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Abstract

MRAS (Model Reference Adaptive System) to achieve frequency domain performance spec­
ifications with different transfer function identification techniques are experimentally stud­
ied. Standard open loop and closed loop recursive least squares (RLS) system identification 
techniques are implemented along with methods based on bandpass filters and steady-state 
Kalman filter. The behavior of the MRAS when combined with the different system iden­
tification techniques is discussed.

Based on experimental work performed on MRAS using open loop system identification, 
it was found that the system can achieve performance specifications in all process condi­
tions. It was noticed that the DC bias changes in process input when process changes, de­
lays the convergence of the system identification in open loop system identification. Closed 
loop system identification was found inadequate for use in MRAS. The system identifica­
tion based on bandpass filter approach was found slow in convergence and so inefficient 
for use in MRAS. The use of Kalman filter for system identification resulted in noisy gains 
on adaptive PI controller. Based on the results obtained, it is concluded that MRAS to 
achieve frequency domain performance specifications is practical and capable of being used 
in industrial process control when coupled with open loop identification based on frequency 
domain concepts. The proposed approach provides a better method for maintaining per­
formance robustness while guaranteeing stability maxgins in adaptive control than that 
obtained from time domain adaptive control.
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Chapter 1

An Overview of Adaptive Controller 
with an Application of Self-Tuning 
Adaptive Control System .

1.1 Introduction

Conventional controllers have fixed parameters. A conventional control system is designed 
upon assumptions that the plant and controller parameters are time-invariant and the 
plant is a linear dynamical process. Practically, the plant parameters often vary with time 
and it is not always possible to predict and correlate the variations to any measurable 
variable(s). Also most plants are nonlinear in nature. To construct a suitable open loop 
control system, one must select all the components of the open loop transfer function very 
carefully so that it responds accurately and variations in parameters can not be tolerated. 
The major advantage of the closed loop control system over open loop control system is 
that the components could be less accurate since the sensitivity to parameter variations in 
G(s)C(s)(opea loop transfer function) is reduced by a factor of 1 -hG(s)C(s). The addition 
of the negative feedback loop also reduces the time constant. However the use of closed loop 
feedback system will increase the number of components of the system, which increases the 
complexity and also introduce the possibility of instability [9, 10, 16, 21].

In most feedback control systems, small deviations in plant parameter values from their 
design values will not cause problems in the normal operation of the system as appropriate 
stability margins are included in the design. But if plant parameters vary widely, then the 
control system may exhibit satisfactory response for conditions around designed values but 
may fail to provide required performance under all other conditions and may even cause 
instability. To demonstrate the effect of variations in plant parameters on the performance 
of a system with fixed controller parameters, a laboratory experiment on a temperature 
control apparatus (Appendix A) is considered here. The fixed parameter PI controller with 
P gain of 0.5 and 1 gain of 1.5 is used with the fan set at medium speed. A sampling rate
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Figure 1.1: Effect of variations in plant parameters on control system performance.

of 0.05 s is used. The closed loop system behavior when fan speed is increased (low process 
gain condition) and fan speed is lowered (high process gain condition) with the same fixed 
parameter controller is as shown in Figure 1.1. The figure shows the process variables 
- setpoint, process input (manipulated variable) and process output. Process output is 
biased to show it clearly vis-a-vis setpoint for graphing purposes.

In Figure 1.1, the closed loop response of the system with high fan speed is over damped. 
The fan speed is changed to low speed at sample number 4500. The process parameters 
change resulting in higher gain for the process. The closed loop response of system is 
now under damped. The fixed parameter controller, which gives required response in one 
condition (medium fan speed) fails to meet response requirements in other conditions. In 
most processes, the variations in process parameters are unpredictable and many times 
cannot be correlated to any measurable variable. For e.g. the calcification on a heat 
exchanger wall changes the heat transfer rates of the vessel and thus the process dynamics. 
In a concentration control processes, the base constituent flow rate and concentration affects 
the gain, time constant and delay of the process and thus control system performance 
drastically. In industrial processes highly under damped behavior cannot be tolerated and 
may violate the safety of the plant. So it is a general practice that in such processes that 
fixed parameter controllers are tuned in high process gain condition to avoid any under 
damped behavior of the control system. But then the closed loop response of system 
in low gain condition will be very sluggish. This in most cases affects production rate. 
The underlying reasons for the variations are in most cases not fully understood. When
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the physics of the process is reasonably well known, it is possible to determine suitable 
controller parameters for different operating conditions by linearizing the models and using 
some method for control design. Most industrial processes are very complex and not well 
understood. It is neither possible nor economical to make a sound investigation of the 
causes of the process variations. If controller parameters would change on recognition of 
process parameter changes, then better performance can be achieved, hence the need for 
adaptive control.

1.2 Adaptive Controllers

As seen in the experiment on the temperature control system with fixed parameter con­
troller, the system performance changes with process dynamics. In practice there are many 
different sources of variations, and there is usually a mixture of different phenomena. The 
problem of maintaining system performance can be overcome if the plant transfer func­
tion or plant state equation can be identified continuously, and the changes in the transfer 
function or state equation of the plant are compensated by varying adjustable parameters 
of the controller. Thus adaptive control is required to guarantee system performance over 
wide variations of plant parameters [4]. An adaptive control system is one that continu­
ously and automatically measures the closed loop dynamic characteristics of the control 
system, compares them with the desired closed loop dynamic characteristics, and uses the 
difference to vary adjustable system parameters (usually controllers characteristics) and 
generate an actuating signal so that the control system performance can be maintained 
regardless of the process changes. Alternatively, such a system may continuously measure 
its own performance according to a given performance index and modify its adjustable 
parameters so as to maintain performance regardless of the plant changes. There are also 
situations in which the key issue is variations in disturbance characteristics affecting the 
system. For e.g. in process control, the key issue is often to perform accurate regulation 
of quality variables against disturbances. In such cases, use of an adaptive controller as 
feedforward compensators have been found particularly beneficial. The reason for this is 
that feedforward control requires good models and feedforward model dynamics can change 
independently of the process dynamics, so in conventional implementation of feedforward 
controls, the feedforward model is always approximated [4]. Another reason is that it is 
always difficult and time consuming to tune feedforward loops because it is necessary to 
wait for a proper disturbance to occur.

An adaptive controller mainly involves identification of dynamic characteristics of the 
plant, decision making mechanism to achieve desired closed loop dynamics based on the 
identification of the plant and modification or actuation in controller parameters based on 
the decision made. Adaptive control techniques are classified in three major categories as 
gain scheduling adaptive control, model reference adaptive control and self-tuning adaptive 
control [4, 6].

Sometimes it is possible to find measurable variables that correlate well with changes in
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process dynamics. Then these variables can be used to change the controller parameters. 
This approach is called gain scheduling as the scheme schedules the controller to compen­
sate for changes in the process. A gain scheduling adaptive controller can be regarded as a 
mapping from process parameters to controller parameters using a measurable or estimat- 
able variable(s). It can be implemented as a function or a lookup table. In process control 
the production rate can often be chosen as a scheduling variable, since time constants and 
time delays are often inversely proportional to production rate. In practice this scheme 
has limitation that there must be some measurable or estimatable variable(s) which can 
correlate changes in the process dynamics. This method also requires engineering efforts 
to determine the scheduling scheme. Gain scheduling requires that all operating conditions 
are covered in schedules and has limitations when the operating condition is due to un­
predictable disturbances, which were not covered in schedules. It can only be applied to 
slowly varying processes.

In model reference adaptive system (MRAS), the performance specifications are given 
in terms of a reference model of the closed loop system. This reference model tells how the 
closed loop system should ideally responds to the setpoint signal. In the MRAS the output 
of the model and that of the plant are compared and the difference is used to generate 
the signals to change controller parameters. The key problem in MRAS is to determine 
the adjustment mechanism to bring the difference between reference model performance 
and actual closed loop model to zero. This adaptive scheme can be direct or indirect. 
In the direct scheme, the adjustment rules tell directly how the controller parameters 
should be updated based on error between model and actual current closed loop system 
performance. In the indirect scheme, first plant parameters are obtained, from which 
controller parameters are obtained using adjustment rules [4]. The applications of frequency 
domain MRAS to a temperature control system with different system identification methods 
are studied in Chapters 2, 3, 4 and 5 of this thesis.

In self-tuning adaptive system the œtimates of the process parameters are updated 
and the controller parameters are obtained from the solution of the design problem using 
estimated parameters. The system may be viewed as an automation of the process modeling 
and design, in which the process model and the control design are updated at each sampling 
period. This adaptive scheme can also be direct or indirect. The controller in this scheme 
automatically tunes its parameters to obtain the desired properties of the closed loop 
system. This method is very flexible with respect to the choice of the underlying design 
and estimation methods. The detailed application of self-tuning adaptive scheme is studied 
in Section 1.4.

1.3 Process Model Estimation

On-line determination of process parameters is key element in adaptive control. A recursive 
parameter estimator appears as a component of self-timing adaptive controllers and model 
reference adaptive controllers. It appears explicitly in indirect adaptive scheme and im­
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plicitly in direct adaptive scheme. Dynamic processes evolve continuously in time and are 
nonlinear in nature. The most commonly used parametric models are linear in parameters 
and input-output variables. This eases the problems of estimation and controller design, 
which are to be performed on-line in adaptive systems [22, 23].

Three configurations of system identification are possible: closed loop, open loop and 
true open loop. In closed loop identification, changes from the set point to the closed loop 
process output are used to identify the closed loop system from which the known controller 
dynamics are factored out to obtain process information. In open loop identification, with 
the controller in automatic mode, the changes in the manipulated -variable and process out­
put are used to identify the process dynamics. In this case the loop is still closed and set 
point changes are applies to effect changes in manipulated variable and process response. 
In true open loop identification, the controller is put on manual and changes are applied di­
rectly to the manipulated variable and process response is used to identify the dynamics of 
the process. Many different approaches have been suggested and studied for system identifi­
cation in [2, 6, 4, 8j. The true open loop identification as well as non-parametric approaches 
such as frequency response schemes are often batch type identification schemes rather than 
on-line recursive schemes. From the point of use of the identification results in adaptive 
control, it is often desirable to have on-line recursive identification schemes. In adaptive 
control, the parameter estimation scheme should be iterative, allowing the estimated model 
of the system to be updated at each sampling interval as new data become available. The 
recursive identification procedures involve a parametric transfer function in the z-domain of 
known order whose parameters are estimated recursively using least-squares. The recursive 
form allows significant savings in computation. Instead of recalculating the least-squares 
estimate in its entirety, requiring the storage of all previous data, it is both efficient and 
elegant to merely store the ‘old’ estimate calculated up to current time, and to obtain the 
new estimates by an updating step involving the new observation only. The details of the 
recursive least-squares (RLS) methods can be found in [4, 6, 19, 23, 22].

To allow for changes in plant parameters standard RLS is modified as follows: In the 
case that plant parameters change abruptly but infrequently, the covariance matrix can be 
reset to large number. This implies that the gain matrix in the estimator becomes large and 
the estimate can be updated with a large step. In the case that plant parameters are slowly 
time-varying, a relatively simple exponential weighting of old data can be carried out. The 
most recent data is given unit weight, but data that is n time units old is weighted by A", 
where A is an exponential forgetting factor (0 < A <  1). A disadvantage of exponential 
forgetting is that old data is discounted even if recent process output or input does not 
contain any new information about the parameters.

The order of the transfer function has to be known a priori requiring preliminary iden­
tification for applying standard RLS. If the model is under parameterized then the system 
cannot be completely identified. One can assume an over parameterized model of the 
process. But these will result in computational overhead. Thus one has to assume the 
reasonable model of the system and this model should be able to capture the required dy­
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namics of the system. The system delay in discrete time can be calculated from knowledge 
of the continuous time delay and sampling interval. The knowledge of the delay can be 
incorporated in RLS estimation. For RLS used in estimation of z-domain transfer function, 
it is usually assumed that the controller is a  sampled-data controller with a zero-order 
hold at its output and that the identification experiment is carried out at the same rate, 
in synchrony with the control loop. In industrial process control, the controller is usually 
implemented in a distributed control system (DCS), where control calculations take place 
at much higher rate. The facility to add real-time identification code into a particular 
controller is often limited. Data logged into a database by a central DCS processor is 
usually at a slower rate then that of the control rate. If this logged data is used for the 
identification, then the zero-order hold assumption is invalid. If the identification is carried 
out on a separate computer different from the control computer, synchronization to the 
control computer is impossible and again the true identification will not be possible. If 
facility is available to add the identification code into the control processor, then due to the 
high sampling rate of this processor and the variable dead-time of the process, the order 
of the parameterized transfer function will be high, leading to a high dimensional, memory 
demanding and time consuming RLS algorithm. Some form of averaging of inputs and 
outputs is necessary to reduce the order of the transfer function [8]. It is normally the case 
in the identification of system that the data used are corrupted by the noise. The noise 
affects the results. Also the RLS system identification requires persistent input excitation 
condition. The input signal should have sufficient magnitude to cause the excitation of 
system dynamics and should be persistent. The requirement for persistent excitation can 
be met by adding ‘dither’ in the loop. In all experiments reported in this thesis the square 
wave is used for excitation of the setpoint. RLS requires an initial value of parameters 
and covariance matrix as a starting point for the recursion. The choices of these values 
will also influence the RLS estimate’s convergence. The performance of the RLS depends 
upon the noise in the system. If the noise is low, then RLS will converge quickly. This 
is because in low noise condition, the RLS is solving a set of (mostly) linear deterministic 
equations for unknown parameters [4, 6]. It is a requirement for RLS that the data used 
(i.e. process input and output in open loop system identification, and setpoint and process 
output in closed loop system identification) should be free of DC bias. The reason for this 
requirement is as follows: Linearized models that are being identified are valid for small 
perturbations around an operating point which in most industrial systems is set by the 
DC bias applied to process input. The setpoint perturbation applied to the closed loop 
system are usually considered as inducing small changes in both directions on this DC bias 
of the input without changing the DC bias and the linearized (transfer function) model 
seeks to find and explain only the behavior due to these changes. Also the effect of load 
disturbance on system identification can be neglected by removing DC bias developed due 
to integral action of the controller from process variables before feeding to RLS. The DC 
bias estimation can be implemented using a filter or taking mean of set of data. In case of 
the temperature control system used in experiments in this thesis, the system is noisy and
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the parameters and DC bias estimation take many samples to converge.

1.4 Experimental Application of Self-Tuning Adaptive Control 
System

When implementing an adaptive controller, the system identification procedure has to be 
carried out on-line. When the system identification converges, then the adaptive controller 
can design the controller parameters using design specification for implementation on the 
plant. While the system identification is under way for the first calculation of adaptive 
controller parameters, the system should be run on a conventional controller. Thus there 
is a definite need to know that the system identification has converged before adaptive 
control can be switched on. A sufilcient number of samples has to be taken to ensure system 
identification has converged before carrying out actual adaptive controller implementation. 
Also the switchover mechanism from conventional to adaptive controller has to be designed 
in such a way as to avoid unnecessary bumps to the process. The bumps are normally caused 
due to different levels of the control effort computed by existing conventional controller 
and the adaptive controller at the switchover sampling instant. This can be avoided if 
the integrator state of the conventional controller is taken into account when switching 
over to the adaptive controller. This bumpless switchover mechanism [15] is applied in the 
experiment performed here while switching over from conventional controller to adaptive 
controller and also when changing adaptive controller parameters in successive sampling 
instants to avoid unnecessary bumps in control effort. For purpose of estimation of process 
parameters in standard z-domain transfer frmction model, standard RLS with exponential 
forgetting factor is used in the experiment performed below.

A self-timing adaptive controller is implemented in the laboratory experimental set up 
(Appendix A) of a temperature control system as shown in Figure 1.2. The adaptive scheme 
is designed in the state space after the system is augmented with an integrator to ensure 
steady state tracking of step inputs and disturbance rejection [6, 25, 24]. The process delay 
estimated from the time domain response of the identification experiment performed for 
process in low, medium and high fan speed was negligible. The process can be modeled 
as a first order process in continuous time domain. The z-domain transfer function of 
the process given by Equation (1.1) is assumed reasonably parameterized to capture the 
required dynamics of the process at a sampling period of 400 ms.

The state space model of the system with an augmented integrator state a/t is given by 
Equation (1.2).

Xk+l 0 1 0 ■ Xk 0 ■ 0 ■
*6+2 = — Û2 — tti 0 * Xk+l + 1 * ‘̂ k ] + 0 ♦ SPk
Ofc+1 . . -6i —&o 1 Otk 0 1
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Estimated Process Model.
( from RLS estimation in State Space.)

Controller Observer

Figure 1.2: Block diagram of self-tuning adaptive control scheme.

(1.2)

Vk =  [ 6i bo 0 ]
Xk

Xk+l
Otk

The adaptive controller design specifications were based on the quadratic performance 
criterion given in Equation (1.3). The control input Uk for the system is determined at 
each sample, which minimizes the performance index given by Equation (1.3).

00

J  =  E  xlQxk +  ulRuk (1.3)

where Q is positive-definite (or positive-semidefinite) symmetric matrix and R  is positive- 
definite symmetric matrix. The matrices Q and R  determine the relative importance of the 
error and the expenditure of control (effort) energy [25, 24, 26, 27]. The discrete Riccati 
equation was solved for to determine the optimal control vector gain matrix K (Figure 
1.2) with Q =  diag [0 2,0,1] and R =  5. An observer is needed to estimate the two states 
of the process (Equation (1.1)) to implement the controller. The observer gain matrix L 
was designed using the duality approach by solving the corresponding Riccati equation 
with Q =  diag [0,0] and i2 =  8 [9, 10, 4, 24]. The observer is always designed to be
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Figure 1.3: Process variables - setpoint, process input (manipulated variable) and process output under 
self-tuning adaptive control.

faster than the controller. The run time optimized C language code was generated using 
symbolic processing (Maple) software [14]. Open loop system identification method using 
standard RLS with exponential forgetting factor is used for process model estimation. The 
process input and process output are fed to RLS after removal of DC bias. The DC bias 
is estimated every 200 samples, by taking the mean of previous 200 data samples. The 
initial values for covariance matrix in RLS is 100 on each element, and all process transfer 
function parameters were initialized to value 0. A forgetting factor of 0.999 is used. A 
sampling time of 400 ms is used in the experiment. The results of the self-tuning adaptive 
controller applied to the temperature control system, based on the quadratic performance 
index minimization are shown in Figure 1.3.

Initially with fan in low speed and a conventional PI controller is used with P gain of 2 
and I gain of 1 up to sample number 1000. During this time RLS is used to identify the 
system. There after the adaptive controller is designed on each sampling instant and gains 
of the observer and controller are applied. Variation in process parameters is induced by 
varying the fan speed to medium speed at sample number 2055 and again to high speed at 
sample number 3000. Figure 1.3 shows setpoint, process input (manipulated variable) and 
process output. Note that the difference in the setpoint and output is due to bias on input 
amplifier as detailed in Appendix A.

Several conclusions can be drawn out of this experiment on self-tuning adaptive control 
and about system identification;
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Figure 1.4: Estimated DC bias in process input and input as fed to RLS, and DC bias in process output 
and output as fed to RLS.

1. The system designed on the quadratic performance index results in stable system as 
can be seen after switchover to adaptive control at sample number 1000.

2. The resulting system is also less aggressive in applying control effort than PI control 
(up to sample number 1000) due to the choice of Q and R.

3. The characteristics of an optimal control law based on quadratic performance index 
is that it is a  linear function of the state variables, which implies that one need to 
feedback all the state variables. This requires the state observer to estimate the 
unmeasurable states. This puts a lot of computational overhead.

4. The optimal control based on performance index designed here has the drawback that 
the transient response characteristics can not be met as required, over all process 
conditions. As a  general rule, increase in Q and decrease in R  values, results in fast 
transient response but the response is difficult to obtain in all process conditions using 
one value of Q and R  (i.e. Q and R  have to be adaptively changed to meet transient 
response specifications).

5. The variations in process dynamics introduced by varying fan speed at sample number 
2055, resulted in the change in process input (control effort) level due to the change 
in process parameters, particularly process gain as can be seen in Figure 1.3. The DC 
bias value in control effort has changed too, but it is difficult to sense this situation

10
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and estimate DC bias instantaneously. The estimation of DC bias requires sufficient 
number of samples. The estimated DC bias and process variables after removal of DC 
bias are then fed to RLS are shown in Figure 1.4. The wrong DC bias estimate used 
just after process condition has changed, results in poor data fed to RLS as can be 
seen in input and output fed to RLS in Figure 1.4. The RLS estimates resulting from 
these data are incorrect. The controller designed on these estimates deteriorates the 
performance of the system. This is a vulnerable situation for all adaptive controllers. 
While many schemes are available for DC bias estimation, they all take some time to 
estimate the bias. Consequently, adaptive control design must have a higher margin 
of stability against periods of poor parameter estimation.

6. The situation is usually aggravated as RLS estimates require some samples to converge 
to the correct process model after a process change. The convergence rate can be 
increased by resetting the covariance matrix, but it is difficult to implement, as it is 
difficult to sense the process variations.

7. It is worth noting that once the process input or process output went into saturation 
(attaining maximum or minimum limit), true identification of process can not be done. 
The saturation limit for the experimental set up is due to maximum output lim it, 
of output amplifier and minimum is due to heater circuit behavior. The minim um  
saturation limit for process input is 0 volt and maximum saturation limit for process 
input is 14.3 volt. The process input applied outside minimum and maximum limit 
has no effect on process output. As shown in Figure 1.3, the process input went 
into such saturation at high speed at about sample number 3250 and onward. Even 
though the persistent exciting signal is provided at setpoint, it has no effect on process 
output as process input is in saturation. For practical implementation of any adaptive 
controller, one has to make sure that ‘persistent excitation’ condition is maintained 
while carrying out system identification at RLS input and output.

1.5 Conclusion

Adaptive controller is required for maintaining system performance in processes which 
vary considerably. The self-tuning adaptive control system designed in this chapter did not 
meet the requirements. Even though it gives a dominantly stable system, it is difficult to 
guarantee the system performance with a single set of Q and R  values. There is a need for 
adaptation of Q and R  i.e. performance specifications must be met by a secondary adaptive 
control loop. The change in control effort level when the process dynamics changes has 
severe effect on system identification. The effect is again worsened by slow response of the 
control system due to poor choice of values of Q and R  for this new condition of the process. 
With self-timing adaptive control, it is difficult to guarantee system performance over all 
process conditions unless secondary adaptive performance control loops are provided. Other 
methods have to be tried which guarantee the system performance (besides stability).

11
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Model reference adaptive system (MRAS) using frequency domain performance speci­
fications is studied in Chapter 2, 3, 4 and 5 of this thesis. The importance of designing 
adaptive control using frequency domain performance specifications are discussed and the 
experimental results of such MRAS using open loop system identification is provided in 
Chapter 2.

Chapter 3 discusses the importance of closed loop system identification over open loop 
system identification. The experimental results and analysis of results showing associated 
problems in performing closed loop identification are detailed.

Chapter 4 emphasis the importance of non-parametric system identification methods. 
The application of MRAS using bandpass filters approach (non-parametric method) for 
system identification is provided.

An alternative approach to system identification is tried in Chapter 5 using steady- 
state Kalman filters. Use of Kalman filters for DC bias estimation is demonstrated and 
compared with conventional methods. The advantages and disadvantages of performing 
system identification using Kalman filters over bandpass filters are discussed.

12
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Chapter 2

M odel Reference Adaptive Control 
System  Using Frequency Domain 
Performance Specifications And 
Open Loop System  Identification.

2.1 Introduction

In model reference adaptive system (MRAS), the desired performance is expressed in terms 
of a reference model. As already seen, self-tuning adaptive system has difficulty in meeting 
required performance specification for all process conditions. In this previously designed 
self-tuning adaptive system, the position of the closed loop pol% depends on the identified 
plant model and specified values of Q and R. In MRAS, the controller parameters are 
obtained in such a  way that resulting closed loop system matches a specified reference 
model in input output properties. In all adaptive systems, there is always ambiguity in 
system identification due to model under or over parameterization, convergence of RLS or 
variations in plant delay at different conditions etc. An accurate adaptive controller can 
be designed if the process can be identified truly. Also many adaptive control systems 
“invert” the plant in some sense [4] and the cancellation of process zeros often creates 
problems in industrial systems. The reason is that, unstable zeros (outside the unit circle) 
are frequently created by choice of sampling rate vis-a-vis time delay of process. This leads 
in many cases to unstable control behavior [11, 4].

13
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2.2 MRAS Based on Frequency Domain Performance Specifica­
tions

In this approach to MRAS, controller parameters are obtained in such a way as to minimize 
difference between closed loop frequency response of reference model and resulting closed 
loop system with the identified plant [18, 28]. The main justification for this approach 
is provided by the observation (Figure 2.2 of this thesis) that the open loop frequency 
response of the identified plant exhibits faster convergence for a given process condition 
even though the coeflScients of over or under parameterized model identified by RLS varies 
and has not converged. This observation is justified by comparing frequency responses of 
the estimated model of a plant at different instances (for same plant operating condition) 
in the following experiment.

The process input (manipulated variable) and process output data from the temperature 
control system (Appendix A) operating under PI control with P gain of 2 and I gain of 1, 
sampling period of 400 ms and fan at high speed is used in an off-line identification. First 
the DC bias is removed from the whole set of data by subtracting the mean of the data from 
each datum value. Then bias removed input and output are fed to RLS. The open loop 
process model assumed is a second order model as given by Equation (1.1). The variations 
in coefiScients 01, 02,60 and 61 of the identified process model at each sampling instant are 
shown in Figure 2.1. The open loop frequency response plots of identified plant model 
at sample numbers - 20, 340, 360, 850 and 1024 are shown in Figure 2.2. The open loop 
frequency responses at different samples are practically the same in the lower frequencies up 
to the bandwidth of the closed loop system. The bandwidth of the closed loop system using 
the identified process model is about 0.25 rad/s. The differences in the frequency responses 
at much higher frequencies than bandwidth are due to noise corrupting the identification 
and possible convergence. It is important to note that even though the coefficient ai and 
02 in Figure 2.1 changes drastically between sample number 340 and sample number 360, 
the frequency response at those sampling instants remains unchanged for given process 
condition. The change in coefficients is caused due to the nature of RLS scheme. Such 
variations in coefficients may cause variations in controller coefficients in adaptive control, if 
designed directly on estimated process coefficients. These variations are however irrelevant 
as the process frequency response (and impulse response) are invariant to these coefficient 
values.

Advantages of frequency response based design in adaptive control system can be sum­
marized as:

1. The frequency response is unique for the process condition, even if the coefficients 
of the identified process model through RLS changes. The adaptive controller de­
signed based on the frequency response will also be unique, irrespective of changes in 
coefficients of the identified process model.

2. RLS is said to have converged when coefficients attain steady values for given process

14
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Figure 2.2: Frequency responses of estimated process model at sample numbers - 20, 340, 360, 850 and 
1024.
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condition [6]. From Figure 2.1, RLS convergence takes about 800 samples. The RLS 
convergence however requires just 20 samples to identify reasonably the frequency 
response of the process as is evident in Figure 2.2. The faster convergence of RLS in 
terms of frequency response will be of great benefit when the process dynamics change 
and there is a need to update adaptive controller as soon as possible to meet required 
performance of the control system.

3. The well proven different approaches of robust frequency domain design can be applied 
easily [9, 10].

4. The closed loop performance model can easily be formulated in accordance with the 
required specification in terms of the natural frequency, damping factor and time delay 
as a second order model with time delay. For a second order system, the correlation is 
well established between the transient response and frequency response. This knowl­
edge can be incorporated easily in specifying the closed loop performance model in 
frequency domain.

5. The stabiUty robustness of the closed loop system can be guaranteed by specification 
on the phase margin and gain margin.

6. Plants with uncertainties can be handled well by the frequency response method [3|. 
Most of the problems arising in the adaptive control due to under or over parameterized 
model can be handled well.

7. The system can be designed such that the effects of the noise are minimal by controlling 
the bandwidth of the system.

8. When designing adaptive FID controller, the effect of each controller parameter is well 
understood. If adaptive PI controller is to be implemented, the effect of P or I gain 
variations on system is qualitatively known. This prior knowledge is useful and can 
be incorporated easily by putting some constraints over controller parameters. This 
is very useful at the time when process condition changes result in unreliable RLS 
estimates, which eventually result into impractical controller parameters.

2.3 MRAS Based on Frequency Domain Performance Specifica­
tions - Simulation Results

The MRAS based on frequency domain performance specifications is simulated here. The 
block diagram describing the MRAS is shown in Figure 2.3.
The simulated process consists of a continuous time process transfer function given in 
Equation (2.1).

G(s) ^ k { ^  (2.1)
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Figure 2.3: MRAS based on frequency domain design specifications.

The process parameters and their changes during the simulation are detailed as follows:
For time 0 to 40 s -  Process gain K =  2, Time constant — 0.5 s, Delay =  0.8 s.
For time 40 to 120 s -  Process gain K =  0.5, Time constant =  0.25 s. Delay =  0.4 s.
For time 120 to 200 s -  Process gain K =  2, Time constant = 0.5 s. Delay =  0.8 s.
The adaptive controller (PI) transfer function in the z-domain is given in Equation (2.2), 
where T denotes the sampling period and Kp  and K[  are the P gain and I gain respectively 
as estimated on each sample when adaptive control is implemented.

KiTC{z) =  ATp +
1 -  2“^

(2 2)

The PI controller updates manipulated variable every 50 ms. The manipulated variable is 
held at its last value until the next controller update (zero-order hold). The load distur­
bances are assumed to act on the process output additively and have dynamics given by 
Equation (2.3).

d(t) = Adi,e '/'%"cos(wa,t) (2.3)

^dis, Tdist and Udu are the amplitude of the disturbance, the decay rate of the disturbance 
and the frequency of the disturbance in rad/s respectively. Time t  in Equation (2.3) is 
measured from the start of the disturbance, not from the start of the simulation. A cosine
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form is used so that by setting u;*-, to zero and by setting large value for relative to 
total simulation time, it is possible to generate step disturbances.
The closed loop reference model assumed is a second order model as given in Equation 
(2.4).

+ ioi ( )
Where is natural frequency, Ç is damping factor and r j  is time delay. The time delay in 
Equation (2.4) is considered as zero for this simulation. This model is transformed into a 
discrete time model given in Equation (2.5) [10].

k
z2 — 2e“ ‘̂*'«cos(v'l — $^Wf)z +

Where uig is normalized natural frequency (wj =  w^T). The value of k  in Equation (2.5) 
guarantees the steady state DC gain of 1 and is given by Equation (2.6).

k = l -  2e-( '^ 'cos(\/l-^W f) +  (2.6)

In the simulation the value of tug used is 0.95 rad and ^ is 0.8 in the simulation. The 
frequency response of the reference model and resulting closed loop system model were 
compared at 13 frequency points, starting at normalized frequency 0.001 rad and then 
incrementing with step size of 0.05 rad. Thus the normalized frequency range of 0.001 rad 
to 0.601 rad is used. The frequency range selected is below u>g, where noise effects on system 
identification are low. With set point excitation period of 20 s (i.e. normalized frequency 
of 2ir/2Q X T{T  =  0.05) =  0.0157 rad), the normalized frequency range (0.001 to 0.601 
rad) covers the required odd harmonics (upto 19‘* odd harmonic) of the setpoint excitation 
frequency. The specifications for the stability margin requirements were specified in terms 
of phase margin and gain margin. The system is designed so that phase margin of at least 
45" and gain margin of a t least 8 dB are maintained in obtaining the controller parameters 
at each sampling instant.
For purpose of system identification, standard RLS using open loop identification is used. 
The delay assumed is 0.4 s for nominal process condition. The delay of 0.4 s with controller 
sampled at 50 ms results into delay of 8 samples, which is incorporated in discrete model. 
The discrete model assumed is an over parameterized model with delay of 8 samples as 
given by Equation (2.7). The forgetting factor of 0.99 is used. Initially, all elements of 
CO-variance matrix and all coe&cients of the model are set to 0.

To obtain PI controller, which minimize the difference between frequency response of closed 
loop reference model and resulting closed loop system, the simplex method [3, 7, 12] for
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function minimization is used. The maximum iterations allowed in the optimization pro­
cedure in obtaining P and I gains at each sampling instant is set to 20. This is required to 
guarantee computations finish within a sampling period. The best value of P and I gains are 
those which give global minimum difference between firequency responses (i.e. frequency 
response of closed loop reference model and frequency response of resulting closed loop 
system with current estimated value of P and I gains) without violating stability margin 
requirements. The optimization is stopped at any instant when the simplex size is reduced 
to 0.1 [7] (i.e. less than ±0.1 changes in gains) or when ‘error’ (measure of difference be­
tween closed loop frequency responses) is less than predetermined value or 20 (maximum) 
iterations are reached. The ‘error which is minimized by optimization procedure is sum of 
‘error’ at each frequency point considered. The ‘error’ at each frequency point is obtained 
as an absolute value of complex error, divided by the corresponding normalized frequency. 
The division by frequency ensures higher weighting of errors at lower frequencies. This 
weighting is implemented because of greater confidence in lower frequency response data 
than higher frequency response data due to higher noise levels in high frequency regions 
and the effects of sampling affecting identification [8, 2]. The complmc error is the difference 
between the frequency response (complex) of the reference model and the current closed 
loop response computed using the identified process frequency response (process model 
identified through RLS) and estimated current P and I gains. The constraints on stability 
margins are applied as discussed in [3].

The process is simulated in a digital computer with a fine time step of 0.001 ms and 
all time constants and time delay have a minimum resolution of the same .001 ms. The 
setpoint is «ccited by a  square waveform with amplitude ±  1 and a period of 20 s. The 
setpoint waveforms have no noise added. The setpoint period so selected ensures that the 
closed loop system tracks the setpoint before the next bump is appUed i.e. steady state is 
achieved. Process output measurements are assumed to be corrupted by Gaussian random 
noise with variance of 1. The process input constrained to ±10. A disturbance of amplitude
0.3, period 5.5 s and decay time constant of 15 s is introduced at a time of 120 s in the 
simulation. The process is simulated initially up to 40 s with constant P gain and I gain 
of 0.2 and 0.5 respectively, for RLS to converge and estimate the process model. There 
after an adaptive PI controller is designed at each sampling instant. The P and I gains 
are evaluated at each sampling instant and are applied without constraints. The results of 
the simulation showing process variables - setpoint, process output and process input are 
shown in Figure 2.4. The value of P and I gains computed and applied by the adaptive 
method being considered (after time of 40 s) are shown in Figure 2.5. In Figure 2.5, the 
solid line is P gain and dashed line is I gain. The ‘error’ used in optimization and the 
number of iterations of the optimization routine to obtain P and I gains on each sample by 
adaptive method (after time of 40 s) is shown in Figure 2.6. The phase margin and gain 
margin of the system on each sample is shown in Figure 2.7.

The results of this simulation can be summarized as:

1. The specified performance of the system is regained as per reference model whenever
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Figure 2.6: The ‘error’ as correlated to difference between frequency response of reference model and 
resulting closed loop system and number of iterations of optimization routine performed to obtain P and 
I gains on each sample.

process conditions were changed, as can be seen in Figure 2.4. The system took around 
1 period of excitation to regain performance after the disturbance and process changes 
were simultaneously applied at 120 s and onwards.

2. The P and I gains as shown in Figure 2.5 have some variations even when process is in 
same condition. These variations are caused due to the optimization procedure. This 
is not a limitation for practical application, because this can be overcome very easily 
if P  and I gains update is done with constraints.

3. As shown in Figure 2.4, the process input went into saturation after process changes 
and disturbance activated at 120 s, but the system regains control. The saturation 
is due to the aggressive PI gains prior to 120 s where process has a low gain and 
immediately after 120 s the process has a high gain.

4. Figure 2.7 shows that the gain and phase margin of system according to identified 
process model were maintained. When process changes a t 120 s (or immediately after 
the adaptive control is switched on at 40 s), stability requirements were violated. But 
the specifications were regained due to fast convergence of process identification in 
terms of firequency response.

5. Figure 2.8 shows the system performance with conventional fixed parameter PI con-
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troUer with P gain of 0.2 and I gain of 0.5. When process gain increases, the system 
gave under damped response and when process gain decreases it gives over damped 
response. The need for an adaptive controller to maintain required performance of the 
system in all process conditions is evident.

The results obtained in these simulation is experimentally evaluated in the Section 2.4.

2.4 Preliminary Application of MRAS.

The application of MRAS based on frequency domain design needs some preliminary in­
formation. They are:

1. As the identification of system is to be carried out in terms of the frequency response, 
an adequate (high) sampling rate is required. The sampling rate should be at least 
20 times faster than frequency (continuous) range of interest [8, 2, 3]. This may be a 
limitation in many older DCS systems. The requirement of sampling rate also enforce 
limitations on process model parameterization, maximum number of optimization it­
erations, number of frequency points considered etc. This is because the required 
computation has to be performed in the given sampling period.

2. It is required for MRAS implementation to specify suitable reference model. The 
MRAS based on frequency domain second order model design requires natural fre­
quency, damping factor and time delay. A preliminary knowledge of these parameters 
for the system under consideration is required. This may require an experiment on the 
actual system. If natural frequency is specified much higher, then the controller gains 
will be aggressive driving the control effort into saturation, which will affect further 
identification. If natural frequency is lower, then the system response will be very 
sluggish with low gains for controller. The information about time delay of the plant 
can be obtained by bumping setpoint and monitoring output response of the plant. 
The value of time delay together with sampling rate of the controller fixes the order 
(numerator) of discrete model. The damping factor should be specified adequately. 
If damping factor is specified much lower, then the gains (especially I gain) will be 
of high values driving the control effort into saturation. If damping factor is higher 
then the system response will be very sluggish. These are not limitations for practical 
implementation as the required parameters are easy to obtain for a given system.

3. The setpoint should be excited with sufficient magnitude and also with required period. 
The setpoint is normally excited with square wave. It is required that the excitation 
frequency should be such that it provides rich excitation in the frequency range of 
interest. The frequency of excitation normally should be around the first frequency 
point of identification. Also the magnitude of excitation affects the signal to noise 
ratio and Umits the frequency range for true identification. At higher frequencies.
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the effective magnitude in frequency spectrum of the signal drops and noise starts 
corrupting the identification [2, 8, 17].

To evaluate the need for additional information if any, the MRAS is applied to the 
temperature control system as described in Appendix A in a prehminary experiment. The 
reference model assumed is closed loop second order model as given in Equation (2.4) and 
its discrete model in Equation (2.5). The value of us used is 0.012 rad (normalized) and Ç 
used is 0.8. A sampling period of 50 ms is used. The is zero for closed loop reference 
model. The stability margin requirements of 45® and 8 dB for phase and gain margins 
were imposed. The reference model and stability margin requirements are kept constant 
throughout all experiments performed hereafter in this thesis. The frequency responses 
were compared at 11 frequency points, starting at normalized frequency 0.0025 rad and 
then incrementing with step size of 0.0009 up to 0.0115 rad. The step size so selected 
is to have sufficient number of frequency data (upto 11 points) in the required frequency 
range. Standard RLS is used for process identification. The discrete plant model assumed 
is second order model as given in Equation (1.1). The model is reasonably parameterized 
with two unknowns in numerator and two unknowns in denominator using the open loop 
system identification method. A forgetting factor of 0.999 is used. Initially, all unknown 
coefficients of model are set to 0. The ‘error’ is computed as described in Section 2.3. The 
smooth switchover from conventional controller to adaptive PI controller and also between 
each sample as adaptive controller gain changes is obtained by adjusting integrator state 
to provide bumpless transfer [15]. Negative P and I gains are not applied to the process, 
as they are gross errors made by the optimization routine. No other constraint on P and 
I gains or on process input are considered. The DC bias from process input and process 
output is computed every 2000 samples. The maximum number of optimization iterations 
for determining P and I gains on each sample is set to 25. The optimization is stopped at 
any instant when the simplex size is reduced to 0.01 (i.e. less than ± 0.01 changes in gains) 
or when ‘error’ is less than predetermined value or 25 iterations are reached. The setpoint 
excitation frequency is 0.01 Hz (period of 100 s). The conventional PI controller with P gain 
of 2 and I gain of 1 is used initially in the experiment. The adaptive controller is started 
at sample number 10001. The process is initially in low fan speed. No changes in process 
conditions were introduced in this preliminary experiment, as its goal is to evaluate the need 
for information for implementation of this MRAS scheme. The results of implementation 
of MRAS are shown in Figure 2.9. The process variables - setpoint, process input before 
bias removal, process output before bias removal, bias removed from input (dashed) and 
bias removed from output (dotted) are shown in Figure 2.9. The results of Figure 2.9 
show a stable system. The process input is noisy. Also the exact specifications of reference 
model are not satisfied as can be seen in Figure 2.9. The experiment reveals some more 
requirements for implementation of the MRAS, which are summarized below:

1. The P and I gains computed by adaptive controller along with setpoint excitation are 
shown in Figure 2.10. The P and I gains up to 10000 samples are computed gains by

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14 

12 

10 

8 

6 

: 4 

2 

0 

- 2

Process Input

Setpoint

Process Output

1̂
Sample No.

Figure 2.9: Process variables - setpoint, process input and process output, and DC bias in process input 
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I  Figure 2.10: P and I gains as computed up to sample number 10000 and applied thereafter by adaptive 
controller to system.
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Figure 2.11: Variations in coefficients of estimated process model a t each sample.

adaptive controller but are not applied, as the system was on conventional fixed gain 
controller. Only after switchover at sample number 10001 to adaptive control, are the 
gains actually applied. The solid line in Figure 2.10 is the P gain, while the dashed 
line is the I gain. The results show the tremendous impact of setpoint change on the 
controller gains, particularly P gain. We know that the ‘firequency domain design’ 
is based on steady state concepts. The concepts are however applied here to control 
and identify transients and fast dynamics of process. With adequately parameterized 
RLS model, it is logical to expect the effects of setpoint changes on the firequency 
response, which eventually affects the controller gains. This effect can be overcome by 
implementing a smoothing filter as given in Equation (2.8), on the coefficients of the 
estimated process model.

2/fc =  (1 -  ot)yk-\ +  Ô Vk (2.8)

In Equation (2.8), yk is actual value of coefficient calculated by RLS and yjtli and yk 
are smoothed value of the coefficient used in estimating firequency response.

2. There is the presence of high firequency noise in form of ‘spikes’ in process variables 
(e.g. spikes in process input and process output around sample number 20000) as can 
be seen in Figure 2.9. This is due to the A/D Card or other electronic components 
used in the system. It can be seen that spikes in process output at sample number 
20294, drives the P gain of controller to very low value. The gain is recovered later, but 
the spikes affect the system. The effect of the spikes can also be seen in Figure 2.11,
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Figure 2.12: Open loop frequency response of identified process at sample number 10000 in low fan speed.

which shows the values of the coefficients of process model computed by RLS on each 
sample. The spikes in the process variables, particularly in input and output as shown 
in Figure 2.9, and sudden changes in value of coefficients of RLS as shown in Figure 
2.11 are well correlated. The spikes can be removed from measured variables using a 
low pass filter, as spikes are normally high frequency noise. The low pass filter has to 
be implemented on all measured variables considered for system identification. This is 
because the filter causes phase lag, and this has to be equal on all variables to correctly 
identify the system. Thus it is required to filter process input and process output to 
remove ‘spikes’ and then use this filtered input and output for process identification.

3. In other preliminary experiments it was observed that sudden changes in bias also 
affects the gains of the controller. This bias change is caused not due to the process 
change, but due to number of samples considered in calculating bias. Due to this, use 
of bias removal based on the number of samples equal to number of samples in one 
period of setpoint excitation is required. This method is already implemented in the 
experiment performed here (DC bias is computed every 2000 samples which is equal 
to number of samples in one period of setpoint excitation (0.01 Hz =  100 s period =  
2000 samples in one period at a  sampling period of 50 ms), so the effect of sudden 
changes in bias via changes on RLS inputs and consequent changes in estimation are 
not seen in this experiment.
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4. The open loop frequency response of process model at sample number 10000 is shown 
in Figure 2.12. The phase cross over frequency is about 10 rad/s (unnormalized, 0.5 
rad normalized), which is much higher and not in the range of identification (0.0025 to 
0.0115 rad normalized). A different frequency range is required for determining phase 
margin and may be even for gain margin. This can be implemented by increasing 
frequency step size for finding approximate phase margin and gain margin.

2.5 Application of MRAS Using Open Loop System Identifica­
tion

The MRAS based on frequency domain design specifications using open loop system iden­
tification is now considered. The experimental conditions and model specifications were 
same as that of in Section 2.4. The requirements as identified in preliminary experiment 
performed on system in Section 2.4 are now implemented as follows:

1. The smoothing filter as given by Equation (2.8) with a  =  0.2 is implemented on the 
RLS coefficients.

2. To overcome effect of ‘spikes’ on identification, a low pass second order Butterworth 
filter with cut off at frequency (normalized) 0.63 rad (i.e. unnormalized frequency of 
12.6 rad/s.) is used [13]. The low pass filter is implemented on process input and 
process output. Bias is first removed from process input and process output, then 
they are low pass filtered and finally used in RLS for process model identification.

3. If the phase margin or gain margin is not determined in the frequency range of iden­
tification (0.0025 rad to 0.0115 rad normalized) then a further frequency step size of 
0.3 rad with 10 frequency points is used to determine phase and gain margins. In 
that case the frequency range to determine phase and gain margins is upto 3.0115 rad 
(0.0115 rad (maximum range considered for obtaining ‘error’) 4-0.3 * 10 =  3.0115 rad).

Initially, the process with low fan speed and with the conventional PI controller with 
P gain of 2 and I gain of 1 is used up to sample number 10000. There after the adaptive 
controller is applied. The variation in process variables - setpoint, input and output for 
different process conditions are shown in Figure 2.13. The PI gains are computed by 
adaptive controller up to sample number 10000 but not applied while thereafter they are 
applied to the system are shown in Figure 2.14. The solid line is P gain and dashed line is 
I gain.

The results can be summarized as:
1. When adaptive controller is implemented at sample number 10001 onwards, the system 

specifications were achieved as can be seen in Figure 2.13 and also in Figure 2.15 
(comparing closed loop frequency responses). With conventional fixed gain controller, 
the system response is under damped in the low fan speed case, but with adaptive 
controller the specification of ̂  =  0.8 is achieved and maintained.
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Figure 2.14: F gain (solid) and I gain (dashed) computed upto sample number 10000 and applied thereafter 
by adaptive controller.
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Figure 2.15; Frequency of responses of reference model (solid) and resulting closed loop system (dashed) 
at sample number 11000.

2. The closed loop frequency response of system for that process condition and that of 
reference model are shown in Figure 2.15 at sample number 11000. The match in 
closed loop responses is good. While the main goal in evaluating P and I gains is 
to make system response achieve specifications, exact match at all frequencies is not 
possible. This is due to the limited frequency range for comparison and a limited 
number of controller variables, namely the P and I gains of the controller.

3. The effect of setpoint excitation on P and I gains as seen in Figure 2.10 is now overcome 
in Figure 2.14 by providing the smoothing filter of Equation (2.8) on RLS coefficients. 
The P and I gains are shown in Figure 2.14, have low correlation to setpoint changes. 
Another advantage of filtering RLS coefficients is that it also helps in reducing the 
effects of any spikes which are not fully filtered out by the low pass filter. The most 
significant disadvantage of the filter is that it slows fast updates in RLS coefficients 
and therefore slows down identification.

4. With the implementation of a low pass filter, the effects of spikes in process variables, 
is reduced as can be seen in Figure 2.16. The figure shows the variations in coefficient

02, 6q and 6i in the estimated process model a t each sample. The spike on the 
input/output still affects RLS coefficients, as can be seen for sample number 15708 
(spike on input), which causes sudden drop in P gain. But the system regains perfor­
mance fast by recovering the P gain. The disadvantage of filter on input and output
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Figure 2.16; Variations in coefficients of estimated process model at each sample.

is that it slows down identification and adds computational overhead. Low pass filter 
may or may not be needed for general implementation of this scheme depending on 
presence of spikes in general.

5. The process changes were introduced by changing fan speed firom low to medium speed 
at sample number 16800. The change in bias in process input can be seen in Figure 
2.13. The DC bias in low pass filtered input and output, and input and output as fed 
to RLS after removal of DC bias are shown in Figure 2.17. The convergence of DC 
bias in input can be seen at about sample number 22000. It took about 3 cycles of 
setpoint excitation for correct estimation of DC bias after the process changes were 
introduced. It is important to note that there is hardly any DC bias change in process 
output. This is because it is maintained to setpoint by the PI controller. The DC bias 
in output only changes when there is setpoint ‘DC bias’ changes. Also the change in 
DC bias level in output is avoided because the controller is aggressive enough to bring 
the error to zero after every setpoint excitation. If the controller is non-aggressive as 
in the self-tuning experiment in Chapter 1, the DC bias may change on the output as 
the controller fails to brings down error to zero within setpoint changes.

6. After the DC bias convergence to true value at medium fan speed at about sample 
number 22000, it took up to sample number 27000 for the system to follow specifica­
tions as can be seen from Figure 2.13 and also in Figure 2.20 (comparing closed loop 
frequency responses).
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Figure 2.17: Estimated DC bias in low pass filtered input and input as fed to RLS, and DC bias in low 
pass filtered output and output as fed to RLS.
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Figure 2.18: Open loop frequency responses a t sample numbers 25000 (dotted), 27000 (dashed) and 33000 
(solid).
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Figure 2.20: Frequency responses of reference model (solid) and resulting closed loop system (dotted) at 
sample number 33000 in medium fan speed condition.
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Figure 2.21: EVequency responses of reference model (solid) and resulting closed loop system (dotted) at 
sample number 46000 in high fan speed condition.

7. The open loop frequency response plots at sample number 25000 (dotted line), 27000 
(dashed line) and 33000(solid line) in medium fan speed condition of the identified 
process model are shown in Figure 2.18, to show the convergence of the RLS in terms 
of frequency response. The convergence of RLS in terms of ‘frequency response’ takes 
about 10000 samples (from sample number 16800 to sample number 27()00 approxi­
mately), i.e. 5 periods of excitation. The convergence is severely affected due to the 
DC bias change in process input due to process change. After sample number 27000 
and onward the system specifications were achieved for medium speed fan condition 
as seen in Figure 2.13 and Figure 2.20.

8 . Figure 2.19 shows the error computed at each sample and number of optimization 
iterations performed by optimization routine to calculate the P and I gains on each 
sample. The error settles down after system specifications were achieved. Also error 
increases whenever there is a change in process conditions. This behavior of error is 
of importance for practical consideration. The system identification by RLS requires 
persistent excitation. The excitation in setpoint is only required when system identifi­
cation needs to be carried out i.e. only when plant parameters change. The continuous 
excitation of the system is not acceptable in industrial controls as it may affects the 
quality of the product. Instead a  scheme can be hypothesized using the error and 
identified model to start and stop the mccitation. For a given plant condition and with 
excitation in setpoint, the identification of system can be carried out continuously
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Figure 2.22: Frequency responses of reference model (solid) and resulting closed loop system at sample 
numbers - 11000 (low fan speed - dashdot), 33000 (medium fan speed - dotted) and 46000 (high fan speed 
- dashed).

until the error converges or reduces to the predefined value. Then the identification is 
not required and excitation can be stopped. The controller gains and identified model 
should be held constant for that condition of plant. A scheme has to be implemented 
to identify process change. This can be done using last identified model of the plant 
on each sample. For given input sequence, the estimated output of the plant can be 
computed using the last identified model. This estimated output could then be com­
pared with actual plant output. The difference between them beyond a threshold can 
be used to identify a  situation where the process has changed and once again to start 
the excitation and identification until error convergence is achieved. Care has to be 
taken that disturbances affecting the process do not falsely trigger adaptation.

9. Process change is again applied at sample number 33900 by changing the fan speed 
firom medium to high speed. The specifications were achieved after about 4 cycles of 
excitation as can be seen firom Figure 2.13 and also in Figure 2.21 (comparing closed 
loop firequency responses).

10. A further process change is applied at sample number 46500 by changing the fan speed 
to medium speed firom high speed. As can be seen in Figure 2.13, the system once 
again converges to the required specifications.
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11. Finally, a  process change is again applied at sample number 55000 by changing the 
fan speed to low. Initially, the system response is under damped as expected due to 
change of process gain from low to high. The specifications however are achieved after 
about 5 cycles of excitation as can be seen in Figure 2.13.
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Figure 2.23: Open loop frequency responses of identified process model in low fan speed at sample number 
11000 (dotted), medium fan speed at sample number 33000 (dashed) and high fan speed at sample number 
46000 (solid).

12. The trend observed from Figures 2.13, 2.14 and 2.19 is that when system identification 
converges, the error and controller gains also converges meeting the specifications as 
required for all the process conditions.

13. The closed loop responses at different sample and in different process conditions are 
shown in Figure 2.22. The solid line is closed loop response of reference model. The 
dashdot line is closed loop response of system in low fan speed condition at sample 
number 11000. The dotted line is closed loop response of system in medium fan speed 
condition at sample number 33000. The dashed line is closed loop response of system 
in high fan speed condition at sample number 46000. Reasonable match between 
responses of reference model and the closed loop system is seen particularly upto -10 
dB in magnitude and —150" in phase in all cases.

14. The trend in process input can be observed for different process conditions. With 
the process in low fan speed (high process gain), the control effort required is less 
to achieve same setpoint change, than that in high fan speed (low process gain). To
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achieve the specifications the gains on controller has to be higher in low process gain 
than in the high process gain condition. This can be seen in Figure 2.14.

15. The open loop frequency plots of identified process model at different process condi­
tions are shown in Figure 2.23. In this figure, the dotted line is frequency response in 
low fan speed condition (sample number 11000). The dashed line is frequency response 
is in medium fan speed condition (sample number 33000). The solid line is frequency 
response in high fan speed condition (sample number 46000). The plots were obtained 
from the frequency response of identified process model after the system identification 
converged and the specifications were achieved by the adaptive controller.

2.6 Conclusion

The MRAS implementation with frequency domain specifications based on frequency re­
sponse and using open loop system identification has been studied and experimentally 
demonstrated. The scheme is able to perform as per the specifications in all process condi­
tions. The practical implementation requires specific issues to be addressed as demonstrated 
in this chapter. The change in DC bias in process variables, when process changes, affects 
the identification severely unless the bias is appropriately factored out. An approach to 
DC bias estimation has been applied in this chapter.
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Chapter 3

Model Reference Adaptive Control 
System  Using Frequency Domain 
Performance Specifications And 
Closed Loop System  Identification.

3.1 Introduction

The closed loop system identification uses the setpoint and process output for system 
identification. In this method of identification, first the closed loop system is identified 
fiom which the controller dynamics are removed to obtain open loop process information 
[8, 19, 20]. If T{z) denotes the closed loop discrete time transfer function, then for unity 
feedback system, it is given by Equation (3.1).

Where G(z) is open loop process transfer function and C(z) is controller transfer function. 
Equation (3.1) can be rearranged to obtain open loop process transfer function using closed 
loop transfer function and controller transfer function as:

There are two approaches possible for setting a  parametric model of the closed loop system 
in closed loop system identification. In the first approach, assuming the parametric model 
of the open loop process transfer function, compute the structure of closed loop parametric 
transfer function using controller transfer function. It is possible to set up RLS in such a  way 
to estimate directly parameters of the open loop transfer function. However in this approach 
the regression vector in RLS involves difference operation and usually therefore, has low
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signal to noise ratio, causing unreliable estimation of coeflScients [8]. This approach is 
therefore not very useful. A second approach to parameterization of the closed loop transfer 
function is to over parameterize it. In this approach the denominator is considerably over 
parameterized. It is now no longer possible to relate the estimated coefficients to the process 
transfer function parameters. However in this frequency domain approach of this thesis, 
the transfer function of the process is not needed, only its frequency response at some 
frequency points is required. Therefore this approach is suitable for MRAS in frequency 
domain and is used here.

3.2 Importance of Closed Loop System Identification

Importance of the closed loop system identification can be summarized as:

1. The primary advantage is that in all the feedback control systems the setpoint and 
process output are readily available in the digital control system for use in identifica­
tion.

2. As observed in Chapter 2, using open loop system identification, the DC bias change 
in process input (when the process changes) delays the identification of the plant 
model. The closed loop system identification only uses setpoint and process output, 
not the process input and so it has a possible advantage, viz. the DC bias change 
in process input when the process changes will no longer afiect identification and fast 
convergence of the RLS can be expected. The DC bias in output is not much affected 
by the changes in process conditions with reasonable PI controller as already observed. 
The anticipation of this major advantage is the motivation for investigating closed loop 
system identification over open loop system identification in adaptive control systems.

The over parameterization of closed loop model increases computational overhead. Also 
for practical implementation, issues arise due to fact that the open loop plant model is 
obtained using closed loop identified model and controller parameters. This means the 
change in controller parameters in adaptive controller could affect the change in open 
loop model, even if the open loop process condition is the same. This problem can be 
overcome by updating the controller after a certain number of samples when the open loop 
model converges instead of at every sample. After each update of controller parameter, the 
covariance matrix of the RLS is also reset to enable the new closed loop response to be 
identified. This approach delays fast update of the controller and will definitely affect the 
system performance when process changes and needs to update the controller as soon as 
possible. Also the controller gains will continue to be used up to the next update, even if 
the system does not meet required specifications.
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3.3 Application of MRAS Using Closed Loop System Identifica* 
tion

The MRAS based on frequency domain performance specifications using closed loop iden­
tification is applied to the temperature control system (Appendix A). The reference model, 
stability requirements, frequency points considered and all other experimental details are 
the same as that described in Section 2.4. The closed loop over parameterized model 
assumed is second order numerator and fourth order denominator as given in Equation 
(3.3).

rpr. ^  _________ bpZ-^+biZ-^__________
I + a^z-'^ + a2Z~^ + +Ü3Z-^ + Ü4Z-*

The choice of two coefficients in the numerator is motivated by the PI controller and con­
sidering first order process. The denominator however is considerably over parameterized. 
The DC bias from setpoint and process output is removed every 2000 samples. The DC 
bias removal from setpoint is required because it was noticed that function generator used 
in experiment generates DC bias. This may not be needed for general implementation. 
The adaptive controller parameters were updated and covariance matrix of RLS is reset to 
value of 100 every 8000 samples after switch over to adaptive control. It is assumed that 
the identification convergence might take 8000 samples after the controller parameters are 
changed. The process frequency response (real and imaginary part of transfer function) is 
computed at required frequency points using the relation given by Equation (3.2), for use 
in the optimization routine to obtain P and I gains. The run time optimized c language 
code was generated using symbolic processing (Maple) software [14].

Initially, the process with low fan speed and with conventional PI controller with P gain 
of 2 and I gain of 1 is used up to sample number 10000. Thereafter the adaptive controller 
is designed (every 8000 samples) and applied. The variation in process variables - process 
input, process output and setpoint are shown in Figure 3.1 for different process conditions. 
The applied P and I gains are shown in Figure 3.2. The sofid line in Figure 3.2 shows the 
P gain and dashed line is the I gain.

The results of the application can be summarized as:

1. After the adaptive controller is implemented at sample number 10001 with the system 
in low fan speed condition an under damped response is obtained, as can be seen in 
Figure 3.1.

2. The fan speed is changed to medium from low at sample number 20001. The system 
performance can be seen in Figure 3.1. Initially after the change in speed is applied, the 
system response is over damped. This is due to the gains of the controller are still that 
applied for low fan speed (high process gain). Finally, after the controller is updated 
with the gains obtained from system identification performed in medium speed the 
system response is under damped after sample number 32000. A process change is
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Figure 3.2: P gain (solid) and I gain (dotted) as applied by conventional controller upto sample number 
10000 and applied thereafter by adaptive controller at every 8000 samples.
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Figure 3.3: Estimated DC bias in filtered setpoint (solid) and setpoint as fed to RLS (dotted), and DC 
bias in filtered output (solid) and output as fed to RLS (solid).
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Figure 3.4: Frequency responses of reference model (solid) and identified closed loop system at sample 
numbers - 17000 (low fan speed - dashed), 34000 (medium fan speed - dotted) and 53000 (high fan speed 
- dashdot).
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again applied by changing fan speed to high from medium at sample number 36000. 
The system response is under damped after the controller gains are updated at sample 
number 50000, as can be seen in Figure 3.1. To study the effect of severe changes in 
process conditions, the fan speed is changed to low from high at sample number 54000. 
The system response is immediately very under damped, because the controller gains 
are as identified in high speed (low process gain) condition. The sustained under 
damped response can be observed in Figure 3.1. The required specifications were not 
achieved.

3. The DC bias removed from process output and setpoint are shown in Figure 3.3. As 
expected, there is hardly any change in DC bias in process output in different process 
conditions. The severe effect of DC bias on identification as experienced in open loop 
identification is overcome in closed loop identification.

4. The closed loop frequency responses at different process conditions are shown in Figure
3.4. The solid line is closed loop response of reference model. The dashed, dotted, 
and dashdot lines are closed loop responses of identified model in low (sample number 
17000), medium (sample number 34000) and high (sample number 53000) fan speed 
respectively. A reasonable match between frequency responses of identified closed loop 
and reference model is seen in Figure 3.4. The match in closed loop plots is however 
not as good as obtained with open loop identification in Figure 2.22.

5. The open loop frequency responses at different process conditions are shown in Figure
3.5. The dashed, dotted, and dashdot lines are open loop responses of process obtained 
from identified closed loop model in low (sample number 17000), medium (sample 
number 34000) and high (sample number 53000) fan speed respectively. The plots 
show that in low frequencies the magnitude identified is very low. This is due to 
the fact that the PI controller has very large magnitude in low frequencies, and as 
per Equation 3.2, the controller magnitude is in the denominator when obtaining the 
open loop response. Then small errors in T{z) at low frequencies severely affect the 
response calculations [1].

6. The disadvantage of using closed loop identification is that controller updates are 
slow. The severely under damped system may result for a long time as can be seen 
in Figure 3.1, for change in fan speed from high (low process gain) to low (high 
process gain) speed at sample number 54000. This situation is not acceptable in 
industrial systems. The sustained under damped behavior will result whenever the 
process condition changes from low gain to high gain conditions, until convergence is 
achieved and controller parameters are updated.

7. It can be observed in Figure 3.1 that the resulting system response is under damped 
even with the controller gains implemented (as shown in Figure 3.2) after carrying 
out identification without changing process conditions. After implementing controller 
gains at sample number 10001, the system response is under damped for low speed
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Figure 3.5: Open loop frequency responses of process at sample numbers - 17000 (low fan speed - dashed), 
34000 (medium fan speed - dotted) and 53000 (high fan speed - dashdot).

condition. After the fan speed is changed to medium from low at sample number 
20000 and carrying out the identification in the same process condition up to sample 
number 34000, the applied controller gains at 34001 makes the system response under 
damped for that process condition. Similarly in high fan speed condition too, the 
applied gains at sample number 50001 after carrying out the identification from sample 
number 36000 to sample number 50000, makes the system response under damped. 
The required specifications as given in reference model were not achieved. The under 
damped behavior of the system must be due to higher effort resulting due to higher 
gains on controller. The higher gains result due to the low gain of the open loop 
process (as observed in Figure 3.5) calculated in opening the loop using Equation 
(3.2) at frequency range considered in optimization routine to obtain controller gains. 
Since the open loop identification in Chapter 2 and PI gains computed from it led to 
better match in performance than from that in this chapter, it is obvious that open 
loop identification in Chapter 2 better reflects reality than the computed open loop 
response from closed loop identification in this chapter.
The under damped behavior of system in closed loop identification is now further 
investigated.
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3.4 Comparison of Identified Models Using Open and Closed 
Loop System Identification

The cause for under damped adaptive control performance obtained when using closed 
loop identification needs to be determined. The main reason could be under parameterized 
model or some other unknown phenomenon. An experiment is performed to identify the 
process using open loop and closed loop identification simultaneously to compare frequency 
responses obtained from both identifications. The setpoint excitation amplitude is kept high 
to rule out a  possible cause that the bad estimation is due to low setpoint excitation. The 
open loop model and closed loop model assumed is as given in Equation (3.3). All other 
experimental conditions were kept same as in Section 3.3. The adaptive controller is not 
implemented as the experiment is performed only for process identification. The controller 
with a P gain of 2 and an I gain of 1 is used. The frequency responses of open loop process 
model as identified by open loop and closed loop identification methods at sample number 
10000 are shown in Figure 3.6. The solid line shows the response of process model as 
identified by closed loop and dashed line shows the response of process model as identified 
by open loop identification method. It can be observed that the magnitude of process 
identified by closed loop method is about 2 dB lower than that of open loop method in the 
frequency (normalized) range 0.0025 to 0.0115 rad, which is used for obtaining controller 
gains when adaptation is performed. To rule out effect of noise at considered sample instant, 
the plots were compared at many samples but similar results were obtained. As discussed 
in [4], a linear feedback of sufficiently low order may introduce linear dependencies among 
the columns of the measurement matrix in RLS and then parameters can not be determined 
uniquely. The problem with lack of identifiability due to feedback can be overcome by over 
parameterization of the model [4]. To confirm that this phenomena (i.e. lower magnitude 
in closed loop identification) is not caused due to the under parameterized closed loop 
model, an offline RLS simulation on the same input/output data is performed assuming 
over parameterized model. The over parameterized model assumed for both identification 
methods is order numerator and 15̂ * order denominator as given in Equation (3.4).

The open loop frequency responses of the identified process at sample number 10000 with 
both identification methods with over parameterization is shown in Figure 3.7. The solid 
line shows the response of process model as identified by closed loop and dashed line 
shows the response of process model as identified by open loop identification method. The 
same difference in magnitude plot is obtained. This rules out the possibility that model 
considered in Equation (3.3) was an under parameterized model.

It is observed that in closed loop identification, the process gain identified in low fre­
quencies is low. This is due to high controller gain in low frequencies. This problem could 
be avoided by guaranteeing a DC gain of unity in identified closed loop model. Assuming
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Figure 3.6; Open loop frequency responses of process as identified in open loop (dashed) and closed loop 
(solid) identification method at sample number 10000.
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Figure 3.7; Open loop frequency responses of process as identified in open loop (dashed) and closed loop 
(solid) identification methods with over parameterized model at sample number 10000.
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Figure 3.8: Open loop frequency responses of process as identified in open loop (dashed) and closed loop 
(solid) identification method with guaranteed DC gain of unity in closed loop identification at sample 
number 10000.

the closed loop model as given by Equation (3.3), the unity DC gain can be guaranteed if 
Equation (3.5) could be satisfied all the time.

6o +
1 4-<2i HrIIg 4-123

=  1 (3.5)

Using Equation (3.5) with model as given by Equation (3.3) and eliminating 61 coefficient 
for setting up the regression vector, one can get relation as given by Equation (3.6).

Vk — Uk- 2  + 0,l{yk-l — Uk-2 ) + 0‘2{yk- 2  ~  «fc-2) +  O-ziyk-Z ~  ttfc-s)
+Û4(î/fc-4 — l^k-z) — bo{Uk-l — Ujt-2 ) (3.6)

The RLS can be set up to estimate the required coefficients in Equation (3.6). The 
value of 61 can always be obtained using Equation (3.5). The offline simulation on same 
set of data is performed again with guaranteed DC of unity in closed loop model. The 
open loop process model obtained in both methods by simulation is shown in Figure 3.8. 
The solid line shows the response of process model as identified by closed loop and dashed 
line shows the response of process model as identified by open loop identification method. 
As required the effect of controller gain in low firequencies is eliminated. But still the 
identification by closed loop method results in a lower gain. The phase matches exactly in
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Figure 3.9: Open loop frequency responses of process as identified in open loop (dashed) and closed loop 
(solid) identification method with over parameterized model and with P gain of 0.8 and I gain of 0.3 at 
sample number 10000.

both identification methods. FVom these studies (Figure 3.6, 3.7 and 3.8), it is evident that 
the higher PI gains in adaptive control, which make the system response under damped 
(Figure 3.1), were caused by lower process gain obtained in closed loop identification in the 
firequency range used in optimization routine to obtain adaptive PI gains. It is important 
to note that there is perfect match in magnitude plots at certain frequency from both 
identification methods as shown in Figures 3.6, 3.7 and 3.8. This frequency (normalized) 
is the same in all and is about 0.05 rad. Also closed loop identification always produces 
lower gain for process then open loop identification.

To investigate the effects of controller dynamics in closed loop identification, an exper­
iment is performed with different P and I gains. The P gain of 0.8 and I gain of 0.3 is 
implemented. The data from this experiment were used in an offline simulation for per­
forming comparisons. The over parameterized model for open and closed loop identification 
is as given by Equation (3.4). The open loop frequency responses of the process obtained 
from both identifications at sample number 10000 is as shown in Figure 3.9. The solid line 
shows the response of the process model as identified by closed loop and dashed line shows 
the response of the process model as identified by open loop method. The offline simulation 
on same set of data is performed again with guaranteed DC gain of unity in closed loop 
model. The open loop frequency responses of the process obtained at sample number 10000 
by simulation are shown in Figure 3.10. Again the magnitude plots at frequency 0.007 rad

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lor  ̂ 10"*
Frequency in rad -  normalized.

10" *

I
- 100»

10" *

Frequency in rad — normalized.
1”*

Figure 3.10: Open loop frequency responses of process as identified in open loop (dashed) and closed loop 
(solid) identification method with guaranteed DC gain of unity in closed loop identification and with P 
gain of 0.8 and I gain of 0.3 at sample number 10000.

matches from both identification as can be seen in Figures 3.9 and 3,10. The frequency 
responses at different samples were checked and same type of behavior was noticed. The 
frequency where magnitude plots in both identification matches is different with differ­
ent controller parameters. To show the effects of controller gains on closed loop system 
identification, the magnitude plots of process obtained in both identification methods with 
different controller gains and the frequency responses of each controller are shown in Fig­
ure 3.11. The figure shows the process open loop magnitude plots as obtained from open 
loop identification, closed loop identification with guaranteed DC and magnitude plot of 
respective controller. The solid line is response from closed loop identification. The dashed 
line in figure is the response from open loop identification. The dotted line is controller 
magnitude response. It is important to note that the frequency around which identification 
matches in both methods is the frequency at which the controller gains negatively equals 
the process gain in dB. This is logically true because in closed loop system the unity gain 
can be achieved when controller gain equals negative of process gain in dB. Thus true 
identification of the process through closed loop identification is not possible. It could be 
possible to design adaptive controller based on identification around this frequency (where 
controller gain equals negative of process gain). But as seen, that the adaptive changes in 
controller parameters changes this frequency, making it practically impossible to implement 
the closed loop identification in adaptive control.
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Figure 3.11: Open loop frequency responses of process as identified in open loop (dashed) and closed loop 
(solid) identification methods with guaranteed DC gain of unity in closed loop identification with P gain 
of 2 and I gain of 1, and P gain of 0.8 and I gain of 0.3 a t sample number 10000 with respective controller 
magnitude responses (dotted).

3.5 Conclusion

Closed loop system identification can overcome the effect of DC bias on identification. For 
use of closed loop identification in adaptive control, the change in controller parameters has 
to be implemented after certain samples, which sometimes results in unacceptable system 
response in the interim period. From closed loop identification, low frequency estimation 
of open loop process is poor and this was explored. Based on these, it is concluded that the 
closed loop identification method cannot be used in MRAS implementation in the frequency 
domain.
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Chapter 4

M odel Reference Adaptive Control 
System Using Frequency Domain 
Performance Specifications And 
Bandpass Filters For System  
Identification.

4.1 Introduction

Recursive online system identification methods are usually based on discrete-time transfer 
function models of the process with unknown coefficients, which are then estimated as 
already seen in Chapters 1,2 and 3. Traditional adaptive control techniques [4] are based on 
the estimated coefficients and therefore a basic requirement is a clear knowledge about the 
order of transfer function. The actual order of transfer function can vary considerably with 
the change in dead time of process in different conditions. If there is an order mismatch, 
then the coefficients of the parameterized transfer function are no longer correct. There 
are different alternatives for simultaneous estimation of order and parameter estimation, 
but these techniques usually call for a  large overhead of computation time, slowing down 
the identification process considerably and affecting the system performance when used 
in adaptive control. A different approach for system identification using bandpass filters 
which estimates directly the frequency response at a finite number of harmonics of setpoint 
excitation and studied in [2, 3, 8] can be used. The schematic of estimating the gain and 
phase shift at one harmonic frequency in the excitation and the corresponding frequency 
in the output is shown in Figure 4.1. The sampled process input and the sampled process 
output are fed in open loop identification using band pass filters and similarly sampled 
setpoint and the sampled output are fed in closed loop identification using bandpass filters. 
The required process variables are fed to a series of parallel channels, each performing
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Figure 4.1: Identification scheme using Bandpass Filters.

frequency response estimation at one frequency point. The frequency points are normally, 
the odd harmonic frequencies of the excitation frequency as the Fourier series expansion 
for a square wave is made up of a sum of odd harmonics. The output of the input bandpass 
filter (Xik) is phase shifted by —90® through a quadrature filter (Xat). Considering the 
setpoint excitation signal is square wave of frequency tOc, the output of the bandpass filters 
with center frequency at odd harmonics of the setpoint signal will be sine waveforms. Let 
the output (Xifc) of the input bandpass filter with center frequency Wg (1*‘ harmonic) be 
Ainsm{wct). Then the —90® phase shifted component (Xat) will be — A,„cos(ti;c<). Let the 
output of the output bandpass filter (Yk) be >lout sin(tüc^ — <f>), where <f> is the phase lag 
equal to phase shift of the process. Figure 4.2 shows Xik, X^k and Yk vectors. The RLS 
algorithm adjusts the coefficients C\ and C2 until the sum of the weighted output of the 
input bandpass and quadrature filter matches the output of the output bandpass filter {ÿk) 
as shown in Figure 4.1 and given by Equation (4.1).

C\Ain sia(wct) — Ca/lin cos(wct) = A„ut sin(w ct -  <p) (4.1)

The vectors Ci and C2 are shown in Figure 4.3. The relations given by Equations (4.2) 
and (4.3) are derived from the Figure 4.3.

sin^ =
C2

VCÎ +  C?
(4.2)

COSÛ = Cl (4.3)
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Figure 4.2: Vectors A'lfc, Agk, Yk and phase shift <f>.

The Equation (4.1) can be modified using relations given by Equations (4.2) and (4.3) and 
Equation (4.4) can be obtained.

Ain V C? +  C^(cos 6 sia{wct) -  sin 6 cos{wct)) =  A^ut sin(wct — (f>) (4.4)

The Equation (4.4) can be reduced to Equation (4.5) using trigonometric relations.

\JC iA -C l sin(wct - 6 )  = Aout sin(tUci — <t>) (4.5)

The required information for process gain and process phase shift a t harmonic frequency 
We can be obtained from Equation (4.5) by comparing amplitude and phase on both sides 
of the equation. The process gain and process phase shift is then given by Equation (4.6) 
and Equation (4.7) respectively in terms of C\ and C^.

Process gain =  =  \JCl -l-Cf
■Atn

C2Process phase lag =  0 =  0 =  t a n " i ( ^ )

(4.6)

(4.7)

The Equation (4.6) and Equation (4.7), which conveys required process information can 
be represented in complex form as Ci +  jQ .  Thus the process gain and phase shift at 
required harmonic frequencies can be obtained directly in this approach.

The advantages of using bandpass filters for identification are:

1. It is non-parametric type of identification and thus overcomes the problems associated 
with parameterization and order of the transfer function model in RLS.

2. The method directly estimates the magnitude and phase of the system at a finite num­
ber of frequencies and is suitable for MRAS based on frequency domain performance 
specifications.

3. The sampling rate of the identification experiment and that of the control loop can 
now be different. The synchronization between the two loops is not required. That
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Figure 4.3: Vectors C i and Cg.

means one can implement the identification experiment on a separate computer sys­
tem without disturbing the DCS (Distributed Control System) and update only the 
controller gains on the DCS [8].

4. In system identification using bandpass filters, the identification is performed only 
based on the information on the odd harmonics of the excitation frequency. Thus 
effect of noise on the identification can be reduced by controlling the bandwidth of 
the bandpass filters. A technique using guard filters for checking confidence in the 
identification experiment is available in [2, 8].

5. The bandpass filter system identification approach overcomes the effects of disturbance 
on identification. If a disturbance does not have a periodic component, it is well filtered 
by the bandpass filters and therefore does not affect estimates. If the disturbance is 
periodic, as long as its energy distribution lies outside the bandwidth of the bandpass 
filter, the disturbance does not affect the estimates. When a constant amplitude 
periodic disturbance affects the process and has energy distribution in the bandwidth 
of the bandpass filters, the resulting estimates are biased. In such an event, the 
knowledge about disturbance nature can be used to avoid its affect on identification 
by changing the setpoint excitation frequency [2].

The system identification using bandpass filters has limitation that the method can be 
used for identification only up to certain number of odd harmonics. The signal to noise 
ratio reduces with increase in harmonic number and at higher frequencies the noise starts 
affecting identification. The frequency range up to which reliable identification can be 
performed depends on magnitude and frequency of excitation. The excitation magnitude 
should be high enough, such that signal strength of its frequency spectrum should be higher 
than the noise in the system for true identification at that frequency. Any anticipated 
deviations in excitation frequency can be covered by increasing bandwidth of filters. But 
increase in bandwidth of filters will increase effects of noise on identification. Therefore it 
is preferred to maintain excitation frequency variations as small as possible.
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4.2 MRAS Using Frequency Domain Performance Specifications 
and Bandpass Filters for Open Loop System Identification.

The MRAS based on frequency domain design using bandpass filters for open loop system 
identification is applied to the temperature control system (Appendix A). The reference 
model, stability requirements and all other experimental setup are the same as that de­
scribed in Section 2.4. The sampling period is kept at 50 ms. The excitation frequency 
is chosen such that the identification is performed around the required bandwidth of the 
system. The excitation frequency chosen is 0.006 Hz. Five parallel channels of bandpass 
filters were designed, starting with center frequency a t 1** harmonic frequency (0.0019 rad, 
normalized) up to 9‘̂  (0.0169 rad, normalized) harmonic frequency of excitation frequency. 
All bandpass filters are fourth order Butterworth bandpass filters [13, 17]. The —3 dB 
bandwidth of each filter is 0.4 of the excitation frequency on either side from the center 
frequency of the bandpass filter (i.e. total bandwidth is 0.8 of the excitation frequency). 
The RLS parameters for each channel are: initial diagonal covariance of 100, forgetting 
factor for each channel is computed from desired one cycle forgetting factor [2] of 0.999 
in a period of the harmonic of the excitation passed by the particular channel’s filter and 
initial parameters Ci and Cg for each filter are 0. The forgetting factor so implemented will 
ensure uniform forgetting in RLS for all frequencies as required. The higher frequency will 
be forgotten faster as they change faster as compared to lower frequency. The DC bias from 
process input and process output is removed every 3333 samples. The process gain and 
phase information at crossover frequencies cannot be obtained accurately as the crossover 
frequencies are much higher than the range of identification (9‘* harmonic frequency). Thus 
in obtaining P and I gains, the phase margin and gain margin are inferred based on the 
gain and phase information at harmonic frequencies considered in identification. The phase 
margin is inferred at the harmonic frequency with gain nearest to 0 db. The gain margin 
is inferred based on the phase angle nearest to —180®. The DC bias removed data are then 
fed to the bandpass filters. The conventional PI controller with P gain of 2 and I gain of 
1 is used. Initially, the process with low fan speed and with the conventional PI controller 
is used up to sample number 10000. Thereafter the adaptive controller is designed and 
applied.
The results of the experiment are now discussed. The variations in the process variables - 
input, output and setpoint are shown in Figure 4.4. The P gain (solid) and I gain (dashed) 
as applied to the system are shown in Figure 4.5. The variations introduced in the process 
and the analysis of the results are summarized as:

1. After the adaptive controller is implemented at sample number 10001 the s}-stem in 
low fan speed condition seems sluggish as can be seen in Figure 4.4. The frequency 
response estimates for the open loop process for low fan speed at sample numbers - 
10000(+), 20000(o) and 25000(*) are shown in Figure 4.6. It can be observed that 
system identification at 10000 sample has not converged. The system gain as identified 
at sample number 10000 is higher than that identified at sample number 25000. The
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Figure 4.5: P gain (solid) and I gain (dashed) as applied by conventional controller upto sample number 
10000 and applied thereafter by adaptive controller.
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Figure 4.6: Open loop process frequency response estimates at 1** to (odd) harmonic frequencies at 
sample numbers - 10000(+), 20000(o) and 25000(*) in low fan speed.
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Figure 4.7: Open loop process frequency response estimates at 1** to (odd) harmonic frequencies at
sample numbers - 25000(e), 130000(-h) and 139900(o) in low fan speed.
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system response in such condition remains sluggish with lower gain on controller until 
the estimates converges.

2. The fan speed is changed to medium from low at sample number 25001. The system 
specifications seems to be achieved after about four cycles of excitation as can be seen 
in Figure 4.4.

3. The fan speed is again changed to high from medium at sample number 45000. The 
system seems to meet the required specifications. A disturbance is applied at sample 
number 65000 by blocking the air flowing through the system. The system immediately 
reacts to annul the effect of disturbance as can be seen by a sudden increase on 
controller gain values, to achieve performance. The disturbance applied is not periodic 
but affects the system.

4. The fan speed is changed to medium from high at sample number 75000. The system 
performance as can be seen in Figure 4.4 was not achieved and under damped results 
are obtained even after 7 cycles of excitation.

5. The fan speed is again changed to low from medium speed at sample number 100000. 
The system performance remains under damped even after a sufficient number of 
excitation cycles.

6. The P  and I gains estimated and applied to the system are noisy and makes the system 
noisy. This is due to large bandwidth of the bandpass filters used in the identification.

7. The identification at higher frequencies especially the 7*̂  and 9*̂  harmonics is noisy 
as can be seen in Figures 4.6 and 4.7. This is because the excitation signal strength is 
low at these higher frequencies and noise starts affecting the identification. Also these 
frequency points are beyond the bandwidth of the system.

8. The identification in this method is performed only up to certain limited number of 
frequencies. It was difficult to exactly determine stability margins. The exact stability 
margin cannot be determined from the data and used for obtaining P and I gain in the 
optimization routine. One has to interpolate or extrapolate for the stability margins 
based on the gain and phase data obtained through identification.

9. The sustained under damped behavior of the system resulting after the changes in 
process applied from low gain (higher fan speed) to high gain (lower fan speed) condi­
tions needs to be investigated. The frequency response estimates of open loop process 
as identified in low fan speed at sample numbers 25000(*), 130000(+) and 139900(o) 
are shown in Figure 4.7. At sample number 25000, it is assumed that the system iden­
tification must have converged as specifications were met as can be seen in Figure 4.4. 
It can be seen in Figure 4.7 that the system identification is not converging at all har­
monic frequencies for sample numbers 130000 and 139000. The identification (process 
gain) a t higher harmonics is converging but the identification at lower harmonics is
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much lower in magnitude. In the optimization routine to determine PI gains, the lower 
frequency estimate is weighted higher and so the higher controller gains are obtained 
making the system under damped. The same behavior was observed for under damped 
system behavior in medium fan speed. The slower convergence in lower frequency can 
be due to inadequate forgetting factor or inadequate bandwidth of the bandpass fil­
ter. Faster convergence of identification using bandpass filters can be achieved by 
increasing the bandwidth of the bandpass filters. The bandpass filters with different 
bandwidths and different forgetting factors were experimentally tried but convergence 
of identification was not fast enough to improve the MRAS in frequency domain using 
bandpass filters for identification.

Frequency in rad  -  normalized.

I
s -50

I
- 100>

10“ '10" *

Frequency in rad -  normalized.

Figure 4.8: Open loop frequency response estimates at sample numbers - 20000(4-), 30000(e) and 39000(«) 
in closed loop system identification using bandpass filters and open loop frequency response of process 
model as identified in open loop system identification (solid).

4.3 Closed Loop Identification W ith Bandpass Filters.

As observed in Chapter 3, closed loop identification leads to poor estimation of process 
frequency response at low frequencies. It is therefore important to evaluate bandpass 
filters for closed loop identification for adaptive control. The experimental conditions are 
the same as in Section 2.4 (Section 4.2). The setpoint and output are now fed to bandpass 
filters as required in closed loop identification. The system identification is performed up
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to sample number 39000. The open loop process magnitude and phase is obtained using 
Equation (3.2). The open loop process frequency response estimates are shown in Figure 
4.8. The figure shows the open loop frequency response estimates at to (odd) 
harmonic frequencies at sample numbers 20000(4-), 30000(o) and 39000(*). The soUd line 
is the frequency response of process model using Equation (1.1) as identified in offline open 
loop identification with RLS performed on same data upto sample number 39000. It is 
important to note that the system as identified (particularly process gain) on the lower 
frequencies viz. and O'"** harmonic frequency is as identified using open loop offline 
identification. This is significant as closed loop identification and adaptive control is now 
possible using bandpass filters. The draw back of using bandpass filters is again the same 
viz. that it requires much more samples for convergence. The long convergence of system 
identification is not acceptable for adaptive control.

4.4 Conclusion

The bandpass filters approach can be used to perform both, open and closed loop sys­
tem identification. Though it is flexible and useful for performing system identification, 
it has limitation for applying it in MRAS based on frequency domain due to slow conver­
gence. Fast convergence can be achieved by increasing bandwidth of filters, but then it 
was observed that the noise affects system identification. Bandpass filters with different 
bandwidths were tried experimentally but convergence of system identification was not 
fast enough to improve adaptive control. The system identification method using bandpass 
filters is therefore not suitable for applying to MRAS in frequency domain.
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Chapter 5

M odel Reference Adaptive Control 
System  Using Frequency Domain 
Performance Specifications And 
Kalman Filters For System  
Identification.

5.1 Introduction

An alternate approach to bandpass filters for system identification is to use Kalman filters 
[18, 2, 5]. The use of Kalman filter as a state estimator is described in many books such 
as [10]. The same approach can be used to estimate the states and their 90® phase shifted 
component at required center frequencies [18].

Given a noisy sinusoid with frequency fc, sampled at intervals of T s and a measurement 
process as described in Equation (5.1).

Xi cos{2rrfcT) sin(27r/cT) Xi
. ^2 lfc+1 -sin{2irfcT) cos{2irfcT) X2

+ Wk = A  X k t u k
ik

Yk = [ 1 0 ] Xi
X2 +  Ufc =  C Xk +  Vk (5.1)

One can design a steady-state Kalman filter (observer) to provide estimates of the vector 
Xk  as shown in Figure 5.1. As the covariance Q of the state noise vector Wk is reduced 
compared to the covariance R  of the measurement noise the steady-state Kalman filter 
transfer function approaches a narrow bandpass filter with center frequency fc [2, 18]. A 
signal Asin(2?r/c( — 4) can be expressed as given in Equation (5.2).

A  sin(27r/ci — 4) = Acos<f> sin{2ir fct) — A sin 0 cos(2irfet) (5.2)
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Delay.

Figure 5.1: Estimation scheme using Kalman filter.

The Equation (5.2) can be represented in the discrete time state space as given by Equation 
(5.3), where xi =  — A sin0 and xa — A cos <f>.

Asin(27r/ct — 0 ) =  Xi cqs{2-k f ^ T )  +  xg sin(27r/cT) (5.3)

The magnitude A and phase <f> of the signal can be obtained &om estimates Xi and xg. 
The Equation (5.4) expresses the relationship between magnitude A with x% and xg. The 
Equation (5.5) expresses the relationship between phase 0 with X\ and xg.

A  =  \Jx\-\-x\ 

0 =  tan"^(—
'  Xi /

(5.4)

(5.5)

The Equations (5.4) and (5.5) can be combined in complex form as given by Equation
(5.6).

hfc) == -- 2^1 (5.6)

The complex amplitude and phase information at each harmonic firequency can be obtained 
firom process input and process output. The obtained information can then be used to 
obtain firequency response estimates at that firequency using Equation (5.7).

(5.7)

Where /y) and Vy ) are complex amplitude phase information firom process input and pro­
cess output obtained firom estimator with center firequency. The magnitude and phase 
can be computed firom the complex amplitude phase information at each harmonic in the 
usual way. The gain matrix K is obtained as the optimal steady-state Kalman gain. The
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Figure 5.2: DC Bias estimation scheme using Kalman filter.

gain matrix K is a trade-off between fast response and high noise amplification, which is 
controlled by an appropriate choice of the weighting matrices {Q and R) associated with the 
quadratic performance measure. By using Q and R  as design parameters for designing the 
(Kalman filter) observer, one can generate filters with varying bandwidth. The bandwidth 
of such filters is indirectly related to the values of Q and R  and its specification in the 
design process is by trial and error [2]. This is a major disadvantage in comparison with 
filter designs such as Butterworth as seen in Chapter 4, where bandwidth is an explicit 
design parameter. An advantage of the Kalman filter technique is that it also provides 90" 
phase shifted signal in its second state.

In the Sections of this chapter, system identification based on Kalman filter is provided. 
In Section 5.2, the estimation of DC bias using Kalman filter is studied and compared with 
the batch method used so far in the thesis. In Section 5.3, the effect of noise on system 
identification using Kalman filter is studied. In Section 5.4, the system identification is 
performed using Kalman filter and compared with the results of identification obtained 
using bandpass filter.

5.2 DC Bias Estimation Using Kalman Filter

The drawback of the batch type DC bias method used in Chapters 2,3 and 4 was that 
DC bias was estimated only aifter a certain number of samples. The delay in DC bias 
estimation also delays convergence of system identification. The steady-state Kalman filter 
can be used to estimate DC bias on eadi sample. The input and output signals of the plant 
contains DC, harmonic components of the excitation signal and noise. It is thus required 
to remove the higher harmonics to achieve good DC estimation based on Kalman filter 
approach. To limit noise, a  low pass filter is also used. The scheme as shown in Figure
5.2 can be used for DC bias estimation from the signal. A 2”̂  order Butterworth low pass 
filter with cutoff (bandwidth —3 dB) at 1** harmonic frequency of excitation signal is used 
to remove all higher harmonics. Then the output of low pass filter is used in estimator to 
estimate the DC bias. The state space internal model description of the estimator is given 
in Equation (5.8).

Xfc+i = A  Xk ]

Yk = C  X k  -,
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Figure 5.3: DC Bias estimation using Kalman filter method (solid line) and conventional batch method 
(dotted line).

A =
cos(27t/ cT) sin(27r/cT) 0

— sin(27r/c!r) cos{2irfeT) 0
0 0 1

(5.8)

C - [ 1 0 1 ]

In Equation (5.8) fc is the first harmonic frequency of excitation used. T is the sampling 
period of the system. The estimator can be implemented as shown in Figure 5.1. The 
noise statistics for the Kalman filter, used as a bandwidth adjusting mechanism are Q =  
diag[l, 1,1] and A =  0.1. To study the performance of this method by simulation, the 
process data shown in Figure 4.4 are used. The DC bias estimated using Kalman filter and 
that obtained using batch method of Chapter 4 in process input and process output are 
shown in Figure 5.3 for comparison. The solid line in figure shows DC bias estimated using 
Kalman filter. The dotted line in the figure is the DC bias obtained using batch method 
estimating DC bias every 3333 samples as in Chapter 4.

The DC bias estimated using Kalman filter method converges faster as compared to 
batch method. Also the DC bias estimated using Kalman filter method is not constant 
over a number of samples and it starts responding immediately to the process change. The 
faster convergence of DC bias has the potential benefit of achieving faster convergence in 
system identification.
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Figure 5.4: System identification scheme using Kalman filter alone (Direct Approach) and Kalman filter 
along with bandpass filter (Indirect Approach).

5.3 Effect of Noise on System Identification Using Kalman Filter 
Method

The effect of noise on system identification using Kalman filter and bandpass filter is 
compared in this Section. The disadvantage of using Kalman filter for identification is that 
one has no explicit control over noise rejection properties of the designed filter. While effect 
of noise on system identification using bandpass filter can be controlled by bandwidth of 
the bandpass filter [2]. To investigate the effect of noise on system identification based on 
Kalman filter method, a simulation is performed as shown in Figure 5.4. Two different 
approaches are used here using Kalman filters for system identification. The low pass 
filter has a  cut off frequency equal to harmonic frequency of excitation (at 0.006 Hz). 
Thus the output of low pass filter is a  signal with DC, some harmonic content and low 
frequency system noise. Then the filtered signal is fed to estimator using Kalman filter 
set up with model as per Equation 5.8 and with fe =  0.006 Hz. The estimator separates 
directly the 1'  ̂ harmonic frequency state and it’s 90" phase shifted state and DC state of 
the signal (Direct Approach in Figure 5.4). This approach directly uses Kalman filter to
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estimate the state, which are then used for identification. In the other approach (Indirect 
Approach in Figure 5.4) the estimated DC state is used to remove DC bias fi:om the input 
signal. The DC bias removed signal is then fed to a bandpass filter with center frequency 
fe (!'* harmonic) and of bandwidth equals to 0.006 Hz (i.e. combine bandwidth of both 
sides of filter is 0.006 Hz). The output of bandpass filter contains less noise as noise outside 
upper and lower cut off frequency is filtered out. The filtered signal is then used for system 
identification using the Kalman filter as shown in Figure 5.4. The estimates and zg 
should be clean as compared to and Xk2 and should provide better identification. Such 
estimators are implemented for process input and process output signal. The estimates are 
then used to obtain magnitude and phase of the transfer function as described in Section 
5.1. The process data used are that shown in Figure 4.4. The results of both approaches 
are shown in Figure 5.5. The figure shows the magnitude and phase of the process transfer 
function at 1** harmonic frequency on each sample. The solid line in figure is magnitude 
and phase from direct approach using only Kalman filter. The dotted line is the results 
obtained by using bandpass and Kalman filter (Indirect Approach). The convergence of the

20

g

-2 0
0 2 4 6 8 1210

Sample No. 1<̂

100

a

I
Sample No.

Figure 5.5: Magnitude and phase estimated using Kalman filter alone (solid line) and Kalman filter with 
bandpass filter (dotted line).

system identification using the direct approach is faster than using bandpass filtered signal 
for estimation. The delay in convergence is due to use of bandpass filter. The magnitude 
and phase estimated directly are not much more noisy when compared with the indirect 
approach using bandpass filter. The disturbance effect at sample number 65000 in both 
method is comparable. The system identification using only Kalman filter takes about 8000
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samples for convergence when the process condition changes. This rapidity of convergence 
is a  great improvement over the bandpass system identification of Chapter 4. The system 
identification using estimator based on Kalman filter at required harmonic frequencies is 
discussed in the following Section.

5.4 System Identification Using Kalman Filter Method

The steady-state Kalman filter method for system identification is used here to estimate 
magnitude and phase at each odd harmonic up to harmonic frequency of excitation 
frequency. The data of Figure 4.4 are used for this purpose. The setpoint excitation 
frequency is 0.006 Hz. The process output and process input are fed to the low pass filter 
with cutoff at 9** (odd) harmonic frequency. This removes all unwanted higher harmonics 
and high frequency noise. The filtered signals now containing 1'  ̂ to (odd) harmonics, 
DC and system noise are fed to the estimator. The scheme is implemented as shown in 
Figure 5.1. The state matrix ‘A’ of Equation (5.8) is augmented for estimating states up 
to the 9‘*‘ harmonic which is given by Equation 5.9. The gain matrix K and matrix C are 
given in Equation 5.10.

0 0 0 0 0 ■
0 A 3 0 0 0 0
0 0 As 0 0 0
0 0 0 A7 0 0
0 0 0 0 Ag 0
0 0 0 0 0 1

. _  cos{2ir*i * fcT) sin(27r*i ♦ /cT)
Where Ai is given as: ^  ~  _  sin(27r*i ♦ %?) cos(2vr*i * fcT)

Where i =  1,3,5,7 and 9 as per the harmonic.

C 7 = [ l 0 1 0 1 G 1 0 1 0 l ]

(5.9)

K  =

Ki

Kio
Kic

(5.10)

The noise statistics for designing the Kalman filter are Q =  diag[l, 1 ,1,1,1,1,1,1,1,1,1] 
and R  =  0.1. The estimated states are then used to obtain complex transfer function as 
described in Section 5.1, at each harmonic frequency on each sample. The magnitude and 
phase are obtained from complex transfer function at each harmonic at every sample. The
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magnitude and phase of open loop process a t 1'*, 3'’'*, 5**, 7**, and (odd) harmonic 
frequencies are shown in Figures 5.6, 5.8, 5.10, 5.12 and 5.14 respectively.

To compare the convergence and effect of noise on identification using the Kalman filter 
approach to that of the bandpass filter approach, a simulation for process identification 
using bandpass filter approach is performed on same set of data. The magnitude and 
phase of open loop process at 1**, 3’’'*, S*'*, 7*'‘ and 9"* (odd) harmonic frequencies obtained 
at each sample using bandpass filter approach are shown in Figures 5.7, 5.9, 5.11, 5.13 
and 5.15 respectively. It can be observed that for all the process changes the Kalman 
filter approach takes only about 8000 samples to converge, as can be seen in Figure 5.6 
(also in Figures 5.8, 5.10, 5.12 and 5.14.). The slow convergence in system identification 
using bandpass filter approach can be seen in Figures 5.7, 5.9, 5.11, 5.13 and 5.15. The 
effect of noise on system identification is severe in identification using the Kalman filter as 
compared to that of using bandpass filters. The effect of noise on system identification can 
be compared by comparing magnitude and phase at each odd harmonic frequency obtained 
using Kalman filter approach to that of bandpass filter approach. The effect of noise on 
system identification using Kalman filter is due to characteristic of filter generated by the 
Kalman filter model. The magnitude frequency response of the Kalman filter model used 
for system identification and that of a bandpass filters for 1'*, 3’*'̂ , 5''* and 9‘̂  harmonic 
frequencies are shown in Figures 5.16, 5.17, 5.18 and 5.19 respectively. The solid line in 
these figures is the magnitude frequency response of Kalman filter model and dotted line 
is magnitude frequency response of bandpass filters. The filters generated using Kalman 
filter model have gradual upper and lower cutoff. The bandwidth (in logical sense) of filters 
generated using Kalman filter is much higher as compared to bandwidth of bandpass filters. 
The effect of noise on identification increases with increase in bandwidth of filter. The filters 
provide only about 10 dB of attenuation in the higher frequencies as compared to much 
higher and increased attenuation with frequencies in bandpass filters. The sharp notches at 
3’’'*, 5‘*, 7*̂  and 9*̂* harmonic frequencies in Figure 5.16 (considering 1*‘ harmonic frequency) 
are due to the model of the Kalman filter used. Similar notches can be observed in Figures 
5.17, 5.18 and 5.19. The higher frequencies above 9‘̂  harmonic frequency are removed by 
low pass filter used in system identification but the noise between the harmonic frequencies 
corrupts the identification due to lower attenuation. The noise effect on identification 
increases with frequency as can be seen in Figures 5.6, 5.8, 5.10, 5.12 and 5.14.

An o£9ine simulation is performed to determine P and 1 gains of controller using the 
magnitude and phase obtained by system identification using Kalman filter. The reference 
model and stability margins are the same as that described in Section 2.4. The F gain and 
I gain thus obtained on each sample are shown in Figure 5.20 and Figure 5.21 respectively. 
The gains obtained are noisy due to the effect of noise on system identification.
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Figure 5.6; Magnitude and phase of open loop process as identified by Kalman filter approach at 1" 
harmonic frequency at each sample.
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Figure 5.7: Magnitude and phase of open loop process as identified by bandpass filter approach at 
harmonic frequency at each sample.
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Figure 5.8: Magnitude and phase of open loop process as identified by Kalman filter approach at 3'"'' 
harmonic frequency at eadi sample.
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Figure 5.9: Magnitude and phase of open loop process as identified by bandpass filter approach at 3’’*' 
harmonic frequency a t each sample.
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Figure 5.10: Magnitude and phase of open loop process as identified by Kalman filter approach at 5'* 
harmonic frequency at each sample.
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Figure 5.II: Magnitude and phase of open loop process as identified by bandpass filter approach at 
harmonic frequency at each sample.
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Figure 5.12: Magnitude and phase of open loop process as identified by Kalman filter approach at 
harmonic frequency at each sample.
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Figure 5.13: Magnitude and phase of open loop process as identified by bandpass filter approach at 7^^ 
harmonic frequency at each sample.
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Figure 5.14; Magnitude and phase of open loop process as identified by Kalman filter approach at 
harmonic frequency at each sample.
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Figure 5.15: Magnitude and phase of open loop process as identified by bandpass filter approach at 
harmonic frequency at each sample.
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Figure 5.16: Magnitude frequency responses of Kalman filter model (solid line) and bandpass filter (dotted 
line) at I*‘ harmonic frequency.
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Figure 5.17: Magnitude frequency responses of Kalman filter model (solid line) and bandpass filter (dotted 
line) at 3*’'* harmonic frequency.
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Figure 5.18: Magnitude frequency responses of Kalman filter model (solid line) and bandpass filter (dotted 
line) at 5'* harmonic frequency.
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Figure 5.19: Magnitude frequency responses of Kalman filter model (solid line) and bandpass filter (dotted 
line) a t 9‘* harmonic frequency.
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Figure 5.20: P gain on each sample based on system identification using Kalman filter.
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Figure 5.21: I gain on each sample based on system identification using Kalman filter.
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5.5 Conclusion

The Kalman filter approach for system identification has advantage of fast convergence 
over the bandpass approach. The disadvantage associated with the use of Kalman filter 
approach is that the effect of noise on system identification is severe. The effect of noise 
is due to larger bandwidth and lower attenuation of higher and lower firequencies firom 
the harmonic frequency considered for identification. The effect of noise can be overcome 
by using bandpass filtered signal for estimation as in Section 3. But as observed, this 
scheme delays convergence in system identification. A disadvantage of the Kalman filter is 
that the computational over head on the under lying digital system increases with number 
of frequency points in identification, even for identification up to 9*̂  harmonic, the state 
matrix is a  11 by 11 matrix. The P and I gains obtained were also found to be noisy.
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Chapter 6 

Future Work

The thesis has studied MRAS to achieve frequency domain performance specifications. It 
has been shown that over parameterized transfer function based open loop RLS identifica­
tion and frequency response computations enable MRAS to deliver good performance. To 
use MRAS in industry, it is required that the continuous excitation in setpoint needs to 
be eliminated. More experimental work needs to be done to control the start and stop of 
the excitation using error computed as discussed in Section 2.5. Also correlation can be 
developed for required m inimum excitation magnitude by measuring signal to noise ratio 
in the frequency range of interest [2].

The DC bias estimation using Kalman filter method converges faster as compared to 
batch method. The MRAS using open loop system identification and Kalman filter for DC 
bias estimation needs to be tried.

The closed loop system identification can be tried using bandpass filters approach or 
Kalman filters approach. The same can be tried based on estimation of sensitivity function 
as described in [1].

The MRAS is applied to SISO (Single Input Single Output) system in this work. The 
same work needs to be extended to MIMO (Multiple Input Multiple Output) system along 
the lines of [8].
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Appendix A

Temperature Control System.

The process considered is an experimental laboratory temperature control system. The 
temperature control system process schematic and its control system is shown in Figure 
A.I. The process consists of a heater, fan, circuit for supplying heater power, thermistor 
and bridge amplifier. The heater power is controlled by the DC voltage applied to the 
circuit using a controlled rectifier circuit. The details of the circuit are not included here. 
The process input is a voltage to the circuit supplying power to the heater. The process 
output is the output of the bridge amplifier, which amplifies the thermistor output. It is 
important to note the location firom which process variables were taken into the computer 
as shown in schematic diagram. In this setup, the setpoint and process output will be apart 
by a measure equal to output bias. The error will be zero when ‘setpoint +  output bias’ 
equals negative of process output. The experimental plots attached for process variables 
in the report are variables measured at the points shown in schematic diagram A.I.

Assuming that the electronic circuit time constants are very fast compared to the thermal 
time constant of the heater, the time constant of the process will be equivalent to the time 
constant of the heater. As the process input voltage increases, the heater temperature 
decreases, and so the process output also decreases. Thus the process is a  negative gain 
process. As the thermistor is located physically at a  distance away firom the heater, there 
is a delay associated between temperature measured and temperature of heater.

The process can be modeled as first order process with delay in continuous time or s do­
main [15]. The variations in the process dynamics are introduced by varying the fan speed. 
Different fan speeds give different process gains, time constants and time delays. Increases 
in fan speed decreases gain of the process as the amount of air flowing through the ^ stem  
increases which takes away more heat out of the heater, resulting in a low temperature in 
the system. It also decreases the time constant and time delay. The heater dynamics can 
be different for heating up when power is supplied (active) and while cooling when lower 
of no power is supplied (active or passive). The process is noisy and varies considerably a t 
different fan speed depending on inherent variabilities and ambient conditions. For e.g. if 
the process is continuously running for considerable time the temperature of the aluminum
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