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ABSTRACT

Gauthier, V.L. 1996. An evaluation of two data sources and their effectiveness 
for vegetation monitoring in developing countries using normalized 
difference vegetation indices (NDVI). 91pp. Advisor Dr. U. Runesson.

Key Words: developing countries, Ghana, Landsat, NDVI, NOAA, remote sensing, 
satellite imagery, vegetation indices.

To prevent environmental degradation that is occurring globally in both 
developed and developing countries, an environmental monitoring program must 
be created and implemented. One method of monitoring vast geographical areas 
is to incorporate remote sensing and vegetation indices.

This report examines areas of vegetation monitoring and explains some of 
the technology used to carry out vegetation monitoring in developed and 
developing countries.

A comprehensive literature review examines the importance of the earth’s 
vegetation with respect to losses of vegetation and the consequences of these 
losses to the earth’s systems, remote sensing and satellite systems and monitoring 
vegetation using remote sensing.

Normalized Difference Vegetation Index (NDVI) was derived from two 
different sources of remotely sensed data using satellite imagery acquired in 1991 
over northern Ghana; Landsat Thematic Mapper (TM) and National Oceanic and 
Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 
(AVHRR). The mean NDVI calculated from the Landsat TM data was 0.11 and the 
mean NDVI calculated from the NOAA AVHRR was 0.10. The results are said to 
be the same because of the difference in ground cover imaged and data resolution 
of the two data sources.

Critical values were established to determine whether a value of NDVI 
obtained during the dry season in northern Ghana, for example, was low for that 
time of year possibly indicating increased environmental degradation. A 
monitoring system that watches the areas of non vegetation according to the 
critical value for that region sets the lower limits of NDVI values for a region that 
are more meaningful to that region. By setting the critical value at 0.10 for 
northem Ghana, any NDVI value above 0.10 was said to be vegetated.
Continuing this critical value idea over many years can be used as an effective 
environmental monitoring program for northem Ghana and other countries 
experiencing environmental degradation problems.
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SECTION 1 

1.0 INTRODUCTION

As the global environment continues to deteriorate, methods of monitoring 

this deterioration need to be established. Incorporating remote sensing and 

vegetation indices is one way to monitor vast geographical areas and determine 

where resources and efforts can be efficiently concentrated. The purpose of this 

report is to explore the many subject areas of vegetation monitoring and explain 

some of the technology used to carry out vegetation monitoring in both developed 

and developing countries.

1.1 OBJECTIVES

This report covers two main objectives. Within each objective there are 

subdivisions which are explained at the beginning of each section.

The first objective of this report was to complete a comprehensive literature 

review of global vegetation monitoring. The review examines the importance of 

vegetation to the earth, remote sensing and satellite systems, and monitoring 

vegetation using remote sensing.

The second objective was to illustrate two main concepts using satellite 

imagery for vegetation monitoring. The first concept was to show that a common 

vegetation index derived from different sources of remotely sensed data can be 

normalized to yield the same information. Landsat Thematic Mapper (TM) and 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) data are used as examples. The second concept 

explains and describes how this Normalized Difference Vegetation Index (NDVI) 

from Landsat TM for an area in Northem Ghana can be used at the local level for 

monitoring vegetation and that NDVI from NOAA AVHRR can be used at the 

regional level for monitoring vegetation. The idea of establishing critical values of
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NDVI to improve vegetation monitoring at both the local and regional levels is 

discussed here as well.

1.2 REPORT LAYOUT

The report is divided into four main sections. This first section introduces 

the report and explains the divisions within the report

Section II covers the first objective of the report which is a review of 

literature covering three main topics: global vegetation, remote sensing, and 

remote sensing and vegetation.

Section III accomplishes the second objective of this report by including 

two projects; Project 1 and Project 2. Project 1 explores the first concept of 

normalizing a vegetation index and applying it to two different data sources: 

Landsat TM and NOAA AVHRR. Project 2 demonstrates how NDVI can be used 

at the local and regional levels for vegetation monitoring. Section III is divided into 

introduction, methodology, results and discussion and conclusion sections.

Section IV discusses how vegetation monitoring and the concept of critical 

values can be used to address the problem of land degradation in Ghana and 

includes recommendations for further study.

I
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SECTION 2

2.0 INTRODUCTION

On a global scale, the quality of the environment is becoming an 

increasingly important issue. Environmental quality is no longer regarded as a 

luxury that only industrialized nations can afford. It has often been assumed that 

residents of the poorer, non-industrialized nations have been too preoccupied with 

economic and physical survival to be concemed about environmental problems 

(Dunlap et a i 1993). However, enthusiastic participation of such nations in the 

1992 United Nations Conference on Environment and Development (UNCED) 

Earth Summit in Rio de Janeiro and the gradual emergence of environmental 

activism in many non-industrialized nations is proving this assumption wrong 

(Dunlap etsL 1993). Unfortunately, at the 1997 follow-up conference, Rio+5, the 

Chairman of the Earth Council Maurice Strong reported that “...despite progress 

made on many environmental fronts, the world community has still not made the 

transition to a development pathway that will provide the human community with a 

sustainable and secure future. Environmental deterioration continues and the 

forces which drive it persist” (Strong 1997). Both industrialized and non- 

industrialized nations have contributed to global environmental damage including 

desertification; deforestation; soil, air, and water pollution; soil degradation and 

erosion; and ozone depletion and they must work together to decrease 

environmental damage.

One of the most important environmental problems facing the global 

community is the decrease in the amount of vegetation covering the earth. 

Terrestrial vegetation influences the earth's atmosphere and energy budget. 

Vegetation affects the concentration of gases in the atmosphere, either directly or 

indirectly, contributing to the greenhouse effect (Botkin etal. 1984; CSIRO 1995b).
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Vast removals of vegetation causes many problems. Two of these are an 

increase in the surface temperature of the earth caused by the loss in evaporative 

cooling capability (provided by trees) and a loss of surface soil due to all forms of 

soil erosion especially on sloped surfaces (Botkin etal. 1984). Without vegetation 

to prevent surface temperature increases and soil erosion these problems are 

perpetuated and the ability to re-establish vegetation on already damaged soils 

becomes increasingly difficult

A common problem in developing countries is the inadequacy of information 

on current land cover and land use and available natural resource base. Without 

accurate information, policy-makers often fail to make decisions or make incorrect 

decisions. Sound decisions depend on accurate information, but developing 

countries have competing demands for the financial and human commitments 

necessary to meet the policy-making requirements (Botkin etal. 1984; ERDAS 

1992; Lillesand and Kiefer 1994; Haack 1996).

The frequent inadequacy of land cover and resource information may be 

due to difficulties in accessing some regions because of limited or failed 

infrastructure; lack of trained personnel, equipment, or funds to collect information 

properly; or rapid changes in the resource base not detectable by traditional data 

collection methods. Spacebome remote sensing can often provide this information 

for developing countries (Haack 1996).

The continent of Africa, especially the sub-Sahara region, is a region of 

great variety and rapid change. Many changes are due to rapid population growth 

and severe land degradation. There is an urgent need for accurate, timely 

information on renewable resources, land use, and land ownership patterns in this 

region (Falloux 1989). Remote sensing offers geographically referenced 

information using a single consistent method over a large area with uniform, 

reliable accuracies and repeated measurements over time to detect change

!
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(Falloux 1989; Haack 1996). Valuable information that can be derived from 

remotely sensed data are vegetation indices.

Vegetation indices are generally derived from some subset of spectral 

bands of remotely sensed data on a pixel-by-pixel basis. The reflectance of the 

specific bands at various pixels are combined and correlated with vegetation 

parameters such as green leaf biomass or green leaf area. A commonly used 

vegetation index is the NDVI. This index takes advantage of the difference 

between reflectance of green plants in the red and near infrared spectral bands 

(CSIRO 1995b; Okin 1996a).

Sustainable development of a country must include sound environmental 

management of a country's natural resources (Asare 1992). Ghana is one African 

country that is trying to take responsibility and action to halt the degradation of its 

environment The population of this country will double within twenty-five years 

and the govemment of Ghana realizes its natural resources are not inexhaustible 

(Otoo 1989). In a developing country like Ghana, the rural conditions deteriorate 

when forests are used for energy supplies and deforested land is used for farming. 

Severe climate and rugged physical topography have accelerated forest depletion 

and overall environmental degradation in this part of the continent (Otoo 1989). 

Sustainable development proposes balanced economic development to meet 

basic needs of the people without causing severe damage to the environment on 

which the resources are based (Otoo 1989). Monitoring the natural resources of 

Ghana using remote sensing techniques and vegetation indices can provide some 

of the necessary information to make responsible decisions and help this country 

begin to achieve sustainable development by its own means.
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2.1 OBJECTIVES

The objective of Section II is to complete a comprehensive literature review 

of global vegetation monitoring. The review is divided into three main topics of 

global vegetation monitoring.

The first of these topics examines the importance of vegetation to the earth 

and the consequences of its removal including disturbance and land degradation. 

The second topic discusses remote sensing, satellite imagery and three main 

satellites used for monitoring vegetation; Landsat SPOT and NOAA. This section 

also includes Normalized Difference Vegetation Index and vegetation monitoring. 

The third, and final part of Section II examines remote sensing and vegetation 

including monitoring vegetation and the applications of Landsat and NOAA 

AVHRR data for vegetation monitoring.
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2.2 LITERATURE REVIEW

2.2.1 IMPORTANCE OF THE EARTH'S VEGETATION

2.2.1.1 Why Vegetation Is Important

The earth's terrestrial vegetation is a dominant component of the biosphere 

which includes everything from grasses to shrubs to trees. Terrestrial vegetation, 

especially higher plant forms like shrubs and trees, is dynamic and plays an 

important role in the following:

•  forming an effective shield against land degradation,

•  influencing local climate,

•  providing the shade that is important to maintain the moisture and

biological activity in the soil,

•  reducing rapid évapotranspiration and surface runoff,

•  ensuring that larger amounts of rainfall can infiltrate the soil,

•  regulating water flow and helping to replenish underground resources,

•  and generating and protecting humus which is important for plant

growth and soil erosion protection (Zaimeche 1994).

Removing large areas of vegetation by clear cut logging, or natural disaster 

such as forest fires, affects the concentration of gases in the atmosphere and 

increases the surface temperature of the earth because of the loss of evaporative 

cooling. Such drastic and sometimes catastrophic changes could cause other 

adverse effects including decreases in the regional transfer of water from the land 

to the atmosphere; decreases in the amount of energy lost from the land to the 

atmosphere by the latent heat of évapotranspiration; increases in the earth's 

surface temperature; and increase in runoff, soil erosion and sediment transport to 

rivers, lakes and oceans (Botkin etal. 1984; Korem 1985). Terrestrial vegetation 

and soils have long-term effects on the atmosphere because they act as reservoirs 

for carbon and other life-sustaining elements.

1
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Although only 29 percent of the earth's surface is terrestrial, and of this, a 

maximum of 20 percent is actually vegetated, the total surface area of leaf material 

in contact with the atmosphere is far greater than the total surface area of the 

entire planet (Belward 1991 ). Vegetation accounts for 99 percent of the earth's 

biomass. This value is important where the global environment is concemed 

because vegetative cover is a major source of global energy and moisture for the 

atmosphere. Changes in vegetation types and rates of growth and development 

directly lead to changes in energy, water, and material transport within an 

ecosystem which, in turn leads to environmental change. For example, 

deforestation, conversion of natural vegetation to agricultural land, and biomass 

buming are all responsible for increasing the concentration of atmospheric CO2 

and for changing the equilibrium temperature of the earth (Park et al. 1983; 

Belward 1991).

The vegetation canopy itself is a good indicator of ecosystem condition 

because it readily responds to both climate and human activity. Vegetation is 

dynamic in responding and adapting to environmental conditions. This can include 

changes in the distribution of vegetation type and changes in plant growth and 

development. Monitoring these changes requires repeated observation and 

measurement (Belward 1991).

The study of vegetation dynamics on regional and global scales is 

concemed with the community, ecosystem and biome levels of organization, not 

the individual plants or populations. Vegetation monitoring is an integral part of 

natural resource surveys such as tropical deforestation assessment, agricultural 

production forecasting, forest fire monitoring and environmental degradation 

monitoring (Belward 1991).
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2.2.1.2 Factors influencing Vegetation Type and Structure

The vegetation on the earth today is the result of a long developmental 

process influenced by past and present environmental factors. The structure of 

vegetation in an area is determined primarily by climate and soil. The climate 

exerts a direct influence on the vegetation as well as an indirect influence through 

the soil (Walker 1975).

There are five basic ecological factors that influence vegetation.

1. Regional climate determines water and energy availability and can be 
the dominant influence on the general structure of vegetation.

2. Topoaraphv modifies the moisture available to vegetation by 
influencing local climate and water movement over the landscape.

3. Soil or substrate may also affect moisture supplies and is the major 
factor in the chemical relationships linking plants and their environments.

4. Biotic influences include both plant-animal and plant-plant interactions.

5. Disturbance events, such as fires, alter the local climate, substrate 
characteristics and biotic interactions.

The removal of trees, shrubs, herbs and grasses exposes the soil, leading 

to erosion and water runoff. Erosion leads to the removal of the thin upper layers 

of soil and reduces the organic matter content and the potential for new vegetative 

growth. When soils in arid regions lose this organic matter, they can no longer 

retain moisture in periods between the rainy seasons. Even with an increase in 

precipitation, the soils remain unproductive. Any vegetation regeneration is 

Impeded by the loss of soil moisture and increased erosion (Korem 1985; 

Zaimeche 1994).

An example of the magnitude of soil loss to erosion can be observed in the 

temperate climate of Western Europe. Here soil loss is between 0.33 - 0.66 

m^/ha/year. At the other end of the scale, the semiarid regions of North Africa
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have shallow soils where nutrients are concentrated in the thin top layer and 

climatic conditions are very extreme. Soil losses are extreme, in some places 

upwards as high as 48 m^/ha/year with subsoil losses of up to 0.5 cm/year 

(Zaimeche 1994).

Together these factors influence the structure of the earth's vegetation, 

including both the arrangement of plant mass vertically and horizontally and the 

physical characteristics associated with the plant mass. In addition, the species 

composition of the vegetation is determined by the same ecological factors. These 

five environmental influences combine with human impacts to create the "natural" 

vegetation that exists over the earth's landscapes (Vale 1982).

2.2.1.3 Disturbance As A Vegetation Factor

Disturbance may be defined as having two characteristics. First, it is an 

environmental change or event that makes plant resources available (such as 

water or light) that were formerly fully utilized by pre-disturbance vegetation. 

Second, as a result of the resources being freed, vegetative change is initiated.

Many types of environmental change are clear examples of this such as fire 

creating an opening, resulting in increased sunlight reaching the forest floor, 

windstorms creating blow-downs, or landslides exposing mineral soil. Other types 

of change are not so clearly defined. For example, an increase in browsing 

animals consuming and eliminating a plant species from the forest may lead to 

replacement by a less-favoured species because of the available moisture and 

light. The role of disturbance and how it is described is important when discussing 

the nature of vegetation and vegetation change (Vale 1982).

On this subject of disturbance and vegetation change. Vale (1982) 

discussed that prior to 1950, an ecologist, F.E. Clements, described disturbance 

as a deviation from a vegetation equilibrium that results from environmental 

factors. Clements was describing succession, the predictable sequence of change
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(disturbance) of vegetation leading to the return to predisturbance conditions. The 

equilibrium which ended succession was termed the climax, a stable, undisturbed 

state of vegetation.

Vale also presented, contrasting Clements view, that others decided that 

post-disturbance vegetation does not revert back to predisturbance condition, but 

instead becomes a new grouping of species and vegetation structure. Vale found 

the ideas of F.E. Egler who argued that the condition of the vegetation at the time 

of the disturbance was the most important factor influencing subsequent 

vegetation development Also, this condition varied from place to place and from 

time to time allowing the formation of a new equilibrium (Vale 1982).

Vegetation is always changing. During relatively short time periods, twigs 

elongate with spring growth, deciduous forests drop leaves as winter arrives, a fire- 

consumed woodland may be replaced by a field of flowers and grasses, an open 

meadow fills with shrubs and a forest protected from fire may shift from fire- 

dependent pines to fire-sensitive maples. Over even longer time scales, other 

factors may contribute to constantly changing plant cover, migration of plant 

species, changes in climate, evolutionary change in the genetics of a species, or 

progressive changes in soil characteristics (Kellogg and Schneider 1977; Vale 

1982). Besides the natural processes affecting changes in vegetation there are 

various human activities that affect plant communities. Human disturbances 

include changing fire regimes, grazing, logging, trampling, polluting air, 

constructing roads, introducing or removing plant and animal species, developing 

agricultural land (including water course manipulation), and manipulating other 

environmental factors (Kellogg and Schneider 1977; Vale 1982).

The earth and its ecological systems are dynamic when relatively long time- 

scales are considered. Major continental ice caps and species extinctions are not 

difficult to understand. There is a general understanding that over millions of 

years, the earth has been an extremely dynamic planet.
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What is not so easily understood are the observations of shorter time- 

scales, relatively rapid changes in atmospheric and surface features of the earth 

and the strong evidence that some of these changes are caused by human 

activity. Humans are producing measurable changes in major earth systems with 

relatively little knowledge of how these systems work or what the future impacts 

might be. This insufficient knowledge has produced an intemational research 

program (the Intemational Geosphere-Biosphere Program - IGBP) which was 

chartered by the Intemational Council of Scientific Unions in 1986,

"to describe and understand the interactive physical, chemical, and 
biological processes that regulate the total earth system, the unique environment it 
provides for life, the changes that are occurring in this system, and the manner in 
which they are influenced by human activities" (Shugart 1993).

Even though two thirds of the earth is covered by oceans, it is the 

continental surfaces that provide most of the spatial and temporal variability 

making up the weather and climate. Since vegetation is the main influence on the 

physical characteristics of the earth, it also influences the climate of the earth 

(Martin 1993).

Local vegetation affects surface hydrology since the vegetation controls 

transpiration, determines interception losses, and affects infiltration in the soil, thus 

vegetation greatly influences surface runoff. The physiological responses and 

physical characteristics of the vegetation determine how much of the sun's heat 

and energy reach the surface of the earth, which in tum affects atmospheric winds 

and the water balance. Therefore, the control that vegetation has on the 

evaporative cooling process is of interest to atmospheric scientists, hydrologists, 

plant physiologists and ecologists all over the world (Martin 1993).

I
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2.2.1.4 Land Degradation

Land degradation, defined by Critchley et a i (1992) as the loss of the 

productive capacity of the land to sustain life, is a condition that is prevalent 

throughout sub-Sahara Africa. The factors that contribute to this process include 

physical factors relating to the rise in human population and the associated 

demands on the environment The two main components of this definition are as 

follows:

"Soil degradation is a reduction in the soil fertility caused by soil erosion and 
exploitative cropping. Low soil fertility is often the major constraint for production, 
both for crops and for natural vegetation."

"Impoverishment of the vegetative cover is a reduction in the available 
biomass caused by climatic factors, over utilization of vegetation and reduced soil 
fertility. Immediate implications for sub-Sahara Africa are lower and less reliable 
crop yields, reduced grazing and browsing for livestock, decreased availability of 
fuelwood and declining dry season water flows needed for small scale irrigation" 
(Critchley ef a/. 1992).

Land degradation is also caused by ignorance, mismanagement and 

inappropriate land use. The driving forces here are population increase, lack of 

economic opportunities and altematives and land tenure restrictions. This in tum 

leads to land degradation manifest in the cultivating of steep slopes, overgrazing, 

and extending land cultivation into marginal areas (Critchely at a i 1992).

By 1983, an estimated 17 percent of the world’s arid, semi-arid and 

subhumid regions had suffered some loss of land productivity. Land degradation, 

reduction in species diversity and reduced production potential are the common 

problems in these regions. Although the social and economic reasons for these 

problems are complex, specific causes, such as increased pressure from livestock 

grazing, deforestation for charcoal production, and inadequate agricultural 

practices have contributed to the degradation of the landscape (Solbrig 1992).

I .
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Preliminary land degradation assessments of Africa indicate tfiat unless 

conservation measures are introduced on all cultivable land, 544 million hectares 

(1986 figure) of potentially productive crop land could be lost due to agricultural 

use or over-use by the year 2000. Almost 50 percent more food will have to be 

grown in the year 2000, if only to meet present inadequate levels (Howard and 

Odenyo 1986).

In most of the literature, the terms "land degradation" and "desertification" 

are used interchangeably when the semi-arid lands of sub-Sahara Africa are 

discussed. However, in this region of Africa, Critchley et al. (1992) argue that land 

degradation is not so much a problem on the fringes of the desert, but is more of a 

problem in the relatively heavily populated zones. Rain-fed cropping is possible on 

these fringes of the desert, but it is an unreliable method of agriculture. 

Desertification will be discussed separately from land degradation.

Desertification and Human Activities

Desertification is an often misused term, but it must be included in the 

discussion of the earth's vegetation. Crtichley etal. (1992) proposed a concise 

definition of desertification, formulated from those of many authors:

"Desertification is the process of continued land degradation in drylands 
caused at least partially by man. The productive potential of the land is greatly 
reduced and the process is only reversed slowly and with considerable input."

In 1991 the United Nations Environment Program (UNEP) defined 

desertification as "land degradation in arid, semi-arid and dry sub-humid areas 

(drylands) resulting mainly from adverse human impact." In this context, land 

includes soil and water resources, land surface, vegetation and crops. One year 

later, the United Nations Conference on the Environment (UNCED) adopted the 

definition of "land degradation in arid, semi-arid and dry sub-humid areas resulting 

from various factors including climatic variations and human activities" (Hellden 

1991; Hulme and Kelly 1993; Biswas 1994). Even though climatic variations was
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added to the definition, human activities are an important component of any 

definition of the process of desertification (Hellden 1991; Crtichley etal. 1992; 

Hulme and Kelly 1993; Biswas 1994). Over the past two decades, recurrent 

drought and inappropriate management of natural resources - especially in Africa - 

have threatened millions of dryland inhabitants. In many developing countries it is 

these drylands that are the basis of agricultural production (Biswas 1994).

Desertification has also been defined as a process leading to reduced 

biological productivity with consequent reduction in plant biomass, in the land's 

carrying capacity for livestock, in crop yields, and in human well being. This also 

leads to the intensification or extension of desert conditions (Hellden 1991 ; Hulme 

and Kelly 1993).

The expansion of deserts along their edges is due mostly to human action; 

to the permanent and increasing pressure of man and his animals to produce more 

food, fodder and fuel to meet the demands of the growing population on fragile 

and unstable ecosystems and to the misuse of natural resources through careless 

management (or lack of management) (LeHouerou 1977; Prasad etal. 1990; 

Biswas 1994).

At present time, desertification affects directly or marginally one quarter of 

the global land surface and impacts on almost one fifth of the world population. As 

recently stated by the Governing Council of UNEP, it is one of the major 

environmental problems of our time (Hellden 1991). Reliable wamings of 

impending drought would help identify the areas most severely affected by the 

unusual aridity and encourage better use of land resources during post-drought 

recovery (Mohler et al. 1986). Desertification on the African continent is spreading 

on the south and north sides of the Sahara Desert, in the African Hom and around 

the Kalahari desert in the south of Africa. In the Sahel region, the damages 

caused by desertification on agriculture and stock-farming are serious (Yoshinaga 

etal. 1988).

r
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Causes for desertification include mainly climatological changes, 

deforestation, excessive cultivation (agriculture), overgrazing and bush fires. 

Prevention and control of desertification requires the prevention of overgrazing, 

protection of forests, proper management of water resources, soil erosion 

prevention, soil improvement practices, adequate land use policy and agricultural 

development (Glanz 1977; Yoshingaga etal. 1988).

Deforestation

Deforestation can be simply defined as the removal of trees from the land, 

which may result from human activity or natural disturbances. By human 

intervention, land may be cleared for logging purposes, homesteading, agriculture, 

or animal grazing (Agatsiva et al. 1989). Land can also be cleared by forest fires, 

insect and disease infestations, and the general deterioration of tree health in an 

area. Whatever the cause, deforestation has detrimental effects on the 

environment (Korem 1985; Prah 1988; Defoumy 1990).

In many developing countries tropical deforestation, as a specific example, 

is continuing at an accelerated rate. This is continuing in spite of intemational 

attention to the deforestation problem. It has been estimated that in 1980 the loss 

of open and closed tropical forests was about 11 million ha/year. Ten years later. 

In 1990, this rate had increased to 17 million ha/year. It is not clear whether 

deforestation actually Increased by this amount or the surveys to detect 

deforestation became more accurate. Even though the specific causes of tropical 

deforestation are not easily identified, to a great extent it is driven by the demand 

for increasing food production for growing populations in tropical regions.

It is easily understood that as population growth increases the demands for 

arable lands, fuel wood and timber increase, thus leading to a decline in tree 

stocks and forested regions (Anderson 1986; Agatsiva et al. 1989). Also resulting 

from the population explosion, there will be major changes in patterns of land use 

with increasing threats to agriculture and food production caused by deforestation.
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soil erosion, declining soil fertility, and in some regions, increased desertification 

(Howard and Odenyo 1986). The clearance of land for agriculture, commercial 

logging and the removal of tree stocks for fuel wood and fodder are sources of 

large and increasing losses each year in forests, woodlands, watersheds and on 

farmlands in Africa. The concem Is that the losses are accompanied by readily 

visible and largely avoidable ecological damage and economic costs. These costs 

can be measured in terms of a threat to the carrying capacity of the fertility of soils 

over large areas (Anderson 1986; Prah 1988).

There are five consequences commonly associated with deforestation 

which were presented by Anderson (1986):

•  gully erosion and loss of topsoil to winds and rains;
•  greater surface evaporation and reduced soil moisture content as 

surface wind velocities Increase;
•  greater surface ruri-off and adverse changes in water tables (which also 

place the remaining trees under increased stress);
•  a general reduction in the recycling of nutrients; and
• in some regions, the consumption of soil nutrients (animal dung and 

crop residues) as fuel when fUel wood becomes scarce.

The last of these events is usually the terminal stage of the desertification process, 

and can set in very quickly once fuel becomes scarce (Anderson 1986; Prior and 

Cutler 1992).

Deforestation in Ghana

A number of authors concentrate and report on various environmental 

issues in Ghana (UNDP 1968; Dei 1987; Allotey 1988; Panin 1988; Prah 1988; 

WCMC 1988; Amomoo-Otchere 1990; Asare 1992; Pitkanen and Paivinen 1992; 

IIED 1992; Wagner and Cobbinah 1993; FAQ 1994). Ghanaian soils are 

susceptible to all forms of erosion. It has been observed that most of the soil 

nutrients are found in the top 15-20 cm of soil and that the organic matter and 

plant nutrient content decreases sharply just below the topsoil. These topsoils 

have a light texture and fragile consistency which causes them to erode quickly
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and easily. There are indications that the removal of protective vegetation cover 

for fuel wood utilization and farming has contributed to the high incidence of 

erosion in some areas of Ghana (Asare 1992).

With populations sometimes doubling in 25 years, as is the case of Kenya, 

Ghana, and Nigeria, many govemments have realized that their natural resources 

will not last indefinitely. As rural conditions deteriorate, attention is given to the use 

of forests for energy supply and the deforested land for farming. This, in 

conjunction with severe climatic and physical conditions, has accelerated forest 

depletion in many parts of continental Africa (Otoo 1989).

Rates of deforestation in West Africa are among the highest in the world. 

The deforestation rate in Ghana for 1981-85 was estimated at 1.3 percent annually 

(Wagner and Cobbinah 1993) and has increased to 2 percent annually since 1985 

(Anon. 1998). There is also an estimation that over 70 percent of the original 8.2 

million ha of closed forest in Ghana have been destroyed, reducing the amount to 

about 1.7 million ha by 1987. Deforestation is not yet monitored in Ghana and 

figures on current rates are only estimates (Otoo 1989; IIED 1992; Wagner and 

Cobbinah 1993).

Forests in Ghana are generally cleared for agriculture (both commercial 

and small-scale), logging, and fuelwood (IIED 1992). Other sources of 

deforestation in Ghana are shifting cultivation and the accompanying bush fires, 

cocoa farming, timber exploitation, food farming, and industrialization. The 

problem of deforestation in Ghana is serious because timber is the second most 

important export item, cocoa being the first major export of this country. Cocoa 

cannot be successfully cultivated outside the forest because of its need for partial 

shade and high humidity provided by the forests (Korem 1985; Wagner and 

Cobbinah 1993). However, these forests are usually reserves set aside by the 

government. Cocoa farms often have small forested patches on slopes or along 

streams that serve as islands for tropical tree species.
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A second important source of forest islands are "sacred groves." These 

small patches, located throughout the country, serve as burial grounds and sites 

for a variety of religious purposes. Both these island types of forests tend to be 

very small, which may limit their long-term value, but they contain many tropical 

species and may be an important source of biological diversity (Wagner and 

Cobbinah 1993).

Agriculture

With increasing population there is a progressive creeping of cultivation into 

pastoral areas. The unproductive and highly risky cropping situations evolving in 

newly desertified lands results in the destruction of native fodder species. These 

are then replaced by either annual weeds which have little forage value or by 

species that are altogether unpalatable (Glanz 1977).

As cultivable land area is significantly reduced, fallow is reduced, soil fertility 

is no longer restored, and yields eventually decrease. As well, soil left barren after 

cropping or after a crop failure is subject to wind erosion (Glanz 1977; Defoumy

1988).

The population increase, in combination with extensive agricultural 

techniques, bring almost all arable land into cultivation. This means farming has 

taken on characteristics of a destructive use of ground cover. Many of the farmers 

cannot and do not meet the fallowing requirements of traditional farming systems 

on their small farming plots which means the soils are deteriorating (Defoumy

1990).

Expanding agriculture also has the effect of reducing local forested areas. 

While clearing ground for cultivation, farmers cut all but the largest trees and then 

set fire to the brush killing most of the younger seedlings. The sedentary 

population also uses large amounts of wood for fuel and construction. This leads 

to a steady demand for wood and wood products used in cooking, heating, storage
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construction, tools and fencing, which increasingly depletes the wood stock 

(Thomson 1977; Defoumy 1988).

Some of the marginal land that is cleared for cultivation is later abandoned 

because of low crop yields and is subsequently left open to wind erosion and 

desiccation (Katz and Glanz 1977).

In Ghana, agriculture is the dominant economic activity which supports 70 

percent of the population, contributes more than 50 percent of the national 

revenue, and occupies 65 percent of the available land base. For tiie past three 

decades serious, sometimes irreparable, damage has been documented from the 

effects of deforestation due to agricultural practices and bush fires (Allotey 1988). 

Grazing

The ranching of livestock is widespread around the globe. These animals 

have serious impacts on the lands that they graze, but the type and degree of the 

impact is dependent on the type of land which they are allowed to graze. In arid 

landscapes, for example, the impact is much more serious and evident than in 

lusher landscapes (Okin 1996b).

Globally, the cattle industry is a major economic player. There are currently 

over 1.28 billion cattle world-wide, and over 200 million people globally who 

depend on cattle for their livelihoods (Okin 1996a). Cattle are able to graze lands 

that are otherwise uncultivable, thus increasing the economic value of these lands. 

For example, cattle are able to graze in regions where the topography is 

unfavourable for farming. While for the most part cattle do not graze in these 

areas, but instead graze on lands that could be beneficial for other purposes, this 

is a practical way of making use of otherwise unusable lands (Okin 1996a). The 

result of this is a progressive reduction in vegetation cover and increased wind 

erosion, trampling, increased runoff, higher water tables and salinity - all 

mechanisms that feed the desertification process (Glanz 1977; Zaimeche 1994).
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Fast-rising livestock populations have reduced grazing capacities of lands 

that were previously used for this purpose. Moving livestock herds from depleted 

areas to new grazing areas prevents effective plant regeneration and results in 

deforestation, soil erosion, sedimentation, and flooding (Biswas 1994; Zaimeche 

1994).

Grazing by livestock influences wild vegetation directly through the removal 

of foliage and indirectly by trampling of both plants and soils. Grazing may 

influence the amount of energy available to plants by reducing the photosynthetic 

area of the leaves. The vigour and reproduction of the affected plants can be 

reduced if the grazing is heavy and occurs at a time when plants may be stressed 

from other factors like drought or nutrient deficiency (Glanz 1977; Vale 1982). 

Bush Fires

Biomass buming is one of the key factors affecting global processes. . 

During combustion, amounts of trace gasses are released which strongly affect 

atmospheric chemistry. Frequently, fire results in a partial or complete destruction 

of vegetation cover which in tum modifies the radiation balance by increasing the 

surface radiation reflection, influencing the hydrological cycle and increasing rates 

of soil erosion (Chuvieco and Martin 1994).

On a local scale, biomass buming also has strong effects on the landscape 

and ecology, especially in semi-arid lands. In tropical areas, recurrent use of fire 

as a soil fertilizer, or as a means of pasture improvement, involves soil and grass 

degradation in many areas as fire cycles are shortened. Fires also modify the 

hydrological cycle by increasing the runoff into water sources (Chuvieco and 

Martin 1994).

In most areas of sub-Sahara Africa, bush fires are a major problem. Bush 

fires destroy litter on the forest floor, grasses and other plants, and decrease the 

organic matter content in the forest soils. A canopy of trees, shrubs, grasses, and 

other plants will reduce the impact of rainfall on the soil. When rain falls on

I -
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vegetation first the velocity of the rain is reduced and less damage to the soil 

surface structure occurs. If the forest or grassland is protected against buming 

then litter is present and soil organic matter content is high. With higher organic 

matter content the soil has the ability to absorb greater quantities of rainfall in a 

very short time (Korem 1985).

Slash-and-bum agriculture is commonly considered a major cause of 

deforestation. This method of agriculture is still widely practised in Ghana, 

however, it is restricted to land outside of forest reserves that is already classified 

as deforested, and it is primarily practised on abandoned farmland rather than on 

natural forest (Wagner and Cobbinah 1993).

An example of how detrimental fire can be to both land and water resources 

is the study of a forest fire in Australia presented by Korem (1985). The stream- 

flow and sediment load were assessed before and after a major fire. Following the 

fire, sheet erosion was observed immediately. The effect of the fire on flood flows 

is compared with two storms that occurred over a catchment area where one 

storm occurred before the fire and another storm occurred after a fire. During the 

first storm, a rainfall of 12 mm produced a peak flow of only 0.34 m^/sec while the 

storm after the fire, with a rainfall of 8.5 mm caused a flood exceeding 9.5 m /̂sec 

(Korem 1985).

During the dry season in Ghana many of the farmers bum vast areas of 

bush and the land is left bare and fully exposed to the detrimental effects of the 

sun, rain and winds. When the soil is dried and baked this way the small soil 

particles and black ashes are easily blown away by winds. Most of the plant 

nutrients are lost from the soils by this method. Wind erosion is becoming 

increasingly serious in the Upper Region where many places are devoid of trees 

and grasses and are annually bumt. By the end of the dry season the soil is 

extremely dry and hard and water permeability is very low. When the first rains
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come, usually In the fomri of violent stomns, the bumt soils are severely eroded 

(Korem 1985).

When crop residues from rice straw, Guinea com stalks, or millet stalks are 

left on the field during the dry season they provide sufficient protection against 

wind erosion, excessive évapotranspiration and the sun. However, the farmers 

bum the residues directly on the field or collect them for fuel. If the crop residues 

were left unbumed and in the field for even just the first one or two rainfalls, the soil 

would absorb some of the moisture and there would be less chance of severe 

erosion (Korem 1985).

2.3 REMOTE SENSING

Remote sensing is the study of objects and phenomena from a distance by 

systems that are not in contact with the object or phenomenon being investigated 

(Belward 1991; Ullesand and Kiefer 1994). Using various sensors, data is 

remotely collected and can be analyzed to obtain information about the objects, 

areas or phenomena being investigated.

In this report, remote sensing refers to electromagnetic energy sensors 

currently operating from airbome and spacebome platforms that assist in 

inventorying, mapping, and monitoring earth resources (Ullesand and Kiefer 

1994).

2.3.1 History of Satellite Imagery

The initial efforts to image the surface of the earth from space were 

Incidental advancements with the development of meteorological satellites. In 

1960, TIROS-1, an early weather satellite sent back coarse images of cloud 

patterns and virtually indistinct surface images of the earth. Eventually, as images 

improved, meteorologists began an intensive study of earth surfaces to collect 

data on water, snow, and ice features. During the manned space programs of the
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1960s, photography of the earth evolved to nearly vertical, overlapping photos of 

the southwestern United States, Mexico, Africa and Asia which lead to discoveries 

in tectonics, volcanology, and geomorphology (Ullesand and Kiefer 1994).

In 1973, Skylab astronauts took over 35,000 images of the earth with the 

Earth Resources Experiment Package (EREP). This EREP included a six-camera 

multispectral array, a long focal length camera, a 13 channel multispectral scanner 

and two microwave systems, and was the first effort to show photography and 

electronic imaging from space (Ullesand and Kiefer 1994).

At the time of Landsat-1, there were many efforts at technology transfer of 

spacebome remote sensing to developing countries. Those efforts were most 

abundant in the 1970s and 1980s and continue today. Many of the early efforts 

were by the United States govemment as an extension of the Landsat program 

and eventually included many intemational organizations such as Food and 

Agriculture Organization (FAG), United Nations Environment Program (UNEP), 

United Nations Development Program (UNDP), and the World Bank (Haack 1996).

2.3.2 Landsat Satellite Program

The National Aeronautics and Space Administration (NASA) and the United 

States Department of Interior began a series of satellites known as Earth 

Resources Technology Satellites (ERTS). The ERTS-1 was launched on July 23, 

1972 and was operational until January 6,1978. The ERTS-1 sensors were 

placed aboard a Nimbus weather satellite. It was the first unmanned satellite 

specifically designed to acquire data of earth resources on a systematically 

repetitive, medium resolution, multispectral basis. This system was only designed 

as an experiment to test the feasibility of collecting earth resource data from 

unmanned satellites. In many experiments, the ERTS-1 exceeded expectations. 

The ERTS program was renamed the "Landsat" program (to distinguish it from the
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planned Seasat oceanographic satellite program) prior to the launch of the second 

satellite on January 22.1975. Five satellites have been launched to date.

Orbit Pattems - Landsat-4 and -5

Since Landsats-1 ,-2, and -3 are no longer operational, the following 

discussion only includes information on Landsat-4 and -5.

Landsat-4 and -5 were launched into repetitive, circular, sun-synchronous, 

near polar orbits. These orbits were lowered from 900 km to 705 km to aid in the 

improvement of the ground resolution and to make them potentially retrievable by 

the space shuttle. Each orbit takes about 99 minutes, with just over 14.5 orbits 

being completed in a day. This orbit results in a 16-day repeat cycle for each 

satellite, two days less than the previous Landsat generations (Ullesand and Kiefer

1994).

Sensors On Board - Landsat-4 and -5

Figure 1 shows the Landsat-4 and -5 satellite, including both the 

Multispectral Scanner (MSS) and TM sensors.

The MSS on board the Landsat satellite covers a 185 km swath width in 

four wavelength bands; two in the visible spectrum at 0.5 to 0.6 mm (green) and 

0.6 to 0.7 mm (red) and two in the near infrared at 0.7 to 0.8 mm and 0.8 to 1.1 

mm. These were designated as bands 1,2,3, and 4 (see Table 1). The spatial 

resolution of MSS data is 57 x 79m and the recoded radiometric resolution is 7 bits 

(0-128 possible brightness values), but the data is stored as 8 bit (0-255 possible 

brightness values) (ERDAS 1992).

The TM is a highly advanced sensor that incorporates a number of spectral, 

radiometric, and geometric design improvements relative to MSS. Spectral 

Improvements include the acquisition of data in seven bands instead of just four. 

New bands included are in the visible (blue), mid-infrared, and thermal portions of 

the spectrum. The wavelength range and location of the TM bands have been
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chosen to improve the spectral differentiability of major earth surface features 

(Leckie 1991).

The TM bands are more finely tuned for vegetation discrimination than 

those of the MSS. For example, the green and red bands (bands 2 and 3) are 

narrower than the MSS red and green bands (Table 1). The near-infrared TM 

band (4) is narrower than the combined bands of the MSS and this region is of 

maximum sensitivity to plant vigour. Sensitivity to plant water stress can be 

obtained in both of the TM mid-infrared bands (5 and 7) and plant stress 

discrimination is also aided by the TM blue band (1). The spatial resolution of TM 

is 30m X 30m for all the bands except the thermal (band 6) which has a spatial 

resolution of 120m x 120m and is resampled to 30m x 30m to match the other 

bands (ERDAS 1992; Ullesand and Kiefer 1994).

Table 1. Landsat MSS and TM System Characteristics.

Soectral Characteristics
MSS TM

Spectral bandwidth 1. 500-600nm 1.450-520nm
2. 600-700 2. 520-600
3. 700-800 3. 630-690
4. 800-1100 4. 760-900 

5.1550-1740
6. 10400-12500
7. 2080-2350

Radiometric resolution 7 bits (stored as 8 bits) 8 bits
IFOV (Instantaneous Field of View) 79m* 30m**
Swath width 
Platform Characteristics

185km 185km

Orbit Sun-synchronous Sun-synchronous
Altitude: 705km 705km
Repeat Cycle: 16 days 16 days

• spatial resolution of MSS data is 57m x 79m
**spatial resolution of TM data is 30m x 30m for all bands except thermal band (6) which is 120m x 
120m, but is resampled to 30m x 30m.
Source; Lillesand and Kiefer 1994
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High gain antennaCD

Multispectral scanner (MSS)

— Solar array

/  /X-band antenna 

■ Thematic Mapper (TM)
5-band antenna

Figure 1. Schematic of the Landsat-4 and -5 observatory configuration including Thematic Mapper 
(TM) and Multispectral Scanner (MSS). Source: Ullesand and Kiefer 1994.

2.3.3 SPOT Satellite Program

In early 1978 the French govemment developed the Système Pour 

l'Observation de la Terre, or SPOT program. From the beginning, SPOT was 

designed to be an operational, rather than experimental program. The first satellite 

in the program, SPOT-1, was launched in French Guyana on February 21,1986.
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it was the first satellite to provide full-scene stereoscopic imaging from two different 

satellite tracks.

SPOT-1 was not used after December 31,1990; SPOT-2 was launched on 

January 21,1990, and SPOT-3 was launched September 25,1993 (Lillesand and 

Kiefer 1994).

Orbit Pattems

Similar to the Landsat satellites, the SPOT satellites have a circular, near 

polar, sun-synchronous orbit The area under the orbit pattem on the earth can be 

imaged using the same viewing angle giving stereo viewing abilities. This ability to 

"revisit" any given point is important in two respects. Firstly, it increases the 

potential frequency of coverage of areas where cloud cover tends to restrict the 

ability to remotely sense the surface of the earth under the cloud. Secondly, it 

gives the opportunity to view a given area at frequencies ranging from successive 

days, to several days, to a few weeks. Several application areas, particularly 

within agriculture and forestry, require repeated observations over these types of 

time frames (Leckie 1991; Lillesand and Kiefer 1994).

Sensors On Board

The SPOT satellite system weighs approximately 1750 kg and the main 

body is approximately 2m x 2m x 3.5 m (Figure 2). The solar panel has an overall 

length of approximately 15.6 m. These sensors on SPOT consist of identical High 

Resolution Visible (HRV) imaging systems and auxiliary magnetic tape recorders. 

Each HRV is designed to operated in either 2 modes: 1) a 10 m resolution 

"panchromatic" (black and white) mode over the range 0.51 to 0.73 mm or 2) a 20 

m resolution multispectral (colour infrared) mode over ranges 0.50 to 0.59, 0.61 to 

0.68, and 0.79 to 0.89 mm (see Table 2) (Leckie 1991; Lillesand and Kiefer 1994).
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Figure 2. SPOT observatory configuration. Source: Lillesand and Kiefer 1994

Table 2. SPOT System Characteristics

Soectral Characteristics
Panchromatic XS

Spectral bandwidths 1. 510-730nm 1. 500-590nm
2. 610-680nm
3. 790-890nm

Radiometric resolution 8 bits 8 bits
IFOV (nadir) 10m 20m
Swath width 60-80km 60-80km

Platform Characteristics
Orbit Sun-synchronous Sun-synchronous
Altitude: 832km 832km
Repeat cycle: 26 days 26 days

Source: ERDAS 1992
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2.3.4 NOAA Satellite Program

Meteorological satellites were designed specifically to assist in weather 

prediction and monitoring. These satellites incorporate sensors that have very 

coarse spatial resolution compared to land-oriented systems. They also have the 

advantage of global coverage at very high temporal resolution. Therefore, 

meteorological satellite data are useful in natural resource applications where 

frequent, large area mapping is required and fine detail is not Another advantage 

is that the coarse spatial resolution also greatly reduces the volume of data to be 

processed for a particular application (ERDAS 1992).

The National Oceanic and Atmospheric Administration (NOAA) launched 

the first of these meteorological satellites in the United States. The NOAA satellite 

is in a near-polar, sun-synchronous orbit similar to that of Landsat and SPOT.

There have been several generations of satellites launched and flown in the 

NOAA series. Only the latest missions, NOAA-6 through NOAA-12, carried the 

Advanced Very High Resolution Radiometer (AVHRR) (see Figure 3). The swath 

width of this sensor is 2400 km and coverage is acquired at a ground resolution of

1.1 X 1.1 km (1 km pixel) at nadir (see Table 3) (ERDAS 1992). NOAA receives 

AVHRR data at full resolution and archives them in two different forms. Selected 

data are referred to as local area coverage (LAC) data. All data are sampled down 

to a nominal resolution of 4 km and are referred to as global area coverage (GAG) 

data. LAC and GAG data are available as both 10 bit packed and 16 bit unpacked 

data. Packed data are compressed to fit more data on the tape (Kidwell 1990; 

ERDAS 1992).

NOAA satellites provide daily (visible) and twice-daily (thermal infrared) 

coverage. Images and digital tapes are used operationally for many applications 

requiring timely data. For example, NOAA AVHRR thermal data is used for water 

temperature mapping. In addition to surface water temperature mapping, AVHRR
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data have been used extensively in applications as varied as snow cover mapping, 

flood monitoring, vegetation mapping, regional soil moisture analysis, wildfire fuel 

mapping, fire detection, dust and sandstorm monitoring and various geologic 

applications (ERDAS 1992; Lillesand and Kiefer 1994).

AVHRR

Figure 3. NOAA satellite configuration including the AVHRR sensor. Source: Burgan and Hartford 
1993.
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Tables. NOAA AVHRR System Characteristics.

Sensor characteristics 
Spectral tiandwidths

Radiometric resolution 
IFOV (nadir)
View angle

Swath width

1. 580-680 nm
2. 735-1100 nm
3. 3550-3930nm*
4. 10300-11300 nm
5. 11500-12500 nm

10 bits (1024 level)
1.1 km
55.4 degrees (IFOV 6 km at 
swath edge) **
2700 km

Platform characteristics
Orbit
Altitude:
Inclination:
Period:
Equator crossing time **

Repeat cycle:
Global frequency coverage:

Near-polar, Sun-synchronous 
833-870 km 
98.7 
102 min
0730 and 1930 (even no.’d 
sats)
1400 and 0200 (odd no.’d sats) 
12 hours 
1-2 days

* Band 3 will be replaced on future AVHRR sensors and the actual Band 3 will be used only for night 
imaging.
** The most usable portion within the swath of 2700 km is the area within ±15 degrees. At 15 
degrees, the area covered by a pixel is approximately 1.5 km and the repeated coverage for this 
reduced swath width is about 6 days.
*** Greenwich standard time (14:30 ascending and 2:30 descending [local time)).
Source: Ehrlich etal. 1994.

AVHRR data have been used extensively for large area vegetation 

monitoring. Typically, the spectral bands used for this purpose have been the 

channel 1 visible band (0.58 to 0.68 mm) and the channel 2 near infrared band 

(0.73 to 1.10 mm). Various mathematical combinations of the AVHRR channel 1 

and 2 have been found to be sensitive indicators of the presence and condition of
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green vegetation. These matiiematicai quantities are referred to as vegetation 

indices (ERDAS 1992; Lillesand and Kiefer 1994).

2.3.5 Normalized Difference Vegetation Indices

Remote sensing techniques for vegetation monitoring use data recorded 

from the electromagnetic spectrum that provide a strong signal from vegetation 

while contrasting with the background material (Belward 1991). Previous research 

has shown that the red and near-infrared wavelengths satisfy this criterion, and by 

combining these two wavebands as vegetation indices they can be used to 

measure attributes of a vegetation canopy (Lechapt and Didier 1989; Belward

1991). The principle behind this is that the red wavelengths are in the part of the 

spectrum where chlorophyll causes considerable absorption of incoming radiation, 

and the near infrared wavelengths are located in a spectral region where spongy 

mesophyll leaf structure leads to considerable reflectance (Wolf 1996). Building up 

regular vegetation index images from sequential satellite overpasses adds the 

temporal dimension necessary for vegetation monitoring.

This ratio index can use data recorded at equivalent wavebands from 

different sensors (eg. Landsat MSS and NOAA AVHRR). The ratio is now widely 

referred to as a Normalized Difference Vegetation Index (NDVI):

NOVI -  (near infrared - red)

(near infrared + red).

The NDVI is a bounded ratio ranging in value from -1 to +1 where negative values 

are associated with clouds, bare soil, water and low green vegetation densities. 

The higher values (closer to +1) are associated with photosynthetically active 

cover. By inference, the higher the NDVI value, the greater the amount of green 

vegetation (Lechapt and Didier 1989; Belward 1991; Wolf 1996).

The very large changes in green biomass production that are possible from 

year to year in the Sahel region (the semidesert fringe of the Sahara that stretches
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from Mauritania to Chad) were demonstrated by applying the NOAA AVHRR NDVI 

approach. A data set covering all the Sahel from the 1984 notorious drought and 

famine year was compared with a corresponding data set from the 1985 wet 

season. Although the varying NDVI was interpreted in terms of north-south 

oscillating vegetation boundaries (inter-annual changes of 50 to 250 km), it 

appears to have demonstrated large time and spatial variations in green biomass 

productivity (Belward 1991).

Information on crop characteristics is sometimes needed to develop site 

specific agricultural management practices. The cost of traditional field 

measurements (man-in-the-field inventories) becomes a constricting factor when 

applied to large areas. The use of data from satellite-bome sensors is a practical 

attemative to field measurements, provided suitable spectral vegetation indices 

can be developed (Thenkabail etal. 1994a). Using vegetation indices to study 

crop characteristics including leaf area index, wet biomass, dry biomass, and plant 

height have primarily relied on near-infrared and red wave band-based indices.

A number of methods have been developed to separate vegetation from 

soil information in satellite data. Two common methods for agricultural purposes 

are band ratios, in which the bands are chosen to maximize the contrast between 

vegetation and soils (Ustin etal. 1986), and tasseled cap transformation, where 

the brightness feature relates to the soil reflectance of an image and the 

greenness feature relates to green vegetation present in an image (Lillesand and 

Kiefer 1994). The tasseled cap transformation was originally derived for Landsat 

MSS data and this process rotates the four MSS bands in such a way that the 

majority of information is contained in the two components mentioned; brightness 

and greenness. A third component called wetness, relates to canopy and soil 

moisture, and was extended to the Landsat TM data where the six bands of 

reflected data are effectively combined as the transition zone between soils and 

vegetation (Crist and Kauth 1986; Lillesand and Kiefer 1994). However, band

I
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ratios are sensitive to the variations in soil brightness characteristics of arid lands 

and do not predict vegetation well. A potentially more reliable method is derived 

from scatterplots of TM band pairs (Ustin et al. 1986). For a wide range of rocks 

and soils, red and near infrared reflectances (TM 3 and TM 4) are highly 

correlated. Vegetation spectra depart from the rock-soil baseline because 

photosynthetic pigments reflect little red light, whereas leaf and canopy structure 

reflect much of the incident near infrared energy (Ustin etal. 1986).

The micro-environment near the plant surface can be altered by cultural 

and agricultural management variables including drainage, landform, soils, tillage, 

planting date and configuration, stand density, fertilization application, irrigation 

treatments, cultiver types, and row spacing, and stresses such as insects, disease 

and drought (Thenkabail etal. 1994a&b). Airbome and ground-based spectral 

observations are frequently used to study impacts of agricultural management 

practices on crop growth and yield. Routinely available data from polar orbiting 

satellites permit the study of agricultural crop attributes on a regional basis such as 

river watersheds, counties or states (Thenkabail et al. 1994b).

From a review of vegetation studies, the following are a couple of uses:

•  Multi-temporal NDVI have been used to describe vegetation primarily in a 
qualitative way. Few studies have addressed correlation of NDVI with ground 
truth to provide for an in-depth study of land-cover characteristics;

•  Multi-temporal NDVI have also been used extensively in the Sahel region for 
early famine warning and locust and grasshopper habitat monitoring (Ehrlich et 
al. 1994).

2.3.6 Environmental Applications

Some of the environmental applications of AVHRR data include land-cover 

mapping, vegetation dynamic studies, tropical forest monitoring, vegetation 

production estimation, fire risk assessment, and biophysical parameter estimation 

(Ehrlich etal. 1994). All five AVHRR bands have found some application in land-

1
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cover studies. However, bands one and two. in the form of NDVI composites 

have, among others, been used by Bartholome (1990); Barthoiome (1991); 

Chuvieco and Martin (1994); Conese et a i (1991); Ehriich et al. (1994); Green et 

al. (1994); Kidwell (1990); Thenkabail et al. (1994a and b); Tucker et al. (1991). 

There are several land-cover variables that can be directly estimated using 

AVHRR data according to IGBP (1992). These include vegetation indices, the 

earth’s albedo, solar radiation flux at the surface, évapotranspiration, and surface 

temperature. Vegetation indices are required for the estimation of leaf area index, 

photosynthetic capacity and primary productivity. Many of the multi-temporal 

studies conducted to date describe vegetation dynamics using NDVI (Bartholome 

1990; Tappan et al. 1990; Bartholome 1991; Ehriich et al. 1994; Green et a i 1994; 

Thenkabail et al. 1994a and b). Applications of AVHRR data to vegetation 

production include early warning systems and agricultural assessment in the Sahel 

region.

Wylie et al. (1992) used AVHRR for range production assessment in the 

Sahel area. Wylie regressed biomass ground measurements with NDVI through 

the computation of the average integrated NDVI, a time-weighted NDVI average. 

The exercise allowed the production of pastoral maps for five years of investigation 

capable of showing both drought years and years favourable for livestock herds.

AVHRR NDVI composites have also been used for monitoring grasshopper 

and locust habitats in Sahelian Africa (Tappan etal. 1991). Grasshopper and 

locust monitoring is an ongoing project where NDVI composites are used in 

conjunction with data sets such as the political boundaries of the region within a 

Geographic Information System (GIS) framework. The repeated coverage of the 

AVHRR sensor allows a continuous monitoring of vegetation conditions. This, in 

combination with known meteorological conditions can be used to predict 

problems in pest populations.
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2.3.7 NDVI and Vegetation Monitoring

NDVI has been used for monitoring all stages and types of vegetation. A 

paper by Azzali (1990) describes a correlation of agricultural crop production and 

yearly NDVI for Zambia and Somalia. By using 7 km resampled NDVI-data ttiey 

found reliable indications on crop production where the dominant land use is 

agriculture which implies that the agricultural areas need to be identified first by 

means of high resolution satellite images (Landsat MSS).

A study was conducted that suggested that woody biomass and tree cover 

estimates in farmlands of the semiarid zone of West Africa could be most 

accurately derived from NDVI (Nichol 1988).

Remote sensing using near infrared and red wavelengths of the 

electromagnetic spectrum has been shown to have potential for estimating forest 

functioning and Leaf Area Index (LAI). Maps showing the vegetation of Africa, 

North America and the entire world have t)een produced using NDVI derived from 

remotely sensed data (Coops 1996).

A common approach for interpreting AVHRR data is to acquire imagery 

over one year’s time and calculate NDVI to document vegetative phenology. This 

identifies distinctive phenological sequences that can be attributed to vegetation 

types, crop development and regional climate conditions (Evans and Czaplewski

1995).

A complicating factor of NDVI, if it is to be used for vegetation identification, 

is that there can be confusion between different cover types that show the same 

NDVI. For example, suppose that forest land in a region has spectral reflectance 

values of 20 and 40 for the visible and near infrared channels in AVHRR data. 

Grassland in the same region may have values of 30 and 60 for the same two 

channels. These two cover types are distinguishable in the separate spectral 

channels but the NDVI for each are the same (a rounded value of 0.33). In this 

case, the use of NDVI’s filters out useful inforination and causes confusion. This

I
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example from Evans and Czaplewski (1995) is from a single-date image, but with 

multiple-date imagery it is possible that some NDVI’s would be the same for 

othenvise different cover classes.

For the purposes of this report and for detecting greenness in northern 

Ghana the actual type of “green cover" is not important This could become an 

important factor for determining what vegetation type is declining or decreasing; 

grasslands, tree species, forest reserves, etc..

2.3.8 Remote Sensing in Africa

The collection and use of land information was introduced in Africa by the 

colonial powers. This consisted mainly of producing political and administrative 

maps defining territorial boundaries. The tools used to produce land information 

evolved from strictly ground-based surveys to aerial photogrammetry and, more 

recently, satellite imagery (Falloux 1989).

Surveying was introduced with early colonization in Africa. Until roughly the 

end of World War II, topographic works and mapping were carried out according to 

conventional techniques of ground surveying. Remote sensing through 

photogrammetry, a technique extensively developed during the war, gradually 

replaced exclusive ground sun/eys for mapping (Falloux 1989).

Until the 1950s and 1960s, colonial agencies performed mapping through 

aerial remote sensing, mainly with their own European staff, and with much of the 

processing done outside Africa. Before or immediately after independence, these 

agencies made major investments to establish surveying and mapping branch 

agencies in Africa, for the topographic ground work complementary to aerial 

surveys. In association with mapping, they also developed other data systems on 

natural resources (hydrology, climatology, soils, land use, forestry, etc.) (Falloux

1989).
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Immediately after independence, the mapping agencies of the former 

colonial powers generally continued to assist the newly-independent national 

sunreying and mapping agencies, with a new focus on training African staff. Their 

assistance has since declined, due in part to the desire of the new agencies to be 

fully independent These African agencies have been weakened by their lack of 

trained staff and their low priority in the new governments: mapping and remote 

sensing were often seen as a costly, low-priority investment By the 1970s, the 

activities of national surveying and mapping agencies in most African countries 

had dwindled to minimal levels, sometimes too low even for proper maintenance. 

This also happened to agencies in charge of managing renewable resource 

information (Falloux 1989).

As technology advances, so does our ability to change our surroundings. 

Changes made on the surface of the earth today are more extensive and occur 

more rapidly than ever before. The ramifications of these changes have become 

more significant as the world's population grows, the available land base declines, 

and the resiliency of bur environment becomes increasingly burdened (Green etal. 

1994). Planners and resource managers need a reliable mechanism to assess 

these consequences by detecting, monitoring and analyzing land-use changes 

quickly and efficiently. The demand for an efficient land cover detection system 

currently exists among a variety of local, state, federal, and private organizations in 

Africa. While extensive research has been completed on the effectiveness of 

various change detection technologies, very little has been accomplished for 

implementing the technologies in a production environment (Green et al. 1994).

2.3.9 VEGETATION MONITORING and TECHNOLOGY

Understanding the effects of modem technological civilization on the 

biosphere requires greatly improved global estimates of the spatial distribution and 

temporal dynamics of major types of terrestrial vegetation, as well as information
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on biomass, productivity, and exchange of energy and chemical elements between 

the vegetation and the atmosphere, oceans and soils. Past estimates of these 

vegetation characteristics have been, by necessity, based on extremely limited 

data; they have t)een little more than expert testimony of knowledgeable ecologists 

and biogeographers. Advances during the past decade in satellite remote sensing 

technology and computer processing, however, have made accurate, repeatable 

measurements of these characteristics possible (Botkin et al. 1984).

2.4 REMOTE SENSING AND VEGETATION

2.4.1 History of Remote Sensing of Vegetation

There are three major periods in the history of remote sensing of 

vegetation. The first extended from the invention of the airplane to the 1950s. 

Aerial photography developed rapidly in response to the needs for military 

reconnaissance during World War I. By the late 1920s stereoscopic aerial 

photography was well developed. In the early 1930s the United States 

Department of Agriculture's (USDA) administration systematically photographed 

farm and ranch lands throughout the United States (Botkin etal. 1984). This 

practice became routine in the 1950s and 1960s as black and white photographs 

of US agricultural lands were taken for use in the USDA's farm programs. Around 

the same time the US Forest Sen/ice began a program to photograph the large 

areas of US timber reserves (Botkin et al. 1984).

Early aerial reconnaissance of forests used stereoscopic photographs taken 

from low-flying aircraft. Manual analyses, in which a person uses photos to draw 

maps and interpret the scene, produced measurements of tree species 

composition, tree height, crown area and closure, and the number of trees per unit 

area. These data were combined with ground measurements to estimate 

merchantable timber for large regions (Botkin et al. 1984).
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By the early 1960s, multispectral instruments were available that measured 

light in a series of wavelength ranges and produced a digital output Such output 

can be computer-sorted according to a statistical or mathematical algorithm. In 

1971, a year after southern com leaf blight had caused extensive damage to the 

US's com crop, a Com Blight Watch Experiment was initiated. This project used 

computer-assisted interpretation of infrared aerial photographs to assess the levels 

of infection present, estimate the land area affected, project the effect on yields, 

aid in the control of the blight, and assess the applicability of techniques developed 

to similar future situations (Botkin etal. 1984).

As mentioned earlier, the first earth resources satellite, Landsat-1, was 

launched in July 1972. Some early research using this satellite focused on crops 

and demonstrated that a series of images obtained over several dates improved 

accuracy in classifying vegetation. This research also brought out two major 

difficulties that are still under study: the mixed pixel problem and the signature 

extension problem. When two or more types of vegetation occur within a given 

pixel creating a mixed pixel, the probability of correct classification for that pixel 

can be significantly decreased. When correlations developed for one area are 

used to classify a different area, the probability of correct classification again 

decreases: this is the signature extension problem (Botkin etal. 1984).

The first major program with direct applications, the Large Area Crop 

Inventory Experiment program (LACIE), began in 1974. Its purpose was to 

forecast world-wide harvests of wheat using satellite remote sensing. LACIE 

produced particularly good estimates of wheat acreage in areas having large field 

sizes, such as those in the United States, Soviet Union, and Argentina. In 1978 

LACIE experiments were extended to more types of crops, as well as to forecasts 

and rangelands under the Agricultural and Resource Inventories Sun/eys through 

the Aerospace Remote Sensing project sponsored by NASA and the USDA 

(Botkin ef a/. 1984).
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Research on crops in the 1960s and 1970s demonstrated that timely 

vegetation resource surveys were feasible. The research showed that knowing 

vegetation type, phenology, and certain conditions at the start of the growing 

season (including the time of emergence or planting and the soil moisture content), 

a strong basis for predicting production could be made. Landsat and 

meteorological satellites could then be used during the growing season to check 

whether there had been a deviation in conditions, such as an occurrence of a plant 

disease or an unforecast drought These programs have led to major advances in 

the processing of remote sensing imagery (Botkin etal. 1984).

During the 1970s, digital remote sensing from aircraft and satellites had 

been applied to forest and range inventory and monitoring. Landsat data are now 

used to produce landcover maps for rangeland and, combined with digital terrain 

information, to produce managerial maps for terrestrial assessments (Botkin et al. 

1984).

A general research advancement in the 1970s was a better understanding 

of how the different wavelength bands provide different kinds of information, and 

how ratios of different bands give information that can be inferred. The spectral 

region between 0.74|im and 1.1pm exhibits sensitivity to total plant biomass. 

Analyses of spectral data generally involve transformations of the raw data into a 

usable format. Most of these transformations use ratios of measurements taken 

from at least one band in the near infrared region (0.7-0.9 pm) and one band in the 

red region (0.6-0.7 pm). Green vegetation has high absorbance and low 

reflectance in the red region and, low absorbance and high reflectance in the 

infrared region which gives investigators a value to determine the "greenness" of 

an image.

One method of determining greenness involves the use of the NCAA 

satellite and the Advanced Very High Resolution Radiometer (AVHRR), which 

obtains data over larger areas and at more frequent intervals than the Landsat
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satellite. It measures reflected radiation in the visible, near-infrared, and thermal 

infrared wavelength bands and has a resolution of 1 km (Botkin etal. 1984).

Other areas of advancement in remote sensing studies of vegetation 

include the development of techniques for monitoring vegetation state and 

predicting crop yields; inventorying forests accurately and more cheaply than 

before; using repeated measurements over time for identifying vegetation type and 

monitoring seasonal production; and combining information from several 

wavelength bands to better reveal vegetation characteristics (Botkin et ai. 1984).

—  D ry  bare soil (G ray-brow n)
—  Vegetation (Green)
—  W ater [dear]

6 0 -

g
§  4 0  -
c

%
a:

20 -

0 .4  0 .6  0 .8  1 .0  1 .2  1 .4  1 .6  1 .8  2 .0  2 .2  2 .4  IS

W avelength (pm )

Figure 4 Typical spectral reflectance curves for vegetation, soil, and water. Source: Lillesand and 
Kiefer 1994.
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The next major challenge for studying vegetation from space will be to 

devise methods to estimate biomass and net primary production for all major 

vegetation types. Recent advances in remote sensing and in ecological and 

forestry research suggests that this can be done. Remote sensing offers the 

potential to measure spatial variation, monitor temporal changes, and estimate the 

error associated with average values. Land cover and its changes over time can 

be monitored for large regions. With the continued development of algorithms 

relating remote sensing to ground measurements, biomass and biological 

productivity can be estimated with an improved accuracy (Botkin at al. 1984; 

Lechapt and Didier 1989; Iverson etal. 1989).

2.4.2 Monitoring Vegetation using Remote Sensing

Remote sensing offers a great potential to obtain geographically referenced 

information using a single, consistent method over a large area with uniform, 

reliable accuracies, and to repeat the measurements over time so that changes 

can be detected (Falloux 1989). However, Sub-Saharan Africa has not used 

remote sensing technologies for renewable resource management until very 

recently. The initial mapping capacity built up at the country level in the 1950s and 

1960s has seriously deteriorated from technical, institutional and financial 

viewpoints. The mapping network in sub-Sahara Africa is far from complete; basic 

maps cover only parts of the continent and are outdated. Recently the use of 

remotely sensed techniques shows wide capabilities in the field of environmental 

monitoring, particularly regarding vegetation (Falloux 1989). The advantages 

presented by these techniques with respect to the usual methods for data 

collection has led to their increased use in many developed countries where the 

knowledge and the devices for their application is available. The major potential of 

remote sensing is connected to its use in developing countries where there is little 

information about the often severe environmental conditions. It is these conditions
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that need frequent monitoring for improving agriculture and preventing land 

degradation (Falloux 1989; Conese etal. 1990).

Current assessment of living vegetation condition relies on various 

traditional methods of sampling such as soil analysis, species tallies within small 

transects, timber inventories and crop yield assessments. While such 

measurements can be quite accurate, they are difficult to obtain over a broad area, 

so they fail to show changes in the pattem of vegetation greenness across the 

landscape (Burgan and Hartford 1993; Okin 1996b). Monitoring vegetation 

greenness with satellite data covers large geographic areas, the assessment is 

updated weekly, the data is easily obtained, and it is relatively inexpensive (Burgan 

and Hartford 1993). However, this monitoring system must be usable by the end 

user - the land resource manager in the field, othenwise any advancements gained 

in technology may not be used to their full potential.

Vegetation Response

Native vegetation can respond in predictable ways to a variety of stresses. 

This response may be at the cellular level, the morphological/macroscopic level, or 

the community level, depending on the intensity and duration of the stress. Figure 

5 illustrates this concept (Rock etal. 1993).

Native vegetation is sensitive to stress factors associated with 

environmental change (moisture levels, nutrient levels, temperature, human- 

induced factors). The ability to remotely detect subtle levels of change (the 

response to stress) in the vegetation can prove to be a very useful indicator of 

environmental change. Remote sensing techniques using satellite multi-spectral 

data provide an accurate means of detecting, quantifying, mapping and monitoring 

change in vegetation on local, regional and global scales. Change at different 

scales in both vegetation kind (vegetation type, species associations, etc.) and 

vegetation condition (state of health, degree of deforestation, seasonal stage of 

growth, etc.) can be studied using various sensor systems and image processing
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techniques. Table 4 summarizes some of the available satellite data currently 

used for change detection purposes.

Vegetation change at the plant level (cellular and morphological) can often 

be detected spectrally by remote sensing techniques before it is observed by the 

naked eye in the field. In a spatial context these changes tend to be scattered and 

more of a fine-scale phenomenon. To remotely detect plant-level changes 

requires high spatial and spectral resolution sensors targeted to capture data at a 

specific location or of a particular species. The resulting spectral signatures show 

subtle chemical and physiological changes in needles or leaves of individual trees 

and tree canopies. Deforestation, however, is a vegetation change that is direct 

and conspicuous. This change can be detected with very coarse spatial scales of 

1-4 km in some areas and is easily detected with a simple set of spectral band 

combinations (Rock et al. 1993).

Deforestation can create significant alterations of the basic features of 

vegetation including primary productivity, standing biomass and soil organic 

matter. Such vegetation change is significant and is spread globally, but the exact 

rate and geographic distribution of deforestation are not clearly known. To date, 

the best estimates of global deforestation have been compiled from national-level 

surveys. These surveys provide little insight into long-term deforestation trends 

because they are often compiled for one or a few inventory years. Objective 

reports of changes in forest cover have been recently obtained from satellite data 

where deforestation rates are reported directly. This direct information flow 

provides a capability for initiating monitoring efforts. Regional to global-scale 

monitoring of deforestation using fine spatial resolution imagery (20-80 m pixels) 

can be time consuming, computationally difficult, and expensive (Rock et al. 1993).
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Table 4. Summary of current satetlltd sensor systems.

Salellile sensor system Spatial resolution Spectral coverage Repeat Cycle Time period covered Spatial domain

SPOT 10 m panchromatic 
20 m multispectral

0.51-0.73 um 
0.50-0.69 um

26 days 1986-present local to regional

Landsat TM 30 m reflected 
120 m thermal

0.4-2.2 um 
8.0-12.0 lim

16 days 1982-present local to regional

Landsat MSS 80 m reflected 0.5-1.1 um 16 days 1972-present local to regional

NOAA-7.-9AVHRR LAC (1 km) 
GAG (4 km)

0.6-1.1 um dally, composited 
monthly

1982-present regional to global

Source; Rock et al 1993
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Figures. A schematic representafion of vegetation response to varying degrees of stress. Initial 
exposure to noniethai levels of stress results in previsual cellular-level change. If stress is chronic or 
intense, visual (morphological) damage will result With continued stress, community level changes 
will occur. Examples of each type of change are given to the right Source: Rocket a/. 1993.

2.4.3 information Relationships

The information needed for land management is often not visible on satellite 

images and consequently, must be inferred from the imagery by manipulating the 

raw data. For example, instead of the data required for soil fertility measurements, 

a value of the topsoil reflectance is obtained and the fertility values are inferred, 

and instead of the required data needed to determine land use activities, crop 

reflectance values are measured and the land use activities are inferred from this 

information (Rock ef al. 1993; Bronsveld et al. 1994a).
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The vegetation/land change associated with deforestation is more obvious 

with the naked eye on a remotely sensed image than forest degradation which 

involves physiological plant changes at the cellular level. The loss of biomass per 

unit area associated with forest degradation is significantly less than deforestation 

and can occur within an intact canopy (Bronsveld etal. 1994b).

In regions experiencing direct deforestation, forest decline, fuel wood culling 

from forests, selective timber hanrest, and forest livestock grazing are all examples 

of degrading land uses. Natural forests can experience degradation because of 

subtle changes in microclimatic conditions. These changes can occur because of 

loss of canopy cover and évapotranspiration in regions of large-scale deforestation 

(Rock et al. 1993). Remotely sensed images can be used to detect land cover 

changes where aspects of activity (land use) can be inferred from land cover 

characteristics (Bronsveld et al. 1994b).

Technology development during the 1980s and 90s offers the possibility of 

collecting and analyzing relevant environmental data. For national and regional 

environmental monitoring there are no practical alternatives to the use of repeated 

satellite observations (Hellden 1991); aerial photography or field data collection to 

cover the same geographic area would be too expensive and labour intensive. 

These satellite data sources complement the analysis of conventional national 

statistics (demography, precipitation, agriculture) and other field-collected data of 

biophysical and socio-economic origin. Archived remotely-sensed data is often the 

only available data source for retrospective analysis of land use and vegetation 

cover (Hellden 1991).

2.4.4 Applications of Landsat MSS and TM Data for Vegetation Monitoring

Few attempts have been made to investigate the relationship between 

woody cover and reflectance data recorded by satellites for semi-arid vegetation 

types in Africa. There was an attempt by Vujakovic (1987) to identify relationships
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between Landsat MSS data and various vegetation parameters, including woody 

cover in Tanzania, however, no relationships could be found.

A study completed by Thenkabail etal. (1994b) examined vegetation 

indices from Landsat-5 TM to study the impact of agricultural management and 

cultural practices on soytiean {Glycine max) and com (Zea mays) crop growth and 

yield from farms in Seneca County, Ohio. Their study is important because it 

shows that vegetation indices were able to identify significant differences in the 

responses of different management combinations (Thenkabail et al. 1994b).

A similar study by Thenkabail et al. (1994a) (using the same data as 

Thenkabail 1994b) showed the use of Landsat-5 TM data to evaluate soybean and 

com crop growth characteristics, and compared the performance of red and near- 

infirared vegetation indices with vegetation indices involving mid-infrared 

wavebands. This study was able to demonstrate the usefulness of the mid- 

infrared bands of Landsat-5 TM for studying crop growth and yield variables. The 

indices which used the mid-infrared TM bands 5 and 7 performed equal to, or 

better than, indices based on the widely used near-infrared TM band 4 and the red 

TM band 3. This was a surprising result considering that indices using mid- 

infiared wavebands are rarely used (Thenkabail 1994a).

Ustin etal. (1986), using data from the region of southeastem Califomia, 

illustrated how TM satellite data may help analyze semi-arid vegetation, and 

discussed how spectral data can be transformed to give a variety of ecological 

information. They discuss four techniques which can be used individually or in 

combination to draw inferences regarding edaphic variation, community 

composition, canopy architecture, and physiological or phenological activity.

These techniques are as follows:

1) vegetation indices,
2) correlating vegetation and spectral characteristics,
3) multi-spectral clustering models, and
4) multi-spectral mixing models.
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By using a variety of analytical methods on a common data set, considerable 

qualitative and quantitative information emerges about environmental conditions. 

Using multi-temporal imagery, comparisons should yield information regarding 

phenological cycles and physiological conditions of vegetation for short time 

intervals or habitat changes and successional processes for longer time periods 

(Ustin etal. 1986).

Statistical frameworks required for inventorying and monitoring land cover 

over large areas have existed for decades (Nelson et al. 1987). The application of 

these statistical models for quantitative evaluation of land cover area and change 

using remotely sensed data also has a long history. Numerous efforte have used 

Landsat MSS imagery as the primary stage in multistage sampling designs.

Nelson etal. (1987) references many researchers who have documented the 

advantages of stratification using Landsat MSS digital data. Nelson et al. (1987) 

provided a complete wetlands census using MSS data and interpreted MSS 

hardcopy imagery and aerial photos to estimate irrigated farmland area. In these 

studies, the MSS data provided synoptic coverage with a single MSS scene 

covering over 30,000 km  ̂(185 km x 170 km).

To assess vegetation change at the country, subcontinental and continental 

level, Landsat MSS data must be considered as a sampling tool. Assessment of 

regions that require many Landsat scenes may not be possible due to 

unavailability or the high acquisition cost. Using coarse resolution data (for 

example, AVHRR) is suggested for primary enumeration of large areas (Nelson et 

al. 1987). The MSS data can then be used to correct or adjust coarse resolution 

estimates.
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2.4.5 Applications of NOAA AVHRR Data for Vegetation Monitoring

Terrestrial scientists are studying the earth's surface by using satellite 

remote sensing at a variety of spatial and temporal scales. Recent global and 

regional land-cover studies have focused on the National Oceanographic and 

Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 

(AVHRR) because of the daily coverage, synoptic overview, and data volume 

available with this satellite (Ehriich et a i 1994). AVHRR is presently considered 

more manageable for global scale studies than either Landsat or SPOT data. 

Ehriich et al. (1994) have reviewed the applications of NOAA AVHRR data for 

environmental monitoring. They found that all 5 AVHRR bands are useful in land- 

cover studies, however the majority of the land characterization research papers 

they reviewed used AVHRR/NDVI as the main data source. Multi-temporal NDVI 

datasets have found wide use in describing vegetation phenology. AVHRR 

thermal bands have also been employed by a number of researchers for surface 

temperature mapping and land-cover discrimination (Ehriich etal. 1994).

The scientific community that studies global change has identified the 

AVHRR data set as an important database for land-cover mapping and land 

processes modelling at continental and global scales (IGBP 1992). AVHRR was 

designed for Imaging cloud cover and, because of its availability and spectral 

properties, it has been readily adopted by the terrestrial scientific community for 

coarse scale land-cover studies (Ehriich etal. 1994).

Some of the properties which make AVHRR data (see Kidwell 1990 for

detailed description) appealing to terrestrial scientists are listed as follows:

•  AVHRR data include observations in the red and infrared part of the spectrum. 
These two bands have been extensively used for vegetation studies and are 
included on all civil earth-resource satellites. AVHRR also collects data in the 
thermal part of the spectrum which is increasingly being used for vegetation 
differentiation and mapping (Ehriich etal. 1994).
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•  The daily acquisition of AVHRR coverage makes it useful for temporal studies. 
Weekly or bi-weekly cloud-free composites can be generated for a large part 
of the world (Ehriich etal. 1994).

•  The relatively coarse spatial resolution of the AVHRR sensor has been shown 
to be useful for studying continental and global processes and phenomena, 
also data volume can be kept to a manageable size (IGBP 1992).

•  AVHRR data are relatively inexpensive when compared to satellite products 
with finer spatial and spectral resolution like Landsat MSS and TM (Ehriich et 
al. 1994).

The main inefficiencies of the AVHRR sensor include:

•  the lack of radiometric calibration coefficients, and

•  the high slant angle which distorts radiometric readings at extreme ofF-nadir 
angles (IGBP 1992).

Both factors alter the radiometric signal arriving at the sensor. The first factor is 

currently being investigated by several research groups that are attempting to 

develop a sound radiometric calibration procedure. The distortion introduced by 

the extreme scan angle, on the other hand, can only be reduced by limiting the use 

of data to a fraction of the imaging angle close to nadir (Ehriich et al. 1994).

2.4.6 Global Scale Vegetation Studies

A detailed analysis of a NDVI global dataset was performed by Justice ef al. 

(1985). The temporal patterns of NDVI have unique distinguishing features for 

different plant communities of the world. A temporal integration of NDVI has been 

shown to provide a good indicator of the productivity of grasslands and of different 

biomes in North and South America. In addition, the temporal NDVI variation has 

been shown to be correlated with temporal variation of atmospheric CO2 

concentration (Tucker ef al. 1986). This correlation Is explained by the depletion of
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atmospheric CO2 by growing vegetation through photosynthesis, while 

decomposition of vegetation increases CO2 concentration (Rock et aL 1993).

Remotely sensed data can be acquired which relates to the state of health 

and damage, species/community distribution patterns, deforestation, and seasonal 

development of vegetation at scales ranging from local to global. In developing 

strategies for the study of global change, remote sensing input, such as that 

relating to vegetation and its parameters, will be an important component (Rock et 

al. 1993).

2.4.7 Human Activities

The global distribution of vegetation reflects large scale variations in 

temperature, precipitation, and various other environmental factors. A dynamic 

phenological and successional landscape of natural communities has given way to 

humans insisting on continually modifying this natural landscape. Therefore, the 

state of the world's vegetation must be viewed as a constantly shifting mosaic of 

land-cover types that are determined by both the physical environment and human 

activities (Rock etal. 1993).

Human activities and influences have shaped natural landscapes for a long 

time. In forested landscapes, one end of the gradient of change is deforestation, a 

most obvious and direct form of human-induced vegetation change. At the other 

end is forest degradation and decline, a more subtle and Indirect result of human 

activity. As a result of such a vegetation change there has been a reduction of the 

amount of carbon stored on land and an increase of carbon in the atmosphere. 

This net increase of carbon to the atmosphere is caused by the historical trend of 

forest conversion to agricultural land and other human uses that reduce the 

amount of carbon stored in plants. These human alterations to the native 

vegetation cover have influenced other atmospheric constituents and 

biogeochemical cycles (Rock et al. 1993).
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2.5 SUMMARY

The earth's terrestrial vegetation Is an important component of the 

biosphere. Vegetation helps prevent land degradation and soil erosion; it 

regulates the local and global climate; and it protects and generates humus which 

is important for producing more healthy vegetation. There are many disturbance 

factors affecting global vegetation; general land degradation, desertification, 

deforestation, agricultural practices, grazing, and bush fires. In developing 

countries, these physical factors of disturbance are related to the rise in human 

population and the associated demands on the environment. Another real 

problem facing developing countries is the lack of current information on the 

natural resources that is needed to make sound decisions regarding natural 

resource management. Remote sensing provides an accurate, up-to-date ability 

to detect change and monitor vegetation. Vegetation indices derived from 

remotely sensed satellite images allow natural resources to be monitored and 

provides the necessary information needed to make responsible management 

decisions.
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SECTION 3

3.1 INTRODUCTION

Vegetation monitoring using remote sensing is a valuable way to determine 

where land degradation Is occurring over large geographical areas. The 

Normalized Difference Vegetation Index (NDVI) is one tool used to monitor 

vegetation using remotely sensed images.

Section III covers background information of Ghana, a description of the 

two data sets, methodology, results and discussion, and conclusions for each 

Project.

Project I sets out to illustrate that NDVI is a vegetation index that is 

independent of the system that is used to produce it

Project II is an examination of how using NDVI and incorporating critical 

values is useful for monitoring vegetation in Ghana. The scope of this project only 

extends to detecting the presence or absence of vegetation during the dry season 

in Ghana. This is accomplished using NDVI and applying published critical values 

to the study area in northern Ghana.

3.2 BACKGROUND INFORMATION OF GHANA

Some background Information of Ghana is included at this point because 

the Landsat TM data chosen covers an area in northern Ghana and the NOAA 

data covers the whole country of Ghana.

3.2.1 Geography

Ghana lies in a central position on the southern coast of West Africa. 

Covering 238,538 km  ̂and lying between 5° and 11° north latitude, and 3° west 

and 1° east longitude, Ghana is bordered by Cote d’Ivoire to the west, Togo to the
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east and, Burkina Faso to the north. With its rectangular shape, it extends some 

675 km inland with a coastline of 567 km (Figure 6). The land mass is one quarter 

the size of Ontario, yet Ghana has a population in excess of 17.6 million as of July 

1996 (Anon. 1997).

Rainfall is greatest in the south-west of Ghana where over 2,000 mm falls 

annually. Moving further inland results in a decrease in rainfall amounts, but most 

of the southern third of the country receives between 1,250 and 1,500 mm per 

year. The eastern coastal plain is an exception where precipitation is less than 

1,000 mm per year; this is as dry as the northern savanna areas. In the south, the 

rains fall in two seasons which peak around June and October. In the north there 

is a single rainy season from April to October and the annual rainfall is about 1,250 

mm. Average temperatures over the whole country are steady around 26-29°C.

In the north, they tend to drop between December and February when the cool 

Harmattan winds blow from the Sahara, bringing dust and lowering the relative 

humidity. There is a large daily temperature range (about 15°C) during the dry 

season (WCMC 1988; IIED 1992).

3.2.2 Vegetation

The vegetation of Ghana varies from wet evergreen forest In the south-west 

to dry northern guinea savanna in the north. The ecological zones of Ghana 

include rain forest (3 percent), moist forest (31 percent), coastal savanna (5 

percent), interior savanna (57 percent), and Volta Lake (4 percent) (IIED 1992)

(see Figure 6). The forests are dominated by trees over five metres high, which 

have interlocking crowns that shade out patchily distributed grasses beneath them. 

Within the savanna areas, there are distinctive gallery forest formations along 

rivers. The distinction between forest and savanna vegetation is remarkably clear, 

with little intermediate woodland on the fringes, probably because farming activities 

and fires exaggerate the savanna-forest boundary (WCMC 1988).
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The vegetafon zones of Ghana are distinguished as moist semi-dedduous 

forest guinea savanna, Sudan savanna, rain forest coastal scrub and grassland, 

and strand and mangrove zone (Figure 6) (WCMC 1988, IIED 1992). It is the 

guinea savanna and Sudan savanna zones that are examined in this study.

There are an estimated 9 million ha of woodland within the interior savanna 

zone, of which about 0.9 million ha occur within forest reserves. Most of the 

woodland is found in the northern region, producing woods ideal for charcoal 

production. Savanna woodland is also a major source of fuelwood and house 

poles, but virtually no sawn timber is produced from savanna wood (IIED 1992).

Only 12 percent of Ghana (28,680 km )̂ is classified as arable or 

permanently cropped land. The interior savanna zone is generally unfavourable 

for agriculture, mainly due to the limited availability of water and the presence of 

tsetse flies. Agricultural activity in this zone is concentrated around large 

population centres, notably Tamale, Lawra, Wa and Bawku (IIED 1992).
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Within the interior savanna zone there are a number of different vegetation 

types. The dry forest consists of a single deciduous tree layer that provides a 

dense cover. The woodland consists of two vegetative layers; dry deciduous 

trees with at least 40 percent cover, and dense herbaceous cover. The treed 

savanna consists of two vegetative layers: tall grasses and dense herbaceous 

vegetation and scattered deciduous trees that comprise less than 15 percent cover 

(Achard and Blasco 1990).

The main food crops produced through agriculture in this country include 

maize, cocoyam, cassava, millet, guinea com, plantain, yam and rice. The main 

cash crops are cocoa, oil palm, coconut palm, cotton, rubber, sugar cane, tobacco, 

citrus, and kenaf (used for fibre bags) (IIED 1992).

3.3 DATA SET DESCRIPTION

3.3.1 Landsat TM .

A full Landsat TM image was obtained dating from January 1991, the dry 

season in Ghana. The full image covers 11°15' north to 10° north Latitude and 1° 

west to 0° Longitude. From the original seven channel image, the green, red and 

middle infrared channels (TM channels 2, 3, and 5) were used as a subset for 

studying NDVI. The pixel size of the image was 30m x 30m and the image was 

not rectified.

Figure 7 shows the rectified full Landsat TM image projected to the 

Transverse Mercator system displayed as a RGB (red, green, blue) composite 

where TM channel 5 (middle infrared) is displayed as red, TM channel 3 (red) is 

displayed as green and TM channel 2 (green) is displayed as blue. Displaying the 

image this way shows the physical features of the image. The drainage system of 

the area, the Gambaga Escarpment (a scarp running in an east/west direction
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across the right half of the Image), some cloud cover and the shadows produced 

by the clouds are all identifiable on the RGB colour display image.

ORIGINAL LANDSAT TM NORTHERN GHANA

m ap projeetiorw tran3v«rs« m erc^ox

Ü  T ^
Kurnt kaometrea

■ m

Figure 7. RGB colour display with TM5 displayed as red, TM3 displayed as green and TM2 
displayed as blue.
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3.3.2 ARTEMIS

The dataset used for Project 2 are NOVI images built up by the National 

Aeronautical Space Agency (NASA) and the Goddard Space Flight Centre with the 

Africa Real Time Environmental Monitoring and Information System (ARTEMIS) 

project of the Food and Agriculture Organization (FAG) stored on a compact disc. 

The dataset contains 10 years of NCAA AVHRR NDVI data over Africa ranging 

from August 1981 to June 1991. NDVI data from the NCAA AVHRR sensor was 

used to establish annual and seasonal variations in earth surface reflectance. 

Acquired on a daily basis, the data was treated to produce a 1 D-day composite 

image which was virtually cloud free through a maximization of the pixels (pixels 

with the highest NDVI values are selected for the 10-day composite image).

One 10-day composite NDVI image, from here on called ARTEMIS data or 

image, was extracted frorri the dataset that covered the first 10 days of January 

1991, the same time period as the Landsat TM image. This extracted ARTEMIS 

image covers the same geographical area as the Landsat TM image. The data 

was resampled to a 7.6km x 7.6km pixel size in the Hammer Aitoff projection 

system.

3.4 METHODOLOGY

Image processing was performed on a SUN workstation and an IBM PC 

using ERDAS (Earth Resources Data Analysis System) software. Some GIS 

procedures were performed with PC Arc/Info.

3.4.1 LANDSAT TM DATA PREPARATION

Imagery gathered by satellites is a representation of the irregular surface of 

the earth. The Landsat TM image was geometrically corrected so that it can be 

represented on a planar surface. Rectification is the process of projecting data 

onto a plane and making it conform to a map projection system. During the
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rectification process tfie grid of raw data was projected onto a new grid.

Resampling is the process of extrapolating data values for the pixels on the new 

grid from the values of the old grid.

The Landsat TM image was geometrically rectified to the Transverse 

Mercator map base using 30 ground control points on 1:50,000 National Survey of 

Ghana maps. A least squares regression method was used to calculate the 

transformation matrix from the ground control points. This resulted in a Root- 

Mean-Square (RMS) error of less than one pixel. A cubic convolution interpolation 

method was used to resample the image to a 50m x 50m pixel size from the 

original 30m x 30m pixel size.

The cloud cover and the resulting shadow present on the image were 

removed by digitizing a polygon around the cloud and shadow so that these pixels 

could be clipped from the image.

A low-pass filter was then used to smooth the Landsat TM image and 

reduce the effect of noise pixels. Noise pixels may be the result of electronic 

interference or flaws in data transmission procedures or processing. Noise can be 

random or periodic and its presence can partly mask or completely degrade the 

true radiometric information of an image. Random noise can be a pixel whose 

digital number does not present any relationship to its neighbourhood, resulting in 

a "salt and pepper" effect (Centeno and Haertel 1995).

3.4.2 ARTEMIS DATA PREPARATION

The 10-day composite ARTEMIS image was extracted from the dataset and 

imported as a TIFF-extension file into the ERDAS software for rectification. A sub­

set of the ARTEMIS data was geometrically rectified to the Transverse Mercator 

map base using the Landsat TM image. A nearest neighbour algorithm was used 

to resample the ARTEMIS 7.6km x 7.6km pixels to 7,000m x 7,000m pixels. The 

RMS error was less than one pixel.
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The cloud and shadow polygons created from the Landsat TM image were 

applied to the ARTEMIS image and the pixels within the polygons were temporarily 

clipped out of the ARTEMIS image.

3.5 CALCULATING NDVI

An NDVI is calculated by subtracting the visible red channel data from the 

near infrared (nIR) channel data and is normalized by dividing their sum.

NDVI = fnIR - red)
(nIR + red).

However, a problem was encountered when the NDVI was calculated from the 

Landsat TM using the red and near infrared channels. The resulting mean NDVI 

was very close to 0 (0.0003) and not consistent with the mean NDVI calculated 

from the ARTEMIS dataset (0.10). Since the acquisition dates and geographic 

location of the two images (Landsat TM and ARTEMIS) were the same, the mean 

NDVI of the two images should be the same as well.

To ensure there were no errors present in the Landsat TM data, or in the 

methodolgy used to create the NDVI, the vendor, EOSAT, was contacted for 

technical support. EOSAT suggested that an image acquired over an arid area 

like northem Ghana and an image acquired during the dry season when very little 

vegetation is present may not provide enough contrast between the near infrared 

and red channels, a combination which usually provides good contrast for use in 

NDVI (Belward 1991, Coops 1996). EOSAT suggested substituting the middle 

infrared channel (TM 5) for the near infrared channel (TM 4) in the NDVI equation. 

This proposal suggested that under the sparse vegetation conditions that were 

imaged from northem Ghana the middle infrared channel may provide a greater 

contrast and produce a more meaningful NDVI. Therefore, the modified NDVI 

equation used for this report is as follows:

mNDVI = (mIR - red) •
(mIR + red).
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3.5.1 LANDSAT TM DATA

The Landsat TM image was a subset of three channels: channel 1 was red 

(TM 3), channel 2 was green (TM2), and channel 3 was middle infrared (TM 5). 

Using these channels for the NDVI the equation would then be:

NDVI = (Ch. 3 -Ch. 11 
(Ch. 3. + Ch. 1).

For computer aided display and analysis the positive NDVI values between 

0 and 1 are usually scaled to an 8-bit data scale.

As is common with most vegetation index scaling techniques reviewed from 

the literature, a constant is added to remove negative values and a multiplication 

constant is included to obtain the required range of values. Grégoire (1990) used 

the scaling equation of (NDVI x 200) + 50. Applying this equation scales the NDVI 

values o f-1 to +1 to a new range o f-150 to 250. For example, a calculated NDVI 

value of 0.10 would be scaled to a value of 70 for display on the screen. However, 

since the data can only be displayed within the range of 0-255 (8-bit data), all the 

negative values calculated for the scaling equation are displayed as zero values 

on the screen. To keep the discussion of NDVI values as simple as possible, only 

actual NDVI values (not the scaled values) will be presented here, that is, the 

range of values from 0 to 1.

The mean NDVI value of the Landsat image was calculated using ERDAS 

software.

3.5.2 ARTEMIS DATA

Since the ARTEMIS data was already presented as an NDVI image (the 

NDVI calculations having been completed by the FAQ prior to distribution of the 

dataset) the mean NDVI value of the ARTEMIS image was calculated using 

ERDAS.
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3.6 RESULTS AND DISCUSSION

This section is presented In two parts; results and discussion for Project 1 

and results and discussion for Project 2.

3.6.1 PROJECT 1 - THE SYSTEM INDEPENDENCY OF NDVI

Most remote sensing techniques for vegetation monitoring use data 

recorded through those parts of the electromagnetic spectrum which provide a 

strong signal from vegetation while contrasting with background material (Belward 

1991). The literature indicates that the red and near infrared wavelengths satisfy 

this criterion, and that combinations of these two wavebands as vegetation indices 

are useful as measurements of various attributes of a vegetation canopy such as 

the amount of vegetation cover, total biomass and vigour, and leaf area index 

(Bartholome 1990; Grégoire 1990; Belward 1991; Coops 1996 and FAQ 1994).

For this report the middle infrared wavelength was used to replace the near 

infrared wavelength with similar results and under the same assumptions as if the 

near infrared wavelength was used.

The mean NDVI calculated for northem Ghana from the Landsat TM Image 

was 0.11, as calculated by ERDAS software using the NDVI formula in Section

3.5.1 Landsat TM Data. The mean NDVI calculated for the ARTEMIS image was 

0.10, provided with the data on the compact disc. The difference in wavelength 

ranges and resolution of the two images are possible explanations for the slight 

difference in average NDVI values.

The two satellite data sets used to demonstrate that NDVI is an index useful 

for measuring vegetation attributes and can be obtained from any satellite system 

were Landsat TM and NOAA AVHRR. The red and middle infrared wavelengths of 

the Landsat TM data system are 630 to 690 nm and 1550 to 1740 nm 

respectively. The red and near infrared wavelengths used for calculating NDVI for 

the ARTEMIS data set are 580 to 680 nm and 735 to 1100 nm. NDVI is the
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vegetation index most frequently used for regional and local scale vegetation 

monitoring partly because of ifs effectiveness as a substitute measure of 

biophysical parameters and partly because NDVI, unlike other vegetation indices, 

requires no a p/fo/f information concerning the imaged scene (Belward 1991). 

There is also the fact that the calculation of NDVI allows for the normalization for 

variations in viewing conditions specifically, the sensor used to collect the data.

The scale of the Landsat TM image was resampled to 50m x 50m pixels 

and the ARTEMIS image was resampled to 7000m x 7000m pixels. This vast 

difference in resolution can cause problems during assessment. With the low 

resolution of the ARTEMIS data the fine details of the vegetation are lost. One 

ARTEMIS pixel covering an area of 49,000 m  ̂is averaging the spectral response 

of 19,600 Landsat TM pixels covering the same 49,000 m  ̂on the ground. This 

means that the spectral detail of small patches of vegetation on the Landsat TM 

image will not be detected by the AVHRR sensor used to create the ARTEMIS 

image.

Accounting for the vast scale difference of the two images (Landsat TM 

having 50 m pixels and the ARTEMIS having 7000 m pixels) and the slight 

difference in wavelength characteristics, the mean NDVI for both images can be 

considered to be the same. This example demonstrates that NDVI is a vegetation 

index that when calculated from any remotely sensed image provides a uniform 

measure of vegetation characteristics regardless of the sensor the image 

originates from.

3.6.2 PROJECT 2 - THE USE OF CRITICAL NDVI VALUES FOR VEGETATION 
MONITORING AT THE REGIONAL AND NATIONAL LEVELS IN GHANA

Creating and displaying an NDVI image for monitoring purposes is a useful 

exercise on its own. Figure 8 is the resulting NDVI image calculated from the 

Landsat TM image of northem Ghana and gives a rough indication of where
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relatively higher levels of vegetation (NDVI values of 0.20 to 0.25) are located.

The image illustrates the location of higher NDVI values, where higher NDVI 

values relate to photosynthetically active cover so that by inference, the higher the 

value the greater the amount of vegetation (Belward 1991). This image was 

obtained during the dry season, a period of very little active vegetation growth. To 

put the northem Ghana NDVI image into perspective, a study by Burgan and 

Hartford (1993) used NDVI to develop vegetation greenness images over the 

conterminous United States. They determined that 0.66 is the approximate 

maximum NDVI value obtained from observing dense, green vegetation from bi­

weekly NDVI composites of the United States since 1990. Similarly, Lynham and 

Pierce (1997) conducted a study in Ontario to monitor vegetation greenness from 

a forest fire management perspective. They determined that the highest average 

annual NDVI was 0.50 found in North Bay, Ontario. Conversely, a study from 

West Africa on the effects of the dry season on the vegetation of river basins 

completed by Grégoire (1990) showed relatively low NDVI values of 0.25 for 

coastal watersheds and 0.20 for Niger tributaries. Malingreau et ah (1989) 

published 0.25 as an average NDVI value over savanna in December in Guinea 

and 0.15 over degraded woodland savanna in January. In comparison with the 

United States and Ontario studies, the highest NDVI of 0.25 from the Landsat TM 

Image of northem Ghana in January is actually not very high at all. However, 

when compared with NDVI values of similar savanna conditions, the 0.25 NDVI 

value from northem Ghana corresponds to the relatively low NDVI values 

published for West African conditions (also 0.25).

Comparing the semiarid environment of northem Ghana to the lush 

temperate climate of the United States and Ontario is not a fair comparison; it 

simply demonstrates the importance of creating regional NDVI values for 

vegetation monitoring purposes. As well, the NDVI from the Landsat TM image is 

calculated from one date, whereas the maximum NDVI of the United States and
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Ontario are composite of data over the whole year including many years worth of 

data and the average NDVI from Malingreau et al. (1989) was an average value 

over the month of December.

To determine whether an NDVI value of 0.25 obtained during the dry 

season in northem Ghana is too low for that region and for that time of year or 

whether that value is on-line, a system of monitoring NDVI values needs to be 

created for northem Ghana specifically. For the purpose of this project, it was 

important to show areas on the Landsat TM image that were non vegetated (NDVI 

values less than 0) versus areas on the image that showed higher levels of 

vegetation (for example, NDVI values greater than 0.16). A monitoring system that 

watches the areas of non vegetation and detemnines whether these areas are 

increasing (possibly caused by increased land degradation) is important for the 

region of northem Ghana. Creating critical values, or thresholds, below which a 

pixel from an NDVI image can be regarded as being non vegetated, sets the limits 

of NDVI values for a region that are more meaningful to that region.
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LANDSAT TM NDVI NORTHERN GHANA
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Figure 8. NDVI image of Landsat TM of Northem Ghana.

The Commonwealth Scientific and Industrial Research Organization 

(CSIRO) used the attributes of temporal NDVI to describe the timing, duration and 

intensity of photosynthetic activity of native eucalyptus which are determined 

primarily by seasonal variations in environmental conditions (CSIRO 1995a). 

CSIRO (1995a) have used the concept of critical values for their study in New 

South Wales, Australia for determining the growing period of different native 

eucalyptus species (E. pauciflora and E  globiodea). Their concept of defining the
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presence or absence of vegetation during the non growing season of eucalyptus 

using critical NDVI values was the principle applied in creating critical NDVI values 

for the northem Ghana region. Previous studies of eucalyptus by CSIRO in 

Australia have shown that the growing period of vegetation was unlikely to begin 

while NDVI values were less than 0.10. If this value of 0.10 is chosen as the lower 

most NDVI limit defining either the growing season or the presence or absence of 

vegetation, then only NDVI values above 0.10 would be considered 

photosynthetically active vegetation. This critical value of 0.10 was then applied to 

the NDVI image of northem Ghana.

Subsequent NDVI images obtained for the exact same geographical 

location can be compared to the original (the January 1991 image) using the 

critical value of 0.10 and problem areas can be defined quantitatively. For 

example, if the area of non vegetation during the dry season, those NDVI values 

less than 0.10, are increasing in area over the Landsat TM image, this could 

indicate an increase in the land degradation process and would be an indication 

that a closer look at that location may be necessary.

This concept of critical values is useful at the regional level, as was 

demonstrated by the Landsat TM NDVI image, and also at the national level. 

Figure 9 is the resulting NDVI image from the ARTEMIS dataset image in January 

1991. Since this NDVI image covers the whole country of Ghana, which includes 

some closed tropical forest in the south, the NDVI scale in the Legend shows 

higher NDVI categories. The area on the ARTEMIS image (Figure 9) that 

corresponds to the location of the Landsat TM image is represented by a solid 

grey circle in the upper right comer of the image. This grey circle covers only two 

different NDVI range values on the ARTEMIS image. In fact, if the critical value of 

0.10 is applied here, according to the ARTEMIS image, most of the Landsat TM 

image covers non vegetated land. However, by using higher resolution imagery to 

obtain more information about a potential problem area and by applying the critical
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value of 0.10 to the Landsat TM Image, most of this image shows an NDVI that is 

above the critical value indicating photosynthetically active vegetation. The 

difference in these two results can be explained partly because of the resolution 

difference of both images.
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Figure 9. ARTEMIS NDVI Image of Ghana - January 1991.
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The low resolution of the ARTEMIS image does not account for small variations in 

the vegetation that the higher resolution Landsat TM image is able to detect For 

example, the relatively high NDVI pixel values of 0.25 obtained on the Gambaga 

Escarpment in the Landsat TM NDVI image does not represent a large enough 

area of pixels so that the NOAA AVHRR sensor would detect them as areas of 

higher vegetation than the surrounding areas. The surrounding lower NDVI pixel 

values on the Landsat TM NDVI image envelop the higher NDVI values when this 

area is remotely sensed by a low resolution satellite sensor like the NOAA 

AVHRR. When a low resolution sensor like NOAA AVHRR is used to image the 

northem region of Ghana, the higher NDVI values detected with the Landsat TM 

sensor are averaged into the surrounding lower NDVI value pixels. This results in 

wider ranges of NDVI values for the ARTEMIS NDVI image.

Figure 10 is an NDVI image from the ARTEMIS dataset of Ghana from 

June 1990. This image was obtained during the active growing season and 

consequently shows much higher NDVI values than the January 1991 ARTEMIS 

NDVI image of Figure 9. Only a very few pixels fall below the critical value of 0.10 

and these are mostly located in the very north of the country, closer to the Sahara 

Desert and very arid conditions.

The objective of Project 2 was to determine whether critical NDVI values 

could be used for vegetation monitoring at the regional and national levels in 

Ghana. The Landsat TM data showed that it is well suited for vegetation 

monitoring at the regional level and similarly, the NOAA AVHRR data was well 

suited for national level vegetation monitoring.

Using critical NDVI values for vegetation monitoring can be taken one more 

logical step. They can also be used for planning at the local level. For example, 

an area the size of the Bawku watershed in northem Ghana could use NDVI for 

land use planning at the local level to determine areas of healthy vegetation, areas 

of degrading farmland or areas requiring rehabilitation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

There are many organizations in West Africa with vegetation monitoring 

programs already in place. Some of these programs are using NOAA data for this 

work. In Ghana, where there are training programs in place at the Universities to 

produce resource managers with remote sensing and GIS skills, implementing and 

sustaining a vegetation monitoring program at the local level is feasible. A 

vegetation monitoring program where locally trained people will develop and 

implement the program will be more effective locally and have a greater chance of 

success and sustainability.
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Figure 10. ARTEMIS NDVI image of Ghana - June 1990.
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3.7 CONCLUSIONS

In developing countries, current vegetation monitoring programs rely on 

various methods of manual sampling and assessment While such measurements 

can be quite accurate, they are difficult to obtain over broad areas and fail to 

portray changes in the pattem of vegetation across the landscape. A common 

problem in development planning is the inadequacy of information on the current 

land cover/land use and available resource base. Without this current, accurate 

information, those in charge of creating and implementing environmental policy 

cannot make decisions, or they may make incorrect decisions.

The frequent inadequacy of land cover and resource information may be 

due to many difficulties present in developing countries. For example: some 

regions may be inaccessible because of limited infrastructure, civil and military 

disturbances; lack of trained personnel, equipment, or funds to collect information 

properly. Also rapid changes in the resource base not detectable by traditional 

data collection methods, such as the high rates of deforestation in many areas of 

the world caused by increased population pressures, can cause difficulties. 

Spacebome remote sensing has been able to provide this information for 

developing countries.

Two very important remote sensing systems that have been used for 

vegetation monitoring programs are the Landsat and NOAA AVHRR systems. A 

high spatial resolution remote sensing system such as Landsat can only provide 

relatively low frequency temporal coverage of large areas. Using high spatial 

resolution data also means large data volumes, especially where multi temporal 

data over large geographical areas are concemed. The disadvantages of high 

cost, high data volumes and low frequency of cover of Landsat data restricts the 

use of this data to specific users. The main advantage of high resolution data is 

the ability to obtain greater detail over the geographical area being monitored.
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Agricultural lands, vegetation types, and non vegetated areas are easily identified 

on high resolution data.

The orbital and viewing parameters of low resolution data, like NOAA 

AVHRR, are such that global coverage is available on a daily basis and the lower 

data volumes make the analysis of long term time-series for large areas realistic. 

The advantages of NOAA AVHRR are the low volumes of data because of the low 

spatial resolution, the lower cost of the data compared to Landsat, and the high 

frequency at which the data can be obtained. The main disadvantage of low 

resolution data is the lack of spatial detail which results in generalizations over 

large geographic areas.

An important issue to consider when supporting the use of remote sensing 

for vegetation monitoring at regional and national levels is: who are the end-users 

of this information? Potential end-users of this information can be found at levels 

from the field to the continent More realistically, the decision makers who are 

responsible for management tasks from regional to national levels will use the 

vegetation monitoring information most efficiently. National policy makers will use 

vegetation monitoring to direct money and resources to future problem areas 

identified. At this scale of management, NOAA AVHRR data is the most efficient 

method of monitoring vegetation. Regional resource managers may require more 

specific detail about the area they are monitoring, in which case, Landsat data may 

be more useful at this scale.

Already at the national level, to try and cope with the expressed need for 

information by decision-makers, several operational systems have been set up to 

monitor crop production and food availability in the Sahelian countries of West 

Africa. Three examples of monitoring programs are discussed below.

The Famine Early Waming Systems (FEWS), funded by the cooperation 

agency of the United States, collects all types of useful data in the countries that 

the program covers and transfers the data to the USA for analysis. Qualitative
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interpretations of AVHRR NDVI’s are the main remote sensing input in this system. 

The objective is to provide information about the location of "at-risk populations" 

and aid relief efforts to help reduce lag time in food distribution during a famine 

crisis (Bartholome 1991).

The Global Information and Early Waming System (GIEWS) Is a program 

run by the Food and Agriculture Organization of the United Nations. This program 

is oriented towards the routine production of pre-processed thematic outputs such 

as NDVI composites, rainfall estimates, and crop moisture availability maps.

These products are then distributed to each country for further analysis and 

interpretation (Bartholome 1991).

The Africa Real Time Environmental Monitoring and Information System 

(ARTEMIS) has established a unique space based monitoring system to monitor 

developments of food crops and breeding conditions for desert locusts in Africa. 

This system uses high frequency environmental satellite data to produce images 

indicating the rainfall situation and the development of the vegetation at continental 

scales (Anon. 1996, FAO 1994).

The earth's vegetation is important for preventing surface temperature 

increases and soil erosion problems in every part of the world. Developing 

countries not only have to deal with increasing land degradation problems, but also 

with inadequate information on current land cover and land use. Frequent, 

accurate land cover and resource information is available from remote sensing 

data sources. Monitoring natural resources using remote sensing techniques and 

vegetation indices to create vegetation monitoring programs in developing 

countries will provide the necessary information needed to make responsible 

environmental decisions.
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SECTION 4

4.0 USING VEGETATION MONITORING TO ADDRESS LAND DEGRADATION

There are many factors contributing to land degradation all over the world. 

Specifically, the removal of the earth's vegetation and the resulting increased 

desertification is a serious environmental problem for Ghana and the rest of Africa. 

Ghana has realized that to sustain themselves as a viable nation they must 

sustain their natural resources. This means that they must manage their 

resources in a responsible way and try to reverse or at least stop the current rate 

of environmental degradation in their country.

Earlier in this report, there were a number of vegetation monitoring 

initiatives discussed. A lot of work has already been done in the field of vegetation 

monitoring and some of these ideas can be applied to Ghana’s situation.

One of the best tools developed for monitoring vegetation is the 

Normalized Difference Vegetation Index (NDVI). This index would allow a base 

line of vegetation levels for northem Ghana to be gathered throughout the year to 

detect any decreases in vegetation levels. This base line could be in the form of 

critical values, as presented in this report. Once these critical values are 

established, a monitoring program could be put in place where deviations in 

vegetation levels from these critical values would be recognized. Without the 

extensive geographical coverage of satellite remote sensing technology and NDVI, 

recognizing decreasing vegetation levels for an area the size of northem Ghana 

would be almost impossible.

As well, critical values mapped in a similar way as to what was presented 

in this report would allow observations and monitoring of potential problem areas. 

For example, it is thought that with increased global warming, the southern
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boundary of the Sahara desert is slowly migrating south. This would have 

devastating effects on farm and grazing land in northem Ghana and on the people 

trying to live there. With a monitoring program in place, critical values of 

vegetation levels could be evaluated to determine if this environmental 

degradation is actually increasing .

Such a monitoring program would show where higher levels of 

environmental degradation are geographically. This information would assist 

governments and NGOs in concentrating their efforts and money where they 

would be most effective instead of implementing "blanket" environmental aid 

programs.

4.1 RECOMMENDATIONS

1. The first recommendation from this report is that any future studies 

involving NDVI should be conducted using NOAA AVHRR imagery, not NDVI 

images from a preprocessed compact disc. Creating NDVI from raw NOAA 

AVHRR data and applying the same scaling equation to NOAA AVHRR data that 

was applied to the Landsat TM data allows a more direct comparison of the two 

datasets.

2. An accuracy assessment study should be conducted on Project 2 to 

verify that areas determined to be vegetated actually were vegetated, and to 

create meaningful critical values for the northem region of Ghana. This study was 

purely qualitative and was only a demonstration of the value of high resolution 

(Landsat TM) and low resolution (ARTEMIS) data for vegetation monitoring 

purposes.

3. A temporal dimension should be added to any study of NDVI that also 

includes data from the wet season, or data from all year. Using many images
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obtained throughout the year over a number of years would allow the seasonal 

changes in vegetation growth to be taken into account when a vegetation 

monitoring program is in place.

4. Along with a temporal dimension, using archived NDVI data to create a 

baseline NDVI from which problems could be identified is important Creating 

baseline NDVI images provides the resource manager with the ability to determine 

whether a very low NDVI image obtained at one point in time is significantly lower 

than the "normal" NDVI for that same time of the year.
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