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Abstract

Resonant power converters have gained increased attention in industry due to vari-
ous advantages over conventional pulse width modulation (PWM) converters. Resonant
converters have improved transient response, reduced switching losses and stresses, re-
duced equipment size and weight and reduced electromagnetic interference (EMI). In this
thesis, series resonant converters (SRC) in variable and constant frequency topologies are
analyzed using state-space approach for effective control. The design and implementation
of a practical optimal trajectory control (OTC) scheme is shown. Experimental results
are presented to demonstrate the performance of the proposed control scheme.
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Chapter 1

Introduction

1.1 Power Electronics

Power Electronics is a branch of electrical and electronic engineering concerned with the
analysis, design, manufacture and application of power converters. It covers a wide range
of electronic circuits in which the objective is to control the transfer of electrical power
from a source to a load.

Power electronics has various applications in industries, such as aerospace, telecom-
munications, etc [1, 2]. The power conversion in different applications can vary from a
few watts to a few megawatts. The major source of inefficiency in power conversion is
energy loss in the form of heat and the consequent requirement of large heat sinks and
good ventilation facilities. Because energy usage and loss represent a contribution to the
cost of all products and services, power converters must be made as efficient as possible
to satisfy the total application requirements. Efficiency has always been a cardinal con-
sideration in the design and application of power conversion schemes, especially for high
power conversion.

In energy conversion, linear active electronic devices and regulators are notoriously
inefficient. Therefore, recent research in power conversions is concentrated on switched
mode power (SMP) conversion (3, 4]. In switched mode power supplies (SMPS), switches
are used. These switches ideally carry current at zero voltage while closed and withstand
voltage at zero current while open. Practical switches do not approach the ideal, but are
close to the ideal approximation of no losses compared with linear devices. Thus, most
practical power converters use switches as the active devices to make power conversion
efficient. Therefore, compared to linear mode power supplies, SMPS have a higher effi-
ciency. Moreover, SMPS also have a higher power density due to their high frequency
of operation and consequent reduction in size of components. In this thesis, two DC-DC
SMPS converters are studied from the point of view of their control to regulate output
voltage.
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1.2 DC-DC Conversion

Power conversion requires changing the nature of electrical power delivered to a load as
compared to that obtained from the source. In DC-DC conversion, an unregulated DC
voltage is converted to a controlled DC voltage level. There are a variety of circuit designs
and implementations for DC-DC SMPS. But there are only two basic converter topologies:
step-down converter and step-up converter. Other topologies are combinations of the two
basic topologies [1, 2, 3, 4].

As the name implies, a step-down converter produces a lower average output voltage
than the input voltage level. The output voltage can be controlled by changing switch
on-time using a pulse width modulation (PWM) circuit.

Unlike step-down converters, a step-up converter topology is capable of providing an
output voltage that is greater than the input voltage. The operating scheme of step-up
converters is the same as step-down converters, that is, the output voltage is controlled
by varying the duty cycle of a switch using PWM.

Step-down and step-up converters are two basic topologies of DC-DC switching mode
converters. Based on these two topologies, a number of topologies can be constructed.
For example, buck-boost converter is a cascade combination of buck and boost converters
(1, 2, 3, 4]. Fly-back and Ciik converters are derived from the buck-boost converter(l, 2,
3, 4].

It is necessary to mention that both of the basic topologies can only transfer energy
in one direction. If bidirectional transfers of voltage and current are needed, a full bridge
converter can be used, where both voltage and current can be reversed [2, 3]. If both
higher and lower output voltage compared to the input are necessary, or negative polarity
output compared to the input is desired, then the buck-boost or Ciik converters should
be used.

1.3 Resonant Converters

Conventional DC-DC conversion as considered in the previous section has some draw-
backs, such as high switch losses and stresses, high EMI, low efficiency, etc. By using L-C
resonant circuits in the main converter circuit and appropriate zero-current-switching
and/or zero-voltage-switching strategies as discussed in Section 1.3.1, these drawbacks
can be overcome. Because LC resonance is always required, these kind of converters are
broadly classified as resonant converters [1].

1.3.1 Advantages of Resonant Converters

The objectives of switch mode converter design are to obtain high efficiency and high
power density. To increase power density, the switching frequency must be increased. The
benefits of operating with a higher switching frequency include(l, 3, 4]: high power density
and efficiency, reduced equipment size, reduced EMI and improved transient response, etc.

However, these benefits have to be traded off against some drawbacks][l, 3, 4]. In the
conventional converters, the switches are operated and required to turn on and turn off

2
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the entire inductor or load current during each switching. This is termed hard-switching.
Due to the large di/dt, dv/dt and finite turn on and off time of the switches, this results in
increased switching losses, increased electromagnetic interference (EMI) and high stresses
on switches. The drawbacks worsen as the switching frequency is increased to reduce
converter size, weight and increase power density, consequently reducing its efficiency. To
get the benefits of high operating frequency, these drawbacks associated with conventional
switch mode converters must be overcome.

The use of resonant converters minimize the effects of these shortcomings. Generally
resonant converters use some forms of LC resonant circuits to produce oscillating load
current and voltage, thus provide the opportunity to change switch states at zero current
through switches and/or zero voltage across them. This strategy is called zero-current-
switching (ZCS) or zero-voltage-switching (ZVS) respectively [1]. In contrast to hard-
switching, this is termed soft-switching.

In ZCS switching mode, LC tank circuit is used to produce oscillating current. By
designing an appropriate logic circuit, a series of switching signals are produced to turn
on/off switches at zero current. Such a converter has minimal switch losses, stresses and
EMI. ZCS switching mode will be used in the two resonant converters of this thesis. In
both resonant converters of this thesis the resonant tank circuit uses a series connection
of an inductor and a capacitor. One converter is operated as a variable frequency series
resonant converter while the other is a fixed frequency series resonant converter.

In ZVS switching mode, LC tank circuit is also used to produce oscillating voltage. A
logic circuit can be designed to produce switching signals to turn on/off switches at zero
voltage. This converter can also minimize switch losses, stresses and EMI as well.

Based on ZCS and ZVS switching strategies, resonant converters realize the advantages
(1, 9, 10, 16]sought after for switched mode supplies. For example:

1). Increased power density and reduced equipment size and weight

2). High efficiency and fast transient response

3). Reduced EMI

4). Reduced switching losses and stresses than conventional
switched mode converters with hard switching

Since switches change their states when the voltage across them or current through
them is zero, resonant converters overcome the drawbacks of conventional DC-DC con-
version. Because of this significant characteristic, resonant converters are widely studied
and applied for high power and high frequency operating in industry [10].

Conventional Pulse-Width-Modulation (PWM) converters are also broadly employed
in industry. However, as mentioned earlier, one of the major shortcomings is that the
switching losses associated with the turn-on and turn-off of switches increase with switch-
ing frequency. Another major drawback of such converters is that high frequency har-
monics due to the quasi-square switching current and/or voltage waveforms produce high
level of electromagnetic interference (EMI). Therefore, conventional PWM converters are
used in low and medium power conversion applications [13].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3.2 Resonant Converter Control Scheme

In PWM converters, the output voltage is regulated by directly controlling the energy
input to the slowly responding output filter by modulating the duty cycle of switches.
Therefore, the PWM scheme is simple, straight forward and easy to implement in a
feedback configuration. The dynamic properties of the converter are easily predictable
and dependent upon the filter characteristics and duty cycle control law [8].

In resonant converters, on the other hand, two sets of energy storage elements are
present: resonant tank circuit and output filter. The output voltage is controlled indirectly
through the control of resonant tank energy. Due to the presence of resonant tank and its
fast transient response, the control of resonant converters is considerably more complex
than that of PWM converters [8].

Methods of resonant converter control are surveyed and analyzed in (8] in which dif-
ferent control methods are identified and their relative performance evaluated. Notably
optimal trajectory control is used in [9]. state-space trajectory control is used in [12],
and phase control is used in [15]. In these references, simplified solutions were presented
in order to reduce the control complexity. In this thesis, the optimal trajectory control
method [5, 6, 7, 8, 9, 13] is explored to analyze and implement control for a resonant
converter in variable and constant frequency operation.

1.4 Optimal Trajectory Control

The optimal trajectory control of variable frequency series resonant converter proposed in
[8] is based on state plane analysis [7] of the state variables of the resonant tank circuit:
the inductor current and capacitor voltage. It uses appropriate state variable trajectories
in a two-dimensional state plane as its desired trajectories. The control objective is to
determine and switch the power switches at instants which would force the state variables
to track their optimal (desired) trajectory in minimum time [9]. With this objective, the
transients are kept to a minimum and the system reaches its steady state in minimum
time with respect to these variables. Also the voltage and current swings are kept within
bounds. However, as evident from [9], the optimal trajectory control structure is nonlinear
and complex to implement. Its performance relies heavily on system parameters which
can change during operation. In this respect, the OTC scheme as discussed in (8, 9] is
not robust.

In [5], the dynamics of the variable frequency SRC operating at below resonant fre-
quencies is further explored to improve the robustness of optimal trajectory control. In
the process of simplification, the inherently nonlinear optimal trajectory control is shown
equivalent to a modified form of capacitor voltage control with a pseudo-linear form. The
simplified structure is shown to exhibit the decoupled dynamic characteristic of the SRC
under optimal trajectory control. The theoretical results of [5] lead to a multirate control
design which is presented and implemented in this thesis on an experimental SRC. Exten-
sions of the results to above resonant frequency operation of the variable frequency SRC
is also carried out in this thesis. Simulation and experimental results are presented and
compared. The results demonstrate the superior dynamic performance of the proposed

4
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method with lesser implementation complexity. Furthermore, the controller so obtained
is independent of the system parameters which are subject to change during operation
and is therefore robust to changes in these parameters.

In [6] optimal trajectory control of a fixed frequency series resonant converter is pro-
posed and simplified along the lines of [5]. Comparison of this method to other methods
of control of the fixed frequency series resonant converter is made through simulations.
Experiemental results, verifying the conclusions in [6] are lacking in the literature. This
thesis verifies the theoretical conclusions of [6] experimentally on a fixed frequency series
resonant converter.

1.5 Power Semiconductor Switches

In recent years, the field of power electronics has experienced a large growth. One of the
reasons is the significant improvement of voltage and current ratings of power semicon-
ductor devices and their faster switching-on and switching-off times. Switching frequency
is one of the important considerations in choosing switches. Other characteristics such as
thermal effects, ease of control and cost must also be considered [1].

In the experimental aspects of this thesis, MOSFETs (IRF540) are used as power
switches. MOSFETSs are voltage-controlled devices. This means, to keep MOSFETs in
on-state, a continuous application of a gate-to-source voltage Vs is required. To turn
MOSFET on, Vgs must also be higher than a threshold value V7.

As discussed above, MOSFETs are used as switches by controlling Vgs. If Vg5 is lower
than the threshold value V1 (2V for IRF540), MOSFETs are in off-state. Otherwise, if Vs
is significantly higher than Vr (10V for IRF540), MOSFETs are in on-state. This principle
of operating MOSFETSs poses the switching objective: a fast increasing or decreasing gate-
to-source voltage is required to minimize switching time. Since the gate-source circuit is
capacitive, the gate drive current determines how fast the gate-to-source capacitance is
charged and discharged. The charging and discharging speed of gate-to-source capacitor
indicates the rate of change in gate-to-source voltage. In other words, if a shorter switching
on or off time is required, a fast changing large gate current must be supplied using the
gate drive circuit. The detailed logic of gate drive circuits for the switching on and off of
MOSFETS in this thesis are given in Appendix A.1.

ZCS and ZVS can reduce switch stresses. However, voltage spikes and oscillations
across MOSFETs are always there during switching on and off due to stray inductances
and the currents stored in them. In high current operation, the voltage spikes are very
large and maybe higher than the maximum rating of drain-to-source voltage (100V for
IRF540). These high spikes may damage the MOSFETs. To protect the MOSFETs, a
snubber circuit can be used to bypass such currents during MOSFET turn off. Following
preliminary testing as discussed in Appendix A.2, no snubbers were used in the resonant
converter circuits of this thesis.

(%4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.6 Thesis Outline

As discussed in Section 1.3, resonant converters can overcome the drawbacks of conven-
tional switched mode DC-DC converters. By using the modified optimal trajectory control
of [5, 6] on series resonant converters, continuous measurements of inductor current is no
longer required. Consequently the control complexity for series resonant converters is
simplified and the system is robust to circuit parameter variations. The main contribu-
tions of this thesis are to experimentally evaluate and verify the theoretical and simulated
results in [5, 6] thus greatly enhancing the applicability of these results.

Chapter 2 studies in the state-plane, a half-bridge series resonant converter in which
the frequency of operation is variable with load. The application of modified robust op-
timal trajectory control along the lines of [5] is developed for this circuit in two modes
of operation: below resonant frequency and above resonant frequency. In the prior lit-
erature only the below resonant frequency operation has been studied. Both simulation
and experimental results are provided in this thesis to show the superior performance of
modified optimal trajectory control for below and above resonant frequency of operation
of the converter.

While the topology of the variable frequency series resonant converter studied in Chap-
ter 2 is simple and has most of the advantages of resonant converters it emits a wideband
of EMI due to its variable frequency operation. This wideband EMI is difficult to sup-
press. If the EMI is produced at a single frequency then it can be better suppressed more
easily. Chapter 3 therefore studies in the state-plane, a more complex full bridge series
resonant converter which is operated at a fixed frequency. Each of the two half-bridge
arms of this converter are switched at the same frequency in the steady-state but with a
phase shift between them. The phase shift controls the output voltage at various loads.

Optimal trajectory control for such fixed frequency series resonant converter was first
proposed in [6] and simplified along the lines of [5] in [6]. In Chapter 3, the theoretical
equations on maximum load that such converters can supply in steady-state, which were
obtained in [6], are experimentally confirmed. Both simulation and experimental results
on the performance of optimal trajectory control on such converters are provided in this
Chapter to demonstrate its robustness and superior dynamic performance.

Chapter 4 concludes the thesis with suggestions for future work.
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Chapter 2

Optimal Trajectory Control of

VF-SRC

2.1 Introduction

Optimal Trajectroy Control (OTC) scheme has been introduced in Section 1.4. In this
Chapter. OTC will be applied for the control of variable frequency series resonant con-
verter (VF-SRC). VF-SRC uses the half bridge circuit configuration shown below[16]
in Figure 2.1. It is capable of being operated below or above the resonant frequency
wo=1/V LC. These modes of operation are therefore called below resonant frequency and

above resonant frequency operation, respectively.

vs—— Q1/ & pi * 'y

. 4

CL - Rioad

———

—e

e h

Figure 2.1: Variable Frequency SRC circuit

In this Chapter, state-space analysis is used in the design and implementation of op-
timal trajectory control scheme for both below and above resonant frequency operation.
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2.2 State Plane Analysis of Series Resonant Converters

Traditional DC-DC power conversion has been based upon the use of switch mode circuits.
As mentioned in Section 1.3.1, PWM converters have some drawbacks. These drawbacks
become more significant when switching frequency is increased in order to increase power
density and decrease equipment size. In contrast with PWM converters, resonant con-
verters can overcome these shortcomings by using zero-voltage switching (ZVS) and/or
zero-current switching (ZCS). Study of the VF-SRC is based on state plane analysis which
is introduced in the next subsection.

2.2.1 State Plane Analysis

The analyvsis of resonant converters is normally accomplished by identifying the circuit
modes of the converter during a switching cvcle and solving the associated differential
equation with the appropriate boundary conditions associated with transitions between
these modes. This is a time consuming process for obtaining a steady state solution. A
simpler technique for obtaining steady-state solution is using the state plane diagram.
where the state variables in each mode are graphed by recognizing the associated steady-
state trajectories in each mode. Once the state plane diagram is obtained. the steady
state solution in the time domain for all modes of operation can be found quickly and
easily. as introduced in [7, 11]. State plane analysis is a simple and powerful method
to study resonant converters. It is widely used in the analysis and control of DC-DC
converters. as in [5, 6. 7, 10, 11]. To study resonant converters through state plane
diagram. state equations are studied to determine the switching strategy based on the
converter dynamics.

For the series resonant converter in Figure 2.1 with a single L and a single C. the
state plane is a two dimensional plane. In a second order system, by using the inductor
current and capacitor voltage of the resonant tank circuit as the two coordinates of the
state plane. both large signal dynamics and steady state operation of the converter can
he graphically represented on the state plane. To simplify the analysis, it is assumed that
the output filter capacitor C;, is sufficiently large so that the output voltage Vp measured
across Cy is constant over a complete switching cycle and the resistance of the tank circuit
is negligible. According to the direction of i;, four topological modes exist, as shown in
Figure 2.2.

- Asiy=ic in Figure 2.1 the following state equations, with i; and vc as state variables,
can be written for the topological modes of the circuit:

dvc _ 1. 9
& — C°% (2.1)
dig _ _.1_ .l 9
% = TLvetIVE (22)

In Equation 2.2, V¢ is the instantaneous DC voltage across the series inductor and ca-
pacitor in the topological modes shown in Figure 2.2. Vg is given in Table 2.1 for each
topological mode shown in Figure 2.2. Equations 2.1 and 2.2 can be represented in a
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Figure 2.2: Topological Modes of Variable Frequency SRC

Conduction mode Ve
Q1 conduction Vi -V
J D1 conduction Vi+ Vo
Q2 conduction -Vi+V
D2 conduction -V -V,

Table 2.1: Equivalent Circuit DC Voltage

matrix form by the following state equation for the VF-SRC circuit shown in Figure 2.1:

V¢ 0 1 7, 0
EHEER IR

Solving Equation (2.3) with initial conditions. the variation of the two state variables in
the time domain in any topological mode of this circuit can be obtained as:

ve = IpZpsin(wo(t - to)) + (Voo — VE)cos(wo(t — o)) + VE
Zoir = IppZocos(wolt —tg)) — (Voo — Vg)sin(wo(t — to))

where I is the initial inductor current on entering the topological mode, Vy is the initial
capacitor voltage on entering the topological mode, Z; is the characteristic impedance,
wp is the resonant frequency and ?g is the initial time at entry to the mode. To simplify
the solutions. all of the voltages are normalized by dividing by Vs, all of the currents are
normalized by multiplying by Zy and then dividing by Vs. Finally with y=wo(t —to). the
following normalized solutions can be obtained:

ven — Ven = Iponsin(bo) + (Voon — Ven)cos(6,) (2.4)
uun = Iponcos(6o) — (Voon — VEn)sin(6y) (2.5)

where the "N” in subscripts indicates normalized quantities.

9
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From Equations (2.4) and (2.3). the following Equation is readily derived:

irn? + (von — Ven)? = Ion? + (Voon — Ven)? (2.6)

From Equation (2.6), we recognize that the trajectories for the topological modes of
the VF-SRC represent a set of circles in the state plane of the normalized instantaneous
capacitor voltage vcn and inductor current i;x. The centers of these circles are deter-
mined by the instantaneous voltage across the tank circuit (Vgy) in the corresponding
topological mode. The coordinates of the centers in this plane are given by:

Q1 conduction (Vsy — Vo, 0) D1 conduction (Vsy + Vou, 0)
Q2 conduction (—Vsy + Vpn. 0) D2 conduction (—Vgy — Vpu, 0)

By combining the appropiate arcs of these circular trajectories into a state portrait,
the trajectory of SRC operation can be characterized for a given input voltage. output
voltage and load condition.

Note that in the above Vgy=1. but is retained as Vsy and not changed to 1 since in the
control aspects of the SRC, the actual input voltage Vs can change but the normalizing
voltage which acts as a numerical scaler does not change. Hence Vsy can change from 1.

2.3 Optimal Trajectory Control of VF-SRC

As mentioned in Section 2.1, the VF-SRC can be operated below or above resonant
frequency. In this Section, OTC scheme and control laws will be developed for both
below and above resonant frequency operation. In the next Section, the control laws will
be simplified and set into the context of the literature.

2.3.1 Control Laws

At below resonant frequency operation (ws < wp). the typical normalized capacitor voltage
and inductor current waveforms are shown in Figure 2.3, where i, is leading vcn and
four conduction modes are marked. Q1 turns off naturally when inductor current reverses
(turns negative in Figure 2.3).The current then flows through D1. In this continuous
mode, D1 conducts for a short time before Q2 is turned on. Similarly, when Q2 turns
off. D2 conducts for a short while before Q1 is turned on. In this mode of operation, the
switches turn off when the current through them naturally reduces to zero, but they turn
on at a finite current and at a finite voltage drop across them, thus resulting in switching
loss when the switches are turned on.

At above resonant frequency operation (ws; > wp), the typical waveforms are shown
in Figure 2.4 where i y is also leading vcy and four conduction modes are marked.
Compared with the previous below resonant frequency operation, where the switches
turn off naturally but turn on at a finite current, the switches in the above resonant
frequency operation are forced to turn off at a finite current, but they are turned on at
zero current. As shown in Figure 2.4, after D2 conducts for some time, when current
reverses naturally, Q2 is switched on and inductor current flows through it. Q2 is forced
to turn off a little later in the trajectory, thus forcing the negative inductor current to flow

10
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Figure 2.3: Waveforms of 7; and v¢ in Below Resonant Frequeney Operation

through D1. When the current again reverses direction, Q1 is turned on and is switched
off a little later in the trajectory forcing current to flow through D2.

Optimal trajectory control of variable frequency series resonant converter is based on
state plane analysis of the instantaneous inductor current and capacitor voltage [5. 7. 8. 9].
The state equation of variable frequency SRC and its solutions were given in Section 2.2.1.
From the normalized solution (Equation 2.6), we understand that the trajectory of state
variables in state plane diagram is a set of semi-circles with different centers depending
on different topological modes. The control objective is to force the two state variables
to track the desired steady-state trajectory in the state plane diagram such that it takes
minimum time from one steady state to another steady state. Figures 2.5 and 2.6 are state
plane. steady state trajectories showing the operation of SRC in continuous conduction
mode below and above the resonant frequency of the tank circuit for a normalized output
voltage Von=0.25 (Normalized by V) with R} ,,¢=0.22 (Normalized by Zp= \/ L/C). The
four centres in Table 2.1 are also shown in these two Figures.

For below resonant frequency operation in Figure 2.5, the optimal trajectory control law
determines using the desired trajectory of state variables when the switches(MOSFETsSs)
Q1 and Q2 are to be turned on into conduction. Q1 and Q2 are switched off at the instants
when the current through them reduces to zero naturally (ZCS). The radius r, measured
from a point on the trajectory to a corresponding center is continuously monitored and
compared with the desired radius R. The MOSFETSs are turned on when r<R, as shown
in Figure 2.5. In this Figure, r and R are marked only for the switching on of Q2. A
similar symmetrical procedure is followed for the switching on of Q1.

From Figure 2.5, we obtain Equations (2.7) and (2.8) which give the law for switching
Q1 and Q2 on at below resonant frequency [8, 9].

11
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Figure 2.5: Steady State Trajectory of Below Resonant Frequency Operation
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r? = (von + Vsn — Von)2 + i3y < R? For switching Q2 on (2.7)
r? = (veny — Von + Von )2 + 225 < R? For switching Q1 on (2.8)

Combining Equations (2.7) and (2.8), Equation (2.9) is obtained:
(ven + Vsy — Von)? +in? < R? (2.9)

For above resonant frequency operation in Figure 2.6. the optimal trajectory control
law determines using the desired trajectory when the switches Q1 and Q2 are to be turned
off. The switches are turned on immediately after the current in the corresponding diode
D1 and D2 respectively reduces to zero (ZCS). The radius r, measured from a point on
the trajectory to a corresponding center is continuously monitored and compared with
the desired radius value R. The switches are turned off when r>R, as shown in Figure 2.6.
In this Figure, r and R are marked only for the turning Q2 off. A similar symmetrical
procedure is followed in the turning Q1 off.

From Figure 2.6, we obtain Equations (2.10) and (2.11) which give the control law for
switching Q1 and Q2 off at above resonant frequency.

r? = (ven — Vsy — Von)?+ i3y = R?  For switching Q2 of f (2.10)
r? = (ven+ Vsn + Von)2 +i2y 2 R?  For switching Q1 of f (2.11)
Combining Equations (2.10) and (2.11), Equation (2.12) is obtained:
(ven + Vsn + Von)? +ily > R? (2.12)
13
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Equations (2.9) and (2.12) give the control laws for below and above resonant fre-
quency operation of the VF-SRC respectively. These control laws require continnous high
bandwidth measurement of inductor current, scaling it by Zo/Vs and squaring calculation.
Following [3]. they will be simplified in the next Section.

2.3.2 Design Considerations
Several issues from design perspective have to be considered as follows:

1. The optimal trajectory control provides fast response of the state variables once the
desired radius R is determined. However, in applications where the output voltage
V5 is to be regulated, it is difficult to determine R directly and instantaneously. R is
typically set by an outer control loop by sensing V4, comparing it with a reference V;ys
and processing the error through a controller. Hence the overall speed of response
of the SRC under optimal trajectory control is limited by the performance of the
outer control loop which in turn is influenced by the dynamics of the SRC’s output
section. This has not been considered in the literature [3, 6, 7, 8, 9, 12].

2. From Figure 2.5. the conduction angles of diodes and switches #p and 6y can be
calculated as follow. In triangle ABC in Figure 2.5:

a = 180- 00
B = 180-6q
p = Veon —Vsn — Von
R = Veon — Vv +Von
Therefore. the following results can be obtained:
cosbp = —cosa
cosbg = —cosfB
p = R-2Vy
AB = 2Vsn

From the above Equations and cosine rule for triangles, a and 8 can be given as:

(R —2Von)? + (2Vsn)? — R?
2(R — 2Von)(2Vsw)
(2Vsn)? + R? — (R — 2Vn)?
2R(2Vsn)

= —COSOD (213)

cos

cos 3 = —cosfg (2.14)

Rearranging the above two Equations, the following Equations are obtained:

VonR — Vsn? — Va2

0p = > 15
cosfp Vo (R - 2Ver) Below resonant frequency  (2.13)
Von? — Vsn? — V4
coslg = oy Vz: 7 ov R Below resonant frequency (2.16)
14
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Using the same approach, from Figure 2.6. the conduction angles at above resonant
frequency operation are obtained as below:

| 7 S22 '2
cosfp = L R +‘}Siva Vox Above resonant frequency (2.17)
Vsn? + Von® — Von R

Vsn (R — 2Von)

Above resonant frequency  (2.18)

(&0 9Q

The average rectified normalized cycle current. ;x| of the SRC under optimal tra-
jectory control can be calculated by integrating with respect to conduction angles
of diodes and MOSFETs. At below resonant frequency operation, the integral of
inductor current during Q1 conduction can be calculated as:

RVsy + Vsn? + RVon — Voa'

)
] = Rsinf#df = R(1 — cosfp) = 219
iLNg ./0 sin R(1 — cosfp) Von (2.19)
The integral of inductor current during D2 conduction can be calculated as:
- OD
iIND = /0 psinédf = (R — 2Vpn)(1 — cosOp)
RVsn — 2VonVsn — RVon + Ven® + Von? (2.20)

- Vsn

Therefore, the average inductor current in a half cycle is:

ILND + 1LNQ
9Q + 6p
2(R+ Vsn — Von)
0Q +6p

| |

Below resonant frequency (2.21)

Likewise, at above resonant frequency operation, the average inductor current in a
half cycle is:

iLND + ILNQ
6o +6p
- 2AR-Vsn = Von) Above resonant frequency  (2.22)
0q + ép

liw |

In Figures 2.5 and 2.6, for fixed Vo and Vsy, as R is increased, the switches are
turned on soon after the diodes conduct (in Figure 2.5) or turned off quite late before

15
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diodes conduct (in Figure 2.6). In both cases as R increases, only switches conduct
(6o approaches =), the diodes conduct for a very short time (6p approaches zero).
Thus fp + 0o approaches . Therefore, asymptotically for large R. the expressions
of Equations (2.21) and (2.22) become linear in R with a positive slope.

The frequency of the SRC at both below and above resonant frequency operation in
steady state is given by:

=0

3. In Figure 2.3, if 8p = =, it means that Q2 is not turned on until the diode current zp

falls to zero. On the other hand. if Q2 is switched on when ip=0. and conducts until
the current through it is about to reverse. then g = . Substituting §p = = into
Equations (2.15) or g = 7 into Equation (2.16), the minimum value of R for con-
tinuous conduction mode of operation in the steady state below resonant frequency
is obtained as R, = Vsny + Von- For this minimum value of R. from Equation
(2.21). [izn=2Vsn/7. This corresponds to a maximum load resistance (in Ohms)
of Rimar=VonZo7/2Vsn. For load resistances greater than this value. the SRC op-
erates in discontinuous conduction mode and the optimal trajectory control should
be augmented by an appropriate time-variant control to take over the operation of
the SRC in the discontinuous mode. At this maximum load resistance value. the
SRC in continuous conduction mode is operating in the steady state at its minimum
frequency of half the natural resonant frequency.
Likewise from Figure 2.6. for operation above resonant frequency the minimum value
of R is Vsy + Vyn as well. For this value of R, the entire steady state trajectory
coincides with the origin and therefore i, y|=0. This seems to allow for no load to be
imposed on the SRC but requires infinite switching frequency. Therefore, a minimum
load is needed for the SRC operating above resonance.

4. Expressions for the short circuit [izn] for the below and above resonant frequency
operation of the SRC can be obtained as (R+Vsy)/cos™!(=Vsy/R) from Equations
(2.13). (2.16) and (2.21) or (R—Vsy)/cos™}(Vsn/R) from Equations (2.17), (2.18)
and (2.22) respectively by setting Von = 0 in these Equations.

2.3.3 Implementation Issues

Analog implementation of the control law of Equations (2.9) and (2.12) is presented in [9].
This implementation extensively highlights the complexity of optimal trajectory control
of the SRC. The following factors contribute to complexity and poor robustness of the
direct implementation of Equations (2.9) and (2.12).

1. The control law has a nonlinear form. It needs continuous measurement of v¢c and i,
and continuous squaring operation of variables derived from the instantaneous values
of vc and i;. The sensors measuring ve and iy should have a high slew rate (high
bandwith) and the multipliers performing the squaring operation should have large

16
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bandwidth. This greatly increases the cost of control. Conversely the achievable SRC
operational frequency is limited by the slew rate of the sensors and the bandwidth

of the multipliers.

N

. izx needs to be computed continuously by scaling the measured i; by the character-
istic impedance Z, of the resonant tank circuit. This requires precise knowledge of
the ratio of the parameters L and C of the resonant tank circuit of the SRC. More
significantly, during operation due to effects such as inductor saturation and thermal
effects. this ratio is prone to vary. contributing to poor robustness of this method.
A change in this ratio introduces significant errors which undermine the advantages
of optimal trajectory control.

To overcome the issues raised above, the control laws of Equations (2.9) and (2.12) will
be simplified in the next Section.

2.4 Modified Capacitor Voltage Technique

Control of SRC by using a linear capacitor voltage control law has been studied in [8§].
In this Section. it is shown that the optimal trajectory control law can be simplified
to a modified capacitor voltage control with a pseudo-linear form [5]. The proposed
simplification in [3] greatly reduces the implementation complexity of optimal trajectory
control for series resonant converter by avoiding continuous measurements and squaring
calculations of 7.

2.4.1 Robust Optimal Trajectory Control

As discussed in Section 2.3.3, the OTC studied in (8, 9] is not robust because it requires
continuous 1'c.7; measurements and exact knowledge of circuit parameters which are
subject to vary during converter operation. Also. 7; measurement at high frequencies is
costly. If this measurement requirement is eliminated then the scaling operation by the
characteristic impedance of the tank circuit of the SRC also vanishes from the OTC laws
and the resultant modified OTC laws will be robust. In this Section, the control laws in
Section 2.3.1 will be simplified to get rid of 7. . so that the modified OTC scheme does
not require high bandwidth measurement of current and is robust to circuit parameter
variations.

Control Law Simplificatijon for Below Frequency Operation

The semicircular shape of the trajectory during diode conduction and zero initial value
of the inductor current at the start of diode conduction can be exploited to simplify the
control law given in Equation (2.9). From Figure 2.5, any point on the trajectory when
D1 conducts can be described by:

(ven = Vsn — Von )2 +itn? = p° = (Veon+ — Vsn — Von)? (2.24)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Where Vox+ is the positive peak value of capacitor voltage. Therefore,

itn? = (Voons — Vsn — Von)? — (venw — Vsn — Von)?
= (Voon+ — Von)? = (ven = Von)? + 2Vsn(ven — Vieons) (2.25)

By using Equation (2.23). 7 x can be eliminated from Equation (2.9) for switching on
Q2 to obtain:

4Vsn(ren — Von) + (Voon+ — Vsv — Von)? < R? (2.26)
Likewise. the condition for turning Q1 on can be obtained as:
—4Vsn(ven + Von) + (Veon- + Vsn + Von)? < R® (2.27)

Where 1 con- is the negative peak value of capacitor voltage. Equations (2.26) and
(2.27) can be combined into a single switching rule given in Equation (2.28):

4Vsn(tven — Von) + (Vsn + Voxr— | Veon |)? € R? (2.28)

The + sign in Equation (2.28) applies to Q2 being turned on while the — sign applies
to QL. with | Veon | = | Veons+ | or | Veogn— |. the magnitude of the peak capacitor voltage
in the appropriate half cycle.

Control Law Simplification for Above Frequency Operation

From Figure 2.6. any point on the trajectory when Q2 is conducting can be described by:

(ven + Vo — Von)* +itn® = p* = (Veons + Vv — Von)? (2.29)

Using the same approach as above, iy x can be eliminated from Equation (2.12) by
using Equation (2.29) to obtain Equation (2.30) for turning Q2 off.

—4Vsn(ven — Von) + (Veon+ + Vsn — Von)? > R? (2.30)
Likewise. the condition for turning Q1 off can be obtained as:

4Vsn(ven + Von) + (Veon- ~ Vsn + Von)? > R? (2.31)
Equations (2.30) and (2.31) can be combined into a single switching rule given in

Equation (2.32):

4Vsn(tven + Von) + (| Voon | +Vsn — Von)? > R? (2.32)

18
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where — sign applies to Q2 being turned off while the + sign applies to Q1. with | Vcoa |
= | Veox< | or | Veoon- |. the magnitude of the peak capacitor voltage in the appropriate
half cyvcle.

In Equations (2.28) and (2.32), the normalized current i, x has been eliminated. Equa-
tions (2.28) and (2.32) will be referred to as modified capacitor voltage form of the OTC
laws. The reason for this name and the context of these Equations visavis the literature
is discussed in the next subsection. To implement the new modified capacitor voltage
control laws of Equations (2.28) and (2.32). there is no need to measure iy. \lore signifi-
cantly. there is no need to scale i; by Zp and hence the control law does not require the
precise knowledge of the circuit parameters L and C of the resonant tank circuit of the
SRC. This makes the modified capacitor voltage form of the OTC laws robust to circuit
parameter changes. However, the sign of 7y is still needed to determine whether Q1 or
Q2 is to be switched on or off. Obtaining sign of iy however is much more cheaper than
measuring it at every instant accurately.

2.4.2 Multirate Modified Capacitor Voltage Control Strategy

In this subsection. it is shown that Equations (2.28) and (2.32) can be thought of as a
multirate modified capacitor voltage feedback control strategy.

In Equations (2.28) and (2.32), we observe that during a half cycle of a trajectory. Veon
is a constant equal to the peak value of capacitor voltage at the start of the half cycle. In
such a half cycle, the dynamics of Vsy and Vpn can be neglected as the switching frequency
of the converter is much higher than the dynamics of Vgy or the filtered Von. Therefore,
within a half cycle, the left hand side of Equations (2.28) and (2.32) vary linearly with the
instantaneous capacitor voltage vcy. Consequently, the optimal trajectory control law of
[3] is a modified form of (instantaneous. linear) capacitor voltage control law studied in [8]
with a quadratic function of Von being added at each half cycle to the linear capacitor
voltage control law of [8]. Hence Equations (2.28) and (2.32) are referred to as modified
capacitor voltage control form of the OTC laws [5]. In the sense that the modification
to the linear control law is done once every half cycle. the optimal trajectory control law
has a pseudo-linear multirate form developed below.

The control law in Equation (2.28) can be expanded as:

4Vsn(tren) — 4VsnVon + (Van + Von)*+ | Veon P —=2(Vsn + Von) | Veon |< R?
The expansion can be simplified to:
4Vsn(xven) + (Vv — Von)*+ | Veon 12 —2(Vsw + Von) | Veon < R?
Letting K, = 4Vgy, K, = (Vsy — Von)? and defining a quadratic function fi(r) as

fi(x) = 2 — 2(Vsny + Vpn)x, then with f1(] Veon |) =| Veon 12 =2(Vsy + Von) | Veon |
Equation (2.28) can be written as:

+Kyven + Ko + f1(| Veon |) £ R?

The first term in the above Equation (Kjvcn) is the instantaneous linear feedback term
while f;(| Vcon |) is updated every half cycle. K, and K, are updated at a far slower
pace and can be considered as constants for the two previous terms of the Equation.
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Figurc 2.7: Multirate Control Strategy

The control law in Equation (2.32) can be expanded as:
4Vsn (tven) + 4VsnVon + (Vsn — Von)*+ | Veon 2 +2(Vsy — Von) | Veon |= R?
This expansion can be simplified to:
4Vsn(zren) + (Vsn + Von)?+ | Veon | +2(Vsn — Von) | Voon |= R?

Letting K7 = 4Vsn, Ko, = (Vsn + Von)? and defining a quadratic function fo(r) as
f2(r) = 1% + 2(Vsn — Von)z, then with fo(] Veon 1) =] Veon |2 +2(Vsn — Von) | Veon |-
Equation (2.32) can be rewritten as:

+RKven + R, + f2(] Voon |) = R?

As before, the first term in the above Equation (Kjvcy) is the instantaneous linear
feedback term while f5(] Veon |) is updated every half cycle. K,, and K are updated at
a far slower pace and can be considered as constants for the two previous terms of the
Equation.

The discussion above shows that both Equations (2.28) and (2.32) have a similar
multirate control structure depicted in the inner feedback loops of Figure 2.7.

In Figure 2.7, the inner loops for £Kvcn and K3, or K, are in continuous operation.
The third loop for f1(| Veon |) or f2(] Veon |) is updated at the beginning of each half
cycle. The outermost loop in Figure 2.7 is a PI controller to generate R based on V; and
Vres. The rationale for the choice of a PI controller for this loop is discussed in the next
subsection.

In the simulations reported later in Section 2.5.1, the outermost loop updates R at
the beginning of every half cycle while in laboratory implementations reported in Section
2.5.2, this loop is implemented with an analog PI controller in continuous time.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vet

Rbase

Vo + + ¥+ R
Kp+KTZX | AR

Figure 2.8: PI controller of outermost loop

2.4.3 Outermost Loop Controller

While optimal trajectory control gnarantees the stability of the SRC with reference to
the innermost and middle loops of Figure 2.7 assuming R is available. the controller in
the outermost loop in Figure 2.7 which computes R has to be designed properly using the
two final signals of interest in the SRC, V4 and V,;.

Assuming that the output capacitor C} is large. an adequate model of the output filter
stage of the SRC for discussing the design of the controller in the outermost loop is given
by the following discretized recursive equation [3]:

__T 1+ T in |
R.CL CL
In Equation (2.33), T is the nominal half period of operation of the SRC and n is the half

cyvcle number. R; is the load resistance.

From Equations (2.21), (2.22) and discussions following it in Section 2.3.2, we know
that fi;n] is related linearly to V, and R for large R. Using this knowledge and from
Equation (2.33) it now becomes clear that the outermost loop controller should have
a proportional controller with proportional gain so as to produce large changes in the
value of R for small changes in V, within stability limits. To ensure tracking of the
reference voltage V,.s. an integral controller is also needed. Therefore in this thesis. the
controller in the outermost loop is a PI zontroller depicted in Figure 2.8. K, and Aj in
Figure 2.8 are proportional and integral gains and can be chosen to achieve the desired
transient performance within stability margins of the SRC. R, in Figure 2.8 is a constant
parameter to offset R and allow the output of the controller to swing around Rpese. For
example, Ry.se can be chosen using Equations (2.21) and (2.22) to provide half the rated
load current under no control action. With this Rpese. AR assumes nearly the same range
of variation in both positive and negative directions for the full range of load.

(2.33)

Vo(n + 1) = Vp(n)[1

2.5 Results

The performance of the modified capacitor voltage control form of OTC as per Equations
(2.28) and (2.32) with the outermost loop under PI control (Figure 2.7) is studied in this
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Section first by simulations and then on an experimental SRC with the same nominal
parameters as that studied in the simulations.

2.5.1 Simulation Results

Before the control laws are implemented in the lab, they are simulated in a computer
using C programming language with the model of the SRC developed in Equation (2.4).
(2.5) and (2.33). Switches are considered ideal in these simulations. The resonant tank
circuit is assumed to have no resistance. The parameter values used in simulations are
listed in Table 2.2. In Table 2.2, all parameters are unnormalized. Normalized values of

appropriate parameters are indicated in brackets.

Vs 20V (1) Vo 5V (0.25)
L 88.6.H C 0.68uF

[ CL (Below) 470, F CL (Above) 170uF
Zo 11.46%2 (1) Jo (Resonant) 20.5kHz
R1oaa (Low Current) 2.50 (0.22) R1o0aa (High Current) 1.252 (0.11)
fs (Below) 13.9kH: fs (Above) 27.8kHz
Steady State Rigaq = 2.502 Steady State Rpoqaq = 2.502
[s Range (Below) 13.9~17.881KHz | fs Range (Above) 24.245~27 . 8KkHz
P gain (Bclow) 100 I gain (Below) 650000
P gain (Above) 100 I gain (Above) 550000
Rpase (Below) 31V (1.55) Rpase (Above) 24V (1.2)

Table 2.2: Simulation Paramneters for VF-SRC

Simulation of Below Resonant Frequency Operation

Figure 2.9 shows the waveforms of the simplified control law of Equation (2.28) at steady
state to determine the instants of turning the switches Q1 and Q2 on. In this Figure,
a = R? — (Vsn + Von— | Voon |)? and b = 4Vsy(tren ~— Von). According to the control
law, if a > b. Q1(Q2) will be turned on. By using this switching signal, the steady state
results in the time domain and in the state plane diagram shown in Figures 2.3 and 2.5
were produced.

Figure 2.10 shows the transient response of i; and vc in the state plane when load
resistance is decreased in a step fashion (Rroes from 2.5 to 1.252, Iy from 2A to 4A).
Figure 2.10 shows that it takes 2~3 cycles for iy and vcn to settle. Figure 2.11 shows
the corresponding transient in R. The ripple in R is a magnified version of ripple in the
output (scaled) voltage V3. The magnification occurs through the proportional gain of
the PI controller.

Figure 2.12 shows the transient of z; 5 and vcy in the state plane when load resistance
is increased (Rpoqq from 1.259 to 2.592, Ip from 4A to 2A). Figure 2.12 shows that it takes
2~.3 cycles for i.ny and vcn to settle. Figure 2.13 shows the corresponding transient in
R.

The transient of the output voltage is shown in Figure 2.14. From 0 to 3ms, the
simulated SRC is started using a function generator operating at a fixed frequency of
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Figure 2.13: Transicut of R (Below-Simulation-Decreasing load)

13.9kHz and with a load resistance on the SRC of 2.5Q. Qutput voltage does not track
the normalized setpoint Vsny=0.25. From 3ms onwards, modified capacitor voltage form
of optimal trajectory control takes over from the function generator. The PI controller
pushes Vj to the setpoint with a little overshoot. From 5ms to 6.5ms, There is a step load
change (I from 2A to 4A). From 6.5ms to 8ms, there is another load change (/o from
4A to 2A). During the load changes, the system is stable and transient time to settle is
about 0.5ms. This indicates that optimal trajectory control has very good performance
in the face of a 50% load change.

Simulation of Above Resonant Frequency Operation

The parameters used in the simulations of above resonant frequency operation of the SRC
are listed in Table 2.2.

Figure 2.15 shows the waveforms of the simplified control law of Equation (2.32) at
steady state to determine the instants of turning Q1 and Q2 off. In this Figure. a =
R? — (|Von | +Vsn — Von)? and b = 4Vsy(ven + Von). According to the control law, if
a<b, Q1(Q2) will be turned off. By using this switching signal, the steady state results
in the time domain and the state plane shown in Figures 2.4 and 2.6 were produced.

Figure 2.16 shows the transient of i; 5 and vcn in the state plane when load resistance
is decreased in a step fashion (R L. from 2.5Q2 to 1.25Q2, Iy from 2A to 4A). Figure 2.16
shows that it takes 4~5 cycles for iz and von to settle. Figure 2.17 shows corresponding
transient of total R.

Figure 2.18 shows the transient of iy 5 and vcx in the state plane when load resistance
is increased in a step fashion (Rpceq from 1.2592 to 2.392, Iy from 4A to 2A). Figure
2.18 shows that it takes 4~5 cycles for iznx and ven to settle. Figure 2.19 shows the
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corresponding transient in total R.

The transient of the output voltage for above resonant frequency operation is shown
in Figure 2.20. It is very similar to the below resonant frequency operation shown in
Figure 2.14. From 0 to 3ms. the simulated SRC is started using a function generator
operating at a fixed frequency of 27.8kHz and with a load resistance on the SRC of
2.502. Output voltage does not track normalized setpoint Vsn=0.25. From 3ms onwards.
modified capacitor voltage form of optimal trajectory control takes over the function
generator. The PI controller pushes V} to the setpoint with some overshoot. From 5ms
to 6.5ms. there is a step load change (/o from 2A to 4A). From 6.5ms to 8ms, there is
another load change (I from 4A to 2A). During the load changes. the system is stable
and the time to settle is less than 0.5ms. This indicates that optimal trajectory control
has very good performance in the face of a 50% load change.

Note that in the below resonant frequency operation, it takes 2~3 cycles for iz and
ven to settle. but in the above resonant frequency operation, it takes 4~3 cycles. This is
because the switching frequency is different. The time elapsed during the transients, 2~3
cycles in the below resonant frequency operation is approximately the same time as 4~3
cvcles in the above resonant frequency operation.

From state plane portraits and the traces of total R, it is evident that i x and ven
assume their optimal trajectory as determined by R very quickly. However, the number
of cycles taken by the response of Vyn to reach steady state is dominated significantly by
the time constant of the filter capacitor and load resistor. Moreover, the output voltage
is a capacitor filtered waveform. It always has ripples because of capacitor charging and
discharging. These ripples are magnified by the high P gains listed in Table 2.2. This
results in the ripples of corresponding R as shown for example in Figures 2.17 and 2.19.
Consequently. in Figures 2.10 and 2.12, 2.16 and 2.18, the trajectories have bands after
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Figurc 2.21: Waveforms of simplified control law(Bcelow-Lab)

settling down. This effect is nominal in the steady state.

2.5.2 Implementation

The variable frequency SRC operation model has been implemented in an experimental
prototvpe based on the logic diagram discussed in Appendix A.3.

Implementation of below resonant frequency operation

The control law for below resonant frequency operation is given in Equation (2.28). Let
Vio=Vs + Vo— [Vcol. the control law can be written for implementation as:

4Vs(2ve — Vo) < R? — Vo = (R — Vo) (R + Vo) (2.34)

The block diagram of the implementation of Equation (2.34) is shown in Figure A.3.
The waveforms obtained experimentally for the left hand side and right hand side of

Equation (2.34) and the results of the comparison operation of Equation (2.34) are shown
in Figure 2.21. The signals of the sign of the inductor current and final switching signals

to turn on the Mosfets for this experimental run are shown in Figure 2.22.

Implementation of above resonant frequency operation

The control law for above resonant frequency operation is given in Equation (2.32). Let
Vio=[Ved +Vs — Vo, the control law can be written for implementation as:

4Vs(xuc + Vo) = R? = Vie® = (R — Vio)(R + Vo) (2.35)
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Figure 2.22: Switching Signals (Below-Lab)

The block diagram of this implementation is shown in Figure A.4. The waveforms
obtained experimentally for the left hand side and right hand side of Equation (2.33)
and the results of the comparison operation of Equation (2.35) are shown in Figure 2.23.
The signals of the sign of the inductor current and final switching signals to turn off the
Mosfets for this experimental run are shown in Figure 2.24.

2.5.3 Experimental Results

The proposed implementation of the loops of the modified capacitor voltage form of
the optimal trajectory control law was tested on an experimental SRC with nominal
parameters listed in Table 2.3. The parameters of the experimental SRC are the same as
in Table 2.2 used for simulation except for the P and I gains and base value of R. These
differences will be discussed in Section 2.6.

Vs 20V (1) Vo oV (0.25)
L 88.6uH C 0.68uF

| CL_(Below) 470uF C._(Above) 470uF
Zo 11.4692 (1) Jo (Resonant) 20.5kHz
Rpoaqd (Low Current) 2.52 (0.22) Rpoad (High Current) 1.252 (0.11)
Js (Bcelow) 14kHz [s (Above) 28kHz
Steady State Rroad = 2.50 Stcﬁ State Rpoaa = 2.502
Js Rauge (Below) 14.0~17.481KHz | Js Rauge (Above) 24.447~28 OKHz
P gain (Below) 70 1 gain (Bclow) 532000
P gaiu (Above) 60 1 gain (Above) 368000
Riase (Below) 60V (3) Riase (Above) 22V (1.1)

Table 2.3: Implementation Circuit Parameters for VF-SRC
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Results of Below Resonant Frequency Operation

Figure 2.25 shows the steady state waveforms of i; and vc measured on the experimental
VF-SRC in the state plane when the circuit is operating at its nominal parameters.

The performance of modified capacitor voltage control law based optimal trajectory
control Equation (2.28) and implemented by Equation (2.34) is tested by a 50% step
change in load. viz for an output current change from 2A to 4A or from 4A to 2A.

The transient response of iy x and ven are shown in Figure 2.26 in the state plane for
a step increase in the load. It takes about 3 cycles from the steady state at low load to
reach the steady state at high load. This matches the results obtained from simulation.
Figure 2.27 shows the corresponding transient response of total R.

Figure 2.28 shows the waveforms of output voltage and error between the reference (set
point) voltage for the output and the actual output voltage during the transient. From
this plot, it is seen that the variation of output voltage during the load change is less than
4% and the settling time is about 0.8ms.

Figures 2.29 through 2.31 show the results for a step decrease in the load. From these
figures, it is seen that it takes about 2~3 cycles for iz and vcy to settle after the
step. This matches the results obtained from simulations earlier. The settling time of the
output voltage after the step decrease in load is about 0.4ms which is shorter than the
settling time when the load is increased. However, the variation of output voltage during
the transient is about 10% which is higher than that obtained when the load is increased.
The transient responses of Figure 2.29 through 2.31 for a step decrease in load are not
the exact inverse waveforms of those in Figure 2.26 through 2.28 for a step increase in
load because the dynamics of the experimental SRC with its control loops are nonlinear
for such large (50%) load change.
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Results of Above Resonant Frequency Operation

Figure 2.32 shows the steady state waveforms of iz and vcny measured on the experi-
mental VVF-SRC in state plane when the circuit is operating at its nominal parameters.

The performance of modified capacitor voltage control law based optimal trajectory
control Equation (2.32) and implemented throngh Equation (2.33) is tested by a 50% step
change in load (2A to 4A and vice versa in output current of the VF-SRC).

The transient response of i; 5 and vcy is shown in the state plane in Figure 2.33 for a
step increase in load. It takes about 6 cycles from the steady state at low load to reach
the steady state at high load. This matches the results obtained earlier from simulations.
Figure 2.34 shows the corresponding transient response of total R.

Figure 2.35 shows the waveforms of output voltage and error between set point and the
actual output voltage during this transient. From this plot, the variation of the output
voltage during this load change is less than 4% and the settling time is about 0.8ms.

Figures 2.36 through 2.38 show the results for a step decrease in the load. From these
plots, it is seen that it takes about 6 cycles for izny and vcx to settle after the step.
The settling time of the output voltage after the step decrease in load is about 0.6ms.
However, the variation of the output voltage during the transient is about 8% which is
higher than the variation of output voltage when the load is increased. Just like the below
resonant frequency case, the transient responses when the load is decreased are not the
exact inverse waveforms of those obtained when the load is increased as the dynamics of
the experimental SRC are nonlinear for such large (50%) load changes.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-
v

|
-
T

Normalized Inductor Current
-]

{
N

[}
W
A

Figure 2.33: Transient of iy x and ven (Above-Lab-Increasing Load)

4.5

W
n &

Desked Radius (Scaled Voitage)

25

4 i It A

—3.2 -0.1 o 0.1 02 03 X ) 0.5 0.6 0.7 08
Time (Ms)

Figure 2.34: Transicnt of R (Above-Lab-Increasing Load)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



)

-0.5 0 0.5 1 1.5
Time (Mms)

Figure 2.35: Transient of Output Vultage and Error (Above-Lab-Increasing Load)

-
T

t
--
4

Normatized Inductor Current
[=]

]
N
v

)
(2]
\

L

-4 -3 -2 2 3 4

-1 0 1
Normalized Capacnor Volage

Figure 2.36: Transicnt of izny and von (Above-Lab-Decreasing Load)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



oitage)
P
a» n

W
n

Desked Radius (Scaled V.
W

I —

-02 -01 0 0.1 0.2 0.3 o4 0.5 06 0.7 0.8
Time (ms)

Figure 2.37: Transicnt of R (Above-Lab-Decreasing Load)

-0.1 . L
~0.5 0 0S5 1 15
Time (ms)

Figure 2.38: Transient of Qutput Voltage and Error (Above-Lab-Decresing Load)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Conclusion

In the simulations and experiments. Vs, Vg, L. C, C. and Rjy..q have the same nominal
values. However. Rpqse. P gain and I gain listed in Table 2.2 and 2.3 are different. This
is because the practical circuit has some differences from the simulated circuits. Firstly.
assumptions have been adopted in the simulations, such as ideal switches, negligible tank
circuit resistance. no parameter variations. etc. Thus the simulations were conducted
for an ideal situation. The losses in the practical circuit also cause the variation of the
parameters and slight deviations of trajectories from the arcs of circles in the theoretical
derivations. Secondly. in the simulations no additional filtering except that produced by
C. was provided on the error fed to the high PI gain controller for producing R (Note
the ripples in the simulations in Figures 2.11. 2.13, 2.17 and 2.19). In the experimental
control circuit, filtering was introduced in the control effort (R) from the PI controller to
reduce the ripples. Additional filtering was necessary to prevent spurious switching. The
filter cut off frequency was selected at 4kHz. Consequently, the filter introduces phase
shift. Some phase shift is also introduced by the analog processing in the multipliers. etc.
So while the simulations provide ideas of the possible PI gains to be used for control. the
implementation gains were tuned to provide a compromise among settling time. transient
response and noise for the 50% load change. Rj,.e Was adjusted to provide adequate range
for the load change involved in the experimental setup.

In this thesis. the control strategy is decoupled into multirate structure. The outer
loop regulates output voltage. Most studies of optimal trajectory control [9. 12] neither
consider the external PI loop design. nor avoid high bandwidth current measurements.
If the outer loop to select R is designed correctly, optimal trajectory control guarantees
that tank circuit quickly reaches steady state. Simulation studies provide a valuable tool
in design of this loop. Based on the multirate control structure, the expermental results
are very close to the simulation results. It indicates that losses in the circuit do not
significantly affect the predictive ability of calculations and simulations done with the
ideal models.

The advantage offered by using the direct optimal trajectory control technique [S. 9] in
term of dynamic performance is somewhat obscured by its apparent implementation com-
plexity and the limitations imposed by its poor robustness to circuit parameter changes.
In this Chapter. the optimal trajectory control law is simplified as in [5] so that the im-
plementation complexity is reduced and high bandwidth inductor current measurement
and scaling using the characteristic impedance are avoided. This has conferred the opti-
mal trajectory control with robustness to circuit parameter changes. These become more
evident in the results of Chapter 3.
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Chapter 3

Optimal Trajectory Control of
CF-SRC

3.1 Introduction

Series resonant converter (SRC) allows high frequency operation with zero-current switch-
ing and hence facilitates size and weight reduction with improved efficiency, reduced EMI
and reduced stresses on switches. However. in the variable frequency SRC studied in
Chapter 2. a wide range of switching frequency is required and as a result, a large EMI
spectrum is produced. EMI emitted with variable frequency is more difficult to control
than fixed frequency EMI. Constant frequency resonant converters can overcome this dis-
advantage of variable frequency resonant converters [6. 10. 13, 15]. However. their control
requirements and operating characteristics have an added complexity due to the fixed
frequency of switching which limits their performance [10, 13].

State plane analysis techniques have been successfully emploved in characterizing
steady state and dynamic behaviour of resonant converters (7, 8, 10]. Based on state
plane analysis. optimal trajectory control was first proposed for variable frequency SRC
which forces the resonant state variables to track their trajectory in minimum time from
one steady state to another (7, 8]. A modified version of OTC (5] has been verified in Chap-
ter 2 of this thesis. While the OTC approach facilitates superior transient performance.
it is complex to implement and susceptible to parameter variation [9]. However, as shown
in Chapter 2, the inherently nonlinear control law can be simplified into a pseudo-linear
form which greatly reduces its implementation complexity and improves its robustness to
parameter variation [3)].

In this Chapter. an analysis of a constant frequency series resonant converter (CF-SRC)
in the state plane is presented and following [6], optimal trajectory control is extended
to constant frequency SRC. In analyzing the CF-SRC, one has to take into account the
additional constraint due to fixed frequency switching. Based on this analysis, a suitable
parameter for trajectory control is identified which provides a framework for the design
of an optimal switching control scheme to achieve the lowest possible response time with
guaranteed stability using this scheme. The proposed optimal trajectory control law
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[6] has a nonlinear form as in the case of variable frequency SRC. Following the earlier
work [6]. this control law for the CF-SRC is simplified into a pseudo-linear form which is
robust to parameter variations. This simplified control law is shown to have decoupled
dynamics and can be implemented in a multirate frame work. In [6]. no experimental
results were reported. This Chapter is devoted to verifving the theoretical results in [6]
by experimental work. Results of CF-SRC operation under the robust optimal trajectory
control with reduced implementation complexity [6] are presented.

VS w————

[
1

Figure 3.1: Constant Frequency SRC Circuit

3.2 State-Plane Analysis of CF-SRC

As introduced in Section 2.2.1. series resonant converters are normally analvzed by iden-
tifving the circuit modes of converters during a switching cyvcle and solving the associated
differential equations of the state variables with the appropriate boundary conditions as-
sociated with transitions between those modes. In this Section, the topological modes of
CF-SRC are identified and the CF-SRC is analyvzed in the state plane.

The circuit configuration of the CF-SRC is given in Figure 3.1. The switching strategy
for the fixed frequency operation of this circuit is that switches Q1 and Q3 are turned
on and off by a constant frequency (fs) gating signal with a 50% duty cycle. Switches
Q2 and Q4 are turned on and off by a gating signal, which in the steady state, has the
same frequency and duty cycle as that controlling Q1 and Q3, but is phase shifted with
Q2 and Q4 being switched on before Q3 and Ql, respectively. The switching frequency
fs is assumed to be greater than the resonant frequency of the tank circuit since the
higher the switching frequency, the greater the power density of the circuit due to smaller
components.
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Mode Ve Mode | Vg
Q1-Q4 Vs — Vo Q1-D2 | -V,

D2-D3 | —Vs -V, | Q4-D3 | Vo |

Q2-Q3 | -Vs+Vo | Q3-D4 | W
DI-D4| Vs+Vp | Q2-D1| V

Table 3.1: Equivalent Cirenit DC Voltage of CF-SRC

3.2.1 Circuit Topological Modes

Unlike the VF-SRC circuit, there are four switches (MOSFETS) in the CF-SRC circuit.
Therefore. eight topological modes are available. They are shown in Figure 3.2.

The governing differential equation for these topological modes using current in the
inductor (7;) and voltage across the capacitor (vc) of the tank circuit as state variables

is given by:
el [0 3] [}
f]-13 F L]+ [E] o

In Equation (3.1), Vg is the voltage across the tank circuit in each mode. The values of
VE in each mode is given in Table 3.1.
The solution of Equation (3.1) in the time domain in each mode is given by:

ZoiL (VE - Vco)sin(w'ot) + ILoCOS(th) (32)
ve = Zolpesin(wet) — (VE — Veo)cos(wot) + Ve (3.3)
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In Equations (3.2) and (3.3) Vo and Iy are the boundary conditions of the state variables
at the time of entry into each mode. wp. Zg in Equations (3.2) and (3.3) are the resonant
frequency and the characteristic impedance of the tank circuit respectively.

Using the same normalization technique as in Chapter 2. all voltages are normalized
by dividing by V5. all currents are normalized by multiplying by Zp and then dividing by
Vs. Finally using 8p=wyt. the following normalized form of the solution in Equation (3.1)
is obtained:

iin = (VeEn — Veon)sin(6o) + Ioncos(6o) (3.4)
ven — Ven = Iponsin(bp) — (Ven — Von)cos(6o) (3.5)
where Veox and I gn are the scaled initial capacitor voltage and scaled current through

the inductor at entry into each mode. Following the analysis of variable frequency SRC
in Chapter 2. from Equation (3.4) and (3.5), the following Equation is derived:

(ven = Ven)? +itn® = (Veon = VEN)? + ILon? (3-6)

From Equation (3.6), we recognize that, in the state plane with axes voyx and izn,

each mode of the circuit has the trajectory of an arc of a circle with appropriate radii

determined by the initial capacitor voltage Vron and initial inductor current Izon and

centers at one of (Von. 0). (Vsx + Von. 0). (Vsny — Vo, 0) or the mirror images of these
centers about the iy axis.

3.2.2 Control Parameterization of the CF-SRC

Based on the assumptions made above and the circuit topological modes. the two steady
state switching portraits of the CF-SRC operating above resonance are shown in Figure
3.3 and 3.4. In Figure 3.3, the transition from Q1-D2 mode to D2-D3 mode and from
Q3-D4 mode to D1-D4 mode is activated by the constant frequency switching of Q1 and
Q3. In Figure 3.4, the transition from Q4-D3 mode to Q1-Q4 mode and from Q2-D1
mode to Q3-Q2 mode is achieved by the constant frequency switching of Q1 and Q3. In
both Figures. the transition from Q1-Q4 mode to Q1-D2 mode and from Q2-Q3 mode
to Q3-D4 mode is initiated by the instant of switching of Q2 and Q4 which provides the
mechanism for control of the state plane portraits.

The mode transitions initiated by the switching of Q2(Q4) can be characterized by the
radius R (Figures 3.3 and 3.4) of the portion of the trajectory in Q1-D2 mode (Q3-D4

mode) from the centre (—Vyn, 0)(or (Von, 0)).
From Figures 3.3 and 3.4, the load current which is the rectified average inductor

current over a switching cycle can be expressed as:

UN = M (3.7)
WoT
where Vgon is the capacitor voltage at the zero crossing of the inductor current and
ws=2~ fs is the angular switching frequency of the CF-SRC. From Figure 3.4, the radius
R is related to the capacitor voltage by:
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R =| Veon | +Von (3.8)
Combining Equations (3.7) and (3.8), we conclude that in the operating trajectory of
Figure 3.4. the load current varies linearly with R for a particular V4. For this reason,
trajectories of the type shown in Figure 3.4 are referred to as that due to linear operation
[6].
For the cycle shown in Figure 3.3. a nonlinear relationship in the steady-state between
R and | Vcon | can be derived. The derivation is now given following [6]. Considering
the positive iy y half cycle, the coordinates of the transition point between Q1-Q4 mode
and Q1-D2 mode can be written in terms of the radius r; =| Vgon | +Vsny — Voa and the
angle 6, subtended by Q1-Q4 mode at its centre (Vsy — Vpn, 0). These coordinates are
expressed as a complex number with real and imaginary parts being the scaled capacitor
voltage and scaled inductor current as per Equation (3.9):

ref™0) L Von — Von (3-9)

In Equation (3.9), j = v/—1 and e denotes the base of the natural logarithm.

Likewise. the coordinates of the transition points between Q1-D2 mode and D2-D3
mode can be written in terms of the radius ro =| Veon | +Vsn + Von and angle 6;
subtended by D2-D3 mode at its centre (—Vsy — Von, 0) as the real and imaginary parts
of the complex number given below in Equation (3.10):

r2e’® — Von — Von (3-10)

The coordinates of these two points in Equations (3.9), (3.10) form the extremities of
the arc of a circle with the same radius R from centre (—Vgy, 0). This arc subtends the
angle ;3 at the centre (—Vpy, 0). Hence the coordinates of these two points are related
by the following complex number relationship given in Equation(3.11):

(’26702 - Vszv) S S A (3.11)

The angle 63 is related to 6; and 6, by the relation of Equation (3.12) which arises
from the time taken to complete a half cycle in this converter.

0, + 0y + 63 = =20 (3.12)
s

Using Equation (3.12) in Equation (3.11) and rearranging terms and using Vsy = 1,
Equation (3.13) is obtained:

rgej(%n-ol) —ref™0) 1 = % (3.13)
Taking the magnitude of both sides of Equation (3.13), Equation (3.14) is obtained as:

i 20— .
7‘261(”5 91) — rle;(w—O;) —1l=1 (314)
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From Figure 3.3. using the cosine rule on the triangle formed by the centres (Vsny —Von -
0). (-Von. 0) and the transition point between Q1-Q4 mode to Q1-D2 mode. Equation
(3.13) can be written with Vgy=1 as:

2 — R2
cosgy = L1 (3.15)
27’1

Now using Equation (3.15), in Equation (3.14) and defining a = cos(wwo/ws) and

simplifving algebraically, Equation (3.16) is obtained:

[7‘12 <+ 1‘22 -+ 27‘17'20.] R4 -+ [2 (1’17‘20 . 1) (T12 -+ T22 -+ 27’11"20.)] R2 <+ (3.16)
[(r12 + r22) (1 + r12r22) - 2rroa (1'12 +r2—1-— r12r22) - 4r12r22] =0

Finally, using 7, = (| Veon | +1 + Von') and 7 = (| Veon | +1 — Vpn) in Equation (3.16)
the nonlinear relationship between R and | Vgon | is given by the implicit Equation (3.17):

a.4R4 + 02R2 +ag=0 (3.17)
where a4. a2 and ag are multivariate polynomials expressed in terms of | Voon |. Von and

a.
ag, az and a, are obtained from Equation (3.16), with the substitution of r, and r; and

is given by Equations (3.18). (3.19) and (3.20) with a = | Von | [6]. The simplifications
of Equations (3.14) to (3.16) and the final simplifications referred to above are carried out
using Maple [18]. a symbolic computing package. Maple code for these simplifications is

provided in Appendix A .4.

ap = (2-2a)Vy + (10a — 6)Vgy + (8 — 8a)Vy +

a((12a — )V + (8 — 26a)V3y) +

a®((6a — 2)Vyy — (36a + 4)V%; + 8a + 8) +

a3(—(8 + 24a)VZy + 24a + 24) +

a*(—(6a + 2)VZ + 26a + 26) +

a%(12a + 12) + a®(2 + 2a) (3.18)
a; = (4a® — 4a)Vjy + (4a — 8a® — 4)VZy + (4a®> —4) +

a(8a — 8 + 16a® — 16V 3,a%) + a?(20a — 8V ,a® + 24a® — 4) +

a3(16a + 16a?) + a*(4a + 4a?) (3.19)
as = (2-2a)VA +2+ 2a+ a(4 + 4a) + a*(2 + 2a) (3-20)

Due to the nonlinearity of Equation (3.17), trajectories of the type shown in Figure
3.3 will be referred to as that due to nonlinear operation.

Parameter R characterizes the "instantaneous ” tank energy of the CF-SRC in each
cycle. Therefore, it can be used for controlling the energy transfer between the supply,
load and the tank circuit of the CF-SRC in a manner akin to [5, 6, 7, 8, 9]. Such a direct
control of the tank energy would force the inductor current and capacitor voltage to settle
into their steady state trajectory in minimum time with low transients.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘ Ll L L
3.5+ p
®
<
’7”
3k ‘C p
-~
/’
25 4 R
< F -
i o
2r ;’ .
5 -+
P2
1.5¢ z=° -
_2=®
1+ - =8 4
-7 -&
0.5 <
+ Caiculated
© Experimantal
o ; " r R
[+] Q.5 1.5 2

1
Output Current (o

Figure 3.5: R variation with Load Current for Vp/Vs = 0.25

3.2.3 Steady state Characteristics

In steady state. the relationship between the parameter R and the load current Iy for
a specific output voltage V; for a particular ws in both calculations and experiments is
shown in Figure 3.5. The calculated results are obtained by giving a constant value to
Von (with Vsy = 1) and a set of values to Von. solving Equations (3.7), (3.8) and (3.17)
to get associated values of R and Ip. In Figure 3.3. calculated results and experimental
results match each other very well. Note that the R varies monotonically with the load
current for a particular V5 and therefore it can be used as an effective control variable for
the circuit. Furthermore, for small load currents this relationship is linear and for large
currents it is nonlinear. corresponding to linear and nonlinear trajectories of operation
respectively. The transition between the linear and nonlinear ranges occur when 63 = 0,
which corresponds to the switching of Q1 and Q3 precisely at the zero crossings of the
inductor current. This transition point provides the upper bound for R in Equation (3.8)
and lower bound in Equation (3.17). The maximum load current that the linear cycle of
operation can supply is obtained by solving these Equations simultaneously for | Veon |
and using Equation (3.7).

In Figure 3.6, a plot of the variation of the maximum load current with 1} is depicted.
The maximum load current that the nonlinear operating trajectory can supply is obtained
from the steady state trajectory in Figure 3.3 with 6,=0. The maximum load currents
were obtained in the laboratory for the nonlinear mode by setting the phase shift between
the two sets of switching signals to a maximum (allowable on isolated MOSFET driver
boards) and then adjusting load resistance to record voltage and current. To obtain the
maximum load currents in the laboratory for linear mode, both load resistance and phase
shift were adjusted to find the transition values (f3=0) of output voltage and current.
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It is a difficult measurement to adjust for. In the calculations, it is assumed that tank
circuit has no resistance. switches are ideal and there are no losses. Within measurement
errors and idealized lossless calculations, Figure 3.6 depicts good agreement with theo-
retical Equations (3.8). (3.12), (3.17). (3.18), (3.19) and (3.20). Note that the maximum
current decreases with increasing Vp and that with the output short circuited (14=0). the
maximum current from the CF-SRC is finite thus providing short circuit protection. The
calculations in Figures 3.5 and 3.6 are based on the ideal equations above and neglect
losses in the circuit and assume ideal switching devices and drivers. The experimental
results take into account losses in the circuit. The good match of the experimental to
calculated results indicates that modelling without losses which is conducive to developing
analytical equations, provides good predictive albeit optimistic results (in terms of load
current in Figure 3.6) compared with experimental results. However losses while having
some effects on these predictions (Figures 3.5 and 3.6) do not significantly affect these
predictions.

3.3 Optimal Trajectory Control of CF-SRC

With reference to Figures 3.3 and 3.4, the optimal trajectory control objective is to
determine the switching instants of Q2 and Q4 which would force the inductor current
and capacitor voltage to trace their optimal trajectory at the operating cycle. With this
objective, the transients can be kept to a minimum and the system can reach its steaty
state in minimum time. To meet this, when the CF-SRC is operating in Q1-Q4 mode (or
Q2-Q3 mode), the distance r of the trajectory measured from the center of Q1-D2 mode
(or Q3-D4 mode) is continuously monitored. And when r > R, Q2 (Q4) is switched off.
In the Q1-Q4 mode, distance r is given by:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r? = (vew + Vox)? + ily (3.21)

In Q2-Q3 mode, distance r is given by:

T2 = ('UCN -— "b)\')2 -+ l%N (3.22)

Thus the control law for switching off Q2 and Q4 can be given by:

(venw = Von)? +ily = R? (3.23)

where + sign is for switching Q4 off and - sign is for switching Q2 off.

This control law requires continnous measurement of normalized inductor current and
squaring calculation. It is to be simplified as in variable frequency operation to avoid this
continuous measurement and normalization.

3.3.1 Implementation Aspects

The Optimal Trajectory Control (OTC) law given by Equation (3.23) has a nonlinear
form. As discussed in variable frequency operation of SRC, iy is the scaled value of
the inductor current with scaling by the characteristic impedance of the tank circuit Zp.
This scaling requires precise knowledge of the ratio of parameters L and C in the tank
circuit. More significantly, this ratio is prone to vary during operation due to effects such
as inductor saturation and thermal effects. A change in this ratio will introduce significant
errors which undermine the advantages of optimal trajectory control. To develop a robust
form for OTC. the scaled current will be eliminated in the following.

As the state plane trajectory of each mode is a circular arc with known centre and
radius determined by initial conditions, it is possible to simplify the optimal trajectory
control law of Equation (3.23) as in Chapter 2 and [5, 6].

Control Law Simplification for Nonlinear Operation

The simplified control law for switching Q4 off is derived here. From Figure 3.7 with the
capacitor voltage at zero crossing from negative to positive inductor current denoted by
Vcon -, Equation (3.24) can be written.

p? = (| Voon- | +Vsn = Von)? = (Vsn — Von —ven )2 + 30 (3.24)

Therefore, i, can be described as:

2y = (| Voon- | +Vsn = Von)? — (Vsn — Von — ven)?
= | Voon- [~ vy + 2(| Veon- | +ven)(Vsn — Von) (3.25)

Substituting Equation (3.23) into control law (3.23) for switching Q4 off, Equation
(3.26) is derived:
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Figure 3.7: Control Law Simplification for Nonlincar Mode

2 = (von + Von)? +| Veon- 12 = véx + 2(] Veon- | +ven) (Ve — Viw)
= (| Veon- | +Von)? + 2Vsn(ven+ | Voon- 1) = R? (3.26)
Likewise, the simplified control law for switching Q2 off can be derived as:
2 = (| Voon+ | —Von)? +2Vsn (| Voon+ | —ven) = R? (3.27)

where Veon+ is the capacitor voltage at the zero crossing of the inductor current from
positive to negative.

Control Law Simplification for Linear Operation
For the linear operation, the simplified control law can be derived as follows from Figure
3.8:

2 = (Voon- + Von)?

d*> = N - (Vosn- + Von)?

p? = d*+ (Vsn — Von — Vesn-)? = (Vsn — Von = Ven)? +ity
where Vcsn- is the capacitor voltage when Q1 is switched on and Vggn- is the capacitor
voltage at zero crossing of the inductor current from negative to positive direction. By
using the above Equations, iy x can be described as:

2y = d®+ (Vsn — Von — Vesn-)? = (Vsn- — Vo — Ven)?
Véon- + 2VonVeon- — 2Vesn-Vsn — VEy + 2Ven(Vsn— — Von)  (3.28)
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Figure 3.8: Coutrol Law Simplification for Lincar Mode

Substituting Equation (3.28) into the control law in Equation (3.23), the simplified
contro] law given in Equation (3.29) for switching Q4 off is obtained:

r? = (Veon- + Von)? + 2Vsn(ven — Vosn-) > R? (3.29)
Likewise, the simplified control law for switching Q2 off is given by:

r? = (Veon+ — Von)? + 2Vsn (Vesv+ — ven) > R? (3.30)

where Vesn. is the capacitor voltage at the switching on instant of switch Q3 and Veon+
is the capacitor voltage at zero crossing of the inductor current from positive to negative
direction.

3.3.2 Multirate Control Strategy

In this subsection, it is shown that Equations (3.26) and (3.27) for CF-SRC can be thought
of as a multirate modified capacitor voltage feedback control strategy as discussed in
Section 2.4.2 for VF-SRC.

For nonlinear operation mode in Equations (3.26) and (3.27), we observe that during
a half cycle of a trajectory, Vgon- or Vgons+ is a constant equal to the peak value of
capacitor voltage at the start of the half cycle. In such a half cycle, the dynamics of
Vsn and Vpn can be neglected as the switching frequency of the converter is much higher
than the dynamics of Vsn or the filtered Von. Therefore, within a half cycle, the left
hand side of Equations (3.26) and (3.27) vary linearly with the instantaneous capacitor
voltage vcny. Consequently, the optimal trajectory control law of [6] is a modified form
of (instantaneous, linear) capacitor voltage control law studied in [8] with a quadratic
function of Voon being added at each half cycle to the linear capacitor voltage control law
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of [8]. Hence Equations (3.26) and (3.27) are referred to as modified capacitor voltage
control form of the OTC laws [6]. In the sense that the modification to the linear control
law is done once every half cycle. the optimal trajectory control law has a pseudo-linear
multirate form developed below as in Section 2.4.2. The control law in Equation (3.26)
can be expanded and simplified as:

| Voon— | + 2(Vsy — Vo) | Veon- | +2Vsnven + V@, > R? (331)
Letting A = 2Vsn. K2 = V@, and defining a quadratic function f(z) = 7% + 2(Vsy —
Von)r. then with f(| Veon- |) =| Veon- 12 +2(Vsn — Vow) | Voon-— | Equation (3.26) can
be written as:
f(l Veon- 1) + Kiven + K2 2> R?
In above Equation, K)vcn is the instantaneous linear feedback term while f;(] Veon- |)

is updated every half cycle. K, can be considered as a constant in each half cycle.
The control law in Equation (3.27) can be expanded and simplified as:

| Veows [+ 2(Vsn = Von) | Veons+ | —2Vsnten + Viy = R (3.32)
Letting A, = 2Vsy, K2 = V@ and defining a quadratic function f(r) = 12 + 2(Vsy —
Von ). then with f(| Veon+ |) =] Voon+ 12 +2(Vsn — Von) | Veon+ |, Equation (3.27) can
be written as:
f(l Veon+ |) — Krven + K2 2 R?

As before. K¢y is the instantaneous linear feedback term while f(] Voons |) is updated
every half cycle. K, can be considered as a constant in each half cycle.

The discussion above shows that both Equations (3.26) and (3.27) have a similar
multirate control structure depicted in the inner feedback loops of Figure 3.9. In Figure
3.9, £Kvcn is in continuous operation. The second loop for K; and f(|] Veon |[) is
updated at the begining of each half cycle. The outermost loop in Figure 3.9 is a PI
controller to generate R based on Vj and V4. as discussed in Section 2.4.2.

The similar discussion can be developed for linear operation mode but is not considered
here as in this thesis the linear operation mode is not studied further due to its low power

output.

3.4 Results

The performance of the robust optimal trajectory control scheme discussed in Section
3.3 is studied first by simulations and then implemented on a CF-SRC circuit in the

laboratory.

3.4.1 Simulation Results

Like the simulation in variable frequency operation, CF-SRC is simulated in a computer
using C code. Switches are considered ideal in these simulations. Tank circuit is assumed
to have no resistance. The parameters used in the simulations are listed in Table 3.2.
Normalized values of appropriate parameters are shown in brackets in Table 3.2.
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Vsn 20V (1) Von 5V (0.25)

L 88.6pH C 0.68uF

CL 470 puF Ricaad | 4.0 €2 (0.35) (Low Currcnt)
= 2.0 2 (0.18) (High Current)

Zo 11.46%2 {1) | Reasc | 26.8V (1.34)

Jo (Resonant) | 20.5kHz Is 25kHz

P gain 150 I gain | 650000

Table 3.2: Paramecters in Simulations for CF-SRC

Simulation of Nonlinear Operation

Figure 3.10 shows the waveforms of simplified control law at steady state for switching
Q4 and Q2 off in nonlinear mode of operation, where:

a
b1
az
)

according to the control law, if e,

R.

2V5N(UCN+

| Veon- |)

R? — (| Veon- | +Von)?
2Vsn(] Veon+ | —venw)
R? — (| Voon+ | =Von)?

> by, Q4 is to be turned off. If a; > by, Q2 is to be
turned off. By using the switching signal produced by this control law, the steady state
result in state plane diagram has been shown in Figure 3.3.

Figure 3.11 shows the transient response of i;ny and vcy in state plane when load is
increased by a step of 50% (Rpoes from 4Q to 29, Ip from 1.25A to 2.5A). It takes 2 ~ 3
cycles for iy and vcn to settle. Figure 3.12 shows the corresponding transient for total

(3.33)

Figure 3.13 shows the transient response of izy and vcy in state plane when load
resistance is decreased by a step of 50% (RLeea from 29 to 42, Iy from 2.5A to 1.25A).

(]
(%]
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Figure 3.12: Trausient of R (Noulinear-Simulation-Increasiug Load)

It also takes 2 ~ 3 cycles for i, and vcy to settle. Figure 3.14 shows the corresponding
transient of total R.

The transient of output voltage is shown in Figure 3.15. During 0 ~ 8ms. CF-SRC is
started by function generator at a constant frequency fs = 25kHz with a phase shift of
about 90 degrees between the two arms of the CF-SRC. During this phase of operation
even after system settles, output voltage does not reach the setpoint 0.25. During 8
~ 12ms, modified OTC takes over function generator and the PI controller pushes the
output voltage to track the setpoint without any overshoot. During 12 ~ 16 ms, there is
a decreasing load change (/o from 2.5A to 1.25A). The settling time is less than 0.5ms.
During 16 ~ 20ms. there is an increasing load change (I from 1.25A to 2.5A). The
settling time is about 0.3ms. Compared to the simulation results of VF-SRC, there are
less overshoots and shorter settling times in CF-SRC simulations for similar parameter
values. As mentioned in Section 2.5.1, the transient of R in Figures 3.12 and 3.14 have
ripples. Therefore, the trajectories in Figure 3.11 and 3.13 have bands after settling down.

Simulation of Linear Operation

Because the load current (and output power) is small in linear operation mode, in this
thesis the linear mode of CF-SRC is not studied further in the experiments. The simu-
lation of linear mode depicted is to verify the theory. Figure 3.16 shows the steady state
of linear mode in state plane with steady state Rr.aqd = 15Q2. No experimental results are
presented on this mode beyond those that are shown in Figures 3.3, 3.6, 3.16 and 3.26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0S5

Normalized inductor Current
Q

-05¢ g
-1
~1.5F
-2
-2.5 e
-2 -1 0 1 2
Normatized Capaciior Voltage

Figure 3.13: Transicnt of iy n and vcn (Noulinear-Simulation-Decrcasing Load)

O.? 1.5 12 125 13
Time (ms)

Figure 3.14: Transient of R (Nonlincar-Simulation-Decreasing Load)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.3 Y r y - v T T —-

0.25

Normalized Oulput Voliage
2 o
n N

o
-

0.05

[+] 2 4 6 8 10 12 14 16 18 20
Time (ms)

Figure 3.15: Trausient of Output Voltage Von (Simulation)

0.8
0.6} ]
Q1-02
041 :
€ Q1-0¢
=
3 o2t :
| o
orx 34
3 Q2-D1
®-021 : .
Q3-Q2
-0.4 -
Q3-D4
-06} : : : .
-o_.%" -06 -04 -02 0 02 04 06 OB
Nommalized ior Voltage

Figure 3.16: Steady State of iLx and vcn (Lincar-Simulation)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




3.4.2 Experimental Results

The same CF-SRC considered in simulation is tested using an experimental CF-SRC
circuit with nominal parameters listed in Table 3.3.

Vs~ 20V (1) Von 5V (0.25)

L 88.6;H C 0.8, F H

CL 470 uF Rioaa | 4.0 2 (0.35) (Low Current)
2.0 2 (0.18) (High Current)

Zo 11.4652 (1) | Rpase | 22V (1.1)

fo (Resonant) | 20.55kHz fs 26kHz

P gain 75 1 gain | 532000

Table 3.3: Parameceters in Experiinents for CF-SRC

The same nominal values of circuit parameters are used for simulation and experiment.
But Ry,se. P gain and I gain are different in Tables 3.2 and 3.3. As discussed in Section
2.6. in simulations. assumptions such as ideal switches, negligible tank circuit resistance,
no parameter variations. etc. have been made. Thus the simulations have an ideal. lossless
circuit. In addition, simulations have no additional low pass filtering on V;, except that
produced by output filter capacitor Cy. The level of ripple present is magnified when the
PI controller operates on the error between V4 and V.. in producing R (Note the ripples
in Figures 3.12 and 3.14). In the experimental circuit. additional filtering was introduced
in control effort to reduce the ripples. The filter cut off frequency was 4kHz, the same as in
variable frequency operation. Consequently. the filter introduces phase shift. Some phase
shift is also introduced by the analog processing in the multipliers, etc. Finally losses in
the circuit cause slight deviations of trajectories from the arcs of circles in the theoretical
derivations. So while the simulations provide ideas of the possible PI gains to be used for
control. the implementation gains were tuned to provide a compromise amongst settling
time. transient response and noise for the 30% load change. Rj., Was adjusted to provide
adequate range for the load change involved in the experimental setup.

Experimental Results of Nonlinear Operation

This implementation is based on the logic diagram in Figure A.5. The basic ideas are to
produce the left and right hand side of the control law in Equations (3.26) and (3.27) after
rearranging the two terms (R? and (Vgonx — Von)?) containing squares to be together on
one side of the inequality. The rearrangement (Equation (3.33)) makes it possible to wTite
these two terms which involve a difference in squares as the product of a sum and difference
of voltages and therefore reduces the multipliers needed for practical implementation.

Figure 3.17 shows the simplified control law in the experimental circuit. This figure
obtained experimentally is comparable with the simulations shown in Figure 3.10 based
on Equation (3.32).

Figure 3.18 shows the steady state waveforms of i,y and vy in state plane with steady
state Rroaq = 292. Figure 3.19 shows the transient response of i; » and vcy in state plane
when load is increased (Rpqqq from 42 to 292, Iy from 1.25A to 2.5A). It takes 3 ~ 4 cycles
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Figure 3.17: Simplified Control Law (Nonlincar-Lab)

for i x and vcon to settle. This settling time is longer than the simulation result. Figure
3.20 shows the corresponding transient of total R. Figure 3.21 shows the corresponding
transients of output voltage V; and process error. The variation of V; is about 2% which
is much better than Vj variation in the VF-SRC results of Chapter 2. The settling time
for V, is about 0.4ms, shorter than the settling time of VF-SRC and comparable with
simulations shown in Section 3.4.1.

Figure 3.22 through 3.24 show the results when load is decreased(Rioaq from 29 to
4Q. Iy from 2.5A to 1.25A). In this transient, it takes about 2 ~ 3 cycles for izn and vcn
to settle with some undershoot. The V; variation is around 4%. The settling time for V,
is 0.3ms. These results are also comparable with simulations in Section 3.4.1.

Experimental Results of Linear Operation

The experimental results of steady state linear mode operation are depicted in Figure
3.25 and are comparable with the corresponding simulation results shown in Figure 3.16.
Figure 3.25 shows the steady state of iz x and vcy in state plane. In Figure 3.25. Ry oqq is
15 €2, other parameters used in the linear mode are the same as those used in nonlinear
mode listed in Table 3.3. Transient studies in this mode were not conducted in this thesis
as the load current (output power) in this mode are small.

Robustness of Modified Capacitor Voltage Control Scheme

One of the advantages of the control scheme used in this thesis is that inductor current
is eliminated from the control law. This makes the controller robust to circuit parameter
(Zo) changes. As shown in Figures 3.26 and 3.27, where inductor current i; is measured
with the sensor in saturation, the system performance with OTC control as modified in
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this thesis following [5. 6] is still stable and has good performance as before. Compared
to other control schemes in [9. 12]. the control scheme proposed in this thesis has a clear
advantage against circuit parameter variations.

3.5 Conclusion

This Chapter has analyzed the CF-SRC in state plane and following [6] developed a
control parameterization which can be used in optimal trajectory control of the CF-SRC.
The optimal trajectory parameter R characterizes the instantaneous energy in the tank
circuit and can be used to generate signals which force the tank energy to reach its
steady state trajectory in minimum time. Under optimal trajectory control, the CF-SRC
exhibits two stable steady state trajectories, one in which the relationship between the
load current and the parameter R is linear and the other in which it is nonlinear [6].
Limits on the maximum load current obtainable from CF-SRC in its linear and nonlinear
trajectories first obtained in [6] have been verified experimentally in this Chapter. The
robust performance of the optimal trajectory control has been demonstrated through
transient performance analysis in this work. The close match between the ideal (lossless)
simulations of transient performance and the experimental results indicates that losses
do not significantly affect the predictive ability of calculations and simulations done with
the ideal models. While the simulations provide an ideal PI controller with high gains
capable of better performance, the practical circuit requires additional noise filtering and
the gains have to be tuned as a compromise between settling time, transient response
and noise on the experimental circuit. The advantage of the optimal trajectory control
is usually obscured by its nonlinearity and its implementation complexity. Following [6],
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this Cha:pter has addressed the task of simplifying the control law into a pseudo-linear
form wh.lch can be implemented in a simple multirate framework. Results presented show
the feasibility and the ease of use of such an approach in controlling the CF-SRC.
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Chapter 4

Conclusion and Future Work

Two Series Resonant Converters (SRC) have been studied in this thesis. In Chapter 2,
a half-bridge SRC was studied in variable frequency operating mode (below and above
resonant frequency). In Chapter 3, a full-bridge SRC was studied in constant frequency
operating mode (non-linear mode). State-plane analysis was used in this thesis to develop
the control laws of Optimal Trajectory Control (OTC). The control laws were simulated
in a computer and further simplified and successfully implemented in the lab. Both
simulation and experimental results demonstrated the excellent performance of the multi-
rate controller developed in this thesis.

The main contribution of this thesis is that the control laws are simplified and the
inductor current measurement is no longer required. Consequently the implementation
complexity is reduced, cost is reduced, the controller robustness is increased, as introduced
and analyzed in Chapter 2 and Chapter 3.

The tank circuit of traditional SRC consists of one inductor and one capacitor. There-
fore, the system is a second order system. New converters are proposed by adding one
more inductor or capacitor in the tank circuit (LLC or LCC tank circuits [17]). It remains
an open question as to whatever OTC can be extended to such converters. Compared
to the conventional second order SRC, the third order SRC has improved characteristics,
isolation and less component stresses. The suggestion for future work is to study and
implement the modified type of OTC schemes for such third order resonant converters.
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Appendix A

A.1 Gate Drive Circuit

In this thesis. the MOSFETSs are driven by DS0026 MOS drivers (now obsolete. but
replacable by pin compatible UC3709). DS0026 may be driven from standard 54/74
series TTL voltage level.

In the circuits of this thesis, two MOSFETSs are in series and then paralleled across a
power supply (As shown in Figure 2.1 and Figure 3.1 for variable and constant frequency
SRC). Three important considerations must be implemented in design of MOSFET drive
circuit. The first consideration is that a fast supply of gate current is required as stated
above. This consideration is implemented by selecting a suitable MOSFET driver, the
DS0026 Chip. Since the point where the two MOSFETSs are connected is not grounded,
the second consideration is isolation. In this thesis. opto isolator H11L1 and HCPL261A
are used to drive the isolated MOSFET switching signals from feedback signals. The
H11L1 circuit is a slower version and operates up to 80kHz switching frequencies. The
HCPL261A circuit operates up to 500kHz switching frequencies. The third consideration
is the need for a lockout circuit to avoid power supply being shorted if the two MOSFETs
are switched on accidentally at the same time. To guarantee safe operations of converters
considered in this thesis, a reliable lockout circuit which ensures that both NIOSFETSs
will not be on at the same time is very important. In the drive circuits of this thesis,
two kinds of lockout circuits are used. The drive circuits used in this thesis are shown in
Figures A.1 and A.2.

In Figure A.1, a function generator may be used to start the series resonant converter.
ICla and IC1b are used to produce two opposing signals which turn one MOSFET on
and the other off at the series chain. IC2c is an analog switch which enables transfer from
function generator operation of the converter to feedback operation. The transistor and
IC1c supply the control for this transfering. IC2a, IC2b, IC3a and IC3b are opto isolators
which isolate the switching signals and lockout signals. IC4a and IC4b are NAND gates.
IC 3a and IC3b are MOSFET drivers DC0026. The lockout strategy is described as
follows:

If Q1 is to be turned on, the input signal of IC5a must be "0” (Low). After inversion
by IC3a DS0026, two output signals of IC5a become "1” (High). One output is to trigger
Q1. The other output signal is used as a feedback signal to IC3a input. Because the
feedback signal is high, the opto isolator sends a "0” (Low) output. This Low signal can
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lockout the output of IC4b always as "1 (High) no matter what the other input is. After
inversion by IC3b, the switching signal of Q2 is always Low. Therefore. the lockout circuit
guarantees two MOSFETs are never turned on at the same time. This gate driving circuit
is used in variable frequency SRC in Chapter 2.

Figure A.2 is used for fixed frequency series resonant converter in Chapter 3. In
principle. this drive circuit operates the same way as the circuit in Figure A.1 except the
lockout circuit is implemented through the enable signal of the HCPL261A opto isolators.
As mentioned earlier, this drive circuit is a faster version of Figure A.1 and evolved from
the design of Figure A.1. IC1 is a logic gate to invert input signals. IC2, IC3. IC8
and IC9 are opto isolators to filter and lockout firing signals. IC4 and IC3 are DS0026
MOSFET drivers. In this gate drive circuit., a MOSFET firing signal is compared with
IRF 3540 threshold value by the LM361 comparator IC6/IC7 to provide the lockout signal
to lockout the other MOSFET firing signal. Therefore, if one MOSFET is turned on. the
other MOSFET will be turned off.

A.2 Snubber Circuit

In general. snubbers are composed of diodes. resistors, capacitors. They have following
functions:
1). Absorbing stored energy in stray inductances during turn-off. Therefore, the
spikes across MOSFETSs are reduced.
2). Increasing the rate of change of di/dt during turn-on of MOSFETsSs.
3). Reducing the rate of growth of dv/dt on MOSFETSs during turn-off.
4). Transfering part of switching losses from NMOSFETSs to resistors in snubbers.

Before implementing the circuits of this thesis. a test circuit was used to check turn-on
time, turn-off time and spikes across drain and source of IRF340. In the test circuit,
the snubber is a simple R-C circuit. After comparing the effects of various snubber
designs with that of the test circuit for the same range of Vg and load to be used in the
actual resonant converters, it was found that the snubbers had negligible effects on the
MOSFET switching waveforms. Therefore. in the implementations of resonant converters
in this thesis. snubbers are not used.

However. a proper heat sink must be used to remove the heat produced due to switching
losses. It was assumed that the converters wouuld supply a max of 3A to the load. There-
fore, conservatively the steady state power loss on switch was estimated as 52 x 0.077Q
(max on resistance Rpgs of IRF540) which is about 2W. Since no one MOSFET supplies
all of the current all the time, no corrections were applied to correct for additional switch-
ing losses. Maximum ambient temperature for this laboratory experimentation without
enclosing circuits was assumed to be 30°C (conservatively) and a heat sink calculated on
that basis. The heat sink design was adequate for the experimental aspects of this thesis.
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A.3 Control Logic
A.3.1 Below Frequency Operation for VF-SRC

The control block diagram of below frequency operation is shown in Figure A.3.

In the implementation of below frequency operation, the capacitor voltage is processed
through peak detector (PKDO01) separately to obtain [Vcg|. In order to implement the
control law. two multipliers (AD633JXN) are used: one is used to multiply Vs by £ -1}
to obtain the left hand side of Equation (2.34). the other is used to multiply R—174 by
R+V}p to obtain the right hand side of Equation (2.34). Note that 4Vs(xvc — 1) may be
implemented by a programmable gain amplifier if Vs variations are slow. The waveforms
of 4Vs(xre — Vp) and R? — Vi,® are shown in Figure 2.21. §, and . are the signals out
of the comparators shown in Figure 2.21. If 4V5(%vec — Vo) < (R — Vio)(R + Vio). the
signals are 0" (Low). Otherwise they are 1" (High). They will be processed by other
logic as stated below. The spikes in compared results are not important as they will be
eliminated by the additional logic. According to the control law, if 4Vs(Fvc — Vp) is lower
than R? — Vio°. MOSFETs are to be switched on. The compared results ¢ and ¢» are
also shown in Figure 2.21. I, and I, are signals when inductor current is positive and
negative respectively. Note that only the sign of I, is needed. By doing AND and NOT
logics for ¢ and Ip. goI; produces switching signal for Q;. By doing AND and NOT
logics for q, and I;. g1, produces switching signal for Q.. as shown in Figure 2.22. These
two switching signals are sent to MOSFET firing and lockout circuit, Figure A.1.

A.3.2 Above Frequency Operation for VF-SRC

The control block diagram of above frequency operation is shown in Figure A.4.

The same peak detectors and multipliers are used to get the left and right hand sides
of this simplified control law. The waveforms of 4Vs(£ve + Vp). R2 — Vo2 and compared
results are shown in Figure 2.23. According to the control law, if 4Vg(£vc + V%) is greater
than R2— V2. the MOSFETs are to be switched off. Unlike the below resonant frequency
operation. the switching logic is pretty straight forward in above resonant frequency op-
eration. Current direction signals I, and Iy are not used to produce the switching signals
here. The negative edges of signals q; and ¢, (inverted signals of §; and §,) can provide
the switching off instants. They are directly used as PRESET and CLEAR signals for a
flip-flop (74LS74) to generate switching signals for Q1 and Q2 as shown in Figure 2.24.
In the lab, Q1 is the positive output signal of the flip-flop. Q2 is the negative output.
Therefore, Q2=Q1. However, it does not mean that Q1 and Q2 conduct 50% duty. In
fact, Q1 does not conduct immediately after the switching signals become 1”7 until i;
is reversed, because D1 is conducting at that time (Vps is negative). Q2 has the similar
conditions. 74LS74 is the main component in switching logic circuit in Figure A.4. Signals
for Q1 and Q2 are sent to MOSFET firing and lockout circuits, Figure A.2.
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A.3.3 Nonlinear Operation for CF-SRC

The control block diagram for nonlinear operation mode is shown in Figure A.5. The
overall logic is identifical to the logic of variable frequency SRC operation.

A.4 Maple Code

In this Section, the original Maple code used to simplify Equations (3.14) through (3.16)
is provided. The results of this simplification are Equations (3.18) through (3.20).

Maple code for simplifying Equation (3.14) to Equation (3.16)

1 ((r_2 exp(j pi omega_O/omega)-r_1 exp(j pi))exp(-j theta_1) -1| =1
In code below mu = pi omega_0/omega

a= cos (mu) b= sin (mu);

In code below theta_l is written as theta and r_2 as r2 etc.
Equation (3.14) is

I(r.2 a + jr.2b +r_1)exp(-j theta_l) -1 | = 1

CODE BELOW lhs is left hand side of above and rhs is 1.

# B H SRR

lhs := (r2*=a + r1 +I=r2=b)=*(cos(theta) -I»*sin(theta)) - 1;
magnitude_squared_of_lhs:=simplify(evalc(abs(lhs)=*abs(lhs)));

rhs:=1;

#form new_equation which is a rewrite of old equationas | | -1 =0
new_equation:= simplify(magnitude_squared_of_lhs-rhs); # = 0

# leave the cos theta terms in new equation on lhs oi new €yuation and
#put all sin theta terms on the right hand side of new equation.

# the only sin theta terms in new equation is -2 r2 b sin(theta)
new_equation_rhs := 2xr2sbs*sin(theta);

new_equation_lhs := simplify(new_equation+2*r2*b*sin(theta));

# at this stage use a*a +b*b =1 and simplify lhs of the new equation
new_equation_lhs_no_ b := simplify(subs(b=sqrt(l-a=*a), new_equation_lhs));
new_equation_lhs_squared := new_equation_lhs * new_equation_lhs;
new_equation_rhs_squared := new_equation_rhs *new_equation_rhs;

# get rid of sin theta terms now Maple will substitute for sin(theta)"2
modified_new_equation := simplify(new_equation_lhs_squared -
nev_equation_rhs_squared) ;

# again use b"2+a"2=1 to get rid of b;

modified_new_equation := simplify(subs(b=sqrt(1-a~2),
modified_new_equation));

# now substitute for cos (theta) = (r1°2+1-R°2)/2=ri
modified_new_equation := simplify(subs(cos(theta) = (r1-2+1-R~2)/(2=r1),
modified_new_equation));

# the equation has r1°2 in denominator. Since right hand side is zero
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# normalize by multiplying by ri~2
modified_new_equation := simplify(rl-2*modified_new_equation);

# This looks ugly in maple but one can see that there are no coefficients
# beyond R°4 in it and that only R"2 and R0 are present.

# So collect coefficients a4,a2 and a0

a4 := coeff(modified_new_equation,R,4);

a2 := coeff(modified_new_equation,R,2);

a0 := coeff(modified_new_equation,R,0);

# Maple provides a2, a0 coefficients in an expanded form. To see that
#they are the same as in Dr. Natarajan’s derivations, expand and
#compare his coefficients.

simplify(a2 - 2*(risr2=a-1)=a4);

simplify(a0 - (r1°2+r2°2)*(1+r1°2*r2°2) +
2»r1*r2=xa*(r1°2+r2°2=-1-r1°2*r2°2) + 4»*r1-2xr2-2);

# Last two come out as zero and Equation (3.16) is verified

# Now substitute for rl,r2 in a4,a2,al

# alpha is vcO

rl:=1+alpha-vO;

r2:=1+alpha+v0;

ad:=simplify(ad);

a2:=simplify(a2);

a0:=simplify(a0);

# now collect terms in powers of vO

a4:=collect(a4, [alpha,v0]);

a2:=collect(a2, [alpha,v0]);

a0:=collect (a0, [alpha,v0]);

#

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vel = +5V

FUNCTION
GENERATOR
o— -
ICla
DS00:
GRN1
Vc2=+5V
: IClb Q1
'} ICS5a SWITCH
Vel
IC1b
DS002 > O
GRN1 ICS5a
DS0026
+5V +5V
I V-
\
T
GRN1 IC5b
DS0026
180¢. Vc3=+5V
GRN IC5b Q2
SWITCH
(Above)
@
Q1 SWITCHING
SIGNAL (Below)
@-
® (Above)
Q2 SWITCHING
SIGNAL ° (Below)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INPUT

Vcec =45V

GRN

FUNCTION
.GENERATOR

Vce

75

Vel

IC8

61A

Vvc2

Vc2

IC9

HP261A

%4_|

Vel

GRN2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




—
| o |

error — )
PI ¢
R,... &
Ve
Vs rear Scaling Vs
Vo_rear (+10) Vo I El
Ve reat q, !
L
Ve
Ai
C
D—

Switching
Logic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q1

Q2



| 2 |

error
PIC

4

Ve
Vs rear Scaling
Vo_ reas +10)
Ve _real
Ve

T

Switching
Logic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Di

wm

Ql

Q2



—
&

error
PI(
R, &
Ve
Ve rea Scaling \
Vo reu (+10) a,
Ve _real q,
)
Ve Vs

Switching
Logic

.2

C
Di—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q2



Bibliography

[1] N. Mohan. T. M. Undeland, W. P. Robbins. “Power Electronics: Converters, Appli-
cations and Design”, John Wiley and Sons. Inc. 1989.

[2] Peter Wood. “Switching Power Converter”. Van Nostrand Reinhold Company. 1981.
[3] Simon S. Ang, “Power-switching Converter”. Marcel Dekker, Inc. 1995.

[4] H. W. Whittington, B. W. Flynnand and D. E. Macpherson, “Switched Mode Power
Supplies: Design and Construction”, John Wiley & Sons, Inc. 1997.

[3] S. Sivakumar, K. Natarajan and A. M. Sharaf, “Optimal Trajectory Control Series
Resonant Converter Using Modified Capacitor Voltage Control Technique”, pp. 752-
759. PESC 1991.

[6] K. Natarajan. S. Sivakumar “Optimal Trajectory Control of Constant Frequency Se-
ries Resonant Converter”, pp. 215-221, PESC 1993.

[7] R. Oruganti and F. C. Lee, “Resonant Power Processors, Part ] — State Plane
Analysis”™. IEEE Transactions On Industry Application, Vol. IA-21. NO.6. pp. 1453-
1460, November/December 1985.

[8] R. Oruganti and F. C. Lee, “Resonant Power Processors, Part II — Methods of
Control”. IEEE Transactions On Industry Applications, Vol. IA-21, NO.6, pp- 1461-
1471. November/December 1985.

[9] R. Oruganti. J. J. Yang and F. C. Lee, “Implementation of Optimal Trajectory Control
of a Series Resonant Converter”, IEEE Transactions On Power Electronics, Vol. 3,
No. 3. pp. 318-327, July 1988.

[10] F.S. Tsai. F.C. Lee, “State Plane Analysis of a Constant Frequency Clamped Mode
Parallel Resonant Converter”, IEEE Transactions On Power Electronics, Vol. 3, No.
3. pp.-364-378. July 1988.

[11] N. H. Kutkut, C. Q. Lee and I. Batarseh, “A Generalized Program for Eztracting
the Control Characteristics of Rosonant Converters Via the State-Plane Diagram”,
IEEE Transactions On Power Electronics, Vol. 13, No. 1, pp. 58-66, January 1998.
Vol. IA-18, No.3, pp.

[12] L. Rossetto, “A Simple Control Technique for Series Resonant Converters”, IEEE
Transactions On Power Electronics, Vol. 11, No. 4, pp. 554-560, July 1996.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[13] A.K.S.Bhat, “A Fized-Frequency Modified Series-Resonant Converter: Analysis. De-
sign and Ezrperimental Results”, IEEE Transactions On Power Electronics, Vol. 10,
No. 6. pp. 766-776, November 1995.

[14] S.C.Wong and A.D.Brown, “Analysis, Modeling and Simulation of Series-Parallel
Resonant Converter Circuits”, IEEE Transactions On Power Electroncs. Vol. 10. No.
5, pp. 605-614, September 1995.

[15] M. K. Kazimierczuk and M. K. Jutty, “Fized-Frequency Phase-Controlled Full-Bridge
Resonant Converter With a Series Load”. IEEE Transactions On Power Electronics,
Vol. 10. No.1, pp. 9-18, January 1995. IEEE Transactions On

[16] R.L. Steigerwald, “A Comparison of Half-bridge Resonant Converter Topologies”,
IEEE Transactions On Power Electronics, Vol. 3, No. 2, pp. 174-182, April 1988.
Transactions On Power Electronics, Vol. 3. No. 1,

[17] Rui Liu and C. Q. Lee, “Series Resonant Converter with Third-order Commutation
Network™, IEEE Transactions On Power Electronics, Vol. 7, No. 3. pp. 462-468. July
1992.

(18] B.W. Char. K.O. Geddes, G.H. Gonnet, B.L.Leong, M.B. Monagan. & S.M. Watt,
“First Leaves: A Tutorial Introduction to Maple V”, Springer Verlag. 1992 ISBN

0-387-97621-3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Shengli Feng, received the B.S. degree in electrical engineering from Harbin Electri-
cal and Technical Institute, People’s Republic of China, in 1992. From 1992 to 1996. he
was employved as an electrical engineer in Xi’an Power and Electronic Research Institute,
People’s Republic of China. He began to pursue his M.Sc.Eng. degree from Lakehead Uni-
versity. Thunder Bay, Ontario, in 1997. Currently he works as a commissioning engineer
officer in Ontario Power Generation Inc., Pickering NGS. Ontario.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.





