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ABSTRACT

The Logic-inference Virtual Machine (LVM) is a new Prolog execution model
consisting of a set of high-level instructions and memory architecture for handling control
and unification. Different from the well-known Warren's Abstract Machine [1], which uses
Structure Copying method, the LVM adopts a hybrid of Program Sharing [2] and
Structure Copying to represent first-order terms. In addition, the LVM employs a single
stack paradigm for dynamic memory allocation and embeds a very efficient garbage
collection algorithm to reclaim the useless memory cells. In order to construct a complete
Prolog system based on the LVM, a corresponding compiler must be written.

In this thesis, a design of such LVM compiler is presented and all important
components of the compiler are described. The LVM compiler is developed to translate
Prolog programs into LVM bytecode instructions, so that a Prolog program is compiled
once and can run anywhere.

The first version of LVM compiler (about 8000 lines of C code) has been
developed. The compilation time is approximately proportional to the size of source
codes. About 80 percent of the time are spent on the global analysis. Some compiled
programs have been tested under a LVM emulator. Benchmarks show that the LVM
system is very promising in memory utilization and performance.
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Chapter 1. Introduction
1.1 Logic Programming and Prolog

The motivation of logic programming is to separate the problem solving process
into two parts: (1) a logical specification and (2) execution description [5]. The
programmers only focus on the logic specification of the problem. The logic systems
automatically provide the execution control. Therefore, logic programming is a higher
level of abstraction than the imperative programming in languages like Ada, C or Pascal.

A logic program is a set of logic sentences (clauses) written in Horn clause logic.
A group of clauses with the same name and arity (number of arguments), called a
predicate is used to define a relation, like a procedure in the imperative languages. Hence,
a logic program can be defined as a set of predicates.

Logic programming has four main features as follows:

(a) Logic variable can be instantiated only once.

(b) Logic variable can hold value of any type, which is so called dynamic typing.
(c) Unification is a pattern matching operation for binding variables, building and
accessing compound term.

(d) Backtracking is a searching operation for finding out all satisfying clauses in a
predicate.

Prolog is an approximate logic programming language with two constraints on its
implementation model for the balance between implementation efficiency and logical
completeness. They are:

(a) The clause listed lexically ahead in a predicate is tried first.

(b) The goals in each clause are invoked from left to right.

Prolog has been applied in a variety of fields like expert systems, natural language
understanding, theorem proving, deductive databases, CAD tool design, compiler writing,
and applications of artificial intelligence with coded knowledge.

1.2 Motivation

Many Prolog systems are often an order of magnitude slower than imperative
language systems like C. To optimize system performance, a heavy global static analysis
based on abstract interpretation has been performed in some high performance Prolog
compilers, such as Aquarius [3] and Parma [4]. But all these Prolog systems are built on
the principle of Warren Abstract Machine (WAM) execution model [1].

To achieve the same goal, we approach the problem in a different way. A new
Prolog system based on a new abstract machine, called Logic-Inference Virtual Machine ¢

|
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(LVM), has been developed. In the next chapter, the important features of WAM and
LVM will be briefly described and compared. The LVM adopts a hybrid of Program
Sharing and Structure Copying to represent first-order terms. Also, the LVM employs a
single stack paradigm for dynamic memory allocation and embeds a very efficient garbage
collection algorithm to reclaim the useless memory cells. In order to construct a complete
Prolog system based on the LVM, a corresponding compiler has to be written.

1.3 Prolog Compiler Design

The main objective of this thesis is to write a compiler for the LVM system. The
LVM compiler (LVMC) is to translate Prolog source code into LVM bytecode. The
driving force in the LVMC design is to encode as many LVM features as possible. To
generate the high quality of LVM bytecode, the compiler implements several optimizations
and carefully considers the code execution performance. The structure of the LVM
compiler is shown in Figure 1.1.

Prologlsource code
lexical and syntax analysis
| mode analysis !
y
global analysis [ last argument reorder |
{ garbage estimation

pr—————in
l Rt

post-optimization and code output

v
LVM bytecode
Figure 1.1 Structure of LVM compiler
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The LVMC consists of four phases: (1) lexical and syntax analysis, (2) global
analysis, (3) clause analysis and code generation, and (4) post-optimization and code
output.

In the phase (1), source code is converted to parse trees. Meanwhile the syntactic
errors in source code are detected.

In global analysis, the LVMC will collect or generate the argument input mode,
then reorder the last arguments of clauses if necessary, and further extract determinacy
information of each predicate as well as determine garbage estimation. If a predicate has
the mode declaration, the mode analysis of this predicate will be ignored. Although LVM
uses the last argument as the first-order discriminator for the purpose of partial unification
and control dispatching, there is no constraint on the programmer's programming style.
The compiler will dynamically reorder the clause arguments in the reference to LVM
based on the mode information. During the determinacy analysis, redundant or
unreachable clauses are eliminated.

The clause analysis is the key component of the LVMC. The clause analysis
involves the variable analysis, frame allocation and register allocation. The variable
analysis has three major tasks:

(a) Each variable must be classified into one of two types: stack variable and
register variable. A stack variable is one, which resides on stack and possibly
outlives the procedure call. A register variable is a temporary variable, which does
not survive across procedure calls. Register variables are mainly used in fact
clauses, arithmetic computation or deterministic clause chain-calls. However, they
must not occur in any constructor.

(b) The status of variables inside all arguments must be analyzed. A variable may
be used in two ways: uninitialized (V-type) or instantiated (L-type). In order to
eliminate the unnecessary dereferencing or trailing operations, the V-type variables
are bound by destructive assignment.

(c) Since a stack variable may be referenced by several structural terms, the
different address offsets of this variable must be calculated according to the stub
location in stack.

To speed up the arithmetic computation and term unification of deterministic
clauses, soft registers must be scheduled carefully. Register allocation is done using a
simple algorithm and register conflict is avoided.

The code generation for each clause is straightforward based: on four basic
formats. But the initialization of some constructor objects can be delayed until the
unification. For a special set of predicates, a special translation algorithm is applied to
produce optimized code.
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In the final phase of LVMC, post-optimization on the intermediate code is done
before the final LVM bytecode output. For example, several consecutive instructions are
compacted into one instruction. The arithmetic computation strength is reduced as much
as possible. Redundant instructions are removed.

1.4 Outline

The rest of the thesis is organized as follows: Chapter 2 gives a brief overview of
Prolog term representation methods: Structure Sharing, Structure Copying and Program
Sharing. Then, two virtual machines: WAM and LVM are compared. Chapter 3 describes
the lexical and syntax analysis of the LVM compiler. Chapter 4 presents the clause analysis
and translation methods. Chapter 5 discusses how to handle arithmetic operations and
built-in predicates, and how to specify the initialization instructions. Chapter 6 shows how
to use the indexing technique to generate bytecode for a predicate. Chapter 7 discusses
some optimizations on the generated bytecode. It includes a special optimization on a set
of predicates. Chapter 8 describes how to assist the LVM memory management system at
compilation time. Chapter 9 gives conclusions.
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Chapter 2. Overview of Prolog Implementation

2.1 Structure Term Representation

The term representation is one of the core parts of any Prolog system. The term
representation determines the unification implementation technique in Prolog. Since
Prolog is a dynamically typed language, the type and value of a variable is determined
only at run time. Therefore, a variable cell is represented in general by a tagged value cell
as shown in Figure 2.1.

[ TAG ] VALUE |

Figure 2.1 A tagged cell

All Prolog terms are classified into three basic types: variable, constant and
structure term. A variable is further categorized into two types: unbound or bound. An
unbound variable is self-reference pointer with REF as its tag. In our current LVM
system, there are three kinds of constant terms, which are represented as follows

INT valuel
CON value2
NIL

where INT denotes an integer, CON a string and NIL a null list.

At the abstract level, two methods are used to represent a structure term, that is,
structure copying ( SC ) and structure sharing ( SS ). The structure copying technique was
introduced by Maurice Bruynooghe [6] and Christopher Mellish [7]. In SC Prolog
systems, all terms of different types are fitted into the size of a machine word/register (a
tagged value cell). When a variable comes to stand for a structure term during unification,
the entire structure including all arguments is copied to a new allocated heap. After the
copying, the information about the structure name (functor) and arity becomes indirectly
accessible, the knowledge of this structure instance is concealed. For example, the term
of dsg(X, g(X,Y,a), Y) could be represented in Figure 2.2 by the SC method

FUNC dsg/3
REF X
STR

REF Y |
FUNC g3 [

3

REF  ___|
REF —
CON a

Figure 2.2 Term representation in Structure Copying

The SS method was first introduced by Boyer and Moore [8] and used in earlier

|
|
!
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Prolog systems. The SS method takes advantage of the fact that all different instances of
a same structure term share a single prototype and differ only in their variable bindings.
Therefore, a structure term is divided into two components: skeleton and environment.
The skeleton contains the constants and the offsets of environment. The skeleton is stored
in the code area. The environment contains the variables and is stored in the heap. Two
pointers are needed to represent a structure term, one to the skeleton and other to the
environment. Two successive machine words have to be allocated to instance a structure
term. For example, the term of dsg(X, g(X,Y,a), Y) could be represented in Figure 2.3 by

the SS method
heap | code area
SKE KO KO |FUNC dsg/3
ENV VAR 0
SKE Kl
VAR 1
REF X
REF Y
K1 [FUNC g3
VAR 0
VAR 1
CON a

Figure 2.3 Term representation in Structure Sharing

Both structure term representation methods have been thoroughly investigated
[6,7]. In general, the SS method is faster than the SC method in creating terms, but the
SC method is faster in accessing and unifying terms because the SS method needs more
time in decoding skeletons. Also the SC method consumes less memory than the SS
method. Only the earlier Prolog system [9] used the SS method. Now the structure
copying is the standard implementation method in various Prolog systems. In 1983,
David Warren [1] presented a new abstract Prolog instruction set, now called Warren
Abstract Machine (WAM), which adopts the SC method as the basic component for the
efficient structure term unification. After 1983, most of high performance Prolog systems
have been developed on WAM or WAM-like abstract machine for further efficiency
improvement.

2.2 Warren Abstract Machine (WAM)

Normally, a Prolog abstract machine is divided into two components as follows:
An abstract machine = instruction set + memory model

2.2.1 Memory Model of WAM
The stack-based memory model of WAM is shown in Figure 2.4.l The local stack

is used to store the environment and choice point frames. The structure terms are
allocated on the global stack, called heap. The trail is used to save the address of
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bounded variables that have to be unbound during backtracking. The PDL (push-down
list ) is used to perform the unification of nested compound terms.

PDL
s

4

Stack

(]

heap
3

code area

Figure 2.4 WAM data areas
2.2.2 Unification and Parameter Passing

The WAM embeds the unification instructions within the control sequences.
Therefore, a single engine is employed for both control and unification. Two steps carry
out the unification: (a) the copying of the arguments of the calling goal into arguments
registers, and (b) the unification of the arguments registers with the arguments of the
head of the called clause. Three types of instructions {PUT, GET, UNIFY} are available
to handle unification. The instruction {UNIF} is executed in two modes. In the write
mode, a new structure is created, while in the read mode the true unification is performed.
As mentioned before, the SC method conceals the skeleton information of a structure
term, a general unification algorithm is carried out when both objects are instances of the
same structure term. For increasing the efficiency, a unification call is encoded into a
sequence of special unification instructions if one of operands is known at compilation
time.

2.2.3 Backtracking and Stack Management
The WAM uses two kinds of frames to store the information associated with

predicate calls, that is, environment frame and choice-point frame. The environment
frame has the following fields:

Parent parent environment frame
CP continuation program point
Yl..Ym | permanent variables

Figure 2.5 Environment frame in WAM

An environment frame is pushed on the (local) stack before any deterministic clause is
executed.
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The choice point frame is used to handle the backtracking of a nondeterministic
predicate, which has multiple candidates of clauses to try. The choice point frame has the

following fields:
BP altemative program point
Cp continuation program point
E current environment frame
B most recent choice point
TR top of trail
H top of heap
Xl1,...Xn argument registers

Figure 2.6 Choice point frame in WAM

After a new choice point frame is pushed on the stack, the choice point pointer is set to
point to the new choice point so that a linked chain of choice points is formed. To
increase the WAM efficiency, the clause indexing including conditional branching is
necessary to avoid the creation of choice points if possible.

The WAM simulates the conventional procedure call to control Prolog program
execution. The two steps of parameter passing result in a bottleneck of its performance.
The argument registers have to be saved and restored for the backtracking. The
information associated with a predicate call is stored in possibly two frames. A full tail
recursion elimination is difficult to implement. Two alternatives to the WAM have been
developed. The Vienna Abstract Machine (VAM) [11,12] eliminates the parameter
passing bottleneck of WAM by performing the unification of each pair of a goal and a
head argument in a single step without the register interface. Another abstract machine,
called ATOM (yet Another Tree-Oriented Abstract Machine) [13,14] uses one frame for
each predicate call and arguments are passed directly into stack frames. These new
abstract machines successfully minimize the inefficiencies of WAM.

2.3 Logic-Inference Virtual Machine (LVM)

Apart from exploring the efficiency of parameter passing and frame allocation,
the new abstract machine, called Logic-Inference Virtual Machine (L VM), blends a new
structure term representation method - Program Sharing (PS) with SC to represent and
handle structure terms. The unification instructions are defined and implemented in a
totally different way. A brief introduction to LVM is given in the following.

2.3.1 Program Sharing

Program Sharing is a new method of Prolog structure term representation. This
method was introduced by X. Li[2,15,16]. The PS method originating from SS method
shares the same idea that the static information of a structure term is separated from its
dynamic environments. But the PS method has three main features different from SS:

i
!
|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1) A structure skeleton is stored in the code area as executable code or a segment of a
program. There is no data in a Prolog program. All terms in a Prolog program are
compiled into instruction code.

(2) Only one pointer (called a structure code stub) is used to solve the two-cell problem in
SS method. The stub content is the entry of a structure code and the stub address is the
environment base for executing the structure code. There are three types of structure code
stubs: DCI (direct copied instance), SSI (static shared instance) and SCI (static copied
instance).

(3) The environment variable indices in the structure code are calculated relative to each
stub. In a nested structure term, a variable with multiple occurrences has multiple index
values. In SS method, a variable has a unique index value, and variable indices are
calculated against a common frame base.

For example, the term of dsg(X, g(X,Y,a), Y) with (-) type of input mode is represented

in Figure 2.7 by the PS method.
stack code area
ED KO (stub-1) KO | FUNC dsg/3

K1 (stub-2) VAR 2

REF X SSI 1

REF Y VAR 3
K1 |FUNC g3

AR 1

iAR 2

ON a

Figure 2.7 Term representation in Program Sharing

Where {VAR, FUNC, SSI and CON} are unification instructions. The variable (X) has
the indices of 2 relative to the stub <, KO> and 1 relative to another stub < , KI>.
Similarly, the variable (Y) has two indices (3,2) relative to each stub, respectively. These
relative indices are specified in the unification instruction code shown in Figure 2.7. For
the structure unification, by accessing a stub we have the entry to the code segment,
which defines the structure unification instruction code, and by the stub address we get
the environment, which will be consulted to access stack variables and nested stubs.

The PS method has the advantage of both SC and SS methods. It represents terms
of different types in the size of a machine word, and also translates the static information
into executable instruction code and spends much less overhead for handling dynamic
environment.

2.3.2 LVM Architecture and Instruction Set

i
1
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LVM is a virtual machine based on the mixture of PS and SC methods. The
choice between PS and SC to represent a structure term depends on the input mode of the
term. For the efficiency, the LVM strongly supports and encourages mode declaration.
The mode information of head arguments of clauses can be obtained from the user
declaration or through a global analysis [18]. In our current version of LVM, four types
of input modes of arguments are defined. They are ( -) for out, (?) for in_or out, (+) for
in, (++) for in_and_ground. If a head argument is a compound term, all nested subterms
inherit the same mode. For simplicity, all structure arguments in goals are assumed to
have (?) mode.

The LVM classifies structure terms into selectors and constructors based on their
modes. A structure term is a selector if it can’t be bound to any variable outside the
clause; otherwise, it is a constructor. Therefore, structure terms with (+) mode are always
translated as selectors, and with (-) or (?) mode as constructors. Furthermore, all ground
structure terms are treated as selectors, regardless of their input modes. A selector is
represented by an instruction <DCI, code_entry>. Since we experience the high
efficiency of list manipulation in WAM, LVM uses PS for all non-list constructors and
SC for all list constructors. Correspondingly, two more unification instructions are
provided. <SSI, stub_offset> represents a static shared constructor of a non-list term.
<SCI, stub_offset> represents a static copied instance of a list term.

The LVM memory architecture is shown in Figure 2.8. The major difference from
the WAM memory layout in Figure 2.4 is that LVM uses one stack to hold both dynamic
objects and control frame information. Also the PDL stack is eliminateq.

Trail

)

!

Stack

t

Code area

Figure 2.8 LVM Memory Architecture

Appendix A shows the complete instruction set of LVM. They cover unification,
arithmetic computation, branching, frame allocation and object initialization. The details
were given in X. Li’s technical report [17].

10
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2.3.3 Other Features of LVM

Except that LVM uses PS and SC methods to represent structure terms, LVM has
other features in the following aspects:

(1) Unification and Parameter Passing

LVM consists of two coordinating processors: a 1P processor for control and a 2P
processor for unification. The 2P engine sequentially executes pairwise unification
instruction codes. It fetches two instructions simultaneously. Since the type of each
operand is known at compilation time and LVM sees terms as executable instructions, the
unification algorithm is much cheaper without loss of type information. The LVM
compiler generates code segments for the control and unification, which can be loaded in
separate locations. For example, with a caller of {Y,a) and a callee of f{X,X), the
unification codes for the caller are:

VARY

CON value,
and unification codes for the callee are:

VAR X

VAR X.
The 2P engine first unifies two unification instructions: {VAR Y} and {VAR X}, the
variable Y becomes bound to the variable X. Then, it fetches next two unification
instructions {CON value} and {VAR X}. The constant {value} is directly assigned to the
variable X. Therefore after the unification, the variable Y becomes a constant cell.

LVM eliminates the parameter passing bottleneck by unifying caller and callee
arguments in one step. Unlike the Vienna abstract machine (VAMa3p) [11,12], the LVM
unification instructions are neutral. Also LVM delays the structure full unification until it
is necessary in order to enhance the system efficiency.

(2) Backtracking and Stack Management

LVM implements procedure invocation and backtracking by allocating different
chains of control frames on the stack. There are three kinds of control frames in the
LVM: V-frame, C-frame and B-frame. Separation of V-frame from C-frame is for the
minimization of memory usage and the speed up of frame reallocation.

(a) V-frame: It only consists of dynamic objects without control information. It is used
for fact or chain-call clauses involving constructors.

Variables
Stubs

Figure 2.9a V-frame format in LVM
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|
'l . . .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(b) C-frame: It has three cells for control information and other cells for dynamic
objects. It is used for any clause with more than one user defined goals in its body.

Variables

Stubs

ST:  current stack top

CP.___ continuation program entry
AF: continuation frame

Figure 2.9b C-frame format in LVM

(c) B-frame: It contains all information needed for backtracking shown in Figure 2.9¢c. A
B-frame is allocated at a new choice point.

NT: _alternative program entry
TT: trail top

GP: caller’s unification code
GF: caller’s unification frame
RO: RO register

CP: _ continuation program entry
AF: continuation frame

BB: most recent choice point

Figure 2.9¢ B-frame format in LVM

(3) Garbage Collection and Memory Reclaim

Since LVM uses one stack to hold both frames and dynamic objects, an efficient
garbage collection (GC) algorithm is very important to the LVM implementation. In
Chapter 9, a chronological garbage collection algorithm will be discussed. The LVM
needs the compiler to generate GC instructions to tell the execution system when, where
and what should be collected, so that garbage estimation must be carried out in the earlier
phase of compilation. The experimental LVM system showed that the GC algorithm has
very low runtime overhead.

In summary, several advantages of the current LVM are:

(a) Memory usage is minimized for the structure term representation.

(b) It is easy to allocate/reallocate stack frames.

(c) The environment management is simple due to one stack policy.

(d) There is no cost in parameter passing from a stack frame to another frame.
(e) During backtracking, it is unnecessary to check binding directions, such as
from local objects to global objects and from young generation to old generation,
and the trailing/detrailing operation is cheap.

(f) A natural generation line of procedure calls exists for the implementation of
garbage collection.

12
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Chapter 3. Lexical and Syntax Analysis

In this chapter, the first phase of the LVMC, which is the lexical analysis and
syntax analysis of Prolog source code, is described. A simple error handler is used in the
LVMC. When this phase is successful, a parse tree is generated for each clause. This
chapter is organized as follows. First, the syntax of Prolog texts in standard Prolog is
described. Then, the detailed method of lexical analysis and syntax analysis is shown.

3.1 Syntax of Prolog Text

A Prolog text is a sequence of directives and clauses in an order which is specified
by directives. Directives and clauses are represented by terms. In standard Prolog [19],
terms are written in function notation. Therefore, the structure of a term is specified
without any ambiguity. The syntax of terms defines the syntactic rules for writing terms
correctly. Here the syntax is presented using the context free grammar. The context free
grammar has the form:

nonterminal  --> sequences of nonterminals and terminals
terminal --> sequences of characters
3.1.1 Prolog Character Set

Terminal symbols, called tokens, consist of sequence of Prolog characters. There are
five types of Prolog characters defined as:

prolog_char -->alpha_num_char
| graphic_char
| solo_char
| layout_char
| meta_char

(1) Alpha_numeric characters
alpha_num_char --> _ | digit_char | letter_char

letter_char  -->capital_letter | small_letter
capital_letter -->[A-Z]
small letter -->[a-z]
digit char  -->decimal_digit_char
| binary_digit_char
| octal_digit_char
| hexa_digit_char

13
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decimal_digit char  -->[0-9]

binary digit_char ->0]1
octal_digit_char ->[0-7]
hexa_digit_char --> [0-9] |[A-F]|[a-f]

(2) Graphic characters
graphic char ->#|$ | & |* |+ |- |.|/]|;
I<i>|=[?]@]| |~
(3) Solo characters

solo_char  >![CI)ILIYIIEIYITL.1:1&

(4) Layout characters
layout_char -->SP // space character in ASCII
| NL // new-line character in ASCII
| HT // tab character in ASCII
(5) Meta characters
meta char >\ | ‘| *|”
3.1.2 Syntax of Term
term -->var |atom |integer|floating point |compound_term

The floating point number is not implemented in current version of the LVM system, but
the compiler still parses the floating point numbers.

(1) Variables

Variables are strings of letters, digits and underscore starting with capital letter or
underscore.

var --> named_var| anonymous_var
named var -->  capital_letter (alpha_num_char)*

| _(alpha_num_char)"
anonymous_var-->

14
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(2) Atoms
Atoms can be constructed in three ways:

(a) Strings of letter, digits and underscore starting with a lower-case letter;
(b) Strings of characters enclosed in single quotes;
(c) Strings of special characters

atom --> letter_digit_token
| quoted_token
| graphic_token
| semicolon_token
| cut_token

letter_digit_token--> small_letter (alpha_num_char)*
quoted_token --> °char_string *
graphic_token > \

| graphic _char_string
semicolon_token --> ;
cut_token -> !

(3) Numbers
There are two types of numbers: integer and floating point.
integer --> integer_constant
| binary_constant
| octal_constant
| hexa_constant
integer_constant--> decimal_digit_char
| decimal_digit_char integer constant
binary_constant--> Ob binary_digit_char (binary_digit_char)*
octal_constant --> Oo octal_digit_char (octal_digit_char)*
hexa_constant --> Ox hexa_digit_char (hexa_digit_char)*
floating point --> integer_constant . integer_constant [exponent | €]

exponent --> [} E] sign integer_constant
sign —=>+|-|e

Here € is an empty string.

i
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(4) Compound_term
Compound terms can be written in one of four notations. They are:

(4.1) Function notation (bracketed expression)

| compound_term --> atom ( arg_list )
arg_list --> term (, term)*

where the name of function is called functor, and the number of arguments called arity.
The outer-most functor is called its principal functor, e.g., .(al,.(a2, .(a3,[]))).

(4.2) List notation
The principal functor is .’/2, and the first argument is a term and the second a list.
compound_term --> [ term items]
items -->(, term)”
[ | term
| NIL_list
NIL_list -->[ ]

where a special case of NIL _list is treated as a special atom in LVMC. For example,
[al,a2,a3], [al,a2]a3] and [al,a2|[b1,b2]] are list terms.

(4.3) Curly notation
compound_term ->  {term}
| (term)
(4.4) Operator notation

Some terms are written as unbracketed expressions using functors in operator
notation. Each operator is characterized by three parameters: name (an atom), specifier (
one of xf,yf,xfx,xfy,yfx,fx.fy) and priority ( an integer between 1 and 1200).

The specifier of an operator defines its arity (1 or 2), class( prefix,infix,postfix) and
associativity (left- right- non-associative). Table 3.1 lists all types of specifier.

The priority of a term is O if it is written in functional, list notation, or it is a
bracketed expression or atomic term. If a term is written in operator notation, its priority
is the priority of the principal functor. The predefined operators are listed in Table 3.2.

16
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Specifier arity  class associativity

fx 1 prefix non-
fy 1 prefix right-

xfx 2 infix non-

xfy 2 infix right-

yfx 2 infix left-

xf 1 postfix non-

yf 1 postfix left-

Table 3.1 Specifiers of operators

Operator specifier priority
. - xfx 1200
- fx 1200
; xfy 1100
> xfy 1050
, xfy 1000

\+ fy 900

= \= xfx 700

=\== xfx 700

@<@<@> @~ i 700

is == =\= < <=> >=xfx 700

+-AV yfx 500

* / // rem mod << >> yfx 400

i xfx 200

A xfy 200

-\ fy 200

Table 3.2 Predefined operator table

compound_term --> atom_preop term
| term atom_postop
| term atom_inop term

3.1.3 Clauses

clause --> head :- body
| predication

where the first grammar defines a rule with “:-’/2 as the principle functor, the second
grammar defines a fact.

head -—> predication
17
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body -->(body, body) // conjunction: principal functor ‘,>/2

| (body ; body) // disjunction: principal functor ¢;’/2

[ (body -> body) // implication: principal functor ‘->/2’
| variable

| predication

where the functor name of predication must be different from “,’/2, *;’/2 and *->‘/2.

predication -->atom | compound_term
where the compound_term must be callable term with arity >= 0.

3.1.4 Directives, Query and Declarations

The principal functor of directives is (:-)/1.

directive -> - directive_term
directive_term --> directive_atom ( predication )
directive_atom --> discontinuous
|dynamic |ensure_loaded
linclude linitialization
|multifile
query --> - predication
declaration -->  mode_declaration
| determinacy_declaration
| gc_declaration
mode_declaration --> :- mode atom ( mode_type (,mode_type)*) .
mode_type > ++|+|-|?
determinacy declaration--> :- determinacy atom/arity (integer_constant)
arity -->[0-9]
gc_declaration -> - garbage atom/arity ( integer_constant )
3.1.8 Comments
There are two types of comments: single line and muitiple line comments.

comment --> single line_comment | bracketed_comment

single_line_comment -->% comment_text new_line_character
bracketed_comment -->/* comment_text */

comment_text --> prolog_char comment_text | €
In summary, the Prolog text is defined by the following grammar:
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prolog_text -> (comment|query|declaration |clause |directive)*

3.2 Token Generator

; The role of the lexical analyzer is to scan characters of program text and convert
| the input into a stream of tokens. The token with its attribute is passed to the parser.
: Therefore, the lexical analyzer and parser form a token producer-consumer pair shown in

Figure 3.1.
characters tokens
token generator ——+ | parser

Figure 3.1 Interface to the lexical analyzer

The lexical analyzer is implemented by a token generator. An input buffer is set up
for reading and pushing back characters. A block of 256 characters is read into the buffer
from the file at a time. A pointer keeps track of the input position. A lookahead character
is checked. It should be noted that all atoms including the operators belong to the
name_token. The number_tokens are further classified into integer_token and float_token.

3.3 Syntax Analysis

In the compiler design, the syntax analysis of Prolog programs is implemented by a
parser. The parser accepts a stream of tokens from the token generator and verifies that
the stream of tokens can be generated from the Prolog grammar specified in Section 3.1.
The output of the parser is a representation of the parse tree, which will be used in the
next phase of the compiler. Meanwhile, a collection of information about a predicate is put
into a symbol table. The interface of the parser is shown in Figure 3.2. In the current
version of LVMC, the syntax error is handled in three steps:

(a) reporting the presence of errors,
(b) printing out the reason of errors, and then
(c) terminating the compiler.

A better syntax error handler would be implemented in the future version of the compiler.

parse tree
parser +{ global analysi1

symbol table

Figure 3.2 Role of parser in the compiler
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Since the grammar of Prolog is relatively simple, an unambiguous grammar for
Prolog is reconstructed so that no production right side has two adjacent nonterminals.
Therefore, an easy-to-implement form of bottom-up syntax analysis method, called
operator-precedence parsing [20], is employed in the parser. In the implementation, a
stack with elements, of which data structure is defined as

typedef struct stacktype {
int tokentype;
int priority;
int specifier;
argument_information *term;
structure stacktype *next;
} stacktype;

is used to hold the input tokens. The priority and specifier of some predefined operators is
listed in Table 3.2. The basic parsing strategy of LVMC is

(a) Initially, the parser sets up an empty stack, and accepts tokens one by one
until an end_token is reached. When the end_token arrives, the parser outputs
the parse tree of the clause if there is only one term remaining on the stack.
Otherwise, it invokes syntax error handler.

(b) For each token, if the token is one of the set of operators, then the parser
invokes a corresponding reducing function to reduce the top elements on the
stack. Otherwise, it simply shifts or pushes the token onto the stack.

|
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Chapter 4. Clause Analysis and Translation

The clause analysis is the crucial part of the LVMC. It involves the structure
argument classification, variable analysis, register scheduling and V/C-frame allocation.
They will be discussed in detail in Section 4.1-4.3.

The translation of a clause generates two streams of instruction code: control
instruction code and unification instruction code, in separate segments. In general, the
control instructions for a clause include instructions of stack allocation, object
initialization, unification code invocation, procedure invocation and garbage collection.
The unification instructions represent all arguments of the head and the bodies in a clause.
During the compilation, various code segments are labeled uniquely and systematically.
The name conventions are listed in Table 4.1. The clause translation will be discussed in
Sections 4.4 and 4.5.

labeling Meaning Code type
name/arity predicate code entry control code
name/arity.i clause code entry control code
name/arity.i.i branching code entry control code

npame/arity.i.u.0 | head unification code entry unification code
name/arity.i.u.i | goal unification codeentry | unification code
name/arity.i.s.i. selector or constructor code unification code

Table 4.1 Code segment-labeling rules

4.1 Structure Argument Representation and Flattening

The LVMC classifies the structure arguments of a clause into three types: selector,
constructor and dual. A structure argument is a selector if it is ground or its input mode is
(+, ++). A structure argument is a constructor if its input mode is (- or out) and it contains
at least one variable. If a structure argument has input mode of (? or in./out), it may be
used as either a selector or a constructor, and also contains at least one variable, then it is
a dual. Here, we can see that the types of structure arguments of a clause really depend
on the input modes of the arguments. The input mode of a structure argument is obtained
either from mode declaration or from mode global analysis.

If a compound structure has a certain mode, then all nested substructures inherit
the same mode. The mode declaration applies to head arguments only. For the goals of a
clause, we assume that all structure arguments are duals. It is enforced that a ground
structure argument is always a selector regardless of its input mode.

21
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The LVM uses instruction: [DCI_c_entry | to represent a selector. Here c_entry
specifies the code entry of the whole structure unification in code area. A constructor is
represented either by instruction: SSI[offset if it is|a non-list structure or by instruction:
SCI offset {f it is a list. Here offset denotes a relative position of this stub with respect to a
LVM stack frame of the clause. Since a pure constructor will be bound to an arbitrary
variable during execution, the stub must be allocated inside its associated stack frame to
represent a dynamic instance creation. For a clause, a V-frame or C-frame may need to be
allocated (See Section 4.5). The order of stub and variable allocation is shown in Figure
4.1.

Stubs

trame-information
Stack Variables

Figure 4.1 Order of stub and variable allocation on stack

During compiling a clause, all nested structure arguments must be flattened in
order to determine the number of stubs and their offsets. A stack with element defined as

typedef struct fstack{
char ftype,
boolean delayable,
char *functor,
unsigned index,
unsigned arity,
arginf *arg_list,
struct fstack *next
} fstack;

is used to implement the flattening algorithm. The flattening algorithm is:

(a) scan arguments of a clause from left to right. For each structure argument,
push an element with data structure of “fstack™ on the stack. The field of “ftype”
of the element depends on its input mode, it may be one of types {SSI,SCI,DCI}.
The field of “delayable” is reserved for {SCI ,SSI} elements to implement
initialization delay optimization. Only if a structure argument appearing in head
of a clause has (?)-type of input mode, the “delayable” is set to “No”. In all other
cases, the field “delayable” of {SSI,SCI} elements is set to “YES”.

(b) scan all elements of the stack from top to bottom. If its “arg_list” has
substructure, an element of “fstack” type for the substructure is inserted upon its
parent in the stack.

() repeat (b) until there is no nested structure in the field of “arg_list”.

%
i
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(d) index all SSI elements from top to bottom and then index SCI elements from
top to bottom by second pass. A SSI element requires one cell in LVM stack
frame, but a SCI element needs two cells for copying its structure term.

Example 4.1 Let’s assume we have the following clause with mode declaration.

:-pss mode(+,-,+).
pss(X, h(Y,g(a,b)), {X.g(Z,b))):-qs(i(Z,k(a,b),W)),rs(X,Y,Z).

After the flattening procedure (a), we have the following working stack:

type index delayable | arg_list

SSI 0 Y h(Y,g(a,b))
DCI - fIX.8(Z,b))
SSI 1 Y i(Z.k(a,b),W)

After all nested structures are completely flattened, the contents of the working stack are:

type index Delayable | arg list

SSI 0 Y h(Y, DCI:1)
DCI 1 - (a,b)

DCI 2 - X, DCI:3)
DCI 3 - g(Z,b)

SSI 1 Y i(Z, DCL.4, W)
DCI 4 - k(a,b)

For clause pss/3, the number of stubs is 2. The indexing of {SSI}elements starts from 0.

Example 4.2 This example has list arguments. The LVM uses Structure Copying
method to represent them. The cells of {SCI} type need to be allocated on LVM stack
frame.

:-psc mode (+,-,-).

pse([X]Y], [X.a,b],[[Y].d]).

| i
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After the first procedure (a) of the algorithm, we have the following working stack:

type index delayable | arg list
DC1 1 - [X]Y]
SCI 0 Y [XI[ab]]
SCI 2 Y ([Yl.d]
After completely flattening all nested lists and indexing all SCI elements again, the
working stack becomes:
type index delayable | arg list
DCI 1 - [X]Y]
SCI 0 Y [XIDCL:2]
DCI 2 - [a[DCI:3]
DCI 3 - [bifl]
SCI 2 Y [SCIL:4|DCI.4]
SCI 4 Y [Yi[ll
DCI 4 - [dif]]

For this clause psc/3, three SCI elements need to be copied to LVM stack frame through
special initialization instructions (See Section 4.4).

4.2 Variable Classification and Index Calculation

4.2.1 Classifications of Variables

The LVMC classifies the variables of a clause into two types:

(1) stack variable (S-type): A stack variable is one which possibly outlives a
procedure call and must reside in the LVM stack frame. A stack variable is
represented by an offset to its dynamically allocated stack frame and is accessed by
“base plus index” method.

(2) register variable (R-type): A register variable is a temporary variable which
does not survive across procedure calls. A register variable is used in a fact
clause, arithmetic computations or a deterministic chain call. A register variable
never occurs in any constructor.

24
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Except above two types of variables, a special variable, called “void” variable, may
exist in a clause. A void variable is a variable which occurs once and only in the argument
with (+) input mode of head of a clause. A void variable must be declared by “ ” in a
clause. The LVMC treats a void variable as constant term by an instruction:

VOID

A stack or register variable may be used in two ways: uninitialized (V-type) or
instantiated (L-type). The LVMC uses {RGV and RGL} to represent the two states of a
register variable respectively, and {VAR and VAL} to represent the two states of a stack
variable respectively. A V-type variable is a variable without initial value. A L-type
variable is a variable with initial value, but may be unbound. Here, unbound means that the
variable is initialized as a self-referential pointer. Binding a L-type variable is expensive
because the variable must be dereferenced. One of the major sources of inefficiency of
early WAM implementations arises from that V-type variables are created as self-
referential pointers and then unified soon afterward. Beer [21] first noticed this problem,
and proposed a solution that the V-type variables are bounded via destructive assignments
without dereferencing. In other word, the initialization of V-type variables can be
canceled. The LVM bounds the V-type variable by destructive assignment. The analysis of
variable status in a clause is important to improve the efficiency of any implementation.

Naturally, the next question is how to identify status of variables in a clause. Van
Roy [22] used a global analysis algorithm to extract the uninitialized variable from a
clause. Lindgren [23] detected the uninitialized variables by a syntactic transformation
method. In the LVMC, we supposed that the input modes of arguments of predicates are
known before the clause analysis, the algorithm of variable analysis becomes simple. Our
algorithm also takes the LVM unification method into account.

The unification method of LVM system is quite different from all others. Most.
Prolog systems implement unification in the depth-first order, but the LVM invokes the
unification code segments in the reverse depth-first order. When two unification
instructions represent both structure terms (either selector or constructor), the unification
of deeper-level structure terms is delayed unless those two instructions are the last pair in
the current code segments. In other word, partial unification is performed.

In the variable analysis, a linked list “xlist” with node data structure defined as

typedef struct varinfo {
char *var-name,
char RS-type,
char used,
char first-occurred,
char delayable,
struct varinfo *next
} varinfo;
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is used to hold the variable information in a clause in order to decide variable R/S-type
and necessity of variable initialization as well as possible initialization delay. The LVMC
uses four rules to set first-occurred and delayable flags:

(1) If a stack variable occurs in plain argument list of head, its first-occurred flag
is set to true;

(2) If a stack variable occurs in any head structure argument of selector before any
constructor argument during scanning and flattening the head argument lists, its
first-occurred flag is set to true;

(3) If a stack variable occurs in arguments of goals before any constructor
argument during scanning and flattening the goal argument lists, its first-occurred
flag is set to true.

(4) If a stack variable doesn’t appear in structure arguments of head with (?) mode
, then its delayable flag is true.

After the analysis, the R/S-type of all variables is set correctly. For a stack variable
in the ‘“xlist”, if its first-occurred flag is false, this variable must be initialized.
Furthermore, if its delayable flag is true, this variable initialization can be delayed until
after head unification control instruction.

The V/L-type information is associated with each variable. A variable may appear
in the argument lists of head and goals or inside structure argument terms. Assuming that
the clause is

H(..) :- G1(...),G2(...),...,Gn(...),
the LVMC uses the following algorithm to determine the V/L-type of a variable:

(1) Scan the argument lists of head and flatten its structure terms. Then
do the same for each goal argument in order of G1->G2->...->Gn.

(2) following (1) process, if a variable appears first time and the current
argument is plain argument or selector, then it is V-type; otherwise it is L-type.

Actually, the variable analysis is naturally embedded into the structure term flattening
process. The void variables always are of V-type.

Example 4.3 To see how the variable V/L type identification works, let’s consider
the following clause. All variables in this clause are stack variables. The V/L type of
variables is listed in the right side.

: 26
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:-mode p(+,-,+).

X: V-type
h(Y, 8(2)), Y: L-type, Z: L-type(*)
) fiX,g(Y)) X: L-type, Y: V-type
 qG@W)), Z: L-type, W-L-type(*)
rX,Y,Z). X: L-type, Y: L-type, Z: L-type

The LVMC scanning order of arguments is:

X->RX,g(Y))->h(Y,g(@)->(Z,W)-> X->Y->Z.
Here, variables {Z,W} need to be initialized.

4.2.2 Indexing of Variables

At each clause invocation point, a stack frame (V/C-frame) and registers are used
to hold dynamic objects generated from the called clause. The stack frame is allocated in
the LVM stack area. Although the size of a V/C-frame varies from one clause to another,
the stack frame is an integral memory in the LVM working stack. Later on, any object on
the stack can be accessed using the base plus offset addressing method. Normally, the
LVM uses the bottom of going allocated frame as the consulting base. The offset is the
distance of location of the object inside the stack frame from the frame bottom in units of
machine words.

A stack frame may contain environment parameters, stubs, SCI objects and stack
variables. In order to prevent negative offsets in nested unification instructions, the LVMC
assigns the stack cells by the following rule:

(1) Cell assignment starts from the relative location 0;

(2) Cells are assigned by the order of environment parameter->stubs-->SCI
objects-->stack variables;

(3) Stub arrangements are consistent with their flattening order to guarantee the
correct accessing scope of the nested stubs and stack variables;

(4) Stack variables, which need initialization, are assigned with lower indices than
those uninitialized.

In the LVMC, there are two types of offsets: S-offset and C-offset. The S-offset is
an offset against the base of the allocated frame. The S-offset is used to generate the
unification instructions for the head and goal arguments, and also to access the variables in
the structure term of a selector. Therefore, the following objects have S-offsets:

| 27
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(1) stack variables, which directly are plain arguments of the head and goals;
(2) stack variables, which occur in structure terms of selector or DCI objects;
(3) stubs/SCI objects, which are arguments of the head and goals.

For a constructor stub or SSI object, since it will be bound to a variable and then
be carried to any place during execution, so its environment is created to associate with
the stub. Therefore, the absolute address of the stub serves as the base of the unification
code environment and its content as the unification code entry pointer. A C-offset is an
offset against the location of a constructor stub. The following objects have C-offset:

(1) stack variables, which occur inside structure terms of constructor;
(2) stubs/SCI objects, which are substructures of a structure term of constructor.

Since all stubs, SCI objects and stack variables have been assigned locations in the
stack frame during compilation, the offset calculation becomes easy. Let X be any object
in C and C a constructor stub, then

C-offset (X in C) = location(X) - location (C).
The S-offset of an object is its relative location with respect to the stack frame.

Example 4.4 Let’s consider the following clause:

:smode p(-,?,-).
P(RY,8(2)),X,h(Y,g(W))):-q(X,Y), (X, Z).

After nested structure flattening and variable analysis, we find that there are four stubs and
4 stack variables {X,Y,Z,W}. Stack variables {X,Y,Z} have first occurrence, so they don't
need initialization. The variable W must be initialized. A C-frame is used to hold all
objects. Thus a total of eleven cells will be allocated as the execution environment of the
clause on the LVM stack area. The cell assignments are listed in the Table 4.2.

In the head unification codes of clause p/3, we use S-offset: offset 3 to refer to C1,
offset 8 to X and offset 5 to C3. The variable Y has three offsets: one S-offset and two
C-offsets. Since variable Y occurs in constructors C1 and C3, the two C-offsets are:

C-offset (Y in C1) = location (Y) - location (C1) =9-3 =6
C-offset (Y in C3) = location (Y) - location (C3) =9-5=4

Therefore, in the unification code segment of C1, we use C-offset 6 to refer to Y and C-
offset 1 to refer to C2.

28
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Location | Object S-offset C-offset

0 c-frame env

1 c-frame env
42 c-frame env

3 CI1=f(Y,C2) C1:3 Y:6 C2:1
4 C2=g(2) C2:4 Z:6

5 C3=h(Y.C4) C3:5 Y:4 C4: 1
6 Cé=g(W) C4:6 W: 1

7 W 7

8 X 8

9 Y 9

10 Z 10

Table 4.2 Stack cell assignment and offsets of objects

Since the LVM uses the Structure Copying method to represent the list
constructors, it is possible that several copied list instances share a single variable.
Therefore, a special set of list initialization instructions are designed to handle the shared
occurrence problem. The detail will be discussed in Section 4.4.

4.3 Register Allocations and Conflict in Parameter Passing

In the LVM, there are 64 general purpose registers emulated by memory, which
can be directly accessed without indirection. Eight of them labeling from RO to R7 are
dedicated to pass parameters between the caller and the callee. Others from R8 to R63 are
used to store the intermediate results in arithmetic computation. Here, we only discuss the
parameter passing registers.

4.3.1 Magic Register: RO

The role of RO register is quite different from that of other registers (R1..R7). RO
register is used to speed up last argument dispatching. Although Prolog programmers have
a natural tendency to write the codes using discriminating patterns as first arguments, the
LVM does not depend on this tendency. Since the LVM implements unification delay
algorithm, the LVMC chooses an appropriate argument from the head arguments of a
clause and swaps it with the last argument, if one or more head arguments have (+) input
mode. In such cases, the clauses of a predicate may be dispatched by their last arguments.
To speed up the dispatching, the LVM uses RO register to store the last argument before
issuing a procedure call. Two control instructions {SWT and SHS} are designed to
implement the dispatching based on the RO value.
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If a predicate is last argument dispatchable, the LVMC uses the following conditions
to select a variable from the last argument of a head for each clause to be the RO register
variable:

(1) In the head, the variable occurs in the last argument once.

(2) Since the RO represents a dereferenced value of the corresponding variable in
the goal side of the clause, the variable may be used in any arithmetic expression
before the first user defined goal. The variable can only appear in the first user
defined goal but not other goals, and can also be used as its last argument.

Example 4.5 To illustrate the selection, let us consider the following two clauses,
which are last argument dispatchable.

--mode pl(-,+,+).

p1([X|Xs],Y,Z):-Y>Z, W is Z+1,p1(Xs,W,Z).
:-mode p2(-,+).

P2([X[Xs], f(Y,X)):-p2(Xs,Y).

In the first clause, variable Z is selected as RO register variable. The variable Z is the last-
argument of the head, also the last argument of user defined goal pl/3. Before the
invocation of the goal call p1/3, the variable Z is used in two arithmetic expressions. In the
second clause, variable Y is selected as RO register variable.

Except speeding up the dispatching, RO register can help to pass parameters faster
between the caller and callee. When the callee is last argument dispatchable, the caller can
directly store its last argument in RO regardless of the properties of the caller predicate,
then the later-on unification process directly involves RO register. If the caller predicate is
nondeterministic, RO is protected in choice point or B-frame. To implement this
optimization, the LVM designs two sets of procedure invocation instructions {CAL, CCL,
LAC} as follows:

CAL u_code_entry  predicate_code_entry
CAL Ri/Vi u_code_entry predicate_code_entry
CCL u_code_entry  predicate_code_entry
CCL Ri/Vi u_code_entry predicate_code_entry
LAC u_code_entry  predicate_code_entry
LACRI/Vi u_code_entry predicate_code_entry

30
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If the first operand of the procedure invocation instructions is of Ri/Vi, it means that the
specified register (Ri) or stack variable (Vi) is dereferenced and its final value is saved in
RO. Then the last instruction in the goal unification code segment is replaced by
instruction: “RGL 0”. The LVMC arranges the RO register to pass the last argument of a
goal call when the goal predicate is last argument dispatchable.

4.3.2 R1...R7 Registers

R1...R7 register variables can only be used in fact, deterministic chain clause to
pass parameters. Unlike RO, those register variables can’t be used in nondeterministic
chain clause and normal rule clause. If these register variables are not enough to represent
the parameter passing variables in a clause, then the remainder of parameter variables will
be treated as stack variables. In this case, extra stack cells need to be allocated on the
LVM stack frame.

During register allocation, a conflict may happen. To demonstrate this problem, let
us check the following deterministic clause p/2:

P(X’ Y, Z) - (I(Y, w’ X)
After variable analysis, the clause is first transformed into:
p(Rl: Rz’ R3). "l(m, R4’ Rl)'

Here, p/3 passes its parameters to q/3 goal via registers in the order of R3->R4->R1. If
the predicate ¢/3 uses “q(R1,R2,R3):-.. ” to accept these parameters, after the caller’s R3
unifies with the callee’s R1, the caller’s R1 information has been lost, therefore the register
conflict occurs. To avoid this conflict, the LVMC uses the following strategies to schedule
R1..R7 registers in register allocation:

(1) Registers (R1..R7) are allocated incrementally by the order of index to the head

and goal arguments from left to right.

(2) Ifthe current register variable index is less than the left-hand register variable
index, a new register variable with a greater index will replace this register
variable, and a register to register assignment will be inserted before this goal call.

Thus, in the above example, the LVMC will change the clause to be in the form of
pR1, R2, R3) :- R5=R1, q(R3, R4, RS).
4.4 Unification Code of a Clause
For a clause, there may be several independent unification code segments for the

head and its goal arguments respectively. Each unification code segment consists of
several unification instructions. These unification instructions have a sing!e format of
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Opcode Operand
Totally twelve unification instructions are defined in LVM and listed in Table 4.3.

Opcode | Operand | Meaning

INT value an integer

CON value a constant
NIL a null list
VOID a void variable

VAR offset an uninitialized stack variable
VAL offset an instantiated stack variable

RGV index an uninitialized register variable
RGL index an instantiated register variable
DCI entry a direct/dynamic-copied instance
SSI offset a static shared instance
SCI offset a static copied instance
FUN name/arity | a functor with name/arity
Table 4.3 L VM unification instructions

Unification code segments of a clause can be generated in any order, provided that
they are properly labeled. The LVMC uses the name conventions listed in Table 4.1.
Inside each code segment the order of unification instructions must obey the lexical order
of the objects in the argument list.

After the clause analysis, the unification code generation method is simple. It
simply describes the argument lists of head and goals from left to right. For a flattened
structure stored in “fstack’ (See Section 4.1), it starts with a FUN instruction and follows
with a sequence of instructions to match its arguments. But a selector list is treated as a
structure without functor so that the FUN instruction is omitted.

Example 4.6 Suppose that we have the following clause p/3:

:- mode p(+,-,+).
p(Y.fX,Y,2),[X[Xs]):-p(Y,Z,X5).

2
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After the clause analysis, we find that there are three stack variables {X,Y,Z}, a RO

register variable {Xs}, and one structure stub as shown in Table 4 4.

Object | Object type | S-offset C-offset
fiX,Y,Z)| SSI 0

[XIXs] DCI -

X Stack var 1 1

Y stack var 2 2

Z Stack var 3 3

Xs Register var | 0

Table 4.4 Memory layout of objects for p(+,-,+)/3 clause

For this clause, four unification code segments should be generated. One is for the clause
head arguments, one is for the goal arguments and other two segments are for the nested

structure terms in head arguments. The unification code segments are labeled as follows:

|_U-code Labeling | Meaning
p/3.u.0 head unification
p/3.8.1 constructor {X,Y,Z)
p/3.8.2 selector [X[Xs]
p/3.u.l oal unification

These unification code segments are:

p/3u.0: VAR2 ny
SSI 0 // /3 stub
DCI p/3.s.2 Il [X|Xs]
p/3.u.l: VAL2 ny
VAL 3 nz
RGLO /I Xs

i
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p/3.s.1: FUNE3

VAL 1 I/ 4
VAL 2 ny
VAL 3 Iz
p/3.s2: VAR 1 X
RGV O /Il Xs

In this example, a FUN instruction for the list [X]Xs] is omitted from the unification code
segment of p/3.5.2 , since the list is a selector.

4.5 Control Code of a Clause

In the LVM, each clause has one corresponding control code segment. The
control code specifies possible stack frame allocation, necessary initialization, and
unification invocation and consecutive goal calls. It may also contain arithmetic
computation instructions and garbage collector trigger. The initialization includes stub
initialization, SCI object initialization and V-type variable initialization.

Two types of LVM stack frames may be allocated to each clause: V-frame and C-
frame. They have been discussed in Section 2.3. A V-frame is allocated by instruction:

ALV n

and a C-frame is allocated by instruction:

ALC n

where n is the total number of cells of this frame in machine word. For a V-frame, if n=0,
then the ALV instruction is omitted. For a C-frame, the value of “n” must be equal to or
greater than 3, since it contains three environment parameters. The LVMC uses two
simple conditions to identify the stack frame type for a clause:

(1) A V-frame is used for a fact or chain-call.

(2) A C-frame is used for a rule clause, which has more than one goal.

The control code generation for a clause is straightforward. It follows four basic
translation formats:
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(1) Fact:
[ALV] -> {initialization}*->[UNI] ->{initialization}*->PCD.
(2) Chain call:
[ALV]->{initialization} *->[UNI]->{initialization} *->CCL.
(3) Rule:
ALC-> {initialization} *->[UNI] ->{initialization} *->{CAL}+ ->LAC
> ALC ->{initialization} * ->[UNI] ->{initialization}* ->{CAL}+
->builtin’s ->RET
(4) Query:
STA->{initialization}*->{CAL}+ ->FIN.
where * denotes zero or more occurrence, + means at least one occurrence and []
indicates optional. The symbol “->* represents “followed by”. The meaning of LVM
instructions {PCD, UNI, CCL, CAL, LAC, RET, FIN, STA} are described in Appendix

A. The SCI object initialization will be discussed in Chapter 4. The variable and stub
initialization are specified by LVM instructions:

IVn startin§=position for variables

and ITn starting_position code_entry_address | for stubs. In the following,

each translation format is discussed.
4.5.1 Fact

For a fact clause, if there is a constructor or dual in its head arguments, then a V-
frame must be allocated, some of the stack variables and copied list instances as well as
stubs should be initialized. The delay of the initialization depends on the input modes of
the arguments. If the fact only has ground arguments, the translation format degenerates
to a format: UNI -> PCD. Furthermore, if the fact is a proposition, it has no unification
code, the control instruction code degenerates to a single instruction PCD. In the
following, some fact definitions and their corresponding LVM code are shown.

(1) A proposition:

35
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The LVM bytecode is
p/0: PCD

(2) A fact with constant arguments:

q(a,b).

¢2: UNI 2 q/2.u.0
PCD
q/2.u.0: CON a
CONb
Here label q/2 is the control code entry and q/2.u.0 is the unification code entry of head.

The LVM code is:

(3) A fact without stack variables:

r(X.X,Y).
After variable analysis, it has the form of
r(R1,R1,R0).
The LVM code is:
r/3: UNI 3 r/3.u.0
PCD
r/3.u.0: RGV 1
RGL 1
RGV O
Since there are no stubs, SCI objects and stack variables, a V-frame is not needed.
(4) A fact with constructor:
:- mode u(-,?).
u(f(X),Y).
After clause analysis, we know that variable X is a stack variable with index of 1, the fact
has the form of
u(SSI:0, RO).

The stub must be allocated in the stack frame via initialization instruction: IT1, also the
stack variable X must be initialized via initialization instruction: [V1. The LVM code of
the fact is shown as follows:

w2: ALV
UNI
IT1
i
PCD

w2.u.0
u/2.s.1 // initialize a stub at position 0
// initialize variable X

—_ 0O NN
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w2.u.0: SSIO
RGVO

uw/2.s.1: FUN f/1 /[ static shared structure
VAL 1

4.5.2 Chain Call

For a chain call, if the callee is a deterministic predicate, registers (R0..R7) can be
allocated to pass some parameters, otherwise stack variables and RO register must be
used to pass all parameters. The LVM uses instruction CCL to invoke the goal call
procedure.

Example 4.7 To illustrate these cases, let’s check two examples by assuming that
goal q/1 is a deterministic predicate, and app/3 is a nondeterministic predicate.

(1) A chain call with a deterministic goal call:

:-mode p(-,-).
P(X.Y):-q(f(X),Y).

After clause analysis, the clause becomes:

p(VL,R1):-q(SSI:0,R1).

The R1 register is used to pass parameter {Y}. A V-frame with one stub and one variable
{X} has to be allocated. The stub at position 0 needs to be initialized. The LVMC will
generate the following code:

p/l: ALV 2
ITT O p/l.s.1
UNI 1 p/1.u.0
CCL p/lu.l ¢/1

p/1.u.0: VAR 1
RGV 1
p/l.u.l: SSI 0
RGL 1
p/1.s.1: FUN {11
VAL 1
(2) A recursive chain call:
:-mode app(-,-,+).

app(L1,[X]L2],[X[L3]):-app(L1,L2,L3).

37
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The clause is first transformed to the form of

app(V2,[VO[V1],[VO[RO]):-app(V2,VL,R0).

Here RO register is used to pass a variable in the last argument. All variables in this clause
are classified as stack variables plus RO register variable. A V-frame with 3 cells needed to
be allocated in the LVM stack area. The LVM code is:

app/3: ALV 3
UNI 3 app/3.u.0
CCL RO app/3.u.l app/3

app/3.u.0: VAR 2
SCI 0 // a SCI object
DCI app/3.s.1
app/3.u.l: VAL 2
VAL 1
RGLO
app/3.s.1: VAR 0
RGV O

4.5.3 Rule

For a rule clause, a control frame containing three local environment parameters
needs to be kept on the LVM stack, so a C-frame must be allocated. A rule clause can’t
use the register variables, except RO, hence all parameters are passed via stack variables.

If the last goal is a user defined goal, then an instruction: LAC is used to issue the
last call. The LAC instruction does not implement the so called last call optimization [10].

Example 4.7 Suppose that we have the following clause and t/2 is an user
defined predicate,

P(X,Y,Z):-q(U,V,W),r(Y,Z,U),s(U,W),(X,V).

From the clause analysis, we know that no parameter can pass by registers (R0..R7), so all
six parameters are allocated inside the C-frame as stack variables. Therefore, totally nine
cells are needed for the C-frame. The LVM code is shown as follows:

p/3: ALC 9
UNI 3 p/3.u.0
CAL pf3.ul q/3
CAL p/i3.u2 /3
CAL p/3.u3 /2
LAC pf3.u4 t/2
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p/3.u.0: VAR3
VAR 4
VAR §
p/3.u.l: VARG
VAR 7
VAR 8
p/3.u.2: VAL4
VAL §
VAL 6
p/3.u3: VALG6
VAL 8
p/3.u4: VAL3
VAL 7

If the last goal is a built-in predicate or an arithmetic computation, then an
alternative translation format is applied. The instruction:RET is used to return the control

to its parent continuation point. Let’s demonstrate this case with the second clause of
predicate length/2:

--mode length(-,+)
length(0,[]).
length(N,[_|L]):-length(N1,L),N is N1+1.

In this clause, a built-in arithmetic predicate “is” is used as the last goal. Also this
predicate is deterministic by last argument dispatching. After the clause analysis, the
second clause becomes:

length(V3,{VOID|RO]) :-length(V4,R0),V3 is V4+1.
The generated code is:

length/2.2: ALC S
UNI 2 length/2.2.u.0
CAL RO length/2.2.u.1 length/2
LOD 4 8 // move V4 to R8
INC 8
STI 8 3 //'load R8 to V3
RET
length/2.2.u.0: VAR 3
DCI length/2.2.s.1
length/2.2.u.1: VAR 4
RGL 0
length/2.2.s.1: VOID
RGVO
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4.5.4 Query

For a query, the LVMC assumes that its predicate name is “main” without head
arguments by default. All variables must be stack variables. A special frame is allocated to
store these variables by the instruction “STA n”, where n is the number of variables. A
special instruction: FIN signals the LVM system to exit.

The LVMC handles queries with a single goal, and also queries with multiple
goals. Two examples are given as follows:

Example 4.8 A query with one goal call:
?- p(Y,Z,123).
The LVMC transforms the query into the form:
main:- p(VO,V1,INT:123).

Therefore, the LVM code is:

main:. STA 2
CAL main.u.0 p/3
FIN
main.u.0: VAR O
VAR 1
INT 123

Example 4.9 A query with multiple goals:
- p(X),q({(Y)),r(X,Y).
After clause analysis, the query becomes:
main:-p(V2),q(SSI:0),r(V2,V1).
where the stub must be initialized. The LVM code is:

main: STA 3
ITT O main.s.1 //stub initialization
CAL mainu.0 p/l
CAL mainu.l /1
CAL mainu.2 /2
FIN
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mainu.0: VAR 2

main.u.l: SSI 0

main.u.2: VAL 2
VAR 1

mains.1: FUN f/1 // static shared structure
VAL 2
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Chapter S. Built-in Predicates, Arithmetic Expressions
and Initializations

In this chapter, the code generation of a clause involving built-in predicates and
arithmetic expressions is discussed. Also, the initialization of variables, stubs and
especially SCI objects is described.

5.1 Built-in Predicates

The built-in predicates are defined in Appendix B (also in [19]). There are nine
classes of built-in predicates in Prolog. They are:

(1) unification, e.g., =, \=

(2) arithmetic comparison, e.g., ==, =\=, <, =<, > and >=,

(3) term test, e.g., atom(X), integer(X) and compound(X),

(4) term comparison, e.g., @>, @>=, @<, @<=,==and \==,

(5) term manipulation, e.g., functor/3, arg/3 and copy_term/2,

(6) all solutions, e.g., findall/3, bagof/3 and setof/3,

(7) character-string operations, e.g., atom_codes/2 and char_code/2,

(8) /O operations, e.g., get_char/1, read/1 and open/3,

(9) miscellaneous, e.g., halt/1, throw/1 and repeat/0.

Although the implementation of these built-in predicates in current LVM has not
been completed, the corresponding LVM instructions calling these built-in predicates are
specified in Appendix B. During compilation, the LVMC loads these predicates into a
special predicate table. The co