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ABSTRACT

In this thesis, we apply and generalize the notion of neighborhood system from
topology to study the relation between the concepts in a concept lattice. We classify all
concepts in the concept lattice into various classes by seeking similar characters or
properties of their attributes. Any element in the concept lattice is associated with a
family of subsets of the concept lattice. This family is called a neighborhood system of
the element. Each subset in the neighborhood system is called a neighborhood of the
element. A concept in some neighborhood of the fixed element in the concept lattice is
interpreted to be somewhat near or adjacent to the element. Two concepts in a same
neighborhood are considered to be somewhat indiscernible or at least not noticeably
distinguishable. We introduce three different neighborhood systems NS;, NS; and NSs.
For the first type NS, a concept is said to be in a neighborhood of another concept in the
concept lattice if it is a subconcept or a superconcept of the other. For the second type
NS5, a concept is said to be in a neighborhood of another concept if the two concepts
have some common attributes. For the third type NS3, a concept is said to be in the
neighborhood of another concept if every object in the concept shares some attribute with
some object in the other concept. We prove that NS; < NS; < NS;_ Examples are given
and properties of the neighborhood systems are discussed.

v
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Chapter 1

INTRODUCTION

Concept Lattice is an area of research which is based on a set-theoretic model for
concepts and conceptual hierarchies (see [15]). It plays a central role in formal concept
analysis. Although there are different understandings of a concept, the philosophical
understanding of a concept is as a unit of thoughts consisting of two parts: the extension
and the intention; the extension covers all objects belong to the concept while the
intention comprises all attributes (or properties) valid for all those objects (see [13]).
Since the extension and the intention are described by some subcollections, i.e. sets, a set-
theoretic model for these is a natural tool for the formal concept analysis. These
“conceptual tools™ are considered as a general aid in sciences, economy and

administration.

In formal concept analysis, sometimes it is necessary to classify all elements in a
concept lattice into various classes by seeking similar characters or properties of the
attributes. In this way, the universe, a concept lattice, is divided into different classes of
subsets. All elements in the same subset are considered to be indiscernible, or similar. In
this situation, it is natural to adopt the notion of neighborhood system from topology (see
[9] and [10]), which generalized the concept of indiscernibility into that of neighborhood.
In this framework, any element of a universe is associated with a nonempty family of
subsets. This family of subsets is called a neighborhood system of the element, and each
subset in the family is called a neighborhood of the element. The elements in the same
neighborhood of an element can be interpreted to be somewhat indiscernible or at least
not noticeably distinguishable. Mathematically, the elements in the same neighborhood
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are considered to be “close t0” or “near to” each other. The main purpose of this thesis is
to incorporate the idea of neighborhood systems into a concept lattice for formal concept
analysis. We introduce three different neighborhood systems in a concept lattice based on
the characteristics of the attributes of the concepts.

This approach allows us to describe and to study the relation between concepts in a
concept lattice. We interpret data in terms of the neighborhood systems and study the
properties and relations of these neighborhood systems. Since the notion of neighborhood
systems come from studies of topological spaces, the mathematical aspect of the
neighborhood system will also be discussed.

We organize this thesis as follows. Chapter 2 is intended to be a reference for the terms
and notations used throughout this thesis. Basic notions of an abstract lattice and a
concept lattice will be given, and some basic properties of them and examples are also be
included :in this chapter. In chapter 3, we introduce three neighborhood bases in concept
lattices. Properties, interpretations, relations between them and examples will be given. In
chapter 4, we deal with neighborhood bases in a concept lattice of a multi-valued context.
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Chapter 2

LATTICES AND CONCEPT LATTICES AS
KNOWLEDGE REPRESENTATION

2.1 Introduction

This chapter is intended to be a reference for the terms and the notations used
throughout the thesis. We also include some basic properties of lattices and concept
lattices, which will be needed in the thesis.

2.2 Lattices

In this section, we include the definitions and properties of posets and lattices. Since
these are algebraic concepts, we can find them in any standard abstract algebra book (see
[8]). The notion of lattices is a generalization of the order relation < in usual number

systems and set-theoretic inclusion ¢ among subsets of a universal set.

Definition 2.2.1 If S is a set, then any subset of S X S is called a relation on S. A relation
T on S is called a partial order provided that the subset T is

e Reflexive: (a,a) € T foreveryae S.

e Antisymmetric: If (a,b) € T and (b, a) € T, thena=b.

e Transitive: If (a,b) € Tand (b, c) € T, then (a,c) € T.
A set equipped with a paitial-crder relation is called a partially ordered set (or poset).
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The symbol < is usually used to denote an arbitrary partial order T:
a<b means (a,b)e T.
In this notation, the conditions defining a partial order become
o Reflexive: a<a foreveryae S.
e Antisymmetric: Ifa<bandb < a,thena=b.

e Transitive:Ifa<bandb<c,thena<c.

When such a notation is used, a partial order on S is usually defined without explicit
reference to a subset of S X S. We shall also adopt the usual notation:

b=a means a<b.

Example 2.2.2 Let S be the set of all subsets of {x, y, z} and define A<Btomean Aisa
subset of B. The relation < is reflexive, antisymmetric, and transitive. So S is a partially
ordered set. The ordering can be schematically displayed by Figure 2.2.1, in which a line
connecting two sets means that the lower of the two is a subset of the higher:

xv.z
{x, y}>/; o {, z}
{x} {v} {z}
\ l
Figure 2.2.1

Example 2.2.3 The set S = {r, 5, t, u, v, W, X} is a partially ordered set whose partial order
is given by Figure 2.2.2, in which a < b means that either a =b or a lies below b and there

is a path of line segments from a to b that never moves downward.
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Y
T~
N

Figure 2.2.2
Thus r < u and r < w, but it is not true that r < s. Similarly, a <w for every a € S except x.

Definition 2.2.4 Let B be a subset of a partially ordered set S. An element u of S is said to
be an upper bound of B if b < u for every b € B. The set B may have many upper bounds,
some of which are not in B itself, or B may have no upper bounds.

Example 2.2.5 In Example 2.2.3, the only upper bounds of the subset B = {t, u} are v and
w. The subset {r, u, s} has four upper bounds (u, v, w, x). In the set Z of integers with the
usual ordering, the subset of even integers has no upper bound.

If u is an upper bound of B such that u < v for every other upper bound v of B, then u is
the least upper bound (or l.u.b.) of B. Let B be a subset of a partially ordered set A. An
element w of A is said to be-a lower bound of B if w < b for every b € B. If w is a lower
bound of B such that v £ w for every other lower bound w of B, then w is the greatest
lower bound (or g.1.b.) of B.
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Theorem 2.2.6 Let B be a nonempty subset of a partially ordered set S. If B has a least
upper bound, then this L.u.b. is unique. If B has a greatest lower bound, then this g.1.b. is
unique.

Definition2.2.7 A lattice is a partially ordered set L in which every pair of elements has
both a least upper bound and a greatest lower bound. If a, b € L, then their least upper
bound is denoted by a v b and called the join of a and b. The greatest lower bound of a
and b is denoted by a A b and called meet.

Example 2.2.8 (Rings) If R is a ring, then the set S of all ideals of R, partially ordered by
set-theoretic inclusion (<), is a lattice. The g.1.b. of ideals I and J is the ideal I n J. The
union of two ideals may not be an ideal, so I U J is not the least upper bound of I and J in
this lattice. The L.u.b. of I and J is the ideal I +J.

Example 2.2.9 (Groups) If G is a group, then the set S of all subgroups of G, partially
ordered by set-theoretic inclusion, is a lattice. The g.l.b. of subroups H and K is the
subgroup HNK. The set HUK may not be subgroup; the l.u.b. of H and K is the subgroup
generated by the set HUK.

Theorem 2.2.10 If L is a lattice, then the binary operations v and A satisfy these
conditions for all a,b,c € L:
1. Commutative Laws:
avb=bva and aaAb=baa
2. Associative Laws:
av(bvc)=(avb)ve and
an(bac)=(aanb)Aac
3. Absorption Laws:
av(aanb)=a and aa(avb)=a.
4. Idempotent Laws:

ava=a and ana=a
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Theorem 2.2.11 Let L be a nonempty set equipped with two binary operations, v and A,
that obey the commutative, associative, absorption, and idempotent Raws. Define a
relation < on L by: a<b if and only ifa v b =b. Then L is a lattice with respect to < such
thatforalla,be L:

Lub. {a,b}=avb and glb.{a,b}=anb.

2.3 Concept lattices and properties

Formal concept analysis has been developed during the last twenty years by many
researchers ( see [3], [4], [6], [13] and [15]). It is based on the understandimg of a concept
as a unit of thoughts consisting of two parts, the extension and intension. The extension
covers all objects belonging to the concept while the intension comprises all attributes (or
properties) valid for all those objects. Naturally, a set theory can be used. This approach
to data analysis is a method for formal representation of conceptual knowledge. Formal
concept analysis starts with the notion of a context defined as follows.

Definition 2.3.1 A (formal) context which is defined as a triple (G, M, I) where G and M
are sets while I is a binary relation between G and M, i.e., I £ G X M; the elements of G
and M are called objects and attributes, respectively, and glm i.e., (g , m) & I, is read: the
object g has the attribute m. Frequently used are the following derivation operators

represented by “p_rime”:

X->X'={meM|gimforal ge X},
Y-oY={geG | glm forallmeY }.
These operators form a so-called Galois connection between the power sets of G and M
which can be expressed by the following conditions indicating a natural “duality”
between objects and attributes (see [8], pp 122-125):

X, ¢ X,implies X, ¢ X, "for X,,X, < G;

Y, c Y,implies ¥,' C Vv, “for Y, , v, cM;
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XcX’and X' =X" for X ¢ G;
YcY’andY' =YY" forYCM;

Ux)' =NX, forX, cG(teT
teT teT

dJYy=Y. for , cM(teT)
teT teT

In the frame of a formal context (G, M, I), the philosophical view of a concept as a unit
of thoughts constituted by its extension and its intension can be formalized by the

following definition.

Definition 2.3.2 A pair (A, B) is said to be a formal concept of the context (G, M, ) if A
<G BgcM A=B’and B = A’; A and B are called the extent and the intent of the
concept (A, B). The set of all concepts of (G, M, I) is denoted by B(G, M, D).

The most important structure on B(G, M, I) is given by the subconcept-superconcept-
relation which is defined as follows.

Definition 2.3.3 The concept (A,, B,) is a subconcept of the concept (A,, B,) if A, C A,
which is equivalentto B, £ B,, (A, B,) is then a superconcept of (A, By).

A subset of D of a complete lattices L is called infimum-dense (supremum-dense) if
each element of L is the infimum (supremum) of some subset of D. An element a of a
lattice L is said to be A-irreducible (v-irreducible) ifa=b A ¢ (a=b Vv c¢) always implies a
=b or a = c; the set of all A-irreducible (v-irreducible) elements of L is denoted by J(L)

M(L)).

Theorem 2.3.4 (see [16]) Let (G, M, I) be a context. Then B(G, M, I) is a complete
lattice, called the concept lattice of (G, M, I), for which infimum and supremum can be

described as follows:
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v(a,.B) =((JAa)".( 1By
teT teT

~ALB)=(A,.AUBYY
teT teT

Definition 2.3.5 This lattice B(G, M, I) is called a concept lattice of the formal context
G.M,D. o

In general, a complete lattice L is isomorphic to B(G, M, D) if and only if there exist
mappings . G = L and u: M — L such that G is supremum-dense in L, pM is infimum-
dense in L, and gIm is equivalent to YG < uM; in particular, L=B(L, L, <) and, if L has
finite length, L = B( J(L), M(L), < ). To illustrate the definitions, we include the

examples in the following section.

2.4 Examples

Contexts are usually described by cross-tables while concept lattices are effectively
visualized by labeled line diagrams.

Example 2.4.1 Let G be the set of all students at Lakehead University and let M be all
the courses offered in 1999 ~ 2000 school year. For g € G and m € M, we define glm if
the student g takes the course m in 1999 ~ 2000 school year. Then (G, M, I) is a formal
context.

Let A < G and B ¢ M. Then (A, B) is a concept if A is the set of students who take all
courses in B and B is the set of all courses taken by all students in A, i.e. A =B’ and
B=A’.Let(A, B)),(A;,B)e B(G,M, ). (A, B)<(A;,B))if A, CA,.

Example 2.4.2 Table 2.4.1 can be understood as a description of a formal context: its
objects are the eleven persons whose name are heading the rows and its attributes are the
twelve cities which are represented by the columns; the crosses indicate when an object

has an attribute, i.e., which person has been in that city.
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Table 2.4.1. Cross-tables

The concept lattice of a given context (G, M, I) is determined as follows:
First, by the formulas X’ =  {g}’ or Y’ =  {m}’, then we form (X", X)or (Y’, Y .

teT meY
Thus, one can start with the special intents {g}’ (g€ G) or the special extents {m}(meM)
to form all the concepts, since each intent is the intersection of some special extents

{g}’and each extent is the intersection of some special extents {m}".

There are 19 concepts of the context:
1. ({a}, {C1,C2,Cs3,Cs})
2. ({b}, {C1,C3,C4})
3. ({ac},{C2Cs3Cs})
4. ({b,d}, {C1,C4})

5. ({e}, {C2,Cs,Cs})

6. ({f}, {Cs, Co,C11})

10
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7. ({g}, {Cv, Ci0, C11,Ci12})
8. ({g h}, {Cio, C12})
9. ({i}, {Cs, C7,Cs})
10. ( {i, j} , {C7, Cs})
11. ({i, k}, {Cs,C7})
12. ({a, b}, {C1,C3})
13. ({a,b,d}, {C1})
14.({a,c, e} , {C2,Cs} )
15.({a, b, c}, {C3})
16. ({e, 1, k} , {Ce})

17. ({i,j, k} , {C1})

18. ({£ L]}, {Cs})

19. ({£. g}, {Cs,C11})

Figure 2.4.2. Concept lattice of the formal context in Figure 2.4.1.
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The labeled line diagram is shown in Figure 2.4.2, the little circles represent the 19
concepts of the context (the number there is concepts, not the code of cities) and the
ascending paths of the line segments represent the subconcept-superconcept-relation.

A concept lattice can be viewed as a hierarchical conceptual clustering of the objects
(via its extents). The concept lattice in Figure 2.4.1, for instance, shows that the
conceptual hierarchy classifies the people in mainly three groups with the similar cities
they have been. A concept lattice can be understood as a representation of all implications
between the attributes (via its intents). An implication of a context (G, M, I) is a pair of
subsets of M, denoted by Y — Z, for which Y’ ¢ Z’ ,i.e., each object from G having all
attributes of Y has also all attributes of Z.

Formal contexts and their concept lattices are substantial tools for formal
representation of conceptual knowledge. These tools activate the rich source of
mathematical developments in order and lattice theory for knowledge representation. In
particular, the representation by labeled line diagrams is a powerful instrument if it is
combined with the structure theory of concept lattices. Then these diagrams can make
transparent the different meanings of concept lattices as, for instance, the hierarchical
classification of objects or the logic of attribute implications.

12
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Chapter 3
VARIOUS NEIGHBORHOOD-BASES IN CONCEPTUAL
KNOWLEDGE SYSTEMS

3.1 Introduction and basic concepts

In this section, we define three different types of neighborhood systems in a concept
lattice: super-sub-relation neighborhood system, close-relation neighborhood system and
far-relation neighborhood system. Examples are given tfo interpret these neighborhood
systems. The properties and their relations are discussed extensively.

The notion of neighborhood systems originated from studies of topological space (see
[14]) and its generalization called Frechet (V) Space (see [12]). Let X be a topological
space and x € X. The neighborhood system U, of x is defined to be a collection of subsets
of X satisfying the following axioms:

e Na)Ifue Ui, thenx e u.

e Nb)Ifu,ve Uy thenunveU,.

e Nc) Ifu e Uy, then there is a v € Uy, such that u € Uy for every ye v.
e Nd)Ifue Uyrandugv,thenve Ug

In our case, we loose the axioms for neighborhood system substantially. Let X be a
nonempty finite set. For any x € X, a neighborhood of x is defined as a subset of X,
denoted by n(x). It may or may not contain x itself. A nonempty family of neighborhoods
of x, denoted by NS(x), is called a neighborhood system of x. A neighborhood system of
X, denoted by NS(X), is the collection of NS(x) for all x € X. NS(X) defines a Frechet

13
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Space, or briefly (V) space, written (X, NS(X)). A neighborhood system can be defined

by an operator from X to 2%

Example 3.1.1 Let X = {a, b, c, d, e} be the universe. The following is a neighborhood
system of X and NS(X) is the collection:

NS(a) = {{a}, {a, b}, {a, d}},
NS(b) = {{b}, {b, c}},

NS(c) = {{c}, {c, d}, {a, b, c}},
NS(@d) = {{d}, {a, b, d}, {c, d}}.

Example 3.1.2 Let R be the set of real numbers. For a € R, let U, be the family of all
open intervals containing a (an open interval, denoted by (x;, X») is the set of all real
numbers x such that x; < x < Xx;). Then U, is a neighborhood system. Note that this
neighborhood system satisfies Na), Nb) and Nc), but not Nd).

3.2 Three different neighborhood systems in a concept lattice

We define three different neighborhood systems by the characteristics of the attributes
in the ways that have not only mathematical foundation, but also simulate the relation
between events in the real world.

3.2.1 Super-sub-relation neighborhood system NS,

This neighborhood system is based on the order of the concept lattice. In the real

world, it is the measurement of the inclusion of the objects.

Definition 3.2.1.1 Let B(G, M, I) be a concept lattice of a context (G, M, I) and let
(Aq, Bo) be a concept in B(G, M, I). We say that a concept (A, B) is in a super-sub-
relation neighborhood of (Ao, Bg) if (A, B) is the subconcept of (Ag, Bg) or the
superconcept of (Ag, Bo). As a convention, we define (Ao, Bg) to be in every

14
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neighborhood of itself. Any subset of B(G, M, I) consisting of (Ag, Bo) and elements in
some neighborhood of (Ao, By) is called a neighborhood of (Ag, Bg). Let NS;(Ao, Bo)
denote the set of all the neighborhoods of (Ag, Bo). This neighborhood system, denoted by
NS;, is called the super-sub-relation neighborhood system.

Remark: It is always true that {(Ag, Bo)} is a neighborhood of (Ao, Bo) by our definition.
We do not assume the axiom Na) - Nd) for the neighborhood in topology. It follows from

the dcfinition of subconcept and superconcept that the concept (A, B) is in a
neighborhood of a concept (Ag, Bo), if and only if A < Ag or Ap < A.

Example 3.2.1.2 In example 2.4.2,

NS:(3) = {{3}, {1, 3}, {3, 14}, {3, 15}, {3, 1, 14},
{3, 1, 15}, {3, 14, 15}, {1, 3, 14, 15}}.

A concept is in a neighborhood of 3:=({a, ¢}, {Cz, C3, Cs}), if it is a concept immediately
above, (i.e. with more objects) or immediately below ({a, c}, {Cz, C3, Cs}) (i.e. with less
objects).

NS:1(5) = {{5}, {5. 16}, {5, 14}, {5, 14, 16}},

NSI(7) = {{7}: {7, 8}:{7’ 19}: {73 8, 19}},

{10,9, 18}, {10, 17, 18}, {10, 9, 17, 18}}.

15
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Figure 3.2.1.1 Super-sub relation neighborhood of concept 3.
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Figure 3.2.1.2 Super-sub relation neighborhood of concept 5.
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Figure 3.2.1.3 Super-sub relation neighborhood of concept 7.

8
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Figure 3.2.1.4 Super-sub relation neighborhood of concept 10.
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From the definition, we can see that Na) and Nb) are true.

Proposition 3.2.1.3 Let B(G, M, I) be a concept lattice, and (Ao, Bo) € B (G, M, I). Then
(I) Ifue NSI(A(), BO)’ then (AOa BO) ey
an Ifu, ve NSi(Ag, Bo), thenu U v,un v e NS;(Ag, Bo).

Remark: Nc) and Nd) may fail.

For example, in example 3.2.1, v = {14, 15, 3} € NS(3) and 15 € v. But v & NS (15)
since 14 € v but 14 is not in a neighborhood of 15, so Nc) fails. Also, v= {14, 15, 3, 16}
= v. But v ¢ NS;(3), so Nd) fails.

Although Nc) fails, we has the following:
Proposition 3.2.1.4 Let B(G, M, I) be a concept lattice and (A;, B)), (A2, B2) two
concepts in B(G, M, I). If (A}, B;) is in a neighborhood of (A2, B2) then (A2, B2) is also in

a neighborhood of (A, B)).

Proof: If (A}, B)) is in a neighborhood of (A2, B»), then (A}, B1) <(Az, B2) or (A, By) 2
(A2, B2). So (A3, B,) is also in a neighborhood of (A;, B;) by definition.

Definition 3.2.1.5 Let (A;, B;) and (A, B) be two concepts in a concept lattice. If
(A1, B)) is in a neighborhood of (A2, B») or (A2, B>) is in a neighborhood of (A1, B1), we

say that (A;, B;) and (A, B;) are in a same neighborhood.

Remark: If two concept (A;, B;) and (A, B;) are in a same neighborhood, then (A, B1)

and (A2, B,) are understood as "close to" or "adjacent to".

Example 3.2.1.6 Let G be the set of all people in a city, and let M be all cities in Canada.
Forae G& be M, alb means person a has visited city b in 1999. A concept (A;, B1)

18
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€ B(G, M, ) satisfies Ag = By’ and By = A¢', i.e. Ay is all people in the city who has
visited all cities in By and By is the set of all cities visited by all people in Ao. (A, B) €
B(G, M, ]) is in a neighborhood of (Ag, Bo) means either A ¢ Apor Ap S A, ie, A is
either larger than Ay or smaller than Ay, equivalently, the set of cities B is either smaller

or larger than Bo.

3.2.2 Close-relation neighborhood system NS,

The super-sub-relation neighborhood system defined in section 3.2.1 is an approach to
analyze data mathematically. It is a set-theoretical model for describing the concepts in a
concept lattice that are "close" or "near" each other. To be more applicable to the real
world, we define a new neighborhood system in a concept lattice. It is not only suitable
for the application, but also provide a mathematical model for formal concept analysis.
Two concepts are in a same neighborhood if all the members in the two extents share

same attributes.

Definition 3.2.2.1 Let B(G, M, I) be a concept lattice and (Ao, Bg) € B(G, M, I). A
concept (A, B) in B(G, M, I) is said to be in a close-relation neighborhood of (Ag, Bo), if
there exists an attribute mpy € M such that almg & apl mg for every a € A and every ap
€Aq. Any subset of concepts in B(G, M, I) containing (A, Bo) is called a close-relation
neighborhood of (Ag, By). The collection of all close-relation neighborhoods of (Ao, Bo) is
denoted by NS2(Ag, Bg). The close-relation neighborhood system is denoted by NS,

Proposition 3.2.2.2 Let (Ag, Bo) be a concept in a concept lattice B(G, M, I), Then
1)) For every v € NS2(Ag, Bo), (Ag, Bo) € v.

@ Ifu, ve NS(Ag, Bo), then uuv and unv are in NS;(Ay, Bo).

Proof: (I) and (I) follow from the definition immediately.

19
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Theorem 3.2.2.3 Let (A¢,Bo) and (A;,B;) be two concepts in a concept lattice B(G, M, D).
Then the following statements are equivalent:
d (Ao, By) is in a close-relation neighborhood of (A, Bi).
a (A1, By) is in a close-relation neighborhood of (Ag, Bo).
I BonB;#J.
Proof: (I) = (II) Let mp € M such that almg & agl mg for all acA; and age Ay, Since
(Ao, Bo) is in a close-relation neighborhood of (A;, B1), by definition, (A}, B;) isalsoina
close-relation neighborhood of (Ag, Bo).
(@) = (OI) Since (A;, B)) is in a close-relation neighborhood of (Ag, By), there
exists mg € M such that almy & agImg for all ac A; and age Ao, s0 mpe Ag' and moe A"
Since Ag' =B and A;'=B;, mge By NB;. Therefore, By " B; # &.
) = (@) Let mpe By NB,, since Bp N B; # &, hence almy for every age Ao,
because Ay = By'. Similarly, alm, for every ac A;. Therefore (A, Bo) is in a close-relation
of (A1, By).

We say that two concepts (Ag, Bg) and (A;, B;) are in the same close-relation
neighborhood if any one of (I), (IT) and (III) is satisfied.

Example 3.2.2.4 Let G be the set of all students at Lakehead University and let M be all
the hobbies of students. Two concepts (Ag, Bo) and (A}, B;) are in a same close-relation
neighborhood if and only if By N B; # &, if and only if the two groups of students Ao and
A, share some same hobby.

Remark: As in proposition 3.2.2.2, Na) and Nb) are satisfied, but Nc) and Nd) fail.

Example 3.2.2.5 In example 2.4.2,

NS>(3) = the family of all subsets of {1, 2, 3, 5, 12, 14, 15} containing {3}.

Interpretation: since the concept 3:= ({a, c}, {Cs, C3, Cs}) as in example 2.4.2, a concept
is in the neighborhood of ({a, ¢}, {Cs, Cs, Cs}) if and only if all people in the concept and

a, c has been in the same city.
20
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NS,(5) = the family of all subsets of {1, 3, 11, 14, 16} containing {5}.

NS,(7) = the family of all subsets of {6, 8, 19} containing {7}.

NS(10) = the family of all subsets of {6, 9, 11, 17, 18} containing {10}.

17 o o)
\\3/ /\/u 5\3/3\/2\0/ \
Figure 3.2.2.1 Close-relation neighborhood of concept 3.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NN,

NAVAVAVAVAVY)
\l/ VAV

Figure 3.2.2.2 Close-relation neighborhood of concept S.

190 18 o 170 16 g 14

7\/}/\/\/\/\/12\/\3

Figure 3.2.2.3 Close-relation neighborhood of concept 7.
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Figure 3.2.2.4 Close-relation neighborhood of concept 10.

3.2.3 Far-relation neighborhood system NS;

We have introduced two types of neighborhood systems. We define another
neighborhood system to simulate the relations among the concepts in a concept lattice.
Roughly speaking, a concept (A, B) is in a neighborhood of a concept (Ag, Bo) in this
system if every object in A shares some common attribute with some object in Ay. We
give a formal definition as follows.

Definition 3.2.3.1 Let B(G, M, I) be a concept lattice and (Ag, Bg) € B(G, M, ). A
concept (A, B) in B(G, M, ) is said to be in a far-relation neighborhood of (Ao, Bo), if for
every a € A, there exists agp € Ag and mp € M such that almg & aplmy. Any subset of
concepts in a far-relation neighborhood of (Ao, Bo) containing (Ao, Bo) is called a far-
relation neighborhood of (Ao, Bo). The family of all far-relation neighborhoods is denoted
by NS3(Ao, Bo). The far-relation neighborhood system is denoted by NS;.
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Example 3.2.3.2 Let G be the set of all students at Lakehead University and let M be the
set of all hobbies of students. We define a relation I on GXM by alm if the student a has
the hobby m, where a € G and m € M. Let (A, Bo)e B(G, M, I). A concept (A, B) in
B(G, M, ) is in a far-relation neighborhood of (Ag, By) if every student in the group A
shares at least one common hobby with some student in group Ay,

Remark: From example 3.2.3.2, we see that if (A, B) is in a far-relation neighborhood of

(Ag, Bo), then (Ag, Bo) may not be in a far-relation neighborhood of (A, B).
The following proposition follows from the definition. -

Proposition 3.2.3.3 Let B(G, M, I) be a concept lattice and (Ag, Bo) € B(G, M, I), then
(M  For every u € NS;3(Aq, Bo), (Ao, Bo) € u.
()  Ifu, ve NS3(Ay, Bo), then uuv and unv are also in NS3(Ag, Bo).

Remark: Again, Nc) and Nd) fail for the far-relation neighborhood system.

Example 3.2.3.4 As in Example 2.4.2, we have the following neighborhood system:
NS;3(3) = the collection of all subsets of W containing 3, where
W={1,2,3,4,5,12,13, 14, 15},
is the set of concepts in far-relation neighborhood of concepts.
NS3(5) = the collection of all subsets of W containing 5, where
w=1{1,3,5,9,11, 14, 16},
NS3(7) = the collection of all subsets of W containing 7, where
w={6,7,8,19},
NS3(10) = the collection of all subsets of W containing 10, where
w={5,6,9,10, 11, 16, 17, 18, 19},

24
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Figure 3.2.3.1 Far-relation neighborhood of concept 3.
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Figure 3.2.3.2 Far-relation neighborhood of concept 5.
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Figure 3.2.3.3 Far-relation neighborhood of concept 7.
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Figure 3.2.3.4 Far-relation neighborhood of concept 10.
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3.2.4 Comparison of NS;, NS, & NS;

In this section, we compare the three different neighborhood systems defined above.

Our conclusion is the following.

Theorem 3.2.4.1 Let B(G, M, I) be a concept lattice and (Ag, Bo) € B(G, M, I). We have
NS;1(Ao, Bo) € NS2(Ag, Bo) < NS3(Ag, Bo), where NS; NS,, NS; are super-sub-relation,
close-relation and far-relation neighborhood systems of (Ao, Bo), respectively.

Proof: Let (A, B) € NS;(Aq, Bo), then (A, B) = (Ag, Bo) or (A, B) < (Ag, Bo). So B2 By
or B < Bo. So B N By = By or B. Hence B N By # &. By Theorem 3.2.2.3, (A, B) €
NS2(Ao, Bo). Hence NS;(Ao, Bo) < NS2(Ag, Bo). Let (A, B) € NSz(Ag, Bo). Then there
exists mp € M such that almy & agImg for all a € A and ag € Ag. So for every a € A, almy
& agImy for every ap € Ag. By definition, (A, B) € NS3(Aq, Bo), therefore NS2(Ag, Bo) &
NS3(Ao, Bo).

We use the following example to illustrate this theorem.

Example 3.2.4.2 Let B(G, M, I) be the concept lattice in example 2.4.2, then we have

NS;(3) = all subset of W containing 3, where W = {1, 3, 14, 15},

NS(3) = all subset of W containing 3, where W = {1, 2, 3, 5, 12, 14, 15},
NS;(3) = all subset of W containing 3, where W = {1, 2, 3, 4, 5, 12, 13, 14, 15};
NS;(5) = all subset of W containing 5, where W = {5, 14, 16},

NS,(5) = all subset of W containing 5, where W = {1, 3, 5, 11, 14, 16},

NS;(5) = all subset of W containing 5, where W = {1, 3, 5, 9, 11, 14, 16};
NS1(7) = all subset of W containing 7, where W = {7, 8, 19},

NS2(7) = all subset of W containing 7, where W = {6, 7, 8, 19},

NS;3(7) = all subset of W containing 7, where W = {6, 7, 8, 19};

NS;(10) = all subset of W containing 10, where W = {9, 10, 17, 18},

27
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NS,(10) = all subset of W containing 10, where W = {6, 9, 10, 11, 17, 18},
NS;3(10) = all subset of W containing 10, where W = {5, 6, 9, 10, 11, 16, 17, 18, 19};

We get the conclusion that NS;(a) « NSa(a) < NS;3(a).
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Chapter 4
NEIGHBORHOOD SYSTEMS IN CONCEPT LATTICES OF
MULTI-VALUED CONTEXTS

4.1 Introduction

Often the notion of formal context as discussed in chapter 2 and 3 is not adequate for
understanding and representing data since some data are not given by cross-tables. In
formal concept analysis, a new approach has been introduced to represent the data (see
[5, 7, 16]). This approach is based on the extension of the notion of the set-theoretic
model of formal context to multi-valued context. This multi-valued context is used to
formalize some data structures, which are represented in statistics by data matrices and in
computer science by relational databases.

We point out here that a formal context may be understood as a special case of a multi-
valued context. The approach to the multi-valued context is to derive a suitable formal
context from a given multi-valued context. Such a derivation is always an action of
interpretation. Although there is no general way for the derivation, in formal concept
analysis, this is done by a method called conceptual scaling (see [7]). After a conceptual
scaling, a new formal context is obtained: we can deal with the concept lattice of the new
formal context as in Chapter 3. In this chapter, we introduce two neighborhood systems
to deal with two conceptual scales, so called nominal scale and one-dimensional ordinal
scale. We will give the definition of multi-value contexts first. It is a formal context
together with the values for the attributes.

29
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4.2 Multi-valued contexts

Definition 4.2.1 A multi-valued context is defined to be a quadruple (G, M, W, I), where
G, M and W are sets and I is a ternary relation between G, M and W, i.e. I £ GxMXW

such that (g, m, w;) € I and (g, m, w,) € I imply w,= w, forge G, m € M and
w, ,w, € W. The elements of G, M and W are called objects, (multi-valued) attributes

and attribute values, respectively. (g, m, w ) € I is read: the object g has the values w for
the attribute m. The multi-valued context (G, M, W, I) is called an n-valued context if [W|
=n. A formal context may be understood in this terminology as a special case: a 1-valued

context.

Example 4.2.2 Let G be the set of all students at Lakehead University and let M be the
set of courses offered at Lakehead University in 1999 ~ 2000 school year. W is the set of
real numbers from 0 to 100. We define a ternary relation between G, M and W as
follows, for any (g, m, w) € GXMXW, (g, m, w) € I if the student g has taken the course
m in 1999 ~ 2000 school year and obtained w marks in the class.

This relation I satisfies the condition (g, m, w,) € I and (g, m, w,) € I imply w,; =
w, since every student obtains only one mark in the same class. Hence (G, M, W, D is a

multi-valued context.

Example 4.2.3 Table 4.2.1 is an example of a multi-valued context. Its objects are the
eleven persons whose name are heading the rows and its attributes are the twelve cities
which are represented by the columns; the value indicates that an object has the attribute

of the value, i.e., which person has been in that city how many times.
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Table 4.2.1. Multi-valued context

We need to derive a suitable formal context from a multi-valued context. Such a
derivation is always an action of interpretation. There are certainly a lot of different ways
to interpret. In the following, we are going to introduce a method called conceptual
scaling.

Conceptual scaling (see [7]): derive from a mrulti-valued context to a suitable formal
context. Let K:= (G, M, W, I) denote a multi-valued context.

D The first step of conceptual scaling is to imterpret for each attribute m its values as
objects of some separate formal context $ , ==(G, , M, , I, ), i.e., the attribute

m is understand as a partial map from G into G, . The context §, and their

concept lattices should have a clear structure and should reflect some meaning of
the data for interpretation.
(I  The second step, the scales §, (m € M) axe combined to a common scale

$:=( x G, | J(M, x{m}),V)
meM meM

Where V is the relation with
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(gm)meMV(n’ p) = gpIpn
(@) The third step, we obtain the formal context (G, () (M, X {m}), J) with
meM

&J(n, p) < (m(&)) mey V(1. P)

Or equivalently
P(g)],n

Definition 4.2.4 (G, U (M, x{m},J) is called the derived context of the scaled context
meM

(K, $) and the concept lattice of the derived context is also called the concept lattice of
the scaled context, i.e. B(G, (U (M,, x{m},J).
meM

We use the following example to illustrate the conceptual scaling method.

Example 4.2.5 Let (G, M, W, I) be the multi-valued context in Example 4.2.3. For each
m € M, let G,, be the set of all students taking the course m in 1999 ~ 2000 school year,

M, the set of real number between 0 and 100. We define I, by, forge G, andne M,
gl_n & g(v) 260, i.e. the student g in class m has obtained v marks which is at least 60.

So (G, U (M, x{m},]) is the derived context. For geG and (n,, ,m,)e U (M, X {m}),
meM meM
g¥(n, ,m;)if g(m,)I, n, < the student g has taken the course m, in 1999 ~ 2000

school year and got ‘n,,,o marks, and furthermore, the mark is at least 60.

We are going to consider two natural conceptual scales, the nominal scale (W, W, =)
and the one-dimensional ordinal scale (W, W, = ). The nominal scale (W, W, =) isa
simple scale. We illustrate this scale with the following example:

Example 4.2.6 Let (G, M, W, I) be the multi-valued context in Example 4.2.3, then
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G=1{a,b,c,d,e¢, .., 1], k} is the set of tourists.
M = {C1,C2,..C12} is the set of cities visited.

w={0,1,2,..100}
In this scale method all G,= G, all M,= W and I, = “=". For x € G and

(nmo ’ mO )e U (Mm x{m})s
meM
xJ(n, ,m,)ifand only if m,(x) 1, n, < m,(X)=n,,

i.e. the tourist x has visited the city mye M, n, € W times. For example, a J (20, Cy),

since tourist a has visited the city C1 exactly 20 times by example 4.2.3.

Table 4.2.2-1. cross-table of derived context - part I

Table 4.2.2-2. cross-table of derived context --- part Il
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There are 18 concepts of the derived context:
1. ({a},{Q0, C). (21, G), (19, G), (17, C,), (8, C) }),

({v} {17, ), 18, ), (18, C;), (19, C,), (11, C5) }),
({c} {19, C), (20, C,), (20, &), (18, C;), (8, &) } ),
({d}, {17, C), (16, G,), (24, G;), (15, C,), (13, C;) } ),
({e}, {015, G). (18, C,), (25 &), (23, C) })
({b,d}, {17, C)}),

({b,e}, {(18,C)}),

({f}, {04, &), (33, &), (30, G), (4, G1) }),

({g}, {21, G), (11, Gy), (10, G, ), (14, C) } )
10.({h}, {(7, G), (18, G;), (10, ;). (14, G3) } )
1L.({i} {5 G, (25, C,), (32, G) } ),

12.({j}, {(4, G), (1, ;), (32, &) } ),

13.({k}, {5 G (25, C;), (33, G4) }),

14.({1,k}, {5, G), 25 ) }),

15.({£3}, {(4, C) }),

16.({i,j}, {32, G) }),

17.({£k }, {33, G) })

18.({&h}, {(10, ), (14, G) })-

© @ N s woN
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Figure 4.2.3-2. concept lattice of the derived context --- part II

The nominal scale (W, W, =) is used to conceptually separate different values. But it
would not reflect the important order of the values. The one-dimensional ordinal scale
(W, W, 2) is more appropriate for the ordinal nature of the attribute values. Again, we usé
example 4.2.3 to illustrate this scale:

35
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Example 4.2.7 Let (G, M, W, I) be the multi-valued context in example 4.2.3, then
G ={a,b,c,....... k} is the set of tourists.

M = {Ci, Ca,.......C12} is the set of cities visited.

W= {1, 2, 3, ..., 100} is the set of number of visiting times.

In this one-dimensional ordinal scale, all G,= G, all M,=W and I, = "2". For
visitor x € G and city m, € M,
xJ(n, .,my) o my(X) 1, my & my(x)2n,,
<> visitor x has visited city m, at least n, times. For example, a J (16, C1) since tourist

a has visited city Ci1 exactly 20 times = 16.

4.3 Neighborhood systems

Let (G, M, W, I) be a multi-valued context such that W is a subset of the set of real
number R. In this section, we assume that we take the following conceptual scaling:

G, UM, x{m},]) where M, =W forallme M.
meM

Definition 4.3.1 Let (A4,,B,) be a concept in B(G, (U (M,, X{m}), J). For a positive
meM
number & > 0, we say that a concept (A,B) in B(G, U (M, x{m}), J) is in the &
meM

neighborhood of (4, , B, ) if for each (v°,m®) € B,, there exists (v, m) € B such thatm =

m® and |v - v°| <38 (note that B,, B < U (M, X {m}), where M; = W is a subset of R).
meM
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Any subset of concepts in a 8-neighborhood of (4, , B, ) and containing (4, , B, ) is called
a 3-neighborhood of (4, , B,). NSs( 4, , B,) denotes the collection of all §-neighborhood

of (4, ,B,), and is called the 8-neighborhood system of (4, , B, ).

Remark: We define the &-neighborhood system by the attribute values only. Roughly
speaking, (A, B) is in a 3-neighborhood of a concept (4, , B, ) if their attribute values are

close by 8.

By the definition of concept (A,B) that A = B'and B = A', it follows that

Proposition 4.3.2 Let (4, , B,) be in the concept lattice B (G, (U (M,, Xx{m}), J), then a
meM

concept (A,B) is in a d-neighborhood of (4,,B,) <> whenever gy J (ro, mo) for all

&€ A4, and some (1o, mg) € B, then there is re M, such that gJ (r, mg) for all ge A

and |r-1o[<d.

Proposition 4.3.3 Let (4, ,B,) be a concept in B (G, kE)M (M_x{m}), J) and & > O, then
the following conditions hold:
1)) For every U € NS§( 4, ,B,), we have (4,,B,) € U;
() If ; and &; are positive numbers such that &, < J,, then
NS&(4,,B;) = NSz 4, ,B,)
(@) IfU,VeNSiA4,,B)),thenUNYV e NSs(4,,B,)

Proof: (I) Follows from the definition.
(D Let U € NSs(4, , B,). For every (A,B) € U, (A,B) is in a 8;-neighborhood of

(4, ,B,). So for every (ro, mo) in B,, there exists an (r, m) € B such that m = m, and

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[r- 10| < &) . Since §; < &,, | 1- 1p | < 8,. By definition, (A,B) is in the §;-neighborhood of
(4, ,B,). Thus, U € NSg (4, , B, )-
Hence NS5,( 4, , B,) = NS&(4,, By)-
dI) If U, V € NSs(4, , B, ), then every (A,B) € U N V is in a -neighborhood of
the concept (4, ,B,). Also, (4,,B,) € Uand (4,,B,) € V imply (4,,B,) € UnV. So
UNV e NS5(4, , B,) by definition.

Remark: Axioms Nc) and Nd) for neighborhood system in topology as in (3.1) may fail.

Proposition 4.3.4 Let (A,B) and (4, ,B,) be concepts in B (G, \ U (M, x{m}), ) and &
meM

> 0.If (A,B) <(4,,B,), then (A,B) is in a 8-neighborhood.

Proof: Since (A,B) < (4, ,B,), wehave A ¢ 4,0or B 2 B,. So for every (10, mg) € B,,

(to, mg) € B. If we take (T, m) as (rg, myp) in B, then m =mg and | r- 1o | = 0 < &. Thus,
(A,B) is in a 8-neighborhood by definition.

We illustrate this definition by the following examples.

Example 4.3.5 Let G be the set of all students at Lakehead University and let M be all
courses offered at the university in 1999 ~ 2000 school year. We choose the conceptual

scaling (G, (U (M, x{m}), J), such that My, is the set of nonnegative real numbers and
meM
for g e G and (r, m) € U M, x{m}, we define g J (r, m) < the student g takes the
meM

course m andvspends totally r minutes in the course m for the whole school year. Let

(4,,B,) be a concept in B (G, (U (M, x{m}), J), a concept (A, B} is in a &-
meM

neighborhood of (4, , B, )< for every (ro, mg) in B,, there exists (r, m) € B such thatm

=my and | r- 1y | < 8 < for every course my taken by all students in 4, and spent the same
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length of time rp by all the student in 4, , all the students in A take the same course mg as
well and they spend r minutes totally in the course with | r- 5o [< 8. So (A, B) is "near"” to
(4, ,B,) in the following sense: each course taken by all members in 4, is also taken by

all members in A and the time they spend is closed by 6 minutes.

Example 4.3.6: In example 2.4.2, we take the nominal scaling and 8 = 2. Concept 3 is in
2-neighborhood of concept 1 by the definition, i.e. tourist c in concept 3 is “close to”
tourist a in concept 1 in the following sense: for any city visited by tourist a, it is also
visited by tourist ¢ in concept 3. Moreover, the numbers of visiting times of tourist a and

tourist c are closed by d.

(I) d-neighborhoods when 8 =2
For a=1: 3 is in the §-neighborhood of 1; for a=3: 1 is in the 8-neighborhood of 3; for
a=11: 13 is in the 3-neighborhood of 11; for a = 16: 17 is in the 8-neighborhood of 16;

for a=17: 16 is in the 8-neighborhood of 17.

Figure 4.3.1. the & = 2 neighborhood of concept 1.
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Figure 4.3.2. the 6 = 2 neighborhood of concept 3.

Figure 4.3.3. the = 2 neighborhood of concept 11.
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Figure 4.3.4. the = 2 neighborhood of concept 16.

Figure 4.3.5. the 8 = 2 neighborhood of concept 17.

(D) &-neighborhoods when & =4
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For a = 1, concepts 2 and 3 are in the -neighborhood of concept 1; for a = 3, concepts 1
and 2 are in the 8-neighborhood of concept 3.
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Figure 4.3.6. the & = 4 neighborhood of concept 1.

%

Figure 4.3.7. the = 4 neighborhood of concept 3.
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(II) d-neighborhoods when & =6
For a =1, concepts 2, 3 and 4 are in the §-neighborhood of concept 1; for a = 3, concepts
1, 2 and 4 are in the 8-neighborhood of concept 3.

Figure 4.3.8. the & = 6 neighborhood of concept 1.

Figure 4.3.9. the 8 = 6 neighborhood of concept 3.
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(IV) d-neighborhoods when 6 = 10

For a =11, concepts 12 and 13 are in the 8-neighborhood of concept 11.

Figure 4.3.10. the 8 = 10 neighborhood of concept 11.

Example 4.3.7

Table 4.3.11. Multi-valued context
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Table 4.3.11 is an example of a multi-valued context: its objects are the one hundred
persons who dial the phone; its attributes are the other one hundred persons who receive
the phone; its attribute values are the time of the phone call, furthermore, m(g) = w means
that the person g called the person m for w minutes. If there is valuc 0 means the two

persons do not communicate with each other.

Because they are all positive real numbers that may not be integers, so we can not use

the table to describe the procedure of scaling.

Suppose G= {a, b, ¢, ..., 1, j} is the set of 10 callers and M = {P1, P2, ..., P10} is the set
of 10 people receiving the call. Let W= R* be the set of nonnegative real numbers and
let I be described as above. We use the following conceptual scale for (G, M, W, I ): for
eachm e M, M, =W and I is the usual order relation of real numbers. Let (4,, B,)

be a concept in B(G, U (M, x{m}), J) and let § > 0. Then a concept (A, B) is in the &-
meM

neighborhood of (4,, B,) if for any ( r’, m® )e By, there is (r, m) €B such that m’=m
and | r-r’| < §, i.e. for any phone call to person m” made by some one in A4,, then there is

person in A who called the same person m®. Moreover, the lengths of the two calls are
close by d units. So the two concepts, or two groups of callers are "close to" or "near to"

each other in this sense.
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Chapter 5
CONCLUSION

In this thesis, we proposed various neighborhood systems in a concept lattice of a
context and of a multi-valued context as well. The technique is based on the notion of
neighborhoods in topology, a well-established subject in pure mathematics. These
proposals not only have a solid theoretical basis, but also offer practical retrieval when
conducting retrieval process in databases that contain information measuring the relation
among the original objects.

The concept of neighborhood systems is a useful and effective tool for representing
and analyzing semantics information, just as used in topology. In this thesis, we started
from a formal context and measured the distance (e.g. far or near) between the concepts
in the formal context based on the attributes of the concepts, i.e., the characteristics or
properties of the concept, in various ways. Therefore, these models have many
applications in the areas related to information science, such as inference, databases,
information approximation, and data mining and data analysis. This thesis is only an
initial step of application of the neighborhood concept in this direction. The future work
should be on the aspect of further investigation on each of the proposed neighborhood
systems. It is also interesting to develop more special types of neighborhood systems with

many-valued context for special applications in information sciences.

The way of providing a meaningful notion of neighborhood systems depends heavily

on the attributes of the concepts in the concept lattice. So it could vary from one .

application to the other. But the technique is the same, as used in topology, representing
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the " far to" or "near to" relationship between objects or concepts by neighborhoods. It
turns out that the notion of neighborhood systems is very effective in our case.
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