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Chapter 1

Introduction

Optical spectroscopy is a powerful tool for investigating the electronic properties of a variety 

of systems, and has provided extensive information and insights into the properties of atoms, 

molecules, and solids. In the field of semiconductor research, the techniques of absorption, reflec­

tion, luminescence and light-scattering spectroscopies have provided a great deal of information 

about such aspects of semiconductors as electronic band structure, phonons, single-particle 

excitation spectra of electrons and holes, coupled phonon-plasma modes, and the properties 

of defects and surfaces. These are essential contributions to our understanding of the physics 

behind semiconductors, but there is a great deal more which optical spectroscopy can do.

Optical spectroscopy also has several unique strengths which make it capable of providing 

information about the nonlinear, nonequilibrium, and the transport properties of semiconduc­

tors. These strengths, when combined with pico- and femtosecond laser pulses, can provide 

new insights into completely different aspects of semiconductors. Photoexcitation can be used 

to generate excitations, such as electrons, holes, phonons, and excitons, with non-equilibrium 

distribution functions. In addition, optical spectroscopy provides the best means of analyzing 

the distribution functions associated with these excitations, in order to determine the dynamics 

of the relaxation of these excited systems. By combining optical spectroscopy with spatial imag­

ing, we can investigate the transport of excitations, and the dynamics of the transport itself, 

in semiconductors and the nanostructures which can be made from them, i.e. quantum wells, 

superlattices, etc.. Finally, optical techniques provide the ability to look into the nonlinear
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properties, including the coherent effects, in semiconductor structures, and thus provide insight 

into more aspects of them, such as many-body effects, coherence and dephasing phenomena. It 

is this area in which we are interested here.

The coherent regime is the temporal regime during and immediately following photoex­

citation by an ultrashort laser pulse. In this regime, the excitations produced by the pulse 

still retain some definite phase relationship with the EM radiation that created them. The 

photoexcitation creates a  macroscopic polarization in the system. This acts as a source term 

in Maxwell’s equations, and determines the linear and nonlinear responses of the system to 

the excitation. Therefore, by investigating these responses, one can get information about the 

induced polarization, and hence about the coherent regime.

The coherent effects produced by photoexcitation in semiconductor superlattices and quan­

tum wells have received considerable attention in recent years. Examples include the beating of 

light and heavy holes in quantum wells [1], wave-packet oscillations in coupled-double-quantum- 

wells[2], and Bloch oscillations[3]. These all involve creating excitons using ultrashort laser 

pulses with energies near the band gap. The resulting excitonic states have been examined ex­

perimentally via the degenerate four wave mixing (DFWM)[3], pump-probe spectroscopy, and 

the detection of terahertz radiation [4].

There has also been considerable effort devoted to treating these systems via theoretical 

methods. The most common approach to this has been to use the Semiconductor Bloch Equa­

tions (SBEs)[6]. Other approaches range from using phenomenological two- and three-level 

systems[2], to a more complete method, that of dynamically controlled truncation [7] [8], and 

the quasibosonic methodology used by Hawton and Nelson[9]. The difficulty lies in developing a 

description which satisfactorily treats the electron-electron interactions present in these complex 

systems, while at the same time remaining simple enough to be computationally tractable.

In this thesis we present the first calculation of Degenerate Four-Wave Mixing in a biased 

Semiconductor Superlattice. This calculation is done using an exciton basis, working to third 

order in the optical field. The importance of phase-space filling to the overall DFWM signal is 

investigated. We develop both the full third-order calculation, as well as a simplified version 

involving the factorization of the third order term s into a product of first and second order 

terms. The results of calculations using the unfactored system of equations are then examined

3
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and compared to previous results. We then compare the factored and unfactored versions over 

a variety of pulse time delays.

The remainder of this thesis is divided up into several chapters. Chapter 2 is devoted 

to describing the SBEs, the Wannier-Stark Ladder, and Bloch Oscillation theory used in our 

calculation. We also examine the theoretical and experimental work done in this area previously. 

Chapter 3 develops the equations of motion which allow us to calculate the DFWM signal for 

a biased semiconductor superlattice to th ird  order in the electric field, and also the factorized 

version of these equations. Chapter 4 discusses the results of the calculation. Chapter 5 

summarizes these results.

4
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Chapter 2

Background Theory

In this chapter, we discuss the theory behind the Wannier-Stark Ladder (WSL). Bloch Os­

cillations, and Four-Wave Mixing experiments. We also discuss some of the theoretical and 

experimental work which has been done previously in this area. We begin by discussing the 

Semiconductor Bloch Equations.

2.1 Sem iconductor B loch  Equations

The electron and hole states in a  semiconductor span a wide range of energies and wavevectors. 

If only the lowest conduction band and highest valence band are considered, then each state 

will have a well-defined energy and crystal momentum. In the absence of Coulomb interac­

tion, one can then consider these continuum electron-hole pair states as being inhomogeneously 

broadened in momentum space. This means tha t the phases of the different frequencies asso­

ciated with these states evolve a t different rates. When the Coulomb interaction is included, 

this simple picture changes, to a series of bound states of the electron-hole pair, or exciton, 

and also affects the optical m atrix elements corresponding to interband transitions involving 

the continuum states. These changes have profound impact on not only the  linear properties 

of the semiconductor, but also the non-linear ones as well. The simplest approxim ation allows 

one to  ignore all the continuum electron-hole pair states, considering only the ground state 

and one excited state, which corresponds to the bound Is exciton state  in which the oscilla­

tor strength is concentrated. If one ignores interaction between excitons, then a  collection of

5
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excitons may be thought of as an ensemble of independent two-level systems. These systems 

may be homogeneously or inhomogeneously broadened depending on the nature of the sample 

being investigated. In fact, many FWM experiments on semiconductors have been done using 

this simple model, and a great deal of useful information has been obtained. However, such an 

analysis cannot adequately describe everything which occurs in real semiconductors. In par­

ticular, one cannot ignore the interaction between the excitons themselves. These many-body 

interactions have been found to have a profound influence on the coherent nonlinear response of 

semiconductors[5]. In order to understand the nonlinear response, one must go beyond the as­

sumption of independent two-level systems. This is where the Semiconductor Bloch Equations 

come into play.

In recent years, a theoretical framework to include the many-body Coulomb interactions 

has been developed[6]. We will not provide a full derivation here, but will rather give a brief 

description. Taking the Hamiltonian for a two-band system, we transform  it into an electron- 

hole representation. The equations of motion are then derived for the following elements of the 

reduced density m atrix associated with the Hamiltonian

( QkQk ) =  rae,k(t) (2.1)

( P l k0 - k )  =  nhM(t) (2.2)

</?-ka k> =  Pk (t) (2.3)

where

P l k =  ovy.  (2-5)

Here is the creation operator for an electron in the conduction band with wave vector k, and 

(3*_k is the creation operator for a hole in the valence band with wave vector —k. n e k (n^k) is the 

number of electrons (holes) with wavevector k, and P k is related to the interband polarization 

associated with the particles with wavevector k. By using a Hartree-Fock approximation[6], 

one splits the four operator terms in the equations of motion into products of densities and

6
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interband polarizations. After some substitutions, one arrives at the following equations, which 

are the SBEs:

where is the generalized Rabi frequency, ee k and e^k  are the renormalized single-particle 

energies, which include the carrier interactions in the Hartree-Fock approximation, and the 

factor 1 — rigk — n^v. is the population inversion of the state k. I t ’s effects on the optical 

absorption spectra are often denoted as phase space filling. The last term  in each equation is 

the term due to collisions.

These equations reduce to the optical Bloch equations for independent two-level systems 

when the Coulomb interaction between the excitons is removed. This corresponds to inhomo- 

geneously broadened independent two-level systems in momentum space, which corresponds to 

the continuum states in the valence and conduction bands of a semiconductor in the absence of 

any Coulomb interaction. When the Coulomb interaction is included, n e k and —* 0, and

collisions are ignored, the homogeneous part of the equation for becomes the generalized 

Wannier equation for electron-hole pairs.

The Semiconductor Bloch Equations described above form a cornerstone in the nonlinear 

optics of semiconductors. Despite their success in explaining numerous effects, they have a 

significant disadvantage in that they are based on the ill-controlled Hartree-Fock approximation, 

as was mentioned above. The range of validity of the SBEs is not clearly defined because of this. 

In 1995, Axt, Bartels, and Stahl[8] showed this by comparing the SBEs with the complete second 

order solution of the underlying microscopic model for a biased semiconductor superlattice. In 

order to do this, they utilized a method known as dynamics controlled truncation (DCT) of 

the hierarchy of density matrices for optically excited semiconductors. The idea behind DCT 

relies on the observation that a complete calculation of the nonlinear optical response of a 

semiconductor to a given order in the driving field can be obtained by considering only a

(2 .8 )

(2.7)

(2 .6 )

7
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finite set of electronic correlation functions. They found tha t the differences between the SBE 

approach, and their more rigorous solution should be most pronounced (1) when the excitation 

is selective to  states strongly affected by excitonic effects, and (2) when the system is far from 

the so-called coherent limit. The Coulomb coupling of the electron and the hole within a pair 

in the SBE’s decays faster than the intraband polarization, since the factorization implies that 

intraband processes decay twice as fast as the interband processes. This leads to the prediction 

that the THz emissions will have frequencies which are characteristic of free electrons and 

holes. This is because the long-term behavior of the THz emission is governed by the Coulomb- 

Free single-particle signature only. In contrast, DCT predicts that excitonic oscillations with 

frequencies given by intraband transitions are constantly contributing to the THz emission[8]. 

These different predictions are a direct result of the Hartree-Fock approximation used in the 

SBEs. Later experiments showed that in fact that the THz emission is dominated by excitonic 

processesflO].

In 1998, Hawton and Nelson [9] developed a  hierarchy of equations describing the electro­

dynamics of the semiconductor band edge. They worked in a basis of Wannier excitons whose 

centers of mass were free to move about the crystal. These were described by exciton operators 

which are given by a  sum of products of fermionic electron and hole creation operators. Exci­

tons at low densities are bosons, and their creation and destruction operators can be shown to 

satisfy bosonic commutation properties to a first approximation. This is in direct contrast to 

the SBEs, which are primarily formulated in k  space, where the free electrons and holes have 

fermionic properties. Working in the product space of fermions and quasibosons, they trans­

formed the Hamiltonian from the fermion space of electrons and holes to the quasibosonic space 

of the excitons. Their system was consistent with that of DCT, and reduced to the SBE’s when 

it was term inated at fourth order in the electric field. It also provided a simplified description 

of the physics of optical processes of semiconductors near the band edge. This process was 

applied to a superlattice subjected to combined static and terahertz along-axis electric fields 

by Lachaine et al.[ll]

8
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2.2 W annier-Stark Ladder

The concept of the Wannier-Stark ladder (WSL) appeared in connection with the theoretical 

study of electronic bands in solids under the influence of an  electric field. James[12] pointed out 

that an electric field should quantize the energies of the electrons in a  band into discrete levels, 

each separated by A E  = eFd, where F  is the applied static electric field, and d  is the period 

of the crystal structure of the solid. The first mathematical treatm ent of this phenomena was 

conducted by Kane[13], and the term Stark ladder was introduced by Wannier[14j. However, 

experimental evidence of the existence of the W annier-Stark ladder remained inconclusive for 

some time, because the electric fields required to obtain a sufficient separation of the energy 

levels were so high as to lead to electrical breakdown.

Semiconductor superlattices proved to be the ideal systems to test these predictions. They 

have longer periods and narrower bands than bulk crystals, which made the localization length 

A similar to the period d, allowing this phenomena to be observed. The effects of electric fields 

on superlattices was first investigated theoretically. McIlroy[15] used a superlattice consisting 

of four wells to numerically solve the Schrodinger equation. He obtained a finite Stark ladder 

whose levels split linearly with the field a t high field strengths, and quadratically at lower fields. 

He was also able to obtain oscillations of the interband transitions. Bleuse et al.[16] used a finite 

many-well superlattice in a tight-binding approximation. This allowed them  to predict a blue 

shift of the absorption edge and oscillations of the absorption which were periodic in F ~ l for a 

constant photon energy.

The first experimental observations of the WSL in superlattices was reported by Mendez et 

al.[l7] They were able to demonstrate the splitting of optical transitions, as well as the blue shift 

of the absorption edge. It was also found that the simplest technique to observe these phenom­

ena was photoconductivity, which has been extensively used since. The absorption oscillations 

depending on F -1  were observed by Voisin et al. [18] via electroreflectance experiments. Since 

these, there has been a great deal of work done on the Stark ladder, from investigating different 

superlattice structures, such as GaAs/AlAs, and InGaAs, to  measuring coherence lengths of 

electron wavefunctions and inducing doubly resonant Ram an scattering by phonons.

Although these experiments were usually done a t low tem perature to reduce scattering 

effects, the WSL has been observed at room temperature[2]. Finally, the localization effects

9
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Figure 2-1: Schematic representation of the effects of an electric field applied perpendicular to 
the layers of a  semiconductor superlattice on its electronic properties.(from [22])

of the WSL has been used to create some superlattice-based electro-optic devices, such as 

modulators[2] [20], and self-electro-optic effect devices[2], used in fiber-optics communications 

and optical computing.

The basic idea of the WSL can be qualitatively understood via the aid of Figure 2-1. This 

shows the potential wells associated with the electron states in a superlattice. When there 

is no electric field (F  =  0), electron and hole levels in a  superlattice form minibands with a 

dispersion relation due to  the resonant coupling between the well levels. These minibands have 

a width given by A. The period of the superlattice is d = L w + L b , where L w  and L b represent 

the quantum well and barrier thicknesses, respectively. In an ideal superlattice, the levels of a 

given band correspond to states which extend over the entire structure. The superlattice states 

can thus be thought of as a superposition of the individual well states mixed by the resonance 

between the well levels. This is similar to how the electron states in a crystal can be considered 

as a superposition of atomic states.

When a constant electric field is introduced perpendicular to the layer planes, it intro­

duces tin electrostatic potential which detimes the interwell resonance, and ‘tilts’ the band. In 

the single-particle approximation the movement of a carrier in the z-direction of an intrinsic

10
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superlattice is described by Schrodinger’s equation as seen here:

( ~ ‘£n 7 ^ 2 + eFz  + U(z)'ji/>(z ) = Ert>(z) (2.9)

where U (z ) denotes the superlattice potential and m* the bulk effective mass. Due to the 

electrostatic energy introduced by the electric field, a separation AE  =  eFd  is created between 

single-well levels. This reduces the inter-well coupling due to the now imperfect resonance 

between levels. If A E  becomes larger than  the broadening of the single well levels, the miniband 

can be resolved into a Wannier-Stark Ladder. This ladder is formed by the levels of the N  

superlattice states, where N  is the number of wells making up the superlattice. For aui infinite 

superlattice, i.e. N  —♦ oo, edge effects are absent, and all of the levels become evenly spaced 

out. At high enough fields, the levels of the WSL coincide with those of the single wells.

Due to the symmetry of the system, consecutive Stark ladder states have the same proba­

bility function, shifted only by one period in space., i.e.

h M * ) | 2 =  l ^ m ( * - ( r c - m ) d ) | 2 (2.10)

At a given electric field, the superlattice states will extend over a distance defined as the 

localization length, A, where

and A is the miniband width. When F , the strength of the electric field, is on the order of 

A /ed,  the localization length approaches one superlattice period. This is referred to as the 

complete localization regime, because at these levels of F, the probability function for the Stark 

ladder states are primarily confined to one well. This does not preclude them leaving that well, 

however.

In order to truly understand the Stark localization, one must solve the time-independent 

Schrodinger equation in the z-direction. This will yield the Stark ladder states. The approach 

we will use employs a tight-binding formalism. By using this method, we can obtain a very 

intuitive picture of the Wannier-Stark localization. We write the superlattice wavefunctions as

11
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linear combinations of all of the single-well wavefunctions <p(z — nd)

Ti>m (z) = '% 2cn-m<t>(z - n d )  (2 .12)

where if we only consider nearest-neighbor overlapping, and neglect the coupling with other 

bands, the Cn_m can be written as[16]

C n -m  =  J n - m  ’ t2 '13)

where Jn is the Bessel function of the first kind of order n. For cases when the miniband width. 

A 2eFd,  this expression can be approximated by the following:

(  A  \  1 (  A  \ |n" m|
Jn_m \ 2 e F d )  ~  \n — m\\ { 4 e F d )  2̂' 14^

This function shows mathematically the WS localization. The wavefunction decreases at a 

faster than exponential rate as n and m  move apart. Also, as the field increases,

Cn-m —► 1, if n =  m,  (2.15)

and

Cn-m —» 0 , if n ^ m .  (2-16)

This causes the superlattice state to localize in well m, becoming identical to the single-well

state of that particular well. Heavy holes localize faster than light holes, due to their smaller

bandwidth. The resulting eigenenergies are

E m — E q + meFd  (2.17)

Note tha t this equation does not apply at low fields, due to the fact tha t it predicts the 

convergence of the ladder into a single energy value when the field becomes zero, instead of 

forming a miniband.

Each hole s tate  n, overlaps with a number of electron states m,  producing as many optical

12
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f f i m f f l t t  H

Figure 2-2: Sketch showing the origin of interwell transistions between different Stark Ladder 
states. The labels give the index p. (from [22])

transitions labeled (m — n). This is illustrated in the diagram of Fig. 2.2. If n =  m then the 

electron and hole states correspond to the same well and the transition is defined as intrawell, 

as opposed to the interwell transitions which occur between states corresponding to different 

wells { n ^ m ) . If the electric field is constant throughout the superlattice, then transitions with 

the same p =  m  — n are identical, and the energies depend only upon the separation between 

the electron and hole well. This leads to

Ep (F ) =  Eo (F ) +  peFd  (2.18)

where Eo (F) is the intrawell transition energy

E0 (F) = Eg + E le (F) + E l h (F) (2.19)

where E g is the band gap of the well bulk semiconductor. The field dependence of Eq(F) comes 

from the  Stark effect on a single quantum well. In superlattices, the wells are usually too nar­

row to achieve strong coupling, This results in small Stark shifts, and E q becomes nearly field 

independent. The interwell transition energies move linearly with the field as is observed by 

experiment[29]. One should note that the energies measured are actually associated with exci­

tonic peaks. Excitonic effects introduce some corrections to the single particle approximation, 

and will be discussed next.

13
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2.2.1 E xciton ic Effects

The Coulomb interaction between electrons and holes creates an exciton peak which is slightly 

below tha t of the single-particle interwell transition Ep. This peak corresponds to the Is state 

of the exciton. and the separation from Ev is the exciton binding energy E% (F ). The interwell 

exciton transition energies, E^  (F ) is given by the following

E% (F) = Eo (F) -  E \  (F) +  peFd.  (2.20)

Note that this is simply the interwell transition energy from the previous section, minus the 

exciton binding energy.

The exciton effects have been calculated in detail as a function of field by several authors. 

Also, the influence of the superlattice period has been considered as well. Figure 2-3 below 

shows the binding energy calculated for a typical superlattice, showing the energies associated 

with several different interwell transitions, as well as the intrawell transition. As you can see, 

the binding energy for the intrawell exciton at high fields increases. At lower fields (not shown), 

it oscillates w ith the field strength due to the nodes in the wavefunction of the Stark ladder in 

a similar m anner to the single-particle oscillator strength.

The interwell exciton binding energies, on the other hand, reach a maximum value,and 

then decrease asymtotically to a constant value. This maximum occurs for the field where the 

probability of finding both the electron and hole in the same well is largest. The strength of 

this field decreases as \p\ increases. Close to this maximum, the binding energies for the 0 

states differs based on the period of the superlattice. For long-period superlattices, the binding 

energies are larger for excitons with p < 0 , whereas for short-period superlattices, the opposite 

occurs[24].

2.3 B loch  O scillations

In 1928, Bloch demonstrated theoretically that an electron wavepacket composed of a super­

position of sta tes from a single band and a given quasi-momentum k will undergo periodic 

oscillations in real and momentum-space under an applied electric field[25]. The period of these

14
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oscillations, t q , is inversely proportioned to the applied field, F,  and the periodicity of the 

crystal lattice, d. in the field direction. This concept has sparked a great deal of controversy 

over the decades, centering around the proper theoretical approach to describe the motion of an 

electron in an infinite solid under an applied electric field and the existence of a discrete WSL 

in a  solid. From a theoretical point of view, it appears th a t the original picture of a discrete 

WSL is correct approximately. However, these states are metastable, due to the decoupling 

between states in different bands. However, on the experimental side, neither Bloch oscillations 

or the WSL have been demonstrated in bulk solids.

One of the conditions for the observation of Bloch Oscillations (BO) is tha t the oscillation 

period, r g ,  must be smaller than the dephasing time T2[26]. One of the mechanisms governing 

T2 is interband tunneling, which becomes more im portant as the applied field increases. Since 

d  can be much larger in superlattices than in bulk solids, the Bloch oscillation period can be 

much smaller than the corresponding period in a bulk solid for a given electric field. This makes 

superlattices ideal candidates for the observation of the WSL and Bloch oscillations.

Bloch oscillations can most easily be understood using semiclassical theory. In a semi- 

classical picture, the rate of change of the quasi-momentum in an applied field F  is given by

hk=  e F  (2.21)

so that

k =  ko + e F t / h  (2.22)

The time it takes to go from — n /d  to n /d  is t b ,  the Bloch oscillation period, which is also given

by h/eFd.  For a nearest-neighbor tight-binding Hamiltonian in the one-band approximation,

the dispersion relation for the miniband is given by[23]

E  = E0 -  ^  cos (kd) (2.23)

then the group velocity, given by (d E / d k ) /h ,  and the position z of the wavepacket can be 

found via

v ( t ) <Z24)

16
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and

<*>= 20 -  G S ? )cos (2-25>
This shows that the electron undergoes periodic motion in the momentum as well as real space

with a temporal period t b  and spatial amplitude L  given by

t  b  =  h /e F d  (2.26)

L =  A / e F d  (2.27)

where A  is the width of the miniband, and eFd  is the WSL spacing, as described in the previous 

section.

One could also consider a tight-binding picture, where we look at the superlattice as an

infinite number of quantum wells separated by barriers with a period d. The WSL eigenstates

in this scheme are well-known[27]

xp (*) =  (z / 2d) f e (2 - nrf) (2-28)
n

where Jp is a Bessel function of the first kind of order p and f e (z ) is the electron wave function 

resulting from a single-site potential. One can then form an initial wavepacket using a  superpo­

sition of these states, and calculate it’s time evolution, as was done by Dignam et al.[28] This 

evolution takes the following form.

tfm (z;f) =  ^ C p e - ^ J ^ - p t L ^ / ^ z - n d )  (2.29)
P "

=  ^ 2 B n ( t ) f e ( z - n d )  (2.30)
n

where the Cp are taken to be real, and B n (t ) is the time-dependant amplitude for finding the 

electron in the n th  well. Using the recursion relations and sum rules for Bessel functions, one 

can show that the expectation values of z  and z2 in 'E,m (z; t) are found via[28]

+  cos (ut) L ^ C p- i C p (2.31)
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and

( z2) = ( z2)q -T Y  -hd25 ^C^p2+cos (a,t) L d ^ C p C p - i  (2 p -  l)+ co s  (ut)  y  Y I CpCp~* (2-32)
p p p

where ( z2)Q is the expectation value of z 2 in the state f e (z ) localized at z =  0. It was found 

[28] that the motion of the wavepacket is periodic with the amplitude of oscillation given by

A z =

= L

Y c p - i C , (2.33)

(2.34)

which has an upper limit given by L.

If we choose the Cp =  J - p (Lj2d ) ,  then we get that Bn (t =  0) =  6n,o, which gives A z =  0. 

This corresponds to a ‘breathing mode’, in which the wavepacket expands and contracts sym­

metrically. In general, one would not expect the wave packet to take on this form. The breathing 

mode and the semiclassical BO represent two extremes in the range of possible motions for this 

system.

For a finite superlattice consisting of N  periods and miniband width A, the simple energy- 

dispersion relation given above shows that in the absence of an applied electric field, the energy 

levels will be unequally spaced. If an applied field strong enough th a t N e F d  >  A is applied, 

then one will obtain a WSL, which has equally spaced levels, separated by eFd.  If one then 

excites this WSL by a pulsed laser whose spectrum encompasses more than one of the ladder’s 

energy levels, one will excite a wavepacket made up of a superposition of various eigenstates. 

This wavepacket would be expected to undergo periodic oscillations. This is an extension of the 

concepts developed for the case of the coherent oscillations of an electronic wavepacket in an 

semiconductor double quantum well structure, as was investigated by Leo et al.[2] The periodic 

motion of the wavepacket in this case is, in general, the Bloch oscillations we have been looking 

for. These oscillations should be detectable by four-wave mixing experiments, just as in the 

case of the double quantum  well. These experiments will be discussed in the next section.

18
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2.4 Transient D egenerate Four-Wave M ixing Experim ents

Transient FWM experiments are a  powerful tool for the study of coherent effects in semiconduc­

tors. The simplest setup for these experiments is shown in Figure 2-4. In this setup, referred 

to  as a two-pulse self-diffraction geometry, two laser pulses with wave vectors ki and k2 at 

times t =  0 and t =  t ,  respectively, impinge upon the sample. The first laser pulse induces 

a first-order polarization in the sample. The second pulse interferes with this polarization to 

produce a carrier density grating in the direction k 2 — k^. Due to nonlinear optical interaction, 

the electric field and linear polarization of the second laser pulse diffracts off of this grating 

in the phase-matched direction 2k 2 — k i . This creates a third-order polarization, which is the 

source of the measured FWM signal. The FWM signal can be measured time-integrated as 

a function of the time delay r  by using a  slow photodetector. We can also time-resolve the 

FWM signal for each r  by using an up-conversion technique. The difference between DFWM 

and FWM is that the two laser pulses have the same central frequency in DFWM, whereas in 

FWM this is not the case.

In 1992, Feldmann et al.[3] performed DFWM experiments on a 91-period superlattice, 

consisting of 95 A GaAs, and 15 A Alo.3Gao.7As embedded in a p-i-n diode. At intermediate 

electric fields, a photocurrent spectra exhibits peaks corresponding to optical transitions of the 

WSL. In this regime, the heavy-hole states are already localized to a  single well, whereas the 

electron states in the conduction band are still partially delocalized over several SL periods. 

This allows ’oblique1 transitions to take place between a particular localized hole state, and a 

partially delocalized electron state, centered in a well n  periods away. These transitions are 

illustrated in part (b) of Figure 2-5. The transitions are labelled as Sn- One should note that 

the peak measurements in (b) were made under the same conditions as the transient DFWM 

curves in (a).

In Figure 2-5 (a), the time-integrated DFWM signal is shown for several applied voltages at 

forward bias. The vertical arrow in (b) indicates the energy of the central frequency of the laser. 

At the highest voltage, 0.95 V, the decay of the signal is approximately exponential, and shows 

no extra features. In the intermediate voltages, however (0.4 —► 0.7 V), there is a pronounced 

modulation in the curve. The time duration T  between the observed peaks decreases as the
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Figure 2-5: (a) DFWM signal versus time delay between the two laser pulses for several voltages 
in the WS ladder regime, showing modulations of the period T. (b) the peak positions of 
’’oblique” transitions are plotted as circles versus the applied voltage. The energy intervals 
/i/T , with T  from (a), are shown as horizontal arrows.(from [3])
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Figure 2-6: Time-Integrated DFWM signal versus time delay for eFd =  6.2 meV using 110-fe 
laser pulses.(from [3J)

field increases, and varies from 1.4 ps a t 0.7 V to roughly 0.7 ps at 0.4 V. In order to find the 

source of these modulations, the energetic intervals h / T  were drawn in Figure 2-5 (b). You 

can readily see for applied voltages less than  0.5 V that these intervals show good agreement 

with the energetic spacing eFd. between the S_i and S_2 transitions. For larger voltages, the 

h / T  values decrease as expected from the tendency of the WS ladder spacings. This agreement 

of h / T  with eFd indicates that the observed modulation times T  are equivalent to the time 

periods Tb  expected for Bloch oscillations.

In Figure 2-6, we see the time-integrated DFWM signal for a WSL spacing (eFd) of approx­

imately 6.2 meV. This allows the spectrum of the laser pulse to encompass 5 WSL transitions. 

As you can see, there axe three peaks on the curve, a t 0, 0.7, and 1.4 ps. W ith the WSL spacing 

equal to 6.2 meV, the time period of Bloch oscillations, t b , is 0.67 ps, from equation 2.26. 

Again, there was found to be good agreement between the observed modulations in the DFWM 

signal, and the period of the Bloch oscillations in the superlattice.

Later that same year, Leo et al.[29] reported unambiguous evidence of Bloch oscillations, 

using a superlattice made up of 40 periods of 100 A GaAs, and 17 A Alo.3Gao.7As. Transient 

FW M  signals showed a periodic motion with a  period strongly dependant on the electric field. 

They also noted that the peak spacing is inversely proportional to the electric field. This is 

consistent with the definition of the period for the Bloch oscillations (2.26).

In Figure 2-7, the energies calculated for the oscillation periods observed in the FWM 

experiments are shown. The energy splitting shows the linear dependence on the electric field
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Figure 2-7: Energy splitting eFd  calculated from the Bloch oscillation period using eFd  =  H / t b -  

The dashed line indicates the expected slope for the SI period of 117 . (from [29])

we expect from the WSL. The dashed line represents the slope expected based on the parameters 

of the SL. As you can see, there was good agreement between the expected results, and those 

obtained experimentally. This led them to conclude that the modulation of the FWM signals 

was caused by Bloch oscillations of the photoexcited electrons in the superlattice. They also 

found tha t the frequency of these Bloch oscillations could be tuned via the applied electric field.

In 1994, Dignam, Sipe and Shah[28] investigated theoretically the time evolution of electron 

and exciton wave packets in semiconductor superlattices when subjected to an electric field 

parallel to the plane of the superlattice layers. They were able to show that electron wave 

packets undergo Bloch oscillations, with the spatial amplitudes of these oscillations dependent
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on the initial conditions. They also found tha t if they neglected the electron-hole Coulomb 

interaction in the field direction, the motion of the electron-hole separation ranged from a  so- 

called ’breathing mode’ to a semiclassical Bloch oscillation. When they included the Coulomb 

interaction into their formulation, they found tha t much of the character of the motion remained 

unaffected. However, the ’breathing mode’ vanished, and there was an enhancement in the total 

oscillating dipole over a wide range of laser pulse parameters.

Also in 1994, P. Leisching et al. [30] did a detailed experimental investigation of the coherent 

dynamics of excitonic wave packets in GaAs/AJzG ai_xAs superlattices. They used a structure 

consisting of 35 periods of wells and barriers, with a constant well thickness of 17 A, and an 

aluminum concentration of x  — 0.3. They examined such things as the dependence of the FWM 

signal on the applied electric field, the tem perature dependence of Bloch oscillations, and the 

dependence of the oscillations on excitation conditions. They found that the oscillation period 

was highly dependant on the applied electric field, with a linear relationship at intermediate 

fields. Also, they were able to observe Bloch oscillations a t temperatures of up to 200 K. By 

varying the excitation energy, they were able to create wave packets with a wide variety of 

shapes and oscillatory motions.

In 1995, Leisching et al. [31] showed that the nonlinear Coulomb interactions of Wannier 

Stark states in biased GaA.s/AlzG ai_zAs superlattices can be controlled by altering the external 

applied field. In 1998, Sudzius et al. [32] investigated the dependence of the dynamics of 

Bloch wave packets in superlattices on the optical excitation conditions. They found that 

for excitations well away from the center of the WSL, the wave packets perform harmonic 

oscillations; for excitations near the center of the WSL, the wave packets undergo a symmetric 

oscillation with virtually zero center-of-mass amplitude (a breathing mode).

In 2000, Loser et al.[33] investigated the influence of scattering and coherent plasmon cou­

pling on the dynamics of Bloch-oscillating electrons in semiconductor superlattices. They 

demonstrated that the dynamics are highly influenced due to the scattering processes. They 

also found that for higher carrier densities, coupling to coherent plasmons leads to anharmonic 

Bloch oscillations since the static bias field in considerably altered by the oscillating carriers.

I t  is these experiments performed by the group of K. Leo that we are interested in modeling. 

This work is a first step towards a full model including the coupling to the coherent plasma.
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Chapter 3

Calculating the DFW M  signal

In the previous chapter, we mentioned tha t the effect of FWM was to  create a third-order 

polarization in the superlattice due to  the interference between the second incident pulse, and 

the residual polarization left by the first one. This polarization propagates in the direction 

2k 2 — k i. We refer to  this polarization as P£t&- The superscript (221) refers to the direction 

in which this third order polarization propagates, k2 -I- k2 — k i . In this chapter, we will derive 

the equations of motion which will enable us to calculate the FWM signal. We first develop the 

Hamiltonian for excitons in a superlattice under the influence of a static electric field. We do 

this using the method described by Dignam and Sipe[24] [34] [35]. Then, using the quasibosonic 

representation of Hawton and Nelson[9], we derive the exciton creation operator B^.  We then, 

using an exciton basis in the long-wavelength Limit, obtain the correlation functions necessary 

to calculate the DFWM signal to th ird  order in the optical field[36].

3.1 The H am iltonian o f excitons in a Superlattice

In the presence of a static electric field, the Hamiltonian for the exciton envelope function in a 

Type I or II superlattice can be w ritten as[24][34]

H {ze,zh,r)  =  Ho(ze, z h,r) + Ue(ze) + Uh(zh) + eFz,  (3.1)

where Ue(ze) and Uh(zh) are the superlattice potentials for the electron and hole, respec-
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tively. In a Type I SL, the electron and hole potentials follow the same pattern  of wells and 

barriers, and L e = L >,. In the Type II SL, the electron well occupies the same physical location 

as the hole barrier, and vice versa. This leads to Le+ Lh =  d, the period of the SL. This is 

illustrated in Figure 3-1. H o ( z e , Z h ,  r )  contains the kinetic and Coulomb energy terms, and is 

given by the following;

H 0(ze, z h,r)  =
- h 2 d  1 

2n{ze, zh) dr r 'd r
k 2 d h d
2 dze m'ez{ze) dze 2 dzh m j^(zh) dzh £ ( r 2  + z 2 ^ ’

(3.2)

In this equation, z e and Zh  represent the z coordinates of the electron and hole, respec­

tively, z  =  z e — Zh,  and r denotes the electron-hole separation in the transverse plane. The 

layer-dependant transverse electron-hole reduced effective mass is defined by fi(ze,Zh)~l =  

m e\\(^e)- 1 4-m ^ ( z h ) ~ l , where m * ^ ( z e ) and m ' ^ Z h )  are the transverse effective masses for the 

electron and hole, respectively. The layer-dependant effective mass in the z-direction for the 

electron is m ^ (2e), and for the hole, The applied field strength is F , e is the charge

on an electron, and e represents the average dielectric constant of the superlattice structure.

The superlattice potentials U e ( z e ) and U h { z h ) can be given in terms of the potentials of 

quantum wells, V e ( z e ) and V h ( z h )  by the fo!lowing[34)

Ue{ze) =  £ > e(ze -  md), and (3.3)

Uh(zk) =
T V hizh — md), for Type I superlattices
m

H  V h[zh -  (1 -  3 |Tn|)md],for Type II
m#0

where

(3.4)

V "(z)  =
- v a, \ t  \z\ < La/2

(3.5)
=  0 otherwise,

where a  =  {e, h} denotes electron or hole, d is the period of the superlattice, L e and Lh are 

the thicknesses of the layers in which the electrons and holes are primarily confined, and ve and
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Figure 3-1: The periodic potentials for electrons [Ue (z )] and holes \Uh (z)] for (a) Type-I su­
perlattices and (b) Type-II superlattices.(from [34])

Vh are the magnitude of the conduction and valence band discontinuities, respectively. In this 

work, we will only be concerned with Type I superlattices.

In order to calculate the eigenstates of H, we can make use of the translational symmetry of 

the superlattice structure[38]. In a way, this is similar to what is done in finding the eigenstates 

of a single particle in a periodic potential. In order to  show this similarity in a simple way, we 

change the variables from ze and Zh to the electron hole separation, z  =  ze — z^, along with 

w  =  a ze -h 0Zk, where w  is the z component of the center of mass for the exciton. This is 

done by setting a  =  m*± (ze)/A'/, and /3 =  m ^± (zh)/M ,  where M  is simply the sum of the two 

effective masses, so that a  + 0  =  1. We now introduce a superlattice electron-hole translation 

operator, Tm, which when used on a function of ze and z^, has the effect of shifting the two 

arguments by md, where m is an integer. Applying this to a wavefunction with arguments, r, z,
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and w , we get the following:

Tm<p(r, z, w) = ip(r, z ,w  + md) (3.6)

Since Tm commutes with H ,  we can use Bloch’s theorem[38] and limit ourselves to eigenstates, 

which satisfy

2 m ^ ( r ,  w) =  el<7md^ ( r ,  z, u/), (3.7)

where |g| <  n/d. This will guarantee that these eigenstates, which we can label by q and an 

internal quantum number, fx, satisfy the following:

S ( r ,  z, w) =  el<rtuu£ (r, z, w ) , (3.8)

where (r, z, u;) is periodic in w with a period equal to  the superlattice period, d. The tilde

on denotes that is a function of z and instead of ze and z^.
~ q

For fixed values of r ,  z ,  and u j ,  i/’#1( r ,  z ,  to ) can be defined a s  a periodic function in reciprocal 

space. This allows us to introduce exciton Wannier functions, by using a  Fourier expansion on
—'q
W^ir, z .w ) ,  expressing it as a function of q, resulting in

tl>l(r,z,w) = ~7:̂ ' Y l e'qmdWv(r i z ,w  -  md) (3.9)
771

=  y ^ e t q m d (r, ze -  md, zh -  md), (3.10)

where in equation (3.10), we have switched back to using ze and z/, as our variables. We can 

see from equation (3.9) tha t the exciton Wannier function, W ^ r ^ t o ) ,  is quite similar to the 

single particle Wannier function, with the position of the center of mass of the exciton taking 

the place of the position of the particle. Also, the exciton function depends on the additional 

coordinates of the internal motion of the exciton, z, and r .

We now wish to find expressions which will describe these exciton Wannier functions. In 

the same manner as the single particle in a periodic potential, we can utilize a  tight-binding 

approximation by expanding the Wannier functions in a  restricted basis. The basis which we
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will use are the eigenstates of the electric-field dependent two-well Hamiltonians, Hi, where I is 

an integer. [35]

Hl = H0 + V h(zh) +  V e(ze - s l).

The position of the center of these wells are given by

(3-11)

Si = (3.12)
Id, for Type I SLs, or 

(1 -  1/2 |Z|)M, for Type II SLs

The ground-state <pL(r, ze, z^) of the two-well Hamiltonian Hi, is an exciton state. In this 

state, the hole is localized in the well at the origin and the electron is localized in the well at 

si, with ls-Iike transverse motion.

We can now write the Hamiltonian in the form

where

H  = Hi + A%(zh) + A ee(ze),

A f ( z )  = U ° ( z ) - V ° ( z - s l).

(3.13)

(3.14)

We now have to determine the ground states of the two-well Hamiltonians, Hi. These cannot 

be found analytically, however, they can be solved variationally by using the ls-like variational 

wave function[35]

/ 2 \ 1/2
<P/(r , Ze, Zh) =  f - J  Ae Xrf f ( z e -  a O /jffo  -  s0),

where A is a variational parameter which depends upon |s,- — sy|, and

(3.15)

Ae?z , if z <  —L a/2, 

Bcos(kz), if |z| <  La 12, 

Ce~pz if z >  L a / 2 ,

(3.16)

A, B ,  and C  are determined by requiring tha t / f ( z )  is a normalized function, and is also
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continuous at the layer boundaries. The value of the param eter k  is set to be th a t of the 

lowest eigenstate of a single particle in a finite well in the absence of an electric field, p  can be 

determined due to the continuity of [ \ /m ^ z {z)\ (d / d z ) f f ( z )  at the interfaces between the well 

layer and the adjacent barrier layers. [39] Since f f ( z )  is a small quantity at all of the other 

interfaces, we can make the approximation th a t it’s derivative is continuous there.

Thus, using this formalism, the eigenstates of the superlattice Hamiltonian are created via 

a tight binding of two-well exciton ground states. These states cover all possible electron-hole 

separations (/), centered on all possible sites.[35] This gives us the following equation:

ze, Zh) = - j = ^ 2 etqmdD?<&(r, ze -  md, zh -  md), (3.17)
l,m

where, by diagonalizing H  in this nonorthonormal basis we can determine the D f ,  which Eire 

the expansion coefficients found. This then reduces the problem to solving the generalized 

eigenvalue equation

HjiD? = E ^ A ^ D f , (3.18)

where A q-t =  4?’ ) , the are the exciton energy eigenvalues for the full superlattice, and

=  (* 5 |fT |* ? )  (3.19)

=  Ef*Aqjt + Yfiqmd (9? | +  A f |$ ? ) , (3.20)
m

where E j w  is the ground-state energy of the two-well Hamiltonian, Hi, and

(r, ze, z h\ 9?) =  —L y ^ e iqmd(bi{r, ze -  md, zh -  md). (3.21)
v  l,m

In equation (3.20), we have made the approximation that <£;(r, ze, Zh) is a exact eigenstate of 

the two-well Hamiltonian, when, in fact, it is only a variational solution.

In practice, we use a finite number of two-well eigenstates, <j>i(r,ze,Zh), (— ax <   ̂ <  £max) , 

in order to calculate the various eigenstates and eigenvectors of the Hamiltonian. We choose the 

truncation point of this basis such th a t the calculated spectra remain basically unchanged by 

further increasing this basis size. This is possible due to the localization effect of the Wannier
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function.

In this work, we are only interested in the q =  0 excitonic states, since only these are 

optically excited. In later sections, we will denote the eigenstates by |tA°) , and their energies 

by E% = Tujĵ .

3.2 Q uasibosonic Representation

In this section, we will introduce the various operators used in the conversion from fermion 

to quasiboson space. These operators are used in the derivation of the correlation function 

describing DFWM in superlattices.

In a  two-band model consisting of one conduction band and one valence band, the operator 

ak  annihilates an electron with a wave vector k while /3k similarly destroys a hole. By combining 

these, we can create an operator which annihilates an electron-hole pair, with a center -of-mass 

wave vector K and electron-hole relative wave vector k.[6] This operator takes the form

kk.K =  P-k+a/lK a k+acK (3.22)

We will use the collective index ki =  {k,, K, } to describe the s ta te  of the ith pair. The operators 

6fct and thus annihilate and create, respectively, an electron and hole with a center-of-mass 

wave vector K i and a relative wave vector ki.

We are assuming the these operators axe acting in a system which contains an equal num­

ber of electrons and holes. A fermionic state which satisfies this condition does not make 

any allowance for pairing. The state containing two electron hole pairs with wave vectors 

(ki, — ki; k2 , —k2 ) is equivalent to one with wave vectors (ki, —k2 ; k2 , — ki), since the same two 

electrons and holes are present. However, if we look a t these two pairs as excitons, we can 

readily see tha t these are two different states, where only the first has two pairs each with zero 

center-of-mass wave vectors. There is a 1-to-n! correspondence between fermion space, m d  

the equivalent boson space, where there are n! nonequivalent permutations of the electrons for 

fixed holes.

Since the excitons we are concerned with are not ideal bosons, we will call the space of paired 

electrons and holes pair space, or q-boson space. In this new space, states are symmetric under
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the exchange of pairs, however, they are not necessarily antisymmetric under the exchange 

of individual electrons or holes. The fermion exchange energy is included in the energies of 

individual excitons and in the exciton-exciton interaction energies.

In order to transform the fermionic pair operators 6^  and 6^  into their qbosonic pair 

equivalents, Bi^ and Bj^, Usui’s transformation[37] will be used, as described in Hawton and 

Nelson.[9] The exciton operators B ^  K can be introduced as a linear combination of the qbosonic 

ones as follows

< k  =  £  <*Vk<K (3-23)
k

where k is the k-space representation of the excitonic state ze, z^), and periodic bound­

ary conditions have been used. If we multiply both sides of Equation (3.23) by tpn^ ,  sum over 

n, and then apply the completeness of the basis, we get the inverse transformation as seen here

•®k,K — ^ 2 K

While this transformation affects the relative motion of the electron and hole, the center-of-mass 

motion remains the same. We can define a second collective indice Hi =  {n^, K t }, which allows 

us to write the exciton creation operator as B t .  The commutators of exciton annihilation and 

creation operators become, after some algebra, [9]

=  inJ, -  2 2 2  (3.24)
7711 ,7712

where m  =  {m,, K ,} and

— [^ni.k^nj.k+QhQ^mj.k-l-ahQ^mi.k’̂ ,ni,k1/’n2,k—QeQ^mj.k—oteQ^mi.k] (3.25)2 ‘  k

These x  parameters describe phase-space filling, and can be calculated for any given exciton 

basis. The parameter X n } ’n } ’° is the average probability for the occurrence of any given pair. 

If X  =  0, then the excitons are bosons.

3.3 Calculating Xfif*p- m
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In the previous section, we introduced the parameter XmV!m2, which describes phase-space filling. 

In this section, we will derive expressions which allow us to calculate this parameter for the Is 

excitons we are concerned with. We set the value of Q  equal to zero because the center-of-mass 

momenta of the excitons created by the optical pulse are very small.

We have tha t

^ • °  (ze, Z h , r)  =  5 2  (k ) •Pn.m.k.O (re, rk) , (3.26)
n.m.k

where

<Pn,m,k,0 (re, rh) = ^ PXn+m{ze)Xn{zh)- (3.27)

Here, we use n  and m  are quantum  numbers for the single-particle WSL states, and /i represents 

the exciton quantum  number for internal motion. For a Is exciton, the wavefunction, using a 

two-well basis is given by[35]

(ze, z h, r) =  5 2  D f f n (zh -  nd) f e (ze -  (n + l) d) <f>t ( r ) , (3.28)

where f ( z )  is given by equation (3.16) above. The D f  are expansion coefficients found by 

diagonalizing the exciton Hamiltonian in the two-well basis. [40] W hat we need to derive in this 

section is the relationship between the /  functions in (3.28) and the x  functions in (3.27). This 

is possible if we make one of two assumptions: (1) x is calculated in the nearest-neighbor tight- 

binding approximation, with localized states / ,  or (2) the /  functions are the exact Wannier 

functions. Since we are already using a tight-binding approximation in our calculation of the 

Hamiltonian, it makes sense to continue using it here. Also, this allows us to take advantage of 

certain properties of Bessel functions. This leads us to write that

Xm(*) =  E  -  Pd). (3.29)
P

Here, 9e =  =  2~l^cL ’ w^ere aie tke e êctron hole bandwidths,

respectively. Now, we know that[4l]

5 2  Jp-m(e)Jp-m ’(0) =  (3.30)
P
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and thus

ftr(z ~  pd) =  y   ̂Jp—m{&a)Xm.(z )- (3.31)
m

Substituting this last equation back into (3.29), we get

Xm(z ) = 53 53 ̂ P-'" '(^)X m /(2)i (3.32)
p m'

applying equation (3.30) to this leaves us with

X' ( Z )  =  (3-33)
T T l'

=  x M ,  (3-34)

indicating tha t our relationship between /  and x  correct. Now, taking equation (3.31), and 

using it in equation (3.28), we get the following

^ ’° ( Z e , Z f c , r )  =  - L *  E ^ t W  E  ^ n - m ( ^ ) 4 +i- m(0e)x i(^ )X m '(^ ) -  (3-35)
y / N z  v  A  ^  m m,

Another convenient property of the Bessel functions is that[4l]

53 Jn-m{Gk)Jn+l-m'{de) =  Jl+m-m>{0), (3.36a)
71

where 9 = 9e — 6^. Now, using equation (3.36a) in (3.35), we obtain

1 1(Ze,2h,r) = W E  (3-37)
v M z V A  t m m ,

= (3-38)
V ^ Z  V  A  t n m

Now we will tu rn  our attention to ( r ) . If we let

01 (r) =  5 3 ^ ( k ) e * ^  (3.39)
k

$ ; (k) =  J  d2r(j>i ( r)e ^ k r  ̂ (3.40)
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Now, in the Is basis, we can write 4>i (r) as

h  M  =  ^ Xie~X,r (3-41)

Substituting this last expression into equation (3.40), we get 

$ , ( k ) =  rAte - A'V ( k-r>

where this last equation is now independent of the direction of k. Now we know that 

Jq* ei(.kp)coS 0  _  2 kJ 0(kp). Using this in our latest equation gives us

(k) =  J  dr  ‘ re~x‘r Jo(kr)

Now, from [41], we get the following:

r  2 a . 2 6 . r Q )
/  d x - x e  01 Jo(bx) = --------------

Jo (a2 + 62) ^
using this in equation (3.44) gives us

27T (2 2A| ' r ( ! )
$ i ( k )  =  - r J - k  ■^ V t t  0 F(A2 +  t^ 3/ 2fc2)

2tr [ 2 .  Af
=  T  V w (A? +  fc2) ^

since T =  y/^/2.

Now, if we take equation (3.38) and apply equation (3.39),we get

i i -t(k-r)
r'°(Ze,Zk,r) =  - ± = - ± = ' £ D?<f>l (r) J 2  * l M - A - J l - m ( 0 ) - — xkzh)Xen+m(Ze)

* 2 *  I n,m, k
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(3.43)

(3-44)

(3.45)

(3.46) 

(3-47)

(3.48)
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If we compare this equation to (3.26), we can readily see that

rn,m (k) =  £  D ? * 1  (k) y /A J i-m V )  (3 .49)

and using equation (3.47)

2i/27r ^ D ? . T ,  WU?
(3.50)] V A V N Z ^  (a ? +  ^ ) 3/2

=  ^  (k) (3.51)

The reason we axe able to drop the subscript n is because this equation has no dependence 

on n anywhere. Now that we have an expression for ipl^ ( k ) , we can get down to determining 

t t t  •  Rewriting equation (3.25) to use our notation here gives us the following

X A -  =  ^ E E E « ( k) ^ ( k ) t f ( k ) ^ " ( k ) [ ^ + W n ' ]  (3 .52)
m,m' n ,n ' k

=  r ^ E  (3-53)
m ,m ' k

Now using equation (3.50) on each pair of ip with the same m  subscript gives us the following

?  « <k> < <k> = h : E w+j)vfw‘+'fc2)3/a E *-»<») (3-54)
Applying equation (3.30) to this yields a 6 ^  for the two Bessel functions, and thus

Applying this to both the m terms and m! terms in equation (3.53), we get that

^ - ^ E E ^ I ^ ' I  (3.56)/* .#* A2iVr ^  (A2 +  fc2) 3 (A2 +  fe2)3
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Now we can write that

E/(k) =  j^ T 2 dk.k r  dcPf(k) (3.57)
k ( 27r) J o J o

= ^ J q dk-k f(k)  (3.58)

=  ^ k J o dx<^ v^  ^3'59)

applying this to equation (3.56) gives that

v4 \4  a \4  \4  rooK ________4  AXfXf, r ° ° _________dx________
X  { 4  +  fc2) 3 (A2 +  fc2) 3 “  4tt J0 ( A2 +  fc2) 3 ( A2 +  fc2 ) 3 3 '60)

If we denote

, ,  , ,  r  **
( V V ) "  4  I  + l + x f  1 ]

This integral is analytic, and can be evaluated by the following expression

™  x _  1 Af -  8AfAf, +  24Af Af, In At -  2AXjXj, In X? +  8AfAf, -  Af,
1 *’ ~  2a2 (3AfAf, -  3Af Af, -  Af +  Af,) (Af -  Af Af, +  Af,) ( )

using our definition forF (A*, A ,̂) in equation (3.56), we get tha t

K C "  =  IT T  E  D f ' D f ' D t ' D f '  ■ F  (Xe, Xe) (3.63)
AISz i,r

3.4 The Equations o f m otion for

In this section, we will derive the equations of motion needed to calculate the expectation 

value of the exciton creation operator B £ to third order. We do this by first obtaining the 

Hamiltonian for excitons in a superlattice under the influence of a  static electric field. We then 

derive the Heisenberg equations for the creation and annihilation operators of excitons. W ith 

these, we can create the equations of motion for the various functions needed to obtain the 

DFWM polarization to third order in the optical field.

We can write the total energy of a system of charges as the sum of the kinetic energies 

of the various charges, plus the electric and magnetic energy stored in the medium. We will
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only include those electrons found in the highest valence miniband, and the lowest conduction 

miniband associated with the superlattice. The effects of the electrons present in all other 

bands can be accounted for via external fields, as well as an external potential, 17ex£ ( r ) . We 

can trea t the electric field effects caused by these other charges by introducing a dielectric 

constant, e. This leads to the electric field, E  (r, t ) , arising from the fields from the system of 

electrons, as well as externally applied fields. Since we have a neutral system, we can apply the 

Power-Zienau-Woolley transformation to the minimal coupling Hamiltonian [44]. This gives us 

the following equation for our Hamiltonian:

/ d r i e E x ( r , t )  - E x (r , t )  +  - i - B ( r , i )  - B(r , i )  
i  -Mo

(3.64)

where a  labels the electron which has mass m a , velocity v£, charge qQ and is found at position 

rQ- describes the Coulomb self-energy associated with the a th charge, Ej_(r, t) is the

transverse component of the electric field E ( r , t ) ,  and B (r, t) is the total magnetic field. If we

neglect the effects caused by the magnetic field, the canonical momentum of the electron in the

system will be given by p tt =  mQvQ. Also, we can derive the Coulomb and self energies from a 

volume integral of the total longitudinal electric field as [36]

/  ̂ ( r , t ) . B , ( r , t ) .  +  (3.65)

Making this substitution into the Hamiltonian, equation (3.64) we get the following equation

h T  = E  ^ + uext + • E(r ’^  (3-66)

This Hamiltonian is applicable to any semiconductor, where only the conductance and va­

lence band electrons are being considered. We will use this as our starting point for determining 

the form of the Hamiltonian for the excitons in a biased semiconductor superlattice. If we use 

the envelope function approximation on the Hamiltonian, we arrive at the following Hamiltonian

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for the electron envelope function.

H  = Y ,H ° a + [ d3r± eE (r , t)  • E (r ,t), (3.67)
Q J

H°  is the single electron Hamiltonian in the envelope function approximation for a biased 

superlattice. The electrons are located in the lowest conduction miniband, and the holes are 

located in the highest valence miniband. In this case, this includes the potential arising from the 

applied along-axis external electric field, as well as those due to band-edge discontinuities.

Now tha t we know what H°  includes, can tu rn  our attention to the remaining term  of the 

equation, and determine the form of E . This can be written as the sum of the field created by 

the electrons and holes, E*n£, and the AC portion of the externally applied field, E “ £.

E(r , t )  =  E S t(r , t ) + E i"t (r ,«).

Our external AC field consists of optical and terahertz parts, i.e.

E“ £(r,f) =  E g ( r , t )  + E ? £ z(r ,f). (3.68)

This external ac field does not include the static external bias field, which is included into the 

energy associated with H°.  For a neutral system, the field generated by the electrons and holes, 

E in£ can be written as
Ein£ =  P * * ( r , t )

£

In this equation, P*n£ is the polarization created by the electrons and holes making up the 

system. By substituting these into our Hamiltonian, (3.67), we get the following

H  = Y ^ h ° -  j d3r E “ £(r , t )  • P in£(r , t)  + d3rP 'nt(r,t) ■ P in£(r , t ) .  (3.69)

In (3.69), the second term deals with the interaction between the carriers and the external fields, 

while the third term contains the electron-electron Coulomb interactions, which arise from the 

longitudinal portion of the polarization. The third term also includes interactions which arise

from the transverse portion of the induced polarization, which are usually neglected, but in this
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system play a vital role.

It is difficult to calculate P m£(r,t ) exactly; therefore, we will look for an approximation 

which is suitable to our needs. In our approximation, there are two key factors which we must 

be sure are included. The intra-exciton Coulomb interaction between the electron and the 

hole must be included. Secondly, the interexciton interactions must be included as well. The 

wavelengths of the optical fields are quite large relative to the size of an exciton, thus it is to be 

expected that variations in the polarization will occur on scales much larger than the exciton 

Bohr radius. This allows us to treat the polarization in the dipole approximation.

We can now create our exciton Hamiltonian from equation (3.69) via the following changes. 

We will first pair up each electron with a hole, and label these pairs by 7 . Since we are dealing 

with a neutral system, there are an equal number of each, i.e. no unpaired charges will remain. 

From the last term , we extract the parts which contain the interaction between the electron and 

hole within each pair (i.e. the intraexciton interaction), and denote this by V-y. The remainder 

of the polarization can be replaced by it’s dipole approximation, which we will call P (r ,  t). This 

gives us the following[36]

H  =  £  H * x  -  J d3rE “ ‘(r, t) • P ( r ,  t) +  ^  J d3r P ( r ,  t) • P ( r ,  t), (3.70)

where ^  [H yX ~  ^7] =  H a  The single exciton Hamiltonian, H ^ x  is the one considered 

by Dignam and Sipe[24][34]

In the interpretation of DFWM results, we are required to consider fields which have definite 

wave vectors, such as 2K 2 — K i. It becomes more convenient to rewrite the Hamiltonian above 

in K  -space, via the use of Fourier transforms defined by

/ ( R , i )  =  5 2 / K (t)eiK-R (3.71a)
K

Here we are using the upper case K  and R  since these refer to the center of mass motion of

the exciton, and it is this motion which couples to the K th Fourier component of the field, and 

not the motions associated with the individual carriers. For a superlattice with volume V, the
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inverse Fourier transform  is given by

/ k  (*) =  £ /  dz R f  (R , t) e ' iK R (3.72)

where / _ k  (0  =  / k  (4) for real /  (R, £). Applying these transforms to our Hamiltonian, (3.70) 

gives us

H  = H f x  + V ' £ l ( - E 3 k  • p K +  ^ P - K  • P k )  • (3-73)
IC

As has been done in previous work on this subject[34] [35], we can use an exciton basis. The basis 

states, denoted by i / ^ k  (r > R)> 316 t îe  excitonic states after being subjected to the external DC 

electric field, E Here, r  describes the relative separation of the electron hole pair, r e—r^, 

and n  represents the quantum  numbers of the internal motion associated with the exciton. 

These quantum  numbers describe the average electron-hole separation and the in-plane hydro- 

genic s ta te  of the two-dimensional exciton. In the dipole approximation, the second quantized 

macroscopic polarization operator is given by

p K ( t )  =  5 Z  ( M m .k-5^k +  K (3.74)

=  PinterK (*) +  PtntraK (*) (3.75)

where

M ^ k  =  M 0 J  d3r (r : r ) (3-76)

with M 0 =  is the bulk interband dipole m atrix element. G wk';m' K '-k  represents theTriô 'gap 1
expectation value of the exciton dipole operator, and is given by

G ^K 'r/i'.K '-K  =  e J *  tK R . (3.77)

These three quantities are all derived in the Appendix of Hawton and Dignam [36]. As in the 

previous section dealing with we are only considering Is excitons here.

In equation (3.74), the first term is the interband polarization energy describing the creation 

and annihilation  of the excitons. It is at optical frequencies, and operates parallel to the exciting 

electric field with wave vector K i or K 2 ( i.e. in parallel with one of the laser pulses) and thus
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is transverse. The second term of this equation is the intraband polarization operator. The 

THz part of this term  describes the correlations which exist between the various WSL states, 

while the dc part represents the static excitonic dipole moment. The intraband polarization 

is parallel to the z-axis, with wave vectors such as K 2 — K i. This implies that the intraband 

polarization has both a transverse and a longitudinal component.

Since the wavevectors we are interested in in these experiments are small, we can write E k , 

the K £h component of the total electric field operator as

E k  =  E f f  -  ~ P K . (3.78)

Using the definition for H  in equation (3.73), the equations of motion for the exciton creation

operator, ihdB^ K /d t  =  B U become

=  [ K . K - f l i P ]  + S | ; V k '  • [ p K’ , < k ' (3.79)

where S  symmetrizes the operators in the second term to give

b ( e _ k  • [ P k . < k ]  +  [P k . B ^ k | • E_k)[36]. Substituting equation (3.74), the commutator 

P k ' , < k  in equation (3.79) can be written as

B U - P * =  |7 [ £ m ; x k ' K k . - £ v . k ' (3.80)

y i  ^£,K> ]• (3.81)
/i', K ' y , K "

where the commutator takes the form

^ ' , K '  — K , K ' — 2 (3.82)

3.5 The correlation functions for B
t(22l)
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We now need to determine expressions for the interband and intraband correlation functions 

up to third order in the optical field. By using the product rule from differential calculus, we 

can determine the time derivatives of the operator products by simply substituting equations 

(3.79), (3.80), and (3.82). Once this is done, we need only take the expectation values for each 

correlation function.

At this point we will change notations. This is done to maintain consistency with the given

literature, as well as to simplify things somewhat. We will first replace the subscript K , with the
2̂)

superscript i . and —K , with i ;  for example ^B* becomes , and (B^/ _Kt ) becomes

(Bm) ^  . The Fourier component of the external optical field, K, , by £, and the external 

THz field by E t h z -[36] Using these changes, we can write the field operator equation to third 

order (and higher) as

— E 0 p t  •

+ E 77/Z

y- ^  n'" ^ B^„ B^,„ + Rfj

m ; ~ 2

2 G s ' y X f a , „ B l „ B l „ , B ,

e V
(3.83)

where contains terms which go to zero as V  —► 00. Thus, we will set =  0 in what follows.

Now that we have an equation for the correlation functions, we can begin to determine the 

form of the lower order equations. We will begin with the first order ones. In order to find 

these, we take equation (3.83), and drop all terms which are higher than first order in E opt. We 

then rewrite E opt as

E  op£ =  £\{t)e~iu>ct +  £ 2  ( t ) e - ^ £, (3.84)

where £\ is a pulse centered at t =  T\ with wavevector k i, and £ 2  is a pulse centered at t  =  T2 

with wavevector ko. This gives us the following equations, one for each of the two exciting
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optical fields

< t @ » )
ih

dt

d ( B ^ \
ih A j l /  Tiuip (Bm)(I) =  e m e ^ - ^ - ^ r u z - Y P ^ A 8 ^  ■ (3-86>

m'

In the section on DFWM experiments, we showed tha t the signal we are interested in has a

dependence on the direction 2K 2 — K i- In order to evaluate the intensity of this signal, we will
, j  \  (22T)

need the equation for (-BM . This is given by the following:

,  / t \ ( 221)
d \ B n)  / A  (221) • ,

i f t - l - i   =  “ '“‘V  ( B l )  -2 « 5 ( t)e “ ‘‘ - E  ( B l ~ Bt‘" )
(21)

, (22T)
+Et h z Y ^ G h',h ( B l>)

vf

- 2E thz  G n" ,n’ ^ J l"Bjl„fBfi""^

E )  . (3.87)

Looking a t this equation, we can see tha t there are two quantities which we do not have
/ + \ (2i) / + + \ (221)equations for. These are ( B ^ B and (B j tB ^ B p " )  . By using the product rule, as 

mentioned above, we can create equations for these by combining the first order equations 

(3.85) and (3.86).

ih ^ n L  =  i n ^ s ^ + i h B l ^  (3.88)dBJ p L  =  ih ^ B + i hB l ^ t  
dt dt * dt

=  { h u j f j i  —  t v j j f t )  B ^ B p ’ +  Ej _ o p t  ■ ( m . * B ^  -  M p ' B j ^

+ET „ z  ■ £  { G ^ B l . B ^  -  G ^ 5 j v )  • (3-89)
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Taking expectation values gives us

d
(i)

+ e THz ■ J 2  ( K " B K ')i21) ~  G > y  ( B l B n " ) i2l))  -(3-9°)
ft" '  '

/  t t \ (22l)In order to  get the equations for ( B I B '^ B ^ ' )  , we use a similar process.

.  ihBl^ + ih f B,,B, .  (3.9!)

=  — hu/^) B ^B ^B p"  + Eopt • (M '^B ^B p"  -  M ^ B ^ B ^

+Er/fz • ^  (Gp"\fi'B^Bjl„,Bli" — G*«/ ^B^B^B^n j
n"'

—h w ^ B ^ B ^B ^ i  -+- E ^ t  • M *S^,5ft"

+Er/fz • E < v ,  (3.92)
ft'"

After taking expectation values as before, we obtain:

j j B t e ' M 2*! _ (3JB ,
dt cLt dt

=  (ftuy/ -  h u y  -  ho/p) ( b ^B ^ .B h" ^

+£2*(t)eiw=£M*, (B tB M" ) (2l) - A ^ e - ^ M f t "  ( ^ ^ , ) (22)

+£2*(t)e-=£M ; ( ^ ,B f t " ) (2l)

+ E th z  • y^(Gft"',ft' (B^B^n.Bp"^ 
ft'" 

- G ; ,v „ (B t5 j,B p " ') (22l) +  Gft"',ft (B j,„B ^B p ")(22l)).(3.94)

/  t t \ (22)Looking at this last equation, you can see that a new term  has appeared, ( B j t B ^ j  . We will

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



need to find the equations of motion for this term as well.

(3.95)

=  -  (ftov +  »“v )  Bl Bl  +  Eopt ■ ( m ; b ; ,  +  M ^ B l j  

+ETH: ■ £  +  G> y Bl BU ) ■
..it

(3.96)

We obtain, after taking expectation values:

+£;(()«•■“ ■• ( m ;  ( Bl)m +  m „. ( b J ) <2))

3.5.1 Including Phenom enological D ephasing D ecay

Let us assume tha t the full Hamiltonian is actually H /Uu =  H  4- Hothen where Hother includes 

effects such as carrier-caxrier scattering, phonon-electron interactions, as well as impurities 

and defects in the crystal, and H  is the Hamiltonian we have been using above to create the 

equations of motion in the coherent limit. In order to include this decay, we can simply assume 

tha t the following commutation relationships apply to  H0ther-

This is the usual relaxation-time approximation. Applying these, we obtain the final equations

(3.100)

(3.101)

(3.98)

(3.99)

of motion:
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ih-
dt

dt

4-Er/fz • ^ - 5 ^  ,

/*'

5 i( i )e -“*,c£ -

- E th-z • (•B/i' ) (1) >

4- ( 4- = -  ) —

zTi-

\(2 i)
' /

dt

+ £ ^ { t ) e ^ tM* <5^>(T) -  5 r ( i ) e ',Wc£M ^  ( s j ) (2)

+ E r tfz ■ T .  G y ^ ( B y , B y ^  ~ - G * "  ^  {B ^ B y ^ j

d
ih-

(22)

dt
L  t  ^— I Tujy  4- rujjy. 4- —t—
V «*'

(22 )

-£ 2* ( f ) e ^ £ ( m ;  ( s £ , ) (2) +  M ,  ( b J )

4 - E t ’z/z ■ ^  f G M«i#x ( ^ B y , B y ^  4- G y , y
i • / /  \

, ( 2 )

(22)
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+ S^(t)eiUctM ’ f ( b I B ^ ) {21) 

( B l B l , ) {22) + S U t)e l̂ M ;  (b J ,B „ » ) (21)

+ E thz • y ^ (G M»'iAt/ 
v!"

- g ; „ >w ( b ^b ^ .B h"' ) (221) +  G ^ , M ( 5 j , „ 5 j , 5 ^ ) (22l)X3.106)

/  t \  (221)

ifi“ *   -  - ( * “ «■+  I )  ( ^ ) <22l’ - ^ - ( t ) e -

m'

—2Er7fz ^  ] Gp"<fl/ ( ^ B p „ B j J,„Bp""'^

- 7 7  E (B ^ ,B i,B ;„,)(221). (3.107)

These are the sets of equations we must solve simultaneously in order to obtain the third order 

polarization in the 2K 2 -  K i direction for a DFW M experiment, This polarization is given by

(Pinter)(22l) =  |  Re j J > I M ( i ^ 21* |  - (3-108)

In order to solve these equations numerically, it is necessary to put them into a dimensionless 

form, as well as factor out the time dependence. This will require redefining several of the 

parameters involved in the DFWM equations.

One of the parameters which we wish to remove is volume. To do so, we make the following 

definitions:

<3 1 0 9 >

(2 1 )

( 22 1 )

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where oq is the exciton Bohr radius. We will also define

(V
M ,  =  M qS ^ / -  (3.110)

By these definitions, Mo is the bulk dipole m atrix  element between the conduction and valence 

bands, with units of charge-length, and

=  - ^ = J d z W ( r  = Q,z,z)  (3.111)

ao

with the units of one over length, and

Sfl (3.112)

^  (r. 2 , z) =  —j=  Y 'D f  f h (2/1 -  nd) f e (ze - ( n  + l) d) (r) (3.113)

T his last equation is the wavefunction w ithout the in-plane center of mass motion included, 

which would give a factor of l /y /A .  The purpose of these definitions is to remove the problematic 

factors of V which appear in the equations of motion. Once these are removed, we can solve 

these systems on the computer.

We will also introduce a dimensionless intraband dipole matrix element:

(3-114)

as well as

Bp (t / u /b ) =  (t ) e , where r  =  u Bt. (3.115)
jvio

Finally, we define

T u = u BTll (3.116)

with similar definitions for the rest of the dephasing times, and

u>u =  — - 
u>b

(3.117)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using all of these in our equations of motion gives us the following:

tf (y (1)_ 1 (i) =  ifl(T /u;B )c-i(5e-5^)r . 5  JM o jl
d r a0rvuiB

:dE™ Z 5Z- i -
fiwB M,

;(4 )
(2 )

dr cl0Tujb

, .-C®THz V™* r* I  tA  \ W _if5..#-wulr(2 )

(2 1 )

-  -  - a  < +

fuJB

- g ; ,<u ( k I k ^ 21)

/  t t \  '

dr

•f»«/_/  \ IMol  „i(<Dc — Z>v)T C* /  ^ t \ (2)
’ M * ' /

+ i £ ^ 2 i . £ ( g „. „ « , J r l ) <22) . ‘P . - 3- ) '’
fi'

+G„,,„ ( K l K l ) {22) ei(s»'-s ")r),
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(3.118)

(3.119)

(3.120)

(2 )

(3.121)
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/ f t  \ <221)
d f a K s K s )   '— / k ' K ' k A ™

dr  /

- i f j ( r / « . ) ^ ^ ) '  • J j g £ $  ( * X » )  

- ^ ■ ( T / . .8)e- < - - ^  • £ ^ 5  < ^ r ’

Wn"
I2 ■ • (21)

")7

+ G i

:<K »)
(221)

- =  + i 2 e a o £ p T / u J B l  y  R  )  2 1 )

d r  tUJB , „ X '(1 ,H y\L

E
M '  p ."  y ! "  p " "

i e4d y—y ~

H"-£q ^1 +  |Mo| fu^B n'tn"' 

. ( 221)

Finally, we have for the third-order DFWM intraband polarization:

f f W - » - £ a e { E 5 „ ( 4 ) <2211̂ '
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(3.122)

-uJ .")T

(3.123)

(3.124)
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3.6 Equations o f m otion using Factoring

A simplified set of equations can be obtained if one is willing to  simply factor the above third 

order equation. If we assume that we can write

then we obtain the following equations of motion:

U.T 1 pi (XqHLO Q

.(IEt h z  (K„>)W  (3.126)- i -
fkdB

/  t \ (2)

a0fuujB

■ (3-127^

, / t \ (2i)

i r  -  - ^ S ^ f ) + - ie i{T ' U B y ^ )T

+i ^ n < i . £ (g „ „ ,  ( 4 ^ ) l2I>
B

^ATjjAT^y215 (3.128)
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|M  |2 H  G ^ ' y Y ^ , , "
fi’n" fi>" n""

i i r* t  • '̂intro ‘IUjJ (3.129)

where

Eintra = =  - j ^ j j  ^  ( K ^ , K e‘fo"+<V»)T (3.130)
 ̂I •‘“ 01 fi"tfi"'

is the intraband field generated by the oscillating excitons. Note tha t the last term in the 

third-order equation factors into the intraband polarization times the usual THz dipole factor.
/  t t \ ( 22)Note that there are now two fewer equations, as the second order equation for ( K ^ K l ) (Eq.

/ . t \ (221)
(3.121)) was only required in the calculation of iK l .K ^ K ^ A  ,(Eq. (3.122)).

This factorization is physically reasonable as it allows one to more readily see the driving

forces behind the third order polarization, the intraband polarization, and the THz field created
£2)

by the exciton dipoles. In our system of equations,  ̂K represents the creation of excitons

/  t \ (2l)due to the optical field, while ( K ^ K ^ )  indicates tha t an exciton with an electron-hole

separation denoted by y 1 is destroyed, and another, with its separation indicated by y  is created.

This can also represent a change in a given exciton’s internal state, from y! to y.  On the other 
/ t t  \ (22T)hand, , representing the destruction of one exciton and the creation of two

more, cannot be easily understood in terms of simple physical processes, even though it is
/  t \ (22T)important to the evolution of in the full system of equations. Thus, from a physical

standpoint, it is reasonable to factor the third order term into two parts. As we shall show, the
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factorized equation generally agrees well with the full system of equations.

From a  computational standpoint, this factorization is a good thing as well. The two

equations which are removed are two of the higher order equations. Each of the first order
/  t \ (22T)equations, as well as the equation for ( )  , actually represents a  system of N  coupled

equations, where N  is the number of states in the modeled superlattice. The second order
/  t t \ (22T)equations each have N  equations associated with them, and (K ^ K ^ K ^ n  ) has AT3. By 

using the factorization, we reduce the number of equations which m ust be solved simultaneously 

from N 3 +  2N 2 +  3 N  to N 2 +  3N .
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Chapter 4

R esults and Discussion

In this chapter, we examine the results of the calculations done. We deal with the calculation of

X p f1 and its effects on the overall DFWM intensity. We then examine the results obtained

via the full system of equations, and compare them to other experimental results. At this point,

we then compare the factorized version of our system of equations to the full system, in order to

determine whether the factorization is a  valid one. First, however, we will detail the parameters

of the superlattice which we modeled for this calculation.

The superlattice modeled consists of 21 periods of 84 angstroms (67 angstrom wells, and

17 angstrom barriers) each, and is subjected to a static field of 15 kV/cm, for an eFd  value of

12.6 meV. The exciting laser pulses were set to a  point midway between the p =  0 and p =  — 1

transitions for this superlattice, at an energy of 62 meV. They were modeled as Gaussians with

a temporal FWHM of 128 fs. The peak field strength associated with the two pulses was 1.9

M V/m, and the relative phase between them was set to be 0. The other material properties of

the superlattice are the same as those given in Dignam and Sipe[35]. The interband dephasing

time was set to be 10, the intraband dephasing time as 15. All these dephasing times are in
/  t t \ (22)units of 1 / l u b - For the unfactored version, the dephasing time associated with )

/ . . v (221)
was 5. For the third order equation, , the dephasing times were 10 for the

diagonal elements, and 6 for non-diagonal ones. Diagonal elements are those for which p  = p " .

Before presenting the results of the calculations, we first present the expressions for the 

quantities that will be calculated. The central quantity is the time-resolved DWFM intensity.
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This is proportional to the square of the optical field in the 2k2 — Indirection averaged over 

times on the order of the optical period. Since for short propagation distances, the optical 

field is proportional to the interband polarization, instead of calculating the true measured 

intensities, we instead calculate quantities derived directly from the interband polarization that 

are directly proportional to these intensities. Thus, for the time-resolved DFW M (TRDFWM) 

signal, we obtain:

* rit/uc , - ,2
T R D F W M (t)  =  ^ J  | p S W |  dt (4.1)

(4.2)
e2

2 cP clq

The time-integrated DFWM (TIFDFW M ) signal is simply given by the tim e integral of equation 

(4.1), i.e.:

T I  D F W M  = f  T R D F W M (t)d t. (4.3)
J  —  O O

This quantity greatly depends on the delay time between the two optical pulses, r 21 =  T2 — Ti.

Finally, the spectrally resolved DFWM (SRFWM) signal is given by taking the absolute 

value squared of the Fourier Transform (FT) of the third order interband polarization:

S R D F W M ( uj -  ujc) =
e2

2d?a.Q E (221)
e (4.4)

where denotes the FT. In practice the FT  is obtained by using a discretized Fast Fourier

Transform routine.

4.1 Phase Space F illing for th e Is Excitons

As was discussed in the previous chapter, in the dimensionless form, phase space filling is 

determined by the matrix Y £ ?  which is given by the following for Is excitons.

Y ^ , , ,  =  £  Dlt ' Df D?'Df m • F  (A*, Xe) ■ (4-5)
a ° i,v
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These Y  parameters describe phase-space filling. This reflects how much of the superlattice

volume actually contains excitons. In Figure 4-1, we have plotted with y  =  y'"  , and

y ' =  y " . This was done for a  system with 41 states. One can readily see that the value of

Y^f^„, increases rapidly as either pair of coefficients moves away from the central value of 0.

This is due to the weaker binding of these states, which leads to them being more localized in

phase space. This causes them  to block phase space more effectively then their more-tightly

bound counterparts. It is therefore expected tha t phase-space filling be more im portant for

those states which undergo excited in-plane motion than for the Is states studied here. This

should be kept in mind for any calculation involving these states. Also, Y i s  symmetric

about the line where all four indices are equal, i.e., the value of Y £ f ,,, is unchanged if these
2 1 1 2two pairs are interchanged, i.e. ,3^ '2 =  Y2 i . This is due to the fact that is equal to

F  {Xe,Xe) - If the indices £ and £! are switched around in equation (3.62), you can see tha t the 

numerator and the first term  of the denominator have their signs reversed, whereas the second 

term remains unchanged.

568.8 -  650.0
487.5 -  568.8 
406.3 -  487.5 
325.0 -  406.3
243.8 -  325.0
162.5 -  243.8 
81.25 -  162.5 
0 -  81.25

Figure 4-1: A plot of Y ^ f ,,, for a 41 state system, where y  =  y 1", and y! =  yl
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4.2  The Im portance o f Phase Space F illing
, t \(22l)

The equation of motion for (K(±)  t equation (3.123), has several terms in it. The second 

term , shown below, is referred to as the phase-space filling term, because it is the only one

which contains Y £ ,f

.2ea0£ Z { T / u B )t-
hu>B J 2  (4.6)

W hen these equations are solved numerically, it is found that this term  is significantly smaller 

than  the other terms in the equation. The following series of graphs, Figure 4-2, show the 

absolute differences between the values obtained for the DFWM intensity with Yfif^,,, included, 

and without, normalized to  the average intensity of the DFWM signal. They are plotted for 

several different pulse tim e delays. They all reveal a similar occurrence. There is a very tiny 

difference immediately a t the beginning of the second pulse, and then the two are identical. 

As you can see by the amplitude of the normalized ’spike’, the difference is very small in 

comparison to the signal strength, the largest being 13 orders of magnitude smaller than that 

of the signals it arises from. This shows that the phase-space filling term  has a negligible effect 

on the intensity of the signal, and can be safely removed without any loss of accuracy. This 

is due to the fact tha t the other source term for P ^tJJ , the intraband polarization, is so large 

in comparison. Even with a small exciton density, the intraband polarization terms dominate 

over the phase-space filling. The bias placed on the superlattice by the external electric field 

creates a macroscopic intraband polarization, which is not the case in bulk semiconductors. It 

should also be noted th a t the removing of the phase space filling term  increased the speed of 

calculation by a significant factor, as the number of iterations needed to calculate this term 

rises as the number of states to  the fourth power.
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Figure 4-2: Differences in calculated DFWM signal between calculations done with 

phase-space filling included, and without. These were done for pulse time delays of: (a) 0, (b) 

5, (c) 10, (d) 15, and (e) 20, where time is in units of 1 / l j b -
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4.3 R esults o f th e  Full System  o f equations

In this section, we will analyze the results obtained via the full system of equations. We will look

at the spectral power density of the system and the absorption spectrum associated with the
/  + \ (22T)modeled superlattice. We will then examine the time evolution of ( Kj i )  via Time-Resolved 

DFWM spectra. Finally, we will show the Time-Integrated DFW M plot.

4 .3 .1  A b s o rp t io n

Figure 4-3 shows the calculated spectrally resolved linear absorption for the superlattice struc­

ture described at the beginning of the chapter. If we make the common assumption tha t the 

propagation distance of the pulses is much less than the wavelength of the light, and tha t the 

polarization is approximately spatially constant, then we can calculate the absorption via the 

following expression[45][40]:

=  (4.7)
|A(u/)|

where

and

47TW2

“  < 4 ' 8 )

A(u) =  r S ( t ) e - ^ dt, (4.9)
J —OO

PinterW  = H  P i n t e r (4.10) 
J  —OO

W f l  =  J f R e | ^ ^ ( ^ ) (I)e" ' ‘ } ,  (4.11)

where u>c is the central frequency of the laser pulse. This gives identical results to the exciton 

curve in Figure 1 in Dignam[40]. Each peak represents the absorption energy associated with 

a specific exciton state. You can see tha t the excitonic WSL energy spacings, given by the 

distance between two adjacent peaks, are not equal. This is due to the electron-hole binding
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energy for that state, i.e., that particular electron-hole separation distance (nd). This has the 

effect of causing the energy spacings to increase as the WSL index increases.

n=-1 n=0 n=1100 -

n = -2<o
'c
3

n =2

-2 0 21 1 3 4

Angular frequency, in units of coB

Figure 4-3: Absorption spectra as a function of angular frequency for the modelled 

superlattice. The central frequency of the laser is at 62 meV.

4.3.2 Third Order Spectral Power D ensity

The plot below, Figure 4-4, shows the spectral power density for our system for several pulse 

delays. You can see 6 peaks here, each approximately a distance of uib apart, similar to that 

shown in the absorption plot, Figure 4-3 . Each of these is associated with an excitonic peak for 

a Is exciton with a different electron-hole separation. Also, the power density drops as the time 

delay between the two pulses increases. In experimental results it was found tha t the peaks 

shifted in frequency with delay time. You can see tha t the peaks in Figure 4-4 do not shift in 

frequency as the time delay changes. This is to be expected, as our calculations are only done 

to third order, and the oscillation of the peak frequencies is a  phenomenon which is observed 

only when higher order calculations are performed.
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Figure 4-4: Power spectrum calculated for the modeled superlattice
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4.3.3 T im e-Integrated D F W M  signal for th e  m odeled SL

In Figure 4-5. the T1DFWM signal is plotted versus pulse time delay for the superlattice 

modeled. This is the same quantity as is given in 2-6 from the experimental results of Feldmann 

et al.[3]. You can see two peaks after the  initial decay, at time delays of approximately 7 and 

14. These correspond to time delays of 0.37 and 0.73 ps, respectively. These peaks represent 

when Bloch oscillations occur. At these delay times, the electron is able to traverse the entire 

Brillouin zone and return to it’s initial s ta te  during the time between the first and second pulse. 

The Bloch oscillation period obtained via equation (2.26) is equal to 0.34 ps, which is in good 

agreement with our calculated results.

0.00007 -i

0.00006 -

0.00005 1

&
c  0.00004-
0
c

0.00003 -

Q  0 .00002-

t-
0.00001 -

0 . 0 0 0 0 0  -

0 5 10 2015

Time Delay units of 1/coB

Figure 4-5: TIDFW M  signal as a function of pulse time delay for eFd  =  6.2 meV.

4.3 .4  T im e R esolved  D FW M  Signal

In Figure 4-6, The Time-Resolved DFW M signal is plotted as a function of time. This is done 

for several different pulse time delays, ranging from T2 — T\ =  —10 to T2 — =  10, where

the times are given in units of 1/u>b • You can see that in each case, there are a number of
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oscillations, which occur at more than  one frequency. These are due to beating between the 

frequencies associated with each excitonic state. It should also be noted that each of these 

double peaks occurs at intervals of approximately 7 time units, which corresponds to the Bloch 

oscillation time observed in the previous section. Also, the amplitude of the signal drops off 

as the absolute value of the time delay increases. This is due to increased dephasing of the 

polarization induced in the superlattice by the first pulse as the time delay between the two 

pulses increases.
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Figure 4-6: Logarithmic plots of the time evolution of the Time-Resolved DFW M signal, 

These are done for five different pulse time delays, which are: (a) -10, (b) -5, (c) 0, (d) 5, (e)

10. All times are in units of 1 /u g .
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4.4 C om paring The Factored and U nfactored Versions

In the previous chapter, we created a simplified version of the system of equations by factoring 
/  t t \ (22l)the third order term  ( K ^ K ^ K ^ n )  into a product of a first and second order term, using 

the following:

=  ( K l f  ( K X - r  '  < 4 - 1 2 >

By using this factorization, we were able to  remove the need for two of the equations in the
/ . f \ (221) / t + \ (22)

system: , equation (3.122), as well as { K ^ K ' A  , equation (3.121). This

section deals with the validity of this approximation.

The following series of graphs, Figure 4-7, shows logarithmic plots of the Time-Resolved 

Degenerate Four-Wave Mixing intensity (TRDFW M ) for five different time delays, ranging 

from T2 — T\ =  —10 to 7"2 — T\ =  10, where the times are given in units of 1/u>b  ■ As you 

can see, there is good agreement between the factored and unfactored results in all cases. 

The factored system of equations seems to lead to smaller values than  the unfactored version, 

however, the shape of the curves is the same in all cases except for the time delay of 10.
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Figure 4-7: Logarithmic plots of the Time-Resolved DFWM signal, showing the difference 

between the factored and unfactored system of equations. These are done for five different 

pulse time delays, which are: (a) -10, (b) -5, (c) 0, (d) 5, (e) 10. All times are in units of 1 /u g .

Figure 4-8 shows the Time-Integrated Four-Wave Mixing intensity for both the factored and
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unfactored versions plotted against time delay. Again, you can see that there is good agreement 

between the two versions.

Unfactored
Factored0.00007

0.00006

0.00005

&
c  0.00004
0)c

0.000032
£
Li.q  0.00002
I-

0.00001

0.00000
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Time Delay ( t- t ,) , units of 1/coB

Figure 4-8: Comparison of Time-integrated DFW M  signals for the factored and unfactored

versions of the system of equations.

It should also be noted that using the factored version significantly speeds up the time 

required to perform a calculation, since the two equations which are removed are two of the 

four higher order equations.
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Chapter 5

Summary

In this thesis we developed the first detailed numerical calculation of Degenerate Four-Wave 

Mixing in a biased Semiconductor Superlattice. This calculation was done to third order in the 

optical field using an exciton basis.

We found tha t the effects of phase-space filling on the calculated DFWM signal are neg­

ligible. A calculation done without the phase-space filling terms showed only an very tiny 

difference when compared to the calculation done with the phase-space filling terms included. 

This difference occurred at the onset of the second pulse, and aside from this discrepancy, the 

two versions were identical. The size of the largest difference, after normalizing to the average 

DFWM signal, was on the order of 10~13. This was due to the fact tha t for biased systems such 

as the one we Eire dealing with, the effects of the intraband polarization on the FWM signed is 

generally much larger than  the effects of phase space filling. This is quEditatively different than 

what we find in a bulk system. This allowed us to remove the phase-space filling term from the 

system of equations entirely.

An examination of the spectral power density showed several peaks associated with excitons 

of various electron-hole separations. The frequencies associated with these peaks were stationEiry 

with respect to the pulse time delay, because in order to model those effects in a third order 

calculation, the term s required are actually fifth order, and those terms were dropped.

Finally, we presented a fEictored version of the system of equations used. This was created 

by factoring the term s to third order in the electric field into a product of a first and second 

order term. In doing this, we were able to  reduce the number of equations needed to calculate
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/  t \<221)( Kjj,) from six to four, by removing the third order equation, and one of the second order 

ones. We then compared this factorized version to the original, and found that they produced 

similar results, indicating th a t a factored approach is likely acceptable in most cases.

5.1 R ecom m endations for further S tu dy

In the program used to calculate the third-order DFWM, provision is made for the superlattice 

to be subjected to a THz field, in addition to the static electric field. An obvious course would 

be to examine the effects of the THz field on the results obtained, in order to determine if our 

formalism holds up under those circumstances.

A second course of action would be to extend our treatm ent to  higher orders. This would 

allow us to examine more of the nonlinear effects present in this system.

We also only considered the ground state of the two-well exciton Hamiltonian when deriving 

our system of equations. If we include the excited in-phase states as well, we should be able to 

perform direct quantitative comparison to experimental results.

Another property which is not considered in our system is scattering which occurs due to 

scattering of the electrons in the system by phonons. Including this into the calculations should 

also help to bring them more in quantitative agreement with experimental results.
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