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ABSTRACT
Stafford, William M'Gregor. 1999. Comparative Analysis of Alternative Models of 

Moose Carrying Capacity. Unpublished M.Sc.F. thesis, Faculty of Forestry 
and the Forest Environment, Lakehead University, Thunder Bay, Ontario.
233 p. Supervisor: Dr. Peter N. Duinker.

Key Words: habitat carrying capacity, forest simulation, habitat suitability index, 
model comparison, moose modelling, population modelling, simulation, 
wildlife modelling.

The focus of the project was to compare the performance of several alternative 

models in predicting the potential impacts of timber harvesting on a moose 

population northwest of Edmonton, Alberta, in terms of moose density. The results 

would be used in strategic forest management planning for the area under study.

Four models that estimate density were compared and contrasted for their 

suitability in prediction of timber harvesting impacts on the moose population. The 

final model results were compared to known moose population values from the area 

as a validation technique.

Two of the models tested were habitat suitability index models, another was a 

habitat carrying capacity model, and the fourth was a population energetics model.

The four models were applied to a 10,495 ha study area where timber harvest was 

simulated using Harvest Schedule Generator 3.0 over a 200-year time period.

Three timber harvesting simulations were applied to the landscape using a 

philosophy of long-run sustained timber yield . A basic harvest level was developed 

to represent the way the present forest grows using normal timber yield curves.

The second simulation represents a higher long-run sustained timber yield gained 

through intensive silviculture. The last simulation was designed to act as a control 

and it simulated the forest growth and development when no timber harvest takes 

place.
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The first part of the project was to provide background information with 

respect to the study area, models, moose models, modelling used in adaptive 

management, and modelling as it applies to strategic forest management planning. 

The next part explains how the models were developed and applied to the three 

forest simulations, followed by a discussion of the results from each model. Lastly, 

the results from each moose model were compared to estimates of the resident 

moose population and conclusions were drawn.

The thesis results indicate that the Weldwood Winter Habitat Suitability 

Index Model predicts a 50% decline in moose carrying capacity for all forest 

simulations from 1996 to 2116 after which the simulated populations remains 

stable. The Chair in Forest Management and Policy Winter Habitat Suitability 

Index Model predicts that moose numbers will double for the two harvest scenarios 

in the first 50 years, after which the predictions remain stable, while the control 

indicates a stable population for the whole simulation. The Higgelke Habitat Model 

predicts a population increase between 2106 and 2126 for the harvesting 

simulations, after which there is a slow decline in moose carrying capacity values to 

approximately their starting values. The control simulation predicts that moose 

densities will decline by approximately 22% over 200 years. The Duinker 

Population Model predicts the same increase in moose numbers for the two 

harvesting simulations between 2106 and 2126 and a similar decline in values to 

Higgelke’s model; however, the moose populations recover to their original peak 

values by the end of the simulation. The no-harvesting control in the Duinker 

model predicts a fairly steady moose population.

The simulation results indicate no real match to aerial moose inventory 

values, which was not unexpected. Models of this nature need to be compared to

Abstract IV
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field results over many years before there will be any indication of which model(s) 

correlate to field observations. The benefit of the multiple model hypotheses and 

comparisons resides in the overall trend that three of the models predict a 

population increase after timber harvesting, which corresponds to published 

literature.

The practical benefit of this exercise was to present to the managing forester 

and public forest management advisory committee’s the potential impacts of 

different harvesting strategies on a moose population from multiple models that 

track the same indicator.
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INTRODUCTION

The Canadian forest sector has provided our country with materials to 

build homes and wealth to increase our standard of living. In the past, 

the forest products industry has only been concerned with harvesting trees and the 

accumulation of personal wealth as exemplified by John R. Booth’s (Bond 1968) 

empire built around white pine (Pinus strobus L.) in the 18th century. However, 

today this approach is no longer condoned by the public or forestry professionals. 

Today, across Canada, the public and the forest sector are jointly trying to develop 

integrated forest management plans that guarantee forest sustainability and 

respect for other uses. To achieve truly integrated forest management, society 

must have an idea of what the future effects of different forest management 

practices might be on various vertebrate species.

Toward that end, J. Russell of Millar Western Forest Products Ltd. (MWFP) of 

Whitecourt, Alberta, approached Dr. P. Duinker and L. Van Damme at Lakehead 

University to see if they could put together a suite of models for predicting the 

impacts of different timber management regimes on several wildlife species 

endemic to MWFFs licensed public forest land. From this larger project, the 

present thesis was developed.

This thesis explores and compares a small array of moose (Alces alces) habitat 

carrying capacity models. Each model was applied to the same landbase with three 

levels of silviculture treatment. The objective was to determine the degree of 

convergence or divergence of model outcomes and to understand reasons for any 

differences. Differences need to be analysed and the outcomes compared to moose 

census data. This comparison will serve as a test of validity for the alternative

Introduction XIX
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models. Additionally, the comparison will illustrate whether the predicted habitat 

carrying capacity for moose for each model is realistic.

Problem Statement

Researchers (e.g., Vemer et al. 1986; Schuerholz et al. 1988; Wedeles et al. 

1991; Duinker 1994; and Higgelke 1994) and wildlife habitat planners (e.g. Bonar et 

al. 1990) are developing alternative models of habitat carrying capacity for a range 

of forest-dwelling vertebrate wildlife species. Some models are relatively simple 

and account only for habitat dynamics (e.g., Higgelke 1994 and Allen et al. 1987) 

whereas others are comparatively complex and account for population dynamics 

(e.g. Duinker 1986; Hanley and Rogers 1989; Duinker 1993; and Duinker et al. 

1996). A third type of model now appearing in the literature includes some 

components of the other two but adds some type of “artificial intelligence” for the 

species being modelled (e.g. Saarenmaa et al. 1988 and Roese et al. 1991).

Two major problems arise for wildlife habitat modellers. The first problem is 

the long time-frame during which field measurements must be taken before habitat 

models can be empirically tested. The best way to answer this problem would be to 

perform the required surveys, e.g. how much browse was consumed; what is an 

animal’s home range size; how many predators are there, etc. However, there is 

insufficient time in my schedule to allow that. The second problem is the modeller’s 

inability to judge in advance how much detail must be put into a  model before it 

does an adequate job for long-term forest-level planning. This difficulty can be 

partially overcome by comparing the performance of several models of habitat 

carrying capacity, for the same species, in the same landscape, and across the same
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range of forest-management strategies. This process is also interactive with respect 

to time, since conditions are always evolving. Initially the first run results can be 

reinforced by comparing the models to moose inventories, for areas of similar 

habitat structure and forest-management strategies (Brown 1995; Duinker 1995). 

The same is also true for future runs, fortunately; with an historical record on 

moose numbers and model predictions, the choice of an appropriate model will 

become easier.

Scientific Justification

The purpose of the project is to determine whether the use of complex models 

of species-specific habitat carrying capacity, such as linked habitat-population 

models, is justified in long-term, broad-scale wildlife habitat planning, or whether 

simple habitat suitability index models will suffice and are preferable.

Study Objectives

The objectives are as follows:

Objective 1. To calibrate at least three moose habitat carrying capacity models 

(Bonar et al. 1990; Duinker 1993; Higgelke 1994) for part of the 

MWFFs Forest Management Agreement (FMA) area near 

Whitecourt, Alberta;

Objective 2. To apply the models in forecasting moose habitat carrying capacity 

for the MWFP FMA under a  range of forest-management strategies;

Introduction XXI
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Objective 3. To evaluate model performance and relative reliability by comparing 

their outputs to moose survey data from similar habitat types; and

Objective 4. To draw conclusions about model complexity and usefulness in 

strategic forest-planning decision-making.

There are essentially two outcomes of the model comparison, and each can be

seen to be a  competing hypothesis:

1. The models make essentially the same predictions for moose 

carrying capacity. In this case, initially one would probably conclude 

that, for strategic forest-planning purposes, the simplest model can 

be relied upon since it produces results similar to more complex 

models.

2. The models make substantially different predictions for moose 

carrying capacity. In this case, one would need to delve into the 

biological and computational basis for the differences, and attempt 

to rank the relevant assumptions as to their degree of uncertainty, 

and thus the overall confidence in each model’s predictions. One 

might assume that the more complex models are more realistic, but 

this remains to be seen from analysis of the predictions.

Expected Results from Objectives

Objective 1. Will yield three alternative models, of strongly different structures, 

for the same wildlife species’ habitat in the same forest.
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Objective 2. Will yield the forecasts or predictions required to assess relative 

model performance.

Objective 3. Will yield performance evaluations for each model relative to the 

others.

Objective 4. Will yield advice to forest habitat researchers and planners

regarding the use of species-specific habitat models of varying 

degrees of complexity.

Introduction
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STUDYAREA

The study area is delineated on the east and west by two creek systems. 

The east boundary is dominated by Oldman Creek and its tributaries, 

while the west and north extent are entrenched by Wind Fall Creek and its 

tributaries. The area between the two creeks is dominated by both pure and 

mixedwood stands of conifer and deciduous species. Furthermore, there are small 

grassland, swamp, bog and shrub areas that dot the landscape. This part of 

MWFP’s allocation was chosen because it was to be the first area to be re­

inventoried and I was scheduled to get the new inventory data.

Geographic Location

The study area is located 50 km west/southwest of Whitecourt, Alberta (Figure 

1). Whitecourt is situated 150 km west/northwest of Edmonton. The study area is 

designated as forest license agreement area W90008 by Alberta Environmental 

Protection and is enclosed by township and range maps T58R15M5, T58R16M5, 

T59R15M5 and T59R16M5.

Climate

The climate of the area is classified as dry continental. Mean temperature 

values in January and July are -20°C and 20°C respectively (Anon 1989). The mean 

total precipitation for the area is 750 mm per year. The greatest mean precipitation 

occurs in May and October, with January and July being the two driest months.

Study Area
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Geology and Geomorphology

Geologically the area is underlain by sedimentary rock originating from the 

Cretaceous period. The study area lies in the interior plains landform region (Anon 

1989). The sedimentary rocks and glacial tills of the study area have spawned a 

Grey Wooded soil great group. The Grey Wooded soils overlie various forms of 

glacial till.

Grey Wooded soils are characteristically composed of greater than 30% silt 

and/or clay which makes them prone to slumping when they are at or near field 

moisture capacity (Boul et al. 1989). Because of their fine texture, Grey Wooded 

soils are also susceptible to water erosion if not revegetated after disturbance.

These soils have two advantages; one is high field moisture capacity, and the other 

is that they can hold moisture for long periods of time. Both advantages are 

beneficial to the growth of several tree species groups, specifically spruce, fir and 

poplar.

Topography

The terrain is hummocky from deep glacial deposits that have experienced 

significant water erosion since the last ice age. The lowest elevation is 800 m above 

level (ASL) while the highest area is approximately 1300 m ASL 

(Figure 2). Slopes in the study area range from 2% to 

50%.

Study Area 3
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LITERATURE REVIEW 
Habitat Modelling

To understand habitat models we need to understand each component of 

the term habitat model. Habitat is the physical environment an 

organism lives in; habitat provides food, cover and reproductive security so that the 

organism can survive and reproduce successfully. The quality of habitat, i.e. its 

goodness, is the amount and mixture of food, cover and reproductive security. To 

define models I will use the Nyberg (1990) definition that models are "... 

quantitative abstractions of the essential parts o f the real-world situations”, with 

quantitative meaning U1 concerned with quantity, or 2 that can be measured” (Avis 

et al. 1983). When habitat and models are merged we are trying to create 

quantitative abstractions of real-world situations that relate to habitat. With 

respect to this thesis, the above definition fits well with the procedures and doctrine 

used in scientific investigation and is therefore applicable here.

Models linking wildlife to forest attributes first appeared in the 1960’s and 

were developed by teams of researchers and managers (Bunnell 1989). Since the 

1960’s Bunnell (1989) has found that: (1) the variety of models has continued to 

grow, (2) resource managers have begun to use models, and (3) the misuse of 

models produces invalid results. About the same time, the first computers were 

being developed and porting models to computers was a relatively simple task since 

most models of the 60’s were of a simple mathematical nature. Since then the 

complexity and operational scale of models has increased in step with computing 

power and has allowed us to model very complex systems such as climates and 

oceans over longer temporal and broader geographic scales (Scott et al. 1993).

Literature Review 5
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One of the most important components of modelling any system is the 

validation procedure during model development and upon completion. Validation 

must be used throughout the modelling process. Berry (1986) cites Farmer et al. 

(1982) and Marcot et al. (1983) that validation, invalidation and verification are 

critical processes and must receive more attention. It is necessary to validate or 

invalidate all parts of a model, i.e., inputs, relationships and results. Without 

critical validation, the use of models comes into question, since the weaknesses in 

the model’s assumptions, inputs and results are unknown, which could lead to 

faulty resource management decisions.

From my standpoint as a modeller, the best models are developed within the 

framework of adaptive management. In adaptive management, one takes existing 

information, develops a model that examines a component(s) of a system that could 

be affected by various management decisions, and uses it to project what the 

impacts might be. Within this framework the model’s assumptions, inputs and 

results are examined for their veracity (Hurley 1986). As time progresses the 

model may be enhanced, modified or replaced as new information becomes available 

in an adaptive management context. This cycling and comparison of reality to 

model results through time give such modelling in adaptive management its 

strength.

Types of Habitat Models 

Conceptual H abitat Models

Conceptual models provide an opportunity to display graphically the linkages 

between key factors in the environment that may affect the entity being modelled.

Literature Review 6
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The model developed may be the end product or a middle step on the way to a  more 

complex model. In the latter case, conceptual models are a way to display key 

concepts visually and processes for problem identification and scoping to take place.

H abitat Suitability Index Models

Habitat Suitability Index (HSI) models were developed in the United States to 

evaluate the impacts of environmental projects that might hinder the growth and 

development of various wildlife species (Schamberger and Farmer 1978) and 

provided a bridge between the fields of science and resource management 

(Schamberger and O’Neil 1986). HSI models examine a range of habitat 

components in the landscape that are considered important to the species of 

interest. HSI models require numerous assumptions and can never fully represent 

the real world (Schamberger and O’Neil 1986). However, if those simplifications of 

reality are done properly, one can normally retain the key systems dynamics while 

removing non-essential information.

Generally, HSI models contain environmental components strongly related to 

the subject species life requisites. Those requisites are rated on a scale from 0.0 to 

1.0, with 1.0 being the optimum value. The resulting component values are usually 

multiplied together and raised to the reciprocal of the number of components in the 

model (Equation 1).

HSI models are difficult to validate on their own and across studies, since 

there are no standard methods for defining and measuring habitat quality.

Modellers often lack reliable quantitative habitat data with which to build models, 

and the data that do exist are in different formats. Finally, models are developed

Literature Review 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

Equation 1

Example HSI Equation for Deer Yards

1/3
HSI = (S1 • S2 • S3)

51 = Tree Height
52 = Canopy Closure
53 = Browse Density

around the concepts of habitat and carrying capacity, terms which have no standard 

definitions and are difficult to quantify (Schamberger and O’Neil 1986). 

Schamberger and O’Neil (1986) provide a set of ideas regarding HSI model testing 

which were used as a guide for evaluating the HSI and other models in this thesis.

C arrying Capacity Models

The most comprehensive view of carrying capacity is that it is a function of all 

factors tha t interact to limit a population (Schamberger and O’Neil 1986). It is also 

thought to be a theoretical limit of the habitat to provide the life requisites of a 

species. HSI models "recognize the basic requirements of food, cover and physical 

habitat tha t serve to define the potential of a  land base to support wildlife 

populations” (Thompson and Stewart 1998). Furthermore, their use is restricted to 

a specific land-use study and a  specific geographic area and they are designed to be 

practical, operational planning models to assess impacts (Schamberger and O’Neil 

1986).

Carrying capacity models and HSI models are differentiated by the types of 

data used. HSI models focus on the basics required to sustain a population on a

Literature Review 8
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land base, while carrying capacity models examine a greater number of variables 

that affect the success of a population such as behaviour, climate, competition, 

diseases, disturbances, fecundity, mortality, parasites, predation, reproduction and 

habitat variables (Schamberger and O’Neil 1986).

Spatial H abitat Models

Spatial habitat models developed in conjunction with Geographic Information 

Systems (GIS), because GIS’s are able to track the spatial arrangement of objects 

via topology. Spatial models differ from the previous two types in that they take 

into account the juxtaposition of habitat features in relation to other specific habitat 

features around them. These types of models have the potential to improve the 

representation of how the landscape is utilized by a species because they take into 

account what habitat features are spatially important. This additional information 

allows the model to make calculations for habitat features that are spatially 

related.

Utilizing the Carrying Capacity Approach

The carrying capacity approach was taken in thesis project for two reasons: (a) 

the carrying capacity concept would be easier for managers to understand, which 

would make moose population objectives easier for them to set and implement and 

(b) I needed a way to compare and contrast the results from different models. If the 

HSI approach was left on its own i.e. HSI values between 0.0 and 1.0 then I could 

not of compared the population dynamics CC model to a static HSI model. Both 

reasons were important; however, presenting information to a manager or planning
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team th a t is concise, easy to understand and defendable is paramount, because it 

allows them to make informed decisions with good information.

Use of Models

Nyberg (1990) highlights three uses of forestry-wildlife models: (1) to further 

understanding, (2) to predict responses or trends, and (3) to communicate 

knowledge. Bunnell (1989) and Morrison et al. (1992) only identify Nyberg’s first 

two uses as relevant. Bunnell (1989) describes models for understanding as “...best 

guesses or hypotheses in a theoretical statement about how a system operates...” 

while models for prediction are “...designed to provide accurate, quantitative 

predictions of the response o f one (or more) variable(s) ... to changes in another..”. 

Nyberg (1990) describes the last use as best fulfilled using word models that 

describe the model’s quantitative aspects and the underlying model relationships 

which are important for learning to take place within an adaptive management 

framework.

In this study all of Nyberg’s uses were employed. First the models were 

examined conceptually to see if they fit what is known and reported in the 

literature and to further our understanding of what others thought was important. 

Next they were used to predict outcomes (moose/km2) using data associated with 

three timber harvest scenarios. Lastly, they are to be used to communicate 

knowledge back to the managing forester regarding what level of model complexity 

is advisable for local, regional and landscape-level planning.

Of Nyberg’s (1990) three uses, prediction is most likely to garner the most 

attention. Berry (1986) divides prediction models into three classes: (1) single-
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species models, (2) multiple-species or community models, and (3) habitat-analysis 

models. Berry (1986) defines simple correlations, presence/absence, statistical, 

habitat suitability index models, habitat capability models and pattern recognition 

models as single-species models. Multiple-species or community models include the 

U.S. integrated habitat inventory and classification system, the U.S. life-form 

system and community guild models (a guild is a group of animals that have a large 

number of the same life requisites). Lastly, habitat-analysis models include the 

U.S. habitat evaluation procedures, optimization models, and economic-analysis 

models. Berry (1986) notes that habitat-analysis models can overlap with single­

species models.

The models used in this thesis can be placed in two categories. The Weldwood 

Winter Habitat Suitability Index Model (WWHSIM) and the Chair in Forest 

Management and Policy Winter Habitat Suitability Index Model (CFMP-WHSIM) 

would be classified as single-species models, while the Higgelke Habitat Model 

(HHM) and Duinker Population Model (DPM) are habitat-analysis models.

Benefits o f Habitat Modelling

Nyberg (1990) identified five reasons why predictive models are beneficial to 

researchers and managers. Predictive models can be computerized, thereby 

allowing rapid responses to repetitive simple equations or the determination of 

complex 3- dimensional equations used in flow mechanics or thermodynamics.

Today, predictive models are incorporated into GIS’s to examine 2- and 3- 

dimensional spatial characteristics as well as the fourth dimension of time. 

Predictive models, according to Nyberg (1990), allow us to filter out the extraneous
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information regarding wildlife and forest relationships while maintaining the key 

ecological relationships. The ability to predict with models allows us the 

opportunity to try different management scenarios and assess the impacts with few 

environmental or monetary costs. Finally, models allow us to explore the potential 

results of our actions when real data are insufficient or sketchy, such as global 

climate models.

Moose Habitat Modelling

The first widely known moose habitat model, called the Habitat Suitability 

Index Model: Moose, Lake Superior Region, was developed by Allen et al. (1987). 

Several implementations of this model were developed for different regions (e.g. 

Higgelke 1994, Puttock et al. 1995 and Hepinstall et al. 1996). Another common 

type of habitat model developed for moose followed the Habitat Evaluation 

Procedures developed by the U.S. Fish and Wildlife Service in the 1970’s such as 

Manitoba Model Forest’s Habitat Suitability Index Model for Moose (Terrestrial & 

Aquatic Environmental Managers Inc. 1995).

The next evolution of moose habitat models was to include spatial components 

within the model. Higgelke (1994) utilized a raster-based roving window method to 

account for the natural ecotone between stands. The spatial component examined 

the spatial arrangement of food stands in relation to early-winter cover stands. 

Duinker et al. (1996) extended the work of Higgelke (1994) and used the early- 

winter cover and food values produced from the Higgelke model and applied them to 

a  population energetics model. The moose energetics model attempts to account for 

the impacts of hunting, predators, diseases, and other mortality.
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Model Uncertainty and the Quantification of Error

Uncertainty exists in both model inputs and relationships. In traditional 

science, specifically ANOVA-based experiments, one can quantify by known methods 

the uncertainty of specific variables. In simulation modelling, this becomes difficult 

if not impossible. However, at the base level i.e. level of the individual input such 

as tree height, one can determine the range of variance of that input across a 

landscape, by species, site class, age etc. through the use of simple experimental 

designs. The difficulty comes when one starts to combine these baseline inputs 

together in a model and determine their joint "variance”. I am sure that one could 

design and implement field experiments that examined the height co-efficient by 

species and how it relates to food. It was my assumption from field experience and 

literature reviews that as height increases the amount of food decreases. But the 

cost of doing such field research to lower uncertainty of that interaction would not 

be worth it; that money should be used elsewhere to provide more important and 

useful baseline information. A specific baseline study could examine just how much 

food is out there under different stand compositions or how much time do moose 

spend in specific and discrete habitat types.

My justification for not being able to quantify the interaction effects comes 

from the difficulty involved in trying to measure all interaction effects in a system 

that is infinitely dynamic. It is a task that would be considered impossible today 

and most likely into the near future. If one can not quantify error or variance in 

the interaction effects then one will not be able to measure error in the final 

forecasts. The best the modeller can do is lower the uncertainty as much as 

possible in the baseline data and make the equations involving those variables as
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simple as possible so that interaction effects can be monitored and adjusted for if 

necessary.

Scale

Scale, both temporal and spatial, have significant effects on modelling 

investigations. Wiens et al. (1985) identified numerous spatial and temporal scales. 

The spatial scales identified were: (1) area used by an individual, (2) local 

population or patch, (3) regional scale, and (4) biogeographical scale; temporal 

scales were: (1) the time required for an individual’s response, (2) the life time of an 

individual, (3) the time span of severed generations, and (4) the time needed for 

evolutionary change. With respect to moose, Telfer (1984) proposes that habitat be 

studied at three scales: the site or compartment scale of a few hundred ha, the local 

scale from 100 to 999 km2, and finally the regional scale of 1,000 km2 or more. 

Similarly, one should examine the impacts that temporal scales have on models that 

deal with moose or any wildlife species. The temporal scales of interest are the 

time needed for an individual’s response to a stimulus, an individual’s life time, and 

the time span of several generations.

Individual moose have the ability to affect their site or compartment 

environment, while many moose may have the ability to effect change at the local 

scale but little if any effect at a regional scale. Conversely, “nature” can affect 

moose at all three scales since fire, drought, insect infestations and wind storms 

have the ability to alter site, local, regional and biogeographical zones and those 

effects can occur a t all temporal scales. Finally, humans, like “nature”, can 

manipulate the environment of the moose a t all scales temporally and spatially.
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The interventions of humans with respect to moose are initiated and controlled 

from a moose management plan developed in association with a forest-products 

company (Thompson and Stewart 1998) or a government organization. The plan is 

developed in consultation with biologists, foresters and/or citizens advisory 

committee.

From research done on human interventions there now appears to be enough 

evidence to conclude that habitat management could have a positive influence on 

moose numbers (Thompson and Stewart 1998). Conversely, the benefits of 

management directed at specific habitat components, e.g., late-winter cover, are not 

as strong at the local or landscape level (Thompson and Stewart 1998). Finally, 

Thompson and Stewart (1998) state that "...there remains a general lack o f evidence 

to support the hypothesis that at the unit level, moose populations have been 

increased through directed management o f habitat over the long term”. From the 

statements of Thompson and Stewart (1998) above, it seems that moose have taken 

advantage of human disturbances through time and increased their numbers and 

expanded their range, but they have not benefited in a statistically proven way 

from direct habitat manipulation. However, the statistical proof may come once the 

Centre for Northern Ecosystem Research, Ontario Ministry of Natural Resources 

publishes the results from research on the effects of Ontario’s Guidelines for Moose 

Habitat Management in Ontario (1984).

This thesis examines the response of several moose models to different timber 

harvest regimes by manipulating forest dynamics and structure at the first two 

spatial scales - site and local scale - and over the middle two temporal scales - an 

individual’s life time and the time span of several generations. The thesis was
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restricted to the first two spatial scales because the data provided for the project cover 

only 10,495 ha. However, with the forest modelling program Harvest Schedule 

Generator (HSG) (Moore and Lockwood 1990, Gooding 1995), I was able to simulate 

different timber harvest strategies for 200 years, which covers the middle two 

temporal scales.

Effects o f Scale on Management and Planning

For wildlife managers, the spatial and temporal scales a t which to implement 

habitat management are variable. Thompson and Stewart (1998) suggest a spatial 

scale of 1,000 km2 (regional scale) or more be used for habitat management with 

respect to strategic forest management planning. The regional scale seems most 

appropriate because it is the area occupied by numerous moose and it is the normal 

scale of a forest management license. Additionally, it is enough real estate to test 

multiple hypotheses simultaneously as required by adaptive management. With 

respect to temporal scale, Wiens et al. (1985) suggests that responses to 

interventions be measured at temporal scales appropriate to the interventions 

(experiments) implemented and the response variables measured. Therefore, 

experiments dealing with forest management and silvicultural practices would have 

a time frame of several decades. The discussed time frames are long enough to 

observe changes in forest growth and development as well as the health and habits 

of the resident moose population.

Quoted, Thompson and Stewart (1998) relate several issues tha t managers 

have to deal with when managing habitat: “should managers manipulate moose 

habitat everywhere and all the time and should managers be concerned only or
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primarily with the immediate supply o f suitable habitat relative to some population 

objectives and finally should moose habitat be actively managed only in specific 

areas and for local populations o r ... for an entire unit”. It is felt by Thompson and 

Stewart (1998) that “moose should be managed at a spatial scale large enough to 

ensure that population objectives can be achieved at a time scale consistent with the 

| optimal forest rotation”. Therefore, with respect to the models in this thesis, moose
i

i  should be managed on a time frame of 40-60 years for the High Harvest Scenario
i
| (HHS), 40-80 years for the Basic Harvest Scenario (BHS) and 80-120 years for the

I No Harvest Scenario (NHS). I think the time frames for the HHS and BHS are too
i
| short because mature forest ecosystems require longer time periods to develop. If 

the only concern were fibre production, then those time frames would be valid;
j
! however, fibre production is not the only concern on Crown lands. Today’s forest
i

managers need to develop management strategies in an adaptive management 

| framework that are ecologically sustainable.

Adaptive Management 

Overview

Adaptive management is defined as a “formal process for continually 

improving management policies and practices by learning from their outcomes” 

(Taylor et al. 1997). Adaptive management in its simplest form is about dealing 

with uncertainty (Walters 1995). It evolved out of an approach developed by 

Holling (1978) and its application to forest management was enhanced by 

Baskerville (1985). The management policies developed are structured so that 

learning can take place a t every step of management implementation and the 

knowledge gained is used to refine both the management strategies and their

Literature Review 17
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implementation. The greatest learning occurs in the shortest time when the 

| management activities are designed at the outset as controlled and replicated

experiments with quantifiable measures that test hypotheses about how the system 

responds to management interventions (Taylor et al. 1997). Adaptive management 

| makes explicit the fact that any intervention in an ecosystem can be treated more

| or less as an  experiment and that we can learn from interventions by carefully
i

I recording the outcomes and applying the knowledge to the design of future
j

interventions.
1|
i  Adaptive management concepts are powerful in situations where interventions

are to occur in large ecosystems, but the outcomes of the interventions are 

unknown or potentially harmful. Lee (1993) notes that “the greater the surprise, the 

l more valuable the information gained, but the costs o f information often seem too

high to those who do not foresee such surprise”. It is the unknown that makes all 

managers wary, but it should not paralyse us from implementing practices tha t 

monitor change so that science and society can learn how to manage uncertainty.

For adaptive management to function well in large ecosystems, Lee (1993) 

expounds th a t adaptive management be linked to a bounded conflict system. 

Bounded conflict to Lee (1993) is the “pragmatic application o f politics that protects 

the adaptive process by disciplining the discord o f unavoided error(s)". Finally, Lee 

(1993) thinks that “together both processes can bring about learning over the 

decades required to move from unsustainability towards an enduring social order”.
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What are the advantages and hurdles when applying adaptive management? 

Excised in brief from Taylor et al. (1997) the advantages of adaptive management 

are:

(1) “Well-designed, experiments allow managers to evaluate reliably the effectiveness
o f alternative management actions”.

(2) “Adaptive management increases understanding of how ecosystems function”.
(3) “Adaptive management allows managers to proceed systematically and

responsibly in the face of uncertainty, gaps in understanding and 
disagreement”.

(4) “Management experiments may provide the only opportunity for learning about
large scale, ecosystem relationships”.

(5) “Adaptive management encourages more efficient and effective monitoring”.
(6) “Adaptive management helps to define the boundaries between activities that

are ecologically sustainable and activities that are not”.

The hurdles that need to be overcome during implementation of adaptive 

management were outlined by Taylor et al. (1997). The dominant challenges 

identified were: (1) technical, (2) economic, (3) ecological, (4) institutional and 

social.

Different adaptations of adaptive management are being employed by forest 

products companies such as Alberta Pacific in Boyle, Alberta (Hebert 1996) and 

Millar Western Forest Products Ltd. (MWFP) of Whitecourt, Alberta (Van Damme 

1998). A common component of each company’s approach to adaptive management 

is the use of simulation models to identify uncertainty, uncover assumptions and 

explore alternative management strategies. They are modelling specific 

components and processes and their impacts on the system as a whole. Each has or 

will have workshops that include decision-makers, politicians, scientists and public 

participants to identify together what the impacts might be and develop ways of 

mitigating them.
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How This Project Fits Within Adaptive Management

This thesis project is a modelling exercise to examine the effect of alternative 

timber harvesting scenarios on moose habitat using four moose habitat carrying 

capacity models. For MWFP, moose is considered one of the featured species. 

Therefore, it is important to understand the potential impacts that timber 

harvesting may have on moose within MWFP’s license areas. Duinker (1995) 

suggested the use of multiple models of the same indicator as a way of evaluating 

how to provide realistic estimates of impacts from different timber harvest 

strategies, given the present state of data availability and level of technology.

There are also questions of model complexity - does strategic forest planning need 

highly detailed models, or are simple HSI models good enough? It was also thought 

that disparity between model results might indicate a parameteris) that was 

difficult to quantify or sensitive to variation. Finally, if multiple models produced 

similar results or trends, then the acceptability of those results would be higher 

than those of a single model.

The results of this work are intended to be used in the development of long­

term timber harvest regimes, silvicultural systems and annual cut-block layouts. It 

may also help identify how moose sport harvest levels or predators might be altered 

to maintain a healthy and viable moose population.
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MODELS APPLIED IN PRO JECT 
Weldwood Winter Habitat Suitability Index Model

The Weldwood Winter Habitat Suitability Index Model (WWHSIM) for 

moose (Romito et al. 1995) was developed for the Foothills Model Forest 

near Hinton, Alberta. It is based on habitat suitability indices for food, cover and a 

ratio of food/cover in an ideal habitat. The HSI indices for each variable range from 

0.0 to 1.0, with 1.0 being the best value possible. The WWHSIM component for 

food is composed of three variables: SI is the percent shrub canopy closure, S2 is 

the distance of food from cover (m), and S3 is the distance from access (primarily 

transport features) (m) (Figure 3)

Variable SI describes the percentage of shrub canopy closure. Romito et al. 

(1995) stated that the best feeding areas during late winter are in areas with 50% 

shrub canopy cover or better (HSI=1.0). Areas with less shrub canopy closure 

receive proportionally lower HSI values. S2, the distance-from-cover variable, was 

identified by Romito et al. (1995) as important because moose are known to stay 

close to cover while feeding. Moose seem to prefer to be within 100 m of cover; 

however, occasionaly they feed further away. Therefore, when food areas are close 

(between 0 and 100 m from cover), they get the highest HSI value of 1.0; feeding 

areas further away receive a proportionally lower HSI value. The S3 value for 

distance from access is considered important because food habitat is considered 

degraded when it is within 100 m of any access corridor, such as roads, cut lines or 

seismic lines. The rationale is that access corridors are used by humans and 

predators, thus disturbing moose.
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Models Applied

HSI curves S1-S6 used in the Weldwood Winter Habitat Suitability 
Index Model.
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The WWHSIM component for cover is composed of four variables: S3 is the 

distance from access (primarily transport features) (m), S4 is the percent tree 

canopy closure, S5 is tree height (m), and S6 is distance of cover from food (m). S3 

is also included in the cover calculation for the reason stated above i.e. disturbance 

and predators. For S4, Romito et al. (1995) stated that 30% and greater canopy 

cover was considered optimal cover habitat (S4 = 1.0), while less than 6% canopy 

cover had no value at all (S4 = 0.0). For tree height S5, Romito et al. (1995) found 

from the literature that trees needed to be greater than 2.0 m tall before they 

provided any cover and the best cover occurs when tree heights are greater than or 

equal to 4.0 m (S5 = 1.0). Finally, S6 is similar to S2 in that cover must be within 

400 m of food for it to be beneficial. Cover is considered optimum when it is 

between 0 and 100 m from food (S6 = 1.0). Distances greater than 100 m receive 

proportionally lower values, since moose may feel less secure further from cover.

Conceptually, the model calculates six independent variables, of which three 

are merged to form the HSI for food, while four merge to form the cover HSI. The 

two results are compared and used to determine carrying capacity (Figure 4).

The WWHSIM components for food and cover for each cell are calculated by 

multiplying together their associated variables (Equation 2). From literature 

research done by Romito et al. (1995), it is assumed that in ideal moose habitat, the 

ratio of food-to-cover is 65:35. This ratio is used to calculate the Effective Units of 

Food (EUF) from the landscape by making the limiting WWHSIM component either 

food or cover. This is determined by comparing the food value to the cover value 

multiplied by the food-to-cover ratio 65:35. The resulting minimum value of either 

food or cover equals EUF. The EUF is divided by the food portion of the ratio to
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Forest Inventory File

S1: Percent Shrub Canopy Closure
S2: Distance of food from cover (m)
S3: Distance from access (m)
S4: Cover variable based on percent canopy closure
S5: Cover variable based on tree height (m)
S6: Distance of cover from food (m)
HSI: Habitat suitability index equation 
CC: Carrying capacity equation

FOOD HSI COVER HSI

Figure 4: Calculation flowchart of the Weldwood Winter Habitat Suitability
Index Model.
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Equation 2

HSI Food = S1 • S2 • S3 
HSI Cover = S3 • S4 • S5 • S6
Effective Units of Food = Min[(HSI Food),(HSI Cover • 65% / 35%)]
Effective Units of Winter Habitat = Effective Units of Food/0.65 
Carrying Capacity = Effective Units of Winter Habitat • 0.025 moose/ha
where:
51 = Percent Shrub Canopy Cover
52 = Distance of Food from Cover (m)
53 = Distance from Human Disturbance (primarily transportation features) (m)
54 = Percent Tree Canopy Closure
55 = Tree Height (m)
56 -  Distance of Cover from Food (m)

Note: 0.025 moose/ha is the known value for moose in the best moose habitat 
in the study area

give the Effective Units of Winter Habitat (EUWH). Finally, carrying capacity is 

calculated when the EUWH are multiplied by the expected moose density in ideal 

habitat (0.025 animals/ha).

Chair in Forest Management and Policy Winter Habitat HSI Model

The Chair in Forest Management and Policy Winter Habitat Suitability Index 

Model (CFMP-WHSIM) was based on the WWHSIM, but was refined to improve 

the approximations of conditions in the study area. This model is composed of 7 

HSI variables (Figure 5). S1-S3 are merged to form the food HSI while S4-S7 are 

merged together to form the cover HSI. The HSI values for food and cover are 

summed across the landscape and used to determine carrying capacity (Figure 6).

The CFMP-WHSIM SI determines a food bonus for cells that are adjacent to 

seismic or utility corridors. For the food bonus of SI, it is assumed that utility
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Figure 5: HSI curves S3-S6 used in the Chair in  Forest Management and
Policy Winter Habitat Suitability Index Model.
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Forest Inventory File

FOOD HSI COVER HSI

tE)
S1: Food bonus variable from seismic or utility corridors
S2: Food variable available from percent shrub cover that

is favorable for moose 
S3: Proximity of food to cover variable with reward declining

toO at 400 meters 
S4: Cover variable based on stand canopy closure
S5: Cover variable based on stand height (m)
S6: Cover variable based on percent conifer in stand
S7: Cover variable bonus for increased stand complexity
HSI: Habitat suitability equation 
CC: Carrying capacity equation

Figure 6: Calculation flowchart of the Chair in Forest Management and Policy
Winter Habitat Suitability Index Model.
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|  Table 1:
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I

Favourable browse species habitat suitability index values (xlO) for tree species on site 
classes 1-2 and 3-4 with hardwood components of 0-50 and 51-100%, through development 
stages 1-5 and the initial area of each classification.

Classification La Sb PI Bw Sw Fb Aw
HIS Area

ha
HIS Area

ha
HIS Area

ha
HIS Area

ha
HIS Area

ha
HIS Area

ha
HIS Area

ha
Devi Scl 1-2 HW% 51-100 4 6 7 10 10 10 10
Dev2 Scl 1-2 HW% 51-100 3 5 4 6 7 8 9 93
Dev3 Scl 1-2 Hw% 51-100 0 3 2 3 5 6 5 276
Dev4 Scl 1-2 Hw% 51-100 0 2 2 2 3 4 4 87
Dev5 Scl 1-2 Hw% 51-100 3 5 5 6 7 8 9 544
Devi Scl 1-2 Hwfc 6-56 1 3 4 362 8 8 7 20 10
Dev2 Scl 1-2 Hw% 0-50 1 3 2 1.797 5 30 4 27 4 7
Dev3 Scl 1-2 Hw% 0-50 0 1 0 1.148 2 162 2 7 3 4
Dev4 Scl 1-2 Hw% 0-50 0 0 0 2.966 1 13 2 485 2 3
Dev5 Scl 1-2 Hw% 0-50 0 0 3 5 4 3 5 6
Devi Scl 3-4 HW% 51-100 2 4 5 6 9 8 9 22
Dev2 Scl 3-4 HW% 51-100 2 3 3 4 5 5 6 11
Dev3 Scl 3-4 Hw% 51-100 1 2 1 1 3 5 4 4
Dev4Scl 3-4 HW% 51-100 0 0 1 0 3 3 3 6
Dev5 Scl 3-4 Hw% 51-100 1 3 4 3 5 6 6 8
Devi Scl 3-4 Hw% 0-50 1 3 3 73 4 5 6 6 7
Dev2 Scl 3-4 Hw% 0-50 0 1 23 2 589 3 7 2 3 4
Dev3 Scl 3-4 Hw% 0-50 0 0 18 0 85 0 19 1 2 3
Dev4 Scl 3-4 Hw% 0-50 0 0 193 0 162 0 0 8 1 3
Dev5 Scl 3-4 Hw% 0-50 0 0 2 0 0 3 4 5

Dev = Development Stage
Sd = Site Classes
Hw% = Percent of Hardwood in Species Composition
Coniferous Development Stages 
Devi 0-30 = Young
Dev2 31-60 = Pole
Dev 3 61-100 = Immature
Dev 4 101-150 = Mature
Dev 5 >150 = Over Mature

Deciduous Development Stages
Devi 0-20 = Young
Dev 2 21-40 = Pole
Dev 3 41-60 = Immature
Dev 4 61-100 = Mature
Dev 5 >100 = Over Mature

La = Larixlaridna
Sb = Picea mariana
PI = Pinus contorta
Bw = Betula papyrifera
Sw = Picea glauca
Fb = Abies balsamea
Aw = Populus tremuloides
Pb = Populus balsamifera
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corridors are permanent and seismic lines are temporary. A bonus value of 1.0 is 

given to any food cell one cell away from either a utility corridor or seismic line.

The S2 food table was developed from a moose literature review th a t describes food 

density and preference by moose (Appendix 1). Lastly, S3 gives CFMP-WHSIM 

values related to the distance that food is from cover.

The values for S2 were developed for tree species endemic to the study area as 

they relate to food availability, quantity and their palatability for moose. S2 

assigns a food HSI value to cells based on the queried cells’ species compositions, 

site class, percent hardwood and development stage (Table 1). S2 values are at 

their maximum in young aspen stands, and are minimal in dense mature coniferous 

stands. The S3 variable is similar to the S2 variable in the WWHSIM and the same 

rationale regarding distance from cover applies here. However, this S3 variable has 

fixed values between distances from cover, i.e. 1.0 when food cells are 0-100 m from 

cover, 0.75 for 100-200, 0.50 for 200-300 and 0.25 for 300-400 m, and 0.0 for 

distances greater than 400 m.

Variables S4-S7 examine habitat characteristics that relate to cover for moose. 

S4 represents tree canopy closure and is derived from a stand’s stocking value. S5 

is derived from tree height. S6 is determined from the percentage of conifers in the 

stand, and finally, S7 is a bonus equal to 1.0 for stand areas that have a complex 

overstorey.

S4 is derived from stand stocking. The minimum of 6% (below which S4 = 0) 

was chosen for the same reasons as in the WWHSIM. This model uses 60% and 

above as the values where cover is considered optimum. We chose 60% because it
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was found in the literature as being the minimum starting value that provides 

reasonable snow interception, reduced windchills and thermal protection. For 

stocking values between 6 and 60%, we used linear interpolation to determine S4.

S5 is derived from tree height. The minimum value of 4.0 m (below which S5 

= 0.0) was chosen because the literature review suggested that trees greater than 4 

m high start to provide thermal protection. The maximum of S5 = 1.0 is reached 

for trees equal to and greater than 8.0 m. For tree heights between 4 and 8 m, we 

used linear interpolation to determine S5.

Variable S6 percent conifer has a minimum value of S6 = 0.25 when there are 

no softwoods present. 0.25 was chosen for no conifers because deciduous trees do 

reduce wind chills but provide little snow interception and thermal protection.

When conifers compose 50% and greater of the species composition, the literature 

suggests that there are sufficient wind chill reductions, snow interceptions and 

thermal protection to warrant preferential use by moose. For conifer densities 

between 0.0 and 50%, we used linear interpolation to determine S6.

The S7 bonus for complex overstories is awarded to cells that reside in stands 

that have complex overstories and/or are multistoried. Complex overstories are 

tree canopies that have a vertically uneven canopy or are multistoried in the 

canopy, an example being a mature white spruce and white poplar stand, where the 

poplar is overtopping the white spruce giving two distinct canopies. The bonus was 

awarded for these types of stands because of their greater ability to provide moose 

with lower snow depths, greater thermal protection and reduced wind chill factors.
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The CFMP-WHSIM uses the same calculations for determining EUF, EUWH 

and the final carrying capacity value (0.025 animals/ha) as WWHSIM (Equation 3).

Higgelke Habitat Model

The Higgelke Habitat Model (HHM) was designed for the Aulneau Peninsula 

in Ontario. It provides an estimate of the number of animals/km2 at carrying 

capacity a t three times in the year: summer, early-winter and late-winter (Higgelke

1994). This model was modified to calculate only early-winter carrying capacity 

values for this project. The model is divided into two parts. Part one’s components 

are: classification of subdominance in stands, covertype identification, and the 

calculation of food. Part two’s components are: use of early-winter cover index 

curves, and adjustment of early-winter browse and cover values based on edge 

effects. Lastly, the estimated food values are summed and a calculation of early- 

winter carrying capacity is made (Figure 7).

Equation 3

HSI Food = ((S2 • S3)05+ S1)
HSI Cover = ((S4 • S5 • S6)033 + S7)
Effective Units of Food = Min[(HSI Food),(HSI Cover • 65% / 35%)] 
Effective Units of Winter Habitat -  Effective Units of Food/0.65 
Carrying Capacity = Effective Units of Winter Habitat • 0.025 moose/ha
where:
51 = Bonus for Cells adjacent to Utility Corridors or Seismic Lines
52 = Food Density and Preference
53 = Distance of Food from Cover (m)
54 = Percent Tree Canopy Closure
55 = Tree Height (m)
56 = Percent Conifer in Stand
57 = Bonus for Cells in Complex Overstones

Note: 0.025 moose/ha is the known value for moose in the study area
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Figure 7: Calculation flowchart for the Higgelke Habitat Model.
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Table 2: Covertype categories used for the Alberta study area.

1 Covertype Group Value 1
Pines 1
Pines with Hardwood 2
Black Spruce 3
Black Spruce with Hardwood 4
Black Spruce Site Class 4 5
White Spruce 6
White Spruce with Hardwood 7
Balsam Fir with Softwood 8
Balsam Fir with Hardwood 9
Poplar with Softwood 10
Poplar with Hardwood 11
Balsam Poplar with Softwood 10
Balsam Poplar with Hardwood 11
Birch with Softwood 12
Birch with Hardwood 13
All Other 17

Part one’s subdominance classification examines a stand’s species composition, 

exclusive of the working group, to determine whether the stand is hardwood- 

dominated or softwood-dominated. If a stand has a species composition of 

AWgSbjBjBw^Wj for example , it would have a subdominance classification for 

softwood because, exclusive of the Aws working group, the remaining species 

composition is softwood-dominated (Sbj+Bj+Sw ^ which is greater than Bwt=l). 

Conversely, a species composition of Aw5Bw3SwlPbl produces a hardwood 

subdominance designation, since Bw3+Pb1=4 versus S w ^l.

Part one’s covertype classification assigns a  covertype value to stands so that 

they become more meaningful with respect to the calculation of browse and cover 

index values for moose habitat requirements. Stands were aggregated into groups 

that I felt appear to moose as similar habitats even though their species 

compositions may vary. Fourteen unique covertypes were created for this study.
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The value assigned to each cover type is used for tracking purposes in the model see 

Table 2.

Food calculations for part one of Higgelke’s model were developed from browse 

curves based on a stand’s potential to produce browse (Appendix 2, Figures A2-4 to 

A2-13) (Higgelke 1994). These curves were developed from a literature review and 

were examined by professionals in Alberta to see if the amounts of browse 

estimated were reasonable. Browse values for stands that were not at either 10% 

or 100% stocking were derived from linear interpolation between the two extremes.

Part two’s early-winter cover indexes were determined from the stand’s 

working group and subdominance via cover index curves (Appendix 2, Figures A2-14 

to A2-19). The values obtained are an indication of a stand’s early-winter cover 

potential. Stands that contain a mix of conifers and non-conifers species at 50% 

stocking provide the best early-winter habitat (Appendix 1, Early-Winter Habitat).

The adjustment for early winter food and cover is developed by using a roving 

3*3 window of 100 metre cells across the area of interest. Early-winter food values 

were adjusted by multiplying it by the highest cover index amongst its eight 

neighbours and itself. Similarly, cover values were adjusted by multiplying each 

cell’s value by the highest adjacent food value including its own. This was an 

attempt by Higgelke (1994) to capture the ecotone effect found between stands, 

which moose arre known to use preferentially.

The adjusted food values for early-winter are summed up and the calculation 

for moose early-winter carrying capacity completed according to Equation 4. The
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Equation 4

MCC = ((EWF* 0.6 ) / (4 • 60)) / MU_Area

where:
MCC Early Winter Moose Carrying Capacity (moose/km2)
EWF Total Early Winter Food (kg)
0.6 Early Winter Browsing Factor
4 = 4 kg of browse/day for a moose
60 60 days in the early winter time period
Mu_Area = Management Unit Area (km2)

early-winter browsing factor represents the inability of moose to find and eat all the 

theoretically edible browse on a site. Higgelke (1994) used 4 kg/ha as the amount of 

browse required per day for a cow moose to meet its energy needs. It was not altered 

because my literature review found it to be a reasonable estimate (Appendix 1).

Sixty days was chosen as an average amount of time during which moose are 

normally associated with early-winter habitat; in reality this value lengthens and 

shortens from year to year depending on climate variability (Appendix 1).

Duinker Population Model

The Duinker Population Model (DPM) (Duinker et al. 1996) was created to 

determine the impact of different timber-harvest and hunting regimes on moose in 

the Lake Abitibi Model Forest in Northeastern Ontario. The model inputs are food 

values determined by the HHM food curves and other inputs that describe moose bio­

energetics.
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The DPM has three major elements: mortality; reproduction, and weight 

change, all of which are related to the amount of food determined from the browse 

curves. In the model, feeding occurs in spring/summer, autumn and early winter, but 

there is no food available in late winter since it is thought that moose cannibalize 

body reserves during this period of inactivity and heat-stress avoidance (Figure 8).

The moose population is tracked over time and is divided into cohorts based on 

sex (male, female) and age (11 classes representing ages 0-10 years). For all 

cohorts, two variables are tracked: the number of animals and the average weight 

per animal. The model also divides up the year into four segments: spring/summer 

(April 15 - September 14), fall (September 15 - December 14), early-winter 

(December 15 - February 14) and late-winter (February 15 - April 14).

The equations and starting values used to predict the number of animals in 

each cohort and their weights are described below while the equations and equation 

variable descriptions reside at Appendix 2 and Tables A2-23, A2-24, and A2-25.

Growth

The growth of animals in the DPM is simulated through changes in weight for 

each cohort. This is accomplished by converting the HHM food values into energy.

A change in weight is calculated for each cohort in each season by distributing the 

available food supply for each season amongst all cohorts. Total food supply is 

determined by the browse curves for each harvest scenario and time slice of ten 

years in the 200-year simulation. Since the enumeration of moose in the DPM 

occurs annually but the total food supply is calculated at ten-year intervals, it is 

assumed that the abundance of food is the same for all ten years. The annual food
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Figure 8: Input - output schematic of the Duinker Population Model.
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Table 3: Moose weights derived from weight regression equations developed
by Franzmann et al. (1978) and Schwartz et al. (1987) cited in 
Schwartz (1998).

Season Classification Days Estimated Maximum 
Body Weight kg 
Male Female

Time
Years

Source of Weights

15-Apr Birth 0 15 15 0.00 Schwartz 1998
15-SeD Calf 150 160 145 0.40 Franzmann eta l. 19781
15-Dec Calf 240 150 140 0.66 n
15-Feb Calf 300 150 140 0.83 »

Yearly Averaqe 119 110

15-Apr Yearlina 360 160 150 1.00 Franzmann et al. 1978’
15-Sep Yearlina 510 365 330 1.40 Schwartz e ta l.  19872
15-Dec Yearlina 600 340 359 1.66 M

15-Feb Yearlina 660 422 376 1.83 n

Yearly Averaae 322 304

15-Apr Adult 720 398 337 2.00 N

15-Sep Adult 870 487 420 2.40 W

15-Dec Adult 960 434 434 2.66 M

15-Feb Adult 1020 524 442 2.83 n

Yearly Averaae 461 408

15-Apr Adult 1080 484 384 3.00 n

15-Sep Adult 1230 566 463 3.40 it

15-Dec Adult 1320 494 470 3.66 M

15-Feb Adult 1380 590 473 3.83 N

Yearly Averaae 534 447

15-Apr Adult 1440 539 406 4.00 M

15-Sep Adult 1590 618 483 4.40 M

15-Dec Adult 1680 533 486 4.66 M

15-Feb Adult 1740 633 488 4.83 N

Yearly Averaae 581 466

15-Apr Old Adult 1800 575 416 5.00 1*

15-Sep Old Adult 1950 651 492 5.40 N

15-Dec Old Adult 2040 559 494 5.66 H

15-Feb Old Adult 2100 661 495 5.83 N

Yearly Averaae 612 474

15-Apr Old Adult 2160 598 421 6.00 N

15-Sec Old Adult 2310 673 497 6.40 »

15-Dec Old Adult 2400 575 498 6.66 N

15-Feb a d  Adult 2460 679 498 6.83 W

Yearly Averaae 631 478

1 as cited in figure 69, page 168 of Schwartz 1998
2 as cited in figure 70, page 169 of Schwartz 1998
Rut weight loss of 15% applied at December 15 as cited on page 169 of Schwartz 1998 
12 to 19 % weight loss Franzmann etal. 1978, Schwartz et al. 1987
Birth loss of 15% applied at April 15, from Schwartz 1998
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Figure 9: Moose estimated average yearly weights by sex derived from Table 3.
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supply is converted into metabolizable energy for each season (Appendix 2, Equation 

5). Total available energy is distributed among all cohorts for each season (Appendix 

2, Equation 6). The result is the energy available to each animal in each cohort.

This value is then used to calculate the average weight gained or lost for each cohort.

The starting weights and maximum weights for each sex of moose was based on 

expert knowledge and work done by Franzmann et al. (1978) and Schwartz et al. 

(1987) as cited in Schwartz (1998) (Table 3, Figure 9). The yearly average results 

of their equations were used as guidelines for estimating the maximum weights of 

both sexes. The maximum weights were kept below estimated maximums, since 

Alaskan moose are thought to be larger than those found in the study area.

The first life requisite for each cohort of animals is the metabolizable energy 

needed for maintenance throughout the year (Appendix 2, Equation 7). The surplus 

or deficit of energy is calculated by removing the energy required for maintenance 

from available energy (Appendix 2, Equation 8). If the value is positive, a weight 

gain occurs for each animal in that cohort; if negative, each animal loses weight 

(Appendix 2, Equation 9). A maximum body weight is assigned to each cohort to 

prevent the model from calculating biologically impossible weight gains when food 

is plentiful.

Starvation Mortality

Mortality from starvation is calculated in all four seasons for all cohorts. 

Starvation mortality occurs when the average weight for a cohort is compared to a 

m i n i m u m  weight below which starvation mortality occurs. To determine the number 

of individuals that would starve, a normal distribution of weights is produced along
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with an assumed standard deviation expressed as a proportion of the mean weight. It 

is assumed that the weights of individuals is normally distributed and that the 

proportion of animals with weights below the starvation threshold weight are the 

ones that die. The post-starvation mean weight for the cohort is then recalculated to 

reflect properly the loss of the individuals that starved.

Other Mortality

Other mortality (exclusive of starvation and hunting) occurs in all seasons and 

is set as an initial starting parameter (Appendix 2, Equation 10).

Hunting Mortality

Hunting mortality is determined in the fall of each year. Firstly, the DPM 

calculates the level of harvest for the area being modelled. This procedure follows 

the Heydon et al. (1992) tag allocation process used in Ontario. Initially the DPM 

calculates the target harvest rate for cows. This is done by comparing the total 

density of animals over the area of interest and the desired animal density input by 

a user. The created ratio is used to determine the overall harvest rate for cows.

The relationship between that ratio and the cow harvest rate is defined by the user 

as a series of points, between which the model interpolates linearly to define the 

entire curve (Appendix 2, Figure 25). The cow harvest rate is thus defined 

(Appendix 2, Equation 11). The number of bulls and calves harvested are a function 

of the user-supplied bull-cow and calf-cow harvest ratios (Appendix 2, Equations 12, 

13). Now that the number of cows, bulls and calves to be harvested is known, those 

harvest values can be distributed over the area of interest as a  function of abundance 

and hunting pressure.
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Hunting pressure for the area of interest is assumed to be related to road access 

and time since timber harvest. It is assumed that the more recent the cut is, the 

greater the access and the greater the probability that an animal will be harvested. 

To determine this access criterion, the model uses the Access Factor * Forest Area 

divided by the Forest Area (Appendix 2, Equation 14) as a surrogate. The access 

coefficient is a user-supplied factor between 0 and 1 that weights each of the forested 

age-classes. The 0-10 year age-class has the highest value while the lowest is the 31- 

40 year age-class. The DPM assumes that areas with age classes greater than 40 

years will not contribute significantly to access (Appendix 2, Figure 26).

The relative fall hunting pressure is calculated as a function of access, which is 

user-defined as a series of points between which the model interpolates linearly to 

define the entire curve (Appendix 2, Figure 27). Lastly, the model determines the 

hunting mortality for cows, bulls and calves (Appendix 2, Equations 14,15), and the 

total harvest is constrained so as not to exceed the total number of available 

animals in each cohort.

Births

The number of calves bom into the population is calculated by the DPM yearly 

during the spring season. The number of calves bom in each cohort is the product 

of the number of cows in the population times the cohort’s average birth rate 

(Appendix 2 Equation 16). The birth rate for each cohort’s cows is a function of the 

average cow’s weight in each cohort as determined last fall. The relationship between 

birth rate and weight is defined as a set of user-defined birth-rate-to-weight points, 

between which the model interpolates linearly to define the entire curve. Each calf

Models Applied 42

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

bom in the model is assigned an initial starting weight and sex (Appendix 2 

Equation 17,18).
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METHODS

Below I illustrate the processes used in getting projected forest inventory 

data to produce carrying-capacity values for moose from the four moose 

carrying-capacity models. The approach taken in this study was to:

(1) Use a stand-based forest projection model to create spatially discrete

inventory projections for a GIS.

(2) Apply the four moose carrying capacity models.

(3) Compare and analyse the results of the four moose carrying capacity

models.

Forest Projection Model

The forest inventory data sets for this study were developed using a forest 

projection model called Harvest Schedule Generator (HSG) Version 3.0 (Gooding

1995). Forest inventory data, appropriate yield curves (Appendix 3), succession or 

state table (Appendix 5) and long-term sustainable forest management scenarios for 

no timber harvesting, basic timber harvesting and high timber harvesting were

provided to HSG 3.0 for the forest development simulation. The starting forest
*

inventory data (Figure 10) and management scenarios were acquired from MWFP.

A succession or state table was developed to describe how HSG was to evolve stands 

once they were harvested or they started to break up and decline in old age.

Volume curves for each species found in the study area were created from existing 

age/volume tables, but silviculturally managed age/volume curves for site classes 

M1-M3 were enhancements on site classes 1-3 by approximately 1.5 times. The 

enhanced volume curves reflect what MWFP personnel believe the forest can
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produce given reasonable management regimes. The volume curves and state table 

for the forest growth simulations were created in consultation with:

Les Walsh, Silviculture Forester for Millar Western Forest Products, 
Whitecourt, Alberta.

Laird Van Damme, Silvicultural Specialist, KBM Forest Consultants,
Thunder Bay, Ontario.

Dr. Peter Duinker, Thesis Supervisor, Lakehead University, Thunder 
Bay, Ontario.

Doug Walker, Forest Modelling Specialist, Pearson Timberline,
Edmonton, Alberta.

The forest simulations developed using HSG consisted of three management 

scenarios: the No, Basic and High Harvest Scenarios (NHS, BHS and HHS). The 

NHS was to act as a control with no timber harvesting taking place; BHS was 

implemented to follow the present operating strategy and known age/volume curves 

used by MWFP; HHS was developed to mimic the expected volume increases from 

new silvicultural treatments being employed by MWFP on site classes 1-3.

The management scenarios were run in the HSG simulation for 200 years and 

inventory files were created a t every 10-year time step. Several simulations were 

required until a  200-year sustainable harvest level was identified for the BHS and 

the HHS. I identified a long-run sustained yield (LRSY) of 27,500 m3/yr for the 

BHS and 32,000 m3/yr for the HHS for 200 years. The NHS did not require the 

identification of a LRSY, since no timber was harvested, but natural succession was 

examined to ensure that it was operating as expected.

The resulting 21 data sets for each harvesting scenario individually constitute 

a new forest inventory containing species composition, age, height, stocking and 

volumes, a t every ten-year time step. The stand projections were linked back to the
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forest vector coverage, and stand boundaries remained constant throughout the 

analysis.

Preliminary Data Manipulation

The suite of models used in this project utilize data from the forest simulator 

HSG. The HSG data file contains several variables only some of which were 

extracted for use. The extracted variables were unique stand identifier, tree 

species, tree species stocking, site class and age. Since HSG does not contain a 

height variable, tree height was calculated using equations. Unique equations to 

determine height from age were developed for White Spruce (Picea glauca (Moench) 

Voss), Black Spruce - Balsam Fir CPicea mariana (Mill.) B.S.P. - Abies balsamea (L.) 

Mill.), Aspen - Balsam Poplar - Birch (Populus tremuloides Michx. - Populus 

balsamifera L. - Betula papyrifera Marsh.), and Lodgepole Pine - Jack Pine (Pinus 

contorta Dougl. - Pinus banksiana Lamb.) (Figure 11). The results were 

incorporated into the database used for model calculations.

Weldwood Winter Habitat Suitability Index Model

The WWHSIM was altered slightly to fit conditions of the study area. The 

variable moose/ha was increased from Bonar et al. moose/ha value of 0.016 to 0.025 

moose/ha which better represents the study area’s moose density. The input data 

for this model were the projected forest inventories. From the inventories, each 

model component S1-S6 was calculated. Variables SI, S4 and S5 were simple 

database manipulations, while S2, S3, and S6 contained a two-dimensional spatial 

calculation. Finally, the determination of carrying capacity was a numeric 

calculation (Appendix 10). There were two outputs: the carrying capacity (animals/
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km2) for the landscape, and maps which contain food and cover values for each 

200x200 m cell across the landscape for each 10-year time step.

Chair in Forest Management and Policy Winter Habitat Suitability Index Model

The CFMP-WHSIM was designed as an improvement on the WWHSIM. The 

addition of a food bonus for seismic lines was thought to be important because of 

their prevalence in the study area and their ability to produce browse. Further, the 

use of an available browse table based on development stage, site index and species 

better describes the potential browse available in the landscape. The last variable 

S7 was added to reflect the importance and frequency with which complex stand 

overstories are found in the study area. It was felt by the modelling team and 

found in the literature tha t complex overstories provided better cover with higher 

understory food potential than single-story stands.

The input data for this model were the projected forest inventories. From the 

inventories, variables S2, S4, S5, S6 and S7 were database calculations, while SI 

and S3 contained a two-dimensional spatial calculation. The final determination of 

carrying-capacity was a numeric calculation (Appendix 11). There were two 

outputs: the carrying-capacity (animals/km2) for the landscape, and maps which 

contain food and cover values for each 200x200 m cell across the landscape for each 

10-year time step.

Higgelke Habitat Model

The HHM was modified for this project to project only carrying capacity values 

for early-winter. The inputs for the HHM were the projected forest inventories. Tb
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identify covertypes in the HHM, it was first necessary to exclude stands with 

working groups that are 80% or more of the species composition, since their 

covertype is their working group. The remaining stands with mixed compositions 

were analysed to determine if the stand was dominated by hardwood or softwood. 

The calculation procedure for subdominance is the same as that of Higgelke (1994) 

and Duinker et al. (1996) except that this adaptation of the model has some 

different covertype categories which are more representative of the study area.

The general shapes of the browse curves were developed from a literature 

review, which indicates that at time 0 little browse is available, but between 5-20 

years after a disturbance the amount of available browse rises, crests, then falls to 

a lower level where it stays until the stand starts to breakup. Once break-up 

begins, the amount of available browse starts to rise, but the rise is significantly 

lower than the first increase. The general browse curve shape was applied to all 

browse curves, but the maximums and minimums vary by species e.g. poplar stands 

have higher maximums and minimums than does a black spruce stand (Appendix 2 

Figures A2-4 to A2-13).

The browse curve minimums and maximums were created from several field 

studies conducted in Alberta which examined the amount of browse available on the 

landscape in different forest types and at different ages (Table 4). Generally, the 

maximum values used for this study were similar to Stelfox (1988) and Willoughby 

and Downing (1995). The minimum values for mature stands were also 

extrapolated from Stelfox (1988) as well as Westworth (1981), Brusnyk and 

Westworth (1988), Downing (1995), and Willoughby and Downing (1995). The age 

and duration of maximum browse production was developed from Joyal (1987),
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S5 Table 4: Sources of information for browse curves used in the Higgelke Habitat and Duinker
§■ Population Models. Values are in kilograms of browse after drying.

I Season Stand Type Years since clear cutting Source
5 17 26 32 Mature

Winter Spruce 392* 8341

CMCO 8701 236.91 Stelfox 1988
Winter Pine 1107’ 10811
Winter Mixedwood 400’ 2471

Young Mature Mature
Clearcut Adj. Forest Forest

Winter Aspen 1942 202 27? Brusnyk and Westworth 1988

Clearcut Mature
Winter Mixedwood 258 21 Usher 1978

Stand Ages (Closed Canopy)
12 30 60

Winter Aspen 383 273 133 Westworth 1981

Closed cano py mature stands
Summer White Birch 2864 Willoughby and Downing 1995
Summer Aspen 2604

Closed cano py mature stands
Winter Aspen 156s Downing 1995
Summer Aspen 4905

Notes:
In aspen, browse in clearcuts was 12 times the adjacent uncut aspen forest Usher 1978
Browse kg/ha continues to increase and reaches a maximum 10-15 years after a cut Timmerman 1990
Forage production peaks 5-20 years after timber harvesting Cr6te 1988
Maximum browse production occurs 5-15 years after timber harvesting Joyal 1987

1 From Table 2, values were averaged and coverted to dry weights. Stelfox 1988
2 From Table 6, Brusnyk and Westworth 1988
3 From Table 3 Westworth 1981
4 From Table 4 Willoughby and Downing 1995
5 From Table 1, values were converted from pounds/acre to kg/ha
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Crete (1988) and Timmermann (1990). The estimated browse curves were 

compared against each other and the values were adjusted so that they were in 

proportion to each other based on published literature values and common sense.

The early-winter cover index curves for this study are similar to those of 

Higgelke (1994). The curves were adjusted slightly to reflect some of the 

differences found between the Aulneau Peninsula and the study area of this project. 

A notable example is the high occurrence of multistoried white spruce stands which 

provide better cover and food than single storied white spruce stands. Therefore, I 

adjusted certain early-winter cover index curves upwards to reflect that condition. 

The number of days used in the calculation for early-winter food was based on 60 

days compared to 105 days used by Higgelke (1994). The period was shortened to 

better reflect the climate and animal movement patterns in the study area.

Three data sets resulted. The first is the early-winter carrying-capacity values 

for moose for every 10-year time step and harvest scenario. The second consists of 

the food and cover raster maps, while the third is browse food values in kg/ha and 

areas in the four age classes used for access determination in the data sets used in 

the DPM.

Duinker Population Model

The data sets used for this model were derived from the same browse and 

early-winter cover index curves calculated for the HHM. This model requires 

spring/summer, autumn and early-winter food values, early-winter cover indexes, 

and total areas in ages classes 0-10,11-20,21-30 and 31-40 for each time step and 

scenario.
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The starting parameters used in the DPM (Appendix 2, Table 2) required slight 

alterations. However, the maximum weights and starting densities (animals/km2) by 

sex and age class were increased. The maximum weights were increased to reflect a 

larger average animal size found in the study area (Table 5). Similarly, the expected 

animals/km2 was raised from the Lake Abitibi Model Forest simulation of 0.27 

animals/km2 to this study’s 2.5 animals/km2 since that value better represents the 

potential moose density found in the study area (Todd 1996). The starting densities 

(animals/km2) for each sex and age class are adjusted averages that represent the 

held values found in the study area from three aerial surveys (Table 6). Finally, the

Table 5: Maximum weight differences between the Lake Abitibi Model
Forest simulation and this study using the Duinker Population 
Model.

Males Females
Age Calf Yearling Mature Old Calf Yearling Mature Old
Lake Abitibi Model Forest 170 300 450 485 160 250 400 445
This Study 180 360 550 600 180 300 420 460

Table 6: Determination and starting densities by sex and age class from
aerial surveys conducted by the Alberta Environmental Protection 
Agency in 1975,1982 and 1988 over study area.

Date Density Cows Bulls Calves Sum
1975 0.70 100 49 55
1982 0.85 100 23 55
1988 0.72 100 18 47
Mean 0.76 100 30 52.3
Ratio 1.00 0.30 0.52 1.82
Survey Mean 0.76 0.228 0.397 1
Coversion 0.76/1.82 0.228/1.82 0.397/1.82
Animals/km2 0.417 0.125 0.218 0.760

Starting animals/km2 by sex and age class.

Males Females Sum
Calf Yearling Mature Old Calf Yearling Mature Old Animals/km2

0.109 0.0417 0.0417 0.0417 0.109 0.139 0.139 0.139 0.7601
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cow, bull and calf harvest rates are the same as those used for the Lake Abitibi Model 

Forest simulation (Table 7).

The resulting data sets contain information for each year, season and scenario 

of the simulation with respect to: animals/km2 by sex and age class, mortality by sex 

and age class, weight by sex and age class, and sport harvest taken by sex and age 

class.

Table 7: Harvest densities for cows, bulls and calves.

Cow Harvest Density Curve Pairs
Actual Density / Target Density Cow Harvest Density

0 0
0.25 0.02

0.5 0.04
0.75 0.06

1 0.085

Harvest Ratio to 1 Cow
Bulls to Cow 3.5
Calf to Cow 1.67
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RESULTS AND D ISC U SSIO N  

Weldwood Winter Habitat Suitability Index Model

Results

harvest scenarios. The finishing values are 0.250, 0.359 and 0.634

ie starting results of the simulation in 1996 are 1.912 moose/km2 for all

moose/km2 for the HHS, BHS and NHS respectively. Generally, the number of 

moose/km2 for all scenarios declines from 1996 to 2106. The rate of decline is 

highest in the HHS, then BHS, and finally the NHS. The minimum values of

0.225.0.301 and 0.604 moose/km2 for the HHS, BHS and NHS are reached in 2116, 

2166 and 2116 respectively. Over the simulation there are 86.9, 81.2 and 66.8% 

decreases in moose/km2 for the HHS, BHS and NHS respectively. After the 

minimum values are reached, the numbers remain stable between that time and 

the end of the simulation in 2196. The model exhibits no unique changes through 

time other than the steady decline of values from the outset (Figure 12, Table 8).

Discussion

In the WWHSIM, the age classes change from a predominantly old forest to a
2

young forest in both the HHS and BHS resulting in the rapid decline of moose/km . 

The decline is tied to the increase in stand stocking values because sensitivity 

analysis on stand stocking displayed that moose carrying capacity values recovered

1.e., rise when stand stocking was reduced by 25 and 50%.

The source of this impact i.e., increased stand stocking, originates in the HSG 

state table. For HSG it was decided that new stands would have high stocking 

values i.e. 0.8, 0.9 and 1.0. Those high stocking values had the effect of depressing
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Figure 12: Weldwood Winter Habitat Suitability Index Model results for the
High, Basic and No harvest scenarios.

Table 8: Weldwood Winter Habitat Suitability Index Model results for the
High, Basic and No harvest scenarios.

I Year Basic High No
1996 1.912 1.912 1.912
2006 1.630 1.518 1.869
2016 1.291 1.009 1.616
2026 0.960 0.627 1.352
2036 0.808 0.490 1.322
2046 0.636 0.413 1.266
2056 0.577 0.397 1.204
2066 0.507 0.320 0.998
2076 0.474 0.295 0.894
2086 0.427 0.261 0.789
2096 0.354 0.237 0.675
2106 0.331 0.227 0.644
2116 0.328 0.225 0.604
2126 0.314 0.238 0.610
2136 0.314 0.226 0.616
2146 0.316 0.248 0.632
2156 0.308 0.259 0.654
2166 0.301 0.255 0.632
2176 0.302 0.256 0.625
2186 0.352 0.250 0.621
2196 0.359 0.250 0.634

Minimum
1996 1.912 1.912 1.912
2116 0.225 0.604
2166 0.301

% Change •84.261 -88.226 -68.431

Results and Discussion

I Overall Change from 1996 to 2196 I
% Change! -81.2431 -86.9391 -66.871
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the model’s moose carrying capacity values because shrub stocking was determined 

from stand stocking. Thus high overstorey stocking values meant low food values, 

therefore low carrying capacity values. In reality, even highly stocked young pine 

stands still have a large amount of browse available to moose until the canopies 

close. On average it is not until the stand reaches age 15 to 25 years that the 

deciduous plant species decline significantly unless the area is sprayed with a 

herbicide.

The explanation for the decline is further supported in the result that the NHS 

shows a decline in moose carrying capacity numbers as well. The major change is 

that old stands are replaced by younger stands that have higher stocking values 

from HSG and subsequently lower food HSI values which ultimately depress the 

model’s outputs.

The decline in carrying capacity values is similar to the decline in HSI cover 

values, which for many cells change from 1.0 to 0.0 for all three scenarios (Figure 

13). A similar trend is also observed in the food HSI values; however, the 

conversion there is mainly from HSI values of 0.6 to 0.0 for the BHS and HHS, 

while in the NHS they go mainly from 0.6 to 0.1 (Figure 14). The difference in food 

HSI values between the two harvesting scenarios HSI = 0 and the control HSI = 0.1 

is why the control scenario’s moose carrying capacity values declines slower and 

remain above the BHS and HHS carrying capacity values over the simulation.
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Figure 13: Weldwood Winter Habitat Suitability Index Model cover HSI
results for the High, Basic and No harvest scenarios.
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Figure 14: Weldwood Winter Habitat Suitability Index Model food HSI results
for the High, Basic and No harvest scenarios.
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Chair in Forest Management and Policy Winter Habitat HSI Model 

Results

The starting results of the simulation in 1996 are 0.974 moose/km2 for all 

harvest scenarios. The finishing values are 1.745,1.821 and 0.901 moose/km2 for 

the HHS, BHS and NHS respectively. The CFMP-WHSIM starts out flat, 

whereupon the number of moose/km2 rises for the HHS, BHS and NHS after 2016. 

The rate of increase in moose/km2 is greatest with the HHS, then BHS, and finally 

NHS. The HHS, BHS and NHS attain values of 1.874, 1.773 and 1.186 moose/km2 

at 2036, 2046 and 2026, respectively, once they have reached their respective crests. 

For the HHS, BHS and NHS there is a 92.4, 82.0 and a 21.8% increase respectively 

between 2016 and 2036 for the HHS, 2016 and 2046 for the BHS, while NHS was 

between 2016 and 2026. After the peak is reached, the number of moose/km2 

remains constant for the rest of the simulation. The final carrying capacity values 

for the HHS, BHS and NHS are 1.745, 1.821 and 0.901 or a 79.2, 87.0 and a -7.5% 

percent change for the harvest scenarios respectively (Figure 15, Table 9).

Discussion

The rise in moose carrying capacity values for both the HHS and BHS are 

attributable to the conversion of late-winter cover stands to stands that have higher 

food values. The impact occurs earlier in the HHS, since the HHS is harvesting 

timber on more area earlier in the simulation than the BHS. The rise of both the 

HHS and BHS is directly related the HSG state table and the S2 food variable.

The change in food HSI values for both the BHS and HHS starts after 2016 (Figure 

16). There is a conversion from stands with HSI food values of 0.0 to values of
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Figure 15: Chair in Forest Management and Policy Winter Habitat Suitability
Index Model results for the High, Basic and No harvest scenarios.

Table 9: Chair in Forest Management and Policy Winter Habitat Suitability
Index Model results for the High, Basic and No harvest scenarios.

1 Year Basic High No I
1996 0.974 0.974 0.974
2006 1.062 1.119 0.868
2016 0.924 1.131 0.903
2026 1.272 1.581 1.186
2036 1.587 1.836 1.138
2046 1.773 1.840 1.060
2056 1.753 1.661 0.948
2066 1.735 1.741 1.060
2076 1.768 1.776 0.972
2086 1.781 1.813 1.032
2096 1.792 1.848 1.024
2106 1.761 1.781 0.916
2116 1.737 1.708 0.958
2126 1.738 1.685 0.946
2136 1.749 1.789 0.850
2146 1.814 1.822 1.146
2156 1.766 1.834 1.028
2166 1.808 1.749 0.954
2176 1.790 1.672 0.940
2186 1.778 1.753 1.190
2196 1.821 1.745 0.901

I Maximum-
1996 0.974 0.974 0.974
2026 1.186
2046 1.773 1.840

% Change 81.985 88.887 21.732

Results and Discussion

lOverall Change from 1996 to 2196~ 
% Change) 86.8931 79.1821 -7.547
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Figure 16: Chair in Forest Management and Policy Winter Habitat Suitability
Index Model food HSI results for the High, Basic and No harvest
scenarios.
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Figure 17: Chair in Forest Management and Policy Winter Habitat Suitability
Index Model cover HSI results for the High, Basic and No harvest 
scenarios.
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either 0.5 or 0.6. This rise in food values precipitates the rise in moose carrying 

capacity values. Conversely, the cover values decline in quality, since there is a 

shift from stands with HSI’s of 1.0 to stands with HSI’s of 0.9 and 0.7 (Figure 17).

The reason for the changes in both the food and cover HSI is linked to the 

HSG behaviour which describes forest succession. HSG dictated that harvested 

stands that had any proportion of aspen would have the same amount of aspen or 

more, usually more, in the regenerating stand. The increase in aspen increased the 

food and cover HSI’s in the middle range because mixed stands with aspen do not 

provide as much food as pure aspen stands or as good as cover as the original 

conifer mixedwood stands (Table 1). The study area has a large portion of the 

stands tha t have an aspen component (Table 1), so the S2 variable will improve 

after cutting, and the moose carrying capacity will subsequently rise as typified in 

the model results. This argument is further enhanced because the NHS results 

remain constant, since there is no real disturbance to the landscape i.e. no timber 

harvesting th a t would cause HSG to change the development path of stands to 

stands that would have a greater proportion of aspen and subsequently raise the 

moose carrying capacity values.

Higgelke Habitat Model 

Results

The starting results of the simulation in 1996 are 2.841 moose/km2 for all 

harvest scenarios. The finishing values are 2.076, 2.737 and 1.995 moose/km2 for 

the HHS, BHS and NHS respectively. Between 1996 and 2006 the HHS has a 

decline in moose/km2 while the NHS and BHS exhibit only slight declines. There is
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a rise in moose/km2 for the HHS, BHS and NHS starting after 2006. The rise is 

greatest for the HHS, then BHS and finally the NHS. The maximum values for 

moose/km2 are 3.801, 3.632 and 3.02 or a 33.8, 27.8 and a 6.3% increase over the 

1996 values for the HHS, BHS and the NHS at 2036, 2026 and 2026 respectively.

Following the peak of 3.801 moose/km2 for the HHS, the HHS has the fastest 

and greatest decline in moose/km numbers, with a decline of 131.3% to a value of 

1.643 moose/km2 in 2106. The NHS declines 59.0% in a undulating fashion from 

3.02 to 1.90 moose/km2 in 2116, while the BHS declines 44.1% relatively smoothly 

except for a single spike at 2076 from 3.632 to 2.521 moose/km2 in 2126. The final 

moose/km2 for the HHS, BHS and NHS are 2.076, 2.737 and 1.995 which translates 

into declines of 24.3, 0.2, 27.2% respectively when compared to the starting values 

(Figure 18, Table 10).

Discussion

Once the minimum values are reached in the HHS at 2106, it exhibits a 

steady behaviour a t those lower values until the end of the simulation. Conversely, 

both the BHS and NHS exhibit noticeable fluctuations through time; they both rise 

and fall a t approximately the same time. The fluctuations are artifacts of the forest 

age-class structure and stand composition which are controlled by the HSG state 

table. The rise in both the BHS and NHS at approximately 2076, 2146, 2186 are 

linked to the harvesting of mature stands for the BHS and the collapse of stands in 

NHS at that time which produce increases in younger stands that have higher food 

values.
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Figure 18: Higgelke Habitat Model results for the High, Basic and No harvest
scenarios.

Table 10: Higgelke Habitat Model results for the High, Basic and No harvest
scenarios.

1 Year Basic High No |
1996 2.741 2.741 2.741
2006 2.703 2.268 2.735
2016 3.045 3.016 2.993
2026 3.632 3.706 3.020
2036 3.632 3.801 2.469
2046 3.189 3.161 2.323
2056 3.108 2.764 2.550
2066 3.047 2.329 2.741
2076 3.437 2.270 2.684
2086 3.123 2.093 2.569
2096 2.831 1.898 2.066
2106 2.634 1.643 1.955
2116 2.573 1.809 1.899
2126 2.521 1.731 2.204
2136 2.765 1.708 2.135
2146 3.013 1.801 2.642
2156 2.666 1.791 2.007
2166 2.680 1.849 2.067
2176 2.841 1.740 2.261
2186 2.690 1.835 2.452
2196 2.737 2.076 1.995

iMaamum

iMInimum

1996 2.741 2.741 2.741
2026 3.632 3.020
2036 3.801

% Change 32.503 38.649 10.154

2116 1.899
2126 2.521
2106 1.643

% Change •44.081 -131.316 -58.983

Results and Discussion
lOverall Change from 1996 to 2196 1
% Change! -0.1761 -24.2761 -27.224 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

The decline in moose/km2 that occurs between 1996 and 2006 is the result of 

the lag time between removing forest cover stands and their rejuvenation into food- 

producing areas for moose. The removal of cover stands lowers the quality of the 

landscape for moose so there is a lower carrying capacity value at 2006. This effect 

is most pronounced in the HHS since it removes the most cover stands and it takes 

ten years before the model implements the increase in food after the cut. The food 

flush is visible after 2006 when the moose population climbs because more food is 

now available for consumption.

The BHS and NHS maintain higher moose carrying capacity values than the 

HHS, because those two strategies maintain a greater portion of stands that are 

suitable for cover, which raises the early-winter moose carrying capacity values 

because of the spatial calculation done in the model. The BHS has the highest 

overall moose/km through time. This is attributable to the increase in food that 

occurs after cutting; however, enough stands with good early-winter cover are left 

to provide moose with adequate early-winter cover. Conversely, the extra cutting in 

the HHS increased the availability of food but lowered the amount of early-winter 

habitat and subsequently moose carrying capacity values become suppressed 

according to the model.

The spatial calculation within the HHM penalizes landscapes that have too 

much of one type of habitat i.e., food or cover. Specifically, the HHS produces too 

much food and not enough cover; the converse is true in the NHS, with too much 

cover and not enough food. However, the NHS fairs better in the simulation over 

all because older stands have lower stocking values and subsequently higher food 

values than young stands with higher stocking values.
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2
The BHS produces a  landscape that supports the most moose/km of the three 

scenarios, because enough timber is extracted to produce high food supplies and 

enough timber is left to provide adequate cover. However, at the end of the 

simulation there is only a  3% difference between the BHS starting and finishing 

values. Futhermore, the BHS results are relatively calm after 2146, which may 

indicate that an equilibrium has been reached and the simulation will remain stable 

from there on. If so, this indicates that the timber harvest level taken stand by 

stand according to this simulation does not significantly affect the moose 

population.

Duinker Population Model

Predation and Hunting Active 

Results

The starting results of the simulation in 1996 are 1.972 moose/km2 for all 

harvest scenarios. The finishing values are 3.96, 3.91 and 2.07 moose/km2 for the 

HHS, BHS and NHS respectively. Between 1996 and 2006 the HHS has a decline 

in moose/km , while the NHS has a slight decline and the BHS has a slight

increase. For all scenarios there is a rise in moose/km2 starting after 2006. The rise
2

is greatest for the HHS, then BHS, and finally the NHS. The maximum moose/km 

values are 4.27, 3.94 and 2.67 or a 116,100 and 35% increase over the 1996 values 

for the HHS, BHS and the NHS at 2036, 2036 and 2026 respectively.

Following the peak of 4.27 moose/km , the HHS simulation has the fastest and
2

greatest decline in moose/km numbers of the three forest management scenarios, 

with a decline of 38% to a value of 2.62 moose/km2 between 2036 and 2106 in a
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stepped fashion with a plateau at 2076. The NHS declines 31% from 2.67 to 1.81 

moose/km in two falls with a recovery at the midpoint of 2066. The BHS declines 

16% from 3.94 to 3.30 moose/km* from 2036 to 2106 in a similar fashion to the NHS 

but with a weaker recovery at 2086 (Figure 19, Table 11).

Discussion

Once the minimum is reached by the HHS simulation in 2106, it exhibits a 

steady climb from its minimum to overtake the BHS in 2196. Similarly, the BHS 

falls and then rises but not as dramatically as the HHS. Finally, the NHS exhibits 

some fluctuations up and down but overall it appears stable with those fluctuations 

tied to the state table in HSG.

The decline in moose/km between 1996 and 2006 occurs for the same reason 

as stated in the HHM discussion, i.e., there is a lag time between forest cover 

removal and browse production since the DPM uses the food values produced by the 

HHM.

From the three scenarios the BHS portrays the best balance between fibre 

removal and the moose population, since the moose population is consistently higher 

than the HHS. The BHS does better because of the spatial calculation used in 

determining early-winter food values and the calculation used for determining 

hunting pressure. Specifically, in the BHS there is more area that is suitable as 

early-winter cover than in the HHS, hence higher cover values and a more viable 

moose population. Secondly, the population may be higher because the overall 

hunting success would be lower because the area in 0-10,11-20, 21-30 and 31-40 

age classes is less than that in the HHS.
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Figure 19: Duinker Population Model results for the High, Basic and No
harvest scenarios with hunting and predation active.

Table 11: Duinker Population Model results for the High, Basic and No
harvest scenarios with hunting and predation active.

1 Year Basic High No I
1996 1.972 1.972 1.972
2006 2.016 1.740 1.987
2016 2.533 2.306 2.379
2026 3.376 3.163 2.665
2036 3.940 4.266 2.130
2046 3.731 3.715 1.907
2056 3.410 3.372 2.017
2066 3.313 3.441 2.431
2076 3.580 3.527 2.406
2086 3.662 3.311 2.266
2096 3.561 3.007 1.954
2106 3.301 2.619 1.813
2116 3.314 2.823 1.902
2126 3.351 3.184 2.212
2136 3.474 3.373 2.099
2146 3.728 3.493 2.480
2156 3.771 3.385 2.041
2166 3.741 3.492 1.974
2176 3.884 3.589 2.159
2186 3.927 3.696 2.466
2196 3.911 3.957 2.070

IMaximum 1
1996 1.972 1.972 1.972
2026 2.665
2036 3.940 4.266

% Change 99.822 116.343 35.159

I Minimum
2106 3.301 2.619 1.813

% Change -16.212 -38.610 -31.961

lOverall Change from 1986 to 2196 I
Results and Discussion % Channel 98.352! 100.6721 4.970 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

The NHS remains fairly even through out the simulation. It seems to indicate 

that the model is performing as intended. Hence, the moose predictions are 

following the peaks and valleys that are related to food, and those peaks and valleys 

can be traced back to the forest’s age-class distribution and the HSG state table.

The peaks occur at times when large numbers of similar stands of approximately

the same age are collapsing and providing an influx of food to the system which
2

translates into more moose/km .

Predation Active and No Hunting 

Results

The starting results of the simulation in 1996 are 2.238 moose/km2 for the 

HHS, BHS and NHS. The finishing values are 4.568, 4.252 and 2.297 moose/km2 

for the HHS, BHS and NHS respectively. Between 1996 and 2006, the HHS has a 

noticeable decline in moose/km , while the NHS has a very slight increase and the 

BHS has a significant increase. For all management strategies there is a noticeable 

rise in moose/km2 starting after 2006. The rise is greatest for the HHS, then BHS, 

and finally the NHS. At the top of rise the moose/km2 are 5.106, 4.52 and 3.06 or a 

128.1,102.0 and 36.8% increase over the 1996 values for the HHS, BHS and the 

NHS at 2036, 2036 and 2026 respectively.

Following the peak of 5.106 moose/km2, the HHS has the fastest and greatest 

decline in moose/km , of the scenarios with a  decline of 42.9% to a value of 2.916 

moose/km2 in a stepwise decline between 2036 - 2056 then 2076 - 2106. The NHS 

declines 33.3% from 3.063 to 2.042 moose/km2 between 2026 and 2106, in two falls 

with a midpoint recovery at 2066. Similarly, the BHS declines 17.4% from 4.520 to

Results and Discussion 71
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3.736 moose/km2 from 2036 to 2126 with a recovery point a t 2086 (Figure 20, Table 

12).

Discussion

2
Once the minimum of 2.916 moose/km is reached by the HHS simulation in 

2106, the population begins a steady increase and rises above the BHS value in 

2186. Both the BHS and NHS react similarly and have similar levels of 

fluctuations in them. However, their median points between 2026 and 2196 points 

are different, with BHS a t approximately 4.2 moose/km2 and NHS at 2.5 moose/ 

km2.

The general effect of removing hunting from the simulation, when compared

to the previous DPM simulation, is noisier results (i.e. greater variance) and higher
2

overall moose/km values for all three scenarios.

No Predation and No Hunting 

Results

The starting results of the simulation in 1996 are 2.30 moose/km2 for the 

HHS, BHS and NHS. The finishing values are 4.711, 4.518 and 2.369 moose/km2 

for the HHS, BHS and NHS respectively. Between 1996 and 2006, the HHS has a 

noticeable decline in moose/km , while the NHS and BHS have a very slight 

increase. For all scenarios there is a rise in moose/km2 starting after 2006. The rise 

is greatest for the HHS, then BHS, and finally the NHS. At the top of the curve, 

the moose/km2 are 5.256, 4.635 and 3.159 or a 128.56,101.56 and a 37.37% increase

Results and Discussion 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

6.0

5.0

4.0

3.0

•  ..2.0

1.0

0.0

Ym ts -Basic ■ -U gh -No

Figure 20: Duinker Population Model results for the High, Basic and No
harvest scenarios with no hunting and predation active. 

Table 12: Duinker Population Model results for the High, Basic and No
harvest scenarios with no hunting and predation active.

1 Year Basic High No I
1996 2.238 2.238 2.238
2006 2.589 1.944 2.258
2016 3.312 3.362 2.825
2026 4.377 4.774 3.063
2036 4.520 5.106 2.355
2046 4.064 4.114 2.140
2056 3.960 3.783 2.317
2066 4.074 3.905 2.884
2076 4.514 3.997 2.710
2066 4.557 3.705 2.553
2096 4.231 3.357 2.179
2106 3.933 2.916 2.042
2116 3.753 3.245 2.179
2126 3.736 3.667 2.591
2136 4.150 3.834 2.356
2146 4.600 3.962 2.943
2156 4.302 3.799 2.257
2166 4.255 3.980 2.238
2176 4.486 4.088 2.493
2186 4.079 4.225 2.866
2196 4.252 4.568 2.297

[Maximum
1996 2.238 2.238 2.238
2026 3.063
2036 4.520 5.106

% Change 101.955 128.113 36.837

I Minimum'
2106 2.916 2.042
2126 3.736

% Change -17.350 -42.883 -33.328

Results and Discussion
lOverall Change from 1996 to 2196 I
% Change! 89.9811 104.0881 2.602 73
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above the 1996 values for the HHS, BHS and the NHS at 2036, 2036 and 2026 

respectively.

Following the peak of 5.256 moose/km , the HHS has the fastest and greatest 

decline in moose/km of the scenarios, with a decline of 43.38% to a value of 2.976 

moose/km2 in two stages, 2036 - 2056 and then again at 2076 - 2106. The NHS 

declines 33.93% from 3.159 to 2.087 moose/km2 between 2026 and 2106 in two 

stages with a recovery a t 2066. Similarly the BHS declines 18.13% from 4.635 to 

3.795 moose/km2 in two steps with a recovery at 2076 from 2036 to 2106 (Figure 21, 

Table 13).

Discussion

After the minimum is reached for the BHS and HHS in 2106, the moose 

populations begin to rise and HHS surpasses the BHS in 2196. However, the rate of 

increase is greatest for the HHS and the scenarios ran  closer together than they do 

in the DPM with no hunting.

Similar to the No Hunting DPM results above, both the HHS and NHS have 

very similar results. Conversely, the BHS results are quite different; the No 

Hunting BHS is a noisier run than the No Predation No Hunting run, where the 

BHS is relatively uniform after 2106.

Duinker Population Model Within-Model Comparisons

The effects of hunting and predation are examined within the DPM. Of the 

two variables hunting and predation, hunting has the greatest impact on the moose 

population and those impacts vary among harvest scenarios. On average over the
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Figure 21: Duinker Population Model results for the High, Basic and No
harvest scenarios with no hunting and no predation.

Table 13: Duinker Population Model results for the High, Basic and No harvest
scenarios with no hunting and no predation.

1 Year Basic High No I
1996 2.300 2.300 2.300
2006 2.360 1.996 2.320
2016 3.186 3.466 2.906
2026 4.389 4.947 3.159
2036 4.635 5.256 2.427
2046 4.269 4.196 2.183
2056 3.903 3.852 2.370
2066 3.640 4.005 2.970
2076 4.233 4.100 2.799
2086 4.281 3.788 2.623
2096 4.125 3.427 2.232
2106 3.795 2.976 2.087
2116 3.843 3.326 2.234
2126 3.889 3.773 2.667
2136 4.066 3.934 2.431
2146 4.395 4.064 3.025
2156 4.378 3.891 2.329
2166 4.328 4.087 2.288
2176 4.538 4.199 2.557
2186 4.551 4.349 2.950
2196 4.518 4.711 2.369

I Maximum-
1996 2.300 2.300 2.300
2026 3.159
2036 4.635 5.256

% Change 101.555 128.561 37.367

I Minimum
2106 3.795 2.976 2.087

% Change -18.129 -43.376 -33.930

Results and Discussion
IQveraH Change from 1996 to 2196
% Change! 96.467I 104.8711 3.033

]
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simulation, hunting has the effect of creating a 17.96 % change in the BHS, 16.83% 

in the HHS and only 14% within the NHS, while predation affects the BHS -0.25%, 

HHS 2.62% and NHS 2.76% (Figure 22).

From Figure 22, one observes that the BHS has an erratic behaviour with 

respect to percent difference between the three DPM runs of normal parameters 

(N), no hunting with predation active (NH) and no hunting and no predation active 

(NH NP). The effect of hunting and predation can be seen clearly in the HHS and 

NHS runs; however, the BHS runs are more chaotic in behaviour by criss crossing 

each other.

I believe that the erratic behaviour found in the percent difference of the BHS 

is linked to two factors: a lower timber harvest level and the linking of hunting 

pressure to access level determined by total area in younger age classes. The lower 

harvesting regime meant that the average age of the forest was higher than that in 

the HHS. This creates a situation where food supplies and early-winter cover 

indexes fluctuate more than in either the HHS or the NHS, because you have 

greater age and stocking differences between ^joining stands that are examined by 

the roving window function in the HHM which produces the food values for the 

DPM. Those fluctuations are further aggravated by the determination of hunting 

pressure in the DPM which uses total area of younger age classes. Finally, access is 

used for determining the level of cow harvest which then determines the harvest 

rate for both bulls and calves. If the area in younger age classes were erratic then 

the harvest quotas will be erratic and subsequently the moose/km2 outputs with 

hunting active would be erratic.
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Figure 22: Within harvest scenario comparison of the PDM with normal 
parameters hunting and predation active (N), no hunting with 
predation active (NH) and no hunting and no predation active (NH 
NP).
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The difference could be attributable to the input parameters used or the way 

the model does the calculations. Predation is set to remove 60% of the calf 

population, 4% of the yearling and adult population and 7% of the old moose 

population, while hunting pressure was developed from access which in turn was 

developed from the amount of area found in younger age classes. When one 

compares the NHS to HHS and BHS across the three DPM simulations, one 

observes that the hunting pressure calculation is applied because the HHS has the 

largest differences at 2026-2036 and 2076-2086 between normal, and no hunting 

with predation. Those time frames correspond to times when the area in younger 

stands is greatest, so the hunting pressure is the greatest.

Generally, all the HHS, BHS and NHS simulations reach the first and 

subsequent peak at the same times during the simulation. Futhermore, the highest 

individual values for the HHS, BHS and NHS all occur when hunting and predation 

are turned off.

Carrying Capactiy Peaks I Dips and Thier Link to HSG

The peaks and valleys found in the HHM and the DPM were linked to HSG 

and the starting age-class structure and species composition of stands. The results 

also showed a decline in the magnitude of those peaks and valleys past 50 years. 

HSG is the dominant force because the results from the CC models track similarly 

with the area harvested results from HSG. HSG harvested more area initially and 

less later on because the future forest was producing more volume per hectare as 

the forest became normalized i.e. <=60 years of age. Furthermore, HSG targeted 

lodgepole pine at the start because of its age-class structure and it produces higher
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volumes per hectare earlier than other species. Specifically, lodgepole pine 

comprises 7,182 ha and 2,966 ha of that is 60-100 years old, which makes those 

stands prime candidates for harvest. Therefore, when those extra hectares are 

harvested a large flush of food becomes available which increased the moose CC 

values, since moose CC values are area-dependant.

Model Variable and Application Comparison

The model assumptions and parameters in Table 14 outline some of the 

similarities and differences in the applied moose models. The ease of use, 

implementation and model adaptability was best for the two HSI models, while the 

HHM was moderate and the DPM was moderate to difficult. Other parameters 

examined showed no strong differences.

Relative Merits of Models Biologically

To this point of the thesis, each model’s merits have been examined on a 

technical basis e.g. how large are the uncertainties of each variable, what are the 

interaction effects, how close do the predictions match reality. It is now necessary 

to examine each model on its biological value or biological truthfulness.

The WWHSIM has two crucial variables that do not represent their biological 

function well. Specifically, the SI variable Percent Shrub Canopy Cover (Figure 3) 

could be improved by using data developed to correlate stand composition and age to 

the amount of available browse (i.e. Table 1). The other concern biologically for this 

model is the determination of the food-to-cover and cover-to-food criterion, since the 

model documentation contained no definition of what constitutes a  food or cover
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Table 14: Model comparisons of spatial relationships, variables and outputs.
Criteria Models

WWHSIM CFMP-WHSIM HHM DPM
Model adaptability to new bioloaical information H H M H
Inout data adaptability H H L M
Complexity L L M H
Ease of use H H M L
Geoqraphic area developed for Foot Hills AB Central AB Northwest ON Northeast ON
Adaptability to other unqulate species CRW CRW CRW SM
Hardware requirements M M M L
Geoqraphic transferability / Modification level after transfe MT/MM MT/MM MT/HM HT/SM
Model scales’ Sub-home ranae (SHR) A A N N

Home range (HR) A A A A
Local population (LP) D D D D
Region of LP's (R) A A A A
Closed system (CS) N N N N

Spatial component complexity L M H H
Number of spatial variables 3 2 2 3
Examined parameters Tree height Y Y N N

Species composition N N Y Y
Stand age N N Y Y
Stand stocking Y Y Y Y
Distance from cover Y Y Y Y
Distance from food Y Y Y Y
Distance from disturbance Y N N Y
Browse availability estimate Y Y Y Y
Browse density ko/ha N N Y Y
Population assessment N N N Y
Mortality assessment N N N Y
Hunting effects N N N Y
Illegal hunting N N N P
Starvation effects N N N Y
Predation effects N N N Y
Other mortaility N N N Y
Disease effects N N N Y2
Parasite effects N N N Y2

Output parameters Population estimate N N N Y
Carrying capacity Y Y Y N
Maps Y Y N N

AB Alberta
ON Ontario
HR The area used by a single individual it's entire life (10*10 km)
LP The area occupied by several individuals (100*100 km)
R The area used by many local populations linked by dispersal (Boreal Forest)
CS The area that contains a closed system (North America)
A Can be applied at this level
0 Designed for this level
H High
M Moderate
L Low

MT Moderately transferable
HT Highly transferable
SM Requires slight modifications
MM Require moderate modifications 
HM Require high modifications
CRW Complete rewrite of model
Y Yes Note: Value judgments are targeted to average users or end users
N No ' From Wiens et at. 1985
P Possible 2 This capability exists in the model but was not utilized
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I

cell. Therefore, it was my assumption that if it had a non-zero value for food orii
cover then it could be used in the calculation of food and cover values and 

subsequent HSI and carrying capacity calculations.

The other variables S3 Distance from Access, S4 Percent Canopy Cover, and 

S5 Tree Height have sound biological backing in their representation. Specifically, 

the further an area is from access (S3) the less likely a moose will be shot; the 

higher the canopy cover (S4) the better thermal extremes will be minimized; and 

the taller the trees (S5) the better the snow interception should be.

Once the output from the WWHSIM was examined, the results were rejected 

because they did not make logical sense as previously discussed. As stated this 

model could be improved if corrections were implemented for SI and how the model 

is structured i.e. eliminate zero HSI values.

The CFMP-WHSIM representation of biological information regarding food 

was an improvement over the WWHSIM. The CFMP-WHSIM utilized a food table 

(Table 1, S2) based on field data. The Distance of Food from Cover (S3) was based 

on field data describing moose feeding preferences (Appendix 1), and the S I food 

bonus from seismic lines was based on reasoning that moose would feed in those 

areas, because of their proximity to cover.

The variables used for determining cover were comparable to but improved 

over the WWHSIM. It was felt that Percent Tree Canopy (S4) was not optimum for 

thermal protection and snow interception until 60%, versus 30% in the WWHSIM. 

Tree Height quantification was similar between the two HSI models and differences

Results and Discussion 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

between them were of little impact. However, the addition of Percent Conifer (S6) 

to the CFMP-WHSIM was a large improvement over the WWHSIM, since it is 

known that conifers provide better thermal protection and precipitation interception 

than deciduous stands and should therefore be included in the model (Appendix 1). 

The CFMP-WHSIM also added a bonus to the cover calculation when stands were 

considered complex, i.e. multistoried, which further improved a stand’s, capability 

for thermal protection and precipitation interception. The additions and 

improvements made to the CFMP-WHSIM over the WWHSIM significantly 

improved its ability to represent properly the moose biology and habitat interaction 

that occurs in nature.

The HHM is an enhancement of the HSI approach because it further refines 

the amount of food that is on the landscape at different stand ages and stocking 

levels. That refinement was better able to represent what we know from science 

regarding abundance of browse, because actual field data could be converted into 

browse curves by working group or species group. The HHM also instituted an 

ecotone effect, which occurs between stands, which is a natural biological function 

that was not incorporated in the two HSI models. The better use and 

implementation of browse held data and the ecotones in the HHM improved its 

usefulness to managers. It does fall short, however, by not accounting for 

predation, hunting and other mortality features, components shown to have large 

impacts on a moose population (Appendix 1).

The DPM expands on the HHM by incorporating specific growth and death 

functions for moose. Growth rates depend on abundance given kg of browse/ha and 

mortality adjustments for predation, hunting and disease. The growth rates were 
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derived from research on moose metabolizm and growth rates given different foods 

(Appendix 1). The mortality functions developed from literature reviews were 

applied against the growing population to lower its productivity as would occur in 

nature.

The use of growth and mortality functions enabled the DPM to represent some 

moose population dynamics that are present in reality but difficult to incorporate in 

a model. The data used to develop the growth and mortality rates were drawn from 

the literature. However, use of those data in the model through input parameters 

and equations was never compared to the real moose population modelled over time 

to calibrate it. This lack of held calibration of inputs and equations is worrisome.

Of the equation groups, the growth equations inspire the most confidence 

because of all of research conducted on farm animals with respect to growth and 

development. Conversely, the predation, hunting and natural mortality equations 

are based on scarce information; in addition, predation and hunting have the largest 

impacts on the model results (Appendix 6). Those two factors combined to lower my 

confidence level in the DPM below the HHM with respect to biological truthfulness.

Of the four models, I would rate the HHM the best to use today for forest 

management planning followed by the DPM and CFMP-WHSIM. This rating is 

based on how I felt the biological information on moose was being applied in the 

model and how well I could trace results back to model inputs and equations. The 

WWHSIM was not considered in the ratings because its results and therefore the 

model itself were considered invalid.
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Model Selection Framework

To answer the question of which model to use, I developed a framework that 

could compare the models and determine which one would be preferred overall. The 

points I chose to consider in the evaluation framework were: modelling objectives, 

does the model represent a complete moose life cycle; model relationships, 

complexity; input availability; the outputs are reasonable and applicable; 

adaptability of model to other species/uses; and the ability to invalidate a model. 

Points were given to each model criterion, with 10 being the best and 0 worst.

Then I applied a weighting factor to each criterion since I felt that some criteria 

were more important than others. The applied weight factors for the criteria were 

5, 2,4, 1, 3, 3, 5, and 5 respectively. Finally, the points would be totalled and the 

highest value should represent the optimum model or models (Table 15).

The evaluation totals indicate the use of the DPM followed by the HHM and 

then CFMP-WHSIM and the WWHSIM. The results above and the preferred model 

could change depending on the initial points given and the weighting another user 

would apply to the criteria. Therefore, if the end users know their modelling 

objectives, available data and financial constraints, then they should be able to 

choose one of those models based on the information presented in Table 15.

Comparison of Modelled Moose Population Estimates for 1996 to Aerial 
Moose Inventories

All models estimates for starting moose populations were higher than the 

estimated aerial inventories in 1996. The highest difference occurs with the HHM 

which predicts that there should be 261% more moose/km2 than what was
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Table 15: Model selection framework.
Model I

Selection Criteria Weight WWHSIM CFMP-WHSIM HHM DPM I
Modelling1 objectives are they satisfied 5 12.5 12.5 37.5 50
Does the model represent a full life cycle2 2 5 5 5 20
Model relationships3 4 10 10 30 40
Model complexity4 1 10 7.5 5 2.5
Input availability5 3 30 22.5 22.5 15
Outputs are reasonable and appliacable8 3 7.5 22.5 30 22.5
Adaptability7 of model structure 
to model other species 5 50 50 25 12.5
Ability to invalidate a model8 5 50 50 37.5 37.5
Total Points 175 180 192.5 200

Notes:
1 The modelling objectives was to predict moose/km2 values for all seasons.
2 Life cycle runs from birth to death.
3 Number of model relationships incorporated
4 Model complexity represented by how long would it take an average 
GIS user to implement the model with increased time being bad.
5 Difficulty to get the required information to get the model going
6 Are the results reasonable and reflect known biology.
7 Is the model structure highly adaptable for other species.
8 How easy is it to invalidate the model.

estimated in 1996. Conversely, the closest starting estimate came from the CFMP- 

WHSIM which only predicted 28% more moose than aerial inventories in 1996, 

while the DPM with P&H and the WWHSIM both predicted over-estimations of 159 

and 152% respectively.

The population over-estimation is reversed for the WWHSIM by 2096 because 

it predicts a significant decline in moose numbers between 1996 and 2096. 

Conversely, the CFMP-WHSIM population estimates increase between 2016 and 

2046 when harvesting is active, but the no harvesting scenario for the CFMP- 

WHSIM shows little change between 1996 and 2196.
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The general over-estimations of populations were expected for this project 

because it is known that carrying capacity is a theoretical limit and no populations 

will ever reach those levels, because it assumes that every piece of food or cover is 

accessible and utilized by the population in question.

Comparison of Modelled Moose Population Estimates in 2196 to Aerial 
Moose inventories

All models except the WWHSIM estimated moose carrying capacity values 

through time greater than what was found from aerial surveys in 1996. The 

WWHSIM produced values that were 67, 53, and 17% lower for the HHS, BHS and 

NHS respectively than the aerial survey mean of 0.76 moose/km2. The greatest 

difference was in the DPM when the predation and hunting functions were turned 

off; that version of the DPM overestimated the carrying capacity by 520, 494 and 

212% for the HHS, BHS and NHS respectively. Therefore, the order of models 

from the smallest to largest difference with respect to numeric distance from 

observed aerial values is: WWHSIM, CFMP-WHSIM, HHM, DPM with predation 

and hunting, DPM with predation and no hunting, and finally DPM with no 

predation and no hunting (Table 16).

It is important to remember tha t the model results are estimates of habitat 

carrying capacity and are therefore likely to be higher than observed values 

(Schamberger and O’Neil 1986). There is also error to be found in the aerial 

inventory results. Le Resche and Rausch (1974) found that experienced and 

inexperienced observers only saw 68 and 47% of the moose in a penned study area. 

Therefore, it is possible that the actual mean population of moose could be 58% 

higher or 1.2 moose/km2. If that is the case, then the CFMP-WHSIM carrying
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i? Table 16: Summary table for all model results with minimum, maximum and percent change indicated.
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WWHSIM HHS 1.912 NA NA 1996 0.225 2116 •982 0250 -1.662 -869 0.760 151.6 •67.1
BHS 1.912 NA NA 2006 0.301 2196 •943 0.359 •1.553 •812 0.760 151.6 •52.8
u u umwi 1.912 NA NA 2026 0.604 2116 •68.4 0.634 •1278 •668 0.760 151.6 •16.6

CFMP-WHSIM HHS 0.974 1240 88.9 2036 NA NA NA 1.745 0.771 79.2 0.760 282 129.6
BHS 0.974 1.773 92.0 2046 NA NA NA 1.921 0.847 87.0 0.760 282 139.6
ne^ta  »m wi 0.974 1.196 21.6 2026 NA NA NA 0.901 -0.073 -75 0.760 282 18.6

H I M .
1 H P I HHS 2.741 3901 39.7 2036 1.643 2106 -40.1 2.076 •0.665 -24.3 0.760 260.7 1732

BHS 2.741 3.632 32.5 2026 2.521 2126 -8.0 2.737 -0.004 -0.1 0.760 260.7 260.1
u a i L iraran 2.741 3.020 102 2026 1.900 2116 -30.7 1.995 -0.746 -272 0.760 260.7 162.5

dpm  p s h HHS 1.972 4266 116.3 2036 2.616 2106 -38.7 3.957 1.985 1007 0.760 159.5 420.7
BHS 1.972 3.940 99.8 2036 3.301 2106 -162 3.911 1.939 983 0.760 159.5 414.6
u u u(Wwl 1.972 2.666 35.1 2026 1.813 2106 -32.0 2.070 0.098 5.0 0.760 159.5 172.4

DPMPANH HHS 2239 5.106 1282 2036 2.916 2106 •429 4.568 2.330 1041 0.760 1943 501.1
BHS 2.239 4220 102.0 2036 3.736 2126 -173 4252 2.014 90.0 0.760 1945 459.5
•jaiumwi 2238 3.090 36.7 2026 2.042 2106 •33.3 2297 0.059 2 . 6 0.760 194.5 2022

DPMNPANH HHS 2.300 5256 128.5 2036 2.976 2106 -43.4 4.711 2.411 1048 0.760 202.6 519.9
BHS 2.300 4.635 101.5 2036 3.795 2106 -18.1 4.518 2218 96.4 0.760 202.6 494.5
U U Umwi 2200 3.159 37.3 2026 2.067 2106 •33.9 2.369 0.069 3.0 0.760 202.6 211.7

WWHSIM W eldm ud Winter HafaitaiSultaHMy Index Model
CFMP-WHSIM Chair in Forest Management and Pokey Winter Habttal SoiUbWy Index Model 
HHM Hlggelka Hebital Model
DPM PAH Duinker Population Model Predation and Hunting Active
DPMPANH Duinker Population Modal F>redalion Active No Hunting
DPMNPANH Duinker Population Model No Predation No Hunting
HHS High Harveel Scenario
BHS Basic Harvest Scenario
NHS No Harvest Scenario
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capacity estimates of 1.7, 1.8 and 0.9 moose/km2 for the BHS, HHS and NHS are 

the closest estimates. However, the CFMP-WHSIM does not take into account the 

effects of predation and hunting on a population as does the DPM. Therefore, the 

estimates of the DPM may be more realistic, since it tries to factor in the effects of 

hunting and predation. The higher ending values of 4.0, 4.0 and 2.0 moose/km2 for 

the HHS, BHS and NHS respectively would be lower if other mortality effects (i.e. 

diseases or road kills) were factored in. Other mortality was excluded from the 

simulation because reliable data are sparse and the interaction effects with other 

variables would be cumbersome to separate out.

Of the four models examined, the HHM has ending values for all three harvest 

scenarios that are closer together than those of any other model. As well, HHM 

generated results closest to the actual values from aerial inventories if the bias of 

aerial inventories is factored in for an aerial inventory of 1.2 moose/km2.

The differences between the HHS and BHS are explained for the most part by 

the timber harvest intensity. It is natural to expect more moose when more food 

becomes available in a system that is short of food habitat (i.e. the BHS). 

Conversely, when too much late-winter habitat is removed and converted to food, 

the number of moose declines i.e. the HHS. Finally, the NHS for the majority of 

the simulation rests in between the two extremes of the BHS and HHS. The NHS 

resides in the middle because it has more cover habitat than the HHS but less food 

than the BHS. From sensitivity analysis it is clear that the population fluctuations 

over the simulation are directly related to forest succession which is dictated by the 

HSG state table.
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Implication of this Project to the Application of Adaptive Management for 
Miliar Western Forest Products

From the outset, results of this project were to be used for strategic forest 

management planning. The HHS, BHS and NHS, or similar strategies, are 

expected to be examined in the forest management planning process. The HHS will 

be represented as a 1.5-2.0 times increase in fibre production in the new stands.

The BHS will be implemented in harvest areas where intensive forest management 

does not take place, while the NHS will be associated with areas set aside by 

MWFP in reserves and other uncut areas. Since the stated forest management 

strategies will exist in the next forest management plan, the concepts of adaptive 

management using models as scoping tools and problem identifiers will be 

implemented not only on the present study area but on the whole management 

unit.

From the analysis it seems that all the models in this thesis project could be 

implemented within the confines of long-term management strategies, available 

data, manpower, computer processing and government regulation. This strategy’s 

benefits would be greater than relying on any one modelling strategy. Not one of 

the four models examined has been field tested to indicate that it adequately 

represents the impacts of forest management strategies on moose. However, these 

and other models will be applied to the landbase and the results monitored through 

time to ascertain their applicability to strategic forest management planning. 

Therefore multiple models may allow for better interpretation. Thus, for example, 

if all the models state that the population is going to rise, there is a relatively 

strong inference that the population will indeed rise, because we are modelling
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moose habtiat components that have shown a relationship to moose life requisits.

By tracking model outputs through time against aerial moose inventories, we will 

learn which model best represents the impacts of timber harvest on moose.

Caveats with this project are many since each model has its own set of 

weaknesses and they need to be stated clearly for adaptive management to work. 

From a forest manager’s perspective trying to implement adaptive management, 

the largest caveat is the forest projection model used. The program outputs 

indicate that the whole forest will be converted from older to younger stands, 

stands under 60 years of age. This is not likely to happen in reality, because 

present legislation requires that forests are managed on a  ecologically sustainable 

basis (Van Damme 1998). It is a requirement of all forest management plans that 

all plants and animals that occupy the forest ecosystem be represented in future 

forests (Van Damme 1998).

The proponents of mimicking natural disturbance and concurrent foresters 

would like to see a landscape with good representation of all age classes; however, 

the numbers of stands and area in each age-class may be a contentious issue. 

Environmental proponents would like to see age-class distributions within historical 

ranges, while industry foresters driven by economic considerations would like a 

forest where stands are harvested at their best economic value or before significant 

volume losses start to occur in each stand. The rule of thumb being discussed today 

for forest management is to follow the inverse “J ” relationship. Typically, the 

inverse “J ” area-over-age relationship has a relatively large area in younger age 

classes and progressively less area as ages increase. Past areas in each age class 

are now being determined from fire disturbance records. The natural fire return
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cycle for the study area was identified at approximately 80 years. Therefore, the 

majority of the landscape would be in stands that range from 0 to 80 years; 

however, this does not preclude the potential for some stands to be about 200 years 

old e.g., overmature white spruce stands.

The forest age-class issue is being dealt with in MWFP’s forest management 

planning process through use of a forest scheduling and harvesting model that 

better simulates and controls the age at which stands are harvested as well as the 

spatial implementation of a two-or-three-pass cutting system. The two-pass cutting 

system, for example, means that for example only half of a large stand’s area would 

be harvested initially, with a significant delay before the other half could be 

harvested.

When the DPM model is implemented and results become available, they will 

aid the strategic forest planning team by allowing the visualization of the impacts 

of timber harvest strategies on moose. This model like the others will allow 

planners to do what-if analysis based on different management strategies, wood 

product requirements, harvest levels, silvicultural systems, road access constraints 

but the DPM has the added benefit of examineing issues around predation control 

and hunting restrictions. Two factors that have significant impacts on the moose 

population but have not been modelled before in forest management planning.

The results can be used to argue for a certain type of timber harvest 

prescription, changes to forest harvest licenses, e.g. amalgamating licenses or 

reducing the licensing complexities, changes to provincial legislation e.g. increasing
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clear-cut sizes, removing the two-pass harvest system, managing predators and 

resetting moose harvest limits.

Model Dynamics and its Implcations to Managers

The results presented for the CFMP-WHSIM, HHM and DPM show strong 

fluctuations in the first fifty years for the BHS and HHS after which the results 

stabilize or level out. There are strong dynamics in the first fifty years because of 

the starting age-class structure of the forest. Initially the majority of the forest is 

considered mature or overmature, but by the middle of the simulation the age-class 

structure is considered young, i.e., <=60 years. This shift in age classes occurred 

parallel to a shift in species composition and growth rates. The new forest had 

higher growth rates and stocking values on average because of silviculture, which 

produced more wood. Therefore, the forest produced higher wood volumes from 

each hectare of land. The increased volume/ha in later periods allowed the model to 

harvest less area then at the start of the simulation to meet its LRSY target. Since 

the carrying capacity models are area-based, an increase in the area harvested at 

the start resulted in more food, which translates to higher moose densities. 

Furthermore, as the area harvested declined because of higher volumes/ha in the 

future the number of moose/km2 also declined. Therefore, once the forest was 

normalized into younger age-classes (e.g. <=60 years) there was very little change 

in the food or cover variables because the area harvested from period to period 

remained relatively constant.

The implication for managers is that in the first fifty years there will be a 

rapid increase in moose/km2, followed by a  decline and then a  subsequent rise.
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These large fluctuations have implications to moose hunters and predators, both of 

whom will be happy initially as populations increase. However, once the decline 

starts forest managers will be questioned to explain where all the moose have gone. 

To avoid such conflicts forest managers could lower harvest rates initially and then 

raise rates as the new forest comes online. Alternatively, forest managers could be 

more proactive with advertisements indicating what is likely to happen in the near 

future. Future conflicts could be avoided or minimized through those two efforts.

Model Uncertainties and its Implications to Managers

To lessen uncertainty from a manager’s perspective, Nyberg (1990) suggests 

that: (a) managers work closely with model developers; (b) the builders provide 

clear and concise documentation; (c) the model should be practical; and finally (d) it 

should be validated against results from the real world.

With respect to this thesis, a manager should become concerned over a model’s 

usefulness when results appear inconsistent with professional knowledge. Such 

was the case with the WWHSIM in this project. Specifically, the WWHSIM showed 

a decline in moose carrying capacity for all scenarios. Those results went against 

present knowledge that suggests when a disturbance occurs (e.g. timber 

harvesting), the moose population usually increases. The converse is also true, if 

results show moose/km2 are too high, i.e. values greater than 5-6 moose/km2 which 

are considered the best in Canada, then the results are suspect or invalid. Both 

problems indicate errors in the model being executed, because they produce results 

that are outside the realm of normality, as we know it.
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From the results presented for the small landscape analyzed, the forest 

managers and/or planning team should conclude that timber harvesting operations 

tend to have a positive impact on moose/km2 in the study area. I conclude this 

because three of the four models showed an increase in moose/km2.

To increase one’s level of comfort around the predicted results, a monitoring 

program should be established to reduce uncertainty in each of the models. The 

monitoring program should target model inputs and relationships to which model 

outputs were sensitive and where the level of uncertainty is high, because we lack 

key knowledge or understanding of the system. Therefore, several monitoring 

programs should be set up to reduce uncertainty.

To reduce uncertainty in the CFMP-WHSIM, one should examine and ground- 

truth the relationship between the amount of food available in each development 

stage and cover type (Table 1) since that variable has the most uncertainty. 

Uncertainty can be reduced in the HHM and the DPM by examining and ground- 

truthing the browse and early winter cover index curves because those curves have 

a significant impact on model results. Finally, the WWHSIM could be improved by 

a re-evaluation of and changes to its main components and then a re­

implementation to check its results.

Moose Model Comparisons to Other Moose Model Studies 

HSI Model Comparisons

The WWHSIM and the CFMP-WHSIM were compared to the moose model 

developed for the Manitoba Model Forest (MMF) (Terrestrial & Aquatic
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Environmental Managers Inc. 1995). The MMF moose model uses the Habitat 

Evaluation Procedure developed by the U.S. Fish and Wildlife Service. All three 

models have the same winter HSI format i.e., winter food HSI determination, 

winter cover HSI determination, and then an aggregating equation which adjusts 

winter food by 0.65 and cover 0.35, the results of which are combined.

A major difference between the model in this thesis and the MMF moose model 

is that MMF model does calculations to determine both a summer and winter HSI 

value, each of which are then multiplied by 0.5 and finally added together for an 

overall HSI value for a particular cell. A strong advantage of the MMF model is the 

use of a geometric mean calculation of HSI variables when one of the variables is 

0.0 and would force the net HSI to zero.

The MMF method takes a mean of all variables including zero values when 

one of the component input variables is zero inorder to forestall the occurrence of a 

zero HSI result. Subseqently, a zero HSI would only occur if all the component 

variables are zero. It is my assumption tha t there would have been higher moose 

carrying capacity values had that technique been employed in the WWHSIM when 

one of its’ component variables went to zero. Through time the number of 0 values 

increased in both the food and cover HSI data layers resulting in lower moose 

carrying capacity values. By the middle of the simulation (2096), 75% of the cover 

HSI values were 0, and by the end (2196) tha t value had risen to 90%.

Higgelke Habitat Modal

The early-winter component of the HHM used in this thesis was compared to 

Higgelke’s original thesis work on the Aulneau Peninsula (Higgelke 1994). The
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simulation and results can only be compared for the first 25 years since Higgelke’s 

work only simulated 25 years.

I found similar results to Higgelke (1994) in the first 25 years. Results from 

my work and his show a decline in moose carrying capacity from 0-10 years 

followed by a increase in moose between 11-25 for the early-winter when heavy 

timber harvest takes place in both simulations. There were also similarities 

between the results from my BHS and his guidelines scenario; both simulations 

show a slight increase in moose carrying capacity values from 0-25 years.

Higgelke’s (1994) and my results with high timber harvest levels result in a 

minimum moose carrying capacity value of approximately 2.2 moose/km2 ten years 

after the start of the simulation. However, my starting values were 2.741 vs 

Higgelke’s of 4.05 moose/km2, indicating that Higgelke’s implementation of the 

model had early-winter values drop significantly more than my run over the same 

time period. The differences between the two could be linked to the differences in 

habitat types, or my food and cover curves were too generous.

Duinker Population Model Comparison

The DPM used in this thesis was compared to Duinker et al. (1996) results 

with hunting active. Duinker et al. (1996) results for the DPM with two timber 

harvest levels and a  no-harvest control predicted moose population values between 

0.05 and 0.1 moose/km2. Futhermore, there was also very little fluctuation in this 

results over 100-year simulation. The results from my work have moose population 

values that range from 1.7 to 4.3 moose/km2 and the simulation displays stronger 

fluctuations than those in the Duinker et al. (1996) results.
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The major difference between the two implementations is the effect of the 

condition of the habitat ecosystems. The Duinker et al. (1996) implementation was 

on a poorly drained, clay belt, Boreal landscape in Lake Abitibi Model Forest in 

Ontario populated by large black spruce stands and few forage areas. My study 

area is a  moderately well drained, Alberta foothills, Boreal mixedwood landscape 

that has good browse-producing areas. Another difference between the two 

implementations that would affect the results at each time interval of the 

simulation is the size of the landscape analysed. Duinker et al. (1996) applied the 

model to a landscape of 795,660 ha while my study area is 10,495 ha. Duinker et 

al. (1996) simulation smoothed out the local effects at the regional level by using an 

area mean, which was not done in my implementation. It is my belief that if the 

two habitats were similar in type and size, then the resulting moose populations 

would be similar.

Possible Improvements in the Moose Carrying Capacity Models Used

Weldwood Winter Habitat Suitability Index Model Improvements

The implementation of the WWHSIM could be improved by using the 

averaging approach developed for the MMF moose model to forestall the occurrence 

of 0.0 HSI results. The other component that needs improvement is the 

determination of food based on shrub cover which was derived from stand stocking. 

This problem should be fixed when the new inventory becomes available, because it 

will have an air-photo interpreter’s judgement of the actual shrub canopy if one is 

present. From those interpretations the shrub variable will be improved and should 

better represent reality.
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Chair in Forest Management and Policy Winter Habitat HSI Model 
Improvements

The main improvement recommended for the CFMP-WHSIM is the inclusion 

of the averaging function to correct for 0.0 HSI values. The other variables to 

examine in greater detail are the bonus values for pipeline corridors and stand 

complexity. Their impact on the final results for the study area were insignificant; 

however, they may play a bigger role when adjacent forest areas are considered, 

because there appear to be more such corridors in areas outside the study area than 

in. The impact of the stand complexity variable will certainly increase, because 

more detailed attention is being paid to it in the held cruising part of the inventory 

process. The results will be included in the new inventory dataset.

Higgelke Habitat Model Improvements

The strongest improvement to the HHM is a lowering of uncertainty with 

respect to kilograms of browse per hectare in different stand types and the 

adjustment of early-winter cover curves to reflect MWFFs forest license area. This 

could be accomplished through a held sampling program or a workshop with experts 

who are familiar with the browse production potential in Alberta. I expect that 

lowering these uncertainties will improve the model’s predictive output. Higgelke 

(1996) recognized these aspects when consulted and suggested that the new 

inventory process be adjusted to capture that.

Duinker Population Model Improvements

The DPM would also beneht from the suggestions to the HHM above, since 

the DPM uses the food values output from the HHM. Other improvements to the
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DPM is the gathering of information to implement the other-mortality component 

of the model, through workshops with moose biology professionals. Other mortality 

factors include such things as diseases, ticks infestations, estimates of Aboriginal 

hunting rates, poaching rates and road kills. Once those variables are better 

accounted for, I feel that the DPM will better represent the dynamics of the moose 

population in the MWFP license area.
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CONCLUSIONS

The objectives of this study were to (1) calibrate three moose models, (2) 

apply the models to forecast moose populations, (3) evaluate model 

performance and finally (4) to draw conclusions with respect to strategic forest 

planning. Objective (1) was enhanced to four models which were the Weldwood 

Winter Habitat Suitability Index Model (WWHSIM), Chair in Forest Management 

and Policy Winter Habitat Suitability Index Model (CFMP-WHSIM), Higgelke 

Habitat Model (HHM) and the Duinker Population Model (DPM). The models were 

applied, as stated in objective (2), to projected forest inventory data and moose 

population or moose carrying capacity values were obtained. In objective (3), model 

performance was examined with respect to model assumptions, variable integrity to 

sensitivity analysis, model integrity to sensitivity analysis, a model comparison and 

contrast of model assumptions, inputs and results against each other and against 

other moose model studies. Finally, objective (4) conclusions with respect to forest 

planning were accomplished.

The model results associated with objective 3 were diverse. One model 

indicates that timber harvesting in the study area is “bad” for moose while three 

others say timber harvesting is “good”. The WWHSIM indicates that timber 

harvesting is detrimental for moose, but would probably indicate that timber 

harvesting were neutral or beneficial if variables that were zero where replaced 

with values close to zero i.e. 0.01 to keep the model from producing zero HSI values 

which does not really occur in nature. The results from the other three models 

indicate that harvesting is beneficial for moose, a conclusion that is generally 

consistent with the moose literature. What is not clear, or easy to determine, is
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which of the three models is “most accurate” in its predictions. The ultimate way to 

determine which of the models is ucorrect” is to follow the model’s predictions and 

moose inventories through time to see which model’s predictions are following the 

real moose populations most closely.

If through time we find that one model tracks reality better than the others, 

then the confidence in using that model will be higher, but we should not disregard 

the other models, because they can still provide useful insights into the nature of 

the real relationships between moose and their habitat. Therefore, it is important 

to have multiple models tracking the system one are interested in (Lee 1993), as 

well as multiple hypotheses about how the system works (Holling 1978) in an 

adaptive management framework.

The choice to use model-to-model comparisons as a validation technique was 

based on my contention that if different models produced the same general outputs 

from the same general inputs, then the models are supporting each other’s general 

conclusions. In this thesis that conclusion was that moose populations will rise in 

the face of a timber harvesting disturbances which is consistent with data from the 

literature.

To be clear I was not looking for a perfect numbers match e.g. all models said 

that moose/km2 will increase 1.5 times; rather, I was looking for confirmation of a 

trend e.g. moose/km2 will rise. I found that confirmation between three of the 

models, while the fourth was considered invalid.
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My thesis results indicate that I am on the right track with respect to the 

modelling exercise; however, it is now important to focus on how much the moose 

numbers might actually increase. The DPM, HHM and the CFMP-WHSIM predict 

approximate long-term moose CC values of 3.6, 2.8 and 1.8 respectively. Now, given 

the spread of the numbers and my knowledge of moose and what people have told 

me, I would indicate to forest managers and the planning teams that if they chose 

the BHS strategy, I would expect to see a 2 and 2.8 moose/km2 increase on the 

landscape over the long term i.e. 50 years or more. If the HHS were chosen, then I 

would expect to see higher initial values followed by a lower overall values than the 

BHS because more of the forest is in younger age classes which is less conducive to 

moose growth. Pursuant to that statement I would strongly suggest a rigorous 

monitoring program to reduce the uncertainty associated with some of the model 

variables and a re-evaluation of these models as new information become available.

Futhermore, model validation by model comparison becomes a useable 

validation technique when the models were created by various authors. All the 

model authors took available information and created an abstraction of a natural 

system independently, which they believe to be valid and applicable. The models 

they created are normally validated on their own to see if  they represent a system 

or function in a predictable way. Therefore, if multiple models by various authors 

indicate a trend, one may have relatively high confidence that the trend is valid. I 

believe it is the trend which is important in model-to-model comparisons. In this 

thesis three of the four models point in the same direction i.e. moose populations 

rise when harvesting is initiated. It is my contention that comfort level regarding a 

model’s prediction rises when different models indicate the same results. One
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always feels better when independent sources state the same general feeling or 

conclusion.

The adaptive management process will allow MWFP’s forest managers to 

adapt to errors in management or changes to environmental conditions faster and 

more confidently than any other management styles. The learning and adaptation 

takes place faster because of the internal feedback loop from estimating impacts 

and then monitoring for them to see if the two coincide. This thesis project is only 

one part of a larger project examining and projecting the possible impacts of 

different timber harvest strategies on numerous wildlife species. These results and 

others are to be used in strategic forest management planning for MWFP license 

areas in an adaptive management framework. The work completed in this thesis 

provides estimates of what could happen to moose populations given the different 

harvesting levels. To determine which of the models is “correct” we need to 

implement the different timber harvesting strategies outlined in this thesis (or 

other ones) in several areas and monitor via aerial moose inventories to see which 

model best predicts the fluctuations in the moose population over the years and 

decades to come. Futhermore, the monitoring procedures should also include other 

species or environmental indicators that are thought to be indicators of ecosystem 

health and vigour.

Invalidation is an important criterion in deciding whether to state that a 

model is valid. In doing this project and given the results, I have three models 

indicating that harvesting timber results in higher moose densities while one shows 

the opposite-more cutting, less moose. I would have to say tha t the WWHSIM is 

invalid because it preforms contrary to the other three models. The reasoning for
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this invalidation harkens back to the discussion of multiple model comparisons 

previously.

Looking at the issue of invalidation from a probability standpoint it is more 

likely that the WWHSIM is wrong than the other three, given that all four models 

were developed by different groups or individuals. It is in the interest of each 

author to do the best possible job they can given the best data, tools, and knowledge 

available. However, as a student of science I can not ignore the possibility that the 

opposite is true i.e. the other three models are wrong and the WWHSIM is correct. 

Therefore, it behooves me to investigate why each model acted as it did and 

discover why they disagree. It was through such a process that I discovered the 

problem with zero HSI components that force the aggregated HSI values to zero in 

the WWHSIM and some parts of the CFMP-WHSIM.

It is known that deterministic and stochastic models behave erratically after 

start-up. This irregularity was noted in the DPM and was accounted for by having 

it start 100 years before present with a basic food supply and initial parameters 

that would allow it to equilibrate before the derived food values started to change at 

time 0 and above. Conversely, the other three models took data as it was without 

any equilibrium period and started to produce moose densities. The results show 

that the greatest fluctuations occur between 1996 and 2046 before settling down 

after that time.

I have confidence in 3 out of 4 model’s ability to predict moose habitat carrying 

capacities in both time periods because the models are following the changes that 

are occurring in the age-class structure and species composition of the forest
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through time. Initially, once cutting starts there is a great influx of food and 

sufficient late-winter cover is present. Therefore, the potential for a population 

increase exists and that is observed in the results. However, once several decades 

have passed and the amount of good to excellent late-winter habitat declines, we 

see a drop in moose densities and a subsequent period of stable moose densities.

The decline and stable period in moose densities is linked to the normalizing of the 

forest that occurs during forest harvesting. This normalized forest support a lower 

number of animals compared to the first peak that occurs forty years from now, 

because its age-class distribution and species mix is more favourable to foresters 

than moose. The normalized forest is unfavourable to moose because it is populated 

by younger age-classes which are growing rapidly and are not defined as favourable 

late-winter cover. Therefore, one would expect the moose densities to be lower and 

this was observed in the results. The initial increase in moose densities occurs 

because the harvesting creates feeding areas in a habitat short on food but still 

retains significant portions of favourable late-winter habitat.

A point of concern with this thesis was the small study area which was used to 

determine the forest harvest levels and then the moose population values. Work in 

this thesis indicates that on a small study area, differences between the models that 

utilized the HSI format i.e., WWHSIM and CFMP-WHSIM tend to have less 

variation in their simulation results through time than does the HHM or the DPM.

I expect those differences to reduce as the size of the area under investigation 

increases because of the windowing function applied in the HHM and DPM with 

larger landscapes. The averaging of values over the landscape should smooth out 

the peaks and valleys that were present in my results. The final results should

display the long-term trends without the noise that was present in my
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implementation of those models. The only caveat with increasing the land area 

analysed is that the processing time increases, potentially in the order of days to 

finish one model’s simulation. If multiple forest management strategies are being 

examined, the use of a simple raster-based HSI model may be the most appropriate 

because of faster processing time and the level of accuracy required for large-scale 

planning. Since the objective is strategic forest management planning, the scale of 

rasters employed should equal 200*200 m instead of the mixed 100*100m and 

200*200m used in thesis, because of the smaller study area.

To answer the question of which hypothesis is correct, I accepted that 

hypothesis two, i.e. “the models make substantially different predictions for moose 

carrying capacity” (page 4) is correct. I chose hypothesis two because the models do 

make significantly different predictions of moose/km2. This decision is based on the 

fact that the WWHSIM was considered invalid, since it showed a decrease in moose/ 

km2 while the others showed an increase in moose/km2 after disturbance. Moose 

density increases after disturbance are considered the norm based on held studies 

and other modelling exercises (Higgelke 1994, Terrestrial & Aquatic Environmental 

Managers Inc. 1995, Duinker et al. 1996). Furthermore, the three models that do 

indicate increased moose densities showed significant differences in their results.

Any work that involves modelling should examine model invalidation, since it is 

a major criteria in determining if a model is useful. Model invalidation is a process 

by which a model, its components or its results can be considered invalid because 

they produce or show a response or behaviour that is inconsistent with known facts. 

To invalidate a model, it is best to set up tests at different levels i.e. model
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assumptions, model variables, model components, and overall model output 

(Schamberger and O’Neil 1986).

Of all of the models examined in this thesis, the WWHSIM was considered 

invalid because it presented a response i.e. moose/km2 that declined after a 

disturbance which is considered incorrect given present biological knowledge. The 

declining response can be traced back to the model’s calculation procedure i.e. model 

components (Schamberger and O’Neil 1986) HIS (Food) = SI • S2 • S3 and HIS 

(Cover) = S3 • S4 • S5 • S6 which were considered incorrect because it failed to deal 

with “Sl-6" components that went to zero and created a zero HSI for either food or 

cover which is not a good representation or reality.

From undertaking this thesis project, it is my opinion that the DPM would 

provide the most useful information regarding moose population health for long­

term strategic forest management planning, while the other two winter habitat 

suitability index models are best suited to indicate the effects of different 

harvesting levels on late-winter habitat. The latter are also more applicable in 

areas where snow depth is more limiting. Finally, the HHM is a mix of the other 

two model types and therefore excels at neither function i.e. predicting population 

levels or indicating the loss or expansion of late-winter habitat. It does, however, 

show components of both and how they are affected by different 

harvesting levels.
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APPENDIX 1 MOOSE 
History

Alces is Latin for elk and that monicker was given to the “European 

Moose” as its genus, species and subspecies name by Linnaeus in 1758
I

(Peterson 1955). Since then, Alces alces alces has been used to identify an animal 

! th a t is uniquely adapted to live in challenging ecosystems of the north hemispheres.

! In North America the common name “Moose” for Alces alces originated from the 

j Algonquin word “Musee” meaning “eater of twigs” (Stelfox 1993).
i
j

Moose first appear in the fossil record during the late Pliocene or early
j

j Pleistocene Epoch in Europe (Telfer 1984). From Eurasia the species spread into 

the northern hemisphere, arriving in North America approximately 80,000 years 

! ago (Peterson 1955; Stelfox 1993). Across North America, moose evolved into four
j
j subspecies: Alces alces americana Clinton, Alces alces andersoni Peterson, Alces 

alces gigas Millar and Alces alces shirasi Nelson (Peterson 1955; Telfer 1984). The

I subspecies modelled this study is Alces alces andersoni, because it is the natural
|
! resident of the study area in central Alberta (Figure Al-1).
j
i
| Distribution

! Alces Alces gigas is a resident of Alaska and the Western Yukon. A. alces

I shirasi is found in southwestern Alberta and south into Wyoming, Idaho and

| western Montana. A. alces andersoni has the largest range reaching from the
|
| Central Yukon in the northwest to Thunder Bay in the east where it inhabits the 

Boreal forest zone. A. alces americana exists between Thunder Bay in the west to
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j  Alces alces americana 

Alces alces andersoni 
i~ - Alces alces gigas 
^v! Alces alces shirasi

Introduced 
Range overlap

Map not to scale

Figure Al-1: Distribution of Moose in North America.
Source: Peterson 1955
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Maine and Nova Scotia in the east (Figure Al-1) (Peterson 1955). Alces alces 

americana was introduced into Newfoundland in 1878 and 1904 (Pimlot 1953).
i
j

Telfer (1984) suggested that, globally, moose are potentially excluded from the 

southern hemisphere by two factors: the 20°C isotherm that occurs in summer, and 

j a roundworm parasite of moose called the brain worm Parelaphostrongylus tenuis 

I (Irwin 1985). The brain worm is lethal to moose, but not to deer, Odocoileinae spp., 

i its normal host (Stelfox 1993). Of the two constraints, the 20°C isotherm is likely 

I the most important limiting factor for defining the southern range for moose 

! (Renecker and Hudson 1986a). During past glaciations the range of moose 

. extended further south (Peterson 1955); however, moose was probably still limited 

• by the two constraints mentioned above.i
i

Today, as in the past, moose occupy the same habitat regions globally. Their 

j  numbers have been reduced in various districts of their range, particularly in 

j Europe, while in North America, moose have maintained most of their historic 

distribution. In certain areas, the range has extended via reintroduction efforts 

(Figure Al-1) (Telfer 1984; Kufeld and Bowden 1996).

i  Habitat Characteristics
I

i

Telfer (1984) states that moose are limited by landform, climate, food supply, 

predation and human activities. However, within those constraints they have found 

suitable habitats. Globally moose habitat has been generalized into five categories: 

the Boreal Forest zone, the Mixedwood Forest, the Tundra and Sub-Alpine Shrub 

Communities, Flood Plains, and the Stream Valley Shrub Riparian zone (Telfer 

! 1984).
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The Boreal Forest

The Boreal forest complex is a glaciated landscape; it is therefore hummocky 

with a conglomeration of lakes, bogs, and evergreen dominated forest areas (Telfer 

1984). In the Boreal forest, timber harvesting, fires, and some insect outbreaks are 

the dominant disturbances that influence habitat for moose. Browsing habitat is 

normally its best 10-20 years after a disturbance (Telfer 1984); however, the same 

disturbance may have removed another necessary component of their habitat, such 

as late-winter cover.

The Boreal forest is the largest contiguous forest zone in Canada. It forms a 

continuous belt from Newfoundland in the east to the Rocky Mountains in the west, 

and northward to Alaska (Hosie 1979). At the northern limit the forest is 

dominated by stunted coniferous species. The middle section is a mix of coniferous 

and deciduous species while at the southern limit deciduous species dominate.

South of the Boreal forest is the Mixedwood forest zone east of the prairies.

The Mixedwood Forest

Mixedwood forests are situated between the Deciduous forest and the Boreal 

forest. Mixedwood forests are composed of evergreen and deciduous tree and plant 

species that can form mixed or discrete stands. Fire is not considered a dominating 

force in this zone; therefore, gap dynamics and understory shrubbery play a major 

role in providing moose with suitable accessible browse (Telfer 1984). The gaps are 

produced from insect and disease outbreaks, wind throw and occasional fires. This 

forest type provides moose with a permanent year-round habitat that is quite 

suitable (Telfer 1984).
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The Tundra and Sub-Alpine Shrub

| Tundra and sub-alpine shrub communities are found along river courses in 

: tundra areas of Ungava, and in the northern mountainous areas of the Northwest

I Territories, the Yukon and parts of Alaska (Telfer 1984). Although tundra and sub-
!

alpine shrub communities have low productivity, all forage is palatable and 

available for browsing by moose. These spartan regions have severe winters which 

cause mortality to moose (Telfer 1984).

The Flood Plains

Flood plains, or alluvial habitats, are considered the optimum habitat for 

; moose. Telfer (1984) describes them as “stable unstable” habitats. They are stable 

during the lifetime of moose because there is a constant food source, but unstable 

because of annual flooding and the meandering habit of rivers (Telfer 1984). The 

seasonal flooding and the meandering habit of rivers prohibits the development of a 

mature forest, thereby creating ideal browse procurement areas for moose.

The Stream Valley Shrub Riparian Zone

Stream valley shrub riparian habitats occur in mountainous regions such as 

the Rocky Mountains that cover British Columbia, Alberta and the Yukon. These 

stream valley habitats are dominated by riparian areas populated with Salix spp. 

(Telfer 1984). Moose can survive here year-round or migrate to higher or lower 

elevations as environmental conditions change and latitude dictates (Telfer 1984). 

The elevational movement by moose is an adaptive response to escape heavy 

snowfall and find suitable thermal tolerance zones (Telfer 1984).
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Habitat Productivity Levels

Of the habitat types outlined by Telfer (1984), the optimum habitat for moose 

| is comprised of large flood plains; conversely the most marginal habitats are located
i

j in stream valley shrub riparian and Boreal forest habitats, while the tundra sub- 

: alpine shrub and mixedwood forest habitats fall in the middle. The study area for 

this thesis is composed of upland Boreal forest habitat.
j

Seasonal Habitat Types

Moose obtain two main things from their habitat: food and cover. These items
j
j  must be secured from the landscape at all points in the year. The amount of food 

1 obtained from the landscape varies across time and space as does the type and 

density of cover required. The juxtaposition of both components in the landscape is 

important to moose survival and growth. Moose generally have four range types:
i
i  spring, summer-fall, early-winter and late-winter (Telfer 1984). These types are 

I normally found within the home range of most moose; however, moose have been
i
1 known to migrate to fulfil habitat requirements (Rolley and Keith 1980; Telfer 

1984; Ballard et al. 1991). Cederlund and Okarma (1988) found that cow-calf 

i groups tended to avoid mature stands and bogs while clear cuts and young stands 

| were preferred, presumably taking advantage of the large quantities of browse.
i
| Leptich and Gilbert (1989) and Schwab and Pitt (1990) indicated that habitat choice
t
j  is closely linked to heat and cold stress avoidance in an effort to conserve energy. 

Spring Habitat
f?

Spring range for cow moose consists of lowland bogs (LeResche et al. 1974;
j

I Leptich and Gilbert 1989), and islands or peninsulas (Peterson 1955). Cows may
i
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choose these areas for calving because they confound predators, offer the 

opportunity for escape by water (Peterson 1955), and provide higher quality food 

earlier in the year because they are the first areas to green up (Berg and Phillips 

1974; Cederlund and Sand 1994). The early green-up of these areas provides female 

moose the opportunity to replenishes body reserves; therefore, this habitat type 

may be the most important for cows who have recently given birth or are still 

pregnant (Hauge and Keith 1981).

Sum m er - Fall Habitat

Summer ranges are usually close to water bodies containing aquatic plants.

For two reasons, one moose need the sodium that is contained in the aquatic plants 

and two, the water acts as a haven from insects (Flook 1959 as cited in 

Timmermann and McNicol 1988), and as a cooling agent, while the edges of lakes 

and bogs provide a large quantity of high quality browse plants. The amount of 

time spent near aquatic feeding areas by moose was found to be proportional to the 

presence of aquatic feeding areas in the landscape (Leptich and Gilbert 1989).

During summer and fall, moose get the most energy from their food supply 

with the least cost (Henecker and Hudson 1986b). For moose that live in non- 

mountainous areas, summer is the time of greatest activity (Phillips et al. 1973) 

and general dispersal across the landscape (Telfer 1984). The summer range is 

usually the largest of the four ranges utilized (Phillips et al. 1973; Cederlund and 

Okarma 1988; Ballard et al. 1991).
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Early-W inter H abitat

Normally, early-winter habitat has a high component of available browse and 

some form of thermal protection. Early-winter ranges for moose can be 

characterized in some locations as concentration areas. Concentration areas are 

places that have high quantities of accessible woody browse, are young in age, have 

some type of east or south exposure and some elevational change. Concentration 

areas are considered the optimum habitat type for moose during early-winter. Bulls 

are usually the first to arrive in early-winter areas and are therefore more 

numerous than cows (Hauge and Keith 1981). Bulls are there to replenish fat 

reserves lost in the rut (Peek et al. 1976). Similarly, cows are there to gain back 

energy lost from giving birth and/or nursing calves.

In Alberta, Stelfox et al. (1995) found that young aspen stands contained a 

higher number of animals (0.61/km2) than did mature aspen stands (0.37/km2). 

Similar results were found by Nowlin (1978) and Rolley and Keith (1980).

; Alternatively, where young aspen stands are infrequent, moose search out gap 

areas in denser stands (Stelfox et al. 1995) or treed muskeg areas (Hauge and Keith

j  1981) for feeding.
!
i

j

j A regression analysis of habitat characteristics by Schwab and P itt (1990)

| found that food availability and type are the main reasons why some early-winter 

i habitats are chosen over others. As Telfer (1984) stated, river valleys and deltas are 

| preferred locations during early-winter. Similar results have been found by others 

j who did telemetry work on moose (Boonstra and Sinclair 1984; Ballard et al. 1991; 

Gasaway et al. 1992).
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Late-W inter H abitat

Late-winter habitat satisfies several requirements for moose. It provides 

thermal protection from heat stress, reduction of wind chill factors and cold stress 

in northern areas, and lower and softer snow packs for easier locomotion (Balsom et 

al. 1996). Such late-winter habitat characteristics are normally found in dense 

conifer stands (Telfer 1970; Van Ballenberghe and Peek 1971; Peek et al. 1976). In 

some habitats, late-winter cover is plentiful but the specific stand choice is strongly 

related to food availability (Schwab and P itt 1990).

The major trigger which initiates the movement of animals to late-winter 

habitat varies with geographic location, climate, and animal condition. From the 

literature two factors appear key: thermal protection and snow pack. However, in 

! their regressions Schwab and Pitt (1990) found that food availability is also 

significant.

Thermal protection is important because moose become heat-stressed when 

ambient temperatures rise above their thermal tolerance limits of -5°C to -2°C 

(Renecker and Hudson 1993). At this time moose find dense coniferous stands

; favourable because their ambient temperatures are below moose thermal limits.!
; Futhermore, the dense stands keep wind chills from exceeding moose low thermal 

tolerance of -30°C (Renecker and Hudson 1986a). Snow pack is important because 

lower snow loads allow for easier food gathering and predator avoidance.

According to a  literature review by Balsom et al. (1996), snow packs become 

important to moose when they are >65 cm deep since mobility becomes restricted at 

| that depth. When snow packs exceed 90 cm, the ability of moose to move becomes 
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severely limited. In areas where snowfall is heavy and travel is impeded, moose 

may move into forested muskeg with clumps of Picea mariana (black spruce)

(Rolley and Keith 1980) where travel is thought to be easier. Conversely, when 

snow packs are not as deep, mobility is not restricted and moose may remain in 

their early-winter habitat much longer (Ballard et al. 1991).

In drier climates, such as in Alberta, moose move into larger aspen stands 

(Phillips et al. 1973), with closed-canopy where snow packs are shallower and 

softer (Telfer 1970; Peek et al. 1976; Nowlin 1978; Rolley and Keith 1980; Hauge 

and Keith 1981; Stelfox et al. 1995), and browse-producing open shrub lands (Cairns 

and Telfer 1980). Studies in Minnesota indicate that moose leave late-winter cover 

once the majority of the snow has gone (Phillips et al. 1973) and move into spring 

i habitat.

The use of dense coniferous cover is not necessarily limited to late-winter as 

! moose have been known to enter this habitat during times of heat stress in the 

! summer (Timmermann and McNicol 1988; Jackson et al. 1991; Demarchi and 

I Bunnell 1995) when the habitat is near good summer feeding areas.

Movement Patterns

The movement patterns of moose are governed by several factors: food, 

thermal cover, escape cover, slopes, aspect, traditional use areas, and snow depth 

(Ballard et al. 1991). The most important factor is snow depth; as snow depth 

increases, movement decreases (Hauge and Keith 1981; Thompson and Vukelich 

1981; Ballard et al. 1991).
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The daily activity patterns of moose vary with time of year, time of day and 

night-time light levels. Some researchers indicate that the activity level of moose is 

highest at sunset, with spring and summer being the most active times during the 

year (Phillips et al. 1973; Best et al. 1979). However, other studies indicate that 

their activity is greatest during the morning and night (Van Ballenburg and 

Miquelle 1990) and another states that night is the most active for bulls during the 

rut (Phillips et al. 1973). Night-time activity seems related to the amount of 

available light. When skies are clear and the moon is full, there appears to be more 

activity (Phillips et al. 1973).

Home Ranges

Moose are thought to exhibit a strong bond to certain areas of their habitat 

since they relocate there annually (Gasaway et al. 1980; Cederlund and Okarma 

1988; Leptich and Gilbert 1989; Ballard et al. 1991). Habitat homogeneity and 

uniformity in elevation is thought to result in a more resident moose population 

than where the habitat is more heterogeneous (Cederlund and Okarma 1988).

The sizes of bull moose home ranges in Sweden were found to be related to 

their ages; the size of a bull’s home ranges increases with age (Cederlund and Sand 

1994). Cederlund and Sand (1994) thought that this observation was related to the 

greater social activity during the rut. Similarly, the largest home ranges for cow 

moose in the Northwest Territories were found in autumn but those home range 

sizes were not significantly different than a t other times (Stenhouse et al. 1995).

The home range sizes of cow and calf groups are smaller than those of bulls 

during the spring (LeResche et al. 1974; Ballard et al. 1980 in Ballard et al. 1991;
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and Cederlund and Sand 1994). In addition, Leptich and Gilbert (1989) found that 

summer home range sizes were not different between the sexes even when cows 

had calves. Cederlund and Sand (1994) suggested tha t this disparity in spring 

home range size between cow calf groups and bulls is linked to nutritional demands.

The mean home range size for cow moose near my study site is 39 km2 (Table 

Al-1). The Alberta average from two studies is 68 km2 . This value is lower than 

the overall average value of 79 km2 for studies found. The overall means identified 

in Table Al-1 masks the differences among seasons. As discovered by Phillips et al. 

(1973) in Minnesota, the seasonal home ranges varied from 11 km2 for cows and 9 

km2 for bulls during the summer and fall, to winter ranges of 2 km2 for cows and

I 1.9 km2 for bulls.

| Biology

Moose are the largest members of the deer family Cervidae. Large adult bulls

i have weights up to 650 kg (Stelfox 1993). In Alberta, the average weight, body
i
' length and shoulder height for bulls are 450 kg, 274 cm and 190 cm, respectively, 

while cows average 418 kg, 185 cm, and 188 cm for the same measurements 

respectively (Stelfox 1993).

! Moose have a life expectance of approximately 25 years in the wild (Stelfox

i  1993). Bulls produce antlers annually that weight 35 kg on average once they are 

frilly mature. The size of antlers is dependent on age and condition of an animal. 

Antlers start growth in the spring and they become frilly developed by August or 

September. During development, antlers are covered by a velvet-like skin that 

contains blood vessels carrying nutrients to the growing antlers. Once the antlers 
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3| Table A l - 1; Mean home range sizes moose from selected studies.
S3

Mean Home 
Ranae Size km2

Sex
Collared

Study Area Source

13 C Sweden Cederlund and Okarma 1988
20 C + B Sweden Cederlund and Sand 1994
10 C + B Minnesota, Northwestern Phillips e t a / .  1973
43 C + B Ontario, Northwest Addison etal. 1980
97 C + B Alberta, Northeast Hauge and Keith 1981
39 C Alberta, Central Lynch and Morgantini 1984
174 C Northwest Territories, Mackenzie Valley Stenhouse etal. 1995
290 C Alaska, South-central Ballard etal. 1991
40 C Alaska, Southeast Doerr 1983
68 Alberta Average

79.4 All Studies Average

C = Cows, B = Bulls
Source: Adapted from Table 4, S tenhouse et al. 1995
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are fully developed they are freed from the velvet when moose rub them on shrubs 

and trees. Antlers can be cast between November and March; however, the 

majority fall off between December and February (Peterson 1955).

Nutrition

Moose are considered browsing ruminants, because their food sources are 

generally plants other than grasses. The food is cut by incisors, crushed by molars 

and passed down the esophagus to the rumen. The rumen is the first chamber of a 

four-chambered stomach used by ruminants to break down vegetable matter. The 

rumen is a fermenting vessel that uses bacteria in a symbiotic relationship to break 

down larger food fragments; the bacteria have enzymes that break down cellulose 

and other complex sugars into digestible sugars. The finer particles from the 

rumen are passed into the reticulum for further fermentation and breakdown. Food 

particles from the reticulum are passed to the omasum. The omasum is the 

separator between the fermenting chambers of the rumen and reticulum and the 

acidic environment of the abomasum (Robbins 1993). The omasum also absorbs 

water and some nutrients. The abomasum is the true stomach where enzymatic 

and acid hydrolysis break down fine food particles (Robbins 1993). Finally, the food 

particles are passed into the small and then the large intestine for nutrient and 

water absorption (Robbins 1993).

The dietary requirements of moose vary with the time of year. In the spring 

before leaf out, moose diet consists mainly of woody browse species and leaf litter 

(Stelfox 1993). After leaf out in late spring and early summer, moose consume 

large amounts of aquatic vegetation. The amount of aquatic plants consumed is
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i

proportional to their availability in the habitat (Aho and Jordan 1976). During the 

summer, moose will feed on the current year’s growth of preferred browse species, 

aquatic plants and herbaceous plants (Table Al-2). In fall their diet consists 

predominantly of woody browse species, and finally in winter, their diet is 

dominated by evergreen and deciduous woody browse (Histol and Hjeljord 1993; 

Stelfox 1993).

Aquatic plants are eaten because they contain higher levels of salts, 

specifically sodium, than terrestrial vegetation. The salts obtained from aquatic 

plants are essential minerals required for basic metabolism. If aquatic plants are in 

; short supply or mineral Ucks are readily available, moose will increase their sodium 

; levels by frequenting mineral licks to consume water, dirt and/or rocks high in 

j  sodium (Telfer 1984; Belovsky and Jordan 1981).
t

In summer, non-lignified plants, i.e. forbs, account for 25% of moose diet,

: while browse, a lignified plant material, accounts for the rest. Since summer food 

j is highly digestible, moose are only moderately selective in their food choices at this 

: time (Renecker and Hudson 1986b). In fall, the studies examined by Stelfox (1993) 

j  showed variation in the amounts of browse and forbs consumed. The percentage of
j

woody browse consumed ranged from 55-100% depending on the study. During this 

time and later into early-winter, moose become more selective by choosing foods
i

j  that have greater digestibility (Renecker and Hudson 1986b). In early-winter, the 

diet is predominantly woody browse, but Renecker and Hudson (1986b) stated that
I

if moose can muzzle through the snow layer to fallen leaves, they will consume 

them. Unfortunately, normal freeze-thaw action which produces snow crusts often 

precludes this action.
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£  Table Al-2: Food plants of moose from selected studies in North America.

Food type Common Nam* Scien tiS c  N am e S tudy  A uthors |
R lcey
an d

Verbeek
1969

Peek
1974

Peek
etal.
1976

Nowlin
1978

Thompson
and

Vuketich
1981

Crete
and

Jordan
1982

Fraser
etal.
1984

Irwin
1985

W oody
Browse
Plants

Red-osier dogwood C am us stotonifera X X X X X
Mountian maple Acer spicatum X X X X X

Mountian ash Sorbus spp. X X

WiKow Saix spp. X X X X X X X

Balsam fir Abies balsamea X X X

W hile birch Betute papyritara X X X X X
Trembling aspen Popuka tremubides X X X X X X
Beaked hazel Cantos comuto X X X X X

Junebeny Amolenchier spp. X X X X X

Balsam  poplar Populus batsomifera X X X

Alder Abus spp. X X X X

Raspberry Ribas spp X X
Vibrunums Vbumum spp. X X
Honeysuckles Lontera spp. X

Cherry Pmnus spp. X X X X X X
R ed Maple Acerrubrum X
Black spruce Picea mariana X

Tamarack Lam spp. X

W hite spruce Picea glauca X
Elderberry Sambucus spp. X

W hite cedar Thuia occidentals X

Aquatic
P lants

Milfoil MyriophyHum spp X X
Bladderwort Utricutaria vulgaris X X
Pondweed Potamogeton spp. X X X

Bur-Reeds Spatganium spp X X
Horsetail Eguisetum spp. X

P o n d lly Nupharspp X

W ater f ly Nymphaea spp X

H erbaceous
Plants

Clover Trifotum spp.
Indian paint brush Castlleja spp
Bunch berry Comus canadensis X

Primrose Epiktbium spp. X
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Several studies have examined the consumption rate of food by moose during 

the summer with varying results. Belovsky et al. (1973) found that moose 

consumed 4.2 kg of dry weight forage/day for the summer. Similarly Gasaway and 

Coady (1974) recorded 4.6 kg/day and Verme (1970) found that 4.6 - 5.4 kg/day were 

consumed.

The winter consumption rate was lower than in summer averaging 3.6-4.6 kg/ 

day (Verme 1970; Gasaway and Coady 1974). Gasaway and Coady (1974) suggested 

that the lower rates are related to slower digestion times of woody browse. The 

lowest values found in the literature are by Hjeljord et al. (1994) who found that 

cow moose on good to medium quality winter ranges consumed 10 -17 kg/day of 

wet weight browse, which translates to 2.0-3.4 kg/day of dry weight browse 

assuming a 80% moisture content and a digestibility of 40%.

The daily activity of moose is linked to browse quality, because when forage 

quality declines, the amount of time spent ruminating increases, the feeding areas 

become smaller and the amount of browse consumed is larger (Saether and 

Andersen 1990). Generally, moose spend >90% of their day foraging, resting/ 

ruminating or walking between bedding sites (Stelfox 1993).

Several authors have determined that digestible energy and crude protein are 

important components in food for moose (Oldemeyer et al. 1977; Stelfox 1993). Of 

the browse tha t is consumed, Timmermann’s (1990) review found that somewhere 

between 29.6 and 72.7% of the summer food is digestible, while only 27.1-51.3% of 

winter food is digestible. This compares well with Hjeljord et al. (1994) as discussed 

previously. A review of several studies by Timmermann and McNicol (1988) found
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that crude protein reaches its highest value, 36%, in May and falls linearly to 7% by 

October, where it remains until leaf out in spring.

As stated previously, moose obtain the majority of their nutrients from aquatic 

plants, woody browse, and forbs. The most common food species across studies are 

Betula papyrifera, white birch; Salix spp., willow; Acer spicatum, mountain maple; 

Popular tremulodies, aspen; Corylus cornuta, beaked hazel; andAmelanchierspp., 

juneberry (Table Al-2). From Nowlin’s (1978) fall and winter study in Alberta, 

Amelanchier spp. and Salix spp. were the species most preferred by moose.

Energy Budget

Renecker and Hudson (1986a) studied several moose individuals and found a 

seasonal change in the body weight for both sexes. In the spring and early summer 

(May - early July), cows and bulls gained an average of 1.03 kg/day and 0.90 kg/day 

respectively. During the summer (mid July - late August), weights of both sexes 

declined slightly or were static. During the rut (September - October), bulls lost up 

to 1.3 kg/day while cows lost 0.70 kg/day. In early-winter (November - early 

January), cows and bulls regained some of their lost weight, but then in late-winter 

(Mid January - late March) their body mass declined by 7-25% . This decline in 

body mass is a result of poor food quality and moose’ limited ability to seek forage 

due to snow conditions. A survival strategy developed by moose is to lower their 

metabolic rate during late-winter to minimize weight loss and thereby conserve 

energy (Renecker and Hudson 1986a).
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Activity Budget

Renecker and Hudson (1989) studied two cow moose for a year. In the spring, 

both animals spent 53.9% of the day bedded, mostly ruminating. Feeding activity 

consumed 42% on average for the year. The amount of time spent feeding peaked 

in spring at 45%. Feeding time peaks in spring because it is the time of year when 

food quality, availability and energy needs are the highest. Energy requirements 

are high for cows because of lactation. From spring the amount of time spent 

feeding declines slowly through the rest of the year (Renecker and Hudson 1989).

Energy Expenditure

Belovsky and Jordan (1978) studied moose energy expenditures rates at Isle 

Royal, Michigan, and found that moose have a daily metabolic energy requirement 

of 170 kcal/kg° 78/day. This translates into approximately 14,000 kcal/day for the 

average moose (Duinker et al. 1996).

In Alberta, the resting metabolic rate (RMR) for moGse outlined by Stelfox 

(1993) is 768 kJ/kg0 75/day in spring. Therefore, on a daily basis an average bull or 

cow would utilize 184 kcal/kg-0 78/day. This value climbs linearly from spring to a 

midsummer high of 984 kJ/kg° 78/day (235 kcal/kg075/day). The rate then declines 

to 648 kJ/kg075/day (155 kcal/kg° 75/day) at the start of autumn. From the start of 

autumn to late-winter the rate declines further but less rapidly to a low of 600 kJ/ 

kg° 75/day, (144 kcal/kg_0 75/day) (Table Al-3). The Belovsky and Jordan (1978) 

values are lower than the numbers identified by Stelfox (1993) (Table Al-3).
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£  Table Al-3: Energy intake and expenditure values for moose from selected studies.

Energy Kj/kg'075/day
Fasting

metabolic
rate

Spring
Summer

Early
Winter

Late
Winter

Sex Source

9403 4304 C and B Renecker and Hudson 1985
310 - 450 u = 3805 904 C and B Regelin etal. 1985

552 C and B Regelin etal. 1985
356® C and B Regelin etal. 1985
7689 7687 - 9848 648® 6009 Stelfox 1993

573 - 8031 u = 688 5332 C Hjeljord etal. 1994
4 1 4 - 9 2 0 ^  = 667 414 - 9201 p =667 Ca Hjeljord etal. 1994

594 - 705 u = 649 C Schwartz et al. 1988
368 922 677.5 566.2 Averages

1 range from poor habitat to good habitat
2 early winter mean reduced by 22.5% from a  range of 15-30% reduction from early winter to late winter Hjeljord et al. 1994
3 Maximum value found
4 Minimum value found
5 Estimate of tasting metabolic rates from November to April
6 Estimate of tasting metabolic rates from Summer
7 Spring resting metabolic rate
8 Summer resting metabolic rate
9 Resting metabolic rate
C = Cows, B = Bulls, Ca = Calves
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Stelfox’s (1993) low rate of 600 kJ/kg-0 75/day for winter is almost twice the 

value that Regelin et al. (1985) found in Alaska for moose in March at 360 kJ/kg0 75/ 

day; however, values at other times of the year for RMR found by Regelin et al. 

(1985) are similar to Stelfox (1993).

Life Cycle

Moose cows give birth to their young in the latter part of May and into June. 

The calves are born in secluded places such as islands, peninsulas (Peterson 1955), 

or in high spots of swampy areas (LeResche et al. 1974). Calves range from 11-20 

kg at birth (Peterson 1955). Peterson (1955) found that cows will protect their 

calves from predators. Calves will stay with their mothers for 14 months (Ballard 

et al. 1991). If calves remain with the mother after the 14 months, they are driven 

away by aggressive behaviour of cows or bulls during the rut (Ballard et al. 1991).

Once on their own, yearlings will generally stay in the same area as the 

mother until they become sexually mature. A literature review by Peterson (1955) 

indicated that some cows reach sexual maturity around 16 months and produce 

offspring the next year but the majority are not successful a t carrying a calf until 

they have reached 4 years of age (Stelfox 1993). Furthermore, Rolley and Keith 

(1980) found better twinning rates with older cows. Conversely, males generally do 

not start breeding until their sixth or seventh year even though they have been 

sexually mature since their second year (Peterson 1955). This may occur because 

larger bulls can out-compete the young bulls for cows.

Average sex ratios and twinning percents in Alberta are 68,38.9 and 37% for 

calves:100 cows, bulls:100 cows and twinning percent, respectively (Table Al-4).
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£  Table Al-4: Sex ratios and twinning rates for moose from selected studies in North America.

Calf:100
Cow
Ratio

Bull: 100 
Cow  
R atio

T w inning
P e rc e n t

S tudy  Area Tim e of 
Y ear o f 
S tudy

S o u rce

37

CMIIa. Newfoundland F & W Pimlot 19591
17 10 Isle Royale F Peterson 19771
59 O Montana Su Peek 19621
54 3 Montana W Stevens 19701
59 5 Wyoming W Houston 19681
82 p = 33 Alberta, Fort McMurry Sp Hauge and Keith 1981
106 80 M = 41 Alberta, Rochester w Rolley and Keith 1980
86 40 Alberta, Unhunted Aspen Parkland w Bjorge 1996
74 47 Alberta, Hunted Aspen Parkland w Bjorge 1996
55 49 Alberta, Wildlife M anagem ent Unit 346 w Hall etal.  19751
55 23 Alberta, Wildlife M anagem ent Unit 346 w Birkholz and Cook 1982
47 18 Alberta, Wildlife M anagem ent Unit 346 w Smith et al. 1988
39 15 Alberta, Wildlife M anagem ent Unit 347 w Anon 1993
17 p = 8 Alaska F Faro and Franzmann 1978
38 p = 14 Alaska w Spencer and Chatelain 19531
37 Alaska w Bishop and Rausch 19741
113

CMcoiia. Mackenzie Valley, Northwest Territories Sp Stenhouse et al. 1995
47 35 < 1.0% Newfoundland, Barrens 1983 w Albright and Keith 1987
33 20 < 1.0% Newfoundland, Barrens 1984 Sp Albright and Keith 1987

68.0 38.9 37.0 Alberta Averages
55,5 36.3 16.1 All Studies except Newfoundland Averages

F = Fall, W = Winter, Sp = Spring and Su = Sum m er
1 a s  cited in Rolley and Keith 1980
Source; Adapted from Table 5, of Rolley and Keith 1980
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Alberta’s values are greater than the overall averages of 55.5, 36.3 and 16.1 for 

calves:100 cows, bulls:100 cows and twinning percent respectively. For my study 

area which is part of Wildlife Management Unit 346 (WMU 346) and Wildlife 

Management Unit 347 (WMU 347), there has been a drop from 49 bulls: 100 cows to 

15 bulls: 100 cows between 1975 and 1994 (Smith et al. 1988). A similar result is 

found in the calvesrlOO cows ratio, however; the decline is not as precipitous as the 

bulls:100 cows ratio. These values indicate that the population is in decline in that 

part of the province. The decline may result from human, wolfTbear, or human and 

wolf/bear additive mortality.

Predators of Moose

Moose are targeted for food by humans (Homo erectus), cougars (Felis 

concolor) wolves (Canis lupus), grizzly bears (Ursus arctos) and occasionally black 

bears (Ursus americanus). Of the bears, U. arctos are the most successful 

predators because of their larger body size. In fact, moose can make up to 92% of 

U. arctos diet in a year (Boertje et al. 1988; Ballard et al. 1991). Black bear 

predation is highest when calves are under two months of age (Franzmann et al. 

1980). Gasaway et al. (1983) found that predation of moose by wolves, grizzly or 

black bears, and in some areas cougars individually or in some combination, have a 

large impact on moose populations.

Gasaway et al. (1983) identified wolf predation rates between 13 and 34% for 

the winters and summers of 1973-74 and 1974-75. Hauge and Keith (1981) found 

that wolves take 29% of the calves annually while 39% of the first month’s 

mortality was attributed to black bears. Peterson’s (1955) review revealed that
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Canis lupus were more likely to attack moose in late-winter when snow depth and 

crusting hinders their prey’s movements. However, stomach analysis by Gasaway 

et al. (1992) found that moose made up to 29% of a wolfs diet during the spring and 

summer. When moose are the main prey species, their density in the landscape can 

be a major controlling factor on population levels of predators (Gasaway et al. 1992) 

exclusive of humans.

Pimlot (1967) hypothesized, and is supported by Bergerud et al. (1983) and 

Gasaway et al. (1983), that in Canis lupus and moose systems, the number of 

moose and C. lupus may stabilize a t low predator and prey densities. It is thought 

by Messier (1984) that when densities of moose reach 0.2/km2 and there are no 

other prey present, this population density of moose maybe the lowest density that 

can support the existence of a wolf pack.

Gasaway et al. (1992) put forward four conceptual models of predator-prey 

dynamics based on work by Messier and Crete (1985). Conceptually, the models 

predict different moose population levels that are possible when it is the only food 

source being preyed upon by no predators, wolves only, bears only, and both wolves 

and bears. Briefly, when no predators are present moose populations are close to 

the landscape’s carrying capacity (Figure Al-2; Model 1). When one predator is 

present the carrying capacity is slightly lower than carrying capacity (Figure Al-2; 

Model 2). When two predators are present, there is the possibility of two 

equilibrium points: one a t a low density (Figure Al-2; Model 4), and the other at the 

higher moose density (Figure Al-2; Model 3).
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Assumptions: 

Model 1: 

Model 2: 

Model 3:

Model 4:

Four conceptual models of 
predator-Alces alces-nutrition dynamics

Model 1

<0c
<D
Q
c

Model 2

Model 3

O
753
C
C<

v P

Model 4

0 )
z

Alces alces Density
Predator populations are assumed to be unharvested or lightly har­
vested, and moose are the primary food source of the predators. 
Predators are absent, moose populations fluctuate near K carrying 
capacity (1̂ ).
Where a single predator species occurs or both black and grizzly bears 
occur, moose densities fluctuate near K,.
Where bears and wolves occur, two or more relatively stable equilibria 
are possible; high-density, nutrition-induced equilibrium (K,) fluctuates 
near carrying capacity and the low density dynamic equilibrium LDDE 
(K4) is maintained by predation. Additional one or more unstable 
equilibria are possible between Kg and K4.
Where bears and wolves occur, moose densities fluctuate near LODE 
(K4). If rare natural events allow moose to increase above LDOE, then 
moose may follow model 3 to a higher density but will return to the 
LDDE via a series of years with negative net change in density (dashed 
line). These negative net changes would likely result from periodic 
severe winters and predation. ___ _______

Figure Al-2: Predator Prey Nutrition Model for Moose from Gasaway et al.
(1992).
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If the population of moose in model 3 is at the lower density of K4 and they 

had several good years with high quality food and easy winters, they may attain a 

higher moose density equilibrium of K3. The high density of moose in model 3 at Kg 

may return to the lower equilibrium of K4 or model 4 if severe winters occurred in 

successive years (Figure Al-2). The described models seem to be gathering favour 

with researchers in the field (Gasaway et al. 1992).

For managers, these models have strong implications. If wolves keep moose at 

the lower population density K4 managers have two options to increase the herd. 

One is to wait possibly decades before the moose population recovers naturally. 

Alternatively managers can intervene and remove some of the predators so that the 

population can move towards K, (Gasaway et al. 1983). However, success of this 

measure could be thwarted if environmental conditions change or another predator 

appears.

Population Densities

Moose densities vary depending on predation, habitat and climate. Generally 

moose densities for sub-arctic, better Boreal and exceptional habitats are 0.1, 0.1- 

0.3 and 0.4-1.0 animals/km2 (Telfer 1984). Many studies (Table Al-5) found the 

density of moose populations across North America and Europe to vary from 0.2/ 

km2 to 5.6/km2. The overall average from studies in Alberta is 0.95 animals/km2 

which is slightly lower than the total overall average of 1.01 animals/km2 for all 

studies identified. When the highest and lowest values are excluded, the overall 

average is 0.88.
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The density of moose found in WMU 346 was 0.70 (Hall et al. 1975), 0.85 

(Birkholz and Cook 1982), 0.72 ± 32.2% (Smith et al. 1988) moose/km2, for the 

years 1975, 1982, and 1988 respectively (Table Al-5). The most recent survey was 

in February 1993 for WMU 347, an area 10 km to the northwest of the study area 

which returned 0.45 ± 19.8% animals/km2 (Anon 1993). The data underpinning 

these values were collected with a rotary-wing aircraft using a stratified system in 

1988 and 1993 and a square-block system in 1975 and 1982.

Hunting Pressure

The ability of moose to deal with human hunting pressure is enhanced when 

predator control is exercised (Gasaway et al. 1992). Humans can produce a cyclic 

predator-prey response similar to moose-wolf cycles by preying heavily when the 

food population is high and less when the food population is low or declining 

(Ferguson and Messier 1996). This response may become unpredictable when 

humans control predators, hunt and manipulate the landscape simultaneously. 

Under these conditions, a moose population may grow large enough that food does 

become the limiting factor (Van Ballenberghe and Ballard 1994) model 1 Kj or the 

population could crash and follow model 4 Kg (Figure Al-2).

Humans were the largest source of bull mortality in the Ballard et al (1991) 

study. Ferguson and Messier (1996) found that humans had the highest hunting 

success rates in Newfoundland when moose densities were a t 1.4 animals/km2. 

Gasaway et al. (1983) found that harvest rates for Alaska were between 6 and 19% 

annually and the mean harvest rate equalled the mean yearling recruitment.
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£  Table Al-5: Moose densities from selected studies.
| Alces Alces 1 km2 Study Location Source |

0.31 -1 .1 5 u  = 0.73 Sweden Sand etal, 1995
4.7 Newfoundland Bergenid and Manuel 1968

0.5 - 4.1 u = 2.4 Newfoundland Oosenburg and Ferguson 1992
0.78 Newfoundland 1973 Albright and Keith 1987
0.8 Newfoundland 1984 Albright and Keith 1987

0.0 -0.1 p = 0.005 Labrador, Goose Bay Trimper etal. 1996
0.2 Quebec, Southwest Messier 1984
0.4 Quebec, Southwest Messier 1984

1 .5-2 .6  u = 2.0 Michigan. Isle Royal Peterson 1977
0.4 Ontario, Northwest Bergenid etal. 1983

0.18 Alberta, Northeast Hauge and Keith 1981
0.225 Alberta, Northeast Fuller and Keith 1980

0.016-0.75 m  = 0.38 Alberta, Northeast Rolley and Keith 1980
0.18 Alberta, Aspen Parkland Eco-Region Bjorge 1996
0.7 Alberta, Wildlife Management Unit 346.1975 Hall etal. 19752

0.85 Alberta. Wildlife Management Unit 346,1982 Birkhoiz and Cook 19822
0.72 Alberta, Wildlife Management Unit 346,1988 Smith etal. 1988
0.45 Alberta, Wildlife Management Unit 347,1994 Anon 1993
1.2 Alberta, Shiningbank study area MacCallum 19831

0.89 Alberta, Shiningbank study area Winged 19841
0.56 Alberta. Shiningbank study area Smith and Myrholm 19851
0.79 Alberta, Shiningbank study area Smith and Edmonds 1988
5.6 Alberta, Elk Island National Park McGiHis 1972
1.3 Alberta, Northwest, 1977 -1979 Bjorge and Gunson 1989

0.7 - 0.8 m = 0.75 Alberta, Northwest. 1972 • 1975 Bjorge and Gunson 1989
0.47 Alberta, Apsen Mixed woods Stelfox et al. 1995
0.16 Northwest Territories, Mackenzie Valley Stenhouse 1995
0.8 Alaska, South (Kenai Peninsula) Peterson etal. 1984

0.71 Alaska, South-central, 1980 mean BaHard et al. 1991
0.84 Alaska. South-central, 1983 mean Ballard etal. 1991
0.95 Alberta Average
1.01 All Studies Average

1 as cited in Brusnyk and Westworth (1988) 
£  2 as cited in Smith etal. (1988)

Source: Adapted from Table 3, of Messier (1984)
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Similarly, Albright and Keith (1987) found harvest rates of 19% which account for 

76-100% of adult mortality.

The success rate for legal hunters in Alberta averages 18% during the past 

half-century, it has risen over the decades from 10% in the 1950’s through 15% in 

the 1960’s to 22.5% during the 1970’s and 1980’s. This value is similar to findings 

by Albright and Keith (1987) above.

The estimated average population of moose in Alberta from 1950 to 1991 was 

approximately 147,786 up from the average of 113,778 between 1980 to 1991 (Table 

Al-6). Overall, the moose population was in decline from the late 1980’s to the 

early 1990’s according to statistics gathered by Stelfox (1993). The harvest data for 

the study area specifically (Table Al-7) show that. The average number of male 

and antlerless moose harvested between 1984 and 1987 is 455.5 and 116.5 

respectively. The average hunter-days per male and hunter-days per antlerless 

animal are 42.6 and 9.7, respectively The ratio of hunters to male and hunters to 

antlerless moose is 6.6:1 and 3.24:1 with a combined hunter to animal ratio of 

6.05:1. On average it takes 33.0 days for a hunter to harvest a bull but only 7.9 

days to harvest a cow in WMU 346.

The mortality associated with Aboriginal hunting is hard to estimate (Hauge 

and Keith 1981). However, “Alberta Fish and Wildlife Division recognizes that the 

annual harvest o f big game by Indians and poachers is at least equivalent to 

licensed fall harvest by hunters” (Stelfox 1993, page 117). Therefore, in 1991 9,000 

animals were estimated to be removed from the population by unregistered 

hunters. If the above statement is true, the impact to moose is significant and it
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Table Al-6: Hunting tag allocation, sport hunting take, percent hunting success
and population estimates for moose in Alberta, 1952 -1991.

Year Estimated 
Sport Harvest

Hunting Tags 
Sold

Percent Hunting 
Success

Population
Estimate

1952 2740 N/A N/A N/A
1953 514 6628 7.8 N/A
1954 684 8853 7.7 N/A
1955 5540 25068 22.1 N/A
1956 2173 28697 7.6 N/A
1957 2554 33590 7.6 N/A
1958 3538 45576 7.8 N/A
1959 3496 47250 7.4 45000
1960 4465 62398 7.2 N/A
1961 4486 59504 7.5 N/A
1962 5129 67915 7.6 N/A
1963 4975 65302 7.6 N/A
1964 4527 59111 7.7 N/A
1965 3313 42373 7.8 N/A
1966 9483 48756 19.4 N/A
1967 7427 62029 12.0 N/A
1968 17318 48729 35.5 N/A
1969 20161 53631 37.6 N/A
1970 13686 57406 23.8 N/A
1971 14291 59699 23.9 N/A
1972 10764 44661 24.1 N/A
1973 12948 54359 23.8 N/A
1974 7432 41960 17.7 250000
1975 8488 41758 20.3 250000
1976 9339 44052 21.2 250000
1977 10547 42258 25.0 250000
1978 14387 59606 24.1 N/A
1979 12930 65482 19.7 N/A
1980 14200 63635 22.3 118000
1981 14846 65106 22.8 120000
1982 14506 63971 22.7 120000
1983 14410 63662 22.6 120000
1984 8622 53677 16.1 118000
1985 9839 56148 17.5 120000
1986 14151 59893 23.6 118000
1987 14110 59196 23.8 N/A
1988 14371 58920 24.4 100000
1989 13233 56919 23.2 N/A
1990 11796 48586 24.3 90000
1991 10463 36785 28.4 N/A

Average 1950 -1959 2655 27952 10 45000
Average 1960 -1969 8128 56975 15 N/A
Average 1970 -1979 11481 51124 22 250000
Average 1980 • 1991 12879 57208 23 113778
Average 1950 - 1991 9297 50337 18 147786

Source: Adapted from Table 8.2, of Stelfox (1993).
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£  Table Al-7: Post-harvest data for moose wildlife management unit 346 in Central Alberta
1 from 1984 to 1987.

Year License
Type

Number of 
Hunters

Total Hunter 
Days

Number of 
Hunter 

D ays/ Animal

Number of 
Animals 

Harvested
M 2538 18643 48.6 383.6

1984 A N/S N/S N/S N/S
C 2538 18643 48.6 383.6
M 3077 17965 42.7 420.7

1985 A 409 979 10.1 96.9
C 3486 18935 36.6 517.3
M 3050 18835 30.9 609.5

1986 A 208 563 13.1 43.0
C 3258 19398 29.7 653.1
M 3360 19720 48.3 408.3

1987 A 516 1216 5.8 209.7
C 3876 20936 34.0 615.8

Sum M 12025.0 75163.0 170.5 1822.2
Sum A 1133.0 2758.0 29.0 349.6

Sum Total 13158.0 77921.0 199.5 2171.7
Average M 2405.0 15032.6 42.6 455.5
Average A 377.7 919.3 9.7 116.5

Average of M +A 3289.5 19478.0 37.2 542.5

Success Ratio H:M 6.6 1
=j Success Ratio H:A 3.24 1
$ Success Ratio H:C 6.05 1
p Hunter Days Ratio D:M 33.0 1

Hunter Days Ratio D:A 7.9 1
Hunter Days Ratio D:M + A 35.9 1

g M = Male, A = Anter-less, C = Combined, H = Hunters, D = Days 
Source: Adapted from Table 4, of Smith etal. (1988).

Com
parative 

Analysis 
of A

lternative 
M

odels 
of M

oose 
H

abitat Carrying 
C

apacity



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

puts into question any type of management strategies that have been cooperatively 

worked out between stake-holders other than First Nations and the government.

From historical information, Kay (1997) found that it was not until Aboriginal 

populations were decimated by diseases and resettlement programs were instituted 

by governments that moose populations increased throughout North America.

From archeological evidence, moose and other ungulate populations were only 

healthy in areas between warring nations or in refugia (Kay 1997). This statement 

suggests that aboriginals were a significant predator to moose in areas controlled by 

one aboriginal nation. In areas external to those moose populations were healthier, 

because the threat of being attacked by another nation while hunting was not 

beneficial to hunting or the vitality of the community.

When hunting is sanctioned and controlled by governments, it is important 

that the tag allocation reflect the observed age-sex ratios. Otherwise the additive 

mortality of hunting when numerous predators are present may initiate a 

population decline (Van Ballenberghe and Dart 1982).

Economic Return from Hunting

Moose are a sought-after game species in North America. The income they 

produce for local and regional economies is significant. In Alberta, between 1981 

and 1982, each resident moose hunter spent $376.09 while the non-resident hunter 

spent $1024.08 on a season’s hunting opportunity in Alberta (Stelfox 1993). Total 

expenditures for 1981-1982 for resident and non-resident hunters was $24,485,715 

and $1,530,999 dollars respectively. Therefore, the greatest economic activity 

generated is from resident hunters who purchased 65,106 licenses, while
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nonresidents only purchased 1,495 (Stelfox 1993). In 1991, outfitted big-game 

hunters contributed $11,676,600 dollars while the whole outfitting industry 

contributed $23,082,400 dollars to the provincial economy of Alberta (Stelfox 1993). 

Therefore, it is safe to assume the majority of the money being spent by hunters is 

staying in local or regional communities where hunters purchase their supplies and 

lodging while hunting.
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APPENDIX 2

Duinker Population Model supporting information. 

Total Energy*, = Available Forage*,- Unit Size* - Energy/Forage
Equation 5

a i u, a Total Energy*, • Animals*,,,Available Energy*,,, =
Equation 6

1 10
Z  ZAnimals*,,.,
SffO a*0

Equation 7
Maintenance Energy*,,., = Daily M aintenance Energy,,,, • Weight*?,/ S eason  Length* ■ Animals*,,

Energy Surplus*,,, = Available Energy*,,, - M aintenance Energy*,,
Equation 8

Weight*,,, = Weight*, +
Energy Surplus*,, 

Growth Energy,,

if Energy Surplus*,,, >= 0
Equation 9

= Weight*,.,,, +
Energy Surplus*,, 

Loss Energy,,
otherwise

W eight.,,. = Max Weight*,, if Weight*,,, > Max Weight*,,

Other Mortality*,,, = Other Mortality Rate*,,- Animals*,,,

10
Target Cow Harvest, = Cow Harvest Rate • Z  Z  Animals*,, if i s  fall

a llw  a * 1

Target Bull Harvest, = Bull to Cow Harvest - Target Cow Harvest, if i € fall

Equation 10 

Equation 11

Equation 12

Target Calf Harvest, = Calf to Cow Harvest - Target Cow Harvest, if i e  fall 
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3
Z  A ccess Factor, • Forest A rea,,,

_ . ,*° if i € fall
Prop Accessw,= 3

Z  Forest Area,,,
fsQ

1 1  . ... Target Calf Harvest, ■ Animals,,,,,- Prop A ccess,
Hunting Mortality,,, a a  ̂ “ , i 0

£  Z  (Animals,,, Q- Prop Access,,)
allw s*0

Target Bull Harvest, • Animals„0/  Prop A ccess,,

10

Z  Z  (Animals,,0/  Prop Access,,)
allw S*0

Target Cow Harvest, • Animals,, , /  Prop A ccess,,

10

Z  Z  (Animals,,,.,- Prop Access,,)
allw s*0

10
Births,, = — Anim als,,, /  Fecundity,,, jf j € spring/summer

a*0
= 0  otherwise

Weight, , , 0  = Birth Weight if i spring/summer

Animals,!,a = (1 - Sex Ratio) • Births,, for i e  spring/summer s=0

= Sex Ratio • Births,, for i € spring/sum m er s  =1
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Equation 15 

if a = 0

if a > 0  and s = 0

if a > 0  and s = 1  

Equation 16

Equation 17 

Equation 18
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Table A2-1: Variable descriptions used in the Duinker Population Model.

Variable Description
s Index representing sex (0=males, 1 =females)
a Index representing moose age class (11 classes: ages 0-10+)
ii Index representing seasonal model time step (4 census periods 

for each year of simulation, corresponding to the seasons 
sorina/summer. fall, earlv winter, and late winter

n Index representing seasons (0 =spring/summer, W all, 
2=early winter, 3=late winter)

f index representing forest age class (0 =ages 0 - 1 0 , 1 =ages 1 1 -2 0 , 
2=ages 21-30,3=ages 31-40)

w Index representing habitat window
Total Energywj Total metabolizable energy supply for the population in period 

i and window w (kcal)
Available Forage*,, Density of available forage (dry weight) in period i and window w 

(ka/ha)
Unit Size* Total area of the habitat window w (ha)
Enerav/Foraqe Metabolizable energy per unit of available forage (kcal/kg)
Available EnergywjtSa Metabolizable energy available, in period i and window w, for 

cohort with sex s  and age a  (kcal)
An i nial s*,1,3 , 3 Number of animals, in period i and window w, for cohort with 

sex s and age a (number of animals)
Weight*, iiSa Mean animal weight, in period i and window w, for cohort with 

sex s and age a  (kg)
Maintenance Energy*>is,a Total metabolizable energy required for maintenance, in period 

i and window w. for cohort with sex s and age a (kcal)
Daily Maintenance Energyn s a Daily maintenance metabolizable energy required per unit of 

metabolic body weight, in season n, for cohort with sex s and 
a a e  a (kcal kg ' 0  7 5 /davs)

Season Lenght,, Duration of season n (days)
Energy Surplusw>j.s,a Total surplus metabolizable energy over and above maintenance 

requirements, in period i and window w, for cohort with sex s 
and aae  a (kcal)

Growth Energysa Metabolizable energy required for a  unit increase in average 
weiaht of an animal in cohort with sex s  and age a  (kcal/ka)

Loss Energys,a Metabolizable energy required for a  unit decrease in average 
weight of an animal in cohort with sex s  and age a  (kcal/ka)

Max Energyasa Ideal weight of an animal, in season n, for cohort with sexs 
and age a  (kg)

Death W eighty,a Weight below which individual animals will die due to starvation, 
in season n. for cohort with sex s and age a  (kg)

SD W e ig h ty Standard deviation of the weight distribution expressed as a 
proportion of the cohort's mean weight, in season n, for cohort 
with sex s and aae a (a>0 )
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Table A2-1: Continued

1 Variable Description
Other Mortality*,i,sa Mortality due to factors other than starvation and hunting, in 

period i and window w, for cohort with sex s and age a 
(number of animals!

Predation R a te^ a Mortality rate due to factors other than starvation and hunting, 
for season n. for cohort with sex s and aae a (0-1)

Target Density Target animals density used in calculation of harvest rate 
(number of animals/km2)

Cow Harvest Rate, Overall target harvest for cows in period i (0-1)
Target Cow Harvest Target for total cows harvested in period i (number of animals)
Target Bull Harvest Target for total bulls harvested in period i (number of animals)
Target Calf Harvest Target for total calves harvested in period i (number of animals)
Bull to Cow Harvest Target ratio of bull harvest to cow harvest (>=0)
Calf to Cow Harvest Target ratio of calf harvest to cow harvest (>=0)
Prop Access*,i Proportion of habitat window w that is accessible in period 1 (0-1)
Access Factorf Weighting factor specifying the relative contribution of forest 

class f in the calculation of the DroDortion access (0-1)
Forest Area*,itf Area of the habitat window w in the forest f for period i (ha)
Hunting Pressure* , Relative hunting pressure for the habitat window w in period i (>0)
Hunting Mortality*,j s a Mortality due to hunting, in period i and window w, for cohort with 

sex s and age a (number of animals!
Births*.i Births in period i and window w (number of animals)
Fecundity*,j,a Average number of calves bom, in period i and window w, per 

female of aae  a (>=01
Birth Weiaht Average birth weight of calves (kg)
Sex Ratio Proportion of calves bom as males (0-1)
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Table A2-2: Initial starting values for the Duinker Population Model.

V ariables M ales f i n a l e S o u rce
c Y A O c Y A O

Initial Density (Animals/km2) 0.1000 0.0417 0.0417 0.0417 0.1090 0.1390 0.1390 0.1390 Sm ith e fa /. 1988
initial W eictu Ota) ISO 250 450 485 150 230 400 445 OMNR 1990. Schwartz 1998
Majamum W eight (kg) Sum m er 160 250 550 680 155 230 450 500 Schw artz 1996

Fall 160 250 467 578 155 230 450 500
Eariv W inter 150 230 467 578 150 220 425 450
la t e  W inter 140 220 431 534 140 210 375 415

Death W eight (kg) Sum m er 104 162 357 442 100 149 292 325
Fall 104 162 303 375 100 149 292 325
Eariv W inter 97 149 303 375 97 143 276 292
la t e  W inter 97 143 280 347 91 136 243 269

Sd W eight Sum m er 0.08 0.08 0.06 0.08 0.08 0.08 0.08 0.08 Duinker ef a/. 1996
Fail 0.08 0.08 0.08 0.08 0.06 0.08 0.06 0.06
Eartv W inter 0.08 0.08 0.08 0.06 0.06 0.08 0.08 0.08
la t e  Winter 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Birth W eight (kg) 13.5 Stelfox 1993
Sex Ratio M ales to  F em ales 0.5 Duinker at at. 1996
Predation Rate Sum m er 0.20 0.01 0.01 0.01 0.20 0.01 0.01 0.01 Ballard and Ballenberghe 1998

Fall 0.10 0.01 0.01 0.01 0.10 0.01 0.01 0.01
Eariv W inter 0.10 0.01 0.01 0.02 0.10 0.01 0.01 0.02
l a t e  W inter 0.20 0.01 0.01 0.03 0.20 0.01 0.01 0.03

Other Mortality Sum m er 0 0 0 0 0 0 0 0
Fall 0 0 0 0 0 0 0 0
Eartv W inter 0 0 0 0 0 0 0 0
l a t e  W inter 0 0 0 0 0 0 0 0

CrooonaR ate 0.2 0.6 0.6 Duinker ef a/. 1996
Proo Enerov W eiom 0 Duinker a t  a/. 1996
Enerov/Foraoe (keai/ko) 3100 Blackwell 1983
Daily M aintenance E nergy (kcal*  ̂ kg /day) Sum m er 170 170 170 170 170 170 170 170 Betovskv an d  Jordan 1978

Fall 170 170 170 170 170 170 170 170
Eartv W inter 170 170 170 170 170 170 170 170
la t e  W inter 170 170 170 170 170 170 170 170

Growth Enerov (kcal) 9800 9800 9800 9800 9800 9600 9800 9600 G asaw av an d  C oadv 1974
l o t s  Enerov (kcal) 8140 8140 8140 8140 8140 8140 8140 6140 G asaw av an d  Coadv 1974
Fecundity W eight (kgXx»y pans) Catf 0 0.00 100 0.00 200 0.00 300 0.00 400 0.00 Greenwood e ra / .  1982

Yeartino 0 0.00 100 0.00 200 0.30 300 0.30 400 0.30
Mature 2*6 vn 0 0.00 too 0.00 200 0.95 300 1.57 400 2.00
Older > Svrs 0 0.00 100 0.00 200 0.70 300 1.37 400 1.57

Fecundity S easo n  ( l«S onna/S um m er) 1
Taroet Density (Arumai s/km 2) 0.76 Sm ith e ra / .  1988. Todd 1996
Bull to Cow (Harvest Ratio) 3.5 Greenwood #f a/. 1982
Calf to Cow (Harvest Ratio) 1.67 Greenwood a fa f . 1982
Cow Harvest R a te  (Paired x.v vertices for curve) 0.00 0.00 0.25 0.02 0.50 0.04 0.75 0.06 too 0.085 Greenwood e f  a/. 1982
A ccess Factor (For a o e s  d e s s e s  (MO. 11*20. 21*30 and 31*40) 1 0.5 0.25 0.125 O um kerera /. 1996
Hunting P ressu re  1:1 Ratio for A ccess to Hunting 0.00 0.00 0.25 0.70 0.50 1.00 0.75 1.00 1.00 1 00 Duinker e ra /. 1996

C * CaM (<1 y u r ) . Y * Yeaning (» t< 2  y e a n ). A •  Adult (>2«S y ean ), O  •  Old (>8 y e a n )
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Figure A2-1: Cow harvest rate for the Duinker Population Model.
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Figure A2-2: Access hunting pressure values for the Duinker Population Model.
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Figure A2-3: Relative hunting pressure as a function of access rate for the
Duinker Population Model.
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Figure A2-4: Poplar with other hardwoods spring and summer browse curves site
classes 1-4.
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Figure A2-5: Poplar w ith conifers spring and summer browse curves site classes
1-4.
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Figure A2-6 : Balsam fir with hardwoods and other conifers spring and summer
browse curves site classes 1-4.
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Figure A2-7: Lodgepole pine with other hardwoods spring and summer browse
curves site classes 1-4.
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Figure A2-8: Lodgepole pine with other conifers spring and summer browse
curves site classes 1-4.
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Figure A2-9: White spruce with other hardwoods spring and summer browse
curves site classes 1-4.
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Figure A2-10: White spruce w ith other conifers spring and summer browse curves
site classes 1-4.

Appendix 2 - DPM Supporting Information 169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

1200

i
I £  800i| Jf

•  600i

m  400

200
i

® A0
•sbh12St10 »sbh12St100

& &  ^  ^  ^  
Years

1200

1000

£  800

•  600

£  400

200

£  «?
•sbh3 St10 •sbh3 St100

<£ ^  ^  ^  ^  ^  ^  
Years

Figure A2-11: Black spruce with other hardwoods spring and summer browse
curves site classes 1-3.
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Figure A2-12: Black spruce w ith other conifers spring and summer browse curves 
site classes 1-3.
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Figure A2-13: Black spruce with other hardwoods and conifers spring and summer
browse curves site class 4.
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Figure A2-14: Poplar with other hardwoods and conifers early-winter cover index
curves for all site classes.
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Figure A2-15: White birch with other hardwoods and conifers early-winter cover
index curves for all site classes.
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Figure A2-16: Black spruce with other hardwoods and conifers early-winter cover
index curves for all site classes.
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Figure A2-17: Lodgepole pine with other hardwoods and conifers early-winter
cover index curves for all site classes.
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Figure A2-18: Balsam fir with other hardwoods and conifers early-winter cover
index curves for all site classes.
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Figure A2-19: White spruce with other hardwoods and conifers early-winter cover
index curves for all site classes.
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APPENDIX 3

Age vs volume curves used in the HSG harvesting simulation.

Figure A3-1: White spruce volume over age yield curves.
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Figure A3-2: Lodgepole pine volume over age yield curves.
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Figure A3-3: Black spruce volume over age yield curves.
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Figure A3-4: Balsam fir volume over age yield curves.
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Figure A3-5: Larch and cedar volume over age yield curves.
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Figure A3-6: Trembling aspen and balsam poplar volume over age yield curves.
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Figure A3-7: White birch volume over age yield curves.
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APPENDIX 4

Results from HSG forest simulation.

Area by age-class graphs from HSG runs.
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Figure A4-1: Basic-harvest age-class distributions by area.
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Figure A4-2: High-harvest age-class distributions by area.
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Figure A4-3: No-harvest age-class distributions by area.
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Table A5-1:

Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

APPENDIX 5
State table used as input to HSG for forest simulations.

rr’T i i  i ii 1 ii' 11 i hn 11M i
Aw 1 • >0&<0.3 silv b a s ic Sw 1 0 0.8 Aw 1 0 0.2 P—
Aw 1 • >04<0.3 silv in tensive Sw M1 0 0.9 Aw M1 0 0.1 L Z
Aw 1 • >0&<0.5 silv extensive Aw 1 0 0.6 Fb 1 0 0.3
Aw 1 • >0.34<0.6 silv b a s ic Sw 1 0 0.5 Aw 1 0 0.3
Aw 1 • >0.34<0.6 silv intensive Sw M1 0 0.8 Aw M1 0 0.2
Aw 1 • >0.56<0.6 silv extensive Aw 1 10 0.6 Fb 1 20 0.3
Aw 1 • >0.6 silv b as ic Sw 1 0 0.5 Aw 1 0 0.4
Aw 1 • >0.6 silv intensive Aw M1 10 1
Aw 1 • >0.64<0.7 silv extensive Aw 1 10 0.6 Fb 1 20 0.2
Aw 1 * > 0 .7 4 0 .8 silv extensive Aw 1 10 0.8 Fb 1 20 0.1
Aw 1 • > 0 .8 4 0 .9 silv erten siv e Aw 1 10 1
Aw 1 • >0.9 silv extensive Aw 1 10 1
Aw 1 >115 > 0 4 0 .5 invt n o n e Sw 1 45 0.5 Fb 1 45 0.2 Aw 1 45 0.3
Aw 1 >115 > 0 .5 4 0 .6 invt n o n e Sw I 45 0.4 Fb 1 45 0.1 Aw 1 45 0 .3
Aw 1 >115 > 0 .6 4 0 .7 invt n o n e Aw 1 35 0.7 Sw 1 45 0.2
Aw 1 >115 > 0 .7 4 0 .8 invt n o n e Aw 1 35 0.7 Sw 1 45 0.1 Fb 1 45 0.1
Aw 1 >115 > 0 .8 4 0 .9 invt n o n e Aw 1 35 0.9 Sw 1 45 0.1
Aw 1 >115 >0.9 invt n o n e Aw 1 35 1
Aw 2 • > 0 4 0 .3 silv b a s ic Sw 2 0 0.7 Aw 1 0 0.2
Aw 2 • > 0 4 0 .3 silv intensive Sw M2 0 0.9 Aw M1 0 0.1
Aw 2 • > 0 4 0 .5 silv extensive Aw 2 10 0.4 Fb 2 20 0.3
Aw 2 • > 0 .3 4 0 .6 silv b as ic Sw 2 0 0.6 Aw 1 0 0.3
Aw 2 • > 0 .3 4 0 .6 silv intensive Sw M2 0 0.8 Aw M1 0 0.1
Aw 2 • > 0 .5 4 0 .6 silv extensive Aw 2 10 0.5 Fb 2 20 0.3
Aw 2 • >0.6 silv b a s ic Sw 2 0 0.5 Aw 1 0 0.5 '

Aw 2 • >0.6 silv intensive Aw M2 10 1
Aw 2 • > 0 .6 4 0 .7 silv extensive Aw 2 10 0.6 Fb 2 "20" 0.2

~~Aw 2 • > 0 .7 4 0 .8 silv extensive Aw 2 10 0.8 Fb 2 20 0.1
Aw 2 • > 0 .8 4 0 .9 siiv~H extensive Aw 2 10 1 1
Aw 2 • >0.9 silv extensive Aw 2 10 1
Aw 2 >125 > 0 6 0 .5 invt no n e Sw 2 45 0.5 Fb 2 45 0.2 Aw ~2~ "35" 0.3
Aw 2 >125 > 0 .5 4 0 .6 invt no n e Sw 2 45 0.4 Fb 2 45 0.1 Aw 2 35 0.3 — 1
Aw 2 >125 > 0 .6 6 0 .7 invt n o n e Aw 2 35 0.7 Sw 2 45 0.2
Aw 2 >125 > 0 .7 6 0 .8 invt n o n e Aw 2 35 0.7 Sw 2 45 0.1 ~Fb~ ~2~ ~45~ 0.1
Aw 2 >125 > 0 .8 4 0 .9 invt n o n e Aw 2 35 0.9 Sw 2 45 0.1
Aw 2 >125 >0.9 invt n o n e Aw 2 35 1
Aw 3 • > 0 6 0 .3 silv b a s ic Sw 3 0 0.7 Aw | 1 0 0.2 -----1 z d z d
Aw 3 • > 0 6 0 .3 silv intensive Sb M2 10 0.9 Aw M1 0 0.1 ~ Z

"■ 1 1
Aw 3 • > 0 4 0 .5 silv extensive Aw 3 10 0.4 "F b" 3 20 0.3

Appendix 5 • HSG State Table 188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

Table A5-1: Continued.

ft.’titii i ip ir ii M il hi i
Aw 3 • >0.3A<0.6 silv basic Sw 3 0 0.6 Aw 1 0 0.3 !
Aw 3 • >0.34<0.6 silv intensive Sb M2 0 0.9 Aw M1 0 0.1
Aw 3 • >0.5&<0.6 silv extensive Aw 3 10 0.5 Fb 3 20 0.3
Aw 3 • >0.6 silv basic Sw 3 0 0.5 Aw 1 0 0.5
Aw 3 • >0.6 silv intensive Aw M2 0 0.9
Aw 3 • >0.64<0.7 silv eMensive Aw 3 10 0.6 Fb 3 30 0.2
Aw 3 • >0.74<0.8 silv extensive Aw 3 10 0.7 Fb 3 30 0.1
Aw 3 • >0.8A<0.9 silv extensive Aw 3 10 0.8
Aw 3 • >0.9 silv extensive Aw 3 10 0.9
Aw 3 >130 >0*<0.5 invt none Sw 3 35 0.3 Sb 2 45 0.2 Aw 3 35 0.1
Aw 3 >130 >0.5A<0.6 in* none Sb 2 35 0.4 Aw 3 45 0.2 Sw 3 35 0.1
Aw 3 >130 >0.64<0.7 invt none Sb 2 35 0.6 Aw 3 45 0.2
Aw 3 >130 >0.7&«0.8 invt none Aw 3 35 0.6 Sb 2 45 0.3
Aw 3 >130 >0.84<0.9 invt none Aw 3 35 0.7 Sb 2 45 0.2
Aw 3 >130 >0.9 invt none Aw 3 15 0.8 Sb 2 15 0.1
Aw 4 • >0&<0.5 silv extensive Aw 4 10 0.4 Sb 3 30 0.3
Aw 4 • >0.540.6 silv extensive Aw 4 10 0.5 Sb 3 30 0.3
Aw 4 • >0.640.7 silv extensive Aw 4 10 0.6 Sb 3 30 0.2
Aw 4 • >0.740.8 silv extensive Aw 4 10 0.6 Sb 3 30 0.1
Aw 4 • >0.840.9 silv extensive Aw 4 10 0.7
Aw 4 • >0.9 silv extensive Aw 4 10 0.7
Aw 4 >140 >040.5 invt none Sb 40 0.4 Aw 4 35 0.1
Aw 4 >140 >0.540.6 in* none Sb 3 40 0.4 Aw 4 35 0.2
Aw 4 >140 >0.640.7 invt none Sb 3 40 0.6 Aw 4 35 0.2
Aw 4 >140 >0.740.8 inM none Sb 3 40 0.6 Aw 3 35 0.2 j I
Aw 4 >140 >0.840.9 invt none Sb 3 40 0.5 Aw 3 35 0.3 I
Aw 4 >140 >0.9 invt none Sb 3 20 0.4 Aw 3 15 0.4
Aw M1 • 0 silv intensive Aw M1 0 1
Aw Ml • >04<1.1 silv intensive Aw M1 0 1
Aw M2 • 0 silv intensive Aw M2 0 1 IX ___
Aw M2 • >04<1.1 silv intensive Aw M2 0 1 I
Aw M3 • 0 silv intensive Aw M2 0 1
Aw M3 • >04<1.1 silv intensive Aw M3 0 1 1

Bw 1 0 silv basic PI 1 0 0.8 Bw 1 ~ r ~02
Bw 1 • 0 silv extensive PI 1 10 0.4 Bw 1 10 0.3 ~Sb~ 1 20 X _____ j

Bw 1 • 0 silv intensive PI M1 0 0.8 1w1 1 0 0.1 I
Bw 1 • >040.45 silv basic PI 1 0 0.8 Aw 3 0 0.2
Bw 1 • >040.45 silv extensive Aw 3 10 0.5 Bw 1 20 0.2 ~pT ~T~ ~10~ ~oT
Bw 1 • >040.45 silv jintensive PI M1 0 0.7 Bw 1 0 0.1
Bw 1 3 ] >0.45 Isilv Ibasic PI X I X 0.6 Aw X 0 0.3 X X
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Table A5-1: Continued.

ETTrni^rSESEJlO 'Z llinu I !,,MEgEnCTI^fcraKaC3ESE3B3ErabratJaKaCT]B!i3l
Bw 1 • >0.45 silv extensive Aw 3 10 0.8 Fb 3 20 0.1
Bw 1 • >0.45 silv intensive PI M1 0 0.7 Bw 1 0 0.1
Bw 1 >70 0 invt none PI 3 30 0.5 Bw 1 30 0.2 Sb 2 30 0.2
Bw 1 >70 >0*<0.25 invt none PI 3 30 0.5 Bw 1 30 0.3 Sb 2 30 0.1
Bw 1 >70 >0.254<0.4 invt none PI 3 30 0.5 Bw 1 30 0.1 Aw 3 30 0.1 Sb 2 30 "oi-
Bw 1 >70 >0.45 invt none Aw 3 30 0.4 Sw 3 40 0.3 PI 1 30 0.1 Sb 2 30 0.1
Bw 2 0 silv basic PI 2 0 0.7 Bw 2 0 0.2
Bw 2 0 silv extensive PI 1 10 0.4 Bw 1 10 0.4
Bw 2 0 silv intensive PI M2 0 0.7 Bw 1 0 0.1
Bw 2 >0&<0.45 silv basic PI 2 0 0.7 Aw 3 0 0.2
Bw 2 • >04<0.45 silv extensive Aw 3 10 0.6 Bw 2 10 0.2 PI 2 10 0.1
Bw 2 • >04<0.45 silv intensive PI M2 0 0.7 Bw 2 0 0.2
Bw 2 • >0.45 silv basic PI 2 0 0.6 Aw 3 0 0.3
Bw 2 • >0.45 silv extensive Aw 3 10 0.8 Fb 3 20 0.1
Bw 2 • >0.45 silv intensive PI M2 0 0.7 Bw 2 0 0.2
Bw 2 >80 0 invt none PI 2 30 0.4 Bw 2 35 0.3 Sb 2 40 0.2
Bw 2 >80 >04<0.25 invt none PI 2 30 0.4 Aw 3 30 0.1 Bw 2 35 0.3
Bw 2 >80 invt none PI 2 30 0.3 Aw 3 30 0.3 Sb 2 35 0.2
Bw 2 >80 >0.45 invt none Aw 3 30 0.4 PI 2 30 0.3 Sb 2 35 0.2
Bw 3 • 0 silv basic PI 3 0 0.6 Bw 3 0 0.3
Bw 3 e 0 silv extensive PI 3 10 0.3 Bw 3 10 0.3 Sb 2 20 0.2 i d
Bw 3 • 0 silv intensive PI M3 0 0.6 Bw 3 0 0.1
Bw 3 • >04<0.45 silv basic PI 3 0 0.7 Aw 2 0 0.2
Bw 3 • >040.45 silv extensive Aw 2 10 0.5 Bw 3 10 0.2 Sb 2 20 0.2 i d
Bw 3 • >040.45 silv intensive PI M3 0 0.6 Bw 3 0 0.2 ___ i
Bw 3 • >0.45 silv basic PI 3 0 0.5 Aw 2 0 0.4
Bw 3 • >0.45 silv extensive Aw 2 10 0.6 Fb 2 20 0.1
Bw 3 • >0.45 silv intensive PI M3 0 0.6 Bw 3 0 0.2
Bw 3 >90 0 invt none Sb 3 40 0.5 Bw 3 30 0.2 PI 35 0.1
Bw 3 >90 >04<0.25 invt none Sb 3 40 0.5 Aw 2 30 0.1 Bw 3 35 0.2
Bw 3 >90 >0.2540.4 invt none PI 3 30 0.5 Bw 3 30 "oT Fb 2 35 0.2
Bw 3 >90 >0.45 invt none Aw 2 30 0.6 PI 3 30 0.2 Fb 2 35 0.2
Bw 4 • >040.45 silv extensive Aw 2 10 0.6 Bw 3 10 0.2
Bw 4 • >0.45 silv extensive Aw 2 10 0.8 Fb 2 20 0.1

—Bw 4 0 invt none Sb 3 40 0.4 Bw 4 10 0.2 4 35 "oT
Bw 4 >040.25 invt none Sb 3 40 0.4 Aw 3 30 0.2 PI 4 35 0.2 i n
Bw 4 >0.25 invt none Sb 3 40 0.7 Bw 4 30 0.1
Fb 1 • 0 silv basic Sw 1 0 0.8 Sb 2 0 0.2
Fb 1 • 0 silv extensive Fb 1 20 0.8 ___ i ___ I H I ___ i ___ i
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Table A5-1: Continued.

Fb 1 • 0 silv intensive 1 Sw M1 0 1 i z _
Fb 1 • >0A<0.25 silv basic Sw 0 0.8 Sb 2 0 0.1 Aw 1 0 0.1
Fb 1 • >04<0.25 silv extensive Fb 1 10 0.8 Sb 2 20 0.1
Fb 1 • >04<0.25 silv intensive Sw M1 0 0.9 Fb M1 0 0.1
Fb 1 ft silv basic Sw 1 0 0.7 Aw 1 0 0.2 ___ ___
Fb 1 t silv extensive Fb 1 10 0.7 Aw 1 10 0.2
Fb 1 • silv intensive Sw M1 0 0.8 Aw M1 0 0.2
Fb 1 • >0.45 silv basic Sw 1 0 0.7 Aw 1 0 0.3
Fb 1 • >0.45 silv extensive Aw 1 10 0.7 Fb 1 10 0.1
Fb 1 • >0.45 silv intensive Sw M1 0 0.7 Aw M1 0 0.3
Fb 1 >70 0 invt none Fb 1 40 0.6 Sw 1 50 0.4
Fb 1 >70 >04<0.25 invt none Fb 1 40 0.6 Sw 1 50 0.4
Fb 1 >70 invt none Fb 1 40 0.6 Sw 1 50 0.2 Aw 1 20 0.1
Fb 1 >70 >0.45 invt none Fb 1 40 0.5 Sw 1 50 0.2 Aw 1 20 0.2
Fb 2 • 0 silv basic Sw 2 0 0.8 Sb 2 0 0.2
Fb 2 • 0 silv extensive Fb 1 30 0.8
Fb 2 • 0 silv intensive Sw M2 0 1
Fb 2 • >04<0.25 silv basic Sw 2 0 0.8 Sb 2 0 0.1 Aw 1 0 0.1
Fb 2 • >04<0.25 silv extensive Fb 2 20 0.8 Sb 3 30 0.1
Fb 2 • >040.25 silv intensive Sw M2 0 0.8 Fb M2 0 0.2
Fb 2 • silv basic Sw 2 0 0.7 Aw 1 0 0.2
Fb 2 • silv extensive Fb 2 20 0.7 Aw 2 10 0.2
Fb 2 • silv intensive Sw M2 0 0.7 Aw M2 0 0.1
Fb 2 • >0.45 silv basic Sw 2 0 0.7 Aw 1 0 0.3
Fb 2 • >0.45 silv extensive Aw 2 10 0.7 Fb 2 20 0.1
Fb 2 * >0.45 silv intensive Sw M2 0 0.6 Aw M2 0 0.2 ___
Fb 2 >80 0 invt none Fb 2 30 0.6 Sw 2 40 0.3
Fb 2 >80 >040.25 invt none Fb 2 30 0.5 Sw 2 40 0.3 Aw ~2~ "20" 0.1
Fb 2 >80 >0.254O.4i invt none Fb 2 30 0.6 Sw 2 40 0.2 Aw 2 30 0.1
Fb 2 >80 >0.45 invt none Fb 2 30 0.5 Sw 2 40 0-2 Aw 30 0.2 I Z m
Fb 3 • 0 silv basic PI 1 0 0.8 Sb 2 0 j5X ] I
Fb 3 • 0 silv extensive Fb 1 20 0.7
Fb 3 • 0 silv intensive PI M1 0 1
Fb 3 • >040.25 silv basic PI 1 _o_ 0.8 "Sbj H j 0 ~oT Aw 1 T 1 "oT
Fb 3 • >040.25 silv extensive Sw 3 20 "oT Fb 3 20 0.3 Aw 3 ~20~ 0.2
Fb 3 ft >040.25 silv intensive PI M1 0 0.8 Fb M3 0 0.1
Fb 3 "ft >0.2540.4 silv basic PI 1 0 0.7 Aw 3 0 0.2
Fb ~T~ ft >0.254O.4i silv extensive Aw 3 10 0.6 Fb 3 20 0.3
Fb 3 ft >0.2540.4 silv intensive PI M1 0 0.7 Aw M3 0 0.1
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Continued.

ETrmi i i | 1 if i n  H i  Hi, ' in' ,
Fb 3 • >0.45 silv basic PI 1 0 0.7 Aw 3 0 0.3
Fb 3 ■ >0.45 silv extensive Aw 3 10 0.6 Fb 3 20 0.2
Fb 3 • >0.45 silv intensive PI M1 0 0.6 Aw M3 0 0.2
Fb 3 >90 0 invt none Sw 3 50 0.6 Aw 3 35 0.1 Fb 3 40 0.1
Fb 3 >90 >0&<0.25 invt none Sw 3 50 0.6 Aw 3 35 0.1 Fb 3 40 0.1
Fb 3 >90 invt none Fb 3 40 0.5 Aw 3 35 0.2 Sw 3 50 0.2
Fb 3 >90 >0.45 invt none Fb 3 20 0.5 Aw 3 15 0.4
Fb 4 • 0 silv extensive PI 2 20 0.4 Sb 2 30 0.3
Fb 4 • 0 silv intensive PI M2 0 1
Fb 4 • >0&<0.2S silv extensive PI 2 20 0.6 Sb 2 30 0.1
Fb 4 • >0A<0.25 silv intensive PI M2 0 0.6 Sb M2 0 0.1
Fb 4 • silv extensive PI 2 20 0.6 Fb 2 30 0.2
Fb 4 • silv intensive PI M2 0 0.5 Aw M3 0 0.1
Fb 4 • >0.45 silv ertensKn PI 2 20 0.6 Fb 2 20 0.1 Aw 4 20 0.1
Fb 4 • >0.45 silv intensive PI M2 0 0.5 Aw M3 0 0.2
Fb 4 0 invt none Sb 2 40 0.5 PI 2 30 0.1
Fb 4 >0*<0.25 Invt none Sb 2 40 0.5 PI 2 30 0.1
Fb 4 >0.254<0.4 invt none Sb 2 40 0.5 Aw 4 35 0.2 PI 2 30 0.1
Fb 4 >0.45 invt none Sb 2 40 0.5 Aw 4 35 0.4 PI 2 30 0.1
Pb 1 • 0 silv basic Sw 1 0 0.6
Pb 1 • 0 silv extensive Sw 1 20 0.5 Pb 1 10 0.4
Pb 1 • 0 silv intensive Sw M1 0 1
Pb 1 • >0A<0.3 silv basic Sw 1 0 0.6 Aw 1 0 0.1 z ^
Pb 1 • >04<0.3 silv extensive Sw 1 20 0.4 Pb 1 10 0.3 Aw 1 10 0.2
Pb 1 • >04<0.3 silv intensive Sw M1 0 0.9 Aw M1 0 0.1
Pb 1 • >0.34<0.6 silv basic Sw 1 0 0.6 Aw 1 0 0.3 _ _ l _ _ l _ _ l I

Pb 1 • >0.340.6 silv extensive Pb 1 10 0.3 Sw 1 20 0.3 Aw □ n l o l 0.2 z j
Pb 1 • >0.340.6 silv intensive Sw M1 0 0.8 Aw M1 0 0.2
Pb 1 • >0.6 silv basic Sw 1 0 0.4 Aw 1 0 0.4
Pb 1 3 ] >0.6 silv extensive Aw 1 10 0.4 Pb 1 J 0 J 0.2 *Swj 1 ~20l 0.2 Sb Z u "2 0 ;~02~
Pb 1 • >0.6 silv intensive Sw M1 0 0.6 Aw M1 0 0.4 ______ ■

Pb >90 0 invt none Sw 1 45 0.6 Pb 1 35 0.3
Pb 1 >90 >040.3 invt none Sw 1 45 0.6 Pb 1 30 0.2 ~Sb~~2~ "40” "oT
Pb 1 ~>90~>0.340.6 invt none Sw 1 45 0.4 -Pb1 1 30 0.2 Aw 1 35 0.2 ~Fb~ 1 Z l ~o7T
Pb 1 >90 >0.6 invt none Aw 1 35 0.4 Pb 1 30 0.4 Sw 1 40 0.1
Pb 2 • 0 silv basic Sw 2 0 0.8 Pb 2 0 0.1
Pb 2 • 0 siiv extensive Sw 2 30 0.4 Pb 2 10 0.4
Pb 2 • 0 silv intensive Sw M2 0 0.9 I
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Table A5-1: Continued.

e i  ii ii 11 mii hi, i » i 1 iirTTii~nrnimrni n i n m r n r  n ni imi  in
Pb 2 • >0&<0.3 silv basic Sw 2 0 0.7 Aw 2 0 0.1 Fb 2 0 0.1
Pb 2 • >04<0.3 silv extensive Sw 2 30 0.4 Pb 2 10 0.3 Aw 2 10 0.2
Pb 2 • >04<0.3 silv intensive Sw M2 0 0.8 Aw M2 0 0.1
Pb 2 • >0.34<0.6 Silv basic Sw 2 0 0.6 Aw 2 0 0.3
Pb 2 • >0.3&<0.6 silv extensive Pb 2 10 0.3 Sw 2 20 0.3 Aw 2 10 0.2
Pb 2 • >0.34<0.6 silv intensive Sw M2 0 0.8 Aw M2 0 0.2
Pb 2 • >0.6 silv basic Sw 2 0 0.4 Aw 2 0 0.4
Pb 2 • >0.6 silv extensive Aw 2 10 0.4 Pb 2 10 0.2 Sw 2 20 0.2 Sb 2 20 0.2
Pb 2 • >0.6 silv intensive Sw M2 0 0.6 Aw M2 0 0.4
Pb 2 0 invt none Sw 2 45 0.6 Pb 2 35 0.3
Pb 2 >0&<0.3 invt none Sw 2 45 0.6 Pb 2 30 0.2 Sb 2 50 0.2
Pb 2 >0.3&<0.6 invt none Sw 2 45 0.4 Pb 2 30 0.2 Aw 2 35 0.2 Fb ~2~ ~45~ ~oT
Pb 2 >0.6 invt none Aw 2 35 0.4 Pb 2 30 0.4 Sw 2 40 0.1
Pb 3 • 0 silv basic Sw 2 0 0.6 Pb 3 0 0.2
Pb 3 • 0 silv extensive Sw 3 30 0.4 Pb 3 10 0.4
Pb 3 • 0 silv intensive Sw M3 0 0.8
Pb 3 • >0&<0.3 silv basic Sw 3 0 0.6 Fb 3 0 0.1
Pb 3 • >0&<0.3 silv extensive Sw 3 30 0.3 Pb 3 10 0.2 Aw 3 10 0.1
Pb 3 • >0&<0.3 silv intensive Sw M3 0 0.7
Pb 3 • >0.3*<0.6 silv basic Sw 3 0 0.5 Aw 3 0 0.3
Pb 3 • >0.3&<0.6 silv extensive Pb 3 10 0.2 Sw 3 30 0.2 Aw 3 10 0.1
Pb 3 • >0.34<0.6 silv intensive Sw M3 0 0.7 Aw M3 0 0.3
Pb 3 • >0.6 silv basic Sw 3 0 0.3 Aw 3 0 0.3 i
Pb 3 • >0.6 silv extensive Aw 3 10 0.3 Pb 3 10 0.2 Sw 3 20 0.2 Sb ~2~ 1 5 ] H T
Pb 3 • >0.6 silv intensive Sw M3 0 0.5 Aw M3 0 0.3
Pb 3 >110 0 invt none Sw 3 25 0.4 Pb 3 25 0.4
Pb 3 >110>04<0.3 invt none Sw 3 45 0.5 Pb 3 40 0.2 Sb ~ T 50 0.2 Z H
Pb 3 >110 >0.3&<0.6 Invt none Sw 3 45 0.3 Pb 3 40 0.2 Aw 3 35 0.2 ~Fb~ ~3~ HE I T
Pb 3 >110 >0.6 invt none Aw 3 35 0.3 Pb 3 40 0.4 Sw 3 50 0.1
Pb 4 • 0 silv basic Sb 3 0 0.5 Pb 4 0 0.1 ___] Z j
Pb 4 • 0 silv extensive Sb 3 20 0.4 Pb 4 20 0.3 i
Pb 4 • >0»<0.3 silv basic Sb 3 0 0.4 Pb 4 0 0.2
Pb 4 • >04<0.3 silv extensive Sb 3 20 0.3 Pb 4 10 0.2 Aw ~3~ H E 0.1
Pb 4 • >0.34<0.6 silv basic Sb 3 0 0.4 Pb 4 0 0.2 Aw 4 o j 0.1
Pb 4 • >0.3&<0.6 silv extensive Sb 3 20 0.2 Pb 4 20 0.2 Aw 4 10 0.2
Pb 4 • >0.6 silv basic Sb 3 0 0.3 Aw 4 0 0.2
Pb 4 • >0.6 silv extensive Aw 4 0 0.3 Sb 3 0 0.3 Pb ~4~ ~0~ 0.1
Pb 4 >120 0 invt none Pb 4 25 0.4 Sb 2 25 0.3
Pb 4 >120 >04<0.3 invt none L Pb 4 30 0.2 Sb 2 40 0.2
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Table A5-1: Continued.

EFT?mi I l|' »' | |  MBOtf.TA',TaiB31EaCTlE31E31J3ira£ISK?Sll33Eri]BI23EE3EIlC;I]Bg3
Pb 4 >120 >0.34<0.6 invt none Pb 4 30 0.2 Aw 3 35 0.2 Fb 3 35 0.1 Sb 3 40 0.1
Pb 4 >120 >0.6 invt none Aw 4 30 0.4 Pb 3 35 0.3 Sw 3 20 0.1
Pi 1 • 0 silv basic Pi 1 0 1
Pi 1 • 0 silv extensive Pi 1 10 0.8 Sb 1 30 0.2
Pi 1 • 0 silv intensive Pi M1 0 1
Pi 1 • >04<0.25 silv basic Pi 1 0 0.8 Bw 1 0 0.1
Pi 1 • >04<0.25 silv extensive p | 1 10 0.6 Bw 1 10 0.2 Aw 3 15 0.1
Pi 1 • >04<0.25 silv intensive p | M1 0 1
Pi 1 • >0.2540.4 silv basic p | 1 0 0.8 Aw 3 0 0.2
Pi 1 • silv extensive Pi 1 10 0.7 Aw 3 20 0.2
Pi 1 • silv intensive p | M1 0 0.9 Aw M3 0 0.1
Pi 1 9 >0.45 silv basic P| 1 0 0.7 Aw 3 0 0.3
Pi 1 • >0.45 silv extensive Pi 1 10 0.7 Aw 3 20 0.3
Pi 1 • >0.45 silv intensive Pi M1 0 0.7 Aw M3 0 0.2
Pi 1 >110 0 invt none p | 1 30 0.8 Fb 1 30 0.2
Pi 1 >110 >040.25 invt none pl 1 30 0.6 Fb 1 30 0.2 Aw 3 20 0.1
Pi 1 >110 >0.2540.4 invt none Pi 1 30 0.6 Aw 3 20 0.2 Bw 1 20 0.1
Pi 1 >110 >0.45 invt none Pi 1 30 0.5 Aw 3 20 0.3 Bw 1 20 0.1
Pi 2 • 0 silv basic Pi 2 0 0.9 Sb 2 0 0.1
Pi 2 • 0 silv extensive p| 2 10 0.8 Bw 2 10 0.2 Sb 2 30 0.1
Pi 2 9 0 silv intensive Pf 2 0 1
Pi 2 • >0&<0.25 silv basic pi 2 0 0.8 Bw 2 0 0.1
Pi 2 • >040.25 silv extensive p | 2 10 0.7 Bw 2 10 0.2 Aw 3 20 0.1
Pi 2 • >040.25 silv intensive p | M2 0 1
Pi 2 9 silv basic Pi 2 0 0.8 Aw 3 0 0.2
Pi 2 9 silv extensive Pi 2 10 0.7 Aw 3 10 0.2
Pi 2 9 silv intensive P| M2 0 0.9 Aw M3 0 0.1
Pi 2 9 >045 silv basic p| 2 0 0.7 Aw 3 0 0.3 — J
PI 2 • >0.45 silv extensive Pi 2 10 0.7 Aw 3 10 0.2
Pi 2 9 >0.45 silv intensive Pi M2 0 0.7 Aw M3 0 0.2
Pi 2 >110 0 invt none Pi 2 20 0.5 Fb 2 15 0.2 Bw ~2~ 20 0.1
Pi 2 >110 >04<0.25 invt none pi 2 30 0.5 Fb 2 35 0.2 Aw 2 20 0.1 Bw ~~1~ ~20~T T
Pi 2 >110 >0.2540.4 invt none pl 2 30 0.5 Aw 2 15 0.2 Bw 2 20 0.1
Pi 2 >110 >0.45 invt none Pi 2 30 0.6 Aw 2 15 0.2
Pi 3 •

0 silv basic pf 1 0 0.7 Sb 0 0 0.1 |
Pi 3 • 0 'silv extensive p | 3 0 0.7 Bw 1 0 0.1 Sb 1 0 0.1
Pi 3 • 0 silv intensive pi 3 0 0.7 Sb 2 0 0.2
Pi 3 • >040.25 silv basic Pi 3 0 0.7 Bw 3 0 0.2
Pi 3 • >040.25 silv extensive Pi 3 10 0.6 Bw L u 10 0.1 Aw ~2~ ~io1 0.2 I
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Table A5-1: Continued.

lEFrmrmi n | M b', kt, ,,
PJ 3 • >04<0.25 Silv intensive pi M3 0 1
Pi 3 • silv basic pl 3 0 0.7 Aw 2 0 0.3 1___
Pi 3 • silv extensive p\ 3 10 0.7 Aw 2 10 0.3 t
Pi 3 • Silv intensive pi M3 0 0.7 Aw M2 0 0.2 i _
Pi 3 • >0.45 silv basic pl 3 0 0.6 Aw 2 0 0.4
Pi 3 • >0.45 silv etfensive pi 3 10 0.6 Aw 2 10 0.4
Pi 3 • >0.45 silv intensive pi M3 0 0.7 Aw M2 0 0.3
Pi 3 >120 0 invt none Sb 2 40 0.6 pi 3 15 0.2 Bw 3 15 0.1
Pi 3 >0&<0.25 invt none Sb 2 40 0.6 Aw 2 15 0.2 pl 3 15 0.1
Pi 3 >0.254<0.4 invt none Sb 2 40 0.6 Aw 2 15 0.2
Pi 3 >0.45 invt none Sb 3 40 0.5 Aw 2 15 0.3
Pi 4 • 0 invt extensive Sb 3 30 0.5 pi 4 20 0.2
Pi 4 • >04*0.25 silv extensive Sb 3 30 0.5 pi 4 20 0.2
Pi 4 • >0.254*0.4 silv extensive Sb 3 30 0.4 Aw 3 20 0.3
Pi 4 • >0.45 silv extensive Sb 3 30 0.3 Aw 3 20 0.3
Pi 4 >130 0 invt none Sb 3 65 0.6 pl 4 20 0.2
Pi 4 >130 >04*0.25 invt none Sb 3 65 0.6 pi 4 30 0.2
Pi 4 >130 >0.254*0.4 invt none Sb 3 65 0.6 Aw 3 30 0.3
Pi 4 >130 >0.45 invt none Sb 3 45 0.5 Aw 3 30 0.4
Pi M1 • 0 silv intensive pi M1 0 1
Pi M1 • >0&<0.25 silv intensive pi M1 0 1
Pi M1 • >0.25&<0.4 silv intensive pi M1 0 0.8 Aw M2 0 0.1
Pi M1 • >0.45 silv intensive pl M1 0 0.7 Aw M2 0 0.3 J
Pi M2 • 0 silv intensive pl M2 0 1 n
Pi M2 • >04*0.25 silv intensive pi M2 0 1
Pi M2 • >0.254*0.4 silv intensive pi M2 0 0.6 Aw M2 0 0.1 __ !
Pi M2 • >0.45 !silv intensive pi M2 0 0.8 Aw M2 0 0.3
Pi M3 • 0 silv intensive •jpl M2 0 1
Pi M3I • >04<0.25 silv intensive pi M2 0 1 ! H I h i I
Pi M3 • >0.254<0.4 silv intensive pi M2 0 0.8 Aw "M3" "or
Pi M3 • >0.45 silv intensive Lpi M2 0 0.8 Aw M3 0 0.1 I l
pi 1 e 0 silv basic i PI 1 0 1 I !
pi 1 • 0 silv extensive 71 Pl 1 10 0.8 Sb 1 ~30~~oT
pi * 0 silv intensive 2PI M1 0 1 I _ j i — i
pi H i • >04<0.25 silv basic i PI 1 0 0.9 Bw 1 ~Q~"oT I

~ H I j
pi 1 • >040.25 silv ertensive PI 1 10 0.7 Bw 1 10 0.1 Aw ~3~ 0.1
pi 1 • >040.25 silv intensive T\Pl M i l _0_ 1 I___I ___I H
pi 1 • silv basic PI ~T' 0 0.8 Aw "T~— "oT | i
pi 1 silv extensive Pi 1 10 0.7 Aw 3 10 0.2
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Table A5-1: Continued.

i

PI 1 • >0.254<0.4 silv intensive PI M1 0 0.9 Aw M3 0 0.1
PI 1 • >0.45 silv basic PI 1 0 0.7 Aw 3 0 0.3 1
PI 1 • >0.45 silv extensive PI 1 10 0.7 Aw 3 10 0.3
PI 1 • >0.45 silv intensive Pl M1 0 0.7 Aw M3 0 0.2
PI 1 >120 0 im4 none PI 1 20 0.6 Fb 1 20 0.2 Bw 1 20 0.1 t z
PI 1 >120 >04<0.25 invt none PI 1 30 0.6 Fb 1 30 0.2 Aw 3 30 0.1
PI 1 >120 >0.254<0.4 invt none PI 1 30 0.5 Aw 3 30 0.2 Bw 1 30 0.1 Fb ~ T 30 JL L
PI 1 >120 >0.45 invt none PI 1 30 0.4 Aw 3 30 0.3 Bw 1 20 0.1 Fb 1 30 pEE
PI 2 • 0 silv basic PI 2 0 0.9 Sb 2 0 0.1 r1
PI 2 • 0 silv extensive PI 2 10 0.8 Bw 1 10 0.1 Sb 1 20 0.1 |
PI 2 • 0 silv intensite PI M2 0 1
PI 2 • >04<0.25 silv basic PI 2 0 0.8 Bw 2 0 0.1
PI 2 • >0&<0.25 silv extensive PI 2 10 0.7 Bw 2 10 0.2 Aw 2 10 0.1
PI 2 • >0*<0.25 silv intensive PI M2 0 1
PI 2 • silv basic PI 2 0 0.8 Aw 3 0 0.2
PI 2 • silv extensive PI 2 10 0.7 Aw 3 10 0.2
PI 2 • silv intensive PI M2 0 0.9 Aw M3 0 0.1
PI 2 • >0.45 silv basic PI 2 0 0.7 Aw 3 0 0.3
PI 2 • >0.45 silv extensive PI 2 10 0.7 Aw 3 10 0.2
PI 2 • >0.45 silv Intensive PI M2 0 0.7 Aw M3 0 0.2
PI 2 >130 0 invt none PI 2 20 0.5 Fb 2 40 0.3 Bw 2 20 0.1
PI 2 >130 >0A<0.25 invt none PI 2 20 0.6 Fb 2 40 0.2 Bw 2 20 0.1
PI 2 >130 invt none PI 2 20 0.5 Aw 2 15 0.2 Fb 2 40 0.1
PI 2 >130 >0.45 invt none PI 2 20 0.4 Aw 2 15 0.3 Fb 2 40 0.1
PI 3 » 0 silv basic PI 1 0 0.7 Sb 2 0 0.1
PI 3 • 0 silv extensive PI 3 10 0.7 Bw 1 10 0.1 Sb 1 20 0.1
PI 3 • 0 silv intensive PI M3 0 0.8 Sb M2 0 0.2
PI 3 • >04<0.25 silv basic PI 3 0 0.7 Bw 3 0 0.2 H I"
PI 3 • >0&<0.25 silv extensive PI 3 0 0.6 Bw 3 0 0.1 ___ I
PI 3 • >0&<0.25 silv intenshe PI M3 0 1
PI 3 • silv basic PI 3 0 0.7 Aw 2 0 0.3
PI ~3~ • silv jextensiw PI 3 10 0.7 Aw 2 10 0.3 H I H
PI 3 • silv intensive PI M3 0 0.7 Aw M2 0 0.2
PI 3 • >0.45 silv basic PI 3 0 0.6 Aw 2 0 0.4
PI ~T~ • >0.45 stiv !extensive PI 3 10 0.6 Aw 2 10 0.4 h i H
PI 3 • >0.45 silv intensive PI M3 0 0.7 Aw M2 0 0.3 — i
PI 3 >135 0 invt none Sb 3 40 0.6 PI 2 15 0.2 Fb T 40 0.1
PI 3 >135 >04<0.25 invt none Sb _ 3 J 40 0.6 PI _L_ _15j 0.2 Aw 2 15 0.1 ~Fb~ ~2~ 151 ~ oT
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Ifcj-i mi i a iEjag^r^inTiFPii^irrviPT^Ei^Eac^lEESE^IEEICTjEIII]!
PI 3 >135 >0.25&<0.4 invt none Sb 3 40 0.6 Aw 2 15 0.2 Fb 2 40 0.1
PI 3 >135 >0.45 invt none Sb 3 40 0.5 Aw 2 15 0.3 Fb 2 40 0.1
PI 4 • 0 invt extensive Sb 3 0 0.5 PI 4 20 0.2
PI 4 • >0&<0.25 Silv extensive Sb 3 0 0.5 PI 4 20 0.2
PI 4 • >0.25&<0.4 silv extensive Sb 3 0 0.4 Aw 3 20 0.3
PI 4 • >0.45 silv extensive Sb 3 0 0.3 Aw 3 20 0.3
PI 4 >140 0 invt none Sb 3 40 0.5 PI 4 20 0.2 Fb 3 40 0.1
PI 4 >140 >0&<0.25 invt none Sb 3 40 0.4 Fb 3 40 0.1 PI 4 20 0.1 Aw 3 20 0.1
PI 4 >140 >0.25&<0.4 invt none Sb 3 40 0.6 Aw 3 20 0.2 Fb 1 20 0.1
PI 4 >140 >0.45 invt none Sb 3 40 0.4 Aw 3 20 0.3 Fb 3 40 0.1
PI M1 • 0 silv intensive PI M1 0 1
PI M1 • >0&<0.25 silv intensive PI M1 0 1
PI M1 • >0.254<0.4 silv intensive PI M1 0 0.8 Aw M2 0 0.1
PI M1 >0.45 silv intensive PI M1 0 0.7 Aw M2 0 0.3
PI M2 0 silv intensive PI M2 0 1
PI M2 • >0&<0.25 silv intensive PI M2 0 1
PI M2 • >0.25*<0.4 silv intensive PI M2 0 0.8 Aw M2 0 0.1
PI M2 • >0.45 silv intensive PI M2 0 0.8 Aw M2 0 0.3
PI M3 • 0 silv intensive PI M2 0 1
PI M3 • >04<0.25 silv intensive PI M2 0 1
PI M3 • >0.254<0.4 silv intensive PI M2 0 0.8 Aw M3 0 0.1
PI M3 • >0.45 silv intensive PI M2 0 0.8 Aw M3 0 0.1
Sb 1 • 0 silv basic Sb 1 0 0.9
Sb 1 • 0 silv extensive Sb 1 0 0.7
Sb 1 • 0 silv intensive Sb M1 0 1
Sb 1 a >0&<0.35 silv basic Sb 1 0 0.7 Aw 2 0 0.3
Sb 1 • >0&<0.35 silv extensive Sb 2 20 0.6 Aw 2 10 0.3
Sb 1 • >0&<0.35 silv intensive Sb M1 0 0.8 Aw M2 0 0.2
Sb 1 • >0.35 silv basic Aw 2 0 0.6 Sb 1 0 0.4
Sb 1 • >0.35 silv ertensive Aw 2 10 0.8 Sb 1 20 0.2
Sb 1 e >0.35 silv intensive Sb M1 0 0.7 Aw M2 0 0.3
Sb 1 >130 0 invt none Sb 1 50 0.9
Sb 1 >130 >0&<0.35 invt none Sb 1 50 0.6 Aw 2 35 0.3
Sb 1 >130 >0.35 invt none Aw 2 30 0.8 Sb 1 50 0.2
Sb 2 • 0 silv basic Sb 2 0 0.8
Sb 2 • 0 silv extensive Sb 2 25 0.6 PI 2 10 0.2 ~Fb~ ~3~ ~20~ 0.1
Sb 2 • 0 silv intensive Sb M2 0 0.9
Sb 2 • >0&<0.35 silv basic Sb 2 0 0.7 Aw 3 0 0.3
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{ Table A5-1: Continued.

Sb 2 • >04<0.35 silv edensiw Sb 2 25 0.5 Aw 3 15 0.3 Fb 3 20 0.1
Sb 2 • >0&<0.35 silv intensive Sb M2 0 0.7 Aw M3 0 0.2
Sb 2 • >0.35 silv basic Sb 2 0 0.5 Aw 3 0 0.5
Sb 2 • >0.35 silv extensiw Aw 3 15 0.6 Sb 2 20 0.2 Fb 3 20 0.1
Sb 2 • >0.35 silv intensive Sb M2 0 0.7 Aw M3 0 0.2
Sb 2 >150 0 invt none Sb 2 60 1 Bw 2 30 0.1 Fb 2 40 0.1
Sb 2 >150 >04<0.35 invt none Sb 2 60 0.6 Aw 3 30 0.1 Bw 2 30 0.1
Sb 2 >150 >0.35 invt none Sb 3 60 0.6 Aw 2 30 0.2 Fb 2 40 0.1
Sb 3 • 0 silv basic Sb 3 0 0.6
Sb 3 • 0 silv extensive Sb 3 25 0.4 PI 3 10 0.3
Sb 3 • 0 silv intensive Sb M3 0 0.7
Sb 3 • >0A<0.35 silv basic Sb 3 0 0.5 Aw 4 0 0.1 Fb 3 0 0.2
Sb 3 • >04<0.35 silv extensive Sb 3 25 0.5 Aw 4 10 0.1 Fb 3 20 0.2
Sb 3 • >04<0.35 silv intensive Sb M3 0 0.7 Aw M3 0 0.1 Fb M3 0 0.1
Sb 3 • >0.35 silv basic Sb 3 0 0.4 Aw 4 0 0.3 Fb 2 0 0.2
Sb 3 • >0.35 silv extensive Aw 4 10 0.5 Sb 3 20 0.2 Fb 3 20 0.2
Sb 3 • >0.35 silv intensive Sb M3 0 0.6 Aw M3 0 0.2 Fb M2 0 0.1 d
Sb 3 0 invt none Sb 3 60 0.5 Fb 3 40 0.2 Bw 3 30 0.1 n
Sb 3 >04<0.35 invt none Sb 3 60 0.4 Aw 4 30 0.1 Fb 3 40 0.2
Sb 3 >0.35 invt none Sb 3 60 0.3 Aw 4 30 0.2 Fb 3 40 0.2
Sb 4 • 0 silv extensive Sb 4 20 0.3 La 3 20 0.1
Sb 4 • >04<0.35 silv extensive Sb 4 20 0.4 La 3 20 0.1
Sb 4 • >0.35 silv exlensiw Sb 4 20 0.2 La 3 20 0.1
Sb 4 >170 0 invt none Sb 4 70 0.6 La 2 50 0.2
Sb 4 >170 >04<0.35 invt none Sb 4 70 0.5 La 2 50 0.1 _ dSb 4 >170 >0.35 invt none Sb 4 70 0.4 Aw 4 20 0.1 La ~2~ 50 0.1 i
Sb M1 0 silv intensive Sb M1 0 1 — j
Sb M1 • >0&<0.25 silv intensive Sb M1 0 0.9 i d
Sb M1 • >0.2540.3 silv intensive Sb M1 0 0.7 Aw M3 0 0.1
Sb M1 • >0.35 silv intensive Sb M1 0 0.7 Aw M3 0 0.3
Sb M2 • 0 silv intensive Sb M1 0 0.1 i
Sb M2 • >040.25 silv intensiw Sb M1 0 0.9
Sb M2 • >0.2540.3 silv intensive Sb M1 0 0.7 Aw M3 0 0.1 m
Sb M2 • >0.35 silv intensive Sb M1 0 0.7 Aw M3 0 0.3
Sb M3 • 0 silv intensive Sb M2 0 0.9
Sb M3 • >040.25 silv intensive Sb M2 0 0.6 z d
Sb M3 • >0.2540.3 silv intensive Sb M2 0 0.7 Aw M3 0 0.2
Sb M3 • >0.35 silv intensive Sb M2 0 0.6 Aw M3 0 0.3
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Sw 1 • 0 silv basic Sw 1 0 0.8 1____
Sw 1 • 0 silv extensive Sw 1 30 0.6 Fb 1 30 0.3 c z L
Sw 1 • 0 silv intensive Sw M1 0 1 i_^_
Sw 1 • >0&<0.35 silv basic Sw 1 0 0.6 Aw 1 0 0.3
Sw 1 • >0A<0.35 silv extensive Sw 1 20 0.4 Aw 1 10 0.2 Fb 1 20 0.2
Sw 1 • >0&<0.35 silv intensive Sw M1 0 1 Aw M1 0 0.1
Sw 1 • >0.35 silv basic Sw 1 0 0.5 Aw 1 0 0.5
Sw 1 • >0.35 silv extensive Aw 1 10 0.5 Sw 1 20 0.2 Fb 1 20 0.2
Sw 1 • >0.35 silv intensive Sw M1 0 1 Aw M1 0 0.2
Sw 1 >195 0 invt none Sw 1 65 0.5 Fb 1 40 0.2
Sw 1 >195 >0A<0.35 invt none Sw 1 65 0.4 Aw 1 30 0.2 Fb 1 40 0.2
Sw 1 >195 >0.35 invt none Sw 1 65 0.3 Aw 1 30 0.3 Fb 1 40 0.2
Sw 2 • 0 silv basic Sw 2 0 0.8
Sw 2 t 0 silv extensive Sw 2 20 0.4 Fb 2 20 0.3
Sw 2 • 0 silv intensive Sw M2 0 1
Sw 2 • >0A<0.35 silv basic Sw 2 0 0.6 Aw 2 0 0.3
Sw 2 • >0A<0.35 silv extensive Fb 2 20 0.3 Sw 2 20 0.3 Aw 2 10 0.2
Sw 2 • >0&<0.35 silv intensive Sw M2 0 0.8 Aw M2 0 0.1
Sw 2 • >0.35 silv basic Sw 2 0 0.5 Aw 2 0 0.5
Sw 2 • >0.35 silv extensive Fb 2 20 0.4 Aw 2 10 0.3 Sw 2 20 0.2
Sw 2 • >0.35 silv intensive Sw M2 0 0.6 Aw M2 0 0.2
Sw 2 >195 0 invt none Sw 2 65 0.5 Fb 2 45 0.2
Sw 2 >195 >0&<0.35 invt none Sw 2 65 0.4 Aw 2 30 0.2 Fb 2 45 0.2
Sw 2 >195 >0.35 invt none Sw 2 65 0.3 Aw 2 30 0.3 Fb 2 45 0.2
Sw 3 • 0 silv basic Sw 3 0 0.8
Sw 3 • 0 silv extensive Sw 3 20 0.3 Fb 3 20 0.3
Sw 3 • 0 silv intensive Sw M3 0 0.8
Sw 3 • >04<0.35 silv basic Sw 3 0 0.5 Aw 3 0 0.4
Sw 3 • >04<0.35 silv extensive Fb 3 20 0.4 Sw 3 20 0.2 Aw ~3~^ 10 0.1
Sw 3 • >0A<0.35 silv intensive Sw M3 0 0.8 Aw M3 0 0.1
Sw 3 • >0.35 silv basic Aw 3 0 0.4 Sw 3 0 0.3
Sw 3 • >0.35 silv extensive Fb 2 20 0.4 Sw 3 20 0.2 Aw ~3~ 10 0.2 ___i
Sw ~ 3 l • >0.35 silv intensive Sw M3 0 0.7 Aw "M31 0 0.3 zd Z J
Sw ~3~ >195 0 invt none Sw 3 60 0.5 Fb 3 20 0.3
Sw 3 >195 >0&<0.35 invt none Fb 3 45 0.4 Aw 3 30 0.2 ~Sw~“ 5“ 60 "oT
Sw 3 >195 >0.35 invt none Aw 3 45 0.4 Fb 3 40 0.1 Sw 3 60 0.1 1 ___ 1
Sw 4 • 0 silv basic PI 3 0 0.8 1 ! :zd ; 1
Sw 4 • 0 silv extensive Sb 2 20 0.5 j E ~~2~ 10 0.3 ZZ!___
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i.nwmirrnrnirrat^i^rT^F^i^i^rriiFT^iErciErrirrnreTTTl
Sw 4 • >04<0.35 silv basic Sb 2 0 0.5 Aw 4 0 0.1
Sw 4 • >04<0.35 silv etfensive Sb 2 20 0.6 Aw 4 10 0.2
Sw 4 • >0.35 silv basic Sb 2 0 0.5 Aw 4 0 0.1
Sw 4 • >0.35 silv extensive Sb 2 20 0.6 Aw 4 10 0.1
Sw 4 0 invt none Sb 2 65 0.5
Sw 4 >04<0.35 Invt none Sb 2 65 0.4 La 1 30 0.2
Sw 4 >0.35 invt none Sb 2 65 0.4 La 1 40 0.2
Sw M1 0 silv intensive Sw M1 0 1
Sw M1 >04<0.25 silv intensive Sw M1 0 0.9
Sw M1 >0.254<0.3 silv intensive Sw M1 0 0.9 Aw "Mi" “o~ 0.1
Sw M1 >0.35 silv intensive Sw M1 0 0.8 Aw M1 0 0.2
Sw M2 0 silv intensive Sw M2 0 1
Sw M2 >04<0.25 silv intensive Sw M2 0 0.9
Sw M2 >0.254<0.3 silv intensive Sw M2 0 0.8 Aw "mT "o~ 0.1
Sw M2 >0.35 silv intensive Sw M2 0 0.8 Aw Ml 0 0.2
Sw M3 0 silv intensive Sw M2 0 0.9
Sw M3 >04<0.25 silv intensive Sw M2 0 0.8
Sw M3 >0.254<0.3 silv intensive Sw M2 0 0.7 Aw ~M2 0.1
Sw M3 >0.35 silv intensive Sw M2 0 0.7 Aw M2 0 0.3
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A PPEN D IX  6

Sensitivity Analysis for the Duinker Population Model

Overview

Once the normal parameters for the Duinker Populaiton Model (DPM) 

were established, sensitivity analysis was conducted on variables that 

i  were thought to affect the performance of the DPM. Five parameters were

selected; Cow Harvest Rate, Fecundity, Predation, Target Density and Bull Harvest 

i  Rate. The sensitivity of each parameter was examined by selecting a range of 

: resonable values and comparing those to the normal rims of no-harvest, high- 

‘ harvest and basic-harvest scenarios. The results were examined visually for 

parameters that significantly controlled outputs of the DPM, or contributed odd 

output behaviours.

Cow Harvest Rate Sensitivity

The CHR parameters used in sensitivity analysis were linear increases of 1.5x, 

1.25x and decrease of 0.75x, 0.5x and 0.25x of the normal parameters Table A6-1.

Table A6-1: Cow harvest rate values used for the cow harvest rate sensitivity
analysis with the Duinker Population Model.

Actual Density 
Taraet Density

Normal
CHR

1.5 x 
CHR

1.25 x 
CHR

0.75 x 
CHR

0.5 x 
CHR

0.2 x 
CHR

0 0 0 0 0 0 0
0.25 0.02 0.03 0.025 0.015 0.01 0.004

0.5 0.04 0.06 0.05 0.03 0.02 0.008
0.75 0.06 0.09 0.075 0.045 0.03 0.012

1 0.085 0.128 0.106 0.064 0.043 0.017
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Results and Discussion

j The sensitive spot for CHR is between normal and 1.25x of normal. This
j

; sensitivity analysis illustrates (Figure A6-1) the effect of having a cow harvest rate 

: that is too high for the birth rate to keep pace with, i.e. 1.25x and 1.5x assuming 

! fecundity, predation and other mortality stay constant. The removal of spikes 

: between the normal and 1.25x lines illustrate the shift from a population controlledj
by habitat (specifically food) to a population controlled by recruitment. When the 

CHR increases further from 1.25x to 1.50x, the populations crash as illustrated by
j
i the straight line for 1.50x in the HHS (Figure A6-2).

II
The sensitivity multiples of 0.75x, 0.5x and 0.25x have a slight effect on the

i

{ population of moose. There is a linear increase in moose numbers as the CHR 

; declines below normal. However, for the HHS a slight reduction to 0.8x of normal

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0 0.25 0.5 0.75 1
____________________________ Actual Density / Target Density___________________

♦  Normal — 1.5x - A ■ 1.25x H 0.75x M -0.5 x •  0.25 x j
i CHR CHR CHR CHR CHR CHR !

J____________________________________________________________________________________________________________________________________________________________________________________________ ;

Figure A6-1: Cow harvest rate X,Y pairs used for sensitivity analysis in the
Duinker Population Model.
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Year No
N

No
1.5

No
1.25

NO
0.75

No
0.5

NO
0.25

1996 1.97 0.50 1.78 2.06 2.13 2.19
2006 1.99 0.50 1.79 2.08 2.15 2.21
2016 2.38 0.50 1.87 2.56 2.67 2.75
2026 2.67 0.50 1.96 2.80 2.91 2.99
2036 2.13 0.50 1.99 2.20 2.26 2.31
2046 1.91 0.50 1.79 198 2.04 2.09
2056 2.02 0.50 1.78 2.12 2.20 2.26
2066 2.43 0.50 1.87 2.61 2.73 2.81
2076 2.41 0.50 1.96 2.50 2.58 2.65
2086 2.27 0.50 2.02 2.36 2.43 2.50
2096 1.95 0.50 1.85 2.02 2.08 2.13
2106 1.81 0.50 1.69 189 1.95 2.00
2116 1.90 0.50 1.69 2.00 2.07 2.13
2126 2.21 0.50 1.76 2.36 2.45 2.53
2136 2.10 0.50 1.84 2.18 225 231
2146 2.48 0.50 1.92 2.66 278 2.87
2156 2.04 0.50 1.92 2.10 2.16 2.21
2166 1.97 0.50 1.81 2.06 2.13 2.19
2176 2.16 0.50 1.86 2.28 2.36 2.43
2166 2.47 0.50 1.95 2.61 2.71 2.80
2196 2.07 0.50 1.94 2.14 2.20 2.25

Year H
N

H
1.50

H
1 25

H
0.75

H
0.5

H
0.25

1996 1.97 0.50 1.78 2.06 2.13 2.19
2006 1 74 0.50 164 1.80 1.86 1.90
2016 2.31 0.50 1.70 2.87 3.13 326
2026 3.16 0.50 1.79 4.27 4.50 4.65
2036 4.27 0.50 188 469 486 4.99
2046 3.71 0.50 1.98 3.84 3.94 403
2056 3.37 0.50 208 3.50 3.61 3.70
2066 3.44 0.50 2.18 3.60 3.72 3.82
2076 3.53 0.50 2.29 3.69 3.82 3.91
2086 3.31 0.50 2.41 3.44 3.55 3.63
2096 3.01 0.50 2.52 3.12 3.21 3.29
2106 2.62 0.50 246 2.71 2.79 286
2116 282 0.50 2.46 2.97 3.08 3.17
2126 3.18 0.50 2.58 3.36 3.49 3.59
2136 3.37 0.50 2.71 354 3.66 3.75
2146 3.49 0.50 284 366 3.78 388
2156 3.39 0.50 2.96 3.52 3.63 372
2166 3.49 0.50 304 3.66 3.79 3.89
2176 3.59 0.50 3.11 3.77 3.90 4.00
2186 3.70 0.50 3.18 3.89 403 4.14
2196 3.96 0.50 328 4.19 435 447

Year B
N

B
1.50

B
125

B
0.75

B
0.5

B
0.25

1996 1 97 0.50 1 78 2.06 2.13 219
2006 2.02 0.50 1.80 2.11 2.18 2.24
2016 2.53 0.50 1.89 2.78 2.92 3.02
2026 3.38 0.50 1.98 3.82 4.00 4.14
2036 3.94 0.50 2.08 4.14 4.28 4.40
2046 3.73 0.50 2.19 3.88 4.00 4.10
2056 3.41 0.50 2.30 3.54 3.65 3.74
2066 3.31 0.50 2.41 3.45 3.57 3.67
2076 3.58 0.50 2.54 3.77 3.91 4.03
2086 3.66 0.50 2.66 3.83 3.96 4.07
2096 3.56 0.50 2.80 3.71 3.83 3.93
2106 3.30 0.50 2.91 3.43 3.54 3.63
2116 3.31 0.50 2.96 3.46 3.58 3.68
2126 3.35 0.50 3 00 3.50 3.62 3.71
2136 3.47 0.50 3.07 3.64 3.77 3.87
2146 3.73 0.50 3.18 3.92 4.06 4.18
2156 3.77 0.50 3.29 3.94 407 4.17
2166 3.74 0.50 3.36 3.90 4.03 4.14
2176 3.88 0.50 3.42 4.07 4.21 4.33
2186 3.93 0.50 3.50 4.10 424 4.35
2196 3.91 0.50 3.53 408 421 4.32

N » Normal
No * No Harvest Scenario 
H * High Harvest Scenario 
B * Basic Harvest Scenario

- - • - - N o
IS

♦a -no 
t 25

-N o
a  75
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a  25

- k S n R R K K K r K n n n m n n n n n n i

t  SO t2 5

I I 1 i I I
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Figure A6-2: Cow harvest rate sensitivity results from the Duinker Population
Model for the No, High and Basic harvest scenarios.
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CHR would improve the population numbers dramatically between 2016 and 2046, 

after which the benefit disappears. The drop in CHR is beneficial, because the 

extra calves produced by the greater number of cows have a very abundant food 

source until 2046.

Fecundity Rate Sensitivity

The fecundity rate (FR) is a function of age and weight of cow moose in the 

DPM. The highest fecundity of 2.0 is found with cows that are 400 kg or greater 

and are mature i.e. 2-5 years old. Cows that are older and or lighter have lower 

fecundity rates (Table A6-2). The fecundity rates used for sensitivity analysis were 

increases of l.lOx, 1.15x, 1.2x, 1.25x and decreases of 0.90x 0.85x and 0.80x from 

the normal run parameters (Table A6-2).

Results and  Discussion

The DPM is sensitive to fecundity rates below the normal values used in this 

study. Any values below the normal produces a moose population that is controlled 

by recruitment and not by food. Once recruitment falls below 0.9x of the normal 

FR, the DPM population crashes, because there is insufficient recruitment to 

sustain the population. From the sensitivity analysis it is clear that even the 

normal FR used shows a population that is not utilizing all available food between 

2006 and 2046 in all harvest scenarios; however, after that period the normal FR 

line follows a similar trace as the higher fecundity rate lines of l.lOx, 1.15x, 1.2x 

and 1.25x.
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Table A6-2: Fecundity rates used for the fecundity sensitivity analysis in the
Duinker Population Model.

Fecundity Age Cow Weights
Multiples Class 0 100 200 300 400
Normal C 0.000 0.000 0.000 0.000 0.000

Y 0.000 0.000 0.300 0.300 0.300
M 0.000 0.000 0.950 1.570 2.000
0 0.000 0.000 0.700 1.370 1.570

1.25 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.375 0.375 0.375
M 0.000 0.000 1.188 1.963 2.500
O 0.000 0.000 0.875 1.713 1.963

1.2 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.360 0.360 0.360
M 0.000 0.000 1.140 1.884 2.400
O 0.000 0.000 0.840 1.644 1.884

1.15 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.345 0.345 0.345
M 0.000 0.000 1.093 1.806 2.300
O 0.000 0.000 0.805 1.576 1.806

1.10 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.330 0.330 0.330
M 0.000 0.000 1.045 1.727 2.200
O 0.000 0.000 0.770 1.507 1.727

0.9 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.270 0.270 0.270
M 0.000 0.000 0.855 1.413 1.800
O 0.000 0.000 0.630 1.233 1.413

0.85 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.255 0.255 0.255
M 0.000 0.000 0.808 1.335 1.700
O 0.000 0.000 0.595 1.165 1.335

0.8 x I C 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.240 0.240 0.240
M 0.000 0.000 0.760 1.256 1.600
O 0.000 0.000 0.560 1.096 1.256

C = Calf < 1 year old 
Y = Yearling 1 year old 
M = Mature 2-5 years old 
O = Older > 5 years old

For recruitment values greater than normal, the population is limited by food 

illustrated by the grouping of 1.25x, 1.20x, 1.15x and l.lOx lines in all scenarios 

(Figure A6-3). If fecundity rates could be increased by as little as l.lOx, the excess 

food available in the HHS between 2006 and 2046 could be captured and converted

Appendix 6 - DPM Sensitivity Analysis 205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

Year No
N

No
1.25

No
1.20

No
1.15

No
1.1

No
0.9

No
0.85

No
0.8

1906 1.97 2.01 2.01 2.00 2.00 1.92 1.86 0.56
2006 1.99 2.03 2.02 2.02 2.01 193 1.87 0.58
2016 2.38 2.51 2.50 2.48 2.46 2.17 1.96 0.58
2026 2.67 2.74 2.73 2.72 2.71 2.47 2.11 0.58
2036 2.13 2.14 2.14 2.14 2.14 2.12 2.09 0.58
2046 1.91 1.93 1.93 1.93 1.92 1.88 1.85 0.58
2056 2.02 2.07 2.07 2.06 2.05 1.94 1.86 0.58
2066 2.43 2.56 2.55 2.53 2.51 2.20 1.96 0.58
2076 2.41 2 44 2.44 2.43 2.43 2.35 2.11 0.58
2086 2.27 2.30 2.30 2.29 2.29 2.22 2.15 0.58
2066 f.95 1.67 1.97 1.97 1.96 1.93 1.91 0.58
2106 1.81 1.84 1.84 1.83 1.83 1.78 1.75 0.58
2116 1.90 1.65 1.65 1.94 1.93 1.83 1.76 0.58
2126 2.21 2.31 2.30 2.29 2.27 2.05 1.86 0.58
2136 2.10 2.13 2.12 2.12 2.12 2.06 1.95 0.58
2146 248 261 2.60 2.56 2.56 2.28 2.06 0.58
2156 2.04 2.05 205 2.05 2.05 2.03 2.01 0.58
2166 197 2.01 2.01 2.00 2.00 1.93 1.88 0.58
2176 2.16 2.23 2.22 2.21 2.20 2.06 1.94 0.58
2186 2.47 2.56 2.55 2.54 2.52 2.30 2.07 0.58
2166 2.07 2.08 2.08 2.08 2.08 2.05 2.02 0.58

6.0

SO

40

3.0

70
10

0 0

Vmt*
■» ND •••* . .-No W-  NO ■  -NO -No I -No — No

N 125 1 20 1 1S M  0 9 0 66 0-81

Year H
N

H
1.25

H
1.20

H
1.15

H
1.10

H
0.9

H
0.85

H
0.8

1996 197 2.01 2.01 2.00 2.00 1.92 1.66 0.58
2006 1.74 1.76 1.76 1.75 1.75 1.72 1.70 0.58
2016 2.31 2.90 2.84 2.75 2.63 1.96 1.79 0.58
2026 3.16 4.21 4.18 4.13 4.01 2.29 1.91 0.58
2038 4.27 4.59 4.58 4.56 4.54 2.66 2.05 0.58
2046 3.71 3.74 3.74 3.73 3.73 3.10 2.16 0.58
2056 3.37 3.42 3.41 3.41 3.40 3.30 2.34 0.58
2066 3.44 3.52 3.51 3.50 3.49 3.34 2.50 0.58
2076 3.53 3.61 3.60 3.59 3.57 3.42 2.67 0.58
2086 3.31 3.36 3.36 3.35 3.34 3.25 2.85 0.58
2096 3.01 3.05 3.04 3.04 3.03 2.96 286 058
2106 2.62 265 2.64 264 263 2.59 2.56 0.58
2116 2.82 2.91 2.90 2.69 2.66 2.70 2.57 0.58
2126 3.18 3.29 3.28 3.27 3.25 3.00 2.73 0.56
2136 3.37 3.46 3.45 3.44 3.42 324 2.91 058
2146 3.49 3.56 3.57 3.56 354 3.37 3.09 0.58
2156 3.39 3.45 3.44 3.43 3.42 330 3.16 0.58
2166 3.49 3.60 3.58 3.57 3.55 3.36 3.20 0.58
2176 3.59 3.70 368 3.67 3.65 3.45 3.26 0.56
2186 3.70 3.82 3.61 3.79 3.77 3.54 3.32 0.56
2196 3.96 4.12 4.11 4.08 4.05 3.73 3.43 0.56

40

[3.0

2 0

»H —H 
H

-M
1 10

Year B
N

9
125

B
1.20

B
1.15

B
1.10

B
0.9

B
0.85

B
0.8

1996 1.97 2.01 2.01 2.00 2.00 1.92 1.86 0.56
2006 2.02 2.06 206 2.05 2.04 1.96 1.86 0.56
2016 2.53 2.74 2.72 2.70 2.67 2.23 2.00 0.58
2026 338 3.76 3.73 3.70 3.64 2.60 2.14 0.56
2036 3.94 4.05 4.04 4.02 4.00 3.03 2.28 0.58
2046 3.73 3.79 3.78 3.77 3.76 3.46 2.44 0.58
2056 3.41 3.46 3.45 3.45 3.44 3.35 2.6 ! 0.58
2066 3.31 3.37 3.37 3.36 3.35 3.24 2.79 0.58
2076 3.58 3.69 3.68 3.66 3.64 3.42 2.97 0.58
2066 3.66 3.74 3.73 3.72 3.71 3.56 3.17 0.58
2096 3.56 3.62 3.62 3.61 3.60 3.48 3.30 0.58
2106 3.30 3.35 3.34 3.34 3.33 3.25 3.18 0.58
2116 3.31 3.39 3.38 3.37 3.36 3.22 3.13 0.56
2126 3.35 3.42 3.41 3.40 3.39 3.26 3.15 0.58
2136 3.47 3.56 3.55 3.54 3.52 3.36 3.22 0.56
2146 3.73 3.83 3.82 3.81 3.79 3.56 3.36 0.58
2156 3.77 3.85 3.84 3.63 382 3.67 3.49 0.58
2166 3.74 3.81 3.81 3.80 3.78 3.65 3.52 0.58
2176 3.68 3.98 3.97 3.96 3.94 3.76 3.60 0.58
2186 3.93 4.01 4.00 3.99 3.96 3.82 3.68 0.56
2196 3.91 3.96 3.98 3.97 3.86 3.81 3.69 0.58

40
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Figure A6-3: Fecundity rate sensitivity results from the Duinker Population
Model for the No, High and Basic harvest scenarios.
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into moose. Similarly to CHR, the benefit of this action i.e. producing more moose, 

disappears after 2046 in all scenarios.

Predation Rate Sensitivity

Predation rate (PR) is a function of age and season of year in DPM. The 

highest mortality by age and season occurs with calves in the spring and late- 

winter followed by old animals in late-winter then yearling and adults. The 

predation rates used for sensitivity analysis were increases of 1.05x, l.lOx, 1.15x, 

1.20x and decreases of 0.90x, 0.80x and 0.50x from the normal predation rates 

(Table A6-3).

Results and Discussion

The DPM is very sensitive to variations in the PR. The model displays 

significant changes in moose/km2 for values greater than the normal values used for 

the simulation. This parameter displays similar behaviour to CHR and FR in that 

the moose population can be depressed or increased by slight changes to the 

parameter.

For PR values lower than normal, the increases in population are similar to 

those observed in the CHR and FR when those parameters are adjusted in a 

positive way, i.e. CHR was decreased and FR was increased (Figures A6-2, A6-3 and 

A6-4). If PR could be adjusted positively, i.e. decrease predation by a factor of 

0.90x, the extra animals would be able to capture a greater portion of the food 

source in the HHS between 2006 and 2046 and produce more moose for viewing or 

sport hunting.
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Table A6-3: Predation rates used for the predation rate sensitivity analysis in
the Duinker Population Model.

Predation Season Moose Ace Classes
Multiples BC BY BA BO CC CY CA CO
Normal S 0.200 0.010 0.010 0.010 0.200 0.010 0.010 0.010

F 0.100 0.010 0.010 0.010 0.100 0.010 0.010 0.010
EW 0.100 0.010 0.010 0.020 0.100 0.010 0.010 0.020
LW 0.200 0.010 0.010 0.030 0.200 0.010 0.010 0.030

1.2 x | S 0.240 0.012 0.012 0.012 0.240 0.012 0.012 0.012
F 0.120 0.012 0.012 0.012 0.120 0.012 0.012 0.012

EW 0.120 0.012 0.012 0.024 0.120 0.012 0.012 0.024
LW 0.240 0.012 0.012 0.036 0.240 0.012 0.012 0.036

1.15 x I S 0.230 0.012 0.012 0.012 0.230 0.012 0.012 0.012
F 0.115 0.012 0.012 0.012 0.115 0.012 0.012 0.012

EW 0.115 0.012 0.012 0.023 0.115 0.012 0.012 0.023
LW 0.230 0.012 0.012 0.035 0.230 0.012 0.012 0.035

1.1 x I S 0.220 0.011 0.011 0.011 0.220 0.011 0.011 0.011
F 0.110 0.011 0.011 0.011 0.110 0.011 0.011 0.011

EW 0.110 0.011 0.011 0.022 0.110 0.011 0.011 0.022
LW 0.220 0.011 0.011 0.033 0.220 0.011 0.011 0.033

1.05 x | S 0.210 0.011 0.011 0.011 0.210 0.011 0.011 0.011
F 0.105 0.011 0.011 0.011 0.105 0.011 0.011 0.011

EW 0.105 0.011 0.011 0.021 0.105 0.011 0.011 0.021
LW 0.210 0.011 0.011 0.032 0.210 0.011 0.011 0.032

0.9 x | S 0.180 0.009 0.009 0.009 0.180 0.009 0.009 0.009
F 0.090 0.009 0.009 0.009 0.090 0.009 0.009 0.009

EW 0.090 0.009 0.009 0.018 0.090 0.009 0.009 0.018
LW 0.180 0.009 0.009 0.027 0.180 0.009 0.009 0.027

0.8 x I S 0.160 0.008 0.008 0.008 0.160 0.008 0.008 0.008
F 0.080 0.008 0.008 0.008 0.080 0.008 0.008 0.008

EW 0.080 0.008 0.008 0.016 0.080 0.008 0.008 0.016
LW 0.160 0.008 0.008 0.024 0.160 0.008 0.008 0.024

0.5 x I S 0.100 0.005 0.005 0.005 0.100 0.005 0.005 0.005
F 0.050 0.005 0.005 0.005 0.050 0.005 0.005 0.005

EW 0.050 0.005 0.005 0.010 0.050 0.005 0.005 0.010
LW 0.100 0.005 0.005 0.015 0.100 0.005 0.005 0.015

S = Summer B C = Bull Calf C C = Cow Calf
F = Fall B Y = Bull Yearling C Y = Cow Yearling
EW * Early Winter B A = Bull Adult C A = Cow Adult
L W = Late Winter B 0  = Bull Old CO* Cow Old

Target Density

Target Density (TD) is a function that describes the future density desired by 

wildlife managers. The normal value of 0.76 was used while sensitivity values of
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Year NO No No No No No No No
N 1.2 1.15 1.1 1.05 0.9 0.8 0.5

1996 1.97 1.24 1.86 1.91 1.95 2.01 2.04 2.09
2006 1.99 1.27 1.87 1.93 1.96 2.03 2.05 2.11
2016 2.38 1.30 2.02 2.18 2.30 2.48 2.53 2.63
2026 2.67 1.33 2.23 2.50 2.61 2.73 2.77 2.86
2036 2.13 1.36 2.08 2.10 2.12 2.15 2.17 2.21
2046 1.91 1.39 1.84 1.87 1.89 1.94 196 2.00
2056 2.02 1.42 1.87 1.93 1.98 2.07 2.10 2.16
2066 2.43 1.45 2.04 2.22 2.35 2.53 2.59 2.68
2076 2.41 1.48 2.20 2.34 2.38 2.44 2.47 2.53
2086 2.27 1.51 2.16 2.21 2.24 2.30 2.33 2.39
2096 1.95 1.55 1.90 1.92 1.94 1.98 2.00 2.04
2106 1.81 1.57 1.74 1.77 1.79 1.84 1.86 1.91
2116 1.90 1.60 1.77 1.83 1.87 1.95 1.98 2.03
2126 2.21 1.63 1.91 2.06 2.15 2.29 2.33 2.41
2136 2.10 1.67 1.99 2.05 2.08 2.13 2.15 2.20
2146 2.48 1.71 2.14 2.29 2.40 2.58 2.64 2.74
2156 2.04 1.74 1.99 2.01 2.03 2.06 2.06 2.12
2166 197 1.75 1.88 1.92 1.95 2.01 2.04 2.09
2176 2.16 1.78 1.97 2.06 2.12 2.22 2.25 2.32
2186 2.47 1.82 2.14 2.31 2.41 2.54 2.56 2.67
2196 2.07 1.84 2.02 2.04 2.06 2.09 2.11 2.15

N* Normal
No * No Horwtt Scenario 
H * High Harvest Scenario 
B * Basic Harvest Scenario

Year H H H H H H H H
N 1.2 1.15 1.1 1.05 0.9 0.8 0.5

1996 1.97 124 1.86 1.91 1.95 2.01 2.04 2.09
2006 1.74 127 1.68 1.71 1.72 1.76 1.78 1.82
2016 2.31 1.30 1.83 1.98 2.14 2.63 2.88 3.11
2026 3.16 1.33 2.01 2.35 2.73 4.02 4.24 4.44
2036 4.27 1.36 2.21 2.78 3.48 4.57 4.64 4.78
2046 3.71 1.38 2.43 3.26 3.69 3.76 3.79 386
2056 3.37 142 2.68 3.29 3.34 342 3.46 3.54
2066 3.44 1.45 2.94 3.33 3.39 3.51 3.56 3.66
2076 3.53 148 3.19 3.41 3.48 3.60 3.65 3.75
2086 3.31 1.51 3.17 3.24 3.28 3.36 3.40 3.48
2096 3.01 1.55 2.90 2.94 2.98 3.05 3.08 3.15
2106 2.62 1.58 254 2.57 2.60 2.65 2.68 2.74
2116 2.82 162 2.59 2.69 2.77 2.90 2.94 3.03
2126 3.18 1.65 2.80 3.00 3.12 327 3.33 3.43
2136 3.37 168 3.04 3.24 3.32 3.45 3.50 3.60
2146 3.49 1.73 3.22 3.37 3.44 3.57 3.62 3.72
2156 3.39 1.77 3.21 3.29 3.34 3.44 3.49 3.57
2166 3.49 1.61 3.24 3.36 3.44 3.57 3.63 3.74
2176 3.59 1.85 3.32 3.45 3.53 3.67 3.73 3.84
2186 3.70 1.89 3.40 3.54 3.63 3.79 3.86 3.98
2196 3.96 1.93 3.54 3.75 3.87 4.08 4.16 4.30

Year B
12

B
1.15

B
1.1

B
1.05

B
0.9

B
0.8

B
0.5

1996 1.97 1.24 186 191 1.95 2.01 2.04 2.09
2006 2.02 1.27 1.89 195 199 206 2.09 2.14
2016 253 1.30 2.06 2.25 2.41 2.66 2.76 2.88
2026 3.38 1.33 2.27 2.67 3.06 3.67 3.79 3.95
2036 3.94 1.36 2.50 3.16 3.76 4.03 4.10 4.21
2046 3.73 1.39 2.75 3.58 3.69 3.79 3.83 3.92
2056 3.41 1.42 3.01 3.34 3.36 3.46 3.50 3.58
2066 3.31 1.45 3.12 3.22 3.27 3.37 3.42 3.50
2076 3.58 1.48 3.27 3.42 3.51 3.67 3.73 3.84
2086 3.66 1.51 3.42 3.54 3.61 3.73 3.79 3.89
2006 3.56 1.55 3.39 3.47 3.52 3.62 3.67 3.76
2106 3.30 1 58 3.17 3.23 3.27 3.35 3.39 3.47
2116 3.31 162 3.13 3.21 3.27 3.38 3.43 3.52
2126 3.35 1.65 3.16 3.25 3.31 3.42 3.46 355
2136 3.47 1.69 3.24 3.35 3.42 3.55 3.60 3.70
2146 3.73 1.73 3.41 3.57 3.66 3.82 3.88 3.99
2156 3.77 1.77 3.54 3.65 3.72 3.84 3.90 3.99
2166 3.74 1.81 3.54 3.63 3.69 3.81 3.86 3.96
2176 3.68 1.85 3.62 3.74 3.82 3.97 4.03 4.14
2186 3.93 1.89 3.70 3.81 3.88 4.00 4.06 4.17
2196 3.91 1.93 3.70 3.80 3.86 3.96 4.04 4.14
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Figure A6-4: Predation rate sensitivity results from the Duinker Population Model
for the No, High and Basic harvest scenarios.
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Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

1.0+x or 1.76, 2.0+x or 2.76, and 3.0+x or 3.76 and decreases of 0.50x or 0.38 and 

0.25x or 0.19 were used for sensitivity analyses in the DPM.

Results and Discussion

The DPM is insensitive with respect to the TD parameter. Large changes 

positively or negatively have a very small impact on the overall moose population 

through time. The changes observed are most noticeable in the HHS where there is 

a large food supply between 2006 and 2046. The higher TD allows the model to 

produce more moose before greater hunting pressure is allowed. However, after 

2046 the benefit is completely negated and all sensitivity analysis lines follow the 

normal trace (Figure A6-5).

Bull to Cow Harvest Ratio

Bull to Cow Harvest Ratio (BCHR) is the function that controls the rate of bull 

harvest based on the number of cows in a population. The normal value used in the 

modelling was 3.5 bulls to 1 cow. The values used for sensitivity analysis were 3, 2 

and 0.5 bulls to 1 cow.

Results and Discussion

The DPM was not sensitive to any changes in the BCHR (Figure A6-6). The 

only indication of any change was in the HHS between 2016 and 2036 when the 

BCHR was reduced by 50% or 1.75 bulls to 1 cow. The fluctuation is visible there 

because with 1.75:1.0 harvest rate there were more bulls around to impregnate the 

cows and produce more calves. Furthermore, between 2016 and 2036 there is a 

excess food supply thereby improving the likelihood of survival for those cows.
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Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

Year No
N

NO
3.76

No
2.76

No
1.76

No
0.38

No
0.19

1996 1.97 2.09 2.00 1.97 1.97 1.97
2006 1.99 2.10 2.01 1.99 1.99 1.99
2016 2.38 2.52 2.38 2.38 2.38 2.38
2026 2.67 2.72 2.67 2.67 2.67 2.67
2036 2.13 2.21 2.13 2.13 2.13 2.13
2046 1.91 2.01 1.94 1.91 1.91 1.91
2056 2.02 2.14 2.05 2.02 2.02 2.02
2066 2.43 2.57 2.43 2.43 2.43 2.43
2076 2.41 2.48 2.41 2.41 2.41 2.41
2066 2.27 2.35 2.27 2.27 2.27 2.27
2096 1.95 2.05 1.98 1.95 1.95 1.95
2106 181 1.92 1.86 1.81 1.81 1.81
2116 1.90 2.03 1.95 1.90 1.90 1.90
2126 2.21 2.35 2.22 2.21 2.21 2.21
2136 2.10 2.19 2.10 2.10 2.10 2.10
2146 2.48 2.61 2.48 2.48 2.48 2.48
2156 2.04 2.13 2.05 2.04 2.04 2.04
2166 1.97 2.09 2.00 1.97 1.97 1.97
2176 2.16 2.29 2.16 2.16 2.16 2.16
2186 2.47 2.57 2.47 2.47 2.47 2.47
2196 2.07 2.16 2.07 2.07 2.07 2.07

Year H H H H H H
N 3.76 2.76 1.78 0.38 019

1996 1.97 2.09 2.00 1.97 1.97 1.97
2006 1.74 184 1.79 1.74 1.74 1 74
2016 2.31 2.78 2.45 2.31 2.31 2.31
2026 3.16 3.73 3.35 3.16 3.16 3.16
2036 4.27 4.46 4.39 4.27 4.27 4.27
2046 3.71 3.71 3.71 3.71 3.71 3.71
2056 3.37 3.37 3.37 3.37 3.37 3.37
2066 3.44 3.44 3.44 3.44 3.44 3.44
2076 3.53 3.53 3.53 3.53 3.53 3.53
2086 3.31 3.31 3.31 3.31 3.31 3.31
2096 3.01 3.01 3.01 3.01 3.01 3.01
2106 2.62 266 2.62 2.62 2.62 2.62
2116 2.82 2.85 2.62 2.82 2.62 2.82
2126 3.18 3.18 3.18 3.16 3.16 3.16
2136 3.37 3.37 3.37 3.37 3.37 3.37
2146 3.49 3.49 3.49 3.49 3.49 349
2156 3.39 3.30 3.39 3.39 3.39 3.39
2166 3.48 3.49 3.49 3.49 3.49 3.49
2176 3.59 3.59 3.59 3.59 3.59 3.59
2186 3.70 3.70 3.70 3.70 3.70 3.70
2196 3.96 3.96 3.96 3.96 3.96 396

Year B
N

B
3.76

B
2.76

B
1.76

B
0.38

B
0.19

1996 1.97 2.09 2.00 1.97 1.97 1 97
2006 2.02 2.13 2.04 2.02 2.02 2.02
2016 2.53 2.70 2.54 2.53 2.53 2.53
2026 3.38 3.46 3.38 3.38 3.38 3.38
2036 3.94 3.94 3.94 3.94 3.94 3.94
2046 3.73 3.73 3.73 3.73 3.73 3.73
2056 3.41 3.41 3.41 341 3.41 3.41
2066 3.31 3.31 3.31 3.31 3.31 3.31
2076 3.58 3.58 3.58 3.58 3.58 3.56
2086 3.66 3.66 3.66 3.66 3.66 3.66
2096 3.56 3.56 3.56 3.56 3.56 3.56
2106 3.30 3.30 3.30 3.30 3.30 3.30
2116 3.31 3.31 3.31 3.31 3.31 3.31
2126 3.35 3.35 3.35 3.35 3.35 3.35
2136 3.47 3.47 3.47 3.47 3.47 3.47
2146 3.73 3.73 3.73 3.73 3.73 3.73
2156 3.77 3.77 3.77 3.77 3.77 3.77
2166 3.74 3.74 3.74 3.74 3.74 3.74
2176 3.88 3.88 3.86 3.88 3.88 3.86
2186 3.93 3.93 3.93 3.93 3.93 3.93
2196 3.91 3.91 3.91 3.91 3.91 3.91

N * Normal
No * No Harvest Scanano 
H * High Harvest Scanano 
B * Basic Harvest Scenario
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Figure A6-5: Target density rate sensitivity results from the Duinker Population
Model for the No, High and Basic harvest scenarios.
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Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

Year No
N

No
3k

No
2x

No
0.5x

1996 1.97 t.97 1.97 1.96
2006 1.99 1.99 1.99 1.99
2016 2.38 2.38 2.38 2.39
2026 2.67 2.67 2.67 2.67
2036 2.13 2.13 2.13 2.13
2046 1.91 1.91 1.91 1.91
2056 2.02 2.02 2.02 2.02
2066 2.43 2.43 2.43 2.44
2076 2.41 2.41 2.41 2.41
2086 2.27 2.27 2.27 2.27
2096 1.95 1.95 1.95 1.96
2106 1.81 1.81 1.81 1.82
2116 1.90 1.90 1.90 1.91
2126 2.21 2.21 2.21 2.22
2136 2.10 2.10 2.10 2.10
2146 2.46 2.48 2.46 2.49
2156 2.04 2.04 2.04 2.05
2166 1.97 1 97 1 97 1 98
2176 2.16 2.16 2.16 2.16
2186 2.47 2.47 2.47 2.47
2196 2.07 2.07 2.07 2.07

Ysar H
N

H
3x

H
2x

H 
0 5*

1996 1.97 1 97 1 97 1 98
2006 1.74 1 74 1.74 1.74
2016 2.31 2.31 2.31 2.42
2026 3.16 3.16 3.16 3.42
2036 4.27 4.27 4.27 4.27
2046 3.71 3.71 3.71 3.72
2056 3.37 3.37 3.37 3.38
2066 344 3.44 3.44 3.45
2076 3.53 3.53 3.53 3.53
2086 3.31 3.31 3.31 3.32
2096 3.01 3.01 3.01 3.01
2106 2.62 2.62 2.62 2.62
2116 2.82 2.82 2.82 2.83
2126 3.18 3.18 3.18 3.19
2136 3.37 3.37 3.37 3.38
2146 3.49 3.49 3.49 3.50
2156 3.39 3.39 3.39 3.39
2168 3.49 3.49 3.49 3.49
2176 3.59 3.59 3.59 3.59
2186 3.70 3.70 3.70 3.70
2196 3.96 3.96 3.96 3.96

Year B
N

B
3x

B
2x

B
0 5*

1996 1 97 197 1.97 1 98
2006 2.02 2.02 2.02 2.02
2016 2.53 2.53 2.53 2.55
2026 3.38 3.38 3.38 3.41
2036 3.94 3.94 3.94 3.95
2046 3.73 3.73 3.73 3.74
2056 3.41 3.41 3.41 3.42
2066 3.31 3.31 3.31 3.32
2076 3.56 3.58 3.58 3.59
2086 3.66 3.66 3.66 3.67
2096 3.56 3.56 3.56 3.57
2106 3.30 3.30 3.30 3.31
2116 3.31 3.31 3.31 3.32
2126 3.35 3.35 3.35 3.36
2136 3.47 3.47 3.47 3.48
2146 3.73 3.73 3.73 3.74
2156 3.77 3.77 3.77 3.78
2166 3.74 3.74 3.74 3.75
2176 3.88 3.88 3.88 3.89
2186 3.93 3.93 3.93 3.93
2196 3.91 3.91 3.91 3.92

N * Normal
No * No Harvest Scenario 
H * High Harvest Scenario 
B 3  Basic Harvest Scenario
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Figure A6-6: Bull to cow harvest ratio sensitivity results from the Duinker
Population Model for the No, High and Basic harvest scenarios.
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Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

Food -  Summer Browse vs Early-Winter Adjusted Browse

The DPM food values were developed from food curves based on the dominant
i
; tree species, stand age, site class and stocking of the stands. To perform sensitivity 

■ analysis based on food, the BHS was used as the test case and resonable food 

I ranges were chosen for both the summer browse (SB) values and early-winter 

adjusted browse (EWAB) values based on the outputs from a normal model using 

the browse curves. The range of SB went from 30 to 300 kg/ha while the EWAB 

ranged from 2 to 20 kg/ha. The DPM was run for each SB/EWAB interaction (Table 

A6-4).

R esults an d  D iscussion

There is clearly little interaction taking place between the SB and EWAB.

From (Figure A6-7) I was looking for a  trade-off zone, where a good food supply in 

the summer could compensate the animals when early-winter food was relatively 

lacking and vice versa. A trade-off zone (represented by the enclosed area in Figure 

A6-7 is present but it is narrow when compared to Duinker’s (1986) PhD work. The 

trade-off zone is largest where SB is largest 240-300 kg/ha and EWAB is moderate 

10-16 kg/ha. The model has such a narrow trade-off area because the 

determination of EWAB is a mathematical calculation based on the SB values in the 

DPM. Finally, the DPM illustrates tha t poor food in the summer season is only 

compensated to a small degree by better food in the early-winter season.

Comparison o f the Sensitivity Analysis Values for Three Sensitivity Analysis

A comparison was conducted of the results from three sensitivity analysis: cow 

harvest rate, fecundity and predation. The means from each 200 year simulation
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Table A6-4: M oose/km 2 values based on the sensitivity  analysis o f food values
! used fo r the sum m er brow se vs early -w in te r adjusted browse
i  norm al resu lts .

Summer 
Browse kg/ha

Eadv Winter Adjusted Browse ko/ha
2 4 6 8 10 12 14 16 18 20

30 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
60 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
90 0.7 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
120 0.7 1.5 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1
150 0.7 1.5 2.2 2.5 2.6 2.6 2.6 2.6 2.6 2.6
180 0.7 1.5 2.2 2.9 3.1 3.1 3.1 3.1 3.1 3.1
210 0.7 1.5 2.2 2.9 3.4 3.6 3.6 3.6 3.6 3.6
240 0.7 1.5 2.2 2.9 3.6 4.0 4.1 4.1 4.2 4.2
270 0.7 1.5 2.2 2.9 3.7 4.3 4.5 4.6 4.7 4.7
300 0.7 1.5 2.2 2.9 3.7 4.4 4.9 5.0 5.1 5.2

300 

270 

2*0 

210 

110

Summer IrawM kfljha
ISO 

120 

M 

M 

30
2 4 6  «  10 12 *4 W 1» 20

Early Winter AdfriUad Si aw  tg tn

Figure A6-7: Food sensitiv ity  results from the D uinker Population M odel fo r the
B asic h a rv est scenario .
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Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

were plotted for each sensitivity analysis level done (Table A6-5, Figure A6-8). 

! Asymptotes were graphically observed for the three variables used in sensitivity
i

analysis.

Table A6-5: Comparison of 200 year averages across the sensitivity analysis
values used for three different sensitivity analysis variables within 
the Duinker Population Model.

Normal Value Multiples 1.5 1.25 1.2 1.15 1.1 1.05 1 0.9 0.85 0.8 0.75 0.5 0.25 I
Cow Harvest Rate Sensitivity -83.6 -23.2 0.0 7.2 11.2 14.3

Fecundity Sensitivity 5.1 4.7 4.2 3.4 0.0 -7.2 -17.3 -81.0
Predation Sensitivity -50.0 -13.4 -6.9 -3.1 0.0 4.0 6.2 9.4
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Figure A6-8: Comparison of 200 year averages across the sensitivity analysis
values used for three different sensitivity analysis variables within 
the Duinker Population Model.
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Results and Discussion

The asymptotes identify the possible range of values that work in the 

sensitivity analysis for the three variables. From this information one can see the 

possible sensitivity analysis values if they were selected and conducted, i.e. a cow 

harvest rate of 0.8 would produce an average 200-year estimated value of 6.0. This 

value was identified by estimating its position given the graphic results of Figure 

A6-8. The exact location of each asymptote for each variable is unclear but my two 

visual estimates for each variable are; cow harvest rate Ox and 1.8x; fecundity 

0.75x and 1.4x; predation 0.2x and 1.3x. It is safe to assume that any values 

between the two extremes could be used for each respective variable in sensitivity 

analysis or a normal run.

Of the three variable used cow harvest rate, fecundity and predation, 

fecundity has the narrowest range of possible values before an asymptote is 

approached, whereas cow harvest rate has the largest range and predation resides 

between the two. This information was derived by visually examining Figure A6-8. 

A possible implication of this comparison is that fecundity would be the most 

sensitive to variation and therefore exhibits the greatest influence of all the 

variables analysed in the DPM. This assumption was borne out when the results of 

other sensitivity analyses were cross compared and it was observed that, on an 

incremental basis, fecundity affected the model results the greatest.

Overall Discussion for Sensitivity Analysis in the Duinker Population Model

Of the parameters modelled using DPM the model is most sensitive to the 

fecundity parameter, followed by predation, cow harvest rate, target density and

Appendix 6 - DPM Sensitivity Analysis 216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

finally bull-to-cow harvest ratio. The first two variables (fecundity and predation) 

are the most sensitive since individually they have the most significant impacts on 

the moose population. Fecundity is controlling because higher birth rates mean 

more moose right way and thier probability of survival is highly correlated to food 

supplies. For the most part if the food supply is there, then new calves are likely to 

survive. Conversely, predation is a direct attack on new calf survival, since that 

cohort of animals has the highest mortality rate of 60% in the first year using the 

normal run parameters. For the same rate of increase between fecundity and 

predation when all other variables are set to their normal run values, fecundity will 

move the output values the most, followed by predation. This behaviour is most 

likely attributable to the observations displayed in Figure A6-8, i.e. fecundity has 

the narrowest range of usable values before a asymptote is encountered a t 0.75x or 

1.4x.

Of the remaining three variables, only cow harvest rate is of note with respect 

to sensitivity analysis, since the other two do not alter the results of the DPM to 

any appreciable degree. Model output is sensitive to Cow harvest rate 

manipulation since the number of surviving cows dictates the number of new 

calves. The fewer the cows that survive the hunt, the fewer calves will be bom in 

the spring. The converse is also true, where more cows means more 

calves and a greater population in subsequent years.
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APPENDIX 7 

Sensitivity Analysis for the Weldwood Winter Habitat Suitability Index Model 

Overview

Sensitivity analysis for the Weldwood Winter Habitat Suitability Index 

Model (WWHSIM) was undertaken to find variables that might have a 

large impact on the model results when small changes were made. The variable 

selected for analysis from the model was the Euctrans variable. The Euctrans

Table A7-1: Moose carrying capacity values and their percentage change from
normal simulation runs using the Weldwood Winter Habitat 
Suitability Index Model and the No, Basic and High harvest 
simulations.

BH N  = Basic Harvest Normal 
B H EO = Basic Harvest Euctrans = 0 
HH N = High Harvest Normal 
H H EO = High Harvest Euctrans = 0 
N H N « No Harvest Normal 
N H EO = No Harvest Euctrans = 0

Appendix 7 • WWHSIM Sensitivity Analysis

B H D = Basic Harvest Difference 
HH D = High Harvest Difference 
N H D = No Harvest Difference

Year BHN B H E0 HHN H H E0 NHN NHE0I  I B H D HHD NHD
1996 1.91 1.98 1.91 1.97 1.91 1.97
2006 1.63 1.71 1.52 1.58 1.87 1.92
2016 1.29 1.38 1.01 1.07 1.62 1.67
2026 0.96 1.02 0.63 0.67 1.35 1.40
2036 0.81 0.87 0.49 0.52 1.32 1.36
2046 0.64 0.69 0.41 0.43 1.27 1.28
2056 0.58 0.61 0.40 0.41 1.20 1.22
2066 0.51 0.54 0.32 0.35 1.00 1.01
2076 0.47 0.50 0.30 0.33 0.89 0.91
2086 0.43 0.45 0.26 0.28 0.79 0.80
2096 0.35 0.39 0.24 0.25 0.68 0.76 9.40 6.93 11.86
2106 0.33 0.39 0.23 0.24 0.64 0.74 16.72 6.12 14.61
2116 0.33 0.36 0.23 0.23 0.60 0.73 9.49 3.76 21.26
2126 0.31 0.33 0.24 0.26 0.61 0.73 5.88 11.16 20.09
2136 0.31 0.33 0.23 0.25 0.62 0.73 5.09 12.77 18.75
2146 0.32 0.34 0.25 0.25 0.63 0.73 8.64 2.29 15.50
2156 0.31 0.34 0.26 0.26 0.65 0.74 10.56 1.84 13.56
2166 0.30 0.34 0.25 0.26 0.63 0.75 14.42 1.93 17.96
2176 0.30 0.39 0.26 0.26 0.62 0.75 28.31 3.14 20.03
2186 0.35 0.39 0.25 0.26 0.62 0.75 10.23 2.56 20.70
2196 0.36 0.38 0.25 0.25 0.63 0.76 7.02 0.72 19.26

Average 11.43 4.84 17.60
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Figure A7-1: Euctrans sensitivity results for the Weldwood Winter Habitat
Suitability Index Model with the Basic, High and No harvest 
scenarios.

variable is the result of merged grid with cells containing information relevant to 

the distance a cell is from a human disturbance (specifically, an access corridor). 

Basically, any cell within 100 m of an access corridor gets an HSI of 0 and any cell 

greater than 100 m from an access corridor gets an HSI of 100. Therefore, the 

sensitivity analysis test was to set the Euctrans variable to zero to evaluate its 

impact on the model output.

Results and Discussion

The results indicate that the Euctrans variable plays a minor role in the 

WWHSIM. From Figure A7*l it is evident that the greatest effect occurs in the
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NHS, followed by the BHS and HHS in the second hundred years. The average 

percentage change from the normal between 2096 and 2196 for the No, Basic and 

High harvest scenarios was 14.91, 10.00 and 4.49 % (Table A7-1). The effect is 

greatest in the NHS because, that simulation contains the greatest late-winter 

habitat i.e. old coniferous stands, and would benefit the most when the negative 

impact from roads is removed.
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A PPEN D IX  8

Sensitivity Analysis for the Higgelke Habitat Model

Overview

Sensitivity analysis for the HHM was undertaken to find variables that 

might have a large impact on the model results when small changes 

were made. Two variable were selected, the early-winter cover index curves 

(EWCIC) and the browse curves (BC). The early-winter cover index curves describe 

the early-winter cover indices assigned to specific stand types while the browse 

curves estimate the amount of browse in kg/ha that would be present on the 

landscape in various stand types (Higgelke 1994).

Both the EWCIC and BC were adjusted +/- 25 and 50% of their original values 

and the simulations run for 100 years, 1996-2096. Values for EWCIC were not 

raised above the 1.1 maximum, while the browse curves were allowed to rise to 

their numerically determined value.

Results and Discussion

The results indicate that any manipulation of the EWCIC produces a very 

predictable response of a uniform increase or decrease of a normal model simulation 

(Figure A8-1). On average over a 100 years, a 25% increase in the EWCIC produces 

a 21.59, 21.97 and 23.26% increase in moose carrying capacity for the No, Basic and 

High harvest scenarios. Similarly, a 25% decrease produces 100-year average 

carrying capacities tha t are -25.13, -25.09 and - 25.28% for the No, Basic and High 

harvest scenarios (Table A8-1).
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Basic Harvest
Year N EWCl 

♦ 25%
EWCl
-25%

BR 
♦ 25%

BR
-25%

1996 2.78 3.43 2.08 2.60 1.56
2006 2.42 2.99 1.82 2.27 1.36
2016 3.41 4.16 2.54 3.18 1.91
2026 4.55 5.55 3.40 4.25 2.55
2036 4.33 5.30 3.23 4.04 2.42
2046 3.97 4.87 2.98 3.72 2.23
2056 3.94 4.83 2.95 3.69 2.22
2066 4.24 5.19 3.19 3.99 2.39
2076 4.67 5.64 3.51 4.39 2.63
2086 4.68 5.61 3.51 4.39 2.63
2096 4.33 5.21 3.25 4.06 2.43

40

00 ;   1 .   —       . .
1906 2006 2016 2026 2036 2046 2066 2066 2076 2066 2096

Ym t i

EWCt * • •  **6WC1 
*25% >25%

60

4.0 *

2.0 *

Hioh Harvest
Year N EWCl 

♦ 25%
EWCl
-25%

BR 
♦ 25%

BR 
• 25%

1996 2.78 3.43 2.08 2.60 1.56
2006 2.37 2.91 1.78 2.22 1.33
2016 3.52 4.29 2.62 3.28 1.96
2026 4.79 5.86 3.58 4.48 2.69
2036 4.74 5.82 3.53 4.41 2.65
2046 4.09 5.03 3.05 3.81 2.29
2056 3.69 4.55 2.76 3.45 2.07
2066 3.55 4.41 2.66 3.33 2.00
2076 3.55 4.40 2.64 3.30 1.98
2086 3.34 4.14 2.50 3.12 1.87
2096 3.09 3.82 2.32 2.90 1.74

o o .------ -------------- ------—----—----------   .---.------ -------------------
1906 2006 2016 2026 2036 2046 2096 2066 2076 2066 2006 i

YMTt

m — EWCl • • ♦  • ♦EWCl W - 6 R  rn BR 
•  29% '25%  • 29% -25%

No Harvest
Year N EWCl 

♦ 25%
EWCl
-25%

BR 
♦ 25%

BR
-25%

1996 2.78 3.43 2.08 2.80 1.56
2006 2.81 3.46 2.10 2.64 1.58
2016 3.27 3.99 2.44 3.05 1.83
2026 3.55 4.31 2.66 3.32 1.99
2036 2.91 3.52 2.18 2.72 1.63
2046 2.77 3.34 2.07 2.59 1.55
2056 3.07 3.72 2.30 2.88 1.73
2066 3.58 4.34 2.68 3.36 2.01
2076 3.53 4.27 2.64 3.30 1.98
2086 3.41 4.13 2.56 3.20 1.92
2096 2.86 3.45 2.14 2.68 1.61
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EWCt ♦ 25% = Early winter cover index curves increased 25% of normal 
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BR - 25% -  Browse curves decreased 25% of normal

Figure A8-1: Early-winter cover index curve and browse curve sensitivity results
for the Higgelke Habitat Model with the Basic, High and No 
harvest scenarios.
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Table A8-1: Percentage change of moose carrying capacity in the Higgelke
Habitat Model with respect to a normal simulation using the No, 
Basic and High harvest scenarios.

No Harvest Percent
Year N EWCl 

+ 25%
EWCl
-25%

Br 
♦ 25%

BR
-25%

1996 2.78 23.67 -25.00 -6.24 -43.76
2006 2.81 23.11 -25.14 -6.15 -43.71
2016 3.27 22.07 -25.41 -6.74 -44.06
2026 3.55 21.51 -25.13 -6.40 -43.85
2036 2.91 21.03 -25.15 -6.44 -43.87
2046 2.77 20.86 -25.13 -6.40 -43.85
2056 3.07 21.14 -25.10 -6.36 -43.83
2066 3.58 21.16 -25.01 -6.24 -43.75
2076 3.53 21.05 -25.15 -6.43 -43.86
2086 3.41 21.19 -25.03 -6.28 -43.77
2096 2.86 20.65 -25.16 -6.43 -43.86

Average 3.14 21.59 -25.13 -6.37 -43.83

Basic Harvest
Year N EWCl 

♦ 25%
EWCl
-25%

vOS- 
10 

00 
CM+ BR

-25%
1996 2.78 23.67 -25.00 -6.24 -43.76
2006 2.42 23.30 -24.97 -6.11 -43.79
2016 3.41 22.01 -25.43 -6.81 -44.08
2026 4.55 22.09 -25.24 -6.55 -43.94
2036 4.33 22.28 -25.41 -6.75 -44.06
2046 3.97 22.77 -25.01 -6.26 -43.76
2056 3.94 22.40 •25.08 -6.34 -43.82
2066 4.24 22.24 -24.91 -6.07 -43.65
2076 4.67 20.75 -24.82 -6.02 -43.63
2086 4.68 19.90 -25.02 -6.34 -43.76
2096 4.33 20.22 -25.12 -6.40 •43.85

Average 3.94 21.97 -25.09 -6.35 -43.83

High Harvest
Year N EWCl 

+ 25%
EWCl
-25%

Br
♦ 25%

BR
-25%

1996 2.78 23.67 -25.00 -6.24 -43.76
2006 2.37 23.14 -24.96 -6.17 -43.73
2016 3.52 21.94 -25.48 •6.84 -44.11
2026 4.79 22.20 -25.24 •6.56 -43.93
2036 4.74 22.71 -25.61 -7.01 -44.21
2046 4.09 23.14 -25.42 -6.75 -44.09
2056 3.69 23.29 -25.35 -6.72 -44.02
2066 3.55 24.15 -25.05 -6.34 -43.78
2076 3.55 23.91 -25.68 -7.11 -44.27
2086 3.34 24.06 -25.22 -6.52 -43.93
2096 3.09 23.61 -25.07 •6.33 -43.81

Average 3.59 23.26 -25.28 -6.60 -43.97
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The 25% EWCIC increase produced outputs that were lower than the expected 

average increase of 25% over normal. This anomaly was caused by the imposition 

of a 1.1 cover index curve limit. If tha t restriction were not in place, evidence 

suggests that a average increase of 25% would be observed over the 100-year 

simulation. I suggest this explanation because of the output results determined in 

the -25% decrease of the EWCIC.

The sensitivity analysis on browse curves produced some interesting results. 

Both the 25% increase and decrease produced carrying capacity values lower than 

the normal run. The output from the 25% decrease of normal browse curves gave a 

100-year average of -43.83, -43.83 and -43.97% for the No, Basic and High harvest 

scenarios respectively, while a 25% increase in browse gave 100-year average 

reductions of -6.37, -6.35 and -6.60% of normal values for the No, Basic and High 

harvest scenarios.

The speculated reason behind the differences lies in the interaction of the 

food, early-winter cover index curves and the adjusted early-winter food supply 

from a 3x3 roving window spatial calculation. The calculation of adjusted early- 

winter food is derived from a spatial calculation using a  roving window that tries to 

adjust food supplies based on the proximity of food to cover and cover 

to food. I t is my contention that the extra food available produces a 

habitat tha t is of lower quality in the early-winter and therefore 

provides food values and subsequently carrying capacity values 

tha t are slightly lower than the normal run.
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APPENDIX 9 

Sensitivity Analysis of Stand Stocking on the Weldwood Winter HSI Model 
and the Chair in Forest Management and Policy Winter HSI Model

Overview

The sensitivity of the Weldwood Winter HSI Model (WWHSI) and Chair in 

Forest Management and Policy Winter HSI Model (CFMP-WHSI) model 

to stand stocking was explored by increasing and decreasing stand stocking by 25 

and 50%. A maximum stand stocking was arbitrarily set to 1.0, therefore any 

stands that had stocking values that exceeded 1.0 after the increases of 25 and 50% 

were arbitrarily reset to 1.0. Conversely, when the stocking reduction of -25 and - 

50% were calculated those values were allowed to stand, since any reduction of any 

stocking number will always be a theoretically acceptable value. The simulation 

was conducted for 100 years to see if altering stocking would affect either habitat 

suitability index model.

Results and Discussion

The results of the sensitivity analysis indicate that stocking has no effect on 

the CFMP-WHSI model; however, stocking did have a significant but predictable 

impact on the WWHSI model (Figure A9-1). There was an impact on the WWHSI 

model because stocking was used as a surrogate for determining food supplies i.e. 

variable SI. With lower stocking values, SI values were significantly higher which 

in turn increased the final moose carrying capacity values. From Figure A9-1 the 

Stk -50% line on the WWHSI model is fairly linear during the 100-year simulation, 

while the lines with higher stocking values (normal, Stk +25% and +50%) showed 

falling moose carrying capacity numbers in the period 1996 - 2096. This indicates
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£  Figure A9-1:
Tt

totoo>

Sensitivity analysis of stand stocking on the Weldwood Winter 
Habitat Suitability Index Model and the Chair in Forest 
Management and Policy Winter Habitat Suitability Index Model 
using only the Basic harvest scenarios for 100 years.

Year N Stk
♦

Stk-
25%

Stk
+

Stk-
50%

1996 0.98 0.98 0.98 0.98 0.98
2006 1.11 1.11 1.11 1.11 1.10
2016 1.15 1.15 1.15 1.15 1.14
2026 1.51 1.51 1.51 1.51 1.50
2036 1.73 1.73 1.73 1.74 1.73
2046 1.83 1.83 1.83 1.83 1.83
2056 1.71 1.71 1.71 1.72 1.71
2066 1.70 1.70 1.70 1.70 1.70
2076 1.74 1.74 1.74 1.74 1.74
2066 1.78 1,78 1.78 1.78 1.78
2096 1.79 1.79 1.79 1.79 1.79

Year N Stk
+

Stk-
25%

Stk
+

Stk-
50%

1996 1.91 0.94 2.99 0.29 3.22
2006 1.59 0.78 2,61 0.27 2.95
2016 1.13 0.55 2.18 0.24 2.80
2026 0.82 0.37 1.92 0.20 2.72
2036 0.64 0.27 1.88 0.18 2.89
2046 0.58 0.24 1.88 0,16 3.01
2056 0.54 0.20 1.85 0.13 2.95
2066 0.46 0,14 1.78 0.09 2.92
2076 0.40 0.11 1.70 0.07 2.82
2086 0.35 0.07 1.68 0.04 2.87
2096 0.12 0.02 1.65 0.01 2.88
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that the S I variable has a significant impact on the model’s final moose carrying 

capacity numbers. Therefore, by relaxing the restrictions of the SI variable (i.e. 

lowering the stand stocking values thereby increasing the food supply) the model 

responds by calculating greater moose carrying capacity values.

The dip in the Stk -50% line of the WWHSI model Figure A9-1 is the model’s 

response to the heavy cutting of late-winter habitat that takes place in the early 

part of the simulation under the BHS. The rise that follows is the forest 

rebounding as some stand conversion takes place done and re-established stands 

may have a 0.1 point lower stocking, because that was defined in the HSG’s state 

table. Those state table stocking values were lower because herbicides are not 

permitted for competition control in Alberta. Therefore, replanted stands are 

expected to have slightly lower stocking values.
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APPENDIX 10

Step-by-step process for the Weldwood Winter HSI model 
Weldwood Model

Starting Files
Forest Grid cover 100x100
Roads Line cover

Step I : Determine Shrub Canopy Closure (SI)
Stand Stocking (%) HSI * 100

<50 % 100
60% 80
70% 60
80% 40
90% 20
100 % 0

Step 2: Determine Tree Canopy Closure (S4)
I Stand Stocking (%) HSI * 100 |

>= 30 % 100
20% 58
10% 17

< 6 % 0

Step 3: Determine Tree Height (SS)
Tree Height (m) HSI * 100

<2.0 0
3.0 50

>=4.0 too

Step 4 Join Forest grid to HSG inventory file

Step S Distance from Human Disturbance (S3)
Covert line cover to grid at 100x100 cells
Create a 100x100 outline o f roads
Creates a merged grid of distances out from roads

Step 6 Distance of Cover from Food (S6)
Identifies any food cells within 400 metres o f a cover ceil 
A food cell is any cell that has a Shrub Cover Value x Distance from 
Disturbance > 5000
All cells are searched at one hundred metres 
A food grid is created with values of I to signify a food cell 
Rectangle search parameters are used around “food cells” looking for 
cover cells
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HSI values of: 100 for cells from 0-100 m away
75 for cells between 100-200 m away
50 for cells between 200-300 m away
25 for cells between 300-400 m away

Step 7 Distance o f Food from Cover (S2)
Identifies any cover cells within 400 metres o f a food cell
A cover cell is any cell that has a Closed Tree Canopy x Tree Height x
Distance from Disturbance > 5000
All cells are searched at one hundred metres
A cover grid is created with values of 1 to signify a cover cell
Rectangle search parameters are used around “cover cells” looking for
food cells
HIS values of: 100 for cells from 0-100 m away

75 for cells between 100-200 m away
50 for cells between 200-300 m away
25 for cells between 300-400 m away

Step 8 Calculation of HSI Food
SI x S2 x S3 /10,000

Step 9 Calculation of HSI Cover
S3 x S4 x S5 x S6 / 1,000,000

Step 10 Calculation of Carrying Capacity 
Sum HSIfood from grid 
Sum HSIcover from grid 
CoveradjFood = (HSIcover * 65) / 35 
HU_units = Min HSIfood or CoveradjFood
Hu_winter = Huunits / 0.65
CC = Hu winter x 0.025 moose/ha

Appendix 10 - WWHSIM Process 229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparative Analysis of Alternative Models of Moose Habitat Carrying Capacity

APPENDIX 11

Step-by-step process fi)r the Chair inForest Management and Policy HSI model.

Chair Model 

Starting Files

Step 1 Shrub Composition and Percent Favorable Browse (S2)
Determine Development Stages Coniferous 

One <31 years 
Two >30 and <61 
Three >60 and <101 
Four >100 and <151 
Five >150

Determine Development Stages Deciduous 
One < 21 years 
Two >20 and <41 
Three >40 and <61 
Four >60 and <101 
Five > 100 

Determine Site Class 
Determine Browse from forestgrid

Step 2 Tree Canopy Closure (S4) Database Calculation 
>60 % = 100

Forest
Seismic, Utility 
Inventory file

Grid cover 100x100 
Line cover 
Database

50% =81
40 % = 63
30 % = 44
20 % = 26
10 % = 7
< 6 % =0

Step 3 Tree Height (S5) Database Calculation
>=8 m 
= 7 m 
=  6 m  
= 5 m 
<=4 m

=  100 
= 75 
= 50 
= 25 
=  0
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Step 4 Percent Conifer (S6)
>50 % Conifer 
40 % Conifer 
30 % Conifer 
20 % Conifer 
10 % Conifer 
0 % Conifer

Step 5 Stand Structure Bonus (S7) 
Find C,c,M,m

Database Calculation 
=  100 
= 85 
= 70 
= 55 
= 40 
= 25

Database Calculation 
=  100

Step 6 Distance of Food from Cover (S3)
Identifies any food cell within 400 m of cover 
Determine cover cells by:

A cell is cover if: ((S4 x S5 x S6)33 + S7) > 0.49
Search rectangle around each cover cell
1.5 cell distance 0-100 =100
2.5 cell distance 100-200 = 75
3.5 cell distance 200-300 = 50
4.5 cell distance 300-400 = 25

Step 7 Food Bonus for Seismic Utility Corridors (S1)
Create grid coverage from utility and seismic line coverages 
Merge grids for bonus of 100

Step 8 Attach spatial and no spatial variables to MOOSE 1 grid

= ((S2 x S3)05 + S1)
Step 9 Calculate HSI 

Food 
Cover = ((S4x S 5x S6)0J3 + S7)

Step 10 Calculate Carrying Capacity 
Sum Food from grid 
Sum Cover from grid

Coveradj = (Cover x 65) / 35
Hu_units = Min Food or Coveradj
Hu_winter = Hu_units / 0.65
CC = Hu winter * 0.025 moose/ha
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APPENDIX 12

Step-by-step process for the Higgelke Habitat Model.

Higgelke Model 
Starting Files

Forest Grid cover 200x200
Inventory file Database

Step I Determine sub-dominance of stand species

Step 2 Compute working group

Step 3 Determine cover type

Step 4 Determine food and cover values using moose.c

Step 5 Create a habitat file for linking to the forest polygons to the food and cover values 
previously calculated

Step 6 Adjust early winter food values based on proximity of early winter cover.
The early winter food value is multiplied by the adjusted early winter cover index. 
Done in a 3x3 windows across the landscape

Step 7 Window analysis, in this case only one window.

Step 8 Summation of food supplies 
Sum of Summer food 
Sum of Autumn food 
Sum of Early Winter food

Step 9 Early Winter Moose Carrying Capacity
EWCCC = (early winter food total x 0.6 / (4 kg of browse / day x 60 days)

(forest area ha /100 ha)

Step 10 Food values for Summer Autumn and Early Winter food output.
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APPENDIX 13

Step by step process for theDmnkerPbpulationModeL

Duinker Population Model
Starting Files

Moose Biology moosein.txt
Habitat habrun.txt
Food forage.txt

Step I Develop a starting-parameter file for moose
The file contains data describing the biological parameters of the moose 
population in question.

Step 2 Develop habitat window file
The file contains the length of the simulation i.e. 200 years, the length of 
each season in days and the size of habitat windows in hectares o f the 
coverage analyzed.

Step 3 Develop the food values and harvested area text file
The file contains food values for summer, autumn, and early winter for 
each habitat window by simulation year as well as the area harvested.

Step 4 Run the model
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