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Abitract

Conqietitive success in the qioit of ski jumping is made possible through the 

optimal performance of junkers during flight. While the flight phase has been the subject 

of several scientific investigations, there remain many questions concerning the 

optimization of this most important phase.

The purpose of this study was to identify and quantify qiecific kinematic variables 

of both the mid-flight and the preparation for landing phases of sld jumping flight. 

Secondly, the study sought to examine the statistical contribution of variables in both 

phases to the distance junq>ed. Finally, an attempt was made to develop a model wAich 

would provide a general view of the structure of the relationships among analyzed 

variables.

The subjects for this investigation were SO highly skilled nordic combined 

cooqietitors particÿatmg in the 1996 Worid Cup K-88 event. Fourty trials fi-om the first 

round of conq»etition were selected for inclusion in the data anafysis.

The data for the 40 analyzed subjects was collected using two cameras mounted 

on Peak Performance Pan and Tih Heads. The jumpers were taped as they passed through 

the field of view, from 55 to 85 meters on the jump hilL The Pan and IHt hardware 

enabled the data to be collected over a wide field of view which resulted in the analysis of 

both the mid-flight and preparation for landing phases. Values fisr the distance jumped 

and the mrunvelocfry were collected from the oflBcial results printed by the FIS 

competition committee.

The Peak Petfinmance 3D ^ e o  Anafysis System was used to extract the 

horizontal and vertical coordinates for a 19 point segmental model The center of truss 

was calculated fitr the model, vibkk included the masses of aids, hdmct and boots. Data

I
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was smoothed and processed to compute linear diqilacements and velocities and angular 

displacements in the three planes of motion. Statistical treatment of the raw kinematic 

data was performed using the appropriate conqmter programs from SPSS.

Correlation anafyses were conducted on the variables of the mid-flight and 

preparation for landing phases to determine the strength of any relationshfys between the 

selected variables and distance jumped. Both frill and stepwise regression analyses were 

conducted on the two analyzed phases of fright to assess the predictability of the 

dependent variable, distance jumped. Also, a varimax rotated fiictor analysis was 

developed for each of the mid-flight and preparation for landing phases to examine the 

complex intercorrelations between independent variables.

The results of the study revealed the kinematic variables that are associated with 

increasing the distance jumped. A general model of the relationships between independent 

variables and their contribution to the distance jumped gave insight into the traits that may 

be optimized in order to improve sld jump perfiiimance. The resuhs of the mid-flight 

phase suggested that, in order to increase distance jumped, athletes should attain a 

compact, forward flight position with a small angle of attack, optimize previous 

movements in order to achieve a high flight curve, and maximize the inrun velocity. The 

preparation for landing results indicate that the best jumpers had an open flight position 

and a greater negative vertical velocity. Flight positions m both analyzed phases were 

observed to have a large effect on aerodynamic ftctors and the distance jumped.
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Chapter 1 

iPtC9d«,Çli9P

Sld Jumping is s very complex sldH which consists of four main phases vriiich are 

the inrun, take-off ffight and landing. The Eight can be further subdivided into the 

transition into ffight, mid-ffight and preparation for landing. The phases of the sld jump 

have typically been studied separately for the sake of sinçlicity. However, it is important 

to note the interdependence of each of the phases of sld jumping, that is, success in any 

phase depends on the previous phase. The entire sldH is evaluated subjectivefy by style 

judges, and objectivefy by distance measurement. Points from each of these aqiects are 

tabulated to give the final jump score. The conqietitive format of sld jumping involves 

two rounds of jumping, with only the top 35 jumpers qualifying for the second round. The 

closely related qiort of nordic combined includes two competitive rounds of jumping, 

followed by a cross country sld race the following day with start order and intervals 

determined by the sld jump performance.

Researchers (Jost, 1995; Vaverka, 1995; Vinnavirta & Komi, 1991, Watanabe & 

Watanabe, 1993) have analyzed many aspects of this conqrlex skill using force analysis 

techniques, electromyography, cinematography and videography. Wind tunnel testing has 

also played an important role in determining optimal ffight positions and posture. Results 

firomthe wind tunnel analyses have been used as a basis for computer mndeKng whidi 

enables the prediction of distance jumped (Remizov, 1984; Luhtanen, 1995). These 

studies have done much to guide coadres and jumpers in their attempts to attain effective 

ffight positions that maximize the potential lift vritile mmmiiwiig drag.
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The quality of jumping has been steadily improving over the past 70 years, which 

may be partialfy attributed to the ongoing research into ski-jumping technique. Kinematic 

anafysis has helped the researcher to observe and examine the flight parameters in a 

conqietitive situation and to confirm the theoretical research. However, until recently, 

onfy two dimensional kinematic anafyses had been documented. Technical advances in the 

collection and anafysis of three dimensional Idnematic data have allowed this information 

to be collected more easify and accurately in the conqietitive environment.

Purpose

The purpose of this study was to first identify and quantify in three dimensions the 

specific kinematic variables of both the mid-flight and the preparation for landing phases. 

Secondfy, the study sought to examine the statistical contribution of variables in both 

phases to the distance jumped. Finally, the study attenqited to develop a model vriiich 

would provide a general view of the structure of the relationships among analyzed 

variables.

B itis u k

The evolution of sld jumping technique has led to the V-St^e flight technique, in 

whidi the aids arc qiread qiart at the tfys in the frontal plane. Several kinematic anafyses 

of sld jumping flight have been perfiirmed using two dimensional anafysis techniques (Jost, 

1994; Puumala, 1995). Whfle valuable mfirrmadon was gleaned regarding the primary
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movements of the flight phase in the sagittal plane, there exist some limitations to the 

application of these results. Movement of the slds in the frontal plane has warranted the 

anafysis of sld jumping flight in three dimensions. The author is aware of onfy one study 

that anafyzed the flight phase of sld jumping in three dimensions (Jost, 1995). This three 

dimensional anafysis was conducted on a K180 sld jumping hiH, rather than an Ofympic 

size hill (K90 or K120). With large differences in peed and aerodynamic qualities, it is 

believed that critical differences may exist in the optimal technique necessary to achieve a 

successfiil performance on each size of hiU.

The kinematics involved in the final stage of flight prior to landing have been 

peculated on by several authors (Vinnavirta & Komi, 1991; Arndt, Bruggemann, 

Virmavirta & Komi, 1995), but have never been directly measured in a competitive 

setting. It is believed that movements performed during the prparation for landing may 

be optmnzed by jumpers in order to maximize the total distance jumped. Variables 

thought to be important to the performance of the preparation for landing were measured 

and anafyzed to test previous assumptions concerning the final part of flight.

Limitations

The study is limited by the following fiictors:

1. The accuracy of the researcher in digitizing the anatomical endpoints of the 

body segments.

2. The influence of weather conditions on the jumpers performance.
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3. The use of estimated body segment parameter values (Plagenhoef Evans & 

Abdehiour, 1983) in the determination of the center of mass.

4. The calculation of three dimensional coordinates from the Peak Performance 

calibration procedure.

Delimitations

The investigation is delimited to:

1. The data collected on sld jumps performed by SO first round competitors, 

during the World Cup in Steamboat Springs, Colorado on December 11, 1996.

2. The analysis of recordings made by two cameras set up to view the mid-flight 

and preparation for landing phases between the 55 and 85 meter marks on the landing hill

3. The analysis of selected flight phase parameters (a slder-sld system, b.slder-sld 

system and flight direction and, c.velocity and flight direction) calculated at three points 

for each of the flight and preparation for landing phases.

4. The relationshp of pecific fli^ t and landing parameters to the distance 

jumped.

Definitioa of Terms

iBim Phisg

The first phase of a sld jump, i^ c h  begins ̂ e n  the jumper leaves the gate and 

ends when the first is made for the take-off movement The primary pupose of
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the hmm is to generate mmvhmim velocity over a set distance. The second objective is to 

create an optinnun body position for the subsequent take-off 

Take-Off Phase

The second phase of a sld junq>, which begins when the first inpulse is applied and 

ends the moment the body’s line of gravity is perpendicular to the take-off area (Baumann, 

1979). The take-off is defined as the movement Wdch dictates the transition fi'om the 

inrun phase to the flight phase. The purpose of the take-off is to create conditions fixr 

asaiming an ideal flight position as quickfy as possible, while maximizing horizontal and 

vertical displacement 

Flight Phase

The third phase of a sld jump, the flight phase begins when the jumper has moved 

their center of mass over the slds, i^tich have pread to a wide V position. The phase 

concludes vriten the junpers slds make contact with the landing hiU. The primary pupose 

of this phase is to maximize distance jumped by achieving the most aerodynamically 

efficient flight position. This phase can be subdivided into the: transition into flight, mid­

flight and preparation for landing.

The first subphase of sld jumping f li^ . The transition into flight begins when the 

take-off phase ends (0-2 meters), and finidies when a stable flight position is achieved, 

about 10-15 meters after the end of the take-off (Vaverka, 1991). The pupose of the 

fli^ t transition is to achieve the greatest possible lift uAile moving the center of mass 

firrward into an aermfynamically efficient fli^ t position.
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Mid-ffifJit

The second stage of ffight in sld jumping. The mid-ffight begins when the jumper 

has achieved a relatively stable position in the air with the center of mass in a forward 

position, relative to the foot. Md-ffight ends when the jumper begins moving the center 

of mass backward in order to move into a safe landing position.

Preparation for T

The final part of the ffight phase, where the jumper opens up the angle of the body 

and the dns, moving the center of mass backward towards the feet and prepares to 

execute a safe, stylish landing.

A force which acts on the skier-sld system perpendicular to the drag force or 

direction and tends to increase the height of the ffight path.

Drag

A force acting on the slder-sld system in a direction opposite to the direction of 

motion and tends to decrease velocity.

Lffldffig-Phlg

The fourth and final phase of a sld junp. The landing phase begins the instant the 

slds make contact with the snow and ends when the jumper has moved mto a stable 

position on the landing hiR 

Telematic F4"d?g

A landing position vtirere one foot is placed forward of the other with the knees 

bent to absorb the force. The telematic landing is considered more st^ish than a landing
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executed with the feet together and if properiy performed, receives maximum points from 

the style judges.

VJQds

V S ^e is a ffight technique where the slds are placed in a wide position in the 

frontal plane through eversion and external rotation of the hps and knees. The skis are 

together at the tails and apart at the tips, thus the name "V style". Hiis style of ffight has 

recently come into popularity and is assumed to give greater lift, and therefore, greater 

distance than the traditional technique, with the slds paraOeL 

Angle Of Attack

The angle between the longitudinal axis of a jumper, taken as a line drawn from the 

shoulder to the ankle, and the direction of the air flow(frn et al, 1995).

Nntmal Point (P Point)

The P point of a sld junping hill is the point on the landing hill where the slope 

increases to a value between 37 and 41 degrees. The increase in slope is to fiicilitate safe 

landings of the junpers by following the parabolic flight curve. The P point is marked 

wfrh a blue line. (See figure 1.)

Critical Point (K Point)

The K point of a jump hill is the point where the slope of the landmg hiU begins to 

decrease from the steepest part of the hiU, where it is safi»t to land. Landmg past the K 

point results in larger ground reaction frxrces to be absorbed by the jumper. These 

increased forces can result in dangerous landing conditions, and are controlled by limiting
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the mnm velocity so that the best jumper is reaching distances matching the K point. The 

K point is always marked by a red line on the landing hiR (see figure 1.)

K 90 and K 120

These two sizes of sld jumping hiHs are generalfy standard sizes for World Cup and 

Olynpic sld junping conpetition. The size of hill is denoted by the critical point, which is 

measured by the distance firomthe take-off to the K point, wAere the hiU begins to flatten 

out.

[
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Figure 1. Structure of a Sld Juxup With Associated Phases.
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10

Review Of Uteniture

The q>oit of sld jumping has evolved a great deal over the past seventy years, due 

partly to the scientific study of technique. Scientific investigations have been performed 

fi’om the time when the sport involved jumps of 50 meters on wooden slds with leather 

bindings to the qioit of today where the athletes use technical^ advanced equipment to 

junç as fitr as 200 meters.

Olympic and World Cup sld jumping normally involves competition on hills 

designated as 90 meters or 120 meters. These are the standard hills for competidon, wMch 

are measured by the distance firom the end of the take-off platform to the critical (k) point 

on the hOL There are also six hiHs in the world much larger than the standard competition 

hills and are refisrred to as sld %ing hiUs. The design of these hiHs are mudr the same as 

the standard hills, but the critical (k) point is iq> to 180 meters from the take-off It is on 

hills such as these that jumpers have reached distances of over 200 meters. However, the 

qieeds used on these hiHs are onidi fiister and onfy the very best junqrers usually conqrete 

on them.

Both the equipment used by the athletes and the hills they sld on are regulated by 

the Federation hrtemationale de Sld (FIS). FIS is the international committee that ensures 

the use of standard equfyment fi>r fidmess and standardized hiHs for safety of the slders. 

Research is régula^ conducted regarding the regulations which are enfi>rced by the FIS 

(Muller, 1994).

A BfMlcdnwn o f  Ski Junqiiiiy h to  Phases

The four main phases of aid jumping can be fiirther subdivided mto seven specific 

phases; the inrun, preparation for tak»>ofî  tako-off transition into fright, mid-fii^t, 

preparation for landmg and landing (Vaverka, 1987). hi order to simplify the sldll of sld
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jumping, coaches typicalfy break a jump into these phases for the purpose of analyzing and 

teaching technique. Although phases can be studied independently, it is very important to 

understand the interdependence of each phase, hr describing the optimization of ski 

junqiing, Denoth, Luethi and Gasser ( 1987) stated that "all phases have a great influence 

on the jumping distance, and... every stage of the junç has its consequences on the 

subsequent phases." (p. 414) For example, difficulty in the inrun phase such as being 

pulled back by the centrifiigal force of the curve of the slope wül make it almost 

impossible to execute an effective take-off movement (Canqibell, 1990).

hmm and Preparation for Take-off

The purpose of the mnm phase is to maximize velocity by moving down the initial 

slope in an aerodynamically efficient position. The second objective is to maintain a 

position from ̂ dch an effective take-off movement can be executed, hi terms of 

aerodynamics, the inrun is a low position in order to reduce the surfiice area of the front of 

the junqier and resuhs in minimal turbulence (Campbell, 1990). This inrun position was 

first researched by the French national sld team in a wind tunnel experiment, performed in 

1959. The results of this study produced the position referred to as the French "egg 

position" in which the body is tucked into an ovoid position (Ward-Smith and Qements, 

1982). The main difference between the common inrun position of today and the French 

"egg position" is that the hands are now held straight back and resting on the hfys. This 

"hands back" position came into popularity just before the 1980 Ofynqiics in Lake Placid 

(Watanabe, 1989).

As the jumper moves into the transition curve of the inrun, the centrifiigal force 

tends to push the jumper backward and down, so that the center of mass moves back 

bdtind the center of the fiiot The jumper opposes any forward or backward movement in 

the inrun, because any movement back will place the aider in an unfitvorable position for 

junking and will deoease the effectiveness ofthe take-off movement (Campbell, 1990).
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The forces placed on the sld junker while in the inrun often resuhs in the center of mass 

moving back relative to the feet, when it should idealfy be stable and ready to move 

forward very quickly during the take-off phase. It is the best jumpers then that are able to 

maintain an ideal position that optimizes aerodynamic Actors as well as maintaining a 

forward position to lead into the next phase of the jump.

Take-Off

The take-off is considered to be the most critical phase of the sld jump 

performance, as it has the greatest effect upon the quality of flight and therefore, the 

distance of the jump. An effective takeoff involves moving the center of mass into a 

forward position, while increasing both the vertical and horizontal velocities.

Campbell (1990) describes the objectives of the takeoff as being:

1) to give the jumper-sld system a maximum normal (vertical) velocity,

2) to produce a flrvorable body position at the jumps edge, and

3) to provide an initial turning moment or angular momentum for the 

forward rotation of the body over the slds immediately after take-off

Over the past 20 years, numerous kinematic studies have been conducted on the 

take-off phase (Campbell, 1979; Vaveriu & Janura, 1994; Shao-Ming, 1994;). Each of 

the studies used two dimensional film or video analysis to quantify the kinematic variables 

and their optimization hr accord with the distance jumped. A few studies measured kinetic 

variables via force platforms errrbedded under the take-off platform, hr combination with 

measuring two dimensional Idnematic characteristics (Vaverka, Janura, Krskova, Elfinaric 

& Salinger, 1992; Wmavirta & Komi, 1993).

Vaverka et al (1996) described the contradictions found hr existing relationshfys 

between take-offparmmeters and the criterion variable, distance jumped. While it has been 

repeatedfy noted hr practice that the takeoff is the most important phase hr determining 

the success ofa jump, the applied Idnematic researdr does not support this. The disparity
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is explained by the muhifiictor theory of the take-of^ in wAich the optimization of the 

take-off Actors and individualization of the take-off parameters have been defined 

(Vaverka et al, 1996). A general model for the execution of the optimal take-off can not 

be defined and is illustrated by the significant intraindividual (between subject) differences 

on the takeoff It is important in an applied coaching setting that the trainer understands 

that there is no "correct" way of executing a take-off for all jumpers; each jumpers' take­

off needs to be developed mdividually with the goal of optimization.

AH Actors are important, but generally Ae maintenance of a forward position 

during take-off Aould be emphasized. The forward position is directly rdated to a lower 

leg angle, which should be kept as small as possible throughout Ae movement (Campbell, 

1990). Most coaches believe Ae best take-off angle to be 45 degrees or smaller 

(Watanabe, 1989). In practice, this requires Ae jumpers to have a good deal of ankle 

flexibility to make this position boA possible and comfortable. Some of Ae research 

refisrs to Ae forward position as having Ae weight in front of Ae heel during Ae inrun and 

moving Ae center of mass of Ae body m fimxt of Ae point of s i^ o rt during Ae take-off 

This movement of Ae center of mass creates forward momentum which brings Ae junqier 

into an effective flight position (PuUi, 1989). AnoAer critical Actor of Ae take-off is Ae 

timing. It has general^ been agreed iqion among coaches and researchers that Ae best 

take-off is performed closest to Ae edge of Ae jump and over a very Aort time period 

(0.2 to 0.5 seconds) (Harkins, 1990).

Vaverka (I99I) published a study that analyzed Ae take-off phase by measuring 

dynamometry of two take-off Actors, vigor and accuracy and Aeir effect upon lengA of 

jump. Force pAtforms woe installed in Ae Ast 6 meters of Ae take-off on a mmmer 

jump hiH covered m pAstic. The study was performed during a compethkm mi Ae K90 

hill m Frenstadt, Czech Republic, ^ ^ o r can be defined as ^eed of Ae take-off 

movement, or "Ae result of Ae jumper's effort put forA on Ae Ast 6m distance from Ae 

jump edge" (Vaverka, 1991, p. 152). Accuracy of take-off A measured by Ae distance
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away from Ae edge of Ae jump Aat Ae take-off movement A compteted. Through 

statAtical analyses of Ae kmematic varAbles, it was found Aat a positive correAtion exists 

between take-off vigor and accuracy. The percentage of variance m junq> lengA 

attributed to by Aese Actors was 21 percent. Approach velocity also added anoAer 10 

percent to Ae variance m distance. These Actors were determined to be very important 

and may serve as a basA for identifymg optimal combmations of parameters Aat will 

contribute to Ae overall success of Ae jump performance (Vaverka, 1991).

The complexity of Ae take-off resuhs m it bemg a very difficuh phase to coach. It 

is up to Ae coach to have a Aorough knowledge of Ae importance of each Actor Aat 

contributes to a good take-off It becomes more difBcuh to detect errors when coachmg 

eAe jumpers, due to Ae high speed of Ae movement.

Flight

Maximizmg Ae ffight distance A Ae general objective of all of Ae oAer phases of 

sld jumpmg. There are, however, many mdependent Actors of Ae ffight phase which can 

have a large effect on Ae success of Ae jump. While Ae takeoff A generally considered 

Ae most crucial phase of a junq>, thA assumes Aat Ae junker has mastered Ae sldO of 

flymg. For Ae unskilled jumper, mastering Ae skill of ffight tedmique can Aastica% 

inqtrove results (Campbell, 1990).

The first and most important question concerning ffight technique A one of ideal 

positionmg. Flight position was first studied by Strauman m 1927, m order to 

o^erimental^ assess Ae most ̂ fective position. In a pioneering experiment, a model of 

a sld junqier m a windtunnel was used to measure Ae lift and drag components for 

different ffight configurathms. Strauman pointed out that Ae trunk Aould be bent 

forward m order to achieve a larger lift component and to mmhnAe Ae drag component 

(Watanabe, 1989). iùiowdedgeconceinmg optimal f l i ^  has mcreased since thA earfy 

experiment. Nhidi more recent research has been done to describe Ae precise angles and
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position for Ae ideal flight (Tani & luchi, 1971;Remizov, 1984; PuUi, 1989). While 

Aeoretical positions have been generally accepted as being valid, not a great deal of 

research has been done to confirm Aese values m a practical setting.

Research conducted on describing an ideal flight position has focused on defining 

Ae position in vAich lift A greatest, while drag A minimized. However, thA A a converse 

rektionship because, as lift mcreases, Aere A a proportional mcrease m drag (Campbell, 

1990). The key to thA position A Ae lift to drag ratio. A high lift to drag ratio A 

AAcative of Ae lift being greater than drag, Aerefore bemg an efficient flight position. A 

low lift: Aag ratio mAcates a larger drag force Aan lift, which results m a much Aorter 

jump distance (Campbell, 1990).

Ahhough Ae determmation of a high lift to drag ratio sounds workable m Aeory, 

it A complicated by Ae fiict Aat Ae flight position A not a constant one and can be 

subdivided mto three stages: 1) Ae transition mto flight, 2) mid-flight, and 3) preparation 

for landmg. Ideal positions for two of Ae three sub phases have been described by 

Rendzov (1984). The optimal transition mto flight phase A described as havmg Ae best 

aerodynamic efficiency to mamtam initial velocity from Ae tako-off Towards Ae end of 

flight, Ae junq>er begins to open up Ae flight position to mcrease Ae lift component. The 

benefit of Ae extra lift A Aought to outweigh Ae reduction in velocity due to Ae drag at 

Ae later stage offli^t.

Flight Trangrimi

The flight transition phase can be described as Ae period of time after Ae slds have 

left Ae snow of Ae take-off platform until Ae jumper achieves a forward, sAble flight 

position. During thA phase of Ae jump, Ae athlete qpreads Ae slds mto Ae "V" st^e 

position. Schwameder (1993) mdicated that A e"V  technique enabtesjumpers to assume 

a compact body configuration m earty fli^ t and consequently a more beneficial 

aerodynamA position. The importance ofAe flight transftkm phase was emphasized by
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Arndt, Biuggenuum, Virmaviita and Kond (1995), found that Ae motions of Ae sld 

junqier in earfy ffight were of greater inqiortance to Ae ffiud resuh Aan Ae take-off 

parameters. They did recognize, however, that this may have been Ae resuh of Ae sample 

demonstrating a very uniform tedudque on take-off ̂ dle exhibiting many differences 

during Ae transition. OAer Actors described as being critical m Ae ffight transition phase 

are Ae velocity and rotation of Ae slder-sld system. Vakerica and Janura ( 1994) described 

Ae best jumpers as Aose diqiAying Ae highest horizontal velocity, Ae least decrease in 

Ae height of Ae ffight curve, a tendency to a progressive forward lean, and a Aster 

rotation forward over Ae slds. These Actors resuh in Aejunqier quickly achieving an 

aerodynamical^ efficient ffight position.

hfid-FBght

The investigation of Tani and luchi (1971) buflt on Ae early woA of Strauman 

(1927) which demonstrated Ae advantage of a forward lean during ffight. Through wind 

tunnel testing performed on a wooden model of a sld jumper, Ae researchers were able to 

define equations of Ae ffight path, as well as optimal ffight positions to |jfi and

minimize drag. They also recognized that i ^ e  a constant ffight position is not practical, 

Aey were able to define an optimal angle of atAck. It also became evident firom Ae 

resuhs of this stm^ that Ae arms Aould be held close to Ae body, raAer than forward, as 

had been previously accqited.

FurAer wind tunnel studies were carried out by Ward-SmiA and Clements in 1982 

on a scaled model of a sld jumper. The researdiers found that an ideal angle of attack 

would be 8 degrees, if h were possible to avoid tumbling at sudi a low incidence angle. A 

more practical value of 25 degrees was presented as being an optimal angle of atAck for a 

sld jumper in firee ffight (Ward-SmiA and Clements, 1982).

The research ofRemizov (1984), added to Ae woAof Tani and luchi, by 

describing in greater detail how Ae optimal angle of atAck Aould be ahered during Ae
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ffight in order to achieve the greatest distance. Rendzov noted that, it had always been 

assumed that a constant angle of attack uhidi correqionded to the maximal aerodynamic 

quality, that is the maximum lift to drag ratio, Aould be maintained. However according 

to his calculations this would result in a decrease of 13 meters at an initial ^eed of 30 

meters/second as conqiared to Ae optimal trajectory (Rendzov, 1984). A difference was 

also seen between Ae optimal angle of attack during Ae first part of ffight of large and 

small hills. This was attributed to an increased drag wiA greater speed on large hills (27- 

33 m/sec for large hills, compared to 20-25 m/sec for small hills). For this reason, Ae 

optimal angle of attack was defined as being 30 degrees for smaller hills, compared wiA 

15- 23 degrees fiir Ae early ffight on large hills.

The results of Remizov's calculations also emphasized Ae substantial influence of 

Ae sld jumpers dimensions on Ae aerodymunic quality. It was noted that jumpers of ansU 

weight and wiA a flattened body wiA a large fi’ontal area would be ideal for ffight. These 

type of body proportions provide less Aag during Ae early ffight phase and greater lift 

towards Ae second part of ffight (Remizov, 1984). Remizov's conclusions were Aat Ae 

angle of attack Aould be small during Ae first part of flight, in order to reduce drag. As 

Ae ffight progresses into Ae second part, Ae angle of attack Aould decrease in order to 

increase lift. It was found that Ae lifting property was more important than mhmnizmg 

Ae drag effect in Ae later stages of ffight.

Remizov’s (1984) eariier maAematical modeling study seems to contradict Ae 

more recent woA of PuUi (1989). While Remizov suggests that Ae optimal lift position 

Aould occur during Ae second part of flight, PuUi indicated that Ae greatest lift position, 

characterized by a more open trunk angle, Aould be petftnmed during Ae transition into 

flight phase. He recommends that movements m Ae second part of ffight Aould fixcus on 

achieving Ae best aerodynamic position in order to reduce drag. WhUe itis stiUnot clear 

as to vAiA optimal modd of Uft and drag is more effective, recent research suggests that 

Ae aerodynamic drag is minimized in Ae middle part of fliÿit^uumala, 1995). It would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

seem that, if a position of greater lift were used, it is past Ae middle stage of flight. Ski 

jumping requires Ae optimization of many Actors, wiA many individual differences 

between jumpers. In oAer words, a jumper wiA good lift in Ae first part of flight, may 

jump Ae Mtne distance as a jumper achieving maximum lift in Ae second part of flight.

Comparisons of three different flight styles were made through wind tunnel stuAes 

and conqmter modeling by Jin et aL, in 1995. The three st^es were defined as classic 

style (wiA slds parallel), "V" style (wiA sld tqis spread apart) and flat "V" style (same as 

"V" stjie, except more flat in Ae saggital plane). While it may be questionable uAeAer 

Aere is an actual distinction between two different types of "V” style jumping m a 

conçetitive setting, Ae models are usefid for comparison purposes. One limitation of Ae 

study was that a rigid model was used which enables Ae determination of Ae lift and drag 

characteristics of Ae jumper, but does not account for postural changes during flight.

Results of Ae comparative analysis Aowed that Ae flat "V" st^e was more 

efficient, creating less drag than Ae "V" style, but muA greater lift Aan Ae classic style. 

The researAers recommend that Ae jumper assume Ae flat "V* style, m particular during 

Ae flight transition, and increase Ae angle of attack to Ae more open " V" style position in 

late flight to maximize Ae lift component (fin et aL, 1995).

AnoAer study whiA incorporated wind tunnel resuhs mto a computer simulation 

program was performed by Luhtanen in 1995. Similar to fin et aL (1995), this meAod 

enabled Ae prediction of distance jumped throuÿt Ae manipulation of key flight variables. 

The meAod used to collect Ae wind tunnel data make this study notewoiAy. Nine high 

calibre RnniA jumpers were suspended in a wind tunnel wiA harnesses, whiA enabled 

Aemto select Ae most aerodynamic flight position. The meAod accounts for Ae minute 

postural changes made by Ae jumper in Ae A . Through entering mto Ae computer 

program boAAe individual aerodynamic qualities of esA jumper and Ae qiedfic 

variables concemmg Ae hill and wind condhians, Luhtanen was able to predict distance 

jumped quite accurate^. An interesting additional finding was Ae large influence wind
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conditions has of Ae flight pedbnnance of Ae jumpers, whiA is greater for Ae lighter 

junqiers Aan Ae heavier ones (Luhtanen, 1995). The only way to eliminate this extreme 

influence (whiA can often be dangerous) is to construct wind screens around Ae ski jump 

itself

hi Ae past several years, kinematic anafyses have been performed on Ae mid-flight 

phase of sld jumping and have confirmed much of Ae previous wind tunnel and 

maAematical modeling studies (lost, 1995; Puumala, 1995). lost (1995) performed one 

of Ae first three dimensional analyses of Ae flight phase at Ae world sld flying 

championships. The study used three dimensional video ana f̂sis techniques to calculate 

parameters throuÿi Ae middle part of Ae flight phase. The better jumpers were found to 

fly at a smaller angle and were more inclined forward during flight. A small angle between 

Ae ‘hody-bow-Une” and Ae slds was significant^ correlated to distance jumped. The 

analysis determined that Ae angle betwe» Ae slds was greater for Ae best jumpers in Ae 

XZ plane. The results firom lost’s sld %ing anafysis were conqtared to his previous three 

dimensional study (lost, 1994) of Ae flight parameters of a 120m jump and found to be 

very similar. The comparison between flight parameters of Ae sld jump flight and sld 

%ing flight is important in order to Aow that Ae flight qualities are annlar between sld 

%mg (180M) and standard competition hiUs (90m and 120m).

Perhaps Ae most mteresAig finding of lost’s 180m sld flying study, was Aat of an 

increase in Ae horizontal velocity observed between Ae first and last analyzed parts of Ae 

phase. This tendency, whiA was only displayed by Ae best jumpers, had not been 

previous^ described m Ae literature. Correlations were insignificant for horizontal 

velocity as a vAole, but were not performed on Ae change m velocity. It is fek that this 

result may have a tremendous impact on Ae competitive success of Ae jumpers during Ae 

fii^t phase. A gfidmg effect was Ae explanation given for this increase in horizontal 

velochy seen mAe sid lin g  kmematic ana^sis (lost, 1995). The two dimensional mid­

flight analysis performed by Pliumala in 1995, confirmed Ae change in velocfty findmgs of
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lost (1995) and suggested that Ae movements associated wiA Ae increase Aould be 

optimized increase may be qitimized in Ae fiiture in order to increase Ae distance 

jumped.

I for Landing

fo order for a jumper to be able to move into Ae landing Aey must stop Aeir 

forward rotation and create a backward moment by increasing Ae forward lean and trunk 

angles and decreasing Ae arm angle (Campbell, 1990). However, Aanging Ae optimal 

flight position mto this landing motion too early will certainly decrease Ae possible 

distance of a jump. Virmavirta and Komi (1991) performed a study Aat described Ae 

electromyographic activities m Ae muscles of Ae legs throughout Ae enAe jump. They 

observed an earfy activation of Ae muscles used for executing Ae landing and speculated 

that bending Ae knee too e a ^  before landing could be because Ae jumper is afiaid of 

mmmramimg Ae optimal flight position for as long as possible. AnoAer possibility may be 

that prqiaration for a safe and smooA landing requires a fidrty long time to execute. 

Similarty, AmA et. aL (1995) referred to Ae psyAological difficulty of maintaining an 

aerodynamic position when Ae skier is onfy about 1 meter above Ae ground prior to 

landing. They also infer through qualitative observation Aat some jumpers are able to add 

an extra 5 meters at Ae end of Ae flight by maintaining an efficient flight position longer 

and Aus delaying Ae movement to land. The qieculative nature of Aese findmgs 

illustrates Ae need for quantitative research on Ae possible advantages to be gained 

during Ae preparation for landing phase.

The lack of research on Ae pr^aration for landing phase has raised many 

questions concerning performance. Jumpers and coadies have been left to decide for 

Aemseiveshowto best perftwmAe movements from flight to landing without sacrificmg 

crucial distance and style points.
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Landing

The landing phase of a sld jump is very inqiortant for several different reasons.

The first is safisty - a stable landing he^is to prevent a M  and completes Ae jump. The 

second reason is that by delaying Ae landing, by not moving from Ae flight position into a 

landing until Ae last possible moment, Ae jump lengA will be maximized. Lastly, but also 

very important, is Ae execution of a good telemark landing, \Aich will ensure good style 

points from Ae judges.

Pulli (1989), describes Ae forces acting on a sld jumper upon landing as 1) gravity 

wiA a component parallel to Ae landmg slope, 2) an impact force vertical to Ae surfece, 

3) air resistance and 4) frictional fr>rce. These forces are easily overcome under normal 

condMons. However one condition that makes Ae forces difficult to absoA, is Ae slope 

of Ae landmg hilL Between Ae P and K points, Ae angle of Ae landing hill is constant 

and optimal fi>r landing. Below and above Ae P and K pomts Ae slope is less steep and 

much more difficult, and even dangerous. For this reason, speeds in Ae inrun are 

monitored closely to prevent any jumper from landing too fitr past Ae K pomt.

The Structure of Rekrionshipfi Aerwem, Phases

ha Ae past, few investigators attempted to measure kinematic variables and Aeir 

mterelationshÿ in Ae competition setting. However, recent technological developments 

in video measurement and analysis equipment have hqiroved Ae accuracy of Ae 

quantification of kinematic data. Dr. Frantisek Vaveriu, of Ae Czech Republic, has been 

a leader m Ae area of kinematic analysis of sld jun^mg. Through Ae cooperation of 

research teams firom Czech Republic, Slovenia and Canada, Vaveriu focused on Ae 

kinematic relationships between Ae phases of Ae entire jump (Vaveriu, McPherson, 

Janura, Effinarict Puumala, 1995).
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A two dimensional kinematic data collection was conq>leted in bnsbruck, Austria, in 

w&id: Ae variables of Ae inrun transition, take-off ffight transition and two stages of mid- 

ffight were quantified.

A Actor analysis was performed on Ae data collected in hmAruck, which mchided 

variables fi’om each of Ac main phases of Ae sld jump, ffidrvidual Actors and Ae 

respective rotated Actor loadings were developed for each of Ae phases m order to Aed 

light on Ae groups of correlated variables and Aeir influence on Ae distance jumped. The 

results of Ae communaKty values for each of Ae analyzed phases addressed Ae 

interdependence of Ae phases of sld jumping. The preliminary results of this inngitnrfinai 

study indicate that Ae percentage of Ae variance mqilained of distance jumped, «"creased 

fi'om 30% to 40% in Ae take-off and transition phases, to 83% during Ae mid-flight phase 

(from 60m - 75m in this particular study). Vaverka's study did not, however, attempt to 

assess Ae contribution of Ae preparation fi>r landing phase to Ae distance jumped. This 

final sAge of ffight has only been specuAted on in Ae literature and has never been studied 

Idnematicalfy.
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Chapters 

Eiocruneatel Procedures

The methods and procedures to be used in Ae examination of Ae problem are 

described under Ae following headings:

Pflot Study 

General procedures 

Video-taping procedures 

Data analyses 

Statistical procedures

1.

2.

3.

4.

5.

Pflpt Stwdy

A pilot study was performed m January 1995, by Ae principal researcher, as part 

of a cooperative study headed by Dr. Frantisek Vaverka of Ae Czech republic. The 

purpose of Ae two dimensional study was to investigate selected variables of Ae flight 

phase and gain msight on possible relationshÿs wiA Ae distance jumped. Pilot data was 

collected on jumps completed on Ae K110 sld jump in hmsbruck, Austria. The »nnu«l 

world cup competition is Ae third meet m Ae Springertoumee Four {fills competition 

which takes place in Austria and Germany. The dau collection site was ideal for Ae 

anafysis and Ae sample included Ae best jumpers m Ae world.

Results of Ae pflot study were used to help select variables for inclusion m Ae 

present anafysis. in addition to laying Ae groundworic for Ae furAer study of sld jumping 

flight, Ae data was used as a part of a larger collaborative study to assess Ae long term 

changes in sld jumping tedmique and Ae contribudon of anafyzed phases to Ae distance 

jumped.

The results of Ae two dimensional anatysis confirmed results from many of Ae 

previous wind tunnel studies and maAematical modeling studies. The best jumpers were 

observed to flatten out Aeir trunk and thigh angle, as well as maintain a smaller sld and leg 

angle through Ae analyzed phase. The trunk and sld angle was also smaller for Ae best
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jumpers, and got progressively smaller, indicating a further movement of Ae trunk 

towards Ae slds. The best junpers were also seen to maintain Ae smallest angle between 

Ae leg and fli^ t direction. These small ffight angles observed in Ae most successful 

jumpers were Aought to produce a more aerodynamic ffight position. An increase in 

horizontal velocity was noted in Ae mid-ffight by Ae best junpers, and was Aought to be 

a resuh of this more compact ffight position. As this increase m horizontal velocity was 

onfy seen m Ae best jumpers, it was suggested that it may play an important role in 

optimizing ffight performance.

A subsequent two dimensional anafysis was performed during Ae 1996 hitersport 

Springertoumee event, held m BischoAhofen, Austria. Data is presently being analyzed 

for Ae mchision in a larger collaborative study. The data from this analysis appears to 

support Ae resuhs found in Ae hmsbrack study.

General Procedures

Sample

The subjects analyzed m Ae present study were 40 of Ae top athletes who 

particpated in Ae 1996 Steamboat Springs Nordic Combined Worid Cup. Of Ae 50 

athletes who competed, 40 trials met criteria m terms of quality of picture and suhability 

of field widA and were selected for fiirAer analysis. The first competition round was 

anafyzed. All of Ae junpers were males between Ae ages of 16 and 30 years.

Pttt ÇoBçfftim Sftg
The operimental she was Ae Howelsen {fiU K88 meter sld jumpmg hill in 

SteanAoat Springs, Colorado.

ProtQgol

Each athlete was video t^ e d  during Ae first competitive round of Ae worid cip 

competition. The SO compeAors had been selected to compete at Ae world o p  level
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through quali^ing in previous national and international competitions. The second and 

final round of competition was also taped, but not analyzed in Ae present study. 

Video-Taping Procedures

The data used for this anafysis was collected using two Panasonic digital video 

cameras (Model CL-350), equipped wiA high speed Autters. Movement was recorded at 

a rate of 30 frames per second. Each frame was subsequently sampled at 60 Hz using Ae 

Peak Performance 3d Analysis System. The high speed Autter was set according to light 

conditions in order to enhance Ae clarity of Ae image. Two cameras were leveled and 

positioned wiA focal paAs at a 90 degree angle to one anoAer. The cameras were 

positioned on one side of Ae paA of motion as presented in Figure 2. The meter markers 

on Ae oppoAe side of Ae landing hill served as reference points. The field widA was 30 

meters in total, from Ae 55 meter mark to Ae 85 meter mark on Ae landmg hill Each 

athlete was filmed through Ae enAe field widA using pan and tik hardware (Peak 

Performance Technologies, Englewood, CO.) The three dimensional pace was calibrated 

using six calibration rods, filmed in Ae field following Ae conpetition.

Data Analvsis

The techniques to be used for analyzing Ae data obtained from video-taped 

records are described under Ae following headings: a) video anafysis procedures, b) data 

smoothing and c) variable selection.

Video Analvsis Procedures

Each of Ae 50 junpers competing in Ae first round of competition were Agitized 

using Ae Peak Performance 3D Video Anafysis System located in Ae Biomechanics 

Laboratory at Ae Lakdiead University Sports Institute. Using a 19 point segmental 

model adapted to include slds, Ae anatomical em^oints were Agitized for each junper on 

every finme from 50 meters to 60 meters for Aenud-fii^t anafysis and for 12 frames 

prior to landing for the prpantion for landing anafysis from eadi of Ae two camera 

recordings. Following digitization, Ae Peak 3D System software ppHed Ae direct linear
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transfonnation method to reconstruct the three dimensional coordinates. The software 

calculated the centers of mass of body segments (Plagenhoef et aL, 1983), as well as the 

linear and angular displacement, velocity and accelerations. The average mass of the slds, 

helmet and boots (12.5 Kg) were also included in the center of mass calculation, to most 

accurate^ represent the segmental mass characteristics of the junkers.

Camera 1

55 m|

N.

85 mil

22m

Camera 2

19m

Figure 2. Diagram of filming site.

nata Smnnthing

The data was smoothed using a second order Butterworth digital filter in order to 

remove any noise from the signal For each trial, the Peak Performance Smoothing 

Software selected the optimal cut*off fiequency firr each of the segmental end points 

(Peak Performance, 1995).
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Variable Sélection

The variables selected to be included in the study were generated through 

consultation with sld junking experts and a review of the relevant literature. The data can 

be divided into three separate subgroups of related variables as follows: i) slder-sld

Variables in the three subgroi^s were anafyzed at three different points during the 

analyzed phase for mid-ffight (SO, 55 and 60 meters). The preparation for landing analysis 

included two of the subgroups of variables: i) slder-sld system, and iii) velocity and ffight 

direction. The two groups of variables were measured at twelve frames prior to landing 

and also at six frames prior to landing. Variables were measured at twelve and six frames 

prior to landing as it was seen that jumpers were generally beginning their move into the 

landing at twelve frames prior to landing. At six frames prior to landing, all jumpers were 

well into their landing movements. Three extra variables were recorded including the 

inrun velocity (Velocity^), the distance jumped (Distance), and the change in horizontal 

velocity of the center of mass (AVelocityn). The first two extra variables were obtained 

from the ofiScial results printed and distributed by the FIS, and the horizontal velocity 

change was calculated by subtracting the VelodtyH at 50 meters from VelocityH at 60 

meters for mid-ffight. The change in horizontal velocity for the preparation for landing 

analysis was measured as the difi&rence in horizontal velocity from 12 fimnes prior to 

landing to the heel contact of the landing itself

Slder-gld svstem

The three variables used to describe the slder-sld system in the XY plane included 

the trunk and th i^  angle (Trunk/Thi^xv), the sld and leg angle (Sld/Legxv), and the 

trunk and sld angle (Xrunk/SldxY). The variables analyzed in the XZ plane included the 

angle ofthe slds to each other (Sldsxz)snd the angle of the legs (Legsxz) > The angles of 

these variables were calculated by the Peak Perfrumance )^ eo  Anafysis System software. 

See Rgure 3a and 3b.
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The angles of the slder-sld system and flight direction were defined as the angle 

between the sld and the direction of fli^t (Sld/Dirxv), the angle between the leg and the 

direction of flight (Leg/DirxY) and the angle between the trunk and the direction of flight 

(Leg/Dirxv)- These three variables related the skiers flight position direct^ to the path of 

motion. Also known as the angles of attack, the slder-sld system and flight direction 

variables were analyzed onfy for the mid-flight ana r̂sis. The direction of flight was 

calculated using the velocity data which is presented in the next section. See Mgure 4. 

Velocitv and flight direction

The velocity and flight direction variables included the three components of 

velocity; the horizontal velocity (VelodtyH), the vertical velocity (Vdocityv), and the 

resultant velocity(VelocityR). The velocity variable was calculated by the Peak 

Performance Ana r̂sis System for each frame and taken from the center of mass of the 

slder. Other variables calculated included the angle of the flight curve (Flight a), and the 

distance of the center of mass to the landing (DispL c/m). For the mid-flight analysis, the 

distance of the center of mass to the landing slope was calculated by subtracting the 

vertical displacement of the landing slope from the corresponding center of mass of the 

slder-sld sysem. The contour of the landing hiD was measured through the anafysis of the 

lower leg segment of a slder siding the landing slope. The value used was the ankle of the 

slder, so that the vertical displacement value used for the landing slope was actually 

approximately 10 cm above the surfiice of the snow. The vertical displacement of the 

center of mass for the preparation for landing analysis was calculated by subtracting the 

absolute value of the displacement of the center of mass for twdve and six flnmes prior to 

landing, from the vertical displacement of the anlde joint at the frame defined as heel 

contact of landing. As in the mid-flight anafysis, the displacement ofthe landing slope was 

actual^ about 10 cm above the snow surfiice. Onfy the jumpers i^ o  exceeded 70 meters 

m distance could be compared ht terms of the vertical dis*lncement

I
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Figure 3a. Slder-Sld System Variables in the XY Mane.

30

Figure 3b. Slder-Sld System Variables in the XZ Plane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

O

-The An^e of die F ü ^  Curve 

Rgure 4. Slder-Sld System md Direction of Flight in the XY Plane.

.0
Velocity^

DispL dm

T _
Landing Hill

Velocity HotisoQtal VelodQr of the center of mass 
Vobcityy- Vertical veloc^ of the center of mass 
V aloci^- Resultant velociQr of die center of mass 
DispL cAm- Distance of the center of mass to the landing

Figures. Velocity and F fi^t Direction.
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of the center of mass from the landing hill for the preparation for landing analysis. The 

reason for this is that the landing slope is a constant pitch between 70 and 88 meters.

Thus, jumpers landing before the 70 meter mark are each landing on a slightly different 

angle of slope. Therefore the height of the center of mass before landing could not be 

standardized between subjects. Figure 5 presents the variables included in the velocity and 

flight direction subgroup.

Statisrical Procedures

The statistical methods to be used in this study relate to:

1. Descriptive statistics.

2. The relationship between specific kinematic parameters and the distance

junqied.

3. Regression analysis performed to predict distance jumped.

4. The structure of relationships among selected variables.

Descriptive Statistics

Means, standard deviations, nunhnum and maximum values for all measured 

variables were generated for both the mid-flight and the preparation for landing phase, to 

enhance the description of the variables.

Relatinndiip Between Selected Variables and the Distance Jumped

The Pearson product moment correlation technique was used to determine the 

existence and measure of strength of any linear relationshÿs among selected variables and 

the distance jumped. Correlation coefBcients were calculated by enq>loying subroutines 

from the Statistical Package for the Social Science (SPSS) package. Correlations meeting 

the .05 level of significance were rqioited, however onfy moderate to strong correlations 

were selected fi>r fiuther atutysis and discussion.

Both multiple linear regression and atqiwise regression ana^ses were used to 

determine the predictability ofthed^cndent variable, distance jumped, frxr both the mid-

I
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flight phase and the preparation for landing phase. The regression anatysis gave further 

insight into the variables determined to be significant predictors of the criterion variable. 

The structure selected variables

A princçal component, varimax rotated Actor analysis was performed between 

selected variables for the analyzed phases of flight and the distance jumped. The Actor 

analysis enabled us to generate a general view of the structure of mtercorreAtions among 

the observed variables for each of the analyzed phases (55 meters for the mid-flight phase 

and 12 finmes prior to landing for the preparation for landing phase). The sign of the 

Actor loadings (+,-) was critical to the mterpretation and described the tendency of the 

rektionship between the length of jump and the other variables. Variables with a 

significant relatiottship to Ae criterion (length of jump) were identified and Ae 

interpretation of Ae tendencies of measured variables were presented relative to Ae 

distance jumped.
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Chanter 4 

Remult:

This investigation was focused on examining Ae variables found in boA Ae mid- 

ffight phase, between 50m and 60m, and Ae preparation for landing phase. Variables 

selected for boA of Aese phases were analyzed in order to determine Aeir contribution to 

Ae distance jumped. The analysis will be described m three different sections for each of 

Ae two subsections of ffight; a) quantification of Ae variables and Aeir relationshq» to Ae 

dependent variable, distance junqied, b) prediction of Ae dependent variable through 

regression analysis and, c) structure ofrelationshqts among selected variables. The 

variables for mid-ffight were anafyzed at three different points during Ae ffight paA (50 

meters, 55 meters and 60 meters) for each jiunper. The second part of Ae analysis 

involved variables measured 12 finmes (0.204 seconds) and 6 frames (0.102 seconds) 

prior to landing.

Mid-flight

Means, standard deviations, minimum and maximum values for all Ae variables 

were calculated to enhance Ae descr^tion and provide quantification for Ae variables 

Aought to be associated wiA effective sld jumping flight. The mid-flight descriptive 

anatysis fixcused on a subset of Ae top 25 jumpers on Ae basis of distance jumped. This 

group was selected for Ae mid-fi%ht anatysis since each of Ae top 25 jumpers were 

determined to be executing mid-fiiÿtt characterimtics through Ae analyzed field width. 

Jumpers wiA Aorter distances may have actually have been in Ae late stages of flight or
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preparing to land and were omitted for this reason. Variables calculated at 55 meters will 

be discussed in order to provide Ae best representation of Ae mid-ffight phase. The raw 

data results are presented in Appendix A1 for Ae mid-ffight inatysis (n=40) and ̂ pendix 

A2 for Ae mid-ffight anatyris (n=25).

A correlation anatysis for six independent variables and Ae distance jumped was 

conducted on Ae subset of 25 jumpers, each jumping over 69 meters. Significant 

correlations which are moderate to strong have been selected for fiuAer discussion and 

anatysis. Significant product moment correlations between selected variables and Ae 

distance junqied are presented in Table 2 and are described below.

Distance. The mean distance jumped by Ae top 25 compeAors was 73.14 meters. 

The standard deviation (SD) was 2.76. The minimum distance jumped included in this 

group was 69.0 meters, wiA Ae longest junq) equal to 78.5 meters. The distance jumped 

during competitive events is unique to each particular hiU and Ae prevailing external 

conditions. Le. wind and snow. For this reason, it is of little value to compare between 

hills and events.

DispL C/M. The value of Ac mean vertical displacement of Ae c/m was 1.66 

meters (SD = .23). The minimum and maximum scores were 1.19 meters and 2.23 

meters. The value of Ae vertical di^lacement of Ae center of naass was calculated from 

Ae landing hill and gives an indication of Ae height of Ae ffight curve at 55 meters. The 

vertical di^lacement of Ae center of mass correlated strongty in Ae positive direction 

wiA Ae distance jumped (r = . 7484 p<.05,2-tailed). This relatiouAip suggests that Ae 

best junkers had a hiÿrer vertical displacement of Ae center of mass at 55 meters.
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Tnm k/D ir a  The mean vahie of Ac trunk and direction of flight angle was

51.07 degrees (SD = 4.63). The minimum and maximum were boA 41.52 degrees and

62.43 degrees reqiectivety. The angle of Ae trunk relative to Ae direction of ffight is a 

measure of Ae skiers forward lean and is frequentty referred to as Ae angle of attack in 

Ae literature (Jm et aL, 1995). The trunk angle relative to Ae direction of ffight formed a 

moderate negative correlation wiA Ae dependent variable, distance junqied (r = -.5728, 

p< 05 2-tailed). A small angle between Ae trunk and direction of ffight appears to be 

associated wiA a greater distance jumped.

S|q/Tnpilt The mean angle of Ae sld and trunk angle at 55 meters was 16.22

degrees (SD = 6.48). Minimum and maximum angle values were 4.99 degrees and 26.19 

degrees re^ecttvety. The sld and trunk angle also formed a moderate negative correlation 

wiA Ae dependent variable, distance jumped (r = -.5626 p< .05, 2-tailed). Decreasing 

Ae angle formed by extending Ae lines from Ae trunk and sld segments also appears to be 

associated wiA Ae distance jumped.

Sld/LegCxY- The mean angle between Ae sld and leg segments at 55 meters was

26.44 degrees (SD = 7.31). The minimum and maxhnum values were 13.82 degrees and 

44.95 degrees. The sld and leg angle formed a moderate negative correlation wiA Ae 

dependent variable, distance jumped (r = -. 5070 p< 05,2-tailed). This relationshq) 

suggests Ae importance of a small sld and leg angle during mid-flight in order to increase 

Ae distance jumped.

Seven variables were significant^ correlated to Ae d^endent variable, distance 

jumped. Of Aese, ontyAe variables DispL c/m, Trunk/Dir a  XY, Sld/Trunk a  XY and
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Sld/Leg a  xy showed moderate to strong relationshtys and warrant further explanation in 

the discussion section (chapter S). Three variables: Leg/Dir a  xy, Flight a, and Velocity^ 

were significant^ but weakly related to Ae dependent variable. Refer to Table 2 for 

q>edfic correlation values.
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A number of the independent vaiiables included in the conrelational analysis 

fonned relationshÿs «gnificant at the .05 level of significance and are discussed below.

1. Strong correlations were found between the components of velocity. Vertical 

velocity (Velocityv) and horizontal velocity (VelocityH) were correlated (r = .7735 p<.05, 

2-tailed), while vertical velocity (Velocityv) and resultant velocities (Velocityn) were 

related at r = -.8950 p< 05,2-tailed. The horizontal and resultant components were also 

positively related (r = .9695 p< 05,2-tafled). The strong correlations are based on the 

mathematical relationshçs of these variables.

2. The angle of the sId and leg (Sld/Leg a  xy)  correlated strong^ and positively 

with the angle fonned between the leg and direction of fli^ t (Leg/Dir a  xy) , (r = .7052 

p< 05,2-tailed). This relationship shows that the two variables partially measure the same 

characteristic of forward lean.

3. The sld and trunk angle (Sld/Trunk a  xy)  conelated moderately and positively 

with the corresponding angle formed between the trunk and angle of the fiight curve 

(Trunk/Dir a  xy) ,  (r = .6251 p< 05,2-tailed). SimQai ,̂ the sld and trunk angle (Sld/Trunk 

a  xy)  correlated negatively with the corresponding angle between the sld and angle of the 

flight curve (Sld/Dir a  xy), (r = -.6944 p<.05,2-tailed).

4. The angle between the leg segment and the direction o f f li^  (Leg/Dir a  xy), 

firnned a moderate n^ative correlation with the trunk and thiÿt angle (Trunk/Thigh a  xy), 

(r = -.6508 p<05,2-tailed).
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The foUowing correlations were weakly but significantly related: (Refer to Table 2

for ̂ ecific values).

• right arm and trunk angle(Ann a  xz) and the leg and direction of flight angle 
(Leg/Diraxv).
right arm (Arm a  x z )  and the sld and leg angle (Sld/Leg a  x v )  

inrun velocity (Velocity^) and the angle of the flight curve (Flight a), 
inrun velocity (Velocity^) and the change in horizontal velocity (AVelodtyn). 
sld and direction (Sld/Dir a  x y )  and the change in horizontal velocity ( AVelocityn). 
horizontal velocity (Velocityu) and the angle of the flight curve (Flight a), 
vertical velocity (Velocityv) and the arm angle (arm axz) 
vertical velocity (Velocityv) and the angle between the legs (legs a x z )  

trunk and the direction (Trunk/Dir a  x y )  and the leg and the direction of flight 
(Leg/Dir a  x y ) -

leg and direction (Leg/Dir œxy) and the sld and the direction of flight (Sld/Dir a  xr) 
sld and trunk angle (Sld/Trunk a  x y )  and the angle of the flight curve (Flight a), 
sld angle (Sld V a  x z )  and the trunk and thigh angle (Trunk/Thigh a  x y ) .  

angle between the legs (Legs a  x z )  and the trunk and thigh angle (Trunk/Thigh a  x y ) -  

vertical diqilacement of the center of mass (Diq»L c/m) and the sld and leg angle 
(Sld/Leg a  x y ) .

Mid-ll^ht

Multiple Regression Analyses

A muhÿle regression analysis was conducted on the set of data at the 55 meter 

marie from the top 25 junkers wAose distance was greater than or equal to 69 meters. 

Following the correlation analysis, it was noted that a number of variables that were part 

of the slder-sld ^ e m  and direction of flight exhibited muhircolmearity. For this reason, 

Leg/Dir axY, Trunk/Dir a  x y  md Sld/Dir a  xy were not included in the regression 

anafysis.

Using the method of least squares, a muh^le regression model was computed to 

predict the distance jumped. The results of this ana^sis are presented in Table 2. The
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prediction equation with the variables arranged in the order of their importance in 

predicting the distance jumped was:

Y «  54.7574 - JIOOX: + .6847Xz + J317X, - .1437X4 + 1156Xg

+ .0657X4

where:

Y = Dependent variable (Distance)

X i =  S ld /L e g  a  xy 

X z =  A V e lo c i ty u  

X ,  =  S l d V a x z  

X4 =  S ld /T ru n k  a  XY 

X s =  T ru n k /T h ig h  axY  

X4 = Legsaxz

The mukqile correlation coefficient, an indication of the amount of the population that is 

accounted for by the model, was .7318. The F-test statistic, a measure ofhow good the 

model is, was 9.089, with the significance of F = .0001, p<001. The hypothesis foat there 

is no order to the relative importance of each of the selected indqiendent variables in 

predicting the distance jumped, was rejected at the .001 level of significance.
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Table 3

Regression Analysis to Predict Distance Jumped 

Rrom Selected Variables at S5 meters

Variable B SEB Beta T SigT

Ski/Leg a  xy -.209992 .059454 -.555674 -3.532 .0024

AVeiocityH .684665 .198327 .440304 3.452 .0028

SUV axz .231654 .080174 .411015 2.889 .0098

Ski/Tninkaxy -.143707 .062925 -.337043 -2.284 .0347

Trunk/Thigh .115552 .065405 .263922 1.767 .0942
oixv 

Legs axz .068694 .039828 .229280 1.725 .1017

(Constant) 54.757355 11.715314 4.674 .0002

The six independent variables used in the fiill regression anafysis were also selected 

for inclusion in a stepwise anafysis. The stepwise analysis eliminated those variables 

which did not contribute significant^ to the regression. The results of this analysis are 

presented in Table 4. The stepwise equation fi*r predicting the distance jumped was:

Y «75.5741 - .1334Xi - .2298Xj + .6781Xs + .2165X.

where:

Y =^Dqiendent variable (Distance)

X i« Sld/Trunk a  XY 

Xz = Sld/Leg a  xy
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Xa = AVclocityH 

X4 = SldVaxz

The variables m the equation appear in order of selection for the stepwise analysis. 

The nndtiple correlation coefficient for the model was .6811. This indicated that the 

model which included only four of the original sbc variables was onfy slightly less usefol in 

predicting distance jumped as the full model

It is important to note that the variable sld and trunk angle was selected first to 

enter the stepwise analysis, in spite of being only fourth in order of significance, from the 

full regression analysis. This may be eqdained by the ability of stepwise analyses to take 

into account variability that may be "shared" among the various predictor variables.

Tabled

Stepwise Regression to Predict Distance Jumped 

from Selected Variables at 55 meters

Variable B SEB Beta T SigT

Ski/Trunk axv -.133440 .063680 -.312964 -2.095 .0491

Ski/Legaxv -.229765 .056900 -.607995 -4.038 .0006

AVelocityH .678110 .204546 .436088 3.315 .0035

Ski V axz .216482 .084280 .384096 2.569 .0183

(Constant) 75.574139 2.135909 35.383 .0000
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Mid-flight

Stnicture of Rdatinndiips Amopg Selected Variables

A fiictorial analysis was perfoimed for the variables of the mid-flight in order to 

oqplore Actors that represented relationships among the many interrelated variables. The 

set of data from the entire sample (n = 40) was used for this analysis because Actor 

analysis seeks to simplify the data through the intercorrelations, and is not a prediction 

method. The Actor extraction method used was principal component anafysis, followed 

by varimax rotation, which attençts to minimize the number of variables that have high 

loadings on a Actor. The mid-flight variables from 55m were included in the Actor 

armfysis. Three Actors were extracted from the 13 varAbles, to explain 75.2% of the 

variance. Table 5 presents the eigenvalues and the percentage of variance predicted by 

eadi of the extracted Actors. The Actor loadings and communalities are presented in 

Table 6. Communality values for the variables were all over .5, except for the angle of the 

slds (XZ plane).

Table $

Final Factor Statiatica -Mld-flinht (S5 metersl

Factor Eigenvalue % Of Variance Cumulative %

1 5.08949 39.1 39.1

2 3.15672 24.3 63.4

3 1.53534 11.8 75.2
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Eadi of the positive Actor loadings is mteipreted as being maximized in the sample of 
jumpers in mid-flight, while the tendency of the negative Actors is to be minimized.

Tpfrk 6

Rotated Factor Matrix - Mld-flAht (SS metcrsl

Factor

Variable 1 2 3 Communality

DAtance .68349 -.05397 -.58948 .81756

Flight a •.64391 .14731 .39495 .59231

Slu/TrnnkaxY -.80098 .22274 .28220 .77082

DApL C/M .65892 .19055 -.57687 .80327

SkiVaxz .69074 .01337 .02030 .47771

Sld/Dir a  XV .85785 .26896 -.02755 .80900

Trunk/Dir axv -.02536 .69463 .38532 .63162

VelocityH .17787 -.94596 .02311 .92702

VelocityH -.01140 -.95789 .13055 .93473

Velocityv .30276 .81098 -.31619 .84933

Leg/Diraxv .02419 .11287 .96947 .95320

Ski/Legaxv -.18032 -.06551 .68186 .50174

Trunk/Thigh axv .37132 .22887 -.72319 .71327

bold type indicates the variables ̂ c h  load strongly for each Actor.

Positive Actor loadings fi>r Actor 1 included the varAbles distance jumped, sld and 

directum offli^angte, sld angle (XZ plane) and vertical dispAcement. The negative 

Actor loadings fl)r Actor 1 were fliÿd angle and the sld and trunk angle. The loadmgs for
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Actor 2 mchided all three mter-reUted velocity variabtes and the angle between the trunk 

and direction of flight. The horizontal and resultant velocities were very strong negative 

loadings, while the vertical velocity and trunk and direction variables were positive Actor 

loadings. The third Actor included positive loadings of the teg and direction of flight and 

the sld and leg angle, and a negative loading for the trunk and thigh angle. Factor three 

also contained a Airly high negative loading for the distance jumped variable (-.59848).

As maximizing the distance jumped is the goal of sld jumping technique, the other Actors 

are discussed relative to the Actor loading for distance jumped. In this sense, distance 

jumped becomes the criterion variable in the interpretation of the Actor analysis, although 

Actor analysis is not a prediction method.
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Preparation for Landing AnaiyiA

lip to  Difitm ce Jumped 

Means, standard deviations, minimum and maximum values for all the variables 

were calculated to enhance the descr^tion and provide quantification for the variables 

thought to be associated with an effective preparation for landing. The variables were 

measured at 12 frames (0.204 sec.) prior to landing. The preparation for landing 

descrq>tive analysis for all variables, except the vertical diqilacement of the center of mass, 

includes data for the entire sanqde of jumpers. It is relevant to study the entire sample 

since each subject was measured relative to heel contact during landing. The results are 

presented in Appendix BI fi>r the preparation for landing anafysis (n=40).

The variable vertical distance of the center of mass from the landing hiH was 

analyzed for a subset of the subjects trito obtained distances further than 70 meters. The 

slope of the landing hill is constant between the points of 70 and 88 meters, however 

junq>s ending before or after these points are not directly comparable in terms of the 

height of the center of mass above the landing slope. The descrfytive results are presented 

in Table 32 for the jumpers landing past 70 meters (n=21).

It was believed that the angle of the knee pAyed an important role m the 

positkmmg of the slder-sld tystem during the prqiaration for Andmg phase. For thA 

reason, the right knee angte, the sld and leg angte, the sld and trunk angA and the trunk 

and thiÿt angA were all measured and anafyzed six frames prior to landing.

A correlation anafysA was performed on all 40 anafyzed jumpers for all varAbles, 

occ^t the vertical diqiAcementofthe center of mass. Significant correlations vtindr are
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moderate to strong have been selected for further discussion and anafysis. The product 

moment correlations between selected variables and the distance jumped are presented in 

Tabte 7.

A second correlation anafysis was completed for the subset of 21 jumpers who 

achieved a distance of 70 meters or greater for all variables inchiding the vertical 

dispAcement of the center of mass. VarAbles dispAymg moderate to strong correAtions 

have been selected for further discussion and anafysA. Results of the correAtion are 

presented m Table 8.

A thnd correAtion anafysA was conducted on the entire sample of 40 jumpers and 

measured the slder-sld varAbles 6 frames prior to Andmg (. 102 seconds). Moderate to 

strong correAtions are discussed further m Chapter 5. Results of the statistical anafysA 

are presented A Table 9.

A descrfytion of the results for two mdependent varAbles selected from the first 

correlation anafysA (n = 40, measured 12 finmes brfore Andmg) with the dependent 

varAble, distance jumped are presented below.

Distance jumped The mean distance jumped by the 40 competitors was 69.75 

meters. The standard devAtion (SD) was 4.61. The minimum distance jumped mchided 

m thA groiq» was 60.5 meters, with the longest jump equal to 78.5 meters. It A of 

importance to the preparation fi>r Andmg anafysA to note that none of the jumps 

surpassed the critical pomtofthehiU (90 meters). Significant correAtions between 

md^endent varAbles and the distance jumped mchided the vertical velocity of the center 

of mass, the f i i^  angle, the sld and trunk angA and the trunk and thigfi angle.
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Veiocityy. The mean value of the vertical velocity variable was -17.62 meters per 

second (SD=.72). The minimum and maximum values were-16.200 and-19.135. The 

vertical velocity mdicates how quickfy the junqier A moving downward towards the 

Anding slope. Therefore, minimizing thA value mdicates a slower downward flight to the 

hilL The mdependent variable vertical velocity formed a strong negative correAtion with 

the dependent varAble, distance jumped (r = -.8037 p<.05,2-tailed). The negative 

mcrease m vertical velocity suggests that the jumpers achievmg the greatest distance are 

actually commg down to the Andmg more quickly than the subjects with shorter junqis.

Flight g . The direction of flight for the entire sample of 40 athletes 12 frames 

prior to Andmg was 39.17 degrees (SD = .92). The mmhnum was 37.332 degrees, while 

the maximum angle was 40.713 degrees. A smaller angle of flight mdicated a more 

forward flight direction and was pomted away from the hill, compared to a larger flight 

angle. The flight angle, correAted positrvefy with the dependent varAble, distance jumped 

(r = .6318, p< 05,2-tailed). ThA result mdicates a moderate assocAtion between greater 

distance jumped and a greater angA between the flight curve and the horizontal axA. 

Aterestmgly, the jumpers adiievmg the greatest distance are generally droppmg mto the 

hill more sharpfy than the jumpers Andmg earlier.

The mdependent varAbles sld and trunk angle (Sld/Trunk axv) and the trunk and 

thigh angle (Trunk/Thigh axv) also correAted signiflcantfy with the dependent variable 

distance junfed. However, these two correAtions were weak and were not chosen for 

Anther discussion. Refiar to TabA 7 fin specific values.
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Significant Correlations Betweca Vambles

Several of the independent variables of the entire sample (n = 40) formed 

g gnificant relationshçs at 12 frames prior to landing ̂ c h  may be important to note in 

the preparation fi>r landing anafysis.

1. A strong positive correlation existed between the trunk and thigh angle 

(Trunk/Thigh axv) and the knee bend angle (Knee axv), (r = .7026 p<.OS, 2-tailed). The 

coUinear relationshfy illustrates the strong tendency for the jumper to bend at the hips as 

the knees are bent.

2. The sld and leg angle (Sld/Leg axv) was moderately associated with the angle 

between the legs in the frontal plane (Legs axzXr = 6190 p<.05,2-tailed). This 

relationshfy suggests that the legs tend to spread out as the angle opens up between the ski 

and leg.

3. The sld and trunk angle (Sld/Trunk axv)was moderatefy correlated with the 

angle of the trunk and thigh angle (Trunk/Thigh axv) (r = .5458 p<05,2-tafled). The 

presence of a linear relationshfy between these variables shows that they do, at least 

partially, measure the same trait. Therefore, an increase in either variable is normally 

acconqianied by an increase in the other.

4. The vertical velocity (Velocityv) and the angle of the flight curve (Flight a) 

showed a moderate positive relationshfy (r=.5429 p< 05,2-tafled). This finding suggests 

that as the vertical velocity becomes greater in the negative direction, the angle of the 

flight curve slopes downward corre^ondingfy.
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The following correlations were weakly but significantfy correlated:

# change in horizontal velocity ( AVelocityn) and the trunk and thigh angle 
(Trunk/Thigh axv)

# sld and trunk angle (Sld/Trunk axv) and the r i^ t arm and trunk angle (Arm axz)
# vertical velocity (Velocityv) and trunk and thigh angle (Trunk/Thigh axv)
# vertical velocity (Velodtyv) and the sld and trunk angle (Sld/Trunk axv).
# angle of the fli^ t curve (Ffight a) and the change in horizontal velocity (AVelocityn).
# the sld and leg angle (Sld/Leg axv) and the change in horizontal velocity 

(AVclocityH).

The second correlation analysis performed involved the 21 subjects who jumped to 

the 70 meter mark and beyond. This subset was analyzed to e>q>lore relationships with the 

vertical displacement of the center of mass variable. This variable could only be 

investigated for jumpers going past 70 meters, as the slope of the landing is constant 

between 70 and 88 meters. The statistical routine performed was a correlation analysis of 

aH 11 independent variables, to determine which variables were significantly correlated to 

the vertical di^lacement of the C/M. Three variables were found to meet a significance 

level of p<.OS or less with the DispL C/M. The moderate correlation of the vertical 

velocity was selected for further discussion and analysis. The significant product moment 

correlations between selected variables and the vertical displacement are presented in 

Table 8.

DispL C/M From the subset of jumpers (n=21) adiieving a junç past the normal point 

(70 meters), the mean of vertical displacement was 4.13 meters (SD=. 13). The minimum 

di^lacement was 3.924 and the maximum was 4.310. The value of vertical displacement 

is indicative of the hei^ t of the calculated center of mass above the center of the ankle 

joint at landmg. Distance jumped (Distance), vertical velodfy (Velocityv) andthe sldand 

trunk angle (Sld/Trunk axv) fonned significant correlations with the DispL C/M variable.

I
I
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1. The vertical velocity (Velocityv) was moderatefy related to the di^lacement of 

the center of mass (DispL C/M) for the subset of n=21 jumpers who jumped 70 meters or 

greater (r = -.6515 p<05, 2-tailed). The interpretation of the relationship is that the 

jumpers with a greater height above the landing hill 12 frames prior to landing also 

generally have an associated negative increase in vertical velocity.

The following correlations were weak but significant at the .05 leveL

• vertical diqxlacenment of the center of mass (Diq»L C/M) and the sld and trunk angle 
(Sld/Trunk axv)-

• distance jumped (Distance) and the vertical displacement of the center of mass (DispL
C/M).
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The third correlation analysis performed on the preparation for landing phase data 

included variables of the slder-sld system at six frames prior to landing. The entfre sanqrle 

of 40 athletes were included in the analysis in order to determine the strength of 

relationshÿs between variables in the final preparation for landing phase. Variables 

showing a moderate to strong relationship are discussed later in Chapter S. Six significant 

relationships were formed and are presented in Table 9.

1. The trunk and thigh angle (Trunk/Thigh a  x y )  formed a strong, positive linear 

relationship with the sld and trunk angle (Sld/Leg a  xv), (r = .7576 p<.05,2-tailed). The 

correlation is gmîÏT to that found m the analysis performed at 12 frames prior to landing.

2. The angle of the right knee (Knee axv) was moderate^ correlated with the 

trunk and thigh angle (Trunk/Thigh axv) six frames prior to landing for the 40 subjects 

(r -  .6103 p< 05,2-tailed). As the knee is bending coming into the landing, the trunk and 

thigh angle opens correspondingly.

3. The angle of the right knee (Knee a  xv) was moderate^ correlated to the angle 

of the sld and leg segments (Sld/Leg a  x y )  >t 6 firames prior to landing (r = .5660 p<05,2- 

tailed). The increased bend in the knee was associated with an opening of the sld and leg 

angle at 6 firames back, but not at the eariier point of 12 frames back from landing.

The following correlations were weakfy but significant^ related:

• right knee angle (Knee a  xy)  and angle of the sld and trunk (Sld/Trunk a  xy)-
• sld and trunk angle (Sld/Titmk a  x y )  and distance junked (Distance).
• trunk and thigh angle (Trunk/Thi^ a  xY) and distance jumped (Distance).
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Preparation For Landing

Multiple Regression Analyses

The results of the conelatioa analysis led the principal investigator to include six 

variables from the sample of 40 subjects, measured at 12 frames prior to landing, in the 

multiple regression anatysis. For the reason of muki-colinearity, the variable right knee 

bend angle was excluded from the regression.

Using the method of least squares, a multiple regression model was computed to 

predict the distance JunqiedL The results of this anatysis are presented in Table 10. The 

prediction equation with the variables arranged in the order of their importance in 

predicting the distance jumped was;

Y = 54.6983 - 3.6103X, + 1.4070X% + .OHSTXj + .0243X4 - .0076Xs

+ .0131X4

where:

Y = Dependent variable (distance jumped)

Xt = Velocityv 

Xz = Flight a  

Xs = Sld/Trunk a  XY 

Xi = Trunk/Thigh a  XY 

X s^A im axz  

Xg = Sld/Leg a  x y
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The multiple correlation coefficient, an indication of the amount of the population 

that is accounted for by the model, was .7471. The F-test statistic, a measure ofhow 

good the model is, was 16.2452, with the significance of F = .0001, p<.001. The 

hypothesis that there is no order to the relative importance of each of the selected 

independent variables in predicting the distance jumped, was rejected at the .001 level of 

significance.

Table 10

Regression Analysis to Predict Distance Jumped 

From Selected Preparation For Landing Variables 

(12 frames prior to landing)

Variable B SEB Beta T SigT

Velocityv -3.601323 .765683 -.559453 -4.703 .0000

flight a 1.406980 .543006 .281004 2.591 .0141

Ski/Trunk axv .085653 .069581 .157081 1.231 .2270

Trunk/Thigh a  XV .024325 .036801 .077390 .661 .5132

Arm axz -.007645 .016267 -.045951 -.470 .6415

Ski/Legaxv .013139 .054646 .024803 .240 .8115

(Constant) 54.698285 17.617978 -3.105 .0039

The six mdpendent variables used in the fiill regression aiutysis were also selected 

for inclusion in a stpwise analysis. The stpwise anafysis eliminated those variables
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vdiich did not contribute significnntly to the regression. The resuhs of this analysis are 

presented in Table 11. The stepwise equation for predicting the distance jumped was;

Y '  «  -54.0320 - 3.6512Xi + I.4I8OX2 + .1207X,

vdiere;

Y = Dependent variable (Distance)

Xi = Velocityv 

Xz = Flight a  

Xs = Sld/Trunk a  XV

The variables in the equation appear in order of selection for the stepwise analysis. 

The muhple correlation coefficient for the model was .7423. This indicated that the 

model vridch included only three of the original six variables was no less usefol in 

predicting distance jumped as the foil model

Table 11

Stepwise Regression to Predict Distance Jumped 

from Selected Preparation for Landing Variables 

(12 frames prior to landing)

Variable B SEB Beta T SigT

Velocityv •3.651206 .687550 •567203 •5.310 .0000

flight a 1.417996 .504615 .283204 2.810 .0080

Sld/Trunk axv .120730 .049758 .221409 2.426 .0204

(Constant) •54.031968 16.725420 •3.231 .0026
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PrcparatioD For Landing

Stnicture of Relptinndiips Anwmg Selected Variables

A princÿle conqionent (vaiimax rotation) Actor analysis was performed on 

variables thought to be critical in the performance of the preparation for landing phase. 

Variables known to be related to the distance junyed or corrected with variables that 

were rekted to the criterion variable were included, in order to provide insight into the 

cong)lex movements. The variables entered were measured at 12 frames (.204 seconds) 

before heel contact of landing.

The arm^sis detracted three Actors from the eight variables included in the 

analysts, to explain 74.7% of the variance. Communalhy values fr>r the variables were all 

over .50, wdtich is interpreted to mean that over SO percent of the variance in each variable 

was accounted for by the three Actors. Table 12 presents the eigenvalues and the 

percentage of variance predicted by each of the extracted Actors. The Actor loadings and 

comnnmalities are presented in Table 13. The eight variables chosen to be entered into the 

Actor aiudysis were aU seen to be rekted in some way with the distance jumped. Two 

variables, leg and leg angk and the sld and leg angle were omitted with the knoudedge 

that they had no rektiondiip with the distance jumped and little or no rektionship with 

other varkbles that were rekted to the criterion varkble. Inclusion of rektrve^ unrekted 

variables resuhs in the creation of separate Actors with strong loadings on only one 

varkble and adds nothing to the interpretation of the Actor anafysis.
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Table 12

Final Factor Statiatici - Preparation for Laading

Factor Eigenvalue % Of Variance Cumulative %

1 3.18432 39.8 39.8

2 1.64317 20.5 60.3

3 1.14506 14.3 74.7

The first Actor, wdnch accounted for 39.8 percent of the variance found within the 

sanqile, included strong loadings for distance, flight angle and vertical velocity. The 

positive loadings for distance and flight angle suggests that to maximize distance, the flight 

angle muA be maximized. The vertical velocity was mmhnized based on the negative 

loading, vriiich in other terms means that the velocity should be increasing in the negative 

direction m order to maximize distance jumped. The second Actor included strong 

positive loadings for both the right knee and the trunk and thigh angle. These two inter- 

correlated variables should both be maximized during the preparation for landing phase, in 

order to wmmwiim the distance jumped. Factor two also contained a moderately strong 

negative loading for the dumge in horizontal velocity variable. This illustrates that the 

change in horizontal vdocity is actual^ negative, or decreases, in relation to the 

maximizing of the riÿrt knee angle and the trunk and thiÿr angle. The third and final 

Actor accounts for the contribution of the right arm angle and the sld and trunk angle.

The positive loading of the r i ^  arm indicated ifs minimization in relation to the sld and 

trunk angle and also distance jumped. The sld and trunk angle is negative Actored, but
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m Tdation to the negative Actor loading of the distance jumped, increases with greater 

distance jumped.

Table 13

Rotated Factor Matrix - Prenaration for Landine

Factor

Variable 1 2 3 Communally

Distance .85018 .22915 -.26997 .84820

F l^h ta .90334 -.19502 .01651 .85433

Vdocityv -.79148 -.28826 .15591 .73383

Kneeaxv .20124 .73860 .16853 .61443

Tnink/ThighaxY .27599 .86470 -.19992 .86385

A  Vdoeitya .20197 -.71130 .19778 .58585

Ski/Trunk axv .29947 .32490 -.72650 .72305

A rm a» -.04983 .07027 .86116 .74901

bold type indicates the variables whidt load strongly for eadt Actor.
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Chanter S

Ducuiiion

The resuhs of the mid-flight snaysis willbe discussed under the following 

headings: (a) relationship to the dependent variable, distance junçed, (b) prediction of the 

dependent variable and, (c) structure of intercorrelation relationship among selected 

variables.

Mid-flight

Rebtinndiip to the Dependent Variable

Seven variables were seen to be correlated to the dependent variable, distance 

jumped. They were: I) inrun, 2) flight angle, 3) leg and direction of flight, 4) trunk and 

direction of flight, 5) sld and leg angle, 6) sld and trunk angle and, 7) vertical 

displacement. Of these relationshq>s with the dependent variable, only the variables DispL 

c/m, Trunk/Dir a  x y ,  Sid/Trunk a  x y  and Sld/Leg a  x y  showed moderate to strong 

conelations and wiH be examined further. Eadr of these variables wiH be discussed 

regarding their importance to the distance jumped as well as to the independent variables 

correlated with each.

Vertical displacement was strongly related to distance jumped, indicating that the 

jumpers %ing the furthest were also %ing the highest during the mid-flight phase. lost 

(1994), in a study of the fliÿtt parameters on a 120 meter hiH, noted that more successful 

jumpers flew higher and that the heiÿtt of the fliÿtt curve at the point of observation was 

already a consequence ofprevious and measured kinematic parameters. The strong 

fehriotiAtp between the he%ht of the center of mass and the distance jumped was
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expected, since the juiqiers \riio junq> the fiuthest must also demonstrate the highest flight 

trajectories to get them Anther down the hilL In order fl)r a jumper to maximize the 

distance jumped, they must not only increase the height of the flight curve, but optimize 

the movements that contribute to attaining a greater vertical displacement.

The trunk and direction of flight, often referred to as the angle of attack in the 

literature, was fotmd to be signiflcantly smaller for the more successful jumpers at the 55 

meter marie. The value of a small angle of attack is conflrmed in the literature, however 

the values found in this anaysis are somewhat larger than those reported by Hubbard et al.

(1989), Luhtanen (1995), and Puumala (1995). Hubbard recommends an ideal angle of 

attack close to 30*, vriiile Puumala's 1995 study found the best jumpers to be maintaining 

an angle of 40* during the analyzed phase. The larger angles found for the Steamboat 

jumpers (mean = 51.4*) may be attributed to the skill level of the sample, the influence of 

the inclement weather conditions, and the measurement of the angle values in différent 

positions of the overall flight curve. It is also ing>ortant to note that for competitions on 

the smaller hflfg, the drag Actor affects the jumper much less than on a large hiU or sld 

flying hill. (Remizov, 1984). For this reason, it can be hypothesized that jim^ers studied 

on smaller hiUs will also assume a larger angle of attack.

The variable sld and leg angle was dtown to be signiflcantly smaller for the best 

jumpers in the set of subjects vriio jumped over 69 meters. This is m accordance with the 

results of Watanabe and Watanabe (1993% who performed wind tunnel testing on a model 

of a sld jumper. They indicated that to optimize the distance jumped, the jumper should 

nwnmwM the sld and leg angle, whidt has the benefldal aerodynamic effect of decreasing
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the vortex flow bdiind the jumper (Watanabe and Watanabe, 1993). The resuhing 

reduction of drag forces on the jumper allows them to maintain velocity and remain in 

flight fiir a longer period of time. The sld jiuqiers who displayed a small sld and leg angle 

at the 55 meter mark of their flight were also seen to have a greater veitical displacement 

of the center of mass flrom the landing hilL A compact, forward flight position appears to 

be an important Actor towmrds achieving a high flight trajectory and an aerodynamically 

eflScient flight position.

The angle between the sld and leg angle at 55 meters for the top 25 jumpers was 

also corrdated to the right arm and trunk. The moderate negative correlation illustrates a 

closer arm position for the jumpers maintaining a more forward flight position. Watanabe

(1990) investigated the optimal arm position during flight in a wind tunnel, and found the 

position with the arms close to the body was most advantageous for all conditions of the 

sld angle.

The leg and direction of flight was another variable significantly rekted to the 

distance jumped. This negative correktion also verifies the importance of a forward flight 

position. Although the result described a weak rektionship to the distance jumped, the leg 

and direction angle was moderate^ to strong^ correkted with other important 

independent varkbles. The trunk and thigh angle was moderate^ rekted to the leg and 

direction o ffli^ t varkbfe, mdicative ofthe assockted extension of the body in a forward 

flight position. The sld and leg angk was strong^ rekted to the leg and direction angk. 

foterestingy, sld and kg angk and the trunk and thigh angk were not signiflcanty 

correlated. Thk finding suggests that the sld and 1% angk and the trtmk and thigh angle
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each account for a different part of the variability in the leg and direction variable. Both 

variables contribute to the maintenance of a forward flight position, but are not dependent 

on one another

Prediction of the Dependent Variable

A muhÿle regression model was derived which predicted the distance jumped, at ' 

the .05 level of signiflcance. Two models were developed first using a full regression and 

then a stepwise method. Both of the regression models resulted in significant predictions 

and provided insight into the measured variables during the mid-flight phase.

The multiple correlation coefficient of r = .7518 for the flill regression model was 

high and provided a good general model of the contribution of the variables of mid-flight 

and their overall contributiQn to the final result of the sld jump performance. The resulting 

prediction equation suggested that in order to maximize the distance jumped the athlete 

should (a) assume a flight position ̂ c h  incorporates a small angle between the sld and 

leg, (b) attempt to minimize the deceleration of the horizontal velocity, (c) increase the 

"V" angle between the sids, (d) assume a small angle between the trunk and sld, (e) 

increase the trunk and thigh angle and, (f) keep the legs slight^ spread apart

The stepwise anatysis produced a similar model for predicting the distance jumped, 

using just four of the original variables. The multiple correlation coefficient obtained was 

equal to r=  .6811. This value reflects the importance of the variables selected, since the 

predictability of distance jumped was only slight^ decreased by using a smaller nmnber of 

variables in the prediction equation. An important consideration, was that the two 

variables, change in horizontal velocity and angle of the sIds intheXZ plane were
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selected m the stepwise analysis as valuable predictors of the distance jumped, despite not 

being significant^ correlated to the criterion variable.

The change in horizontal velocity was hypothesized to increase for the best 

jungiers during the mid-flight phase and to be an important contributor to the distance 

jungied (Puumala, 1995). The correlation resuhs from this study do not support this 

theory, as the change in horizontal velocity was not significantly related to the distance 

jumped. The stepwise regression analysis did however, select the change in horizontal 

velocity as a significant predictor of the criterion variable, distance jumped. This indicates 

that, although not strongly related to the distance junqied, the change in horizontal 

velocity can be considered to explain some of the variance in the prediction.

The lack of any significant change in horizontal velocity for the best jumpers may 

be the result of several Actors, ora couAination of Actors. One possibility is that a 

significant change in horizontal velocity is actually not a significant Actor of sld junking 

flight. However, the two studies of lost (1995) and Puumala (1995) appear to support the 

existence of an increase in horizontal velocity during mid-flight. Another reason the 

jumpers may have tended to decelerate through the mid-flight in the present study was the 

relativety open flight position assumed by the jumpers. This open position included a 

wider sld and leg angle and a larger angle of attack, m comparison to the previous 

literature. The relative^ open f l i^  position may have been related to the weather 

conditions, tiridch were Ar from ideal A moderate tail wind prevailed throughout most of 

the competition, in addition to a mowfidl Jumpers are often unable to execute an 

aggressive flight phase due to the lack of air pressure below the body and the aids. It is
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the pressure of the air flow against the body and the sids that allows sld jumpers to assume 

a compact, efficient flight position.

According to the law of projectile motion, a change in velocity during flight can 

only be the resuk of gravity or air resistance. Since gravity affects the jumper vertically, it 

is the aerodynamic characteristics that may lead to an increase in horizontal velocity. This 

is analogous to a glider, which accelerates in the forward direction upon leaving the 

ground and tilting forward (Piggott, 1977). This forward position results in ahering the 

flow of air around the glider, so that some vertical dropping occurs, but also some 

increase in the velocity in the forward direction. The force of gravity is converted to 

forward thrust due to the aerodynamic Actors. This same effect seems to apply to the 

mid-flight of the best junçs, in ideal conditions. It appears that conditions for the present 

study were not conducive to this aerodynamic effect. Further study of the flight phase in 

sld jumpmg may reveal the relationdiip between the change in horizontal velocity and the 

distance jumped and the varkbles that contribute to that increase.

Structure o f  R*««*innships Amnng Selected V«ri«hles

The Actor anatysis performed on the set of data, which included the whole sample 

of competitors (n = 40), revealed vahubk information about the groiqis of correkted 

varkbles for the analyzed section of mid-flight. The structure of the rotated Actor 

loadings at 55 meters consisted of three Actor loadings ̂ d r  mq^kined 75.2% of jump 

length variance (see Table 14). The amount of variance in distance accounted for by a 

Actor matrix of three Actors is m very close accordance with the study performed by 

Vaverha et al (1995). ht Vaverfca's stmty, the amount of etqikined variance fltr the jump
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length was 73,83 and 87% measured at 59,68 and 75 meters respectively (Vaverka et al, 

1995).

The first Actor extracted included strong loadings on six variables. These included 

distance, flight angle, sld and trunk angle, vertical dispAcement of the center of mass,
\

angle between the sld "V" in the XZ plane and the angle between the sld and direction of 

flight. The six variables included in Actor 1 each represent distinct characteristics of sld 

junç flight performance. Far firom representing a single trait of the flight movement. 

Actor 1 can be referred to as the distance criterion Actor. This descr^tion is justified by 

the strong loading of the distance jungied on that Actor and it's relationship with each of 

the other five Actor loadings. Positive Actor loadings for Actor 1 are maximized in order 

to optimize the criterion, distance jumped. The displacement of the center of mass, the 

angle between the sids in the XZ plane, and the angle between the sld and the direction of 

flight should all be increased. Jumpers should also be encouraged to "wnimiTe both the 

flight angle and the angle between the sld and the trunk in order to increase the distance 

achieved.

Loadings for Actor 2 included the strongly related velocity variables and the trunk 

and direction of fli^ t variable whidt describes the angle of attack. Factor two can be 

referred to as the angle of attack Actor. The relationship between foe trunk and direction 

variable and both the horizontal and resultant velocities was a negative one. ht order for 

the jumper to increase the two components of velocity, the angle of attack should be 

minitni«ed Sumhuty, the positive loading for the vertical velocity variable suggests that in 

order to the velodty of the ascent to foe landing hiH, the angle of attack must
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also be mmmnzed. A  very «mall negative Actor loading of the criterion variable for Actor 

2 indicates a very weak relationshÿ between each of the strong Actor loadings and the 

distance jumped. This weak Actor relationdiq) does not negate the intact Actor 2 has on 

the variance of the sample. In Act, the trunk and direction of flight was moderately 

associated with the distance junqxed, as seen in the correlational anatysis. The trunk and 

direction variable was also correlated with the group of velocity variables, which resulted 

in their forming the angle of attack Actor. It should be noted that the values of the 

velocity components were not significantly related to the distance jumped, but that the 

strong loadings seen for the angle of attack Actor indicates their contribution to the 

overall variance of the sample.

In a Actor analysis performed by Vaverka et al (1995) on the data collected on 

the Innsbruck K I10 hiU (at 68 meters), the velocity variables were not Actored strongly 

with Ae trunk and direction of fiight varkble. In Act, Ae velocity varkbles were loaded 

on Ae third Actor and were not groiqied wiA any of Ae angle varkbles. This difference 

suggests that Ae trunk and direction of ffight angle had a greater influence on Ae velocity 

at Ae 55 meter mark m Steamboat than at Ae 68 meter mark in bmdmick. (Qualitatively, 

Ae mean trtmk and direction of flight angles were larger m Ae present study, than Aose 

described in Vaverka's buubruck study. A larger angle of atteck may have had a greater 

influence on Ae aerodynamic duuracteiktics of Ae sld jumper and Ae overall velocity.

The third fitctor contamed strong loadmgs fiir Ae varkbles leg and direction of 

ffight, sld and leg angle, and trunk and thigh angle. The combination ofAese varkbles are 

associated wiAAe forward flight position during midpfli^. Factor 3 can be refinred to
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as Ae fliyht nositimi Actor. Eadt of Ae three Actor loadmgs were interpreted relative to 

a strong negative Actor loading on Ae dependent variable, distance jumped. The positive 

loadings of Ae leg and direction variable and Ae sld and leg angle variable suggests Aat 

in order to itMYimiM Ae distance jumped, jumpers Aoidd minimize Aeir leg angle relative 

to Ae direction of flight and mwiimim Ae angle between Ae sld and Ae leg. The positive 

Actor loading of Ae trunk and thigh angle illustrates Ae need to maximize Ae flamess of 

Ae body in a forward fli^ t position. Attaining a forward flight position will give Ae 

jumper Ae most aerodynamically efficient flight position, which has minimal drag and a 

rektivety good lift componmt.

Factor 3 represents varkbks that were shmkriy loaded in Ae study by Vaverka et 

a l (1995). This confirms that Ae same variables contribute to Ae forward flight position 

during mid-flight regardless of external conditions. The three variables of Ae flight 

position Actor work togeAer in attaining Ae position of Ae slder-sld system. The angle 

of Ae sld and direction of flight was not strongty loaded on Ae flight position Actor, as it 

was in Vaveria's 1995 study. It is possible Aat Ae sld angle rektive to Ae paA of motion 

had less of a contribution to Ae flight position of Ae jumper in mid-flight. The moderate 

tail wind that was e?qperienced by most of Ae jumpers during Ae competition in 

Steamboat may have pkyed a role in Ae difference between Ae two Actor loadings. Sld 

junqping wiA Ae wind coming from bdmid is very difficuk for Ae jumpers who have 

much less air pressure ahead of Aemand cheekily below Aeir sids. WiAoutgood air 

pressure below, Ae sids may tend to remam fiuAer away from Ae jumperŝ  body and have 

a negative influence on Ae aerodynamic quality of Ae flight position.
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Resuhs of Ae mid-flight phase inAcate that sld junqiers must assume a conqiact, 

aerodynamic flight posidon in order to achieve Ae greatest possible distance at landing. 

This posidon includes a small angle of attack, a small sld and leg angle, a small sld and 

trunk angle, a large trunk and thigh angle, a wide V  angle of Ae sids, a large sld and 

direction of flight angle and a small leg and direction of flight angle. The results of Ae 

correlations seem to support Ae resuhs of previous studies, deqxhe Ae adverse weaAer 

conditions. The same conAination of Actors is related to Ae overall distance jumped, 

similar to different hills, under more Avorable weaAer conditions. Some qualhative 

differences were noted for some of Ae variables, which contrast previous analyses. These 

observations seem to inAcate that Ae jumpers in Steamboat flew wiA a much more open 

flight position. A more open flight position may been related to Ae tail wind, which 

resuhed in Ae very Aort distances achieved on Ae landing hiU.
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PiicmiioB 

Preparation for Landing

The discussion of the results obtained for the preparation for landing analysis will 

be presented under the following headings: (a) relationshÿ to the dependent variable, 

distance jumped, (b) prediction of the dependent variable and, (c) structure of the 

relationshÿs among selected variables.

Relarionfihip to the Dependent Variable

The correlation matrix developed for the preparation for landing variables of the 

whole sançle of jumpers 12 frames prior to landing provided some interesting information 

about the relationshçs between variables. It was previous^ thought that the jumpers who 

achieved the greatest distance would complete the preparation for landing phase with a 

slower descent to the landing hill. It was hypothesized that the more successful junçers 

utilized a position which increased the lift and decreased the vertical velocity during the 

final phase of flight.

Contrary to expectations, the vertical velocity demonstrated a strong negative 

relationshq) with the distance jumped. (See figure 7). This may be due to the better 

jung>ers being able to hold an efficient flight position longer and executing the landing 

movement in a foorter period of time. It is very interesling to note the strong correlation 

with vertical velocity since it was thought that better jumpers may be able to achieve 

greater lift until the flnal heel contact with the sld on the landing hifl. However, this 

hypothesis is strongly refitted by the observed results which shows a foster descent to the 

landing hill for the best jumpers.
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Preparation For Landing Phase
Distance Jumped vs. Vertical Veloc^ r = -.8037
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Figure 7. Scatterplot of Distance Jumped Versus Vertical Velocity.

The relationship of the angle of the flight curve with the distance junked shows a 

similar tendency. A moderate positive correlation with the distance jumped suggests that 

the more successfid jumpers entered the preparation for landing phase with a sharp 

downward flight angle. A sharper, foster descent to the landing hiU suggests that the best 

jumpers are able to hold an S cient flight position longer, thus achieving a greater 

distance in the flnal stages of flight The combination of a downward flight angle and a 

greater vertical velocity indicated that the best jumpers did not gain the extra distance 

during the pr^aratkm for landing phase, as was e>q>ected. A greater lift component 

during this phase would have been mdkated by a slower descent to the landing hilL The 

opposite result observed in the present anafysis may reveal that the best jumpers continued 

to gain maximum lift until immediate^ preceding the prqiaration for landing phase.
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A ognificant but weak relationdiq> was observed whidt may suggest that the more 

successful jumpers entered the preparation for landing phase from a higher vertical 

displacement. Examination of the results for the qmlW sample size of n = 21 junqters 

(jumpers tdto landed further than 70 meters) indicated that the vertical displacement of the 

center of mass from the landing hill was significant^ greater for the jumpers who landed 

further down the hilL The lack of strength of the relationship between vertical 

diq)lacement and distance jumped shows that the height of the flight curve in the final 

stage of flight is not as crucial to performance as during the mid-flight phase. Some 

athletes who achieved greater distances may have had good vertical displacement during 

an earlier phase of flight, but did not maintain it until the end of the flight. The weak 

correlation of the vertical displacement of the center of mass to distance junqted can be 

e>q>lained by the multitude of fiictors which influence the final result of the junq>. Jumpers 

who entered the preparation for landing phase from a higher vertical displacement may 

have had a good performance in the final phase of flight, but may have had problems on 

the take-ofif or during the earfy stages of flight. The results do suggest, however, that of 

the jumpers achieving greater distance, some may have been able to gain extra distance by 

optimizing critical fiictors during the final stages of flight

The indqiendent variable trunk and sld angle also showed a weak to moderate 

correlation with the distance jumped, iatuitrvety the opening ofthe flight position should 

be related to greater distance adiieved on the landing hifl. It is believed that by opening 

the angle between the trunk and sids, the lift to drag ratio (1/d) is increased, giving the 

jumper an extra boost at the end of the flight From the subset of jumpers (n = 21) who
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jumped 70 meters or greater, the vertical displacement was also related to the sld and 

trunk angle. The jumpers who had the more open position of the trunk and skis, were 

higher at .204 seconds before their heel contact with the snow on the landing hiU.

A more open flight position, characterized by a greater trunk and sld angle, is often 

associated with a posidon of maximal lift. However, as the posidon opens up to a certain 

point, the beneficial efifects of the lift are negated by the onset of tremendous drag forces.

It is possible that the best jumpers held a flight posidon during the late stages of their flight 

which gained the most lift. As they moved into the preparadon for landing phase, this 

posidon was opened to the point where drag forces would tend to overcome the lift forces 

and bring the junqier quickly to the landing slope. This quick descent is often referred to 

as stalling, which occurs when an airfoil reaches too large an angle of attack. Airflow 

above the wing or airfoil becomes turbulent, reducing lift and increasing the drag (Piggott, 

1977). The quick descent is described by the strong reladonshÿ between verdcal velocity 

and the distance jumped.

Other interesting correladons included the correladons of independent variables, 

measured six frames prior to landing, with the decrease in the right knee angle. While the 

knee bend itself was not significantly related to the distance jumped, it was related to some 

independent variables that were related to the dependent variable. Two strong^ inter­

related variables, trunk and thigh angle and the trunk and sld angle, were both positively 

related to the angle of the r ^ t  knee. As the right knee was flexed, the trunk and thigh 

tended to bend and the angle between the sld and trunk decreased. The angle of the right 

knee was also a significant fiictor in the angle between the sld and leg. As the knee was
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flexed, the sld and leg angle also decreased. However, decreasing this angle during the 

preparation for landing does not have the same aerodynamic efifect as durmg the mid­

flight: It may actually indicate a movement of the sids upward. Since the leg segment for 

the sld and leg angle variable consists of a line between the right hq> and right ankle, the 

angle does not change directly as a result of the knee flexion. The angle of the sld and leg 

decreases as a result of decreasing angles of the two pivot points, the knee joint, and the 

articulation between the sld boot and the binding on the sld. It is also important to note 

that, ^tile both the trunk and thigh angle and the sld and trunk angle were significantly 

related to the distance junqied, the sld and leg angle was not. So, while the flexion of the 

right knee may play an important role in the positioning of the slder-sld system in 

preparation for landing, the importance of the angle between the sld and leg is not seen as 

critical to success in this phase.

Virmavirta and Komi (1991) alluded to the difficulty of maintaining a good flight 

position until the last possible moment It appears as though the best jumpers were able to 

do this; they were beginning the preparation for landing from a higher position, partially 

due to holding an efifecttve flight position for a longer period of tune and gaining valuable 

lift until the last possible moment. The angular displacement variables indicated that the 

best jumpers were in a more open flight position, with a more open trunk and thigh angle, 

a more open sld and trunk angle and flexed their knees in preparation for landmg later. An 

open position was advantageous in increasmg the lift for the jumper in the flmmi stages of 

flight An open position may have slowed the jumpers downward descent during the 

phase immediately preceding the preparation fat landing, but is actual^ related to a
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stallmg efifect during the final phase of flight. This phenomenon is thought to have 

increased the vertical velocity in the negative direction for the best junqiers during the final 

flight phase.

Prediction of the Dependent Variable

A muk^le regression model was also developed for the preparation for landing 

analysis, in ordw to predict the distance jumped, at the .OS level of significance. Two 

models were developed to assess the total predictability of distance jumped by using the 

analyzed variables at 12 frames before landing. Each of the regression models provided 

useful information on the critical features associated with the preparation for landing 

phase.

The fiiU regression model included six variables v^ch accounted for 74.71% of 

the variance in distance junqied. The stepwise model selected just three of the original six 

variables to account for 74.23% of the distance jumped. Compared to the regression 

analysis performed on the mid-flight variables, the preparation for landing variables were 

able to predict distance jumped with greater accuracy with less variables. Statistically, it 

can be said that the variables ofthe preparation for landing reflect more strongly the 

duracteristicsofthe criterion variable, distance junqied. As we move closer to the 

landing itself the variables tend to reflect the distance achieved with a greater accuracy. It 

is important to recognize that while the predictability increases closer to the criterion, the 

importance of the previous phases is not diminidted In fret, the opposite is true: the 

previous phases of the jump result in the observed performance during the preparation for 

landing. The variables ofthe prq^aration for landing then reflect an accumulation ofthe
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predictability in the criterion variable. The three variables selected to most effectively 

predict distance jumped, from .204 seconds before landing, were vertical velocity, flight 

angle and the angle formed between the sld and trunk. Prediction of the distance jumped 

is most easily and accurately assessed by the velocity of the descent to the landing, the 

direction of flight to the landing and the positioning ofthe slder and the sids. In order to 

increase the distance jumped through the preparation for landing phase, athletes should 

gain maximal lift during the phase preceding the preparation for landing, in order for them 

to (a) descend most quickly to the landing hill, (b) descend at a sharper angle towards the 

landing, and (c) use an open slder-sld system, characterized by a large trunk and sld angle. 

Structure ofthe Relatirnidiips Among Selected Variables

A fiictor analysis was conducted using eight of the preparation for landing 

variables and explained 74.7 percent of the sample variance through three varimax rotated 

fiictors. Each ofthe fiictors gives insight into the complex intercorrelations ofthe 

variables it contains. The foctor anafysis used the entire sample of 40 jumpers.

Factor one included strong loadings on the distance, flight angle and vertical 

velocity. As in the mid-flight anafysis, the first fiictor contained the distance junqied. As 

distance jumped is the criterion variable ofthe study, fiictor one will be refinrred to as the 

distance criterimi foctor. The foctor ofthe criterion highlights the variables that are most 

strong^ corrdated with the distance jumped. In the case of the preparation for landing 

foctor anafysis, both the flight angle and the vertical velocity were loaded stronger with the 

distance jumped. This confirms the findings ofthe correlational anafysis and the 

regression anafysis, which found that the best jumpers were entering the prqiarition for
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landing phase higher, while coming out of flight at a sharper angle downward, with a 

greater negative vertical velocity. The vertical distance of the center of mass fi-om the 

landing was not included in the foctor analysis, since the results were not directly 

comparable for junqis shorter that 70 meters. It is believed, however, due to the 

correlations ofthe height variable with both the distance jumped and the vertical velocity, 

that the vertical displacement of the center of wmm firom the landing would have been 

loaded with the distance criterion foctor.

Factor two contained strong foctor loadings for the right knee bend angle and the 

trunk and thigh angle. In addition, the change in horizontal velocity was loaded negatively 

on the second foctor. This negative foctor loading suggests that maximizing the knee 

angle and the trunk and thigh extension will be accompanied by a related decrease in 

horizontal velocity. Factor two can be referred to as the bodv extension foctor. As the 

body opens up, the increased drag on the frontal surface of the jumper results in a 

decrease of the horizontal velocity. Relative to the small positive foctor loading of 

distance jumped for foctor 2, the knee angle and trunk and thigh angle should be 

maximized with the associated decrease, or minimization of horizontal velocity.

Factor three contained strong foctor loadings for two variables, the sld and trunk 

angle and the angle of the right arm from the trunk. The third foctor can be referred to as 

the fikier-fiki poririon fiictor. since both vmrisbles refer to the pnarinning o f  the slder-sld

system. The angle between the sids and the trunk was more open for the more successfid 

jumpers, ^ o  were also observed to hold their arms closer to the body through this phase.
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Loadings on the third Actor are interpreted in relation to the negative Actor loading on 

the distance junqied loading. The negative loading of the sld and trunk variable is thus 

nuudmized to increase the distance junqied, ^lile the arm angle should be minimized.

The percentage of the sample variance accounted for by the three Actors was 

approximately 75% (see Table 14). While the result of the present Actor ana^rsis is not 

directly comparable to the 1995 study of Vaverka et aL, it is valuable to note the 

continued high value of explained variance during the final instant of the flight phase. The 

result appears to agree with Vaverka's assertion that the explained variance of the jump 

length increases toward the end of flight (Vaverka et aL, 1995).

The combination of an open position of the slder-sld system and the higher vertical 

dispAcement of the center of mass at the beginning of the preparation for landing phase 

suggests that the best jumpers were approaching this phase in an open position. An open 

fli^ t position is assocAted with mcreased lift and has been suggested as being the best 

position to assume during the Ater stages of flight (Remizov, 1984). The compact flight 

position observed for the best jumpers during the mid-flight phase mdicates that the 

jumpers achieving the greatest distance did not assume a position with an assocAted 

mcrease m lift until after the anafyzed fieldwidth fi>r the mid-flight analysA.

It A of some mterest to note that the more successfiil jumpers, who opened rq* the 

sld and trunk angA at the beginning of the preparation for Andmg phase, also mamtained 

an arm position close to the trunk. It A of considerable hnportance fiir the jumper to 

extend the arms straig)rt out t^on landing, not oaty to mamtam balance on the landing, but 

to receive fiiU s ^  pomts. In the traditional telematic Andmg, the arms are held out firom
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the body, whfle one foot is placed forward. Judges award style points based on the quality 

of this landing, including the positioning of the arms. It may be that the extension of the 

arms during landing A both a learned response to achieve good style pomts and a reflex 

initiated m order to mamtam balance. It would appear that the best jumpers are able to 

deAy thA arm extension m order to mamtam optimal flight characteristics as long as 

possibA.

The anafysA of the preparation for Andmg phase provided valuable msight mto the 

final stage of sld junq>mg flight. Best jumpers were observed to mamtain an open flight 

position, mchidmg a small sld and trunk angle, a large trunk and thigh angle, a large knee 

angA and a small arm angle. ThA open position was mamtamed while descendmg to the 

Andmg hill more quickly and at a sharper angle. ThA result contradicted the initial 

hypothesA of the best jumpers gammg lift during the final fli^ t phase. Results of the 

present study also seem to support the use of an open flight position m the Ast stage of 

flight immediate^ before the preparation for Andmg phase. An open position A thought 

to mcrease the lift component on the slder-sld ̂ e m  and mcrease the distance jumped. 

During the pr^aration for Andmg phase, the best jumpers opened the flight position 

bQfond the critical angle of attack, after staOmg occurs. ThA staDmg efibct brought 

these jumpers to the Andmg hill m a reAtively short amount of time, but allowed them to 

mamtam an efficient flight position for a long as possibA.
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Summary. Fmdmw. CoDclmiom. Rccommcndationi

Sum mary

The purpose of this study wis to first identify and quantify specific kinematic 

variables of both the mid-flight and the preparation for landing phases. Secondly, the 

study sought to examine the statistical contribution of variables in both phases to the 

distance junqied. Finalfy, the study attempted to develop a model which would provide a 

general view of the structure of the relationships among analyzed variables.

Experimental Procedures

The subjects for this investigation were SO highly skilled nordic combined 

conqietitors paitic^ating in the 1996 World Cup K-88 event. Forty trials from the first 

round of competition were selected for inclusion in the data analysis.

The data for the 40 analyzed subjects was collected using two cameras mounted 

on Peak Perfrwrnance Pan and Tût Heads. The jumpers were taped as they passed through 

the field of view, from 55 to 85 meters on the jump hilL The Pan and Tik hardware 

enabled the data to be collected over a wide field of view, which resulted in the analysis of 

both the mid-flight and preparation for landing phases. Values for the distance jumped 

and the inrun velocity were collected fiom the official results printed by the FIS 

competition committee.

The Peak Performance 3D Video Aiufysis System was used to extract the 

horizontal and vertical coordmates for a 19 point s^mental model The center of mass 

was calculated for the model, whidt included the masses of slds, hdmet and boots. Data
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was smoothed and processed to compute Unear displacements and velocities and angular 

displacements in the three planes of motion. Statistical treatment of the raw kinematic 

data was performed using the appropriate computer programs from SPSS.

Findings

The findings of the two analyses conducted during this investigation are 

summarized under the following headings;

a) Relationship between selected variables and distance jumped, b) Prediction of the 

dependent variable, and c) Structure of the relationships among selected variables.

Mid-flight

Relatinndiip between selected variables and dtoance jumped

The foDowing independent variables significantly correlated with distance jumped 

for the sample of the top 25 jumpers, at 55 meters:

1. Vertical displacement of the center of mass (DispL c/m) (strong).

2. The trunk and direction of flight angle (Trunk/Dir a  xy)  (moderate).

3. The sld and trunk angle (Sld/Trunk axv) (moderate).

4. The sld and leg angle (Sld/Leg a  x y )  (moderate).

5. The leg and direction of flight (Leg/Dir a  xy)  (weak).

6. The direction of flight angle (Flight a) (weak).

7. The velocity in the innm(VelocityiR) (weak).

Prediction of the Dependent Variable

1. The fidl nndtÿle regression equation for predicting the distance jumped with 

the variables arranged in the order of their importance was:
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Y «  54.7574 - .2100X, + .6847Xj + .2317X3 - .1437X4 + .1156X,

+ .0687X.

where:

Y = Dependent variable (Distance)

Xi = Sld/Leg a  xy 

Xj = ̂ VelochyH 

X3 = SldVaxz 

X4 = Sld/TnmkaxY 

Xs = Tnmk/Thigh qxy 

X6 = Legsaxz

2. A stepwise regression model for predicting the distance jumped was derived 

The equation for predicting the distance junqped, with variables arranged in the order of 

their importance to the prediction, was:

Y = 75.5741 - .1334X, - .229@X% + .6781Xs + .2165X4

where:

Y = Dependent variable (Distance)

Xi = Sld/TrunkaxY 

X: = Sld/Leg o xy  

Xa = ZhVdocityH 

X4 = SldVaxz

?

I t
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Structure of the Ammiy Selected Variables

1. Three Actors were extracted from the 13 variables, to explain 75.2% of the 

variance in the sample of 40 junqters at 55 meters.

2. Factor 1 included strong Actor loadings for the varAbles distance junq>ed (+), 

sld and direction of flight angle (+), sld angle (XZ plane) (+), vertical dispAcement of the 

center of mass (+), flight angle (-) and the ski and trunk angle (-).

3. Factor 2 included strong loadings for the horizontal and resultant velocities (-), 

the vertical velocity (+) and trunk and direction variable (+).

4. Factor 3 included strong loadings of the leg and direction of flight (+), the ski 

and leg angA (+), and the trunk and thigh angle (-).

Preparation for Landing 

ReAtinndiip between «elected variables and distance faimped

The fottowing mdependent variables significantly correAted with distance junqped 

for the sample of 40 jumpers, at 12 frames prior to landing;

1. The vertical velocity of the center of mass (Velocityv) (strong).

2. The flight angA (Flight a) (moderate).

3. The sld and trunk angA (Sld/Trunk axv) (weak).

4. The trunk and th i^  angA (Trunk/Thi^ axv) (weak).

The foUowmg mdependent varAbles significantly correAted with distance jumped 

for the sampA of 21 jumpers, at 12 frames prior to Andmg:

1. The vertical dispAcement of the center of mass firom the Andmg hill (Displ 

C/m) (weak).
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Prediction of the Dependent Vambie

1. The full multipk regression equation for predicting the distance jumped from 

the entire sanqde of 40 jumpers, 12 fimnes prior to landing, with the variables arranged in 

the order of their inqportance was:

Y = 54.6983 - 3.6103X# + 1.4070X2 + .0857X3 + .0243X4 - .0076Xs

+ .OI31Xé

where:

Y '  = Dependent variabte (distance junqped)

Xi = Velocityv 

X2 = F li^t a  

Xa = Sld/Trunk a  XY 

X4 -  Trunk/lhigh a  XY 

Xs = Armaxz 

Xfi = Sld/Leg a  XY

2. A stepwise regression model frpr predictmg the distance jumped was derived. 

The equation for predicting the distance jumped, with variables arranged in the order of 

their importance to the prediction, was:

Y *  -54.0320 - 3.6512Xt + 1.4180Xi + .1207X3

where:

Y = Dependent variable (Distance)
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Xi = Velocityv

Xi = Flight o

Xs = Sld/TiunkaxY 

Strocture of the Rehtirniships Amrnig Selected Variables

1. The Actor analysis extracted three Actors from the 8 variables included in the 

anafysis, to ep^lain 74.7% of the variance in the sample of 40 jumpers, 12 frames prior to 

landing.

2. Factor 1, included strong loadings for the length of jump (Distance) (+), flight 

angle (Flight a) (+), and vertical velocity (Velocityv) (-).

3. Factor 2 included strong loadings frpr the right knee angle (+), the trunk and 

thigh angle (+), and the diange in horizontal velocity (-).

4. Factor 3 included strong loadings for the right arm angle (+), and the sld and 

trunk angle (-).

Conclusions

1. Athletes ̂ o  achieved the longest jumps dispAyed a greater vertical 

dispAcement of the center of mass throughout the anafyzed phases than thefr less 

successfiil competitors. ThA was thought to be the resuh of the multitude of kinematic 

Actors leading up to each analyzed phase of flight.

2. hfid-fli^t- The results of both the r^ression anafysA and the Actor anafysA 

performed on the variables at 35 meters of fli^ t suggest that mspdmizhig the distance 

jumped should involve (a) a small flight angle, (b) mmimal deceleration of the horizontal 

velocity, (c) a greater vertical dispAcement of the center of mass, (d) assuming a flight
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position with s small angle between the sld and leg, (e) increasing the angle between the 

"V" angle of the slds, (f) a small angle between the trunk and sld, (g) a greater trunk and 

thigh angle, (h) a small angle between the body segments and the direction of flight and,

(i) a large angle between the slds and the direction of flight.

3. Preparation for Landing - The results of both the regression analysis and Actor 

anafysis performed 12 frames prior to landing suggest that the best jumpers diqiAyed a) a 

greater negative vertical velocity, b) a steeper flight angle, c) a more open trunk and thigh 

angle, d) a more open sld and trunk angle, e) a more straight angle of the knee, f) a closer 

arm position rebtive to the trunk, and g) a decrease in horizontal velocity.

4. The Actor analysis provided a way of sinqplifying the interpretation of the 

complex correbtions between the variables by grouping varAbles mto mtercorrebted or 

associated Actors. ThA method of statistical anafysA A seen to be valuable m presentmg 

important findmgs to coaches and athletes m a practical format. Three Actors were 

extracted from the varAbles for each of the mid-flight and preparation for landmg 

anafyses. The three Actors accounted for 75.2 and 74.7 percent of the sanqple variance m 

each phase reqiectrvefy. Application of the Actor analysA findmgs m the practical settmg 

may be done through the mterpretation of Actors and the coneqiondmg loadmgs 

(minimized or maximized) of pacific variables. Coaches will be able to mterpret Actors 

wAich represent qpedfic traits that may be developed by the athletes.

5. The performance of the fli^ t phase was seen to be dependent on the kmematic 

characteristics dispAyed both during and leadmg up to each anafyzed phase. The weather
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conditions, including wind and snow conditions, had an effect on all of the measured 

variahks and played a large role in the overall success of the jumps.

6. Despite less than ideal conditions for jumping, the general flight tmdencies 

reported in previous studies were confirmed.

Recommendations

The following recommendations are offered for future research:

1 The complete flight phase of sld junking should be studied, from the end of the 

take-off to the landing, with phases defined on the percentage of total distance jumped.

2. It A recommended that a thorough examination of the sld jump phases be 

performed m three dimensions in order to confirm the communality values observed by 

Vaverka et aL (1995) and the results of the present analysA.

3. The resuhs of the present study should be confirmed on a K90 and/or K120 

meter hill under normal weather conditions.

4. The varAble change m horizontal velocity A hypothesized to be mcreased by 

the best jumpers under ideal conditions. The optimization ofthA eflkct may be of benefit 

to the distance jumped and warrants fiirther study.
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Table 15

Mean Peifonnance Measures

hfid-flight Anafysis For AH Variables (N=40)

Variable Mean Sld Dev Min. Max. N Label
DISTANCE 70.26 4.53 62.0 78.5 40 DûtanoeJumned
VelocitvbL *7.03 .48 85.85 88.13 40 Inrun Velocity
A  Velocity 1.91 1.88 •1.107 7273 40 Change in Her. Velocity 50m-60m
Trunk/Thigh axv 50 162.54 9.25 143.440 187.967 40 Trunk and Thigh Angle 50m
Tfunk/Tiiiab axv 55 160.74 12.53 118.156 176.213 40 Trunk and Thigh Angle 55m
Tnmk/Thiab axv 60 146.76 29.56 56.353 176.783 40 Trunk and Thigh Angle 60m
Sld/Legaxv50 24.08 8.15 10.434 44.554 40 Sld and Leg Angle at 50m
Ski/Lea a  XV 55 27.07 7.47 11.570 45.689 40 Sld and Leg Angle at 55m
Sld/Leaaxv60 33.15 8.35 17.800 50.781 40 Ski and L% Angle at 60m
Sld/rniiikaxv50 15.52 5.94 4.603 24.788 40 Ski and Trunk Angle 50m
Sld/Trunk axv  55 18.63 6.93 4.988 31.475 40 Ski and Trunk Angle 55m
Sld/Trunk axv  60 23.84 8.31 7.585 41.012 40 Ski and Trunk Angle 60m
SldV axz50 21.41 6.47 5.746 36.279 40 Ski and Ski Angle at 50m
S ld V a« 5 5 19.73 6.38 6.132 34.140 40 Ski and Ski Angle at 55m
SkiV axz60 15.25 6.94 .923 26.729 40 Ski and Sld Angle at 60m
Leataxz50 12.95 7.10 .881 37.898 40 Leg and Leg Angles at 50m
L e»axz55 12.07 8.73 •3.839 39.989 40 Leg and Leg Angle at 55m
Leasaxz60 12.24 9.08 .927 46.665 40 Leg and Leg Angle 60m
Arm axz 50 17.05 5.15 8.0340 28.9680 40 Right Arm Angle at 50m
Arm axz 55 19.84 8.71 .8086 522130 40 Right Arm Angle at 55m
A rm a» 6 0 34.32 26.60 4.637 128.710 40 Right Arm Angle at 60m
Ski/Dir a  XV 50 36.27 5.93 20.135 44247 40 Ski and Direction of Flight 50m
Sld/Diraxv5S 33.10 6.28 13.217 43.051 40 Ski and Direction of Flight 55m
Ski/Dir a  XV 60 29.21 7.40 12.506 41.681 40 Ski and Direction of Flight 60m
Lea/Dir a  XV 50 63.54 6.54 52.390 78.960 40 Legend Direction of Flight 50m
Lea/Diraxv55 64.54 7.75 49.178 80.134 40 Leg and Direction of Flight 55m
Lea/D iraxv60 73.03 14.16 53.363 113.00 40 Leg and Direction of Flight 60m
Trunk/Dir a  XV 50 51.47 5.08 42.278 61.418 40 Trunk and Direction of Flight 50m
Trunk/Dir a  XV 55 51.40 4.68 41.518 62.431 40 Trunk and Direction of Flight 55m
Trunk/Dir a  XV 60 52.97 5.66 40263 61.034 40 Trunk and Direction of Flight 60m
Velocityit50 19.71 1.85 14.383 22.204 40 Horiaontal Velocity at 50m
Veloci*%,55 21.29 .74 19.888 23.114 40 Horizontal Velocity at 55m
Vdocityn60 21.62 .66 20.050 22.883 40 Horizontal V eloei^at 60m
Fliahta50 •35.49 1.11 •38.948 •33.870 40 Direction of Flight Angle 50m
PU gka55 -3620 .71 •37.980 •34.779 40 Direction of Flight Angle 55m
FUahtaOO •37.93 .87 •41.012 •36254 40 Direction of Flight Angle 60m
D inl.C /M 50 1.65 .34 .931 2274 40 Vertical Diadacement of C/M 50m
Dinl.CyM 55 1.44 .41 •073 2.229 40
D W .O M 60 1.21 .33 653 1.979 40 Vertical Diariaoement of C/M 60m
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Table 16

Mean Performance Measures

AÆd-ffight Anafysis For All Variables (N=2S)

Variable Mean Sld Dev Min. Max. N Label
DISTANCE 73.14 2.76 69.0 78.5 25 Distance Jumped
VelocitVK 87.17 .43 86.40 88.13 25 Inrun Velocity
A  Velodtwi 1.93 1.78 -.386 7.273 25 Change in Her. Velocity 50m-60m
Tnmk/Thiab «xv 50 163.25 7.67 143.900 177.923 25 Trunk and Thigh Angle 50m
Tnmk/Thigh axv 55 165.96 6.31 153.077 176.213 25 Trunk and Thigh Angle 55m
Tnmk/Thiah axv 60 162.90 8.91 141.775 176.783 25 Trunk and Thigh Angle 60m
Sld/Legaxv50 23.47 7.37 10.434 39.674 25 Ski and Leg Angle at 50m
Sld/Legaxv55 26.44 7.31 13.819 44.953 25 Ski and Leg Angle at 55m
Ski/Legaxv60 30.42 7.34 17.936 47.454 25 Sld and Leg Angle at 60m
Ski/Trunk a  XV 50 13.68 5.72 4.603 24.788 25 Ski and Trunk Angle 50m
Ski/Tnmkaxv55 16.22 6.48 4.988 26.185 25 Ski and Trunk Angle 55m
Ski/Tnmkaxv60 21.30 7.60 7.585 34.207 25 Ski and Trunk Angle 60m
SldV axz50 22.46 5.23 12.803 35.149 25 Sld and Ski Angle at 50m
S ldV axz55 20.76 4.90 9.534 30.911 25 Ski and Ski Angle at 55m
SldV axz60 18.35 5.69 6.451 26.729 25 Ski and Ski Angle at 60m
Legsaxz50 13.00 7.98 .881 37.898 25 Leg and Leg Angles at 50m
Legpaxz55 13.92 9.22 1.325 39.989 25 Leg and Leg Angle at 55m
Legsaxz60 13.16 1020 2.406 46.665 25 L% and Leg Angle 60m
A nnaxz50 16.31 5.65 8.034 28.968 25 Right Arm Angle at 50m
A nnaxz55 18.66 6.84 10.346 40.428 25 Right Arm Angle at 55m
A nnaxz60 23.80 14.48 4.637 65.805 25 Right Arm Angle at 60m
Ski/Dir a  XV 50 37.43 4.93 25.445 44.347 25 Ski andDirecdon of Flight 50m
Ski/D iraxv55 35.16 5.06 23.885 43.051 25 Ski and Direction of Flight 55m
Ski/D iraxv60 32.82 5.38 22.000 41.681 25 Sld and Direction of Flight 60m
Leg/DiraxvSO 63.46 6.46 53.908 78.960 25 Leg and Direction of Flight 50m
Leg/Diraxv55 62.92 6.76 51.288 78.901 25 Leg and Direction of Flight 55m
Leg/Diraxv60 66.41 7.53 53.363 83.435 25 Leg and Direction of Flight 60m
Tnm k/Diraxv50 50.78 4.44 43.515 61.167 25 Trunk and Direction of Flight 50m
Tnm k/Diraxv55 51.07 4.63 41.518 62.431 25 Trunk and Direction of Flight 55m
Trunk/Dir a  XV 60 53.68 4.68 44.573 61.034 25 Trunk and Direction of Flight 60m
VelocitVH50 19.70 1.83 14.701 22.204 25 Horizontal Velocity at 50m
Velocityta55 21.39 .77 19.888 23.114 25 Horizontal Velocity at 55m
Velocity, 60 21.63 .54 20.860 22.705 25 Horizontal Velocity at 60m
F lighta50 3524 1.07 33.870 37.655 25 Direction of Flight Angle 50m
Flight a  55 35.90 .64 34.779 36.978 25 Direction of Flight Angle 55m
Flight a  60 37.59 68 36254 38.775 25 Direction of Flight Angle 60m
Dianl.C/M50 1.83 25 1.409 2.274 25 Vertical Displacement of C/M 50m
Diasl.C/M 55 1.66 23 1.191 2.229 25 Vertical Displacement of C/M 55m
Dimi.C/M 60 1.40 24 1.011 1.979 25 Vertical Displacement of C/M 60m
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Table 17

Mean Peifonnance Measures

Preparation For Landmg Anafysis For All Variables (N=40)

Variable Mean Sld Dev Min. Max. N Label
A  VelodtyH .62 .87 -.875 2.532 40 Change In Horizontal Vel. 12 - land
DISTANCE 69.75 4.61 60.5 78.5 40 Distance Jumped
Flight a  12 -39.17 .92 -40.713 •37.332 40 Direction of Flight Angle 12 Back
F lighta6 -40.13 1.17 -42.675 •38.056 40 Flight Direction Angle 6 Back
VelodtyH 12 21.62 .78 19.963 23.953 40 Horizontal Velodty 12 Back
VelodtyH 6 21.63 .82 19.920 23.265 40 Horizontal Velodty 6 Back
Knee axv 12 111.57 11.96 93.238 136.340 40 Right Knee Angle 12 Back
K neeaxv6 112.48 11.66 81.140 135.10 40 Right Knee Angle 6 Back
Legaoxz 12 11.39 8.82 -3.209 30.011 40 Leg and Leg Angle 12 Back
Legsaxz6 16.68 15.40 -14.76 64.854 40 Leg and Leg Angle 6 Back
Arm axz 12 55.17 27.74 21.206 139.643 40 Right Arm Angle 12 Back
A rm axz6 88.49 140.56 21.428 939.000 40 Right Arm Angle 6 Back
Ski/Legaxv 12 39.12 8.71 22.495 61.976 40 Sld and Leg Angle 12 Back
Ski/Legaxv6 49.18 10.76 20.563 71.732 40 Ski and Leg Angle 6 Back
Sld V ax z l2 9.77 5.56 355 24.233 40 Sld and Sld Angle 12 Back
S ldV axz6 6.31 4.57 •5.816 13.008 40 Sld and Ski Angle 6 Back
Sld/Trunk a  XV 12 32.35 8.46 9.434 45.590 40 Ski and Trunk Angle 12 Back
Ski/Trunk a  XV 6 38.04 10.24 15.937 57.723 40 Ski and Trunk Angle 6 Back
Trunk/Thigh axv 12 124.12 14.68 79.177 149.314 40 Trunk and Thigh Angle 12 Back
Trunk/Thigh axv 6 101.34 15.82 55.642 134.416 40 Trunk and Thigh Angle 6 Bade
Velodtyv 12 -17.62 .72 •19.135 •16.200 40 Vertical Velocity 12 Back
Velfldtyv6 -18.24 .70 •19.888 •16.866 40 Vertical Velodty 6 Back
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Table 18

Mean Perfonnance Measures

Preparation For Landing Analysis For AH Variables (N=21)

Variable Mean StdDev Min. Max. N Label
A  VelocitVH .57 .95 •875 2.532 21 Change In Horizontal Vel. 12 - land
DISTANCE 73.43 2.37 70.0 78.5 21 Distance Jumped
Flight a  12 39.60 .78 38.216 40.713 21 Direction of Flight Angle 12 Back
Flight a  6 40.56 1.13 38.444 42.675 21 Flight Direction Angle 6 Bade
VelodtVH 12 21.84 .80 20.514 23.953 21 Horizontal Velocity 12 Back
VelocitVrnO 21.71 .73 20.375 22.935 21 Horizontal Velocity 6 Back
Kneeaxv 12 131.34 10.29 117.411 154.222 21 Right Knee Angle 12 Back
KneeaxvO 114.02 12.27 93.4469 135.108 21 Right Knee Angle 6 Back
Legsaxz 12 10.65 9.57 -3.209 30.011 21 Leg and Leg Angle 12 Back
LegSttxzO 16.76 18.82 •14.764 64.854 21 Leg and Leg Angle 6 Back
Armaxz 12 52.30 22.86 23.460 118.074 21 Right Arm Angle 12 Back
A rm axz6 109.42 33.36 29.561 139.000 21 Right Arm Angle 6 Back
Sld/Legaxvl2 39.25 9.63 26.072 61.976 21 Sld and Leg Angle 12 Back
Ski/LegaxY6 50.78 12.20 20.563 71.732 21 Ski and Leg Angle 6 Back
S kiV axzl2 9.51 6.37 355 24.233 21 Ski and Ski Angle 12 Back
SkiVaxz6 5.90 4.86 •5.447 13.008 21 Ski and Ski Angle 6 Back
Ski/Tninkaxv 12 35.23 8.66 9.434 45.590 21 Ski and Trunk Angle 12 Back
Ski/TrunkaxvO 42.39 9.62 18.439 57.723 21 Ski and Trunk Angle 6 Back
Tnmk/Thigh axv 12 127.32 11.60 107.510 149.314 21 Trunk and Thigh Angle 12 Back
Trunk/Thigh axv 6 105.64 12.36 85.280 134.416 21 Trunk and Thigh Angle 6 Bade
Distil. CVM 12 4.13 .13 3.924 4.310 21 Vertical Displacement 12 Back
Disel.C/M6 2.29 .11 2.117 2.481 21 Vertical Displacement 6 Back
Velocityv 12 •18.06 .50 •19.135 •17.080 21 Vertical Velodty 12 Back
Velocityv 6 •18.58 .63 •19.888 •17.678 21 Vertical Velodty 6 Back
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