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ABSTRACT

To date, there have been no previous reports in the literature on DNA extraction or 

analysis of ancient human hair. The hair shaft has an extraordinarily stable structure that 

enables it to remain unchanged for centuries and persist in the archaeological record. Hair 

shafts, in theory, should provide one of the best archives of mitochondrial DNA, since 

hair is well protected by the cuticle layer (anhydrotic) and is not subject to postmortem 

DNA destroying autolytic enzymes. In this thesis, the latest extraction and purification 

methodologies were tested on modem human and ancient Egyptian hair shafts. In 

addition, closer attention was paid to the structural components of hair, particularly 

keratin. PGR amplification of DNA retrieved from the ancient Egyptian hair shafts was 

limited in success. PCR inhibitors that co-purified with DNA extracted from the ancient 

hair shafts contributed to PCR failure. A variety of analytical techniques were used to 

identify the presence of PCR inhibitors present in the DNA extracts including Gas- 

chromatography-Mass spectrometry (GC-MS), Secondary Ion Mass Spectrometry 

(SIMS), Raman Spectrometry and Induced Coupled Plasma (ICP) Spectrometry. Real­

time PCR proved to be pivotal in the analysis of DNA from ancient Egyptian hair shafts. 

The preliminary Real-time PCR results indicate that mtDNA is present in low yet 

analyzable levels in ancient human hair shafts from two Kellis burials (K2 124, G 10-3). 

The use of Real-time PCR with the Gilbert et al (2004) method holds the greatest 

potential for future ancient DNA research.
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INTRODUCTION 

PART I.

Statement o f Problem

In recent years there has been much debate on the survivability of ancient DNA in human 

tissues from ancient Egypt, with Marota et al (2002) and Gilbert et al (2005) arguing 

‘against’ and Zink and Nerlich (2003) arguing ‘for’ its preservation. The latter cite 

successful molecular studies that followed the stringent protocols necessary to 

authenticate the presence of ancient DNA (Paabo et al, 2004). Recent publications on 

mitochondrial DNA (mtDNA) extracted from human skeletal remains from the Dakhleh 

Oasis, Egypt (Graver et al, 2001; Parr, 2002; Molto, 2002), have supported the arguments 

of Zink and Nerlich (2003), although the results have been sporadic and often not 

verifiable. The interpretations are necessarily provisional because of this. A recent 

investigation of molecular sexing methods using skeletal remains from ancient Dakhleh 

has also shown that obtaining interpretable nuclear DNA in the ancient Egyptian material 

is problematic, though the extracts seem to contain authentic ancient human DNA 

(Hildebrandt, 2003). A number of recommendations have followed from these studies 

including the use of alternative tissue samples (Hildebrandt, 2003) since, to date, the 

Dakhleh research has primarily used bone samples because of their abundance and 

excellent histological preservation (Graver et al, 2001 ; Parr, 2002).

Following the latter recommendation, this thesis tests the efficacy of obtaining 

interpretable ancient mtDNA from human hair shafts from the late Roman Period sample 

from Kellis 2, Dakhleh, Egypt, using multiple experimental methodologies. Hair remains
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are abundant in this sample (Molto, 2002) and, as noted, many of the burials have already 

yielded provisional mtDNA results from bone (Graver et al, 2001; Parr, 2002). The 

hypothesis investigated in this thesis is that hair should be a better archive of ancient 

mtDNA than bone and dentin and soft tissues. This hypothesis derives from fundamental 

aspects of hair biology. First, since the hair shaft is outside the body it theoretically is not 

impacted by the perimortem apoptosis (i.e. autolytic enzyme lysis) experienced by living 

tissues, like bone and dentin. Secondly, the hair shaft is nonliving, avascular and 

protected against moisture (anhydrotic) and other environmental DNA destroying agents 

by its cuticle layer, while the mtDNA is bound and thus protected by the keratin found in 

the cortex of the hair shaft. Part of the research design involves the use of the enzyme 

keratinase to determine if  the yields of mtDNA can be increased. Currently, there are four 

main DNA hair extraction protocols available and these are tested herein in conjunction 

with this new enzyme methodology.

To date, no ancient (=non-historical) human DNA research has utilized hair, in 

part because hair is not commonly found in most mortuary samples. However, in a recent 

study by Bonnichsen et al (2001), mtDNA was successfully extracted and amplified from 

hair in a big horn sheep dated at 9800 years B.P. In another study by Gilbert et al (2004) 

DNA was extracted from the hair of a bison dated at 64,800 years B.P. These studies and 

the fact that hair is a common source of evidentiary DNA in active and cold forensic 

cases (Wilson et al, 2001) supports the possibility that ancient Dakhleh hair remains 

should yield interpretable DNA results.

The thesis is organized as follows. Part II provides a detailed description of the 

basics of hair biology that is fundamental to the hypothesis. Parts 111 and IV respectively
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provide a historical overview and description of the methodologies used in DNA research 

in hair. Part V describes the material and methods (research design). Parts VI and VII 

provide the results and interpretation respectively, followed by conclusions and 

recommendations arising from the research (Part VIII).
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PART II.

The Human Hair Shaft:

A POTENTIAL ANCIENT ARCHIVE OF GENETIC INFORMATION 

As noted, an understanding of hair shaft biology is a necessary first step in developing 

appropriate DNA extraction methodologies. Even forensic laboratories recommend 

microscopic examination of hairs prior to DNA testing (Linch et al, 2001)

Hair Shaft Development 

Hair is a complex biological structure that consists of both living and dead tissue, the hair 

follicle and the hair shaft, respectively. The hair follicle is located deep within the scalp, 

extending from the epidermis into the dermis. The hair shaft is an appendage that begins 

within the hair follicle. The average number of hair follicles present in human scalp is 

approximately 100,000 (Gray et al, 1997). This number is permanently established by 20 

weeks gestation (Olsen et al, 1995). Each hair follicle is capable of self-regeneration, 

and may grow up to approximately 30 new hair shafts in an individual’s lifetime (Linch 

et al, 2001).

The hair shaft is produced by mitotic activity within the hair bulb matrix that is 

directed by the dermal papilla (Figure 1). Pre-germinal cells within the hair bulb matrix 

differentiate into three types of cells, medullary, cortical and cuticular that each will 

migrate distally towards the epidermis. As the cortical cells migrate, they engulf the 

dendritic processes of melanocytes that contain melanin and mitochondria. Melanocytes 

are differentiated cells that exist alongside the pre-germinal cells within the hair bulb 

matrix. The main function of melanocytes is to produce melanin, pigment grains that
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provide hair with its colouring. It is hypothesized that this event occurs because directly 

after cell differentiation cortical cells require a multitude of mitochondria (energy) to 

facilitate intense protein production (Linch et al, 2001). During their migration, the 

cuticle, cortical and medullary cells undergo the processes of dehydration and 

keratinization, and finally arrange into concentric layers emerging through the epidermis 

as the definitive hair shaft (Powell, 2002).

Mature hair

4

Medulla I
ICuticle cells

Cortical cells

Bulb matrix

Dermal papilla

Figure 1. The histological structure of the human hair. Modified from ‘Forensic 
Examination of Hair’ edited by James Robertson, 1999.
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The Mature Hair Shaft 

The human hair shaft possesses three structural components, the cuticle, the cortex and 

the medulla. The cuticle consists o f flat overlapping cells that cover and surround the 

entire hair shaft. The cortex forms the bulk of the shaft and contains pigment granules 

that determine the colour of hair. The medulla is centrally located within most hair 

shafts and consists of loosely packed disintegrating cells (Robertson, 1999). The cell 

membrane complex (CMC) is a natural adhesive that binds the cells that form the 

structural components together. (Robbins, 2002).

Approximately 80% of the hair shaft is comprised of keratin. Keratin is an 

insoluble protein present at high levels in hair, feathers, scales and the stratum comeum. 

Cells of the cortex and cuticle are composed almost entirely of keratin fibrils embedded 

in an amorphous matrix of cellular debris. (Wittig, 1982; Olsen, 1995). Unlike cortical or 

cuticular cells, medullary cells contain a minimal amount of structural protein. Keratin’s 

supercoiled alpha-helical structure and intermolecular disulfide bonds provides the hair 

shaft with its strength and resiliency (Wittig, 1982).

The Hair Growth Cycle 

The hair growth cycle consists of three stages (1) anagen phase (growth phase) (2) 

catagen phase (intermediate phase) and, (3) telogen phase (shedding phase). The stages 

of hair growth are primarily controlled by the influence of androgens (Jolies et al, 1997). 

The first phase of the hair growth cycle, the anagen phase, is characterized by high 

mitotic activity within the hair bulb matrix. During this phase, the hair shaft grows at a
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rate of approximately 1cm per month (Gray et al, 1997). Mitotic activity within the hair 

bulb slows down significantly during the catagen phase. During the catagen phase, the 

hair bulb matrix begins to shrink and undergo apoptosis. In the telogen phase, hair 

growth terminates and the hair is eventually shed. As the telogen hair reaches maturity, a 

new anagen phase hair begins to grow beneath, pushing the telogen hair out, ultimately 

replacing it once it has been shed and thus ending the growth cycle (Jolies et al, 1997). 

Typically, at a given time approximately 10% of scalp hairs are in the telogen or 

shedding phase (Gray et al, 1997). An individual typically sheds 100 to 150 scalp hairs 

per day (Powell et al, 2002). Consequently, hair shafts are often valuable sources of 

biological evidence found during crime scene investigations.

DNA and the Hair Shaft 

There are two types of DNA found within hair, nuclear DNA and mitochondrial DNA 

(mtDNA). Hairs with roots or adhering follicular tissue contain both nuclear DNA and 

mtDNA. Shed hairs contain a very minimal amount of nuclear DNA that is highly 

degraded and typically less than lOObp in size (Matsuda et al, 1997). The nucleus and its 

genome are degraded during keratinization. Conversely, the mitochondria and its genome 

are able to survive the keratinization process due to the protective nature of this 

organelle’s membrane. Mitochondria can commonly be visualized amongst the keratin 

fibres within the cortical cells in the mature hair shaft (Linch et al, 2001).

Mitochondrial DNA is also more likely to be found within the hair shaft than 

nuclear DNA due to its multi-copy nature. MtDNA is present in as many of 1000 copies 

per cell whereas nuclear DNA is only available in single copy. Consequently, mtDNA is 

a much more suitable candidate for genetic analysis of fragmented and/or shed hairs.
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The mitochondrial genome is circular in nature, maternally inherited (Hutchinson et al, 

1974) and significantly smaller in size (16,569bp, Anderson et al, 1981) than the nuclear 

genome (Figure 2). The non-coding (control) region of the mtDNA genome is highly 

polymorphic with a mutation rate 5 to 10 times higher than the nuclear genome 

(Greenberg et al, 1983). Analysis of the non-coding region is useful in forensics for 

individuation purposes if a sample from a maternal relative is available for comparison 

and is also valuable in the study of past populations providing information on familial 

relationships and ethnicity.

A condition known as heteroplasmy is known to occasionally exist in hair shafts 

(Budowle et al, 2003). Heteroplasmy is a condition wherein a tissue contains more than 

one population of mitochondria. It is hypothesized that heteroplasmy may exist within the 

hair shaft as a result of one population of mitochondria originating from the bulb matrix 

and another originating from the melanocytes (Linch et al, 2001). Because of the 

developmental nature of hair, heteroplasmy is hypothesized to be more common in hair 

than any other tissue although it is still uncommon.
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Figure 2. The mitochondrial genome

Hair Survival in the Archaeological Record 

The hair shaft has an extraordinarily stable structure that enables it to remain 

unchanged for centuries and persist in the archaeological record (Massa et al, 1980; 

Lubec et al, 1987; Powell et al, 2002). As an example, X-ray deftaction of a hair 

specimen from China nearly two millennia old revealed that the alpha-helical content was 

almost intact (Robbins et al, 2002). However, hair shaft survival in the archaeological 

record is greatly dependent on its surrounding environment. Hair is most likely to 

survive in hot and arid environmental conditions (e.g. Egypt, American Southwest). A 

burial microenvironment that is anoxic and rich in metal ions will also increase the 

likelihood of hair survival by retarding the growth of microorganisms (Bonnichsen et al, 

2001).
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The main constituent of the hair shaft, cysteine-rich keratin, provides hair with its 

resistance to degradative forces (e.g. water, UV radiation). Cysteine forms extremely 

stable disulphide cross-connections that provides hair with its structural resiliency 

(Wilson et al, 2000). However, if  keratinolytic microorganisms and insects (e.g. fungi, 

beetles) are present in the microenvironment, they may alter and/or damage the hair shaft 

(Haglund et al, 1997). Fungi are ubiquitous in the environment and have the ability to 

damage hair. Fungal hyphae can penetrate the cuticle and tunnel through the hair shaft 

compromising the internal structure of the hair shaft. A histologically well-preserved 

cuticle does not preclude that the internal hair shaft structure has not suffered damage 

(Wilson et al, 2000).

The integrity of the hair shaft can also be affected by pre- and postmortem 

cultural practices, such as cosmetic treatment and mummification, respectively. These 

cultural practices may result in the disruption of the internal chemistry of the hair shaft 

(Lubec et al, 1997).

The Hair Shaft: An excellent archive o f ancient DNA?

Hair found in the archaeological record and in forensic contexts could be valuable 

archives of DNA. DNA survival has been reported in bison hair that is approximately 64 

800 years old (Gilbert et al, 2004). This date coincides with the oldest DNA retrieved 

from bone, teeth or soft tissue. Conditions within the hair shaft are quite favorable for 

DNA preservation. Due to the structure of the hair shaft, DNA is inherently protected 

from hydrolysis and autolysis. Hydrolysis is a major cause of DNA damage in ancient 

specimens. Hair cells are essentially dehydrated, thus DNA within hair escapes internal 

hydrolytic damage (e.g. cleavage of phosphodiester bonds and/or base linkages) (Gilbert

10
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et al 2004, Haglund et al 1997). DNA within hair is protected from damage induced by 

exogenous water due to its hydrophobic protein structure. The hair shaft is avascular, 

thus, it is also not subject to the apoptotic damaging effects of post-mortem autolytic 

enzymes that most other DNA archives (e.g. bone, soft tissue) encounter.

Shortly after death, microorganisms proliferate and decompose bodily tissue. 

However, the cuticle acts as a barrier to protect DNA within the hair shaft from microbial 

digestion. If DNA is protected during the initial onslaught of biological and 

environmental activity immediately after death, it has the potential to exist indefinitely. 

There are several benefits for using hair as a preferred source of ancient DNA. Modem 

DNA contamination is a great challenge faced in the realm of ancient DNA studies. 

However because of the resilient hydrophobic structure of the cuticle that is in part due to 

the protein keratin, the hair shaft can be easily decontaminated of exogenous DNA 

sources. On the contrary, bone and soft tissue are not easily decontaminated due to their 

porous stracture. Another added benefit of using hair shafts instead of other tissue types 

for mtDNA analysis is that hair contains minimal nuclear DNA. Consequently, the risk 

of unintentionally amplifying nuclear copies of mitochondrial genes is insignificant 

(Gilbert et al, 2004). An obvious benefit of using hair as a choice source of ancient DNA 

(i.e. instead of bone, teeth or soft tissue) is that it can easily be sampled and reduces the 

potential destruction of precious archaeological specimens.

Nonetheless, like other sources of DNA, hair is an excellent ion exchange system. 

Metallic ions and organic contaminants can absorb into hair from the burial 

microenvironment (Robbins et al, 2002). Contaminants present in the hair shaft can 

potentially make DNA analysis challenging. Organic and inorganic contaminants present

11
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within the hair shaft can cause PCR inhibition and impact the genetic information that 

exists within the hair shaft (Wilson et al, 2000).

12
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PART III.

A Historical Overview o f the Extraction o f  DNA from Hair Shafts

Over the past two decades, a variety of methods and technologies have been successfully 

used to extract mtDNA from hair shafts (e.g, Scheiber et al 1988, Kable et al 1988, 

Higuchi et al 1988, Yoshii et al 1992, Wilson et al 1995, Vigilant 1999, Baker et al 2001, 

Hellmann 2001, Heywood et al 2003). Because of the continuing developmental status of 

these methodologies it is prudent to provide an historical overview and critique outlining 

the advantages and disadvantages of each extraction protocol. By so doing the theoretical 

foundation of this thesis will be established.

In the late 1980s three laboratories, independently established the presence of 

high molecular weight mtDNA in hair shafts (Scheiber et al 1988, Kalbe et al 1988 and 

Higuchi et al, 1988). Schreiber et al (1988) used the following extraction procedure: 

lyophilized hair was powderized using a micro-dismembrator (50 Hz) and subsequently 

incubated overnight in a phenol lysis buffer (sodium acetate, sodium dodecyl sulfate 

(SDS), ethylene-diamine-tetra-acetic acid (EDTA)). The extract was then treated with 

chloroform/isoamyl alcohol (25:1), and the DNA was recovered by precipitation with 

ethanol. Approximately 5 pg of high molecular weight DNA could be obtained from one 

hair shaft. However, the possibility that some of the isolated DNA was from skin flakes 

and/or dandruff on the hair surface could not be precluded. It has been previously 

reported that skin flakes and dandruff can exist in the lipid rich epidermal detritus 

(sebum). Kalbe et al (1988), digested hair shafts in an extraction buffer (EDTA, SDS, 

sodium chloride, Tris-HCl (pH 8.5)) with proteinase K and dithiothreitol (DTT). The 

extract was treated with phenol/chloroform and DNA was recovered by precipitation with

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ethanol. DNA yields from single hair shafts ranged from approximately 200pg to 20ng. 

Kalbe et al (1988) concluded that skin flakes adhered to the hair shaft may have obscured 

results. Higuchi et al (1988) isolated mitochondrial DNA (mtDNA) from only a 10cm 

single hair shaft. The hair shaft was digested in an extraction buffer (Tris-HCl, EDTA, 

NaCl) with proteinase K, DTT, and SDS. DNA was extracted with phenol-chloroform 

followed by «-butanol. The extract was purified using ultrafiltration (Centricon-30, 

Amicon). Polymerase chain reaction (PCR) was used to detect a 9bp deletion in the 

mtDNA control region. This deletion is indicative of Asian ancestry and the amplicon 

will be either l l l bp  or 120bp, depending on the presence or absence of the deletion. 

DNA yields from 10cm hair shafts were less than lOng. The root end of freshly plucked 

hairs yielded as much as 0.5p.g of DNA. These early studies pointed out a number of 

strengths and weaknesses involved in the DNA extraction process including the 

possibilities of intrinsic inhibitors.

Yoshii et al (1992) found that water soluble-melanins are inhibitors of DNA 

polymerase and DNAses. Short amplicons (331bp) from the mtDNA D loop were 

successfully amplified from single hair extracts. Size exclusion chromatography (SEC) 

columns removed water soluble melanins from the hair extracts. DNA extracts not 

purified using size exclusion chromatography columns resulted in PCR inhibition. The 

use of size exclusion chromatography is significant since melanin is abundant in hair. 

Though not stated by Yoshii et al (1992), white hairs should in theory provide higher 

yields of DNA than pigmented hairs in the absence of SEC, an hypothesis that is entirely 

testable by using white hairs and pigmented hairs from the same individual.

14
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Wilson et al (1995) developed a method for the extraction of mtDNA from hair 

shafts. This protocol, which is the standard for all forensic laboratories, involves physical 

crushing of a 2cm fragment of hair shaft using glass micro-tissue grinders. The ground 

shaft is incubated overnight in an extraction buffer (Tris-HCl (pH 8.0), EDTA) with 

proteinase K. Subsequently, the extract is treated with phenol chloroform isoamyl alcohol 

(25:24:1). The aqueous layer is then purified using microfiltration (Microcon-100, 

Millipore). Two small regions of the control region of the mitochondrial genome. 

Hypervariable Regions I (16024-16365) and II (73-340), were successfully amplified and 

analyzed. Clearly, Wilson et al (1995) were influenced by the previous methods although 

they did not incorporate SEC in their protocol.

Vigilant (1999) evaluated four techniques for their effectiveness for the isolation 

of DNA from naturally shed chimpanzee hairs. The 4 different isolation methods 

included (1) organic extraction subsequent to proteinase K digestion (Higuchi et al, 1988) 

(2) Qiagen tissue kit purification (protease digestion followed by DNA purification and 

isolation using a silica-gel based spin column) (3) Chelex ionic bead resin treatment with 

and without accompanying proteinase k digestion and (4) Proteinase K digestion in a 

PCR-compatible buffer. The most successful method was the simplest, proteinase K 

digestion without further purification. Though not stated, the implication of the latter is 

significant when dealing with degraded evidentiary or ancient DNA samples since the 

more steps involved carries with it the inherent problem of contamination risks.

Baker et al (2001) successfully retrieved mtDNA from hair shafts using a silica- 

based extraction method. Hair shafts were sampled from recently deceased individuals 

suffering from various stages of decomposition (drowned, burned, and putrefied). DNA
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was isolated from a 2cm segment of hair shaft. The hair shaft was ground and 

subsequently incubated in an extraction buffer (GuSCN, Tris-HCl, EDTA, Triton X-100). 

DNA was isolated from the crude extract using a GeneClean DNA Purification Kit. One 

microlitre of the 30|iL extract was sufficient for PCR amplification. Baker et al (2001) 

provided evidence that a silica-based approach may be a viable alternative to organic 

solvent methods.

Hellmann (2001) amplified short nuclear DNA short tandem repeat (STR) loci, 

(HUMFES, HUMTHOl, HUMTPOX) using 20mm of hair shaft. The hair was digested 

using an extraction buffer (Tris-HCl, NaCl, CaCb, SDS and DTT). The DNA was 

isolated using phenol/water/chloroform followed by purification with ultrafiltration 

(Microcon-100, Millipore). They reported that the substitution of CaCL for EDTA 

significantly increased the efficiency of hair digestion (enzymatic activity o f proteinase K  

is controlled by calcium). Evidence was provided that nuclear DNA does exist within 

the hair shaft, but due to the keratinization process it is highly fragmented. Only very 

small fragments less than 1 lObp in size can be amplified by PCR. Conventional STR loci 

employed by the F.B.I. for human identification range from 106bp to 350bp 

(mean=250bp) in size. Consequently, in forensic casework amplification of conventional 

STR loci from hair shaft extracts is unsuccessful with current protocols.

Pfieffer et al (1999) discovered that hair from different parts of the body (head, 

pubic, axillary) varies in terms of DNA recovery. DNA yields are highest in head hair 

shafts followed by pubic and axillary hair shafts, respectively. It was also reported that 

there was no correlation between DNA yields and gender.
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Heywood et al (2003) assessed the effects of various hair treatments on DNA 

levels within the hair shaft and reported that variation in DNA levels exist between 

different hairs from the same head. Freshly clipped hair shafts were digested in an 

extraction buffer (Tris-HCl, EDTA, NaCl, DTT, SDS) with proteinase K. The extract 

was then treated with phenol then chloroform followed by precipitation with ethanol. 

The DNA extract was further purified using Wizard DNA cleanup columns (Promega) to 

remove water soluble melanins. DNA yields for single hair shafts were more than 0.4 ng. 

The HLA-DQAl locus (241bp) was amplified by PCR from the DNA extract. It was 

reported that in hair that was treated with permanent colour or excessively washed, DNA 

levels were significantly reduced.

As noted in the introduction, there have been only two previously published 

reports on the extraction of DNA from ancient hair shafts. Bonnichsen et al (2001) 

demonstrated that ancient DNA (aDNA) could be recovered from sheep hair. Using the 

Wilson et al (1995) protocol, mtDNA was successfully extracted from Paleo-American 

(7800 B.C.) Bighorn sheep (Ovis canadensis) hair shafts. However, only a very small 

amount of DNA was recovered. Also, DNA fragments (116bp) of the cytochrome b gene 

were amplified by PCR for spéciation. This is the first authentication of the successful 

extraction of aDNA from hairs. The paper also notes the importance of the archaeological 

context of recovered remains. In 2004, Gilbert et al also reported successful extraction of 

DNA from ancient hair shafts. Small fragments (<234bp) of mtDNA were successfully 

amplified, cloned and sequenced from bison (Bos bison) and horse hair dating back to 

more than 65,000 years. Until very recently, there had been no published reports on the 

extraction of mtDNA from ancient or historical human hair. Gilbert et al (2004) reported
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to have successfully extracted mtDNA from human hair approximately three centuries 

old using a modified version of the Wilson et al (1995) protocol. The hair samples were 

digested for 24 hours in an extraction buffer (Tris Buffer, SDS, NaCl, DTT and N- 

phenylacylthiazolium bromide (PTB)) with proteinase K. After digestion, the DNA was 

extracted using phenol:chloroform and then concentrated by centrifugal dialysis 

(Millipore, UK). A small fragment (147bp) from HVI of the mitochondrial genome was 

successfully amplified, cloned and sequenced. This marks the first study that illustrates 

the great potential of hair as an archive of ancient human DNA.

A number of interesting methodological results were reported in an unpublished 

MSc thesis (2003) by Ms Arlene Lahti. She reported that non-pigmented hair shafts had 

lower DNA yields than pigmented hair shafts. She postulated that this could be a result 

o f the initial stage of the DNA extraction process. Grinding of the hair shaft is a critical 

preparatory step in the DNA extraction process. Because non-pigmented hair is difficult 

to visualize, it can be lost or insufficiently ground up during this step. Insufficient 

grinding of the hair may not fully release DNA bound in the hair shaft and may affect 

DNA yields. Poor DNA yields from non-pigmented hair may also be a result of solar 

degradation. Ultra Violet light has the ability to cross-link DNA making it unviable to 

PCR amplification and subsequent analysis (Riley, 1997). DNA in non-pigmented hair 

lacks the UV absorbent protection that melanin provides in pigmented hairs. This is of 

significance in forensic casework if  sample selection between pigmented or non- 

pigmented hair is an option.

The uneven distribution of DNA within the hair shaft has also been previously 

reported. DNA levels are higher in the root-end of the hair shaft (Higuchi et al 1988,
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Yoshii et al 1992, Heywood et al, 2003) than the tip-end of the shaft. Histologically, it is 

hypothesized that DNA resides within the cuticle of the shaft (Kalbe et al 1988, 

Heywood et al 2003), although, the cortex hypothetically should be the key area for the 

concentration of mtDNA. The cortex comprises the bulk of the hair shaft and it is 

protected by an external layer of resilient cuticular cells. To date there has been limited 

data published on the genesis of mtDNA in hair shafts, which is unfortunate since this 

could prove useful as our extraction methods mature.
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PART IV.

Traditional and Nan-Traditional DNA Isolation Methods and Technologies 

The choice of a method for DNA isolation from hair shafts depends on many factors 

including the physical characteristics of the source, required DNA quantity, degree of 

purity required for downstream applications (e.g. PCR), as well as cost and time 

limitations. DNA extraction protocols should be designed to minimize the potential for 

contamination with extraneous DNA. This can be achieved by reducing the number of 

steps or manipulations in a DNA isolation procedure. In order to be effective, methods 

for the extraction of DNA from hair shafts should focus on purifying small amounts of 

DNA while simultaneously removing potential PCR inhibitors.

The isolation of DNA from cellular organelles is a triparate process: (1) cell 

disruption (2) cell lysis and (3) deproteination. The initial step in the isolation of DNA 

from hair shafts is to dissociate the cuticular, cortical and medullary cells. The hair shaft 

can be disrupted by physical maceration using a microtissue grinder (mortar and pestle), 

or by chemical treatment using an extraction buffer. Extraction buffers can be used to 

disrupt the extracellular matrix and intercellular junctions adhering the cells. Cell 

adhesion is highly dependent on Câ "̂ . Consequently, extraction buffers typically contain 

a Câ "̂  chelating/binding agent such as EDTA. Detergents such as sodium dodecyl 

sulfate (SDS) and Tween are also common components of extraction buffers. Detergents 

assist in the solubilization of cellular membranes. Guanidinium thiocyanate can also be 

included in an extraction buffer or be used on its own to disrupt cellular membranes. DTT 

is a reagent occasionally used in extraction buffers specific for hair. It reduces the 

disulphide bonds which give hair its rigid structure. In recent years, N-
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Phenylacylthiazolium bromide (PTB), a proprietary organic compound, has recently been 

used in extraction buffers for DNA recovery from ancient specimens. PTB assists in the 

recovery of DNA from ancient materials by cleaving glucose-derived protein cross-links 

thereby releasing DNA trapped within sugar derived condensation products.

Traditional Methods and Technologies fo r  the Isolation o f DNA 

A  key step in DNA purification is protein removal. Deproteination can be accomplished 

using a variety of methods. Most common are the broad spectrum proteolytic enzymes 

namely, proteinase K and pronase. It should be noted that the lack of histones in mtDNA 

potentially means that deproteinization chemicals may, in fact, degrade the DNA.

Organic solvents can also isolate DNA from proteins and other cellular debris. 

Organic solvents such as Phenol chloroform isoamyl alcohol (24:25:1) are traditional 

ways of deproteinization. This process is more efficient when combining at least two 

organic solvents. Phenol dissociates proteins from DNA while chloroform denatures 

proteins and facilitates the separation of the aqueous and organic phases. Proteins and 

lipids will reside in the organic phase. Nucleic acids and other water soluble matter such 

as carbohydrates, will reside in the aqueous layer. Chloroform also acts to decrease the 

solubility of DNA in phenol thereby reducing losses to the organic phase. Isoamyl 

alcohol is combined with these two solvents to reduce foaming during the extraction 

process. However, methods involving organic solvents can result in poor DNA recovery 

and low quality DNA yields because they degrade the bonding units of the nucleotides. 

They require technical skill, and may not provide reproducible results. Also, DNA 

isolated using this methods may contain residual organic solvents, phenol and/or
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chloroform, which can inhibit downstream applications, particularly PCR. Finally, 

organic solvents are toxic and can be hazardous if  not handled properly.

Another traditional DNA isolation technique is ethanol precipitation. Precipitates 

form in the presence of monovalent cations such as ammonium acetate or sodium 

chloride. The negatively charged DNA reacts with the monovalent cations to form salts. 

The addition of ethanol causes the DNA to precipitate. This method is time consuming 

and may result in chemically damaged DNA. Residual ethanol, like organic solvents, 

may inhibit downstream applications such as PCR.

Non-Traditional Methods and Technologies 

Size exclusion chromatography (P-30 columns Biorad, DTR columns Edge Biosystems), 

is effective in isolating DNA. This purification method fractionates molecules on the 

basis of size. Small molecules are impeded within the inert gel matrix while the DNA is 

excluded and passes directly through the column.

Microfilitration (Micron-100, Amicon) is also a size dependent DNA purification 

method. Low molecular weight molecules (e.g.DNA) are retained within the selectively 

permeable membrane. This can be problematic because the filter may also concentrate 

potential PCR inhibitors that fall above the molecular weight cut-off of the membrane. 

This technology is used by the F.B.I. for the purification of DNA firom hair shafts 

(Wilson ef <3/, 1995).

Many new technologies for DNA isolation are based on the negative charge of 

DNA. A proven alternative to traditional methods for the isolation of DNA is the use of a 

solid-phase support such as silica. DNA has high binding affinities for silica in the 

presence of high concentrations of chaotropic salts. High concentrations of chaotropic

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



salts, such as GuSCN, modify the structure of water allowing for the binding of DNA to 

the silica (Hamaguchi et al, 1962). DNA adsorption to silica is also highly dependent on 

pH. Immobilization of DNA to silica must occur at an acidic pH (pH<7.5). The bound 

DNA can be washed to remove cellular debris and then subsequently eluted from the 

silica using a low salt solution. Silica methodologies are highly selective for DNA and 

are unlikely to co-purify potential PCR inhibitors. However, precautionary removal of all 

residual silica particles is germane because they can inhibit enzymatic activity in the 

PCR.

Spin column technology using silica gel membranes (QLAquick, Qiagen) is an 

effective alternative to using silica particles. QLAquick columns have been optimized for 

the recovery of DNA and removal of contaminants. The filter traps DNA lOObp -lOkb 

and excludes proteins, nucleotides and salts. QLAquick columns have a reported 95% 

DNA recovery rate. These columns have proven effective for removing melanin, a PCR 

inhibitor (Yang et al, 1997). In the presence of a high salt buffer and an acidic pH, DNA 

will bind to the silica membrane and contaminants will pass through the column. An 

ethanol-based buffer is used to wash the membrane bound DNA (e.g. to wash away salts, 

detergents, enzymes). Contrary to adsorption, elution is most efficient under basic 

conditions and low salt concentrations.

The latest application to DNA recovery from biological tissues is magnetic bead 

technology. They have been useful for cell separations, immunoassays, and the isolation 

of viruses, organelles and DNA (Haukanes, 1993). Magnetic beads work on an affinity 

or binding principal similar to silica technology. In order for magnetic beads to act 

uniformly in a magnetic field they must be almost identical in magnetism and size. They
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must also be constructed to be superparamagnetic, that is they must exert their magnetism 

only in a given magnetic field. They are constructed as such by depositing colloidal 

magnetite (e.g. magnetic iron oxides) throughout the beads. Superparamagnetism allows 

for minimal settling under gravity and efficient collection in the presence of a magnetic 

field. The surface are of these magnetic beads is large, 50-100m^/g, to allow for maximal 

DNA recovery. Sometimes the beads are coated with polymeric compounds with 

functional groups (Isocyanate, Epoxy, and Vinyl groups). Functional groups are applied 

for coupling of spacer arms with amino, hydroxyl or carboxylic end groups. DNA 

attaches covalently to these groups.

Several magnetic bead-based systems for the isolation of DNA have been 

developed. They each follow a similar mechanism adsorption of the released DNA to the 

magnetic beads, washing of the DNA/magnetic bead complex (removal of contaminants) 

followed by elution of the DNA from the magnetic beads. In principal magnetic beads are 

very amenable for automating the extraction process.
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MATERIALS AND METHODS 

Samples

Modem Hair Samples

The modem hair shaft samples analyzed in this study were collected fi'om three 

individuals. Male and two related female individuals (mother-daughter) are represented 

in this sample set. Their ages and hair colour are shown Table 1. The hair shafts 

sampled from each individual had not been cosmetically altered (e.g. dyed, permed).

Table 1. Modern Hair Sample Set for MtDNA Analysis

Sample Sex Age Hair colour
Lillian Murray Female 55 yrs Blonde
Carolyn Murray Female 24 yrs Light brown
Curtis Hildebrandt Male 27 yrs Dark brown

Ancient Hair Samples

The ancient hair shaft samples analyzed in this study were collected firom a large Roman 

Period {circa 300 -400AD) cemetery, Kellis 2, associated with the ancient town of Kellis 

located in the Dakhlah Oasis, Egypt (Figure 3). The Dakhlah Oasis is one of five oases 

situated in the Sahara desert in western Egypt. Due to the extreme aridity of this region, 

the burials excavated from Kellis 2 are exceptionally well preserved. The burial pattern 

found in this cemetery consists of single interments in mudbrick tombs oriented in the 

head west position (Graver, 2001). Approximately 72% of the burials excavated from 

Kellis 2 have scalp hair present. Several hair colours are represented in this sample set 

(«=10) ranging from blonde to black. Both male and female individuals are represented in

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tem» Sniielwn
(UntlOirlMrf)

I h
^  (%

I ^  CE3..
; — '

isri.

2 Ocm etcr^ 
DakWeli (3asis, 

W e s te r n  Q e s c r t ,  P  g ^ p t

D O r  E.xcavafcion tk ro u g h  ZOO) 

£>urial N u m b e r s  

S c a l e  I i l  O C

Legend 
Unexc8vated burial 

Tomb ah u e tu ra  

Empty fe a tu re  g g  

Elevation (cm) A

CpS-r ^  "--«CZ)' ^

Figure 3.
Map ofKeUis 2, 
DakMeh Oasis, Egypt. 
Burials analyzed in this 
thesis are indicated in 
red. Bunals GlO-3 and 
NT6-2-28 were buried 
m tlie town site, not in 
Kellis 2

ÿ S  r
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the sample set ranging from 6 to 55 years of age (Table 2). Prior to analysis, the hair 

samples were stored in sterile plastic bags at room temperature and low humidity.

Table 2. Ancient Egyptian Hair Sample Set for MtDNA Analysis

Burial number Sex Age Hair colour
K2B76* Female 38 yrs Red-brown
K2B101* N/A 6 yrs Red-brown
K2B124 Male 30 yrs Brown
K2 B259* Male 46 yrs Light brown
K2 B269* Female 55 yrs Light brown
K2B271* Female 31 yrs Red-brown
K2B458 Female 50 yrs Red-brown
K2B491 Female 40 yrs Brown
NT6-2-28 Female 30 yrs Blonde
GlO-3 (Nubian) Female 24 yrs Black
* burial has mtDNA profile from bone (Graver et al, 2001)

Contamination Precautions 

One of the many challenges faced when conducting ancient DNA (aDNA) research is 

contamination from modem DNA sources (Paabo et al, 2004). Due to the sensitivity of 

the polymerase chain reaction (PCR), even minimal amount of exogenous DNA ean be 

problematic. Stringent preeautions were taken throughout this study to minimize the risk 

of contamination following the reeommendations of Parr (2002). All research was 

conducted in a facility (Molecular World Inc.) with dedicated pre- and post- PCR areas. 

DNA extraction, purification and PCR preparation were conducted in dedieated rooms in 

a Clean Laboratory in whieh modem samples were prohibited. Post-PCR analysis was 

not conducted within the Clean Laboratory. Proteetive clothing was wom at all times to 

prevent the introduetion of my own DNA into the ancient samples throughout all pre- 

PCR proeedures. This elothing included a tyvek body suit, disposable sleeves, face 

mask, haimet, safety glasses, and latex gloves. The experimental proeedures were carried
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out in laminar flow hoods with an HEPA-filtered air supply that was ultra violet (UV) 

irradiated before eaeh use. UV irradiation was used to cross-link any exogenous DNA 

present in the hood, thereby making it unamenable to PCR. All equipment and reagents 

were decontaminated using an UV crosslinker (UVP CL-1000 Ultraviolet Crosslinker), 

bleach (10%), ethanol (70%), and/or an autoclave (VWR Accusterilizer^" ASI2).

Negative controls were carried out throughout the extraction, purification and PCR 

procedures to ensure the authentieity of the DNA extract. The DNA profiles of all 

laboratory persormel including myself as well as the arehaeologists who eollected the hair 

samples were all mtDNA typed and known.

Microscopy

Modern Hair Samples

Prior to the analysis of the aneient Egyptian hair samples, the histology of the modem 

hair shaft was studied using Differential Interference Contrast Optics (Olympus Inverted 

Microscope 1X51) and Seanning Electron Microscopy (JEOL JSM-5900L V).

Ancient Hair Samples

A sample of hair from eaeh of the twelve burials was examined using Brightfield 

microscopy (Micromaster ® Fischer Scientific and Reichert Microstar TV Light 

Microscope with Digital Photomicrographic System). Prior to mieroscopy, hair shafts 

were washed with a 1% Terg-a-zyme^" detergent (Alconox Inc., New York, NY) and 

rinsed with -95% ethanol. Dry slides of each sample were viewed under lOX, 40X and 

lOOX magnification. The histological stracture and integrity of the hair shaft were 

observed.
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DNA Extraction and Purification Protocols 

The efficacy of four DNA extraction and purification protocols was evaluated for their 

ability to retrieve DNA from modem and ancient Egyptian hair shafts. Hair shaft 

segments (20mm) were treated by four different methods (1) the standard protoeol 

eurrently used by the FBI (Wilson et al, 1995) (2) an enzymatic digestion followed by 

siliea column purification (3) an enzymatic digestion followed by magnetic resin 

purification, and (4) a protocol developed by Gilbert et al (2004) for the extraction of 

DNA from ancient bison hair. Prior to assessing the effieaey of these four methods on 

ancient Egyptian hair shafts, their effieaey to retrieve DNA from modem hair shafts was 

evaluated.

Hair Sample Preparation

Prior to eaeh DNA extraction and purification protocol, each hair sample was washed 

with 1% Terg-a-zyme^" detergent to remove adhering eontaminants and subsequently 

rinsed with -95% ethanol.

FBI Standard Protocol

The FBI standard protocol for the extraetion of DNA from hair shafts was developed by 

Wilson et al in 1995. The hair shaft (-2cm) was placed in 500fiL of Tris EDTA (lOmM 

Tris HCl, 0.1 pM EDTA, pH 8) buffer and ground using a sterilized 0.5mL glass micro­

tissue grinder (Kontes, Vineland, NJ). The homogenate was then incubated ovemight (18 

to 24 hrs) at 56°C with 0.5mg/mL of proteinase K (EM Science, USA) under medium 

agitation (500rpm). Upon completion of the incubation, 200pL of 

phenyl/chloroform/isoamyl alcohol (PCIA, 25:24:1, Sigma-Aldrich, Louis, MO) was
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added to the extract. The aqueous phase was purified and concentrated using 

microfiltration (Micron™ 100, Millipore, Ireland) according to the manufacturer’s 

reeommendations. The DNA extraet was eluted in 40pL of 80°C double distilled sterile 

water.

Modification o f the FBI Standard Protocol

The protocol developed by Wilson et al (1995) was followed with one exception, the 

substitution of proteinase K (0.5mg/mL) with a novel enzyme, keratinase (0.5mg/mL, 

BioResource International Inc, Raleigh, NC). This modified protocol was evaluated on 

modem hair shafts only. The modification did not result in inereased DNA yields, thus 

was not applied to ancient hair shafts.

Proteinase K  Digestion and Silica Column Purification

The hair shaft (-2cm) was physically ground with 500pL of Tris EDTA buffer (pH 8.0) 

using a sterilized 0.5mL glass micro-tissue grinder. The homogenate was then ineubated 

ovemight at 56°C (18 to 24 hrs) with 0.5mg/mL of proteinase K under medium agitation 

(500rpm). The extract was then purified using commercially available silica gel eolumns 

(QIAquick® PCR Purification Kit, QIAGEN Sciences, MD) according to the 

manufacturer’s reeommendations and eluted in 40pL of 80°C elution buffer.

Proteinase K  Digestion and Magnetic Resin Purification

The hair shaft (-2cm) was physically ground with 500pL of Tris EDTA buffer (pH 8.0 

using a sterilized 0.5mL glass micro-tissue grinder. The homogenate was then incubated 

ovemight (18 to 24 hrs) at 56°C with 0.5mg/mL of proteinase K under medium agitation 

(500rpm). The extract was then purified using magnetic resin (DNA IQ™, Promega,
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Madison, WI) according to the manufacturer’s recommendations and eluted in 40pL of 

80°C double distilled sterile water.

Protocol by Gilbert et al (2004) for the Retrieval o f aDNA from Hair 

The hair shaft (-2cm) was added to 500|iL of extraetion buffer (O.OIM Tris, O.OIM NaCl, 

1% SDS, 0.5mg/mL proteinase K, lOmg/mL DTT, O.OOIM PTB) and incubated 

ovemight (18 to 24 h) at 55°C with medium agitation (500rpm). Upon completion of the 

incubation, 200|xL of PCIA was added to the extract. The aqueous layer was purified and 

concentrated using microfiltration (Microcon™100, Millipore) aceording to the 

manufacturer’s recommendations. The DNA extract was eluted in 40|xL of 80°C double 

distilled sterile water.

DNA Quantification

DNA extracts were quantified using a fiuorometer (TBS-380 Mini-fluorometer, Tumer 

Biosystems, Sunnyvale, CA). lO.OjiL of purified DNA extract was re-suspended in 

89.5|iL Tris EDTA buffer with O.SfiL of Pico Green reagent (Molecular Probes, Eugene, 

OR) to bring to a total sample volume of 100.0|xL (1:10 dilution). Pico Green reagent is 

a fluorescent nucleic acid stain for specifically quantitating double-stranded DNA. The 

solution was protected from light, vortexed, transferred into a cuvette and placed into the 

fiuorometer chamber for immediate DNA quantification according to the manufacturer’s 

recommendations. It should be noted that the detection limit of the fiuorometer is 15pg 

of DNA.
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DNA Amplification

DNA extracts were routinely used for PCR immediately, but if  neeessary were stored at 

-20°C. Amplifieations were earried out in 25p.L reactions containing lOX PCR reaction 

buffer (Invitrogen, Carlsbad, CA), 50mM MgClz (Invitrogen, Carlsbad, CA), lOmM 

dNTPs, 5U/|aL Platinum® Taq DNA polymerase (Invitrogen, Carlsbad, CA) lOjiM 

mtDNA primers (Integrated DNA Technologies, Coralville, lA), Omni Pur® DEPC 

water (EM Scienee, USA) and various amounts of template (5|iL, lOjiL, 15|xL). The 

template was also diluted to varying degrees ranging from 1:10 to 1:100. The reactions 

were vortexed and immediately plaeed in a thermoeyeler (GeneAmp® PCR System 

9700, Applied Biosystems) for PCR amplification. Positive and negative controls for 

each primer set were run in parallel to eaeh PCR.

PCR Primers

Ancient DNA is usually quite fragmented. Consequently, I attempted to amplify short 

seetions (100bp-250bp) from the mtDNA genome. These amplicons are Hypervariable 

regions I and 2 (HV-1 and HV-2) and a small variable region from the 28s rRNA gene 

(Table 3). HV-1 and HV-2 are useful for determining maternal relationships between 

individuals. The 28s rRNA gene is highly conserved amongst all organisms and is quite 

useful for distinguishing both prokaryotie and eukaryotie species.
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Table 3. Primers used for PCR Amplification of MtDNA from Modern and Ancient 
Extracts

mtDNA
Region

Primer Set Amplicon
Size

HV-1
75977 5’-CCACCATTAGCACCCAAAG-3’ 
16223 5 ’-GGGTTGATTGCTGTACTTGC-3 ’

246bp

16193 5 ’-CATGCTTACAAGCAAGTACAGC-3 ’ 
16425 5 ’-GATATTGATTTCACGGAGGATGG-3 ’

232bp

HV-2
162 5’-CGCACCTACGTTCAATATTACAG-3 ’ 
258 5 ’-TCTGTGTGGAAAGTGGCTG-3 '

96bp

ISSrRNA
gene A 5 ’-ATCTAGTAGCTGGTTCCCTC-3’ 

B 5 ’ -CCTCTAATCATTCGCTTTAC-3 ’
lOObp

Thermocycling conditions were as follows: 35 eycles of amplifieation with dénaturation 

at 94 °C (30 s), annealing at 55 °C (30 s), and extension at 72 °C (Imin).

Gel Electrophoresis

Aliquots (5|iL) of the PCR product were analyzed by polyaerylamide gel electrophoresis 

(PAGE). 5pL of PCR produet along with 2|iL of 6x loading buffer (Promega, Madison, 

WI) was loaded on to a 6% polyacrylamide gel and run at 150volts for 30 min. DNA 

fragments were visualized by staining the gel with ethidium bromide and viewing on an 

UV transilluminator (UVP, Upland, CA). Photographs of eaeh gel were taken using a 

Polaroid Gel Cam. A size maker, lOObp DNA ladder (Promega, Madison, WI), was run 

in parallel with each set of PCR products.

Sequencing Analysis

PCR products were purified for sequencing by using Performa DTR gel filtration 

cartridges (Edge Biosystems, Gaithersberg, MD). Sequeneing was performed using ABI
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PRISM BigDye Terminator v l . l  Cycle Sequencing Kit (Applied Biosystems, Foster 

City, CA) according to manufacturer’s reeommendations. Electrophoresis and sequenee 

analysis were performed using a 3100 Avant Genetie Analyzer (Applied Biosystems, 

Foster City, CA). Sequeneing primers used were identical to those used in the 

amplifieation.

Identification o f  PCR Inhibitors 

Gas-Chromatography-Mass Spectrometry (GC-MS)

An analysis of the organie composition of crude DNA extraet (200.0|iL) firom two 

Kellis 2 hair samples (K2 B259 and K2 B269) was performed using GC-MS (Varian 

1200, Walnut Creek, CA). The organic composition of intact hair shafts belonging to 

these two burials were also analyzed using GC-MS. Prior to GC-MS analysis, the hair 

shafts (2em) were ground with the assistance of liquid nitrogen and a eeramic 

mortar/pestle and subsequently dissolved in an alkaline solution.

Time o f Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

Elemental and moleeular analysis of hair samples firom two Kellis 2 individuals (K2 B76 

and K2 B124) was performed using SIMS (Trift II ToF-SIMS, Physical Electronics Inc) 

as per Kempson et al (2003).

Raman Spectroscopy

Elemental and moleeular analysis of hair samples firom two Kellis 2 individuals (K2 B76 

and K2 B124) was performed using Raman spectroscopy as per standard protocol at the 

Ian Wark Research Institute, University of South Australia.
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Inductively Coupled Argon Plasma Spectrometry (ICAP/ICP)

An elemental analysis of 60.0fxL of purified DNA extract fi'om two representative Kellis 

2 hair samples, NT6-2-28 and GlO-3, was performed using ICP spectrometry (Varian 

Vista Pro ICAP Radial with a Cetac Autosampler). An acid (10% HNO3) digested soil 

sample (~600mg dry weight) from the tombs of NT6-2-28 and K2 B269 was also 

analyzed using ICP spectrometry.

Real-time PCR analysis o f DNA Extracts from Ancient Egyptian Hair Shafts 

Sample preparation

DNA was extracted from burials G10-3 (Nubian) and K2 B124 using the Gilbert et al 

(2004) protoeol. The DNA extracts were quantified using a fiuorometer and Pico Green 

reagent.

Quantification and Melting Curve Profiles

Amplifications were carried out using the Bio-Rad iQ Sybr Green qPCR kit. Each 25|J,L 

reaction contained: 2X qPCR reaction mix, mtDNA primers (250nm)(Table 4) PCR 

grade water and 5|iL of template (modem Asian, modem Caucasian, G 10-3, K2 B124). 

The reactions were placed in a thermocycler (DNA Engine Optieon ® 2 Continuous 

Fluoreseenee Detection System) for PCR amplification.

Thermocycling conditions were as follows: 60 cycles of amplification with dénaturation 

at 95 °C (30 s), annealing at 57 °C (30 s), and extension at 72 °C (30s). After 60 cycles 

samples were ineubated at 72°C for 10 min. The plate was read after every cyele. The 

melting curve was generated from 50°C to 105°C and read every 1°C.

A standard curve was created using modem Caucasian template. The template 

was quantified using a NanoDrop® spectrophotometer. The quantified value was
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normalized to create a standard curve. The ancient (GlO-3 and K2 B124) and control 

(modem Asian and Caucasian) templates were subsequently amplified. Negative 

controls were proeessed in parallel. The data was analyzed using MJ Optieon Monitor® 

(version 3) Analysis Software.

Table 4. Primers used for Quantitative PCR and Melting Curve Analysis of Ancient
Egyptian Extracts and Modern Human Controls

mtDNA Region Primer Set** Amplicon Size

llSrRN A* 708 5’-cgttccagtgagttcaccctc-3’ 
946 5 ’ -cactctttacgccggcttctattcac-3 ’

238bp

*The 12S rRNA region o f  the mtDNA genome is variable ye t conserved across populations
** Primers designed by Genesis Genomics Inc. They are guaranteed not to amplify nuclear mitochondrial
pseudogenes (Pseudofree^")
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RESULTS

Modern Hair Microscopy

Differential Interference Contrast Microscopy and Scanning Electron Microscopy 

revealed the complexity of the histological structure of the human hair shaft (Figures 4 to 

8).

Figure 4. Differential Interference Contrast micrograph of isolated cuticular cells. 
It is speculated that N  is the cell nucleolus. Cuticular cells are 50-60pm in length.
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Figure 5. Differential Interference Contrast micrograph of frayed hair shaft. Many 
cuticular cells have separated from the cortex. Bundles of cortical cells (-100 pm in 
length) are visible. The hair shaft is -87pm wide.

.lav

Figure 6. Differential Interference Contrast micrograph of frayed hair shaft. Melanin 
granules (M) within cortical cells are visible.
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Figure 7. SEM of a fractured hair shaft. Cuticular cells appear as overlapping scales.

Figure 8. SEM of fractured hair shaft. Cortical cells are visible at the fracture site but 
outlines are indistinct.
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Ancient Egyptian Hair Microscopy 

In general, the ancient Egyptian hair from Kellis appears to be very well preserved. The 

cuticle scale pattern appears relatively intact in most specimens (Figure 9). However, 

there is evidence of damage or contamination as shown in Figures 10 to 15.

« »
; f
V .

Figure 9. Micrograph of hair shaft from burial NT6-2-28. The cuticular scale pattern is 
relatively well preserved. 400X magnification.
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Figure 10. Micrograph of hair shaft from burial K2 458. Hair shaft fracture. 400X 
magnification.
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Figure 11. Micrograph of hair shaft fi'om burial K2 458. Possible fungal contamination 
on hair shaft exterior. 400X magnification.
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Figure 12. Micrograph of hair shaft from burial GlO-3 (Nubian). Possible insect 
damage. 400X magnification.
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Figure 13. Micrograph of hair shaft from burial G10-3. Evidence of cuticular scale 
ruffling. 400X magnifieation.
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Figure 14. Micrograph ofhair shaft from burial K2 124. Fragmented medulla. 400X 
magnification.
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Figure 15. Micrograph ofhair shaft from burial GlO-3. Fungal contamination on hair 
shaft exterior (?). 400X magnification
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DNA Analysis o f  Modern Hair Shafts

Evaluation o f Three Purification Methods for the Retrieval o f DNA from Modern
Human Hair Shafts

The highest DNA yields (mean=66.98ng/mL, standard deviation=33.78) obtained from 

modem hair shafts were retrieved using phenyl chloroform isoamyl alcohol (PCIA) 

followed by microfiltration. Silica column purification (mean=16.69ng/mL, standard 

deviation=14.75) and magnetic bead purification (mean=12.63ng/mL, standard deviation 

14.23) had significantly lower DNA yields (Table 5). The FBI standard DNA extraction 

procedure (physical grinding of hair followed by proteinase K/TE buffer incubation) was 

used in conjunction with each of the three purification methods. Negative controls run in 

parallel to the extraction and purification process were used as an indicator of 

experimental contamination. Using the aforementioned DNA extraction and purification 

protocols, the average amount of DNA contaminating the negative control was 

15.53ng/mL. The amount of DNA contamination obtained did not differ significantly 

between the three purification protocols. The average amount of DNA retrieved from the 

modem hair shafts using the aforementioned extraction and purification protocols was 

32.1ng/mL.
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Table 5. DNA Yields from Modem Hair Shafts using Three Different Purification Methods

Sample Extraction/Purification Method** DNA Yield (ng/mL)*
C.Murray PCIA and Microfiltration (FBI protocol) 33.89
C.Murray PCIA and Microfiltration (FBI protocol) 98.78
C.Murray PCIA and Microfiltration (FBI protocol) 95.6
C.Murray PCIA and Microfiltration (FBI protocol) 28.15
C.Murray PCIA and Microfiltration (FBI protocol) 78.47
C.Murray Silica Column 0.62
C.Murray Silica Column 7.05
C.Murray Silica Column 20.51
C.Murray Silica Column 16.12
C.Murray Silica Column 39.14
C.Murray Magnetic Beads 4.63
C.Murray Magnetic Beads 8.58
C.Murray Magnetic Beads 0.64
C.Murray Magnetic Beads 12.46
C.Murray Magnetic Beads 36.86

'Sample quantity^ 2cm hair shaft
"A ll hair shafts were ground using glass microtissue grinders prior to the extraction process

*HVI was successfully ampllTied and sequenced from DNA purified by each method.

Evaluation o f the Gilbert et al (2004) Protocol for the Retrieval o f DNA from Modern
Human Hair Shafts

The Gilbert et al (2004) protocol on average retrieved 173.17ng/mL (standard 

deviation=108) of DNA from 2cm of modem human hair shaft (Table 6). The average 

amount of DNA contamination present in the extraction and purification negative 

controls was l.lng/mL. On average, the FBI standard protocol (66.98ng/mL) yielded a 

significantly lower amount of DNA than the Gilbert et al (2004) protocol (173.17ng/mL). 

The protoeols that involved physical grinding of the hair shaft prior to the DNA 

extraetion and purifieation proeess had higher amounts of contamination 

(mean= 15.53ng/mL) than the Gilbert et al protoeol (2004) (mean= l.lng/mL) which uses 

a chemical method instead of a physical method to break down the hair shaft.
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Table 6. DNA Yields from Modern Hair Shafts using the Gilbert et al (2004) Protocol

Sample DNA Yield (ng/mL)*
C.Murray 360
C.Murray 140.8
C.Murray 116.1
C.Murray 87.65
C.Murray 161.3
'Sample quantity^ 2cm hair shaft

*HVI was successfully amplified and sequenced from DNA extract

Assessment o f the Efficacy o f  Keratinase fo r  the Retrieval o f DNA from Modem Hair
Shafts

In this preliminary assessment, DNA yields using keratinase did not prove to 

signifieantly differ from DNA yields using the eontrol enzyme, proteinase K (Table 7). 

The average DNA yield using keratinase was 48.1ng/mL. The average DNA yield using 

proteinase K was 54.3ng/mL.

Table 7. DNA Yields from Modern Hair Shafts using Proteinase K and Keratinase

Sample DNA Yield 
(ng/mL)*

Enzyme Protocol

C. Hildedrandt 53.1 Proteinase K FBI
C.Hildebrandt 43.15 Proteinase K FBI
L.Murray 66.6 Proteinase K FBI
L.Murray 83.4 Keratinase FBI
C. Hildedrandt 21.2 Keratinase FBI
C. Hildebrandt 39.68 Keratinase FBI
'Sample quantity=2cm

Assessment o f DNA Fragmentation in Modern Hair Shafts 

DNA fragments from the mtDNA control region ranging from 86bp to 807bp in size were 

amplified from DNA extracted from modem hair shafts (Figure 16). There is an inverse 

correlation between the amplicon size and the gel band intensity. The band intensities of
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the control DNA extract (DNA from buccal cells) are much stronger than the band 

intensities of DNA amplified from the hair shaft extract.

Figure 16. DNA fragmentation in a modem human hair shaft. Lane 1- lOObp DNA 
ladder, lanes 2 to 6-PCR and extraet negative controls, lane 7- hair DNA extract HV2 
(162-248), lane 8- hair DNA extract HVl (16193-16425), lane-9 hair DNA extract HV2 
(15f-431), lane 10-hair DNA extract HVI/HV2 (16193-431). Lane 11 tol4-buccal DNA 
extract/positive controls.
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DNA ANALYSIS OF ANCIENT EGYPTIAN HAIR SHAFTS

Evaluation o f  Three Purification Methods for the Retrieval o f  DNA from Ancient
Egyptian Hair Shafts

The highest DNA yields (mean=28.8ng/mL, standard deviation=12.71) obtained from the 

ancient Egyptian hair shafts were retrieved using phenyl chloroform isoamyl alcohol 

(PCIA) followed by microfiltration. Silica column purification (mean=4.69ng/mL, 

standard deviation=4.15) and magnetic bead purification (mean=2.2Ing/mL, standard 

deviation=I .04) had significantly lower DNA yields (Table 8). The FBI standard DNA 

extraction procedure (physical grinding of hair followed by proteinase K7TE buffer 

incubation) was used in eonjunction with each of the three purification methods. 

Negative controls run in parallel to the extraction and purification process were used as 

an indieator of experimental contamination. Using the aforementioned DNA extraction 

and purification protocols, the average amount of DNA eontaminating the negative 

control was 13.45ng/mL. The amount of DNA contamination obtained did not differ 

significantly between the three purifieation protoeols. The average amount of DNA 

retrieved from the ancient Egyptian hair shafts using the aforementioned extraction and 

purification protocols was 11.19ng/mL.
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Table 8. DNA Yields from Ancient Egyptian Hair Shafts using Three Different
Purification Methods
Sample Extraction/Purification Method* DNA Yield (ng/mL)**
K2 B271 PCIA and Microfiltration (FBI protocol) 26.2
K2 B271 PCIA and Microfiltration (FBI protocol) 17.62
K2 B458 PCIA and Microfiltration (FBI protocol) 42.63
K2 B259 Silica Column 2.2
K2 B259 Silica Column 0.87
K2 B269 Silica Column 5.52
K2B271 Silica Column 10.18
K2 B458 Magnetic Beads 2.1
K2 B458 Magnetic Beads 1.23
K2B458 Magnetic Beads 3.3
'A ll hair shafts were ground using glass microtlssue grinders prior to the extraction process 
"Sample quantlty=2cm

Evaluation o f the Gilbert et al (2004) Protocol for the Retrieval o f  DNA from Ancient
Egyptian Hair Shafts

The average DNA yield obtained from the ancient Egyptian hair shafts using the Gilbert 

et al (2004) protocol was 116.42ng/mL (standard deviation=85.53)(Table 9). The 

average amount of DNA contamination present in the extraction and purification negative 

controls was 6.2ng/mL. On average, the FBI standard protocol yielded a significantly 

lower amount of DNA (28.ng/mL) than the Gilbert et al (2004) protocol (116.42ng/mL). 

The protoeols that involved physical grinding of the hair prior to the extraction and 

purification process (FBI Protocol, Silica Column Protocol, and Magnetic Bead Protocol) 

had a higher amount of contamination (mean=I3.45ng/mL) than the Gilbert et al (2004) 

protocol (mean=6.2ng/mL) which uses a chemical means to break down the hair shaft.
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Table 9. DNA Yields from Ancient Egyptian Hair Shafts using the Gilbert ef a/ (2004) Protocol

Sample DNA Yield (ng/mL)*
K2 B76 112.3
K2 B76 124.9
K2 B76 116
K2 B101 55.42
K2B101 30.3
K2 B101 40.8
K2 B101 67.4
K2 B124 176.7
K2 B124 166.8
K2 B124 53.62
K2 B259 93.4
K2 B269 72.53
K2 B269 99.1
K2 B458 18.79
K2 B458 76.17
K2 B491 107.4
G10-6 222.5
G10-6 125.7
G10-6 416.5
G10-6 124.3
NT6-2-28 144.2
'Sample quantity=2cm

PCR Amplification o f  DNA Retrieved from Ancient Egyptian Hair Shafts

A 246bp fragment of HVI (15997-16223) was successfully amplified using 1:20 dilution 

of DNA extract from K2 B458. However, amplification as indicated by gel band 

intensity was weak. 178bp of the HVI fragment was sequenced and a polymorphism 

was observed at position 16103 (C to T) (Figure 17). However, it was not possible to 

successfully replicate this data. The polymorphism at 16103 is not shared by myself, 

laboratory personnel nor the individuals who collected the ancient hair samples. The 

DNA extract was obtained using the FBI standard protocol (Wilson et al, 1995)
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Figure 17. Burial K2 458 electropherogram. A 178bp region of HVI was amplified and 
sequenced. A Polymorphism is located at nucleotide position 16103 (C to T).

A 96bp fragment of HV2 (162-258) was successfully amplified using a 1:10 dilution of 

DNA extracts from K2 B491 and K2 B76 (Figure 18). However, amplification was 

minimal and unamenable to the sequencing process. The DNA extract was obtained from 

both samples using the Gilbert et al (2004) protocol. An attempt was made to re-PCR the 

amplified 96bp fragment, but was unsuccessful.

A lOObp fragment of the 28S rRNA gene was successfully amplified using diluted DNA 

extracts from several ancient Egyptian hair samples (K2 B269, K2 BlOl, K2 B458, GIO- 

3, NT-2-28). These fragments were unable to be successfully sequenced (mixed 

sequences, poor quality template). The DNA extracts were obtained using the Gilbert et 

al (2004) protocol.

No human DNA was amplified from K2 B271, K2 B259, K2 B269, K2 BIOl, K2 B49I, 

K2 B124, GlO-3 or NT-2-28 (Table 10). Primer dimer was not apparent on the detection 

gel for each PCR involving the aforementioned DNA extracts. Positive controls and 

positive controls spiked with ancient DNA extract were run in parallel with each PCR. 

PCR amplification of the spiked positive control was invariably compromised (Figure
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19). The spiked control either did not amplify at all, or only amplified minimally (i.e. did 

not amplify to the extent of the non-spiked positive control).

Table 10. PCR amplification of MtDNA from Ancient Egyptian hair shafts

Sample HVI/HV2 288 rRNA Sequence

K2B76 Yes* no n/a
K2B101 No yes* n/a
K2 B124 No no n/a
K2 B259 No no n/a
K2 B269 No yes* n/a
K2 B271 No no n/a
K2 B458 Yes* yes* yes**
K2 B491 Yes* no n/a
GlO-3 No yes* n/a
NT6-2-28 No yes* n/a
'Presence of amplifiable mtDNA in extract, either HVI, HV2 or 28S 
"unable to replicate

Figure 18. Minimal PCR amplification (HV2: 162-258) o f DNA extracts from K2 
B491 and K2 B76. Lane 11- K2 B76, lane 12-K2 B491, lane 13- positive control 
(modem human)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 19. PCR amplification (HVl: 16193-16425) of spiked positive controls is 
compromised. Arrow indicates presenee of primer dimer. Lane-10 Spiked (K2 BlOl) 
positive, lane -11 Spiked (K2 BlOl) positive, lane 12- positive control (modem human).
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Real-time PCR Analysis o f  DNA from  Ancient Egyptian Hair Shafts 

Quantification o f DNA

The fluorometer registered total DNA yields of 124.3ng/mL for GlO-3 and 53.62ng/mL 

for K2 B124. The negative extract control registered as -0.008ng/mL. The initial 

quantity of target template was calculated by interpolating from the 

standard curve (Table 11).

Melting Curve Analysis

A 238bp DNA fragment was successfully amplified from both ancient DNA extracts 

(GlO-3 and K2 B124) using human specific 12S rRNA primers.

Melting curves were acquired for both ancient and modem comparative PCR products 

{12S rRNA: 708-946) (Table 12 and Figure 20, 21, 22). The melting profiles of the 

ancient extracts (GlO-3 and K2 B124) were compared with those of the known controls 

and it was determined that the ancient extracts were of human origin. The melting curve 

profile of K2 B124 matched the melting curve of the modem Asian control. The Asian 

control template differs from the Caucasian template in that it contains a polymorphism 

in the primer-binding region at nucleotide position 709 (Figure 23).
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Table 11. Real-time PCR DNA Quantification of Ancient Egyptian and Modern 
Human Control Extracts

Sample Initial mtDNA Quantity (ng/|i,L)
GlO-3* 1.291 X 10
K2B124* 3.764 X 10"'^
Modem Asian 7.216 X 10'^
Modem Caucasian 6.494 X 10'®
Extract negative N/A
PCR negative N/A
* G10-3 1:10 dilution; K2 B124 1:5 dilution

Table 12. Melting Temperatures o f  Ancient Egyptian and Modern Human Control 
PCR Amplicons (12S rRNA gene: 708-946)

Sample Melting Temperature (°C)
GlO-3 82
K2B124 83
Modem Asian 83
Modem Caucasian 84
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Figure 20. Melting curve profiles of ancient Egyptian amplicons and modem controls. 
K2 B 124-orange, GlO-3- blue, Asian modem control-red, Caucasian modem control- 
green.
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Figure 21. Melting curve profiles of GlO-3 (Nubian) and Caucasian modem control. 
G10-3-blue, Caucasian modem control-green.
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Figure 22. Melting curve profiles of K2 B124 and Asian modem control. K2 B 124- 
green, Asian modem control-red.
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Asian 12S rRNA Sequence (708-946)

CATTCCAGTGAGTTCACCCTCTAAATCACCACGATCAAAAGGGACAAGCA
TCAAGCACGCAGCAATGCAGCTCAAAACGCTTAGCCTAGCCACACCCCCA

CGGGAAACAGCAGTGATTAACCTTTAGCAATAAACGAAAGTTTAACTAAG
CTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGCGGTCACA
CGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGT

Caucasian 12S rRNA Sequence (708-946)

CGTTCCAGTGAGTTCACCCTCTAAATCACCACGATCAAAAGGGACAAGCA
TCAAGCACGCAGCAATGCAGCTCAAAACGCTTAGCCTAGCCACACCCCCA
CGGGAAACAGCAGTGATTAACCTTTAGCAATAAACGAAAGTTTAACTAAG
CTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGCGGTCACA
CGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGT

Figure 23. 12S rRNA (708-946) sequence data for modem Asian and Caucasian controls. 
A polymorphism is located at nucleotide position 908 (G to A). It is likely that K2 B124 
also possesses a polymorphism at this nucleotide position.
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An Investigation o f  Potential PCR Inhibitors Present in Ancient Egyptian Hair

Detection o f  Organic Contaminants (e.g. henna dye molecule)

Gas Chromatography-Mass Spectrometry (GC-MS)

Benzenesulfonic acid was the only organic molecule detected by GC-MS that is not 

biologically inherent in hair (Figure 23). Benzenesulfonic acid is commonly present in 

cosmetics and industrial solvents.
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Figure 24. GC-MS revealed the presence of benzenesulfonic acid in the hair of Egyptian 
burial K2 268.

Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

ToF-SIMS did not identify the presence of any specific organic compound (e.g. henna 

dye molecule) in hair samples from burials K2 76 or K2 124. Fragments detected had 

very low mass weights and thus had very low powers of discrimination. The low mass 

fragments were not unusual to those that are typical ofhair proteins.

Raman Spectroscopy

Raman spectroscopy failed to identify the presence of henna (2-hydroxy-1,4 

napthoquinone) in hair samples from burials K2 76 and K2 124. The pigment naturally
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found within hair (melanin) saturated the spectrum hiding smaller spectral features that 

may have provided evidence of the henna dye.

Detection o f  Inorganic Contaminants

Inductively Coupled Argon Plasma Spectrometry (ICAP/ICP)

i) Hair Samples

ICP analysis of purified DNA extract firom hair samples NT6-2-28 and G10-3 revealed an 

abundance of Na and S. Ca, K, Li, Mg and W were also present in slight amounts (Table 

13). The negative control of the purified extract did not contain the aforementioned 

elements.

ii) Soil Samples

ICP analysis of soil associated with burial NT6-2-28 revealed the presence of large 

amounts of Na, Ca, Al, Fe, S, Mg and K. Soil associated with burial K2 269 contained 

large amounts of Ca, Al, Fe, S, P, Na, Mg and K. K2 B269 soil contained a significantly 

higher amount of Ca and S and a significantly lower amount of Na than NT6-2-28 soil 

(Table 14).

Hair and soil associated with burial NT6-2-28 both contained large amounts o f Na. Both 

sample types also possessed the following common elements at detectable levels: S, Ca, 

Mg and K.
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Table 13. Elemental Analysis of Ancient Egyptian Hair Sampies (NT6-2-28 and G10- 
3) using ICP

Element Hair Samples(ug/mL)
NT6-2-28 G10-3

Al <DL <DL
Ca 0.1 0.31
Cu <DL <DL
Fe <DL <DL
K 1.15 0.37
LI 0.05 0.05

Na 32.9 10
P <DL <DL
S 85 32.5
Sr <DL <DL
Tl <DL <DL
I I <DL <DL
V <DL <DL

Mo <DL <DL
Mg 0.05 0.02
Mn <DL <DL
W <DL <DL
Zn <DL <DL

DL=below detection limit

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE 14. Elemental Analysis of Soil from Kellis 2, Dakhleh Oasis, Egypt using ICP

Element Soil Samples (ug/g)
NT6-2-28 K2 B269

Al 14154.1 15471.9
8 20.9 29.7
Ba 49 47.6
Be <DL <DL
Ca 27253.5 47372.3
Cd 0.7 2
Co 1.9 3.5
Cr 19.8 23.1
Cu 3.6 22
Fe 8872.6 13393.9
K 3565 3087.1

Mg 5066.5 4775.6
Mn 149 146
Mo <DL <DL
Na 176648 9046.5
Ni 6.2 7.6
P 825.4 9306
Pb 0.3 6.3
S 5068.6 10881.3
Si 574.5 591.4
Sr 132.8 208.6
Ti 148.5 116.9
Tl <DL <DL
V <DL <DL
Zn 26.3 62.68

DL= below detection limit
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DISCUSSION

This thesis tested the efficacy ofhair as a potential and better source of ancient DNA than 

other tissues, especially bone and dentin. The hypothesis was posited on advantages of 

hair in terms of its structure, namely being avascular, having a protective outer cuticle 

(anhydrodic) layer and an inner cortex made up of keratin which binds and protects the 

mtDNA. Also, mtDNA yields should be higher because the hair shaft is outside the body 

and free from the apoptotic autolytic enzymes that destroy the DNA in living tissues. The 

research design initially included the use of keratinase as a substitute for proteinase K in 

the extraction protocol, since its specificity for keratin was hypothesized to be more 

effective in liberating the mtDNA. This hypothesis was not supported as the mtDNA 

yields were similar in the three modem control samples. This protocol was abandoned in 

the experiments on the ancient hair samples from the Kellis 2 population sample from the 

Roman Period Dakhleh Oasis, Egypt. However, keratinase may possibly prove to be 

effective for the extraction of mtDNA from hair shafts when used with altemative buffers 

and/or in conjunction with proteinase K.

Four protocols were tested on the ancient Dakhleh hair samples. Three protocols 

involve a mechanical preparation (mortar and pestle) phase (the FBI protocol, proteinase 

K-silica column, proteinase K-magnetic beads) while the Gilbert et al (2004) protocol 

utilizes chemical digestion. The latter protocol performed the best in terms of mtDNA 

yields measured by the fluorometer. The FBI method (Wilson et al, 1995) ranked second, 

while the silica and magnetic bead methods performed poorly. The lower DNA yields 

using silica column and magnetic beads could be attributed to the high DNA binding
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affinity of both matrices. Once DNA is bound to the silica column and/or magnetic beads, 

it is difficult to recover in totality. Heat can be used as a catalyst to release the bound 

DNA and may improve recovery but this is not entirely effective. PCIA-micro-filtration 

recovered significantly more mtDNA than the previous two methods. Unfortunately, 

microfiltration is not selective for DNA it filters molecules on the basis of size and thus 

the probability of inhibitors being included in the extract is increased. If a particular PCR 

inhibitor is below the filter cut-off size, it will move through the membrane along with 

the DNA. Conversely, although both magnetic bead and silica column purification 

yielded significantly lower amounts of DNA, these purified extracts may contain 

significantly lower levels of PCR inhibitors. I recommend using PCIA in conjunction 

with microfiltration to purify DNA extracts from ancient hair shafts for maximal DNA 

recovery.

As noted, the Gilbert et al (2004) extraction protocol had the highest DNA yields 

likely because of the chemical digestion step. The mechanical method probably 

compromised DNA yields for several reasons. If the hair shaft is not sufficiently ground 

prior to the incubation step, yields will be limited as a result of a reduced surface area 

exposure to the DNA extraction reagents. Also, DNA yields may be sub-maximal 

because the total ground sample will likely not be fully recoverable from the mortar and 

pestle (i.e. adherence of sample to glass surfaces). The significantly higher level of DNA 

contamination with the FBI protocol also is attributable to the mechanical extraction 

process because it is difficult to avoid generating aerosols while grinding the hair shafts 

with microtissue grinders. This can be especially problematic while processing two or 

more samples in parallel and may result in cross-contamination. An additional problem
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occurs when reusing the microtissue grinders, since even with stringent cleansing and 

sterilization contaminating DNA is not always effectively removed. Although costly 

(each microtissue grinder costs approximately $65.00), it would be recommended to 

discard microtissue grinders after each use, since contaminated samples ultimately are 

more costly in terms of both money and time.

PCR amplification is typically unsuccessful with ancient samples and this was the 

case with the ancient hair. Two main reasons account for this: (1) PCR inhibition and (2) 

poor template quantity and quality. PCR inhibitors that co-purified with mtDNA 

extracted from the ancient hair shafts contributed to PCR failure herein. The presence of 

a PCR inhibitor in the ancient hair DNA extracts was confirmed by “spiking” a modem 

positive control with the ancient DNA extracts. The “spiked” PCR can be used to 

distinguish between amplification failure due to the degradation of DNA or from failure 

due to the presence of an inhibitor (Reiss et al, 1999). If a PCR inhibitor is present in the 

extract, the “spiked” control band will be reduced or eliminated. For comparative 

purposes, a control lane containing pure modem template without ancient extract is mn 

parallel to the “spiked” control.

An inverse correlation was observed between sample quantity and PCR 

amplification. When used as template for PCR, DNA extracts from hair shaft quantities 

>10cm did not even weakly amplify. Although, PCR inhibition to varying degrees was 

universal with all ancient DNA extracts, all DNA extracts retrieved from hair shafts in 

excess of 2cm typically resulted in complete PCR inhibition.

Inhibitor molecules may have been introduced to the hair shaft by diffusion of 

organic and/or inorganic molecules from the burial microenvironment, or perhaps by
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ancient cultural or cosmetic practices (Zink et al, 2005). There are molecules 

biologically inherent to the hair shaft, such as melanin, that also act as PCR inhibitors. 

PCR inhibitors are ubiquitous and can be found in soil, wood, textiles, leather, dyes and 

blood (Bourke et al, 1998). Maillard products, glucose derived protein cross-links, are 

another type of PCR inhibitor commonly found within ancient samples (Poinar et al, 

1998).

In most cases, the identity and the mechanism of the inhibitor are unknown. 

Inhibitors can act through several mechanisms, but primarily are known to target Taq 

polymerase (Eckhart et al, 2000). They can also impede the PCR process by degrading or 

capturing the DNA or by interfering with other components of the PCR reaction such as 

MgClz (Weissensteiner et al, 2004). PCR inhibitors may be diffusible in the PCR 

reaction or may be bound to the DNA template. If the inhibitor is bound to the template 

(e.g. intercalated) it can interfere with the dénaturation and/or annealing step of PCR 

(Reiss etal, 1999).

Most methods commonly used to remove inhibitors from DNA extracts are not 

suitable for highly degraded or low yield DNA samples such as ancient hair shafts 

(Bourke et al, 1999). However, it may prove effective to include PCR additives such as 

bovine serum albumin (BSA), T4 gene 32 protein (gp32), single strand DNA binding 

protein or dimethyl sulfoxide (DMSO) in PCR reactions with ancient hair DNA extracts. 

The mode of action of both BSA and gp32 is to bind phenolic compounds (Kreader et al, 

1996). Phenolic compounds include humic and tannic substances which are produced by 

the decomposition of organic matter in soil. However, it is possible that the inhibitor 

present in the ancient hair DNA extract will not respond to the addition of PCR
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adjuvants. Another means in which PCR inhibition could potentially be eliminated is by 

purification of the DNA extract using agarose gel electrophoresis followed by band 

excision and passage through a microconcentrator (Zhou, 1996). The appropriate 

equipment and reagents to pursue these experiments were unavailable for this study. 

Ultimately, in order to be efficiently and effectively removed the PCR inhibitor (s) must 

be identified.

There are a variety of techniques that can be used to eliminate PCR inhibition. 

This problem was addressed herein by reducing sample quantity to a minimum, using 

PTB, and a variety of purification methods, diluting the DNA extract, and by increasing 

Taq polymerase. To combat the potential presence of maillard products, PTB was 

included in the extraction buffer. PTB is capable of breaking down maillard products by 

cleaving glucose-derived protein cross-links (Poinar et al, 1998). Progressive dilutions of 

the extract were prepared with the hope of being able to dilute away the inhibitor(s). 

However, there is a fine balance that must be maintained when diluting ancient DNA 

extracts in order to retain sufficient amount of template for analysis.

Numerous analytical techniques were used to test for the presence of PCR 

inhibitors. Gas-chromatography-Mass spectrometry (GC-MS), Secondary Ion Mass 

Spectrometry (SIMS) and Raman Spectrometry were used to detect the presence of 

organic contaminants. It was hypothesized that henna may be a potential inhibiter 

because it is grown in Egypt (Egyptian privet) and many of the Dakhleh hairs are red, the 

colour in which the natural dye produces. I tested for the presence of '2-hydroxy-1, 4 

napthoquinone’ the active dye molecule in henna. Initially, GC-MS was used but was 

unsuccessful possibly because hydroxy and oxygen groups on the napthoquinone are
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active sites from a chromatographic perspective (Mr. Ain Raitsakas, Personal 

Communication). Furthermore, GC-MS may have likely been unsuccessful because it 

required a larger quantity of hair sample to meet its detection threshold. SIMS and 

Raman spectroscopy were subsequently used because these techniques are extremely 

sensitive and only require a minimal amount of sample for analysis. None of these 

techniques however, proved successful in identifying henna or any other organic 

inhibitor. The reddish colouration in the Dakhleh hair samples may be a response to 

hyperthermia in the tombs, not cosmetic treatment of the hair (Dr. Dave Chapman, 

Personal Communication).

Inductively Coupled Plasma (ICP) analysis was used to identify potential 

inorganic contaminants. High levels of Na and S were found in hair shafts from burials 

NT6-2-28 and G 10-3, which was not unexpected. Na is a common biological and 

environmental constituent and likely diffused into the hair shaft from the burial 

microenvironment. Perhaps the high level of Na found within the hair shaft acted as 

preservative and/or anti-microbial agent maintaining the structural integrity of the hair 

shaft. Sulphur is abundant within these samples because the main constituent of hair, 

keratin, is composed of the sulphur-based amino acid cysteine. Ca, K, Li, Mg and W 

were also present within the hair extracts.

Soil from Kellis 2 was also analyzed using ICP. ICP analysis of soil associated with 

burial NT6-2-28 and GlO-3 revealed an abundance of Na, Ca, Al, Fe, S, P, Mg and K. 

Some of these elements found within the soil may have contaminated the hair shafts and 

contributed to PCR inhibition. Hair seems to be highly absorbent rather than protected 

against environmental contaminants as was hypothesized.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



One question that deserves special consideration is the DNA content measured by 

the fluorometer. Historically in ancient DNA research quantification, of the DNA was not 

attempted because of the highly degraded nature of the product. The high yields of DNA 

found in the ancient DNA product from the hair samples, especially the yields from the 

Gilbert et al (2004) protocol, suggest contamination from microbial DNA and/or modem 

human DNA. This was revealed by the use of real time PCR. Real-time quantity PCR 

(qPCR) indicated that human mtDNA is present within the DNA extracts from burials 

G10-3 and K2-124. However, the concentration of amplifiable human mtDNA as 

expected, is low. Compared to the DNA quantification using a fluorometer, qPCR 

quantifies the total amount of target template (e.g. 12S rRNA 708-946bp) not the total 

amount of cellular DNA. Consider the following: The amplicon of interest, 12S rRNA 

708-946 represents about 1.4% of the total mtDNA genome (238/16,569). Although the 

fluorometer readings are reflective of total cellular DNA, due to the nature of the sample 

type (i.e. hair shaft) the contribution of nuclear DNA to the readings is likely 

insignificant. Thus in theory, the qPCR readings should be equivalent to 1.4% of each 

fluorometer readings. The fluorometer reading for the DNA extracts from burials G10-3 

and K2 124 were 0.123ng/|j,L and 0.0536ng/fiL, respectively. 1.4% of the fluorometer 

readings are as follows, burial GlO-3, 1.851 x 10'  ̂ng/fiL and burial K2 124, 8.043 x 10^ 

ng/fiL. The qPCR readings for the DNA extracts from burials GlO-3 and K2 124 were 

1.291 X 10'^  ̂ ng/|iL and 3.764 x 10'^  ̂ ng/|iL, respectively. Thus, hypothetically, the 

fluorometer readings of the ancient DNA extracts are significantly higher (>10*) than the 

qPCR readings. The fluorometer readings are likely higher than the qPCR readings due 

to the contribution of non-human (e.g. microbial) DNA present in the ancient extracts.
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Also possible is that the ancient hair shafts may suffer from fungal contamination as a 

result of antemortem infection. In ancient times, due to lack of inadequate hygiene, it is 

likely that fungal infections of the hair shaft were common. Fungi can invade the hair 

shaft and leave contaminating spores in the cortex. More likely however, is non-human 

DNA present in the ancient extracts from soil fungi. To investigate this, the ancient hair 

extracts could be examined for the presence of DNA from soil fungi indigenous to the 

Dakhleh Oasis using Real-time PCR. The presence of fungi could also be determined by 

using a longitudinal sectioning method (Kempson et al, 2001) and subsequently viewing 

the internal and external structure of the hair shaft with SEM. This technique would 

reveal the presence of contaminants as well as the state of histological preservation.

The fluorometer readings may also be reflective of highly fragmented and/or 

damaged mitochondrial and nuclear DNA that is unamenable to the PCR process. Poor 

template quality is a common challenge when analyzing DNA extracts from ancient 

remains. The DNA quality may be intrinsically compromised during keratinization of the 

hair shaft and extrinsically by the extraction and PCR processes. Common DNA lesions 

include DNA strand breaks and apurinic/apyrimidinic sites (Weissensteiner et al, 2004).

The melting curve profiles of the ancient DNA (GlO-3 and K2 B124) amplicons 

were compared with the melting curve profiles of known modem human controls to test 

if the ancient amplicons were of human origin. Melting curve profiles differentiate 

amplicons on the basis of GC/AT ratio, length and nucleotide sequence (Ririe et al, 

1996). Amplicons that have the same length and GC/AT ratio, but differ only in their GC 

distribution will have different melting curve profiles. Melting curves can even be 

affected by a single base mutation (Marziliano et al, 2000). The melting curve profile of
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K2 B124 is most closely associated with the melting curve profile of the modem Asian 

control. The difference between the modem Asian and modem Caucasian melting curves 

is the result of a polymorphism at nucleotide position 709 (G to A). This polymorphism 

is indicative of Asian haplotype M (Kong et al, 2003). Due to the similarity of the 

melting profiles of the modem Asian and K2 B124 templates, it is likely that K2 B124 

also possesses a polymorphism at nucleotide position 709. However, this cannot be 

confirmed without sequencing or probing the ancient amplicon. It should be noted that 

in a study by Graver et al (2001), it was determined that on the basis of the restriction 

markers Alul and Ddel, that none of the tested (N= 18) K2 burials possessed the Asian 

mtDNA haplotype M. However, 44% (8/18) of the K2 sample possessed a C to T 

transition at position 16223, a polymorphism that is common in Asian populations 

(Graver, 2000).

The melting curve profile of burial G10-3 did not match the profile for Asian or 

Caucasian affinity. This result, which was done in blind, is noteworthy since the 

osteometric and qualitative morphological traits, in conjunction with the hair structure 

(kinky black Negroid hair), suggest that this young adult female in her early 20s was a 

foreigner probably brought into the Dakhleh Oasis from Nubia or some other sub- 

Saharan region as part of a marital arrangement. The possible area of origin for this 

individual is currently being addressed using stable oxygen isotopes (Dr. Tosha Dupras, 

Personal Communication). This data provides further support of the hypothesis that the 

DNA quantified using Real-time PCR is authentic ancient DNA.
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CONCLUSION

This thesis has demonstrated that authentic ancient human DNA can be recovered 

from hair. Since the Dakhleh samples are almost 1800 years old, this challenges the 

interpretation of Marota et al, (2002) that states DNA can not survive longer than 800 

years in Egypt because of the xerophilic environment. The hypothesis that hair is a better 

archive of mtDNA than bone or dentin is however, is rejected at this time. Hair seems 

just as likely to be degraded and contaminated as other tissues. The preliminary results, 

particularly that showing the Negroid ancestry of burial G 10-3 using a novel approach 

(melting curve) in conjunction with Real-time PCR, are encouraging and indicate 

mtDNA is present in low yet analyzable levels in ancient human hair shafts. Future 

research should utilize the Real-time methodology. Perhaps sequencing results could be 

obtained from the melting curve data by removing the S YBR green dye which, because it 

bonds to the minor groove of the DNA helix, acts as an inhibitor. From this research I 

recommend the use of the Gilbert et al (2004) extraction protocol in conjunction with 

PCIA-microfiltration for optimal DNA recovery in human hair shafts. In particular, this 

protocol would be recommended when using ancient or degraded specimens where 

sample contamination poses a significant risk. The role of proteolytic enzymes (e.g. 

proteinase K, keratinase) in the DNA extraction process also needs to be addressed. 

These enzymes digest proteinaceous material (e.g. cell membrane proteins, histones) 

within the tissue of interest, however, they may not be of great importance in the 

extraction of mtDNA from hair shafts, bone and dentin. MtDNA does not have histones 

and therefore the proteolytic enzymes may in fact damage ancient DNA. Sample 

preparation, non-enzymatic extraction buffer components (e.g. DTT, SDS), and
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purification methods may play a more significant role in the recovery of optimal DNA 

yields than proteolytic enzymes. An experimental approach to validate this hypothesis 

would be to assess DNA yields from hair shafts using an extraction protocol without 

proteolytic enzymes. Finally, this thesis has shown that ancient hair samples are highly 

susceptible to products that can cause PCR inhibition. Future research should be designed 

to identify specific inhibitors in order to maximize the recovery of targeted ancient DNA 

from hair.
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