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ABSTRACT

The primary objective of this study was to document changes 'in Chironomidae
density, depth distribution, and ﬁxon richness, associated with experimental upland and
riparian deforestation of L42, a small boreal forest lake, 250 km northwest of Thunder
Bay Ontario. Insects were collected in floating emergence traps (0.28 m?) in July and
August 1995 before logging, and in May to September 1997 and 1998 following 74 %
and 61 % clearcut logging of the upland catchment and riparian zone. A total of 738
traps set over twenty-three days collected 4,013 insects from 10 families emerging from
lake benthos, with the Chironomidae comprising > 95 % each year.

Chironomid density declined after logging. Mean chironomid density (no.
individuals - 0.28 m?. d"' + S.E.) was higher in 1995 at the pre-logging sites (12.1 £ 1.2)
than in 1997 and 1998 (one and two years following clearcut logging, 7.0 £ 0.7 and 5.4 +
0.5 respectively). Density also differed between sites among years. Mean May through
September emergence was lowest in 1998 at the clearcut with riparian buffer strip
treatment (west site) (3.3 + 0.3) and highest during July and August 1995 at the west site
(16.2 £2.9). No change in non-chironomid aquatic insect density was detected between
timber harvest treatments and years.

Chironomid depth distribution was variable among sites, between years and may
have been affected by logging. Chironomid density declined after cutting at littoral
depths (0.5 and 1.0 m) and increased at sublittoral depths (3.0 and 4.5 m), possibly due to
a documented increase in littoral zone aeolian sediment deposition which peaked in 1997.

Chironomidae taxon richness decreased after watershed deforestation (21 genera
(41spp.) vs. 19 (36) and 16 (32)), 1995, 1997 and 1998 respectively. Chironominae was
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the most abundant subfamily in each year. After logging, the density of Tanypodinae

increased and Orthocladiinae decreased. The ratio of male to female emergence was
approximately 1:1 each year. Differences in chironomid community composition could

be influenced by voltinism, and potentially to climate.
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INTRODUCTION

Boreal forest timber harvest of white spruce (Picea glauca), black spruce (Picea mariana)
and jackpine (Pinus banksiana) is widespread in northwestern Ontario. Beginning in 1988,
Ontario logging companies were required to leave a buffer strip (ranging in width from 30 m on
level terrain to 90 m on slopes) around lakes and along streams following watershed
deforestation to protect the aquatic environment from timber harvest practices (OMNR 1988).

The extent to which boreal lake environments are affected by terrestrial disturbance has recently

received increased attention (Steedman et al. 1999).

Biomonitoring with chironomids

To effectively detect subtle changes to lake ecosystems following experimental
perturbations, impact studies must take into consideration the chemical, physical and biological
components of the terrestrial and aquatic environments. It is particularly useful to document the
effects of clearcut logging in the boreal forest with the use of indicator species.

Chironomids form an important link between primary producers and secondary
consumers. In freshwater eéos};stems, chironomids process phytoplankton and algae, and recycle
nutrients, particularly phosphorous (Bilyj and Davies 1989). Titmus and Badcock (1980)
reported that chironomid production (40-70 kg hayr") was the limiting factor in mallard
duckling early development. As well, Chura (1961) has shown that chironomid pupae and adults
constitute 60 % of the diet of 0-6 day old mallard chicks. Invertebrate and vertebrate predators,
including watermites (Wiles 1982), the chironomid Procladius (Kajak 1980),.dragonﬂy larvae
(Benke 1978), sculpins (Hershey and Dodson 1985) and coho salmon (Mundie ¢t al. 1990) feed
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on chironomids at some point in their life cycle. A significant change in chironomid productivity
may therefore influence organisms belonging to trophic levels both higher and lower than
‘ Chironomidae.
The development of Chironomidae as biological indicators began in Europe early in the
‘ 20th century following two different paths: 1) identification of species indicative of
| anthropogenic degradation of lakes and streams (Kolkwitz and Marsson 1909) and 2) biological
classification of lakes (Thienemann 1922; Caimns and Pratt 1993). There are many advantages to
using chironomids in biomonitoring of environmental disturbances in freshwater. At the global
(8,000 to 20,000 chironomid species) and regional (2,000-3,000 chironomid species) scale, the
number of chironomid species present accounts for at least 50% of the total macroinvertebrate
species recorded (Armitage et al. 1995). Chironomids are also ubiquitous and exhibit extensive
ecological diversity throughout their worldwide distribution (Resh and Rosenberg 1984).
Chironomids emerging from benthos have previously been used as biomonitors to detect
changes in water quality following large-scale rotenone treatments (Aagaard and Hanssen 1997),
agricultural runoff and industrial waste from chemical and oil enterprises (Zinchenko 1997),
altered thermal regimes by hydropeaking dam reservoirs (Brabec 1997), pulp and paper mill
effluent (Paasivirta 1997) and experimental acidification (Davies 1980). After experimental
additions of carbon, nitrogen, and phosphorous, Bilyj and Davies (1989) detected a
Chironomidae species shift and species 'substitmion that replaced pre-treatment common species
with opportunistic species.
Experimental acidification increased chironomid emergence density at the Experimental
Lakes Area, Kenora, Ontario (Schindler and Fee 1974, Schindler et al. 1985, Schindler ¢t al.
1980). From 1981 to 1983, at lake pH of 5.0 to 5.1, the number of species declined to half of the
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original population. The most significant decline occurred in the number of common species. In
1975 there were seven to ten common species. By 1983, there was only one common emerging
chironomid, Cladotanytarsus aeiparthenus (Schindler et al. 1985). Species indicative of
acidification appeared in 1981 to 1983. Sensitive assemblages included seven new species;

Cladotanytarsus muricatus, C. tribelos, C. elaensis, C. daviesi, C. pinnaticornis, C. fusiformis and

C. aciparthenus (Bilyj and Davies 1989). Cladotanytarsus daviesi, C. pinnaticornis, and C.
fusiformis were present at the lowest pH recorded in L223 (Bilyj and Davies 1989).

Cladotanytarsus aeiparthenus was the most tolerant of all species; it was consistently present at

low pHs (Bilyj and Davies 1989).

Effects of logging around boreal forest lakes

The aquatic environment is directly affected by terrestrial disturbance. Logging of
riparian and upland forest around boreal forest lakes has been associated with increased wind
energy and thermocline deepening (France 1997 a), increased autumn mixing depth, increased
phytoplankton biomass and production (Rask et al. 1993), reduced inputs of terrestrial plant
material (France 1997 b), and increased littoral insolation and diurnal temperature fluctuations
(Steedman et al. 1998). Steedman and France (1999) indexed upland catchment sediment
mobility via floating litter traps and showed that sediment was transported by wind following
catchment logging into nearby lakes. In addition, a five-fold increase in inorganic aquatic
sediment deposition was seen on tiles placed within the littoral zone of L42. However, even this
deposition rate in L42 was less than background levels in two nearby undisturbed lakes.
Paleoecological studies in and around the Coldwater Lakes Experimental Watersheds area

suggest that long-term sedimentation rates in northwestern Ontario lakes appear to be more
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strongly associated with regional precipitation and runoff trends than with catchment disturbance

by clearcut logging (Blais et al. 1998, and Paterson et al. 1999a).

Sedimentation

Substrate is a limiting factor in chironomid abundance and richness. Erosion of
undisturbed watersheds releases small amounts of particulate material (Bormann et al. 1969),
whereas forestry practices may result in the introduction of substantial amounts of water-borne
sediment. Chironomids can be affected directly when food collection or respiration is obstructed.
Suspended or sedimented material can be deleterious because these substances reduce light
penetration and consequently plant growth, bury hard surfaces, and fill interstices within the
substrate.

Sedimentation has been associated with reduced Chironomidae species richness after
large-scale watershed deforestation. Warwick (1975, 1980 a, b) extracted head capsules of
chironomid larvae from sediment cores to evaluate the response to historical clearcut logging,
including climatic change, at the Bay of Quinte, Lake Ontario. Sediment cores corresponding to
the period of most intensive logging in the watershed (about 1850-1860), revealed that

i chironomids representative of oligotrophic conditions increased relative to the abundance of

- chironomids that are more typical of eutrophic conditions. The rapid accumulation of mineral

~ sediments during large-scale deforestation and erosion of the watershed resulted in a high input
of clay to the lake.

Sediment deposition in freshwater lakes reduces the availability of chironomid food

" resources. Warwick (1975, 1980 a, b) identified a reduction in benthic food materials by an

~ increase in the organic matter : organic carbon profile obtained from 100 year old sediment cores.

| X
!

’i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A Chironomidae species shift resulted with a more oligotrophic trophic community