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Abstract 

Quantum devices are an important class of modern heterostructure devices in which quantum 

effects are exploited directly. A Gallium Nitride high frequency field effect transistor (FET), 

the subject of this work, exploits a newly found exciton source in Indium Gallium Nitride 

InxGa1-xN. These quasi-particles are used as a quantum electron source for the FET channel, 

made of Intrinsic Gallium Nitride (GaN). The present work addresses the natural need for 

providing this high frequency transistor with a device model. Following the same steps as 

those used in classical Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) 

modeling, a model for the metal oxide heterojunction capacitor; core of this high frequency 

field effect transistor, is first developed. 

The first challenge is to define the free charge carrier concentration distribution, the electric 

field and the potential drop at any point inside the intrinsic Gallium Nitride layer. This layer 

plays the role of the channel of a proposed MOSFET device on Indium gallium Nitride.   

A new analytical model for a two terminal Metal-Oxide-Gallium Nitride/Indium Gallium 

Nitride heterojunction structure (MOS capacitor) is presented. This model characterizes the 

space charge layer created by electron tunneling in the structure’s channel which is made of 

intrinsic Gallium Nitride. A one dimensional (1-D) analysis is adopted, and a set of 

hypotheses is stated to frame the present work. In this analysis two Gallium Nitride channel 

models are suggested. The need for such models is demonstrated by the quasi-static analysis 

of the 2-terminal MOS capacitor. The comparison of these two models is performed through 

the concordance of the results with the exciton theory in Wurtzite Indium Gallium Nitride  

(InxGa1-xN).    
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Chapter 1 : Introduction 

1.1 Background 

The Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is the most important 

device in the design of high-density integrated circuits such as microprocessors and 

memories. It is also important for power applications. The principle of the surface field effect 

transistor was first proposed in the early 1930’s by Lilienfield [1-3] and Heil [4]. Shockley 

and Pearson [5] studied this effect in the late 1940’s. The first device –quality Si-SiO2 

(Silicon-Silicon Dioxide) was produced by Ligenza and Spitzer using thermal oxidation [6]. 

The basic MOSFET structure, which uses the Si-SiO2 system, was proposed by Khahng and 

Atalla [7] in1960. The device characteristics were initially studied by Ihantola and Moll [8], 

Sah [9], and Hofstein and Heiman [10]. The technology, application, and device physics have 

been reviewed by many books [11-15]. 

For the classical MOSFET conduction occurs when there is a charge inversion in its 

channel. The application of a positive (negative) and sufficient gate voltage on a n (p) 

MOSFET creates an accumulation Space Charge Region (SCR) at the surface of the p (n) 

semiconductor underneath the interface oxide/semiconductor. This accumulation region is of 

opposite type compared to that of the bulk semiconductor. The creation of an inversion 

region is accompanied with the existence of a depletion SCR. Under a transverse electric 

field free charge carriers (electrons for n-MOSFET and holes for p-MOSFET) move in a 

doped semiconductor and are subject to ionic and phonon scattering. 

In the Modulation Doped Field Effect Transistor (MODFET), known also as the High 

Electron Mobility Transistor (HEMT), and for the Two-dimensional Electron-Gas Field 

Effect Transistor (TEGFET), and Selectively Doped Heterojunction Transistor (SDHT), the 

wide-energy-gap material of the heterostructure is doped and carriers diffuse to the undoped 

narrow-bandgap layer at which heterointerface the channel is formed. As a result, channel 

carriers in the undoped heterointerface are spatially separated from the doped region and 

have high mobilities because there is no impurity scattering. Carrier transport parallel to the 

layers of a superlattice was first considered by Esaki and Tsu in 1969 [16]. The development 

of Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapour 
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Deposition (MOCVD) technologies in the 1970’s made heterostructures, quantum wells and 

superlattices practical and more accessible. The enhanced mobility in the AlGaAs/GaAs 

modulation doped superlattice was first demonstrated by Dingle et al in 1978 [17]. Stormer et 

al subsequently obtained a similar effect using a single AlGaAs/GaAs heterojunction in 1979 

[18]. This effect was applied to the field effect transistor by Mimura et al in 1980 [19-20] and 

later by Delagebeaudeuf et al in the same year [21]. For an in-depth treatment of the 

MODFET, readers are referred to Refs [22-25]. The main difference between the classic 

MOSFET and the MODFET aside from theirs structure resides in the fact that charge carriers 

move in a doped semiconductor for the MOSFET and in an intrinsic semiconductor for the 

MODFET offering a higher mobility and resulting in a faster device  more suitable for high 

frequency applications.   

The present work deals with a novel device, the High Frequency Field Effect Transistor on 

Indium Gallium Nitride [26]. Unlike the MODFET, the free charges carriers result from 

quantum tunnelling through the heterojunction instead of resulting from diffusion, as is the 

case for MODFET. However, in both devices, charge carriers move in an intrinsic 

semiconductor layer and observe reduced scattering.  

1.2 Motivation 

It is the trend in the silicon and compound microelectronics industries to continuously 

develop semiconductor circuits which are faster, smaller, and consume less power for a 

similar level of integration. This trend is fueled by the rapid growth of digital wireless 

communication and high frequency analog circuits. Both silicon and compound state-of-the-

art integrated circuits rely on high-speed submicron devices. New hetero-structure devices 

are continuously being developed, such as the Heterojunction Bipolar Transistor (HBT), the 

Double-Heterojunction Bipolar Transistor (DHBT), the High-Electron-Mobility Transistor 

(HEMT), and the Hetero-structure Field-Effect Transistor (HFET). 

Quantum devices are an important class of these modern hetero-structure devices in which 

quantum effects are exploited. The high frequency field effect transistor, which is the subject 

of this work, exploits recently identified quasi-particles in Indium Gallium Nitride InxGa1-xN, 

called excitons of the structure.  These excitons of structure are used as a quantum electron 

source for the channel of the High Frequency Metal Oxide Semiconductor Field effect 
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Transistor (HF MOSFET) made of Intrinsic Gallium Nitride GaN [26]. The present work 

aims to provide a stepping stone towards this novel structure by establishing a device model.  

1.3 Objectives 

Following the same steps as those used in classical MOSFET theory, a model for the metal 

oxide heterojunction capacitor - the core of this HF MOSFET- is first developed. To achieve 

this, the intrinsic Gallium Nitride channel was first modeled, and then used in the analysis of 

the 2-terminal MOS heterojunction capacitor on Indium gallium nitride.  

 The present work introduces this quasi-static analysis of the 2-terminal device and 

demonstrates the need to model its intrinsic GaN channel. Two channel models are 

presented, compared, and one of them is incorporated in the quasi static analysis of the           

2-terminal MOS capacitor on Indium Gallium Nitride. 

1.4 Organization of the manuscript 

Chapter 2 contains a brief explanation of the structure and the functioning of the HF 

MOSFET on Indium Gallium Nitride. An ideal model of this transistor’s core, the MOS 

capacitor is presented in chapter 3. Chapters 4 and 5 propose two models for the channel; 

model 1 and model 2 respectively. A comparison of these two channel models is performed 

in chapter 6. Chapter 7 wraps up this work. Three appendices A, B, and C are added at the 

end of this manuscript, they contain mathematical proofs that are essential to the analysis.  

References used to perform this present work are listed at the end of the manuscript. 

1.5 Conclusion 

The motivation of this work is not only about introducing a new analytical model for the 

practical situation where free charge carriers of electron origin are injected into a thin 

intrinsic semiconductor (Gallium Nitride), but is also about demonstrating the need for 

having such a model. The reader will realize that this model is a standalone entity, thus it can 

be introduced separately from the device analysis.  

The channel model is presented as a part of the 2-terminal device analysis to show its 

necessity for the analysis of the MOS capacitor. 
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Chapter 2: 

 The High Frequency Field Effect Transistor on InxGa1-xN [26] 

  

2.1 Introduction 

The current chapter presents a brief qualitative description of the HF MOSFET on InxGa1-xN 

[26]. First, the different layers and regions forming this device are listed, their roles are 

stated. Second, a concise explanation of the functioning of this device is presented. 

2.2 Structure  

The HF MOSFET on InxGa1-xN has a multi-layer structure (see figure 2-1). The oxide 

layer is deposited on an intrinsic GaN region called the channel, on both sides of this channel 

there is a local heavily n-type doped GaN region called the drain or the source. These 

appellations are interchangeable depending on the applied external bias, making the high 

frequency transistor on InxGa1-xN, like the classic MOSFET, a symmetric device. Underneath 

the GaN layer there is a p-type InxGa1-xN layer, forming together with the intrinsic GaN layer 

at their common frontier a semiconductor heterojunction. The p-type InxGa1-xN is 

implemented as a local diffusion area in a common layer of InxGa1-xN. The non doped parts 

of InxGa1-xN are between the grounded n-type InxGa1-xN and the two n
+
-type GaN islands, 

their role is to prevent charge transmission between the n-type InxGa1-xN layer and the two 

n
+
-type GaN islands. Finally a thin film made of a metal or a highly degenerate 

semiconductor is deposited on both the oxide and the ground n-type InxGa1-xN layer to form 

the transistor gate and back substrate contacts respectively, in addition to the drain and 

source contacts. This makes the HF MOSFET on InxGa1-xN a 4-terminal device.
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Figure 2-1 : Cross-section of the High Frequency transistor on InxGa1-xN 

 

2.3 Functioning  

The HF MOSFET on InxGa1-xN uses excitons of the structure as a free electron source. The 

concentration of these free charge carriers in the channel made of intrinsic GaN material 

modulates the device’s conductivity. Under the influence of an external electric field, the 

electrons move in an intrinsic semiconductor and experience reduced scattering (no impurity 

scattering). The high mobility in the channel allows low noise and high-speed performance. 

The application of a sufficiently high positive voltage on the gate with respect to the back 

(see Figure 2-2) forward biases the InxGa1-xN p-n homojunction. This positive applied 

potential drop allows electrons from the n-type InxGa1-xN region to move to the p-type side 

and form with holes quasi-particles called excitons with a zero net electric charge. The 

positive gate voltage must be high enough to produce a potential drop across the p-n     

InxGa1-xN homojunction that is bigger than an engineered threshold in order to generate  

excitons, see [26].The production of these quasi-particles can be pictured as happening 

following the x-axis direction (see figure 2.2).  
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Figure 2-2: Creation and drift of mobile charge carriers in the HF FET on InxGa1-xN 

 

The excitons present in the p-type InxGa1-xN interacts with the i-GaN/p-InxGa1-xN 

semiconductor heterojunction, this interaction leads to their destruction and to the tunneling 

of the corresponding electrons into the intrinsic GaN layer (channel). The concentration of 

excitons formed in p-type InxGa1-xN at the p-InxGa1-xN/i-GaN boundary is expressed in terms 

of the potential drop across the p-n InxGa1-xN homojunction [26]. The transmission 

coefficient expresses the ratio of excitons that interact with the semiconductor heterojunction 

to the total amount of excitons present in the p-In0.5Ga0.5N next to the heterojunction, this 

transmission coefficient  is expressed in terms of the electric field applied to the GaN side of 

the p-InxGa1-xN/i-GaN semiconductor heterojunction [26][27].The application of a potential 

drop between the two n+-type GaN regions creates an electric field through the sandwiched  

i-GaN layer according to the y-axis direction; see Figure 2-2.  
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Free electrons present in the i-GaN layer (Channel) drift under the influence of this electric 

field producing an electric current.  

2.4 Conclusion 

 Brief qualitative descriptions of the structure and of the functioning of this novel device 

were presented. A Complete description of this HF MOSFET on Indium Gallium Nitride is 

found in [26].    
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Chapter 3 : The ideal MOS capacitor on In0.5Ga0.5N [28] 

 

3.1 Introduction  

A model for the real world device is presented. A set of hypotheses is stated. It defines the 

scope and sets the domain for the validity of this analysis. The quasi-static analysis 

performed on the ideal MOS capacitor demonstrates the need to investigate the charge 

distribution in its channel.   

3.2 Nomenclature  

    Front gate to back substrate voltage 

       Potential drops  across In0.5Ga0.5N p-n junction and across the Space Charge 

Region (SCR) in p-type In0.5Ga0.5N side of the i-GaN/p-In0.5Ga0.5N 

heterojunction         Potential drop across i-GaN, oxide layers 

           Oxide and GaN layers thicknesses 

  
      

  Charge per unit area on the gate and in the i-GaN layer  

              
  Charge per unit area in the SCR located in the p-type In0.5Ga0.5N side of the       

i-GaN/p-In0.5Ga0.5N heterojunction 

    Free electrons concentration present in i-GaN layer 

   Electric field in i-GaN layer at the i-GaN/p-In0.5Ga0.5N heterojunction. 

        Thermal equilibrium holes and electrons concentrations in p-type In0.5Ga0.5N 

repectively          Relative permittivities of oxide and GaN respectively 

                Relative permittivity of In0.5Ga0.5N, and permittivity of vacuum 

   Thermal voltage 

  Elementary charge 
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3.3 The ideal MOS Capacitor on In0.5Ga0.5N  

The MOS structure (see figure 3-1), consisting of a metal-oxide-semiconductor sandwich, is 

the core of the HF MOSFET on InxGa1-xN. It functions as a 2-terminal capacitor in which a 

metal contact is separated from the semiconductor by a thin insulator, which can be a 

thermally grown SiO2 layer. The metal contact can be made of materials like aluminum or 

heavily doped polysilicon. A second metal layer along the back provides an electrical contact 

with the semiconductor material.   

i-GaN layer

(channel)

p-In0.5Ga0.5N

n-In0.5Ga0.5N

 

Gate

Back

Oxide
Metal 

 

Figure 3-1: Structure of the 2-terminal MOS capacitor on In0.5Ga0.5N 

The ideal MOS structure has the following properties: 

P1)  The metal gate is equipotential. 

P2)  The oxide is a perfect insulator with zero transport current. No trapped       

charges exist inside it or at its interfaces. 

P3)  All doped semiconductors have a uniform profile. 

P4)  All doped semiconductors are sufficiently thick, so that a field free (neutral) 

region exists in the bulk semiconductors. 

P5)  The intrinsic GaN material is considered to be depleted of free charge 

carriers.  
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P6)  The semiconductor heterojunction is realized with a state-of-the art technique; 

polarization effects are negligible. 

P7)  Both the oxide and the GaN material have the same work function. 

P8)  The structure is one-dimensional; the electric field lines are perpendicular to 

the surfaces. 

P9)  Metal/semiconductor interfaces are ohmic contacts, the potential contact is 

zero. 

3.4 Analysis of the ideal MOS capacitor on In0.5Ga0.5N  

The analysis of the ideal MOS capacitor on In0.5Ga0.5N is justified because all the idealized 

properties in section 3.3 are approached in a real device except properties P7) and P9). The 

inclusion of the potential contact and the work function difference in the model only requires 

a simple voltage shift of the capacitive characteristics.  To define the scope and the domain 

for the validity of this quasi-static analysis, the following set of hypotheses is stated; 

 

H1) All semiconductors are considered to be non-degenerate, so that Boltzmann 

statistics can be used. 

H2) No temperature gradient is present. The device dimensions are small enough, 

that we assume that heat distributes evenly throughout the device. 

H3) Charge neutrality is assumed 

H4) The i-GaN/p-In0.5Ga0.5N semiconductor heterojunction is approximated by an 

abrupt junction. 

H5) The gate voltage varies slowly enough, so we can consider a zero-valued gate 

current. 

 

Figure 3-2 illustrates a cross-section of the MOS structure including the referenced potential 

drops across regions of interest. The gate voltage breaks down to four potential drops    , 

   ,    , and    .  
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Figure 3-2: A cross-sectional schematic of the MOS heterojunction capacitor, with the   

corresponding referenced potential drops across the regions of interest. 

 

A first set of relations, valid under any case of operation, is derived from global equilibrium 

and Gauss’s Law: 

         

 

   

 (3-1) 

   
                

      
    (3-2) 

   
  

     

    
   (3-3) 

               
             (3-4) 

     
                    (3-5) 
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Relations 3-2 to 3-5 are grouped in one relation. 

To relate the electric field     to potential drops, the (1-D) Poisson equation is solved for the 

SCR in p-type In0.5Ga0.5N at the semiconductor heterojunction. The electric field    is given 

as, 

An expression for the free electron concentration average value was obtained in terms of the 

potential drop    across the In0.5Ga0.5N p-n junction and the electric field    in the i-GaN 

layer at the i-GaN/p-In0.5Ga0.5N heterojunction [26]. A good approximation of this value is 

given by the expression 3-8 

 

                
  

  
       

  

   
 
 

  

  
 

          
 

     (3-8), 

where                    
        

    
 

  
             ,       

     
           , 

 

and        
          

 

Coefficient      represents the efficiency of the electron injection through the p-n 

homojunction           ;    is a coefficient that depends on the lifetime of injected 

electrons in p-type In0.5Ga0.5N                 is the creation efficiency for the 

excitonic current                
  is the concentration of electrons occupying the state  

   
  

 in non equilibrium;       is the position of the hydrogen like electron energy level    

for    , and   is the potential barrier width for level    [26][27].  

      

  

    
                           (3-6) 

            
          

      
  

 
  

    
      

  

  
  

  

  
    

     
     

  

  
  

  

  
    

 
  

                               
                                             

 

(3-7) 
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Two equations of four unknowns               are obtained; the first equation is given       

in 3-1, and the second equation is obtained by substituting the electric field     and the 

average concentration           by theirs expressions given in 3-7 and 3-8 respectively in 3-6.  

A system of two equations for four unknowns               is not sufficient to solve for 

              given a value for the gate voltage    . The remaining two equations are 

obtained through modeling of the i-GaN layer.  

In modeling the i-GaN channel, the charge distribution across the layer, the electric field 

through it and the potential drop at any point need to be determined. Although they are not 

final results, their determination imposes itself as an intermediate step in order to obtain the 

two additional equations in terms of the four potential drops                 . The average 

concentration value           of free electrons that have tunneled into the i-GaN layer, the i-GaN 

layer thickness      , and the initial field value   , are three natural candidates for a channel 

model input. Two approaches have been considered; the first one assumes that the initial 

field is inherent to the average concentration value, while the second one treats them as 

independent. The first model will have the average concentration           and the GaN layer 

thickness        as inputs, while the second one will have one more input which is the initial 

field   . Both models will generate the free electron concentration, the electric field, and the 

potential drop profiles          . 

The determination of the charge density distribution, the electric field, and the potential 

drop across the channel are essential to relate the electric charge per unit area    
  present on 

the gate to the corresponding applied gate voltage     . Once a system of four equations in 

terms of the unknowns                  is obtained, we can solve them for a given value of 

the applied gate voltage     . The gate capacitance    
  per unit area will be given as follows; 

   
           

 

    

 
         

 (3-9) 

Where     denotes the dc sweep gate voltage.  



Chapter 3    The ideal MOS capacitor on In0.5Ga0.5N 

Section 3.5 Conclusion 

14 
 

 

3.5 Conclusion 

The concept of an ideal MOS capacitor structure on In0.5Ga0.5N is introduced and its use as a 

valid approximation of the real device is justified. The necessity of analyzing the charge 

distribution inside the i-GaN layer is demonstrated by performing a quasi-static analysis on 

the 2-terminal structure. Two Channel models were suggested, their inputs and outputs were 

determined. The quasi static analysis is not carried out. This will be done once a channel 

model is obtained and a complete system of four equations with respect to the potential drops 

                  is found. Its resolution allows the computation of the quasi-static C-V 

curve of the ideal capacitor. 
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Chapter 4 : Channel model 1 

4.1 Introduction 

A first model for the channel made of intrinsic GaN is presented; it uses the average value of 

the free electron concentration present in the channel and its thickness as inputs. It gives the 

free electron concentration distribution, the potential drop, and the electric field at any point. 

Figure 4-1 represents a block diagram of this channel model. 

Channel 

Model 1

Average concentration nch ave

Channel thickness thGaN

Charge concentration profile

Voltage difference profile

Electric field Profile

 

Figure 4-1: Channel model 1 block diagram 

 

4.2 Exposition of the problem 

It has been shown [29] that for any semiconductor material under the influence of an electric 

field, and with a zero net current (open circuit situation), it is possible to obtain a neutral 

region where both the voltage drop and the electric field are null. For this to happen, the 

semiconductor material must be thick enough. An estimation of this required thickness is 

deduced from the depth that an electric field can penetrate such a material. A common 

measure of this penetration is expressed in terms of The Debye length. Let us consider a 

hypothetical rectangular cuboid of i-GaN material, an electric field is applied on one side, it 

penetrates the semiconductor and dies out at a certain distance inside the layer. The neutral 

region begins at that location and extends all the way to the opposite side of the layer. 
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Figure 4-2 illustrates a rectangular cuboid made of intrinsic GaN material  with a 

perpendicular electric field applied on one side, and also the existence of  a quasi neutral 

region underneath  (and including) the opposite side. If an electric charge is injected into this 

layer, it will distribute through it. The charge distribution will be constant in the neutral 

region and equal to the intrinsic free charge carriers concentration        . Outside the neutral 

(field free) region, the free electron concentration continuously increases to reach its 

maximum value at the surface on which the electric field is applied. This charge distribution 

occurs at steady state condition; when charge diffusion and drift currents cancel each other 

out, resulting in a zero value net current. 

Applied electric field  F

Neutral region 

(F=0, v=0)

Origin of 

abscissa

Thin layer

Thickness

 

Figure 4-2: Charge distribution through a hypothetical i-GaN rectangular cuboid 

 

For any value   of the free electron concentration, bigger than the intrinsic value, there 

exists a location, precisely a plane, where the free electron concentration gets this value  . 

The injected charge will determine the upper bound value that the free electron concentration 

will reach. 
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It will be proven shortly after that, for any value of the free electron concentration  , 

bigger than the intrinsic value, there is a thin region of known thickness where the average 

concentration, calculated over its thickness, gets the value   (see figure 4-2).  

If the i-GaN channel is assimilated to this thin region, then the problem of finding the free 

electron concentration, the electric field, and the potential drop profiles at any point inside 

the channel is resolved by localizing this thin region in the i-GaN rectangular cuboid.  

4.3 Mathematical formulation                                 

Figure 4-3 illustrates a 1-D representation of the distribution of the injected charge in the      

i-GaN rectangular cuboid. Application of (1-D) Poisson equation to the i-GaN rectangular 

cuboid leads to the following initial conditions problem [30]  

 
 

 
   

    
     

      

  

  
     

        

     , 

where the free electron concentration      at any point   is related to the value of the 

potential drop      at that point by the relation  

                
 

  
   

       is the intrinsic free carrier concentration of GaN, and    is the thermal voltage. 

The solution for this initial condition problem is given as follows: 

 
               

 

    
  

       
 

 
     

   , 

  The Debye length for intrinsic GaN is denoted as   . It is expressed by the relation 

    
        

       
 

 
  

 

              at room temperature 
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Figure 4-3: One (1-D) dimension illustration of the charge distribution through an i-GaN 

hypothetical rectangular cuboid 

 

The free electron concentration      at a point   is  

 
 

                  
 

    
 

       

 

 
    

   (4-1) 

If we consider an infinite electric charge injected in a hypothetical i-GaN rectangular cuboid 

whose thickness can be made as close as needed to (
 

 
     , the free electron 

concentration      gets all values of the interval             . In other words, for any given 

value     of the concentration, there is a plane located at abscissa         
 

 
      where  

          

This plane is unique because the free electron concentration   is expressed by a bijective 

function of the variable   (see equation 4-1). The intervals      
 

 
     and              are 

the domain of definition and the image set of the function  . 
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Let us consider the following bijective function    of variable    and parameter        

defined as 

 
 

            
 

     

       
       

 

       

 

 
                                

 

 
    

  

The value of   represents the free electron concentration average value calculated over a 

layer of thickness       . This thin layer is located at a point   inside the i-GaN rectangular 

cuboid. We can look at the i-GaN thin layer, of thickness      , that contains an electric 

charge of electron origin whose average concentration is equal to         , as a slice of thickness 

      taken from the i-GaN rectangular cuboid. Function   locates this slice. Calculating the 

integral in the expression of    results in to the following expression,  

 
 

            
          

     
      

       

    
      

 

    
  

       

 

 
                                

 

 
    

  

For all values of                   that satisfy the following condition; 

          
          

     
  

             
     

    
  

    
     

    
 

  (4-2) 

Equation                       has a unique solution   , it is given by the following 

expression 
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In the case of an i-GaN thin layer, the condition given in equality 4-2 can be expressed as 

                 

Appendix A contains a demonstration of the condition 4-2 

The initial value (and the lowest value)    of free electron concentration on one side of our   

i-GaN thin layer is given as 

                
  

 
 

 

 
   

 

 
 

 
         

     

    
   (4-3) 

The final value     (and the highest value) of free electron concentration at the opposite side; 

               , has the following expression, 

                      
 

 
 

 

 
      

     

    
  

 
    

     

    
  (4-4) 

To see how the free electron concentration evolves across the layer thickness      , the 

normalized abscissa   is used, it is defined as; 

 

  
    

     

                         

                    

  

The free electron concentration   at any point               , which corresponds to a 

unique value of    
    

     
, is given by the following expression; 

 
                                       

 

 
 

 

 
      

     

    
  

 
      

     

    
 

                  

  (4-5) 

Notice that                        , and                        . 

The voltage drop at any point    is defined as; 
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It is given by the following expression; 

 
 
 

 
 

      

 
 
 

 
              

 
  

 
       

     

    
  

 
      

     

    
 

  

      
 
   

 
         

     

    
 

 
 
 

 
 

                   

  
(4-6) 

The voltage drop value across the thin i-GaN layer is obtained from equation 4-6 for      

      

 
 
 

 
              

 
  

 
       

     

    
  

 
     

     

    
 

  

      
 
   

 
         

     

    
 

 
 
 

 
 

 (4-7) 

The electric field intensity    at any point   is expressed as;  
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and it is given by 

 
                     

    

  
            

 

 
 

 

 
      

     

    
  

 
      

     

    
 

                  

  (4-8) 

Electric field initial and final values    and     respectively at both sides of the i-GaN layer 

are; 
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  (4-10) 

For any given values of the average concentration and the i-GaN layer thickness 

                 that satisfy condition 4-2, the proposed channel model, for injected charges in 

an i-GaN thin layer, allows computation of the free electron concentration distribution  

(equation 4-5), the potential drop and (equation 4-6) and the electric field at any point    

(equation 4-8).  
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Initial and final values of the free electron concentration are given by equations 4-3 and 4-4 

respectively. Those of the electric field are given by equations 4-9 and 4-10 respectively. 

Finally, the voltage drop across the i-GaN thin layer is given by Equation 4-7. Figure 4-4 

represents the solution algorithm for the present i-GaN channel model. 

 

Start

Get (nch, thGaN)

No(nch, thGaN) 

satisfies condition 

(4-2)

Yes

Compute 

quantities  a, 

delta

Cannot solve for  

input (nch, thGaN) Compute and 

plot 

Concentration n, 

voltage v, and 

Electric field F 

End End

 

Figure 4-4: Solution algorithm of the proposed channel model 
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4.4 Domain of validity 

The effective room temperature density of states for the conduction band in intrinsic GaN 

material has a value of 1.2*10
18

cm
-3 

for the Zincblend crystal structure and 2.3*10
18

cm
-3 

for 

the Wurtzite crystal structure [31][32]. These values set the upper bound limit of the free 

electron concentration as it is described using Boltzmann statistics. The present model is not 

valid for concentration values of the same order as that of the density of state for the 

conduction band where GaN becomes degenerate. Points                        of the frontier 

of the domain of validity satisfy the following equation, 

                            , 

where    is the density of states for the conduction band in intrinsic GaN. These values can 

be determined by solving the previous equation. The maximum value of the average 

concentration of free electrons at which the model is still valid is given as, 

                    

    

     
 

    
     

    
                

  

      
   

 
  

 
     

    
  

      
     

    
            

  

      
   

 
  

 
     

    
 

 

(4-11) 

For the case of a thin i-GaN layer, equation 4-11 can be simplified using the following 

approximations, 
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Equation 4-11 can be put in a simpler form 

              
  

   
     

    
  

  

      
 

 
  
 (4-12) 

Expression 4-12 can be used to get a quick estimation of the value of              . Figure 4-5 

shows the domain of validity for the current model. Both values of the effective density of 

states are considered (both zincblend and wurtzite) for an i-GaN layer thickness range 

of             .  

As the i-GaN layer thickness increases, the charge distribution gets steeper, in other words, 

the charge distribution span, above and below the average value, increases. For this reason, 

              has to decrease to keep all values within the domain of validity. Figure 4-5 and 

table 4-1 confirm the effect of increasing the i-GaN layer thickness on the maximum average 

concentration value allowed to maintain the i-GaN material in a non degenerate state. For 

instance, for the case of 50nm thickness, the maximum average concentration allowed is 

1.4886*10
+17

 cm
-3

 for i-GaN Wurtzite crystal structure and 1.0498*10
+17

 cm
-3 

for i-GaN Zinc 

Blend crystal structure. 

 

 

Figure 4-5: Domain of validity of the proposed channel model for any i-GaN layer thickness 

value in the range 20nm-160nm 
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Table 4-1: Maximum values of average concentrations for i-GaN layer thicknesses in the 

range 20nm-160nm 
 

     (nm)                (cm
-3

) ( GaN Wurtzite 
structure) 

              (cm
-3

) ( GaN Zinc Blend 
crystal structure) 

20 3.3957E+17 2.3235E+17 

25 2.7982E+17 1.9327E+17 

30 2.3795E+17 1.6544E+17 

35 2.0698E+17 1.4462E+17 

40 1.8314E+17 1.2845E+17 

45 1.6423E+17 1.1554E+17 

50 1.4886E+17 1.0498E+17 

55 1.3612E+17 9.6193E+16 

60 1.2538E+17 8.8762E+16 

65 1.1622E+17 8.2397E+16 

70 1.0830E+17 7.6884E+16 

75 1.0140E+17 7.2062E+16 

80 9.5321E+16 6.7810E+16 

85 8.9931E+16 6.4031E+16 

90 8.5117E+16 6.0651E+16 

95 8.0793E+16 5.7610E+16 

100 7.6887E+16 5.4860E+16 

105 7.3341E+16 5.2360E+16 

110 7.0107E+16 5.0078E+16 

115 6.7147E+16 4.7987E+16 

120 6.4427E+16 4.6063E+16 
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4.5 Simulation results and discussion 

For a given i-GaN layer thickness, here it is considered that            as in [26]. 

Constants   and   can be computed if           satisfies condition 4-2. Free charge concentration, 

electric field, and potential drop profiles can be defined. Figures 4-5 to 4-32 represent theses 

three profiles for an average concentration               to       cm
-3

 respectively, with an 

increment of one order each time. Although free electron concentration values smaller than 

unity have no physical meaning, they were considered in the simulation to illustrate the 

validity of the analysis performed. This free electron concentration values range represents 

all the states on which the i-GaN can be; from highly depleted (insulator) i-GaN material to 

heavily charged (conductor) i-GaN material. As the average concentration increases, the slice 

gets closer to the cuboid surface on which the electric field is applied. This fact justifies the 

increase in the electric field initial value. Figures 4-24 and 4-25 for example show this 

tendency. 

Table 4-1(cont’d): Maximum values of average concentrations for i-GaN layer 

thicknesses in the range 20nm-160nm 

 

 
     (nm)                (cm

-3
) ( GaN Wurtzite 

structure) 

              (cm
-3

) ( GaN Zinc Blend 

crystal structure) 

125 6.1918E+16 4.4288E+16 

130 5.9598E+16 4.2644E+16 

135 5.7445E+16 4.1118E+16 

140 5.5442E+16 3.9698E+16 

145 5.3574E+16 3.8372E+16 

150 5.1828E+16 3.7132E+16 

155 5.0192E+16 3.5970E+16 

160 4.8657E+16 3.4878E+16 
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Table 4-2 contains all values     of the electric field. Gauss’s law predicts an increase of the 

electric field final value    as the average value of free electron concentration increases for a 

fixed i-GaN layer thickness. Final values    in table 4-2 confirm this tendency. The effect of 

changing the average concentration while maintaining the same i-GaN layer thickness of 

50nm is presented in figures 4-33, 4-34, and 4-35. Figure 4-33 shows that the distribution of 

electrons gets steeper as the average concentration increases. This can be explained as 

follow; as the average concentration increases, the thin i-GaN layer is identified to a thin 

slice of same thickness from the cuboid that gets closer to the surface on which the electric 

field is applied. This leads to an increase in two quantities; first the initial value of the 

electric field and second the difference between its final and initial values increases (the 

encapsulated charge is directly proportional to the difference between the electric field final 

and initial values), a higher electric field initial value pushes away more electrons from the 

corresponding i-GaN layer side, increasing the charge depletion on this side. On the other 

side, a stronger accumulation region is created. 

To this point, the thickness has been kept constant. The effect of changing this quantity 

while keeping the average concentration constant is presented in figures 4-36, 4-37, and 4-38. 

Figure 4-36 shows the concentration distribution for the same average value of   10
16

cm
-3 

and 

for different values of i-GaN layer thickness. For a constant value of the average 

concentration, as the thickness increases, the range of values taken by the concentration 

above and under the average value increases. This leads to a steeper distribution as shown in 

Figure 4-36. The potential drop across the thin i-GaN layer increases as it becomes thicker. 

Finally, the deviation of the electric field from its initial value is shown in Figure 4-39 for 

inputs                                           , this gives a rough estimation about the 

range of the average concentration values on which the constant electric field approximation 

can be applied. For an i-GaN layer thickness of 50nm, the constant field approximation holds 

for           values up to 10
+12

cm
-3

.  
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Figure 4-6: Free electron concentration, electric field, and potential drop for                            

(nch ave, thGaN)=(10
-9

cm
-3

,50nm) 

 

Figure 4-7: Free electron concentration, electric field, and potential drop for                            

(nch ave, thGaN)=(10
-8

cm
-3

,50nm) 
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Figure 4-8: Free electron concentration, electric field, and potential drop for                            

(nch ave, thGaN)=(10
-7

cm
-3

,50nm) 

 

 

Figure 4-9: Free electron concentration, electric field, and potential drop for                             

(nch ave, thGaN) =(10
-6

cm
-3

,50nm) 
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Figure 4-10: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
-5

cm
-3

,50nm) 

 

 

Figure 4-11: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)= (10
-4

cm
-3

,50nm) 
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Figure 4-12: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
-3

cm
-3

,50nm) 

 

 

Figure 4-13: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
-2

cm
-3

,50nm) 
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Figure 4-14: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
-1

cm
-3

,50nm) 

 

 

Figure 4-15: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
0
cm

-3
,50nm) 
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Figure 4-16: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+1

cm
-3

,50nm) 

 

 

Figure 4-17: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)= (10
+2

cm
-3

,50nm) 
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Figure 4-18: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+3

cm
-3

,50nm) 

 

 

Figure 4-19: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+4

cm
-3

,50nm) 
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Figure 4-20: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+5

cm
-3

,50nm) 

 

 

Figure 4-21: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+6

cm
-3

,50nm) 

 

0 0.2 0.4 0.6 0.8 1
1
1
1
1
1

x 10
5

n
 i

n
 c

m
- 3

Free electron concentration profile for (nch average,thGaN)=(1e5cm-3,50nm)

0 0.2 0.4 0.6 0.8 1
0.0314
0.0314
0.0314
0.0314
0.0314
0.0314

F
 i

n
 V

/c
m

 

Electric field profile for (nch average,thGaN)=(1e5cm-3,50nm)

0 0.2 0.4 0.6 0.8 1
0

1

2
x 10

-4

Normalized abscissa

v
 i

n
 m

V

Voltage difference profile for (nch average,thGaN)=(1e5cm-3,50nm)

0 0.2 0.4 0.6 0.8 1
1

1

1
x 10

6

n
 i

n
 c

m
- 3

Free electron concentration profile for (nch average,thGaN)=(1e6cm-3,50nm)

0 0.2 0.4 0.6 0.8 1
0.0993

0.0993

0.0993

F
 i

n
 V

/c
m

 

Electric field profile for (nch average,thGaN)=(1e6cm-3,50nm)

0 0.2 0.4 0.6 0.8 1
0

5

x 10
-4

Normalized abscissa

v
 i

n
 m

V

Voltage difference profile for (nch average,thGaN)=(1e6cm-3,50nm)



Chapter 4.   Channel model1 

Section 4.5 simulation results and discussion  

36 
 

 

Figure 4-22: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+7

cm
-3

,50nm) 

 

 

Figure 4-23: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+8

cm
-3

,50nm) 
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Figure 4-24: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+9

cm
-3

,50nm) 

 

 

Figure 4-25: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+10

cm
-3

,50nm) 
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Figure 4-26: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+11

cm
-3

,50nm) 

 

 

Figure 4-27: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+12

cm
-3

,50nm) 
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Figure 4-28: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+13

cm
-3

,50nm) 

 

 

Figure 4-29: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+14

cm
-3

,50nm) 
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Figure 4-30: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+15

cm
-3

,50nm) 

 

 

Figure 4-31: Free electrons concentration, electric field, and potential drop for                         

(nch ave, thGaN)=(10
+16

cm
-3

,50nm) 
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Figure 4-32: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+17

cm
-3

,50nm) 

 

 

Figure 4-33: Free electron concentration, electric field, and potential drop for                          

(nch ave, thGaN)=(10
+18

cm
-3

,50nm) 
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Figure 4-34: Free electron concentration for (nch ave, thGaN)=(10

+11\12\13\14\15\16\17\18
cm

-3
,50nm) 

 

 

Figure 4-35: Electric field for (nch ave, thGaN)=(10
+11\12\13\14\15\16\17\18

cm
-3

,50nm) 
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Figure 4-36: Potential drop for (nch ave, thGaN)=(10
+11\12\13\14\15\16\17\18

cm
-3

,50nm) 

 

 
Figure 4-37: Free electron concentration for (nch ave, thGaN)=(10

+16
cm

-3
,25-50-75-100-125nm) 
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Figure 4-38: Electric field for (nch ave, thGaN)=(10

+16
cm

-3
,25-50-75-100-125nm) 

 

 

 
Figure 4-39: Potential drop for (nch ave, thGaN)=(10

+16
cm

-3
,25-50-75-100-125nm) 
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Figure 4-40:  Electric field deviation from its initial value for                                                       

(nch ave, thGaN)=(10
-9

 to 10
+18

cm
-3

,50nm) 
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Table 4-2:  Initial and final values of free electron concentration, electric field and potential drop for (nch ave=10
-9

to10
+18

 cm
-3

,      

thGaN=50nm) 

         (cm
-3

)    (cm
-3

)    (cm
-3

)   (V/cm)    (V/cm) 
F deviation 

(%) 
Potential 
drop(mV) 

1.00E-09 9.99999999999734E-10 1.00000000000027E-09 2.76337909073438E-09 2.76337909073533E-09 3.45E-11 1.38238E-11 

1.00E-08 9.99999999999052E-09 1.00000000000095E-08 9.81404395890899E-09 9.81404395891851E-09 9.70E-11 4.90639E-11 

1.00E-07 9.99999999996968E-08 1.00000000000303E-07 3.13545436437578E-08 3.13545436438530E-08 3.04E-10 1.56708E-10 

1.00E-06 9.99999999990408E-07 1.00000000000959E-06 9.92523394679182E-08 9.92523394688704E-08 9.59E-10 4.96204E-10 

1.00E-05 9.99999999969680E-06 1.00000000003035E-05 3.13895240032949E-07 3.13895240042471E-07 3.03E-09 1.56965E-09 

1.00E-04 9.99999999904025E-05 1.00000000009587E-04 9.92633955649096E-07 9.92633955744313E-07 9.59E-09 4.96128E-09 

1.00E-03 9.99999999697009E-04 1.00000000030368E-03 3.13898736057583E-06 3.13898736152799E-06 3.03E-08 1.57021E-08 

1.00E-02 9.99999999039504E-03 1.00000000095797E-02 9.92635060767960E-06 9.92635061720128E-06 9.59E-08 4.95937E-08 

1.00E-01 9.99999996961760E-02 1.00000000302848E-01 3.13898770588764E-05 3.13898771540932E-05 3.03E-07 1.56806E-07 

1.00E+00 9.99999990402194E-01 1.00000000958685E+00 9.92635067536585E-05 9.92635077058265E-05 9.59E-07 4.96122E-07 

1.00E+01 9.99999969644761E+00 1.00000003031196E+01 3.13898766650983E-04 3.13898776172663E-04 3.03E-06 1.56876E-06 

1.00E+02 9.99999904012348E+01 1.00000009585889E+02 9.92635024770342E-04 9.92635119987144E-04 9.59E-06 4.96097E-06 

1.00E+03 9.99999696215390E+02 1.00000030288741E+03 3.13898723739904E-03 3.13898818956705E-03 3.03E-05 1.56816E-05 

1.00E+04 9.99999040264137E+03 1.00000095872952E+04 9.92634596077951E-03 9.92635548245964E-03 9.59E-05 4.96133E-05 

1.00E+05 9.99996967619323E+04 1.00000303433957E+05 3.13898295488105E-02 3.13899247656120E-02 3.03E-04 0.000156958 
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Table 4-2(cont’d):  Initial and final values of free electron concentration, electric field and potential  drop for (nch ave=10
-9

to10
+18

 cm
-3

, 

thGaN=50nm) 

         (cm
-3

)    (cm
-3

)    (cm
-3

)   (V/cm)    (V/cm) 
F deviation 

(%) 

Potential 

drop(mV) 

1.00E+06 9.99990411732649E+05 1.00000959638663E+06 9.92630313575180E-02 9.92639835255357E-02 9.59E-04 0.000496367 

1.00E+07 9.99969616741041E+06 1.00003028393882E+07 3.13894002748699E-01 3.13903524428361E-01 3.03E-03 0.001568027 

1.00E+08 9.99904132559759E+07 1.00009597911338E+08 9.92587490579658E-01 9.92682707385931E-01 9.59E-03 0.004963961 

1.00E+09 9.99696356822418E+08 1.00030302853123E+09 3.13851111190354E+00 3.13946327958106E+00 3.03E-02 0.015684092 

1.00E+10 9.99040476461449E+09 1.00095893990497E+10 9.92158729760310E+00 9.93110897058344E+00 9.60E-02 0.049606900 

1.00E+11 9.96966179384428E+10 1.00303286036085E+11 3.13422253444735E+01 3.14374416620988E+01 3.04E-01 0.156800653 

1.00E+12 9.90438849904217E+11 1.00962329469808E+12 9.87878308611460E+01 9.97399846566634E+01 9.64E-01 0.495873594 

1.00E+13 9.70089862054568E+12 1.03076088728116E+13 3.09168756287950E+02 3.18690106433404E+02 3.08E+00 1.568353064 

1.00E+14 9.08538643499286E+13 1.10059622363878E+14 9.46152885085387E+02 1.04136655379919E+03 1.01E+01 4.959843053 

1.00E+15 7.39439185190325E+14 1.35340027927282E+15 2.69923593236704E+03 3.65176436878912E+03 3.53E+01 15.64492511 

1.00E+16 3.96168025132385E+15 2.52325298846778E+16 6.24783175594094E+03 1.57677604752943E+04 1.52E+02 47.89018784 

1.00E+17 8.99509450114009E+15 1.10460637648494E+18 9.41439640931967E+03 1.04326200005868E+05 1.01E+03 124.4205723 

1.00E+18 1.06280564796989E+16 8.62074160429453E+19 1.02333197134016E+04 9.21641304227508E+05 8.91E+03 232.7972326 
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4.6 Conclusion 

A Channel first model was presented; its concept, analysis, and its domain of validity were 

discussed. Simulation results suggested a way for free electrons, once injected in a thin 

intrinsic GaN layer, to distribute. These free charge carriers are under the influence of an 

electric field whose initial value is implicitly dependant on both the average concentration 

value and the layer thickness. The potential drop across the layer was also computed.  
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Chapter 5 : Channel model 2 [28] 

 

5.1 Introduction  

In chapter 4, the initial value of the electric field is dependent on both the i-GaN layer 

thickness and the average value of the free electron concentration for Channel model 1. Why 

emphasize the initial electric field value? This value is (or should be) responsible for the 

quantum tunneling of electrons of exciton origin into the intrinsic GaN layer. The 

transmission coefficient expresses the exciton quantity ratio that interacts with the                 

i-GaN/p-type In0.5Ga0.5N heterojunction, and results in electron tunneling. This transmission 

coefficient is a function of the value of the electric field at the heterojunction [26][27]. 

Channel model 1 does not provide us with the ability to appreciate the effect of the 

transmission coefficient variation on the quantity of free charge injected in the GaN layer for 

the same quantity of excitons created (the potential drop applied across the In0.5Ga0.5N p-n 

junction is held constant in this case). Note that until now, we did not verify that the electric 

field initial values given by i-GaN channel model 1 for different inputs                  can 

produce the electron tunneling [26][27]. This verification will be will performed in chapter 6.  

A second channel model is presented in this chapter; this 1-D dimensional model allows 

control over the electric field initial value. It calculates the free electron concentration, the 

electric field, and the potential drop profiles for an input                     instead of 

only                 . The initial value of the electric field in the GaN layer is referred to as   .       

Figure 5-1 represents a block diagram of the proposed channel model. 
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Figure 5-1: Block diagram of i-GaN channel model 2 

 

5.2 Mathematical formulation  

Figure 5-2 represents a cross sectional schematic of the i-GaN layer. The final value of the 

electric field    is referred to as    . The origin for measuring both the potential difference 

and the distance inside the GaN layer is taken at the side on which    is applied. 
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Figure 5-2: A cross-sectional schematics of the intrinsic GaN layer, with the corresponding 

referenced potential drop, and electric field 

The application of the 1-D Poisson equation on the i-GaN channel, as indicated in Figure     

5-2, results in the following initial conditions problem [30]. 
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where              
 

  
 .     and    represent the free electron concentration, and the 

potential drop at point   respectively. The value of the free electron concentration at     , 

or at    , is referred to as    , this value is generally different from the intrinsic GaN free 

charge carriers concentration . The solution of this differential equation gives the expression 

of the potential drop      at a point  , 
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   represents a normalizing length, and   is a dimensionless positive constant. A closer look 

at the case corresponding to 
    

    
   shows that the initial value    of free electron 

concentration is solely determined by the electric field initial value   . In other words, 

regardless of the value of the average concentration         , the initial value     is pinned. This 

is incorrect since, two different values of the average concentration lead to two different 

initial values under the same conditions. This case is, thus, discarded. 

From now on, we refer to:  

    

    
       and                 

         

 
   as case 1, 
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and to 

  
    

    
     and                

 

 
       

 

     
    as case 2 

The free electron concentration    , the potential drop  , and the electric field    at any point 

  in the i-GaN layer are derived.  

 
 
 
 

 
 
        

          
     

    
 

         

 
              

                 
     

    
  

         

 
      

    
     

  
          

     

    
 

         

 
  

  case1  (5-1) 

 

 
 
 
 
 

 
 
 
        

        
     

    
  

 

 
       

     

 
            

                
     

    
  

 

 
       

     

 
        

  
     

  
       

     

    
 

 

 
       

     

 
               

             

  
       case 2            (5-2) 

 

The quantity   is the normalized abscissa, it is defined as  

 
  

 

     
  

           

  

The free electron concentration, the potential drop, and the electric field are functions of four 

variables                       . The average concentration          is used to compute the initial 

value    which is obtained by solving, for an appropriate choice of the unknown, the 

following equation;  
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         (5-3) 

Substituting the free electron concentration     by its expression obtained from the first 

equation in set 5-1 or 5-2, according to the case considered, in equation 5-3, we obtain; 

   
             

    
          

  

         
       

  
 
  case 1 (5-4), 

and  

   
             

           
       

    
        

     

 
         

 case 2 (5-5) 

Using the two following bijections  
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the following variable change is justified  
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Expressions 5-4 and 5-5 can be put into the forms 

       
 

 
 
  

        
      

 
 
             case 1 (5-6) 

 

         
  

  
          

              
 

     
       

 

 
      case 2 (5-7), 

  where                                           
       

  
   

        

              
 

Equation 5-3, put into forms 5-6 or 5-7, is solved numerically for the unknown    using an 

iterative method. Appendices B and C present the proof that equations 5-6 and 5-7 have  

unique solutions, different from the trivial one     , if constants       satisfy one of the 

mutually exclusive following conditions (one condition for each equation). 

Condition1:          case 1 

Constants       are expressed in terms of the electric field initial value    , the average 

value of free electron concentration         , and the i-GaN layer thickness       . The product 

       is directly obtained from the input                     , and indicates which case        

(1 or 2) is taken.  

Suppose that equation 5-3, put under form 5-6 or 5-7 has a solution     then the initial 

value of free electron concentration     is computed using reciprocals of bijections 

introduced earlier to justify the variable change. It is given as; 

 

   
        

 

    

    
  

       
   

 

  case 1 (5-8), 

 

 

Condition2:          case 2 
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or 

   
        

 

    

    
   

       
   

 

  case 2 (5-9) 

 

For an input                     that satisfies condition 1(2), equation 5-3, put into form 5-6 

(5-7), is solved for the unknown  . The free electron concentration initial value      is 

evaluated using 5-8(5-9). The free electron concentration, the potential drop, and the electric 

field profiles can be computed using equation set 5-1(5-2). Figure 5-3 represents the solution 

flowchart used to calculate output           starting from input                    ,  

 

Start

Get (F0, nch,ave, thGaN)

Computation of 

parameters “a” and “b”

Case 1

a>=2
Yes

Case 2

NoYes

NoYes

a(b+1)=2

a(b+1)>2
Cannot provide a solution 

for given (F0, nch,ave, thGaN)

Case 1

End

No

Compute parameters 

d, d2, and Ld

  thGaN within range
NO

Cannot compute (n, v, F) 

for this thickness value 

thGaN

Yes

Compute and Plot (n,v,F) 

Solve equation 

and compute value n0

Case 

1(2)

End End

 

Figure 5-3: Solution flowchart for intrinsic GaN channel model 2 
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Once the initial value    is computed, the free electron concentration final value   , the 

voltage drop   across the GaN layer, and the electric field final     can be computed using 

equations set 5-1 or 5-2 for    . 

 
 
 
 

 
 
       

         
     

    
 

         

 
              

                 
     

    
 

         

 
      

     
     

  
          

     

    
 

         

 
  

  

   

case1             (5-10) 

 

 
 
 
 
 

 
 
 
       

        
     

    
 

 

 
       

     

 
            

                
     

    
  

 

 
       

     

 
        

   
     

  
      

     

    
 

 

 
       

     

 
               

             

  

               

case 2  (5-11) 

All the coefficients in the expression of the free electron concentration     (first equation 

in equations set 5-1 or 5-2) can be computed once the initial value    is calculated. A 

numerical integration of      over the interval       is performed with respect to the 

variable   . The result should be equal to the average value          . This numerical integration 

verifies the correctness of the value    obtained previously. The initial value of the electric 

field is also recomputed using third equation in equations set 5-1 or 5-2 for the value     .  

5.3 Simulation results and Discussion 

For a given i-GaN layer thickness, here we considered         nm as in [1]. Constants   

and   depend on both the electric field initial value    and the free electron concentration 

average value         . To emphasize the difference between case 1 and case 2, consider the 

following practical situations. First, the i-GaN layer is heavily charged, and under the 

influence of an electric field whose initial value is low.  
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Second, the i-GaN layer is lightly charged, and under the influence of an electric field whose 

initial value is high. The first situation satisfies condition 2 and thus falls under case 2, while 

the second satisfies condition 1 and thus falls under case 1.  Condition 1 is always satisfied if 

constant    . This corresponds to situations where             V/cm at room 

temperature for an i-GaN layer thickness of 50nm, regardless of the charge density value. 

Figures 5-4 to 5-30 show the charge density distribution, the electric field, and the 

potential drop across an i-GaN layer of thickness 50nm for free carriers concentration typical 

average values in the range [10
-9

cm
-3

, 10
17

cm
-3

] under the influence of an electric field whose 

two initial values are chosen to be weak enough so that all these input                     values 

satisfy condition 2. For all typical values of the average concentration, and although the 

electric field initial value increased by one order of magnitude each time, no noticeable 

differences in the charge density and potential drop were observed. If we take the example 

where              cm
-3

, the initial value               cm
-3 

for        V/cm, 

and                cm
-3

 for        V/cm (see figure 5-8 and table 5-1), this comes 

from the fact that the electric field initial values are too small to have noticeable distinct 

effects on the charge density distribution. Table 5-1 contains initial and final values of both 

the free electron concentration and the electric field, and also the potential drop across this 

layer. Although, the initial electric field is an input, it has been computed for verification 

purposes. For the potential difference across the i-GaN layer, its values start in the range of 

tenths of fV;      fV for                                               to reach 

almost a hundred of mV;       mV for                                     

        . The electric field final value ranges from         V/cm with a deviation of 

9.52*10
-10

% from its initial value for an input                                      

         to             V/cm with a deviation of 9.52*10
+7

% from its initial value 

for an input                                             .  

Figures 5-31 to 5-50 show the charge density distribution, the electric field, and the 

potential drop across an i-GaN layer of thickness 50nm for free charge carriers concentration 

typical average values in the range [10
0
cm

-3
, 10

18
cm

-3
] under the influence of an electric field 

whose two initial values are chosen to be high enough so that all these input                     

values satisfy condition 1.  
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Table 5-2 contains initial and final values of both the free electron concentration and the 

electric field, and also the potential drop across this layer for the same input typical values 

                   , where         nm. When the electric field initial value is high, it pushes 

free charge carriers away from the corresponding i-GaN layer side, increasing the charge 

depletion. On the other side, an accumulation region is created. Both the depletion and the 

accumulation SCRs are enforced as the electric field initial value keeps getting higher. For 

strong initial fields, a change by one order of magnitude can result in a dramatic difference in 

the charge distribution profile, as well as for the potential drop across the i-GaN layer. For an 

average concentration value of 10
18

cm
-3

, see figures 5-31, 5-32 and table 5-2, the initial 

concentration density changes by almost six orders of magnitude from 1.09*10
+16

cm
-3

 for 

       V/cm to 1.35*10
+10

cm
-3

 for        V/cm. The potential drop across the i-GaN 

layer varies from 235mV for        V/cm to 590mV for        V/cm. The potential 

drop values across the i-GaN layer start from a few millivolts;      mV for an   

input                                            , to reach hundreds of milli-volts;            

     mV for                                              . Although, the initial 

electric field is an input, it has been computed for verification purposes. 

Another trend is noticed; for a given value of the initial electric field, the charge density 

distribution gets steeper as the average concentration value increases when the GaN layer 

thickness is kept constant. The concentration density varies from 9.49*10
+13

cm
-3

 to 

1.06*10
+14

cm
-3

 for         =10
+14

cm
-3

 and from 2.09*10
16

cm
-3

 to 9.50*10
+17

cm
-3

 for 

        =10
+17

cm
-3

 under the same condition of           V/cm (see Figure 5-51). In fact 

Gauss’s law, applied to the i-GaN layer, shows that the difference between final and initial 

values of the electric field is proportional to the total net charge encapsulated by this layer, an 

increase in the average concentration leads to a higher total charge which in turn increases 

the final value of the electric field if its initial value is kept constant.  So, as the difference 

between the electric field final and initial values increases, the charge distribution gets 

steeper and the potential difference increases.  Figure 5-52 illustrates the effects of varying 

the initial value of the electric field together with the average concentration on charge density 

distribution (see Figure 5-52a), on electric field (see Figure 5-52b), and on potential drop 

profiles (see Figure 5-52c) for the same GaN thickness of 50nm.  
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To this point, the i-GaN layer thickness was kept constant. The analysis however, allows 

the consideration of different thickness values. Changing the thickness allows the 

determination of its maximum value before breakdown for predetermined conditions of 

operation. For an average concentration         =10
+16

cm
-3

 and an electric field initial value 

   10
+4

V/cm, the charge density distribution varies from 5.52*10
+15

cm
-3

 to a final value of 

1.75*10
+16

cm
-3

 for a thickness of  25nm and from 1.83*10
+14

cm
-3

 to 1.06*10
+17

cm
-3

 for a 

thickness of 125nm (see Figure 5-53a). The potential drop across the GaN layer varies from 

29.82mV for 25nm to 164.60mV for 125nm (see Figure 5-53c). The electric field final value 

is around 1.48*10
+4

V/cm for 25nm and 3.38*10
+4

V/cm for 125nm (see Figure 5-53b). An 

increase in the electric field final value is expected:  for constant  average concentration and 

electric field initial values, an increase of the i-GaN layer thickness results in an increase of 

the total net charge in the GaN layer and thus of the electric field final value according to 

Gauss’s law. If          and    are kept constant, then the electric field final values    and    

corresponding to the i-GaN layer thicknesses th1, th2 respectively, satisfy the following 

proportionality (derived from Gauss’s law). 

     

     
 

   

   
 (5-10) 

Values F0=10
4
V/cm, F1=1.48*10

4
V/cm, F2=3.38*10

4
V/cm, th1=25nm, and th2=125nm 

satisfy proportionality 5-10. 
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Figure 5-4: (nch,F,v) for input (nch ave, thGaN)=(10
+17

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 

 

 

Figure 5-5: (nch,F,v) for input (nch ave, thGaN)=(10
+16

cm-3, 10
-2

\10
-1

V/cm, 50nm) 
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Figure 5-6: (nch,F,v) for input (nch ave, thGaN)=(10
+15

cm-3, 10
-2

\10
-1

V/cm, 50nm) 

 

 

Figure 5-7: (nch,F,v) for input (nch ave, thGaN)=(10
+14

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 
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Figure 5-8: (nch,F,v) for input (nch ave, thGaN)=(10
+13

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 

 

 

Figure 5-9: (nch,F,v) for input (nch ave, thGaN)=(10
+12

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 
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Figure 5-10: (nch,F,v) for input (nch ave, thGaN)=(10
+11

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 

 

 

Figure 5-11: (nch,F,v) for input (nch ave, thGaN)=(10
+10

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 
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Figure 5-12: (nch,F,v) for input (nch ave, thGaN)=(10
+9

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 

 

 

Figure 5-13: (nch,F,v) for input (nch ave, thGaN)=(10
+8

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 
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Figure 5-14: (nch,F,v) for input (nch ave, thGaN)=(10
+7

cm
-3

, 10
-2

\10
-1

V/cm, 50nm) 

 

 

Figure 5-15: (nch,F,v) for input (nch ave, thGaN)=(10
+6

cm
-3

, 10
-3

\10
-2

V/cm, 50nm) 
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Figure 5-16: (nch,F,v) for input (nch ave, thGaN)=(10
+5

cm
-3

, 10
-3

\10
-2

V/cm, 50nm) 
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Figure 5-18: (nch,F,v) for input (nch ave, thGaN)=(10
+3

cm
-3

, 10
-4

\10
-3

V/cm, 50nm) 

 

 

Figure 5-19: (nch,F,v) for input (nch ave, thGaN)=(10
+2

cm
-3
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\10
-4
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Figure 5-20: (nch,F,v) for input (nch ave, thGaN)=(10
+1

cm
-3

, 10
-5

\10
-4

V/cm, 50nm) 

 

 

Figure 5-21: (nch,F,v) for input (nch ave, thGaN)=(1cm
-3

, 10
-6

\10
-5

V/cm, 50nm) 
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Figure 5-22: (nch,F,v) for input (nch ave, thGaN)=(10
-1

cm
-3

, 10
-6

\10
-5

V/cm, 50nm) 
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Figure 5-24: (nch,F,v) for input (nch ave, thGaN)=(10
-3

cm
-3

, 10
-7

\10
-6

V/cm, 50nm) 

 

 

Figure 5-25: (nch,F,v) for input (nch ave, thGaN)=(10
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Figure 5-26: (nch,F,v) for input (nch ave, thGaN)=(10
-5

cm
-3

, 10
-8

\10
-7

V/cm, 50nm) 
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Figure 5-28: (nch,F,v) for input (nch ave, thGaN)=(10
-7

cm
-3

, 10
-9

\10
-8

V/cm, 50nm) 
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Figure 5-30: (nch,F,v) for input (nch ave, thGaN)=(10
-9

cm
-3

, 10
-10

\10
-9

V/cm, 50nm) 
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Table 5-1: Initial and final values for the free electron concentration, and the electric field, and the voltage drop across GaN layer of 50nm 

thickness (weak initial field) 

         
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E-09 1.00E-10 9.99999999999994E-10 1.00000000000001E-09 1.00000000000000E-10 1.00000000000953E-10 9.52E-10 5.05398702466815E-13 

1.00E-09 1.00E-09 9.99999999999903E-10 1.00000000000010E-09 1.00000000000000E-09 1.00000000000095E-09 9.52E-11 5.00229852100633E-12 

1.00E-08 1.00E-10 9.99999999999990E-09 1.00000000000001E-08 1.00000000000006E-10 1.00000000009530E-10 9.52E-09 4.99655535393328E-13 

1.00E-08 1.00E-09 9.99999999999903E-09 1.00000000000010E-08 9.99999999999998E-10 1.00000000000952E-09 9.52E-10 4.99081218685936E-12 

1.00E-07 1.00E-09 9.99999999999904E-08 1.00000000000010E-07 1.00000000000001E-09 1.00000000009525E-09 9.52E-09 4.99655535393285E-12 

1.00E-07 1.00E-08 9.99999999999037E-08 1.00000000000097E-07 1.00000000000000E-08 1.00000000000952E-08 9.52E-10 4.99942693746524E-11 

1.00E-06 1.00E-09 9.99999999999903E-07 1.00000000000010E-06 1.00000000000001E-09 1.00000000095239E-09 9.52E-08 5.00229852100633E-12 

1.00E-06 1.00E-08 9.99999999999033E-07 1.00000000000097E-06 1.00000000000000E-08 1.00000000009524E-08 9.52E-09 4.99942693746524E-11 

1.00E-05 1.00E-08 9.99999999999033E-06 1.00000000000097E-05 1.00000000000002E-08 1.00000000095239E-08 9.52E-08 5.00000125417259E-11 

1.00E-05 1.00E-07 9.99999999990334E-06 1.00000000000967E-05 1.00000000000000E-07 1.00000000009524E-07 9.52E-09 5.00005868579983E-10 

1.00E-04 1.00E-08 9.99999999999034E-05 1.00000000000097E-04 1.00000000000013E-08 1.00000000952388E-08 9.52E-07 5.00000125417259E-11 

1.00E-04 1.00E-07 9.99999999990334E-05 1.00000000000967E-04 9.99999999999999E-08 1.00000000095237E-07 9.52E-08 5.00005868579983E-10 

1.00E-03 1.00E-07 9.99999999990338E-04 1.00000000000967E-03 9.99999999999990E-08 1.00000000952374E-07 9.52E-07 5.00005868579983E-10 

1.00E-03 1.00E-06 9.99999999903344E-04 1.00000000009666E-03 1.00000000000000E-06 1.00000000095238E-06 9.52E-08 4.99999551052707E-09 
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Table 5-1 (cont’d): Initial and final values for the free electron concentration, and the electric field, and the voltage drop across GaN layer of 50nm      

thickness   (weak initial field) 

         
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E-02 1.00E-07 9.99999999990334E-03 1.00000000000967E-02 1.00000000000015E-07 1.00000009523766E-07 9.52E-06 5.00000125412909E-10 

1.00E-02 1.00E-06 9.99999999903343E-03 1.00000000009665E-02 9.99999999999998E-07 1.00000000952375E-06 9.52E-07 4.99998976735999E-09 

1.00E-01 1.00E-06 9.99999999903344E-02 1.00000000009666E-01 9.99999999999977E-07 1.00000009523748E-06 9.52E-06 5.00000699686121E-09 

1.00E-01 1.00E-05 9.99999999033440E-02 1.00000000096656E-01 1.00000000000000E-05 1.00000000952375E-05 9.52E-07 5.00000010071121E-08 

1.00E+00 1.00E-06 9.99999999903359E-01 1.00000000009667E+00 9.99999999999875E-07 1.00000095237494E-06 9.52E-05 4.99999551052707E-09 

1.00E+00 1.00E-05 9.99999999033455E-01 1.00000000096657E+00 1.00000000000000E-05 1.00000009523751E-05 9.52E-06 5.00000010071121E-08 

1.00E+01 1.00E-05 9.99999999033438E+00 1.00000000096656E+01 1.00000000000003E-05 1.00000095237509E-05 9.52E-05 5.00000182366133E-08 

1.00E+01 1.00E-04 9.99999990334396E+00 1.00000000966560E+01 1.00000000000000E-04 1.00000009523751E-04 9.52E-06 5.00000022951102E-07 

1.00E+02 1.00E-05 9.99999999033436E+01 1.00000000096657E+02 9.99999999999751E-06 1.00000952375038E-05 9.52E-04 5.00002422201287E-08 

1.00E+02 1.00E-04 9.99999990334390E+01 1.00000000966560E+02 9.99999999999998E-05 1.00000095237506E-04 9.52E-05 5.00000241191446E-07 

1.00E+03 1.00E-04 9.99999990334374E+02 1.00000000966566E+03 1.00000000000001E-04 1.00000952375065E-04 9.52E-04 5.00002383392723E-07 

1.00E+03 1.00E-03 9.99999903343980E+02 1.00000009665606E+03 1.00000000000000E-03 1.00000095237506E-03 9.52E-05 5.00000238472691E-06 

1.00E+04 1.00E-04 9.99999990334084E+03 1.00000000966620E+04 1.00000000000009E-04 1.00009523750643E-04 9.52E-03 5.00023811148660E-07 
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Table 5-1 (cont’d): Initial and final values for the free electron concentration and the electric field, and the voltage drop across GaN layer of 50nm 

thickness  (weak initial field) 

         
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E+04 1.00E-03 9.99999903343705E+03 1.00000009665661E+04 1.00000000000000E-03 1.00000952375064E-03 9.52E-04 5.00002380673596E-06 

1.00E+05 1.00E-03 9.99999903340940E+04 1.00000009666213E+05 1.00000000000002E-03 1.00009523750636E-03 9.52E-03 5.00023810148754E-06 

1.00E+05 1.00E-02 9.99999033437327E+04 1.00000096656638E+05 1.00000000000000E-02 1.00000952375063E-02 9.52E-04 5.00002380934381E-05 

1.00E+06 1.00E-03 9.99999903313468E+05 1.00000009671751E+06 9.99999999999739E-04 1.00095237506314E-03 9.52E-02 5.00238093413999E-06 

1.00E+06 1.00E-02 9.99999033409706E+05 1.00000096662160E+06 1.00000000000000E-02 1.00009523750634E-02 9.52E-03 5.00023809338487E-05 

1.00E+07 1.00E-02 9.99999033133503E+06 1.00000096717388E+07 1.00000000000002E-02 1.00095237506343E-02 9.52E-02 5.00238093666611E-05 

1.00E+07 1.00E-01 9.99990334125097E+06 1.00000966624408E+07 1.00000000000000E-01 1.00009523750634E-01 9.52E-03 5.00023809300184E-04 

1.00E+08 1.00E-02 9.99999030371973E+07 1.00000097269709E+08 9.99999999999961E-03 1.00952375063402E-02 9.52E-01 5.02380936880660E-05 

1.00E+08 1.00E-01 9.99990331363520E+07 1.00000967176725E+08 9.99999999999999E-02 1.00095237506340E-01 9.52E-02 5.00238092994736E-04 

1.00E+09 1.00E-02 9.99999002756171E+08 1.00000102792877E+09 1.00000000000126E-02 1.09523750634181E-02 9.52E+00 5.23809368504191E-05 

1.00E+09 1.00E-01 9.99990303747961E+08 1.00000972699917E+09 1.00000000000000E-01 1.00952375063406E-01 9.52E-01 5.02380929951735E-04 

1.00E+10 1.00E-02 9.99998726598238E+09 1.00000158024565E+10 1.00000000002515E-02 1.95237506343070E-02 9.52E+01 7.38093652685331E-05 

1.00E+10 1.00E-01 9.99990027592431E+09 1.00001027931846E+10 1.00000000000010E-01 1.09523750634066E-01 9.52E+00 5.23809296224358E-04 

1.00E+11 1.00E-02 9.99995965025661E+10 1.00000710342118E+11 1.00000000015384E-02 1.05237506342094E-01 9.52E+02 2.88093323865519E-04 

1.00E+11 1.00E-01 9.99987266043880E+10 1.00001580251801E+11 1.00000000000028E-01 1.95237506340584E-01 9.52E+01 7.38092633458408E-04 
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Table 5-1 (cont’d): Initial and final values for the free electron concentration and the electric field, and the voltage drop across GaN layer of 50nm 

thickness  (weak initial field) 

         
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E+12 1.00E-02 9.99968349970994E+11 1.00006233584762E+12 1.00000000190377E-02 9.62375063424593E-01 9.52E+03 2.43090036331983E-03 

1.00E+12 1.00E-01 9.99959651229436E+11 1.00007103518467E+12 9.99999999989261E-02 1.05237506340448E+00 9.52E+02 2.88089345933737E-03 

1.00E+13 1.00E-02 9.99692266522992E+12 1.00061472721057E+13 9.99999989141552E-03 9.53375063394685E+00 9.52E+04 2.38557164982275E-02 

1.00E+13 1.00E-01 9.99683570183255E+12 1.00062342894946E+13 9.99999999751378E-02 9.62375063403065E+00 9.52E+03 2.43056474675537E-02 

1.00E+14 1.00E-02 9.96938130162913E+13 1.00614533896031E+14 1.00000000913163E-02 9.52475063406475E+01 9.52E+05 2.37778851165481E-01 

1.00E+14 1.00E-01 9.96929457797583E+13 1.00615406467358E+14 1.00000000010331E-01 9.53375063405658E+01 9.52E+04 2.38228161618813E-01 

1.00E+15 1.00E-02 9.70054907509055E+14 1.06210959739941E+15 9.99997713082546E-03 9.52385063380514E+02 9.52E+06 2.34490686564022E+00 

1.00E+15 1.00E-01 9.70046470506161E+14 1.06211855847989E+15 9.99999996647913E-02 9.52475063405186E+02 9.52E+05 2.34535004843799E+00 

1.00E+16 1.00E-02 7.56371402058978E+15 1.67690090296758E+16 1.00000823361356E-02 9.52376063423807E+03 9.52E+07 2.05928810346977E+01 

1.00E+16 1.00E-01 7.56364902744476E+15 1.67691180168784E+16 9.99999800148333E-02 9.52385063401124E+03 9.52E+06 2.05932713905800E+01 

1.00E+17 1.00E-02 2.18419143094493E+16 9.42369675140983E+17 9.99971935197382E-03 9.52375163284544E+04 9.52E+08 9.73702392038633E+01 

1.00E+17 1.00E-01 2.18417474010874E+16 9.42371248305366E+17 1.00000037098578E-01 9.52376063421568E+04 9.52E+07 9.73704800335524E+01 
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Figure 5-31: (nch,F,v) for input (nch ave, thGaN)=(10
+18

cm
-3

, 5*10
+3

\10
+4

V/cm, 50nm) 

 

 

Figure 5-32: (nch,F,v) for input (nch ave, thGaN)=(10
+18

cm
-3

, 5*10
+4

\10
+5

V/cm, 50nm) 
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Figure 5-33: (nch,F,v) for input (nch ave, thGaN)=(10
+17

cm
-3

, 5*10
+4

\10
+5

V/cm, 50nm) 
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Figure 5-35: (nch,F,v) for input (nch ave, thGaN)=(10
+15

cm
-3

, 5*10
+4

\10
+5

V/cm, 50nm) 
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Figure 5-37: (nch,F,v) for input (nch ave, thGaN)=(10
+13

cm
-3

, 10
+4

 5*10
+4

V/cm, 50nm) 
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Figure 5-39: (nch,F,v) for input (nch ave, thGaN)=(10
+11

cm
-3

, 10
+4

\5*10
+4

V/cm, 50nm) 
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Figure 5-41: (nch,F,v) for input (nch ave, thGaN)=(10
+9

cm
-3

, 10
+4

\5*10
+4

V/cm, 50nm) 
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Figure 5-43: (nch,F,v) for input (nch ave, thGaN)=(10
+7

cm
-3

, 10
+4

\5*10
+4

V/cm, 50nm) 
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Figure 5-45: (nch,F,v) for input (nch ave, thGaN)=(10
+5

cm
-3

, 5*10
+3

\10
+4

V/cm, 50nm) 
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Figure 5-47: (nch,F,v) for input (nch ave, thGaN)=(10
+3

cm
-3

, 5*10
+3

\10
+4

V/cm, 50nm) 
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Figure 5-49: (nch,F,v) for input (nch ave, thGaN)=(10
+1

cm
-3

, 5*10
+3

\10
+4

V/cm, 50nm) 
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Figure 5-51: (nch,F,v) for input (nch ave, thGaN)=(10
+14\15\16\17

cm
-3

, 5*10
+2

V/cm, 50nm) 
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(b) 

 

(c) 

Figure 5-52 (a) Free electron concentration, (b) Electric field, and (c) Potential drop are plotted 

as functions of the normalized abscissa for inputs (nch ave,F0 thGaN)= (10
+14\15\16

cm
-3

, 

5*10
+4

\10
+5

V/cm, 50nm)  
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Figure 5-53: (a) Free electron concentration, (b) Electric field, and (c) Potential drop are plotted   

as functions of the normalized abscissa for inputs (nch ave,F0,thGaN)=(10
+16

cm
-3

, 
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V/cm, 50\75\100\125nm) 
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Table 5-2: Initial and final values for the free electron concentration and the electric field, and the voltage drop across GaN layer of 50nm 

thickness 

         
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E+00 5.00E+03 9.52111272391948E-01 1.04873284806836E+00 5.00000000000000E+02 5.00000000000000E+02 0.00E+00 2.49999999999999E+00 

1.00E+01 5.00E+03 5.63379451119496E+00 1.48105996736925E+01 5.00000000000000E+03 5.00000000000001E+03 1.82E-13 2.50000000000001E+01 

1.00E+01 1.00E+04 2.25351780447798E+00 1.55741472116882E+01 1.00000000000000E+04 1.00000000000000E+04 7.28E-14 4.99999999999999E+01 

1.00E+02 5.00E+03 5.97182218186666E+01 1.56992356541141E+02 5.00000000000000E+03 5.00000000000010E+03 1.93E-12 2.50000000000001E+01 

1.00E+02 1.00E+04 3.15492492626918E+01 2.18038060963636E+02 1.00000000000000E+04 1.00000000000001E+04 9.28E-13 5.00000000000002E+01 

1.00E+03 5.00E+03 5.93238562028829E+02 1.55955614563993E+03 5.00000000000000E+03 5.00000000000095E+03 1.90E-11 2.50000000000020E+01 

1.00E+03 1.00E+04 3.26760081649308E+02 2.25825134569493E+03 1.00000000000000E+04 1.00000000000010E+04 9.51E-12 5.00000000000017E+01 

1.00E+04 5.00E+03 5.93351237919053E+03 1.55985235763449E+04 5.00000000000000E+03 5.00000000000952E+03 1.90E-10 2.50000000000200E+01 

1.00E+04 1.00E+04 3.27210785210203E+03 2.26136617513857E+04 1.00000000000000E+04 1.00000000000095E+04 9.53E-11 5.00000000000166E+01 

1.00E+05 5.00E+03 5.93385040686120E+04 1.55994122124341E+05 5.00000000000000E+03 5.00000000009524E+03 1.90E-09 2.50000000002003E+01 

1.00E+05 1.00E+04 3.27030503785845E+04 2.26012024337468E+05 1.00000000000000E+04 1.00000000000952E+04 9.52E-10 5.00000000001658E+01 

1.00E+06 5.00E+03 5.93387294203925E+05 1.55994714559201E+06 5.00000000000000E+03 5.00000000095237E+03 1.90E-08 2.50000000020032E+01 

1.00E+06 5.00E+04 6.76055341343395E+02 1.06585630202909E+07 5.00000000000000E+04 5.00000000010502E+04 2.10E-09 2.50000000000543E+02 

1.00E+07 1.00E+04 3.27035686876795E+06 2.26015606534734E+07 1.00000000000000E+04 1.00000000095238E+04 9.52E-08 5.00000000165772E+01 

1.00E+07 5.00E+04 6.14083601720251E+03 9.68152807840694E+07 5.00000000000000E+04 5.00000000095389E+04 1.91E-08 2.50000000004932E+02 



Chapter 5.  Channel model 2 

Section 5.3 Simulation results and discussion 

93 
 

 

 

 

Table 5-2 (cont’d): Initial and final values for the free electron concentration and the electric field,  and the voltage drop across GaN layer of 50nm 

thickness  

                     (strong initial field)          
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E+08 1.00E+04 3.27034988286276E+07 2.26015125039876E+08 1.00000000000000E+04 1.00000000952373E+04 9.52E-07 5.00000001657718E+01 

1.00E+08 5.00E+04 6.16337119524729E+04 9.71705663855575E+08 5.00000000000000E+04 5.00000000957385E+04 1.91E-07 2.50000000049495E+02 

1.00E+09 1.00E+04 3.27035603496637E+08 2.26015563251199E+09 1.00000000000000E+04 1.00000009523751E+04 9.52E-06 5.00000016577207E+01 

1.00E+09 5.00E+04 6.13182194598459E+05 9.66731684324732E+09 5.00000000000000E+04 5.00000009524839E+04 1.90E-06 2.50000000492416E+02 

1.00E+10 1.00E+04 3.27035513806628E+09 2.26015631637062E+10 1.00000000000000E+04 1.00000095237508E+04 9.52E-05 5.00000165772039E+01 

1.00E+10 5.00E+04 6.13114589064325E+06 9.66625264295689E+10 5.00000000000000E+04 5.00000095237894E+04 1.90E-05 2.50000004923621E+02 

1.00E+11 1.00E+04 3.27034703937399E+10 2.26016375641809E+11 1.00000000000000E+04 1.00000952375064E+04 9.52E-04 5.00001657718267E+01 

1.00E+11 5.00E+04 6.13110082028716E+07 9.66619814614500E+11 5.00000000000000E+04 5.00000952372758E+04 1.90E-04 2.50000049235871E+02 

1.00E+12 1.00E+04 3.27026664057421E+11 2.26023856214427E+12 1.00000000000000E+04 1.00009523750633E+04 9.52E-03 5.00016576973044E+01 

1.00E+12 5.00E+04 6.13106363724339E+08 9.66630512717632E+12 5.00000000000000E+04 5.00009523751363E+04 1.90E-03 2.50000492357831E+02 

1.00E+13 1.00E+04 3.26946288821099E+12 2.26098666200439E+13 1.00000000000000E+04 1.00095237506342E+04 9.52E-02 5.00165748772831E+01 

1.00E+13 5.00E+04 6.13053859576392E+09 9.66713330886600E+13 5.00000000000000E+04 5.00095237511262E+04 1.90E-02 2.50004923367350E+02 
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Table 5-2 (cont’d): Initial and final values for the free electron concentration and the electric field,  and the voltage drop across GaN layer of 50nm 

thickness 

         
(cm-3) 

   
(V/cm) 

   (cm-3)   (cm-3)   (computed) (V/cm)   (V/cm) 
 _deviation 

(%) 
  (mV) 

1.00E+14 5.00E+04 6.12529433588971E+10 9.67541704231428E+14 5.00000000000000E+04 5.00952375064319E+04 1.90E-01 2.50049212600281E+02 

1.00E+14 1.00E+05 7.77328431476636E+06 1.93397506088434E+15 1.00000000000000E+05 1.00095234291331E+05 9.52E-02 5.00024626413467E+02 

1.00E+15 5.00E+04 6.07334403557682E+11 9.75825931435339E+15 5.00000000000000E+04 5.09523750629475E+04 1.90E+00 2.50490032068009E+02 

1.00E+15 1.00E+05 7.74040548999902E+07 1.94232917739370E+16 1.00000000000000E+05 1.00952377039080E+05 9.52E-01 5.00245746942549E+02 

1.00E+16 5.00E+04 5.59851608089486E+12 1.05866866477085E+17 5.00000000000000E+04 5.95237506344161E+04 1.90E+01 2.54703195264787E+02 

1.00E+16 1.00E+05 7.42374342163158E+08 2.02517389372321E+17 1.00000000000000E+05 1.09523756409511E+05 9.52E+00 5.02406460143396E+02 

1.00E+17 5.00E+04 3.14197811146889E+13 1.88711891034415E+18 5.00000000000000E+04 1.45237506341180E+05 1.90E+02 2.84594982475882E+02 

1.00E+17 1.00E+05 5.26846907795050E+09 2.85364722092265E+18 1.00000000000000E+05 1.95237501352260E+05 9.52E+01 5.20146848703239E+02 

1.00E+18 5.00E+04 5.83148719836326E+13 1.01718414316966E+20 5.00000000000000E+04 1.00237506339983E+06 1.90E+03 3.71727127721840E+02 

1.00E+18 1.00E+05 1.34977743542239E+10 1.11383968624473E+20 1.00000000000000E+05 1.05237512604219E+06 9.52E+02 5.90592572127487E+02 
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5.4  Conclusion 

A channel second model was presented; its concept and analysis were discussed. Simulation 

results suggested a way for the free electrons, once injected in a thin GaN layer, to distribute 

under the influence of an electric field whose initial value is set independent from the free 

electron concentration average value. The potential and the electric field at any point in the 

GaN layer were computed.  
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Chapter 6 : Comparison  

 

6.1 Introduction 

So far, two channel models have been presented; their main difference besides the number of 

inputs resides in the fact that, for the first model, the initial field is inherent to the average 

free charge concentration while in the second model they are independent.  A comparison of 

channel models 1 and 2 is performed. A set of four equations in terms of the potential drops 

              is obtained. Future work is defined. 

6.2 Comparison 

The quantum tunneling theory of electrons of exciton origin defined the range of electric 

field values at which excitons present in p-type In0.5Ga0.5N will interact with the i-GaN/p-

In0.5Ga0.5N semiconductor heterojunction resulting in their destruction and in electron 

tunneling to the i-GaN layer (channel) [27]. The dependence of the transmission coefficient 

of electrons on the electric field strength at the semiconductor heterojunction showed that 

quantum tunneling occurs for values higher than 10
+4

V/cm. If the initial value of the electric 

field in the i-GaN layer is taken at the i-GaN/p-type In0.5Ga0.5N heterojunction, then table 4-2 

gives the values of the initial electric field for different typical average concentrations of free 

charge carriers (electrons) that tunneled to the i-GaN material. In terms of the concordance 

with the exciton theory in Wurtzite InxGa1-xN [27], channel model 1 is not a candidate for the 

2-teminal MOS capacitor analysis. However Channel model 2 can be used in our device 

analysis because it offers the possibility to set the initial electric field values to those which 

enable electron tunneling. 
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6.3 Set of equations 

In section 3.4, the quasi analysis performed led to two equations of four 

unknowns              . The third equation is obtained by finding the potential drop 

across the i-GaN channel. Its expression is that of the second equation in set 5-1 for     if 

case 1 applies, or that of the second equation in set 5-2 for     if case 2 applies. The fourth 

equation is obtained first, by finding the expression of the electric field final value and 

second, by using the flux continuity property at the oxide/GaN interface. The final value of 

the electric field in the GaN layer is obtained from the third equation in set 5-1 for     if 

case 1 applies, or from the third equality in set 5-2 for     if case 2 applies. The two 

additional equations are; 

 
 
 

 
                   

     

    
 

         

 
   

   

  

    
       

     

  
         

     

    
 

         

 
  

  Case 1 (6-1) 

 
 
 

 
                  

     

    
 

 

 
       

     

 
    

   

  

    
      

     

  
      

     

    
 

 

 
       

     

 
   

  Case 2 (6-2) 

In fact, instead of having one system of four equations, two systems are obtained. It will be 

demonstrated in a future paper that in the case where there is a presence of free charge 

carriers in the i-GaN channel, only case 1 is taken and thus the two equations 6-1 together 

with equations 3-1 and 3-6 form the needed four equations system. 

The case corresponding to an initial zero-valued electric field was not discussed in this work 

because no charge tunneling occurs for this value [26][27], however this case will be 

considered in the discussion of the flat band condition of the MOS capacitor. 
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6.4 Conclusion 

A set of four equations with respect to potential drops               is obtained. For this, 

Channel model 2 was selected as a valid model after being compared against the theory of 

excitons in Wurtzite Indium Gallium Nitride [27]. 
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Chapter 7 : Conclusion 

7.1 Conclusion 

This work aimed to set the first step towards providing the HF MOSFET on InxGa1-xN with a 

device model for circuit analysis and design. 

In chapter 2, a qualitative description of the both the structure and the functioning of this            

4-terminal device was presented.  

In chapter 3, an ideal model for the MOS capacitor on InxGa1-xN was introduced. The idea that 

motivated the use of such a model was explained. A Quasi-static analysis was performed, 

although the CV characteristics are not obtained in this work, this analysis demonstrated the need 

for investigating the charge distribution, the electric field, and the voltage drop at any point in the 

channel. 

In Chapter 4 and 5, two channel models were presented. Each one of these (1-D) models 

suggested a way for the free charge carriers (electrons) to distribute in the i-GaN once they 

tunneled.  

In Chapter 6, a comparison between these models was performed; it used the concordance with 

the theory of the excitons of the structure in Wurtzite InxGa1-xN as a criteria. Channel model 2 

has been retained.  

Appendix A, B and C contain mathematical proofs needed to achieve a rigorous analysis. 

Including them directly in the text can create an off-topic tangent that would break the flow of the 

document.  

7.2 Future work 

Following the work described in this thesis, a number of directions could be taken up; 

1- Solution of the non linear system of four equations taking the applied gate voltage as a 

parameter and computation of the gate capacitance per unit area. 

2- Consideration of Fermi-Dirac distribution instead of Boltzmann distribution in the quasi-

static analysis of the 2-tarminal MOS capacitor. This way, the theoretical model is still 

valid even for degenerate semiconductors. 
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3- Comparison of the theoretical CV characteristics with measurements made on a test MOS 

capacitor. 

4- Definition of a metric that expresses the dependence of the applied gate voltage on the 

Oxide and GaN layers thicknesses for the same level of doping. This can help define the 

drivability (per unit area) of the device as a function of its layers thicknesses. 

5- The electrical quantities (current, voltage, and power) can be calculated based on the 

geometry of the device and its scaling down effects can be predicted.   

6- Built a dc model for the MOSFET on Indium Gallium Nitride. 
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 Appendix A 

A.1 Introduction 

In Chapter 4 the localization and thus the existence of a thin i-GaN layer whose thickness is 

defined, and over which the free electron concentration has a known average value, is possible if 

and only if the i-GaN layer thickness       and the free electron average concentration 

          satisfy condition 4-2 which is repeated below for convenience.  

          
          

     
  

             
     

    
  

    
     

    
 

 (A-1) 

A proof of this condition is given. 

 

A.2 Proof 

The following statement to prove summarizes the condition given in Equality A-1 

                        
                        

          

     
  

             
     

    
  

    
     

    
 

   

        
                                      

Let us solve for the unknown   the equation 

                     (A-2), 

where   
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Expression A-2 leads to an equation of the 2
nd

 degree with respect to the unknown      
 

    
 ; 

     
     

    
       

 

    
  

 

        
     

    
      

 

    
       

     

    
              (A-3), 

where     
                

          
 

The Discriminant   of the Equation A-3 is given by the following expression 

         
     

    
  

 

       
     

    
       

     

    
     

The discriminant   itself can be considered as a polynomial of the 2
nd

 degree with respect to the 

unknown  . Its reduced discriminant    is given by the following expression 

         
     

    
  

 

        
     

    
  

 

  

The reduced discriminant    is always positive; the discriminant   has two distinct real roots    

and     of opposite sign.  We suppose that, 

        , 

the discriminant   can be put under the form 

       
     

    
  

 

             

Since the quantity   takes positive values only, the discriminant   is strictly positive for all  

    . Root    is given as; 
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 For all values     , Equation A-3 accepts one positive solution;  

    
  

    
   

 

 
 

 

 
      

     

    
  

 
   

The condition given by Inequality A-1 is proven. 

The abscissa (location of the thin GaN layer)    is, 

                 
 

 
 

 

 
      

     

    
  

 
    

For the intrinsic GaN material, the room temperature Debye length    has the value            

          . All considered GaN layers have thicknesses       in the range of hundreds of 

nanometers. The following two approximations to the first degree are thus justified; 

    
     

    
  

     

    
 ,  

and  

   
     

    
 

The condition A-1 becomes, 

                 

This concludes the proof. 

A.3 Conclusion 

For any given value of                   , the fact that                    satisfies condition A-1 is a cine 

qua non condition for the existence of a GaN layer where this value applies. A proof of this 

statement has been presented. 
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 Appendix B 

 

B.1 Introduction 

In Chapter 5, any input                       that satisfies condition 1 ensures the existence and the 

uniqueness of a solution to equation 5-6. This solution allows the computation of the initial free 

electron concentration that falls under case 1. In this appendix, a proof of the sufficiency and the 

necessity of condition 1 is presented. Equation 5-6 and Condition 1 are repeated for convenience 

in B-1 and B-2 respectively.  

       
 

 
 
  

        
      

 
 
             (B-1) 

 

Where   
       

  
   

        

              
 

 

                     (B-2) 

 

B.2 Proof 

A proof of the following statement is presented  

           
     such that                       for which 

        
  

 
 
  

          
      

  
     

 ,   are two functions defined on       by 
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We notice that               the derivatives   ,    are given as;  

 
 
 

 
 

      
  

 

   
       

 

             
      

     
      

  

       

  (B-3) 

   and    are strictly positive functions on      . Second derivatives    ,    are given as follow 

 

 
 
 

 
 

       
  

 
 

     
       

 
   

       
 

     
     

 
  

     
 

 
 

 

             
      

  
 

 

 

        

  

Function      can be written as  

        
  

 
 

    
       

 
  

 
       

       

 
  

 
   

             
      

 
 
 
 

  ,  

where  

 
 
 

 
     

       

 
 

 

 
       

 
     

     

 
  

     

 
 

 

 

 
 

    
       

 

  

 

Besides    , function      has two real (and opposite) zeros whose square value is equal to  

       

 
  

 
   . Function       is positive on       since    

       

 
 

       

 
  

 
  . So,    and 

    are convex functions on      .  

Suppose that              , by integrating both sides (left and right) of the double 

inequality                on       where          , we get          . Since     is 

positive, convex on        and           , then          on      . Equation       

has only one solution (trivial)    . Equation B-1 has no solution on      .  
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Suppose that               . Since function    is continuous on      , there exists a point 

         such that ;                     for all            Integrating both sides 

(middle and right) of previous double inequality, we obtain            for all           , 

and thus function       satisfies :         on       . Function   diverges at point 

               .  Using the definition of limits in  , we get; 

          such that,                     

It is sufficient to take          , we get as a result         for all           . 

Application of Intermediate value theorem on function     shows that there exists at least one 

point          such that            . Equation B-1 has at least one solution on      .  

So far it has been proven that the condition                is sufficient for the equation              

           to accept at least one solution           . The uniqueness of this solution is 

guaranteed by the convexity of the function       on       and the fact that           .  

Now, a proof that the condition                is also necessary for the solution existence 

is given. Suppose there exists a point           such that            . Application of 

Rolle’s Theorem shows that there is at least one point           such that                

Point     is unique because of convexity of function        . Using the following statement:              

                     , together with the fact that function    is monotonically 

increasing on       , we obtain          for all           and          for all          . 

So                is also a necessary condition for the equation 8-1 to have a solution 

on      . 

The equation          admits a unique solution on        if and only if the following 

condition 9-4 is satisfied 

                (B-4) 

Substituting        by its expression obtained from expression B-3 for     in inequality B-4, 

constants       satisfy the following condition 

         

This concludes the proof. 
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B.3 Computation of the solution  

Equation B-1 has always a trivial solution    . When condition B-2 is satisfied, Equation B-1 

has also a second solution           .  

An approximate value of solution     can be obtained using an iterative method. Fixed point 

method cannot be applied since          because          . Newton-Raphson or Bisection 

methods can be used. The success of these methods relies in part on the choice of an adequate 

starting point         . 

The point              will be taken as the barycenter of points       and     , fitted with 

coefficients       and    respectively. The coefficient   is chosen so that iterative variable 

initial value       will be as close as necessary to point    . The value       is given as 

                                                                         (B-5) 

 The determination of point      is essential to ensure that initial point         is on the 

right side (              ), otherwise the iterative method will converge to the second, 

unwanted and trivial, solution    . The value    is a solution for equation           

Using the expression of the derivative    in B-3,     is a root of polynomial   defined on       as 

          
 

 
 

 

  
  

 
 

  

 
        

       

 
    

  

 
 

  

 
  

  can be considered as a second degree  polynomial with respect to unknown    . Its 

discriminant   has the following expression 

    
 

 
 

 

  
  

 
 

  

 
     

 

  
       

  
          ,   is always positive. 

Its square root satisfies the following inequality 

 
 

     
 

 
 

 

  
  

 
 

  

 
      since           
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If    
 
 and   

 
, we take    

     
 
, denote roots of polynomial   with respect to unknown    , 

theirs sum and product are given as  

 
 
 

 
   

     
    

 

 
 

 

  
  

 
 

  

 
          

  
    

  
       

 
    

  

 
 

  

 
      

  

To see which root is accepted or discarded, we compute      

          
 

 
 

 

     
 

 
   

Since       , we obtain   
       

 
  (comparison of a real number with real roots of a 

second degree polynomial), root   
 
 is accepted and root   

 
 is discarded. Our point      is 

given as;   

           
 
 
  

 

 
     

  
  
       

 
  

 
 

 
  

 (B-6) 

B.4 Conclusion 

A proof of the necessity and sufficiency of condition B-2 for equation B-1 to have a unique non-

zero valued solution was given. Choice of the iterative method used was made. The iterative 

method initial point was defined by B-5 and B-6.   
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 Appendix C 

 

C.1 Introduction 

In Chapter 5, any input                       that satisfies condition 2 ensures the existence and the 

uniqueness of a solution for equation 5-7. This solution allows the computation of the initial free 

electron concentration that falls under case 2. In this appendix, a proof of the sufficiency and 

necessity of condition 2 is presented. Equation 5-7 and Condition 2 are repeated for convenience 

in C-1 and C-2 respectively.  

             
  

  

 
         

              
 

     
       

 

 
      (C-1) 

 

Where   
       

  
   

        

              
 

 

         (C-2) 

  

C.2 Proof 

A proof of the following statement is presented  

           
      such that                  

 

 
   for which 

             
   

  
 

  
        

  

We can follow an approach similar to that used in appendix B and apply it on functions  ,    

defined on interval    
 

 
  as follow;
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Or we can work on function   defined on    
 

 
  as  

            
  

  
          

    

The second option is considered. We notice that         and   
 

 
     since 

             
 

 
 for any real function     of variable  .   is a class   -function on    

 

 
   its 

first derivative    is given as follow; 

        
 

  
          

     
  
           

    (C-3) 

Its value at     is         
 

      
   

Suppose that        , that is          , then function   is positive (increasing 

from         ) in the neighbourhood of      . On the other side,   
 

 
     means that 

function   is negative in the neighborhood of    
 

 
 . The existence of these two neighborhoods 

is guaranteed by the fact that   is continuous on    
 

 
 .  

Application of the Intermediate Value theorem on function    shows that there exists at least one 

point       
 

 
  where         . Thus,         is a sufficient condition for the existence of 

at least one solution to equation         in    
 

 
   . Since             , function   has at 

least one maximum at           , where          , and          according to Rolle’s 

Theorem.  
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The first derivative     at      satisfies         . Using the expression of    in C-3,      

is a root of the polynomial    defined as follow, 

       
  

 
 

 

            
  

 
                        C-4 

  is a polynomial of the 4
th
 degree composed of even power monomials only . It has four roots in 

  according to d’Alembert-Gauss theorem.   has its coefficients in   , this implies that if   is a 

root of  , then    and    are also roots of  , and thus either      or      ; roots are real or 

pure imaginary complex. So, the real numbers     and     are two roots of  .  

We can consider   as a polynomial of second degree with respect to unknown   , then   
 
 is 

one of its two roots. The reduced discriminant is given as follow  

            
  

 
   

 

  
  

 
 

 

                 (C-5), 

and it satisfies the following inequality 

            
  

 
   

 

 since           (C-6) 

The second root   
 
 is negative since  

  
   

  
                

 
  
  

    

  , as a second degree polynomial, has two real roots of opposite sign    
 
 and   

 
 .  , as a 

fourth degree polynomial, has four roots   ,    ,      
 , and        

 .   has a unique 

positive root       
 

 
 . Polynomial   can be put in the following form, 

     
  

 
 

 

              
    

   

We can see that     on        and     on     
 

 
 .  
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The function   is monotonically increasing on        and monotonically decreasing on     
 

 
 . 

     is the unique point where         . The value of this root is given as follow; 

   
          

  
        

 
  
  

  (C-7) 

So far, it has been proven that          is a sufficient condition for the equation        to 

have a unique solution          
 

 
      

 

 
   . Notice that if         , that is           

         , the function   is strictly decreasing, and thus negative on    
 

 
 . In fact, we know 

that 

     
  

  

 
         

    for all       
 

 
  

Developing the right side of the previous inequality results in the following; 

      
 

  

 
           

  

 
         

 , 

setting           makes      on    
 

 
 . 

Let’s prove the necessity of condition C-2 for equation C-1 to have a unique solution on    
 

 
 . 

Suppose that equation C-1 has a unique solution     . Applying Rolle’s Theorem on function 

  results in the existence of a point             where         . Considering polynomial 

  as of second degree with respect to unknown    , it is found that it has two roots   
 
 and    

 
, 

then their sum is given as,  

  
    

   
         

  
    

 
  
 

 
    

Second root    
 
 is negative, thus   has a one positive root     . For this to happen, the 

reduced discriminant     must satisfy inequality C-6. This is achieved for all values        for 

which         . The necessity of condition C-2 is proven
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 . 

C.3 Computation of the solution  

Equation C-1 has always a trivial solution    . When condition C-2 is satisfied, equation C-1 

has also a second solution        
 

 
 .  

An approximate value of solution     can be obtained using an iterative method, Newton-

Raphson or Bisection methods can be used. For The Bisection method, initial points are 

           and  
 

 
   

 

 
  . For Newton-Raphson method, the initial point           

 

 
  is 

taken as the barycenter of points       and   
 

 
 , fitted with the same coefficient  

 

 
 .  

The value       is given as 

      
 

 
    

 

 
  (C-8) 

Where the value of     is given in expression C-7. 

C.4 Conclusion 

A proof of the necessity and sufficiency of condition C-2 for the equation C-1 to have a unique 

non-zero valued solution was given. Choice of the iterative methods used to get an approximate 

value of the solution was made. Initial points for the candidate methods were defined in C-7 and   

C-8.  

 


