it. Next, energy evolution in 

the non-coherent case will be studied to verify the secovd-order equations. For simplicity, only 

the energy evolution for excitons will be studied in detail. T he  study  of energy evolution for 

free electron-hole pairs is very sim ilar to  the  excitonic case if some new definitions are made.

Consider the energy term  of excitons:

Eo — (5.13)

Note th a t E q is not the  to tal energy of excitons; the missing interacting energy between excitons 

and self-induced field will be included later. Also, when there  is dephasing, can no
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longer be w ritten as ^  iii the coherent limit. Let us look a t  the time derivative of

this term  once the  optical pulse is gone bu t with population decay. Using Eq. (3.24), we get.

dEp _  ze^ (EiTUra) 
dT ~  \ M o \ ^ d

Eo
T i

2 e^ (EiTtZra)
\ M o f d

• Im  i
fifi'

> —Ee.
T i '

where we assume th a t population decay constants for different excitonic states are the  same, 

i.e., Ti- Now consider the  tim e derivative of the in traband polarization for excitons in Eq.(3.25):

d  ( P i n t r o )

dT
er

{Mol^d

{ M o ^ d

I / / I

EUfl

+  z(w° -  w°)

4 . 2  Im  \ û l G ^  e < = M ) T j  j

1  dEo é-
{' dT

\  d E o  1 E q

E t h z  dT Eithz T i

+
E i T H z  d T  |M,

£ (EiTitra)  ̂(Eintra ) 
htJB htJQ

Eo
E t h z  T i

1  dEo
4-

1  Eo
E t h z  d r  Etthz T i

\Mo\-d

— z• (EinZrg)
fkOB

Thus using the factorization (P ^u ra ) =  (Pinzro) (Pinzro), which is consistent with our fac-
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torized equations o f m otion, we have:

d
d r Eo + ( P L . . )

leQC
dEo -p, d (P  intra)
  —  -----------------------------------d,T dT

_ e?{E{Mra) , ,  \  .-tey -asv  S ,  . e^<Emlr.)
“  T. + '|M .r d A w a

^  ( E i n t r a )  y -  EeL / K  \  -  —  4 -

|M «|^ d  ^  \  Ti +  '  |M ^ |2

. ^  ( A % y )
i//y ^

^  ( E i r U r a )  / ^  \  z ( 5 ° - 5 2 ) - r  _  El
&  r^:, \  '̂  V  Tii M « r d

2 e^ (Ê T̂ trg) 
[Mol^dhwg

Ufl

■ Im

B ut

L I/M

and hence

Thus, we have

d
dT

Im | E  ( G ^  ( 4 * ^ - )  1 = 0 .

E, <P& ^.>
2 eo^

(EtTttra)
iMol^d

(5.14)
i l

/p 2 \
where E q +  th e  to ta l energy of excitons. For th e  case where there is no dephasing or
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decay, then we have
d

dT Eo 4- ( P L r . )
2 6 o6

=  0,

which is what was found in Section 5.4.

Now, we tu rn  to  general case in which dephasing or decay tim e constants are finite. Under 

this situation, we m ust use the  Eq. (5.14) to study the energy evolution of excitons. Fig. 5-20 

is obtained in such a  case, in which we can see the  two curves corresponding to  LHS and RHS 

of the  Eq. (5.14) are exactly overlapped to  within the plot resolution after the optical pulse is 

gone. Thus we can use Eq. (5.14) to  understand the  energy evolution in different cases.
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Figure 5-20: R ate  of change of excitonic energy

Finally, we will try  to  get some more insight relevant to  basis choice th a t has been already 

mentioned in Section 5.5.1. For this purpose, we set T\ =  oo b u t Toirura is finite, which is 

more appropriate for real superlattice system. Using Eq. (5.14), we have,
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d

dT |lVlo| (EDuntra 

(EfTïtra) (P t/ïz )
"Ihintra

(5.15)

where

is the  Terahertz portion of the  in traband  polarization. T hat is, it is the portion  coming from 

the in traband cohérences rather than populations. Eq. (5.15) can be further w ritten  as,

^  y .  ( k I k ^ )  e<(z:-=:)^.
d T  'I P iM .r ,. '  '

=  ■ (P ™ ,)  . (516)
l in tr a

From Eq. (5.16), we may see th a t if th e  coherences do not die out due to  th e  basis problem 

as we already discussed in Section 5.5.1, then  {Pt h z ) in Eq. (5.16) will no t disappear and will 

drive the  excitonic energy forever. T his is obviously a non-physical phenomenon.

5.6 Influence of the Relative Phase Shift between Excitons and 

Free Pairs

We have investigated the influence of a  relative phase shift between excitons and free pairs in 

the  coherent limit in Section 5.4.3. Now we examine the similar influence in  cases where there 

is dephasing. Assuming the Eop =  1.5 x  10“ ^(GV/ra) (other param eters are th e  sam e as those 

in Table 5.2), we may get the  polarization of excitons with the diflferent tim e delays Ts (This 

am ounts to a phase difference in frequency space as we discussed in Section 5.4.3) as shown in 

Fig. 5-21.

From Fig. 5-21, it can be seen th a t  th e  polarizations of excitons are driven in  different 

directions due to  the  different phase shifts between excitons and free electron-hole pairs. This 

is similar to  the results in the coherent lim it discussed in Section 5.4.3. Thus we may finally
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Figure 5-21: Polarization of excitons driven by polarization of free pairs w ith different Ts in 
dephasing system

arrive a t whether in th e  coherent or non-coherent case, the  Is  excitons and free electron-hole 

pairs do exchange energies when an  average phase sh ift between them. Such an  effect could 

perhaps be observed experimentally, and  would be a  nice way to  investigate the  interaction. 

Note, however, th a t th e  shift of the polarization is qu ite  small as compared to  those of Fig. 

5-15. The same thing is found when th e  effect of Ec  is investigated ( not shown ). This is 

essentially due to  the  effect of rapid dephasing, which quickly kills the energy exchange. The 

shifts shown appear to  be smaller than  the  experim entally obtained ones by almost an order of 

m agnitude. It is not clear why the experim entally observed polarization changes are so large 

relative to the calculated results.
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Chapter 6

Conclusions

In  th is work, the Self-consistent driven Bloch oscillations due to  different types of charge carriers 

in  a  photoexcited semiconductor superlattice were investigated. The emphasis was placed on 

the  study  of SCD BO with the  full dynamics of these charge carriers and their interactions. 

After examining the advantages and disadvantages of a  variety of approaches such as SBEs and 

DCTs, we based our calculations on a recently-developed Quasi-bosonic treatm ent by which 

we could study the SCD BO to  infinite order in optical field and without loosing the crucial 

intraexcitonic electron-hole correlations.

In C hapter 4, we presented a model to  account for th e  influence of the unbound continuum 

excitonic states on the Is  excitons as described in C hapter 3. In  this model, the influence of free 

electron-hole pairs were calculated to represent the influence of unbound continuum excitonic 

states. Some reasonable approximations were made to  simplify the very intensive calculations 

due to  th e  continuum nature of these unbound excitonic states. Using Heisenberg equation of 

motion, we derived the equations of motion for the electron-hole pairs with the Hamiltonian 

for electron-hole pairs in the superlattice potential in  th e  presence of the external optical and 

terahertz  electric fields. Some results in a few limiting cases were calculated to  demonstrate 

the  validity of numerical calculations by comparison w ith analytical results in these cases.

W ith  the theories concerning excitons in chapter 3 and  free electron-hole pairs in chapter 

4, th e  SCD BO were studied in Chapter 5. The main purpose of this chapter was to study 

the  interaction between excitons and free electron-hole pairs, and then connect the  theoretical 

model w ith the experimental results recently reported. Before the study of the  superlattice
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system  with dephasing, we first focused on th e  SCD phenomena in the coherent regime, from 

which some basic mechanisms of SCD were obtained and discussed. We showed th a t Is excitons 

can exchange energy w ith the electric fields due to  other types of charge carriers, eg., the  free 

electron-hole pairs discussed in th is work. One direct conclusion we may draw from this result 

is th a t the  average dipole of the two sets of charge carriers ( Is excitons and free electron-hole 

pairs ) can vary in tim e due to the exchange of energy. This was dem onstrated by numerical 

calculations in this work. Thus a  quasi-DC current due to  the excitons can be generated which 

is opposed by a  similar current due to  the free electron-hole pairs. If the continuum  carriers are 

assumed to  be in contact with the  doped reservoirs a t th e  superlattice ends, th en  no quasi-DC 

polarization will build up due to these carriers to  oppose the polarization due to  the  Is  excitons. 

We postulate th a t this is the mechanism th a t causes the quasi-linear change in the  intraband 

polarization th a t is evidenced in recent experim ents [48]. W ith the full quantum-mechanical 

model, we also studied the  influence of different exciting laser frequencies. I t is shown th a t 

the  free electron-hole pairs excited by different laser frequencies do drive the  polarization due 

to  Is  excitons in different directions. However, the  slope of these directions does not change 

signs as in the experiment. In the  present, we can not account for such a  disagreement and 

are still in the process of trying to  solving th is problem. Also in the coherent limit, we studied 

the  polarization of Is  excitons driven by the  electric fields from free electron-hole pairs th a t 

have an average phase shift relative to  the  Is  excitons. In this case, the electric fields due to  

free pairs can drive the  polarization of Is excitons in the directions with the  slopes of different 

signs. This is a  promising avenue for future experim ental work. Finally, we tu rned  to  the more 

realistic case of the superlattice systems w ith dephasing. In such systems, energy evolution of 

the  system was investigated and was shown to  be in agreement with the analytical solutions in 

some cases. All other SCD BO phenomena studied  in the coherent limit are generally applicable 

in  non-coherent cases.

Although this work was mainly m otivated by the  recently reported experimental results of 

F. Loser et oL [48], the  work we presented goes beyond th a t situation and provides some useful 

points in understanding the dynamics of in teraction mechanisms of different types of charge 

carriers in a photoexcited superlattice system. Future work may include, among others, the 

study  of the problem of driving directions as m entioned earlier; the interaction of Is excitons
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w ith other types of carriers, eg. excitons beyond Is excitons, scattering  phonons etc; the  all 

quantum-mechanical treatm ent o f th e  dephasing tim e constants and DFW M  results.
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