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Abstract

LE I(LA N A ) ZHU. Efficient Analysis of Oscillators w ith  M ultip le  T im e Dimensions (Under 

the Supervision of Dr. Carlos E. Christoffersen).

Harmonic Balance (HB) analysis is an established technique for the analysis of nonlinear 

circuits. In  this thesis, we present a method to  find the transient and steady-state behavior of 

oscillators based on a harmonic balance implementation which proves to  be faster than tra d i­

tiona l time domain simulations. I t  is derived from the warped m ulti-tim e partia l differential 

equation (W aMPDE) approach developed in  recent years. This approach efficiently separates 

the frequency m odulation (FM ) and amplitude m odulation (AM ) in  oscillators. A  review o f 

M u lti-tim e  Partia l D ifferential Equation (M PDE) and W aM PDE is presented along w ith  the 

m otivation and interest in warped m ultip le  tim e axes. The firs t proposed method shows how 

to  obtain in itia l boundary conditions for a W aMPDE system consistently w ith  a rb itra ry  physi­

cal in it ia l conditions in  the system of ordinary differential equations in  transient analysis. The 

second proposed method improves steady-state analysis since i t  does not require a good in it ia l 

guess of the oscillation frequency and exploits the frequency-domain latency of circuits by using 

a different number of harmonics in  each state variable. The W aM PDE approach is used to  simul­

taneously bring the c ircu it state to  the region of convergence of the HB analysis and determine 

the optimum number of harmonics required at each node in  the circuit. In  both  transient and 

steady-state, an adaptive tim e step control technique is employed in one of the tim e axes and 

this considerably reduces the com putational effort. S imulation results of different applications 

are described to demonstrate the performance of the proposed method. Finally, the proposed 

methods are validated w ith  experimental results.
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C hapter 1

Introduction

1.1 M otivations and Objectives of This Study

The analysis of either the transient or the steady-state response of oscillators has been always 

a hot topic in  c ircu it simulations since i t  is usually d ifficu lt in  dealing w ith  the different changing 

rates of c ircu it behaviors and the unknown oscillation frequency. For transient analysis, the 

trad itiona l time-domain method using a time-marching approach to solve a system of ordinary 

differential equations (ODEs) is popular to  determine the transient directly. However, in  some 

cases the transient takes a long tim e to  converge to  the steady-state, resulting in an extremely 

expensive computational cost. For steady-state analysis, Harmonic Balance (HB) has been the 

dominant approach in  recent years. Though HB is one of the most im portant frequency domain 

techniques, i t  s till has some lim itations. In  particular, regular HB needs a good in itia l guess to  

converge to the desired solution. I f  a good in itia l guess of the solution is not provided HB analysis 

of oscillators may converge to  an unstable equilibrium  point or i t  may not converge at all. In  

oscillator analysis, i t  is especially d ifficu lt to  get a good in itia l guess of the oscillator frequency. 

Another problem o f the regular HB is tha t the number of harmonics is usually the same for a ll 

state variables and this number is always fixed during the simulation. I f  one state variable in  the 

c ircu it presents a strong nonlinearity, lots of harmonics are needed for th a t particu lar node while 

other nodes do not need so many harmonics. The simulation process may be time-consuming. 

A ll these lim ita tions restrict harmonic balance to  be used universally in  circuit analysis.

In  th is thesis work we made some developments to improve the ab ility  of oscillator analysis, 

searching a fast and accurate route to  discover both the transient and the steady-state solutions.

1
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Since the fast oscillator frequency and the relatively much slower transient variation in  the 

response of most of the oscillators, m ultip le  tim e axes are employed to  separate the c ircu it 

behavior, providing a possible way to  quickly compute the circu it response. A  variation of tha t 

method [1] is known as Warped M u lti-tim e  Partia l D ifferential Equation (W aMPDE) which is 

efficiently dealing w ith  the frequency m odulation in  oscillators in  m ultip le tim e domains. The 

system of ODEs is replaced by a system of pa rtia l differential equations w ith  one of the tim e 

axes focusing on oscillations and the other on the transient envelope. Based on W aMPDE, 

we present two robust and fast approaches, transient approach and steady-state approach, for 

precisely capturing the transient and steady-state response of oscillators in  m ultip le tim e domain, 

respectively. They both save considerable computational efforts compared w ith  the trad itiona l 

tim e domain analysis.

1. Transient Analysis

Here we address the problem of finding the W aM PDE boundary conditions corresponding 

to  a set of physical in itia l conditions. The key of this new approach is to build and solve a 

system of equations where the unknowns axe the boundary conditions of the W aM PDE th a t 

match the ODE result. The method starts by running a regular time-marching simulation 

o f the oscillator for a short tim e u n til some oscillations are produced. The analysis is trans­

formed from ODE to W aM PDE when frequency variation slows down. The ODE solution 

determines both  the in it ia l guess of the local frequency and an approximate mapping be­

tween m ultip le tim e scales. Once the correct boundary conditions are found, the W aM PDE 

method is used to  quickly find the transient and steady-state behavior of oscillators. A  new 

system called boundary condition system is established considering the mapping o f m u lti­

tim e axes and the ODE solution w ith  boundary conditions as unknowns. A fter solving th is 

system i t  is possible to  obtain the state variables as functions o f two tim e scales in  the 

subsequent W aM PDE analysis. This procedure transforms a portion of the ODE solution 

into the W aM PDE boundary condition w ith  accuracy. To reduce the computational cost 

resulting from the large amount of tim e steps during the W aMPDE simulation, an adaptive 

a lgorithm  is employed to  pre-determine the optimum tim e step size in  each line depending 

on the local truncation error. W ith  accurate boundary conditions and optimum tim e steps, 

the transient response is achieved in  a precise and quick way.
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2. Steady-state Analysis

The steady-state approach is based on a new adaptive harmonic balance technique derived 

from W aMPDE. To reduce the computational cost resulting from large amount of harmon­

ics required in  some strong nonlinear variables, an adaptive HB is used to  determine the 

number of harmonics for each state variable separately. The number of harmonics used in  

the calculation is always very close to  the m inimum required for the desired accuracy. This 

technique provides the following features: first, the oscillator frequency is traceable; sec­

ond, smaller computational effort is required compared w ith  the time-consuming transient 

analysis; and th ird , a good in itia l guess of the solution is not necessary. A n  adaptive tim e 

step control a lgorithm  and an adaptive tolerance are also used to reduce the computational 

effort.

1.2 Thesis Overview

A review o f the M PD E and W aM PDE concept is presented in  Chapter 2. Chapter 3 illustrates 

the procedure of finding the W aM PDE boundary conditions in  transient analysis and provides 

a case study. Chapter 4 develops the harmonic balance form ulation in m ultip le tim e axes to  

analyze the steady-state w ith  the same case mentioned in  Chapter 3. Simulation results of other 

two different oscillators are discussed and compared w ith  experimental results in  Chapter 5. In  

the last chapter we summarize the conclusion and propose the direction of the future work.

1.3 Publications

1. Lei (Lana) Zhu and Carlos E. Christoffersen, “Fast Transient Analysis of Oscillators Using 

M u ltip le  Tim e Scales w ith  Accurate In it ia l Conditions,” 2005 IEEE Canadian Conference 

on Electrical and Computer Engineering Digest, Saskatoon, May 2005, pp.700-703.

2. Lei (Lana) Zhu and Carlos E. Christoffersen, “Adaptive Harmonic Balance Analysis of Os­

cillators Using M ultip le  T im e Scales,” Proceedings of the 3rd International IEEE  Northeast 

Workshop on Circuits &  Systems, Quebec City, June 2005, pp.187-190.

3
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C hapter 2

Literature R eview

2.1 Introduction

Over the past several years Harmonic Balance (HB) has been under extensive research to 

improve lim ita tions mentioned in  Chapter 1. For example in  [2] HB equations are modified by 

including the Kurokawa condition to  elim inate the DC solution. In  [3] a voltage source probe 

at the fundamental frequency th a t is an open c ircu it at all other frequencies is inserted to avoid 

the DC solution. By means of an iterative process the amplitude and frequency of the probe are 

adjusted un til there is no current through the probe. A t th is point the autonomous solution is 

found. A  sim ilar probe concept w ith  the addition of a continuation method has been proposed 

more recently [4] to  improve convergence. However, the research work is s till going on to  explore 

a method which achieves the m inim um  number of harmonics required for the desired accuracy 

for each state variable to save the computational effort. Another point of view is the expensive 

computational cost resulted from  the long transient. Several techniques have been proposed to 

skip the transient and find the steady state directly. We mention here jus t a few. For example 

[5] provides a method to  find the steady-state of high-Q oscillators using the transient analysis 

in SPICE. In  [6], a Newton a lgorithm  is used to  find the periodic response and the period of 

oscillators quickly in  ligh tly  damped systems. However, the complete transient solution is s till 

not accessible in  these methods.

The concept of m ultip le tim e was firs tly  mentioned a few decades ago although its value in  a 

general context has been recognized recently. In  [7] Roychowdhury presented a new mathem ati­

cal form ulation and numerical method to  efficiently represent signals w ith  w idely separated rates

4
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of variation, transform ing the ordinary differential equation descriptions of a system into pa rtia l 

differential ones. In  [1] the m ultip le-tim e scale analytical formulation for oscillatory dynamical 

systems is presented. Here, we review the approach tha t Roychowdhury presented to  deal w ith  

two different type of signals: amplitude m odulation (AM ) signals w ith  M u lti-tim e  Partia l D if­

ferential Equation (M PDE) and frequency m odulation (FM ) signals w ith  Warped M u lti-tim e  

Partia l D ifferential Equations (W aM PDE).

2.2 M PDE

M PD E means M u lti-tim e  Partia l D ifferential Equation. I t  uses at least two tim e axes to

represent variables in some circuits which contain parts tha t vary at two or more w idely separated

rates. Such signal happens in many physical systems, for example, communication circuits,

switched circuits, electronic autonomous circuits, etc. Those kinds of systems are d ifficu lt to

analyze by using trad itiona l numerical integration algorithms since the c ircu it behavior is varied

in  different rates. In  M PDE, the derivatives in  the system of ODEs are replaced by:

dx(t)  _  d x ( t i , t 2) d x ( t i , t 2)
dt d t i  d t2

The circu it behavior is separated in  two different tim e axes: fast tim e (fx) and slow tim e (t2).

M PD E largely improves the computational effort. Consider a simple quasi-periodic oscillating

wave w ith  amplitude controlled by a slow sinusoidal signal [1],

y(t)  =  sin A )  s in ( ^ t ) ,  (2.1)
J-1 1-2

w ith  T i =  0.02s and T2 =  Is . This is an amplitude modulation signal shown in  Fig. 2.1.

I f  T2 is much larger than T\ (which is common in  A M  signals), it  w ill take a long tim e and 

many undulations to  observe a whole period. By separating y(t)  in slow (envelope) and fast 

(oscillation) dynamics, we transform the orig inal signal to  the m ultip le tim e representation,

y ( t i , t 2) =  s in ( ^ f i )  s i n ( ^ f 2), (2.2)
11 1 2

w ith  much fewer sampling points shown in  Fig. 2.2.

I t  is clear tha t the behavior of y ( t i , t 2) does not have as many undulations as y(t).  Moreover, 

the signal can be characterized by re latively few points which do not depend on the relative 

value of T i and T2. For example, 20 points were used in  each sinusoid to  generate Fig. 2.1, hence

5
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Time (s)

Figure 2.1: Example of an AM signal y(t).

>>-0.5

0.02
0.5

t2 (slow time)

0.015

0.005 ., , .
0 o (fast time)

Figure 2.2: MPDE representation of y(t).
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the to ta l number was 1000. Fig. 2.2 was plotted w ith  400 points on a uniform  of 20 x 20 grid, 

two times less than in  Fig. 2.1. In  some applications where rates are more w idely separated, 

the saving w ill be much more evident. I t  is also easy to  recapture y(t) from y ( t i , t 2) by simply 

setting t i  =  t 2 =  t. The advantage of this approach is tha t it  results in  large improvements in 

simulation speed compared w ith  regular tim e simulation. Tha t is the main reason why we use 

m ultip le tim e scales.

I t  is obvious tha t M PDE is a perfect technique to  solve amplitude m odulation signals, es­

pecially when the separation factor n (n — is a large number. However, i t  is not efficient 

when applied in  a frequency m odulation (FM ) signal which commonly happens in autonomous 

systems, such as oscillators. M PD E can not handle the changing frequency well. So we introduce 

another concept (W aMPDE) to deal w ith  the FM  problems.

2.3 W aM PDE

W aM PDE means Warped M u lti-tim e  Partia l D ifferentia l Equation. The local frequency is a 

function of tim e in  a FM  signal. W aM PDE makes this frequency undulation uniform  by warping 

one of the tim e scales in MPDE. As a result the local frequency is normalized to a constant value 

and the warped tim e becomes a function of time. The m ulti-tim e partia l differential equation 

can be represented as:
dx( t ) =  sd x ( r U T2) <9x ( t i , t 2)

dt 2 Oti 8t2

Also separating the circu it behavior in  two different tim e axes: the warped tim e T\ and the 

slow tim e r2. The warped function lo(t2) is chosen to  be an unknown function a priori , consistent 

w ith  the smooth phase condition along the real tim e axis. I t  also reveals the inherent and time- 

varying local frequency of oscillators. Tha t is one of the advantages of the W aM PDE approach. 

The result of W aM PDE is a m u lti-tim e partia l-d ifferentia l equation in warped and unwarped 

tim e scales, together w ith  a warped function describing the relation of the two tim e axes [1].

Consider a simple two-tone quasi-periodic FM  signal in  Fig. 2.3.

x(t)  =  cos{ip(t)) ~  cos((2-7r/0f) -F k cos(27rf 2t)), (2.3)

w ith  /o =  1MHz, f 2 =  20kHz and k =  87r. The local frequency or called instantaneous frequency

7
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is modulated by a slow sinusoidal signal,

f ( t )  =  ^  x =  /o -  k f 2 sin(27r f 2t).

Time(s) x10-4

Figure 2.3: Example of a FM signal x(t).

The waveform seems quite dense and not easy to  analyze in  Fig. 2.3. Following the same 

M PDE approach as for Eq. 2.1, we define the m ulti-tim e form as

x ( f i,  t 2) =  cos((27r/0f i )  +  k cos(27r/2f2)), (2.4)

w ith  two tim e axes used directly to  present the oscillation and the modulation, respectively. The 

bivariate waveform shown in  Fig. 2.4 is not a simple surface but including many undulations 

which is not easy to  sample along the f 2 axis. I t  is evident tha t FM -type signals cannot be 

handled efficiently by M PD E since the m ultip le representation is quite d ifficu lt to  analyze.

We use W aM PDE to  resolve Eq. 2.4, also separating the oscillation period and transient 

variation in m ultip le tim e axes. To surpass the fast undulations, we use a warped tim e scale tx 

instead of t \  to  normalize the local frequency and keep another time scale r 2 as the real tim e 

axis:

Z 2 ( t i , t 2 )  =  c o s ( t i ) ,  (2.5)

8
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Figure 2.4: MPDE representation of x(t).

w ith  x( t)  — x 2(<f>(t),t) and

n  =  4>{t2) =  27t/oT2 +  fccos(27r/2T2).

The warped tim e becomes a function of time. The result of x 2(t i , t2) is a m ulti-tim e expres­

sion in  warped and unwarped tim e scales shown in  Fig. 2.5.

There are much less undulation than Fig. 2.4 and the signals can be sampled w ith  relatively 

few points since the rescaled tim e axis stretches and squeezes the real tim e axis differently at 

different times to  even out the period of the fast undulation. A  mapping between warped tim e 

( r j)  and real tim e (r2) function which is a curved path is also established in Fig. 2.6.

The solution of W aM PDE is not unique. For example, i f  we set

Z3(V i, T2) =  cos(t i +  27r/2r 2) (2 .6 )

w ith  x{t )  =  x 3(<f>(t),t) and

n  =  4>(t2) =  27r / 0r 2 + k cos(27t / 2t 2) -  2ixf2T2.

We also get another W aM PDE representation. The W aM PDE result is plotted in Fig. 2.7, 

as well as the warped function represented in  Fig. 2.8.

9
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Figure 2.5: The first WaMPDE representation of x(t).
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Figure 2.6: The relation between T\ and t .̂
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Figure 2.7: The second WaMPDE representation of x(t).
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Figure 2.8: The relation between T \  and T2 .
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Although we select different T\ , the m ulti-tim e representation is s till smooth and retains the 

same property of being easy to sample. The warped function which also describes the local 

frequency is sim ilar to Fig. 2.6. I t  seems tha t W aM PDE is efficient and effective to solve FM  

problems when the two frequencies vary at w idely separated rates. I t  is also easy to  recover the 

in it ia l signal by sim ply setting:

‘  T2 =  t

n  =  4>{t2) =  4>{t)

2.4 Comparison of M PDE and W aM PDE

Since M PDE and W aM PDE are a ll m ulti-tim e partia l differential equations some sim ilarities 

remain between two formulations. Also they have the ir own characteristics.

Firstly, we po in t out differences. The differences between M PDE and W aM PDE are:

1. In  M PDE method, two tim e scales t \  and t 2, all represent the real tim e t, though they are 

sp lit in to slow and fast dynamics; while in  W aM PDE the warped tim e iq which is a function 

of the real tim e t2 has no meaning of real time.

2. W aM PDE requires a mapping between warped tim e and real time to  represent the relation 

of two tim e axes while M PD E does not. The { t \ , t 2) plane in M PD E is a straight-line 

whereas the (t\, t 2) plane in  W aM PDE is a curved path.

3. M PDE only deals w ith  oscillatory systems w ith  constant frequency. W aM PDE is used to  

analyze free-running oscillatory systems w ith  time-varying oscillation frequency, no m atter 

whether i t  is known or not.

4. In  M PDE derivatives w ith  respect to  tim e are substituted as follows:

dx(t)  _  d x ( t \ , t 2) d x ( t \ , t 2)
dt d t i  d t2

while W aMPDE:

dxi t )  v<9x(ti,t2) , <9x(ti,t2)
—IT-  =  uj[T2)-------------- X-1-------3-------dt oti  ot2

w ith  warped function lu(t2) and 7q — 4>(t2).

12
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The sim ilarities between M PD E and W aM PDE are the following.

1. They are appropriate to  represent signals varying at two or more widely separated rates.

2. They a ll preserve the rectangular shape of the domain box.

3. The original signal is easy to recover.

4. The computational tim e is usually much faster than the regular tim e domain sim ulation 

when the system is in  two or more w idely separated rates of variations.

5. M PDE is a special case of W aM PDE form by simply setting: iq — </>(r2) =  t.

2.5 Boundary Conditions in W aM PDEs

To solve the WaMPDEs, i t  is necessary to  firs t specify boundary conditions (BCs) which are 

imposed on differential equations to  f it  the solution in  a particu lar situation. BCs describe the 

behavior at the edges of the simulation region and different BCs lead to different quasi-periodic 

and envelope-modulated solutions. A  system of nonlinear algebraic equations can be solved 

numerically w ith  BCs by applying time-domain or frequency-domain methods. These methods 

w ill be described in  the next chapter. In  th is section, we focus on how to  obtain the BCs in  

WaMPDEs. I t  is not easy since we need a whole line in  (t i , 0) plane, and this issue is not explored 

w ith  detail in  the literature.

Here we discuss some possibilities of getting the BCs in  WaMPDEs. The firs t th ing is to  

rew rite the c ircu it’s equations in  terms of m ultivariate functions, in  effect transform ing the ODEs 

in to  WaMPDEs. Therefore, in itia l condtion which is usually a discrete point (t =  0) in  ODEs is 

required to transform to  a continuous line in  W aM PDE (ly, 0). The procedure to obtain the BCs 

of W aM PDE is illustrated as follows. F irst, the in itia l value x(0) of ODEs corresponds to  f  (0, 0) 

in  WaMPDEs. Secondly, we can use one fu ll period of the ODE solution or the interpolation of 

two periods of the ODE solution as a BC for ( t i ,  0) line and the periodic condition along iy  is:

x (0 ,r2) =  x ( 2 i r,r2)

Then this appropriate BC leads to  periodic solutions in  the 7y tim e axis and envelope- 

modulated solutions in  the r 2 tim e axis.

In  steady-state analysis, we consider periodic BCs:

13
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I x(0, r 2) =  x(2n,  r 2)

[ x ( r i,0 )  =  x (t i , t2)

2.6 Oscillator Theory

Oscillators are those kinds of circuits which have periodic output signals but w ithout periodic 

inpu t signals [8]. They are widely used in  electrical and communication engineering systems. 

In  th is section we w ill review the general structure of oscillators along w ith  the condition of 

oscillations and indicate the importance of th is thesis work.

Electronic oscillator circuits are always feedback networks whose purpose is to  control the 

frequency of oscillations. Fig. 2.9 shows the necessary components of an oscillator. I t  contains an 

amplifier w ith  frequency-dependent forward loop gain G(ju>) and a frequency-dependent feedback 

network w ith  feedback gain H ( j u ) .

G(jw)

H(jw)

Figure 2.9: Block diagram of an oscillator.

The output voltage is given by

=  VjG(Ju)
0 1 +  G( ju )H( jco )

To sustain oscillations, the c ircu it must obey the Nyquist criterion [8] at the oscillation 

frequency :

G ( j u 0) H ( ju )0) =  - 1 .

Those are two conditions to  occur oscillations: the magnitude of the open-loop transfer 

function is equal to 1 and the phase shift is 180 degree.

There are several types of oscillators, such as LC-tuned bipolar oscillator, Colp itts oscilla­

tor, voltage-controlled oscillators (VCO). VCOs are usually designed using the C lapp-Gouriet
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configuration shown in Fig. 2.10 which splits the oscillator in to two parts: tuning elements w ith  

positive resistance to  determine the oscillation frequency and the transistor w ith  negative resis­

tance to compensate for all the losses. The diode D i  to  tune the oscillator frequency is added 

in  series w ith  the inductor L\ .  The varicap is connected to  a DC tuning voltage Vdc. A  negative 

resistor r, in  series w ith  the tuned c ircu it is a must to  m aintain oscillations .

V.dc

ST> G

Rl

Figure 2.10: A sketch figure of VCO with a negative resistance rj.

For oscillation to  occur the negative resistance must be equal or larger than the positive 

resistance [8]. There is also a lim it to the values of capacitances C\  and C2 at a certain oscillating 

frequency. The condition for sustained oscillation is:

<2-7>
w ith  inpu t impedance r,, transistor’s m utual conductance gm and the oscillation frequency to. 

Thus the internal resistance of the inductor is satisfied w ith:

r  <  Ti. (2.8)

I f  a large operating frequency range is to  be achieved, C\  and C2 must be made large and 

the inductor must have a high Q so tha t the internal resistance r  is small. The oscillation occurs 

at a local frequency to which is given by

15
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where C'd  is the varicap junction  capacitance.

In  most cases the simulation is the only way to  find the oscillation amplitude. Therefore, 

the simulation of the steady-state and the transient response of oscillators are always significant 

aspects in  circu it analysis. Because of the extremely long simulation tim e in some oscillators, 

robust and fast approaches for capturing both  the steady-state and transient response become a 

must. However, i t  is often d ifficu lt to  analyze the response of a general autonomous system in  a 

satisfactory manner. A  variation of tha t method is known as W aM PDE which has already been 

reviewed in the previous section. In  th is thesis work we develop two fast and accurate approaches 

to  solve the steady-state and transient behavior of oscillators respectively in frequency domain 

based on W aMPDE. References [1, 9, 10, 11] are a few examples as well as those mentioned 

in  Chapter 1 [2, 3, 4]. Other relevant developments are the exploitation of frequency-domain 

latency in  HB [12, 13] and the use of fast transients to  find the steady-state regime [10, 14], The 

techniques in  [12, 13] take advantage of the fact tha t in  most circuits the number of harmonics 

necessary to  represent each variable (voltage, current) is not the same. By using a different num­

ber of harmonics in  each variable or compressing the transient behavior, a significant reduction in  

the computational effort is achieved. In  order to  accelerate the finding of the steady-state regime, 

the transient behavior of the c ircu it is a rtific ia lly  reduced in  [14], In  [10], an envelope-transient 

analysis is used to  improve the convergence of the shooting method. From the next chapter, we 

w ill propose two new approaches try ing  to  capture the steady-state and transient response of 

oscillators in  a fast and precise manner.
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C hapter 3

Transient A nalysis

Transient analysis of oscillators is one im portant area in  circu it analysis although i t  usually 

requires a long simulation tim e as mentioned in  Chapter 1 . In  [7], m ultip le tim e axes are employed 

to  separate the fast and slow variations in  the response of oscillators, giving a possible way to 

quickly compute the transient. The System of ODEs is replaced by a system of partia l differential 

equations. I f  an accurate transient analysis is required, the in itia l conditions in  the ODEs must 

be precisely mapped into boundary conditions in  W aMPDE. A t the beginning of th is work the 

boundary conditions in  the W aM PDE axe approximated using the values of one period of the 

ODE solution or the interpolation of two periods of the ODE solution to  map the result to 

the W aMPDE domain as mentioned in  Chapter 2. However these simple methods to find the 

boundary conditions are not accurate enough to produce results consistent w ith  the ODE result. 

This problem has not been treated so far. In  th is thesis work we present a method to accurately 

perform this mapping and thus allow the transient analysis of oscillators w ith  any in itia l guesses. 

In  th is chapter we w ill firs t analyze an ideal VCO circu it to  further illustra te  the efficiency of 

W aM PDE form ulation and the importance of boundary conditions in  W aMPDE. Secondly the 

m otivation of the new approach w ill be pointed out and the transient method w ill be proposed 

in  detail. A  case study of a LC-tuned bipolar oscillator is used to  demonstrate the performance 

of the new method in  the last section.

3.1 Motivation: The Analysis of A Simple VCO Circuit Using W aM PDE

In  this section, we simulate a simple c ircu it using numerical techniques derived from the 

W aM PDE to  explore the voltage and current representations in  m ulti-tim e domains. The c ircu it
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is an ideal VCO w ith  C  =  1 / (27r) pF, Cm =  1 / (47r) pF, and L  =  l/(27r) pH  shown in  Fig. 3.1

[ ! ] ■

LPFVCO

Figure 3.1: An ideal VCO circuit.

This VCO consists of a nonlinear resistor followed by a LC tank in  parallel (resonator). The 

frequency is determined by the inductor L  and the capacitors: C  and Cm. Part of the tank 

capacitance is varied by a separate control voltage Vc, which allows the frequency control.

The nonlinear resistor is represented by:

u
iR =  f { u )  =  {Go -  G00)Vrfctanh(— ) +  G ^u .

Vk

where Go =  —0.1, G ^  =  0.25, and Vk =  1 . The capacitor voltage uc and the inductor current 

i i  are a series of fast resonance sinusoids whose frequency and amplitude are modulated at a 

much slower rate. In general, i t  is hard to  solve both  the frequency m odulation and amplitude 

m odulation in  oscillatory system w ith  trad itiona l tim e domain method. Here we solve them in  

warped m ultip le tim e domains. Since the nominal oscillation rate of oscillators is very fast, i t  

separate the comparatively slow part —  FM  and A M  from the original signal. The oscillator 

behavior is discretized in  two tim e axes: the warped tim e axis T\ (fast) and the real tim e axis 72 

(slow). Then we build  up the nonlinear equations and solve them w ith  Newton-Raphson Method 

[15]. The warped function represents the changing local frequency of VCO and is an unknown 

function. Therefore, i t  was considered as one of the unknowns in  the nonlinear equations.

3 .1 .1  O D E  A nalys is

The control voltage Vc is varied w ith  two different periods:

O-TT
Vc =  1.5cos(— )t, (3.1)
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Ti =  3 x 10 5s for fast variation shown in Fig. 3.2 and T2 =  1 x 10 3s for slow variation.

>  °-5 
<uO)

S-0.5

-1 .5

Time (s) x 10'5

Figure 3.2: The fast varying control voltage.

Since the control voltage is 1.5V when t  =  0, the in itia l local frequency of VCO is:

f 0 =    -1  -  =  =  0.75M H z
2 tt ̂ L { C  +  CmVa)

The local frequency as a function of tim e is given in:

f  1 1
LQ 2 i r \ J  L (C  +  CmVc) V I +  0.75 coswct

which is controlled by the control voltage and varies by a factor of almost 3 shown in Fig. 

Based on KCL, the current relation in  th is oscillator is:

i R  +  V  +  i c  — 0,

w ith

(V  =  i  f  U L d t

  dQ   dUC+CmVc)uc]   dl(C+Cm.Vc)uc]   x y  \  dur i r~< dVr „ .

l C — dt ~  dt ~  dt ~  ^  v c) dt ^  dtt

Based on K V L, the voltage relation is defined as:
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Figure 3.3: The local frequency.

uL =  uc =  uR =  u , (3.4)

w ith
|  Uc- L ^  =  0

\ i L  +  (C  +  CmVc) ^  +  Cm<$uc - f { u c) =  0 

w ith  two state variables: capacitor voltage uc and inductor current i R. The in itia l condition is 

set to be ucq =  0 and ilo — —IA .  We obtain the waveform of the capacitor voltage in  Fig. 3.4 

under the fast varying control voltage w ith  explic it Runge-Kutta method by using the command 

ode45 in  M atlab [16].

The frequency m odulation and the amplitude m odulation are clear in  transient of the state 

variable. The simulation is started again under the slow varying control voltage and the result 

is shown in Fig. 3.5.

I t  is obvious th a t the control voltage modifies not only the local frequency, bu t also the 

amplitude and shape o f the oscillator waveform [1]. Since i t  takes long computational tim e to  

generate Fig. 3.5 (about 200 seconds), and the fact tha t the oscillation and the envelope transient 

are two widely separated rates of variations, we use W aM PDE to  separate those two variations
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Figure 3.4: Capacitor voltage under fast varying control voltage.

Figure 3.5: Capacitor voltage under slow varying control voltage.
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in order to reduce the simulation time.

3 .1 .2  3 -D  W a M P D E  A nalysis

The VCO is analyzed by using numerical techniques derived from W aMPDE. The procedure 

of W aM PDE analysis is illustra ted as follows. F irstly, locate in itia l guesses on m ultip le tim e 

grids ( t i ,  t 2). The relation between tx and r 2 is defined by:

Secondly, build up the nonlinear equations. The ordinary differential equations (Eq. 3.3 and 3.4) 

are replaced by the partia l differential equations in  m u lti-tim e domain:

The warped function w (r2) is an additional unknown tha t must be calculated for each value

equal to  the number of equations. This is achieved by setting the phase of one of the variables 

to an a rb itra ry  value to  reduce one unknown,

So we solve those nonlinear equations w ith  the Newton-Raphson Method (see the Appendix 

A ) for each value of r 2:

The m ulti-tim e expression of the capacitor voltage is achieved by using some numerical 

techniques. Three methods, F in ite  Time-domain Method (FD TD ), Harmonic Balance (HB), and 

Base Function Method (BF) are discussed in  the following part to  achieve numerical solutions of 

the W aM PDE expression.

where a>(r2) is the unknown local frequency of the oscillator which is a function of real tim e r 2.

(3.6)

of t2. The phase of one of the variables is then fixed to  restore the number o f unknowns to  be

E 3 ( r i , r 2 )  =  u c ( 0 , t 2 )  =  0 . (3.8)

x — uc i i  u>

F =  F x F2 F3
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F in ite  D iffe ren ce  T im e -d o m a in  M e th o d  ( F D T D )

F in ite  Difference Time-domain M ethod (FD TD ) is a straightforward way to numerically solve 

time-domain differential equations tha t describe a nonlinear system [17]. The solution o f the 

ODEs is discretized in  warped and real tim e axes. The unknowns are values along t \  axis which 

is periodic for each value of r 2. The key work is to  obtain a formula to compute uc ( t \ („), T2(m)) 

as a function of previous points. The tim e step of each grid is defined as

{
■̂1 =  T (n )  T (n —1)

^2  72 (m) 72(m—1)

Those differentiation operators can be replaced by an approximate expression, such as Back­

ward Euler (BE) Rule, Central-difference formula, Five-Point formula, or Trapezoidal Rule ac­

cording to  the desired accuracy [15]. Here we use Five-point formula to  represent the differenti­

ation operators along t x tim e axis:

dx(Ti,T2) __ x ( t i  -  2h1, r 2) -  8 x { t i  +  hi, r 2) +  8 a:(n -  hi, r 2) -  x ( t x +  2hlt r 2) 
d Ti 12h\

and Backward Euler Rule to  represent the d ifferentiation operators along r 2 tim e axis:

d x ( n , r 2) _  x ( t i , t 2) -  x ( t i , t 2 -  h2) 
d r2 h2

The nonlinear equations are discretized along two tim e axes and solved w ith  Newton-Raphson 

Method. The W aM PDE expression of the capacitor voltage under fast varying control voltage 

is shown in Fig. 3.6, together w ith  the warped function c j(r2) in  Fig. 3.7. The in itia l guesses are 

set to be rtco =  0 and i lo  =  —171, the same as the ODE analysis. The boundary condition of the 

capacitor voltage is manually set to  be a sinusoidal wave along t x w ith  an amplitude 1 V.

Compared w ith  the trad itiona l tim e domain analysis, the m ulti-tim e expression also repre­

sents the frequency m odulation and amplitude modulation, bu t the waveform is much easier and 

clearer to analyze. The warped function relates to  the inherent property of the nonlinear c ircu it 

since the Fig. 3.7 is simular to  the local frequency shown in  the Fig. 3.3.

The W aM PDE expression of the capacitor voltage under slow varying control voltage is shown 

in  Fig. 3.8. As expected, the am plitude of the oscillation changes very lit t le  for the capacitor 

voltage which is consistent w ith  ODE result. I t  also validates tha t the control voltage controls
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Figure 3.6: WaMPDE representation of capacitor voltage in fast varying control voltage (FDTD).
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Figure 3.7: Warped Function (FDTD).
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The warped time taul 0 o The real time tau2 (s)

Figure 3.8: WaMPDE representation of capacitor voltage in slow varying control voltage (FDTD).

both  the amplitude and the shape of the oscillator waveform. The computational tim e is almost 

one sixtie th of the trad itiona l time-domain analysis.

Employing some small error numerical differentiations, such as Five-Point Rule, is a good 

way to  improve the accuracy of the result. Decreasing h i  or h2 also improves the accuracy of 

the simulation. We use fast varying control voltage as example. Fig. 3.9 shows the result for 50 

points in  each side.

Excellent accuracy was achieved in  Fig. 3.9. However, the computational effort required to  

compute the solution is increased since a greater number of steps are required to cover a constant 

tim e interval. The smaller the tim e steps, the longer the computational time.

H a rm o n ic  B a lan ce  A na lys is  (H B )

Harmonic balance is one of the most popular frequency-domain techniques to  study the steady- 

state response of nonlinear systems. I t  is based on a Fourier-series expansion of state equations. 

When used on circuits behaving only w ith  few harmonics, harmonic balance is significantly more 

efficient than trad itiona l time-domain method since the number of Fourier coefficients may be 

smaller to  achieve the same accuracy represented in  the tim e domain.

In  W aMPDE, the solution along the warped tim e axis is solved in  the frequency domain. The
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Figure 3.9: Capacitor voltage with 50 points in r i and r2.

unknowns are the Fourier Coefficients along t1 corresponding to each value of 72 . The imaginary

where X (k )  is the Fourier coefficient of the kth harmonic. The higher the k, the smaller the 

absolute values of X (k ) .  Large number of harmonics improves the accuracy but slows the com­

putational speed. The number of the harmonics considered has a m ajor impact on the accuracy 

of th is method. This method is particu la rly  appropriate for this VCO circu it due to  the sinu­

soidal characteristic along the warped tim e axis. O nly three harmonics were considered in  the tx 

tim e axis, and 20 points were sampled along the r 2 tim e axis. The computational tim e is much 

faster than the tim e domain method and the results shown in  Fig. 3.10 and Fig. 3.11 are exactly 

the same as FD TD .

Here we give some brief discussions about the transient behavior of th is VCO circuit. Very 

small in itia l guess (uco =  0 and ilo =  —0.01 A) is employed to  observe the transient response. 

In Fig. 3.12 VCO enlarges its amplitude t i l l  i t  gets steady-state which is exact the same as the

part of the fundamental frequency of one of the state variables is set to  be zero as the forcing 

function to solve the warped function w (r2). The key work of Harmonic Balance is to  express 

the state variable x  as a Fourier series:

(3.9)
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Figure 3.10: WaMPDE representation of capacitor voltage in fast varying control voltage (HB).
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Figure 3.11: The local frequency (HB).
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previous analysis. The detail o f achieving transient or steady-state solution w ill be addressed in  

the subsequent chapter.

2l

x 10
The warped time taul

Figure 3.12: WaMPDE representation of capacitor voltage with small initial guesses.

Base F un c tio n  M e th o d

Base function is a novel technique to  obtain the periodic steady-state response of nonlinear 

circuits [18]. Compared w ith  harmonic balance, i t  has the potentia l to  use fewer parameters to  

represent state variables in  nonlinear circuits. Each state variable x(t) is expressed by a linear 

combination o f basis functions. We use this technique to find the solution along the warped tim e 

axis Ti, such as

x ( n )  = x (t\, a) =
n— 1

E K + l ^ + l ( h )  +  0-2 i+2^2 i+2{jl) +  a 2 i+ 3 < P 2 i+3 (r l )  +  
i= 0

w ith  function values a2i+ i, ^21+3 , function derivatives a2,+2 , a2i+4 , and base functions <p(ri). O nly 

three points in one period are considered due to  the sinusoidal characteristic in  this VCO c ircu it. 

The unknowns are values and derivatives at each chosen point. The capacitor voltage when 

T\ =  0 is fixed as the forcing function. The results are sim ilar to  previous analysis w ith  a much 

smaller computational effort. I f  the periodical solution consists of many harmonics, this method
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performs much better than HB since the unknown quantities for HB are largely increased. The 

W aMPDE results by using base function method are shown in  Fig. 3.13 and Fig. 3.14.

The warped time taul o o

Figure 3.13: WaMPDE representation of capacitor voltage in fast varying control voltage (BF).

We mentioned before tha t the forcing function is not unique. Different warped functions 

result in  different m ulti-tim e expressions of the selected node voltage or branch current. Here, 

we fix  the inductor current when r x =  0 as the forcing function. The W aM PDE results are shown 

in  Fig. 3.15.

The m ulti-tim e expression is different from what we discussed above. B u t the single tim e 

expression should be the same i f  we transform  the waveform from m ultip le tim e domain to  single 

tim e domain. This is discussed in  the next section.

3 .1 .3  2 -D  W a M P D E  A nalys is

The W aM PDE method gives a possible way to  largely reduce the computational effort in  

some nonlinear circuits. In  this section we discuss a procedure to  switch the waveform from  the 

m ultip le tim e domain to the trad itiona l tim e domain. I t  is easy to implement since the re lation 

of Ti and T2 has been already defined in  Eq. 3.5. The mapping between two tim e axes is the 

integral of the local frequency (see Fig. 3.7) which is a curved path shown in  Fig. 3.16. The 

warped tim e r x represents the phase accumulation. The oscillation period was divided by the 

normalized period 2 t  {i.e., u> =  1 ) along r x.
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Figure 3.14: The local frequency (BF).

The warped time taul

Figure 3.15: WaMPDE representation of capacitor voltage in different warped function.
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Figure 3.16: The relation of two time axes.

Linear in terpolation is used to  find the m iddle value between two known points since the 

tim e interval was very small. I t  allows the prediction of an unknown value i f  any two particu lar 

values on the same scale are known and the rate of change is assumed constant [19]. The formula 

for linear in terpolation is

d — d\ +  —— —  (<^2 — ^ i)
92 ~  9 i

w ith  desired value (g , d) and two closest approximations dx) and (<?2 , (h). The transform ation 

is applicable in  either fast or slow varying control voltage. As presented in  Fig. 3.17 and Fig. 3.18, 

the waveforms present frequency and amplitude modulation, sim ilar to  the ODE result. I t  also 

proves tha t W aM PDE is accurate and efficient to  solve the FM  and A M  in nonlinear circuits.

A  small section (a few cycles around 5us) of the 2-D W aM PDE output which is derived 

from FD TD , HB or Base function method, is compared w ith  the ODE result w ith  the different 

number of points along T2 shown in  Fig. 3.19. I t  shows tha t the greater the number of points, 

the smaller the phase error between W aM PDE and ODE result.

We also summarized the comparison of these three methods in  table 3.1 and the computa­

tiona l tim e of trad itiona l tim e domain method in  table 3.2. I t  is obvious tha t a long simulation 

tim e is needed in  trad itiona l tim e domain method especially under the slow varying control vo lt­

age. W aM PDE exhibits its strong ab ility  of saving the computational effort. This is one of the
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Figure 3.17: 2-D WaMPDE representation of capacitor voltage in fast varying control voltage.

Time (s) x10-3

Figure 3.18: 2-D WaMPDE representation of capacitor voltage in slow varying control voltage.
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  ODE result
* 2 -D  WaMPDE output (20 points)
■ 2 -D  WaMPDE output (200 points)
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Figure 3.19: Comparison of ODE result with 2-D WaMPDE.

most significant advantages of th is formulation. Compared w ith  three methods, HB and Base 

function method perform better than FD TD  since this VCO circu it has a sinusoidal characteris­

tic. In  general, HB is the best choice i f  the c ircu it only contains a few harmonics. Base function 

method is more efficient i f  the solution has many harmonics. Therefore, the choice of the method 

depends on different system and different requirements.

WaMPDE-based numerical method is a novel approach to efficiently present frequency and 

amplitude modulations in  oscillators. The m ulti-tim e expression is easy to  obtain either in  the 

tim e domain or in  the frequency domain. Considerable computational cost is saved compared 

w ith  the trad itiona l tim e domain method. The m ulti-tim e expression also reveals the direction to 

get the local frequency of oscillators. Three methods —  F in ite  Difference Time-domain method, 

Harmonic balance, and Base functions method, are all successful in  achieving correct W aM PDE 

m ultivariable representations. A ll those advantages makes W aMPDE powerful in  circuit sim­

ulation. But there is a large phase error between univariate solution and the trad itiona l tim e 

domain simulation due to  the inaccurate boundary conditions. In the coming section we w ill 

present a new approach to obtain the accurate Boundary Conditions (BCs), try ing  to capture 

the transient response o f oscillators precisely in  m ultip le  tim e domains.
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FDTD t 2 = 2 0 II o

o00IIp t2=160

T\ (points) 20 20 30 30

Computational Time (s) 2.687 4.437 16.953 34.406

Amplitude Error (%) 1.343 1.552 1.078 1.143

Phase Error (rad) 3.687 1.704 0.846 0.144

HB

oCMIIp oIIP oooIIp

t2=160

ti (harmonics) 3 5 5 7

Computational Time (s) 0.594 2.844 3.860 7.485

Amplitude Error (%) 2.730 0.498 0.315 0.105

Phase Error (rad) 4.437 1.591 0.818 0.344

BF t 2 = 2 0

OIIP o00IIp t2=160

T \  (intervals) 3 4 5 6

Computational Time (s) 0.516 0.906 2.672 6.469

Amplitude Error (%) 4.376 2.781 1.171 0.047

Phase Error (rad) 0.712 0.198 0.103 0.006

Table 3.1: Comparison between three methods achieving WaMPDE.

ODE (Tolerance: le-8) Fast Varying CV Slow Varying CV

Computational Time (s) 2.375 198.844

Table 3.2: Computational time of the ODE result.
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3.2 The Proposed M ethod
3 .2 .1  G e n e ra l E q u a tio n  F o rm u la tio n

Let the c ircu it be described by its nodal equations:

Gu(t) +  C ^  +  /  iu i t ) )  =  S(t), (3.10)

here u(t)  is the vector of nodal voltages and selected branch currents; G is a m atrix  of conduc­

tances, such as resistors; C  is the m a trix  representing the linear charge terms, such as inductors 

or capacitors; Q (u(t))  and I ( u ( t )) are vector functions corresponding to  the nonlinear devices, 

such as voltage controlled capacitors or nonlinear resistors; and S (t) is a vector tha t represents 

the power supply sources.

In  the proposed method, whatever dealing w ith  the steady-state or the transient behavior, the 

periodic solution in the warped tim e t \  is solved using the Harmonic balance technique (frequency 

domain) and the solution in  the 72 d irection is solved using a time marching technique (tim e 

domain). This arrangement is usually known as one of the envelope transient analysis. Each 

element of the u(t)  vector is now represented by a function of two tim e variables un(Ti,T2 ) (n  

denotes the node index) and is represented by a set of time-varying phasors,

u „ ( r i , 7-2) =  5R If: f/nfc(r2) e ^ l , (3.11)
U=o J

where k is the harmonic number and the period in  the warped tim e scale ( r i)  is normalized to  

2n (i.e., u  =  1). Eq. (3.11) is now form ulated in each frequency by using Fourier coefficients:

8Uk 80k
(g  +  c n k)uk +  c —  +  n fcQfc +  +  i k -  s k =  o, (3.12)

d r 2 o t 2

here, =  j k u 0(T2). The Q k(Uk), I k(U k) and Sk vectors are a ll functions of r 2. I h and Q h 

are normally evaluated using the discrete Fourier transform  (D FT). Eq. (3.12) is discretized in  

the 72 direction using the Backward Euler (BE) Rule or the Trapezoidal Rule. The resulting 

algebraic nonlinear system is then solved w ith  the Newton-Raphson method for each value o f r 2.

As mentioned in  Chapter 2, the fundamental frequency cj0 ( t2) is an additional unknown th a t 

must be calculated for each value of r 2. The phase of one of the variables must then be fixed 

to  restore the number of unknowns to  be equal to the number of equations. Tha t is usually 

achieved by setting the imaginary part of one of the variables to  be a fixed value. For example,
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we can set the imaginary part of the fundamental frequency to be a fixed value a,

3 ( E £ ) = a .  (3.13)

3 .2 .2  T ran s ien t A nalys is  w ith  W a M P D E

As stated in  Chapter 1 , finding accurate in itia l conditions is essential in  transient analysis. 

In  W aMPDE, the boundary conditions along Ti when t 2 =  0 are required to  be precise. F irstly, 

we show a comparison between ODE result and W aM PDE w ith  boundary conditions from DC 

bias point in  Fig. 3.20 to illustra te the importance of boundary conditions in  envelope-transient 

analysis.

—  ODE simulation result 
» WaMPDE simulation with loose boundary conditions

2 4 6 8 10 12
Time (s) x10-s

Figure 3.20: The comparison of ODE and WaMPDE with boundary conditions from DC bias point.

From Fig. 3.20 there is a large difference between two waveforms. Tha t means the boundary 

conditions of W aM PDE can not be a rb itra rily  set. The boundary conditions along t i  for the 

in itia l value o f r 2 depend on the in it ia l response of the oscillator and the mapping function T i( t2 ). 

A  simple approach is to  obtain the boundary conditions of W aMPDE from one period of the 

ODE result or from the interpolation of two periods as shown in Fig. 3.21. Those calculations 

can give inaccurate results (note th a t the mapping function r 1(r2) is not known a p r io r i ).

In  this thesis we provide a new approach to obtain precise boundary conditions to  improve the 

accuracy of the W aM PDE method. Fig. 3.22 shows the procedure of obtaining precise boundary
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Figure 3.21: Relation between T\ and r 2.

conditions.

The approach is summarized as follows. F irstly, run the ODE u n til some oscillations are 

produced. Secondly, filte r one of the state variables from the ODE result to  determine an 

in itia l guess of the local frequency. A  band-pass filte r is used to  remove the DC component 

and harmonics higher than the fundamental frequency. A  mapping between Ti and T2 (like the 

one shown in  Fig. 3.21) is created according to  the zero-crossing points in  the filtered waveform 

since there is only the component of the fundamental frequency left. For example, the first zero- 

crossing point can be set to  represent the phase zero; the second one represents the phase 7r; the 

th ird  one represents the phase 27t, and so on. We use a straight line to connect these points in  

the ( t j ,  t 2) plane under the condition of the slowly changing frequency in  circuits. This mapping 

continues for two or three periods. Linear or polynom ial interpolation is used to  calculate the 

state variables at two fixed values of r 2 (a or b) corresponding to  two vertical lines shown in 

Fig. 3.21: ( r i ,a )  and (ti,£>). Th ird ly, bu ild  up the boundary condition equation:

uode( t ) -  [« (r lt  a) +  _  =  Q
o — a

Here t  C (a, b) and r 2 =  t. A fte r discretization, the vector corresponding to  u(r \ ,b )  is calculated 

using the W aM PDE method w ith  u { r l) a) as boundary conditions. Eq. (3.12) and Eq. (3.14) form
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Figure 3.22: The procedure of getting precise boundary conditions.
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a system of equations tha t is solved w ith  the Newton-Raphson method. The system is called 

Boundary Condition System (BCS). The unknowns are u { r i ,a ) ,  u (t i , b) and the local frequency 

cjo(O). The local frequency loo(0) is an additional unknown tha t must be calculated when r 2 

equals to W aM PDE starting time. The phase of one of the variables is then fixed to  restore the 

number of unknowns to  be equal to the number of equations. That is achieved by setting the 

imaginary part of one of the variables to be equal to  reduce one unknown, such as:

9 ( I / * ( a ) )  =  9 ( ^ ( 6 ) ) .

The b value is autom atically changed along w ith  the local frequency in  each Newton iteration. 

As a result the tim e interval of ua(ie is adaptively adjusted to  improve the accuracy of the final 

solution.

Fourthly, continue the transient analysis using the W aM PDE method starting w ith  the 

boundary conditions found before. I t  is mentioned here tha t we can restore ODE from W aM PDE 

at any time. T ha t is easy to  implement since the mapping between the two tim e axes has already 

been obtained in  Eq. (3.5). As shown in  Eq. (3.12), the periodic solution in  the warped tim e T\ 

is solved by the HB technique. The unknowns are changed to  Fourier coefficients of each node 

voltage for each value of r 2.

Since the focus is on the transient i t  is very im portant to  estimate the local truncation error 

o f each tim e step. The local truncation error is calculated by the difference between the result 

o f numerical integration method and the extrapolation approximation,

e =  max(U% -  U£redlct).

e is compared w ith  some maximum allowable value emax to  evaluate the accuracy of the transient. 

The result w ill be rejected i f  e is larger than emax. Adaptive tim e step control algorithm  is used 

in  order to m inim ize the number of tim e steps. The flow chart o f adaptive tim e steps in  transient 

analysis is shown in  Fig. 3.23.

The time-step along r 2 is adaptively changed by the local truncation error which pre­

determines the next optim um  step size [2 0 ],

K ew =  hold{ ^ ) ^ ,

where m  — 2 in  linear in terpolation and m  =  3 in  quadratic interpolation. This results in
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Figure 3.23: The flow chart of adaptive time steps.

W aM PDE expression w ith  fewer tim e steps and therefore substantially reduces the computational 

cost and improves the accuracy in  the transient simulation.

3.3 Simulation Result and Discussion

The transient analysis of a LC-tuned oscillator employing the proposed method is presented 

in  this section. This example illustrates the main features of the proposed method: precise 

boundary conditions and faster computational tim e by using W aM PDE and an adaptive tim e

step algorithm. Fig. 3.24 shows the schematic of a LC-tuned bipolar oscillator, which was one

of the autonomous c ircu it examples in  [10]. In  th is c ircu it C i =  C2 =  33 pF, C3 =  3.17 pF, 

Cc =  560 pF, L \  =  100 nH, R f  — 680 f i,  Rb — 100 k f i,  R c =  1.2 k f l  and V^d =  10 V.

In  trad itiona l tim e domain simulation, we solve the oscillator system w ith  ordinary differential 

equations in tim e domain. In  the proposed method w ith  W aMPDE, we solve the oscillator system 

in  m ultip le tim e domain w ith  Newton-Raphson method. In  order to describe the oscillator w ith  

the nodal equations, we replace the transistor part w ith  the model shown in  Fig. 3.25, the
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Figure 3.24: The schematic of the LC-tuned bipolar oscillator.

inductor w ith  a capacitor gyrator model shown in  Fig. 3.26, and the Thevenin source w ith  a 

Norton source in  Fig. 3.27. Then we substitute Fig. 3.24 w ith  those models and define the node 

numbers in Fig. 3.28.

Figure 3.25: Large signal model of the transistor.

1 * U -------------

Figure 3.26: Gyrator model of the inductor.

R

O V^/Re

Figure 3.27: Model of the DC source.

Then we w rite  nodal equations for all the nodes in  the circuit followed by Eq. (3.10)

Gu(t) +  +  I ( u ( t )) =  S(t),
at
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Figure 3.28: The equivalent circuit of the LC-tuned bipolar oscillator, 

w ith  each m atrix  defined by:

0 0 0 1 -1 L 0 0 0 0

0 Gf 0 0 -G f 0 Cc -Cc 0 0

0 0 Gb 0 -G b C = 0 - ■Cc Cc + C2 + c 3 -C a 0

-1 0 0 0 0 0 0 -C a c 3 0

1 -G f -G b 0 Gc +  Gf + Gb _ 0 0 0 0 c 1

0 0

0 0

I { u )  = h s = 0

0 0

.  G 1 0*1
?

1

,  V R  F,

w ith  G f — -g-, Gb =  Gc — jfc, h  =  B F ie Vt ~  1) an(i  B  =  B F  x I b. In  these equations, 

IsiO.OlpA), _BF(100),and Vr(26m V)  are DC parameters of the bipolar model. I s represents the 

saturation current. B F  is the forward beta and Vt  designates the thermal voltage. The DC bias 

points o f this oscillator are calculated as follows.

' Ui =  0V  

U2 =  4.9F 

- Ua =  0.7V  •

Ui =  4.9V 

_ Us =  4.9V
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This oscillator exhibits a very slow in itia l transient. The amplitude of the output voltage 

slowly goes up and the oscillator takes long tim e to  reach steady-state. Part of the transient 

using the regular tim e domain simulation is presented in  Fig. 3.29, which takes 894 seconds in  

a 10/i.s tim e intervel. In  th is section, we solve the transient in  m ultip le time domain, try ing  to  

improve the simulation accuracy and speed. The boundary condition of each node is solved by 

the proposed method. In  th is case, the inductor current was chosen to be the reference variable 

to  decide the W aM PDE beginning tim e and the in itia l local frequency. The ODE result o f th is 

selected node is filtered in  this case by a B utte rw orth  filte r for extracting zero-crossing points. 

A  mapping of m ultip le times is also established by zero-crossing points (Fig. 3.21). Since the 

local frequency varies very slowly, we assume the straight line between each pair of these zero- 

crossing points. The proposed method also provides a robust route to  switch W aM PDE and 

ODE simulation freely. Two different W aM PDE starting tim e are chosen to  demonstrate the 

new approach in  the following part.

Tim e (s) x10-s

Figure 3.29: Transient response.

Case 1

Firstly, the ODE simulation is switched to  the W aM PDE simulation at 0.1 fis when the oscillation 

has already b u ilt up in  regular tim e domain simulation. The in itia l number of the harmonics
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is defined to be 14 and the simulation stop tim e is set to  be 1.05 ms according to the steady- 

state simulation result. O n ly 5 Newton iterations are needed at the beginning to  get precise 

in itia l conditions which achieve a tolerance of 10~12. The transient simulation simply starts 

from the specified in itia l conditions to  achieve the steady-state stage. Adaptive HB increases or 

reduces the harmonic number in each value of r 2 jus t as needed for each variable.The m ulti-tim e 

expression of the output voltage as a function of Ti and r 2 is shown in  Fig. 3.30.

The warped time 2
Logarithm of the real time

Figure 3.30: Bi-dimensional representation of the output voltage.

The oscillation and the transient variation are decoupled in two different tim e scales. The 

envelope transient slowly goes up and fina lly  becomes constant along the r 2 tim e axis which is 

consistent w ith  Fig. 3.29, but the com putational tim e is 45 seconds in a 1.19 ms tim e intervel, 

orders of magnitude faster than trad itiona l transient analysis. The adaptive tim e step size is 

increased along the r 2 tim e axis and presented in  Fig. 3.31. The oscillator frequency determined 

by the warped function u>o(r2) is also represented in  Fig. 3.31. I t  shows tha t the local frequency is 

different only at the beginning of the simulation and i t  w ill become constant when the oscillator 

achieves to  the steady-state stage.

Since i t  is not d ifficu lt to  transform  from m ulti-tim e W aM PDE simulation to single tim e 

W aM PDE result, we provide the comparison of the waveforms obtained using the W aM PDE w ith  

the proposed boundary conditions and a regular tim e domain simulation. Very good agreement
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Figure 3.31: Adaptive time step and the fundamental frequency.

has been achieved shown in  Fig. 3.32. The relative am plitude error and absolute phase error 

of the firs t harmonic in  W aM PDE and ODE simulations are presented in  Fig. 3.33. Both the 

amplitude error and the phase error are very small. This indicates tha t the two waveforms match 

each other very well and the proposed method is successful in  detecting the transient behavior.

We mentioned in  the previous section tha t some simplified methods are considered at the 

beginning of th is work to  obtain the boundary conditions. Here the results of W aM PDE sim­

ulations using the boundary conditions obtained from those simple approaches are shown in  

Fig. 3.31 and Fig. 3.34. The local frequency presents drastic oscillations and the agreement o f 

the waveforms is not as good as the proposed W aM PDE, in  th is case due to  a phase shift created 

by inaccurate boundary conditions. The in itia l local frequency is 310.141 MHz, which is a l it t le  

b it larger than the value given by the ODE simulation. A fte r performing many simulations it  

seems tha t a spike at the beginning of the W aM PDE simulation is inevitable but i t  does not 

influence the fina l solution since the agreement in  all other variables is s till very good.

Case 2

Secondly we switch the ODE simulation to  the W aM PDE simulation at a tim e of 0.02/rs. Since 

the oscillations are jus t build ing up and the regular tim e domain simulation is in a fast variation, 

i t  is very d ifficu lt to  obtain good boundary conditions in  simplified methods, such as one period of
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Figure 3.34: WaMPDE solutions compared to ODE solution.

ODE result or the interpolation of two ODE periods, but the proposed method s till can find the 

boundary conditions of the W aM PDE w ith  some accuracy (compared w ith  the previous part). 

The bi-dimensional p lot o f the output voltage as a function o f T\ and r 2 is shown in  Fig. 3.35. 

The computational tim e is s till much faster than trad itiona l transient analysis.

Fig. 3.36 shows the oscillator frequency obtained from both the proposed method and the 

simplified method, together w ith  the adaptive tim e step along the r 2 tim e axis. The oscillator 

frequency obtained from the new method is much smoother and quickly converges to  the correct 

value though the in itia l value is a lit t le  b it  larger.

Fig. 3.37 shows the comparison of W aM PDE w ith  proposed boundary conditions and a 

trad itiona l tim e domain simulation. The error function of the firs t harmonic in W aM PDE and 

ODE simulations is presented in  Fig. 3.38. For the amplitude error, we can see tha t at the 

beginning of the part, there is a lit t le  b it large difference (less than 4%) since the oscillation is 

jus t bu ilt up. For the phase error, i t  also not as good as the performance in  case 1. Though the 

match of two waveforms is not as good as the previous analysis due to  the fast variation at the 

beginning of the ODE result, the proposed method s till performs much better compared w ith  

the W aMPDE simulation w ith  boundary conditions from the simple approach in  Fig. 3.39 and 

the result is almost consistent w ith  the tim e domain simulation.
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The simulation of the LC-tuned bipolar oscillator demonstrates the efficiency of the proposed 

method dealing w ith  transient analysis in  oscillators. Boundary condition system improves the 

accuracy of the W aM PDE simulation in  transient analysis.
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C hapter 4

Steady-state A nalysis

4.1 Introduction

As mentioned in  Chapter 1, regular HB is very sensitive to the in itia l guess. In  this chapter 

a robust and fast approach for capturing the steady-state response of oscillators in frequency 

domain is presented. This approach based on a new adaptive HB technique which is derived from  

W aMPDE. Unlike previous implementations mentioned in  Chapter 2, the number of harmonics 

used in  the calculation is always very close to the m inim um  required for the desired accuracy. 

The proposed method is developed in  the next section. We also presents a case study of the 

same oscillator mentioned in  Chapter 3 to  demonstrate the new approach.

4.2 The Proposed M ethod

The main idea of the proposed method is to  use W aM PDE to  find a good in itia l guess for 

regular HB analysis. There are two steps. F irst, we reach a point in  r2 close to the steady-state in  

the m inim um possible number of Newton iterations. I t  is assumed tha t the solution is very close 

to  the steady-state when the local frequency function has become constant and the difference 

between two periodic solutions along T\ becomes small. A t th is point the envelope transient is 

stopped and we begin the second step: a regular oscillator HB analysis w ith  the last m ultivariable 

solution as the in itia l guess. Since this in itia l guess is very close to the steady-state only a few 

additional Newton iterations are needed.

The simulation is started w ith  an in itia l condition equal to  the DC bias point. An excitation
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current,

I I qCOs(ti)  i f  r 2 <  t a 
* s ( t i , t 2) =  <

I 0 otherwise

is injected from  the ground node in to  one of the nodes where oscillations are expected. Here, I 0 

is a small real number (norm ally a few f iA )  and t a is set equal to the in itia l time-step size along 

r 2 (h). The purpose of is  is to  s tart oscillations by moving the system away from the equilibrium  

point. The system w ill then natura lly  tend to reach the desired oscillatory steady-state. The key 

of the work presented here is firs t to  reach a point in  r 2 close to the steady state in the m inim um  

possible number o f Newton iterations and then use the state at tha t point as the in itia l guess of 

a regular autonomous HB analysis. Since the focus is on the steady-state it  is not necessary to  

calculate the transient evolution w ith  great precision as long as i t  converges close to the actual 

steady-state o f the circuit.

In  order to  m inimize the number of iterations required to  get close to  the steady-state the 

following considerations are taken. F irst, the Backward Euler Rule is used. I t  is known tha t th is 

integration method introduces numerical damping [21]. The effect of this is tha t any oscillations 

along the r 2 (not along the t x scale) scale axe damped [21] and this is beneficial since it  allows the 

use of a longer tim e step. Second, the tolerance of the Newton method is adaptively controlled 

during the transient evolution to  prevent i t  from being unnecessarily small. This has the effect 

of reducing the number of Newton iterations tha t are necessary at each value of r 2. The Newton 

tolerance (to l) is set to

to l =  max |0.1%  U ^ax, 10-7 }  ,

where U ^ax is the amplitude of the largest oscillation in  the circuit at the previous value of 

t 2. Th ird , an adaptive tim e step a lgorithm  is employed. The algorithm chooses the size of the 

tim e step along r 2 (h) based on the number of Newton iterations required to  achieve the desired 

tolerance. Since we focus on steady-state analysis, no truncation error checking is necessary in  

th is case and so the number of necessary tim e steps is reduced. The flow chart of adaptive tim e 

steps is shown in  Fig. 4.1.

Here, A  represents the enlarge factor of the tim e step, such as 1.5; a and b are threshold 

values to  either enlarge or reduce the current tim e step. I f  the number of Newton iterations is 

larger than a, such as 10, we reduce the tim e step; i f  i t  is smaller than b, such as 4, we enlarge
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Figure 4.1: The flow chart of adaptive time steps.

the tim e step. Otherwise we keep it  unchanged for the next line calculation.

I t  is assumed tha t the solution is very close to  the steady state when the local frequency 

function has become constant and the difference between two periodic solutions along T2 becomes 

small,
U J to +  h ) ~  U J to)

<  ei,
Un{T2 +  h)

where is a small relative tolerance. I f  Un(r2 +  h) is very close to zero an absolute tolerance e2 

is used:

\ \U n (T2 +  h ) ~  t / „ ( r 2)|| <  e2.

A t this po in t the envelope transient is stopped and a regular oscillator Harmonic balance
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analysis is started using the last solution along r 2 as the in itia l guess. A  small tolerance is used 

this tim e to achieve the desired accuracy (typ ica lly on the order of 1CT9). Note tha t the regular 

oscillator HB analysis is obtained by setting a ll derivatives w ith  respect to  r 2 to  be zero in  Eq. 

(3.12). There is no need for probes [3, 4] or any other special provisions since the in itia l guess 

is very close to  the steady-state solution. Norm ally only a few additional Newton iterations are 

needed.

Another provision to  improve the efficiency of the simulation is to  adaptively control the 

number of harmonics for each state variable un independently. A t r2 =  0, only a few harmonics 

have to  be considered because the oscillations are small and sinusoidal. In  our proposed method, 

only three harmonics (five unknowns) are considered in itia lly . A t the end of the calculation for 

each value of r 2, the values of the last two harmonics are considered. I f  they are greater or 

smaller than some threshold values then the number of harmonics for tha t variable is increased 

or decreased by one, otherwise i t  is le ft unchanged for the next time step. The flow chart of the 

adaptive harmonic balance is shown in  Fig. 4.2. A* and B i represent the magnitude of the last 

two harmonics for the i th state variable.

One advantage of th is approach is tha t the number of harmonics is increased jus t as needed,

i.e. there is no need to  perform an in itia l calculation w ith  many harmonics to later decide 

the ones tha t must be removed. I t  is then im portant to start w ith  a small oscillation value at 

r 2 =  0. Each row of Eq. (3.12) (nodal equation at one frequency) is considered as a number of 

frequencies equal to the number of harmonics of the corresponding nodal voltage. Each nodal 

equation is adaptively adjusted by the harmonic number in  each corresponding node. In  th is way 

the number of equations is always kept equal to  the number of unknowns and the computational 

effort is largely reduced.

4.3 Simulation Result and Discussion

We s till use the case discussed in  Chapter 3 to  demonstrate the proposed method. The tran ­

sient simulation using the regular tim e domain simulation has been already shown in  Fig. 3.29. 

Here we use W aM PDE to  solve the steady-state response. The simulation begins w ith  DC bias 

points. The excitation current (is ) was injected to  the base node and I q was set to  be lO fiA . 

O n ly a few tim e steps along r 2 are necessary since the oscillations and the transient variations are 

decoupled in  two different tim e scales. The stop tim e along r 2 is 1.0326 ms. The bi-dimensional
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plot of the output voltage as a function of t\ and r 2 is shown in  Fig. 4.3. A  logarithm  scale was 

used along r 2 to  improve the v is ib ility  of the samples along tha t axis. Note tha t the in itia l tim e 

step is chosen very short but the adaptive algorithm  quickly increases its size and thus only a 

few points are necessary to  cover the entire simulation interval.

 ,  -..... -4
-6

3
Logarithm of the real time

The warped time

Figure 4.3: Bi-dimensional representation of the output voltage.

The adaptive control of the tim e step along r 2 keeps the number of Newton iterations small 

for each value of r 2 (typ ica lly  2-4, see Fig. 4.5). The oscillator frequency determined by the 

warped function cjo(t2) shown in  Fig. 4.4 is 308.87 MHz. Fig. 4.4 demonstrates the robustness of 

the proposed method. Different in it ia l frequencies far away from the solution quickly converge 

to  the correct value and become constant in  the asymptotic steady-state stage.

Fig. 4.5 shows the Jacobian m a trix  size and the number of Newton iterations at each tim e 

step (line number). I t  can be observed tha t few iterations are necessary at each tim e step. As 

mentioned before this is due to  the adaptive tim e step and adaptive tolerance control algorithms. 

The Jacobian m atrix  size increases as the number of harmonics increases. I f  a fixed number of 

harmonics is considered the size of the Jacobian m atrix  is 116 x  116. I t  is obvious th a t the 

new approach drastically reduces the size of the Jacobian m atrix  for small values of r 2 and saves 

considerable computational effort. The use of variable number of harmonics in  th is case increases 

the computational speed by a factor of six. I t  is mentioned here tha t we use the increment of
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10-6 in  Newton Method to calculate the Jacobian M atrix . I f  the increment is reduced to 1CT7 or 

10-9 , the accurate of Jacobian M a trix  w ill improve 0.5% or 2.28%. Though the Jacobian M a trix  

contains some errors w ith  10-6 , the answer is s till acceptable since the final m ulti-tim e solution 

converges to  the correct value.

The adaptive tim e step and the adaptive tolerance were shown in  Fig. 4.6. They are a ll 

increased along the r 2 tim e axis. The use of the adaptive tolerance in th is case saves the compu­

ta tiona l tim e by a factor of two. The tolerance of the regular HB analysis following the m u lti-tim e 

simulation was set to be 10_1°. O nly 3 Newton iterations are necessary to  obtain the steady-state 

solution w ith  the in itia l guess provided by the m ulti-tim e simulation.

In  Fig. 4.7 the steady state is shown together w ith  the final m ulti-tim e result. The match is 

so close tha t i t  is hard to  te ll them apart, which demonstrates the adaptive HB is quite efficient 

to  detect the steady-state behavior.

The simulation of the LC-tuned bipolar oscillator demonstrates the efficiency of the proposed 

method dealing w ith  the steady-state analysis in  oscillators. W aM PDE w ith  adaptive scheme 

largely saves com putational effort and both  the oscillation frequency and the steady-state solution 

are obtained in  a fast and accurate way.
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C hapter 5

Sim ulation and Experim ental R esults

5.1 Introduction

The objective o f simulations is to  show the efficiency and robustness of each proposed method. 

Two different type of oscillators: Colp itts oscillator and voltage controlled oscillator (VCO) are 

described and analyzed both in  the steady-state and the transient w ith  proposed methods in 

Chapter 3 and Chapter 4. In  each oscillator, we firs tly  provide the regular tim e domain simu­

lation, and then present the W aM PDE simulation result. F ina lly  we compare both  simulation 

results and illustra te  the huge advantage of proposed methods. The softwares used in th is chapter 

are M atlab and SPICE.

In  the experiment part, we details the physical setup and testing o f a VCO circuit which 

is constructed on a printed circu it board. The objective of the experiment is to  verify the 

W aM PDE simulation results. The key performances for a VCO are its tun ing range and output. 

The performance data for tuning range is presented followed by experimental results of the output 

voltage. Comparison w ith  simulation results is also provided at the end of this chapter.

5.2 Circuit 1: Colpitts Oscillator

The analysis of a Colp itts oscillator which is taken from [22], is provided in  th is section. 

This oscillator uses a capacitive voltage divider in  the LC tank circuit. In  this c ircu it shown in  

Fig. 5.1: C\ =  C2 =  2 pF, Cc — 400 pF, Ce =  100 pF, L \ =  1 //H, R i =  8 k f i,  R 2 =  2 kD, 

Rc =  2.4 kQ, Re — 1.3 kSl, Vcc =  11 V , B F  =  100, and B R  — 1. The voltage applying to  C2 is 

the feedback voltage. Cc and Ce are large bypass capacitors. R\, R 2, R c  and Re set the DC 

bias current in  the transistor.
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Figure 5.1: The schematic of the Colpitts oscillator.

We consider the Ebers-Moll transistor model shown in  Fig. 5.2 to model the saturation.

■ - | ©

■I©
O  O

Figure 5.2: The Ebers-Moll model of the bipolar transistor.

The Ebers-Moll model contains two diodes and two current sources which can be used in  

the forward active mode of operation, reverse active mode, saturation and cut-off. The diode 

currents and the source currents are represented by

lube =  -  1)
r ,  V B F , 

lube =  j f c ( e VT -  1)

F e e  B i t  X  I u bc 

l u c e  —  B F  X  Iy fo e

w ith  saturation current I s — 0.01 pA  and therm al voltage Vj- =  26 mA. Then we substitute those 

models in  Fig. 5.1 and define the node numbers in  Fig. 5.3.
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Figure 5.3: The equivalent circuit of the Colpitts bipolar oscillator.

The DC bias points are calculated as:

' U! =  OV 

U2 =  8.41/

■ U3 =  8.471/ •

U4 =  1.41/

 ̂ Us =  2.2V

5 .2 .1  S te a d y -s ta te  A na lys is

Compared w ith  the LC-tuned bipolar oscillator in the previous chapters, this Colp itts oscil­

la tor exhibits an extremely long in it ia l transient (about 0.07 s) compared w ith  the oscillation 

period to enter the steady-state stage (see in  Fig. 5.4). The computational tim e is 57 seconds 

in  a simulation interval of 0.1ms. Furthermore, some nodes in  the c ircu it, such as the em itter 

port, present very strong nonlinear behavior, resulting in  a large number of harmonics in  regular 

oscillator HB analysis (see in  Fig. 5.5).

Adaptive HB in  W aM PDE is employed to  adaptively control the number of harmonics o f each 

node to  achieve the desired tolerance, providing a fast and robust way to analyze this circuit. The 

adaptive tim e step control a lgorithm  used in  the r 2 tim e axis gives another possibility to  speed
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up the simulation. As a result only a few points are needed to cover the entire simulation interval 

though the in itia l tim e step is chosen very short. We begin the steady-state simulation w ith  the 

DC bias point. A  small excitation current was injected into the collector port. The oscillation 

begins w ith  3 harmonics and the maximum number of harmonics is 30 compared w ith  m in imum 

6 at the end of the simulation. The bi-dimensional p lo t of the output voltage as a function of 

Ti and r 2 is shown in  Fig. 5.6. In  th is case the computational speed is order of magnitude faster 

by using the variable number of harmonics. In  a 1.5 GHz computer the simulation tim e is 52 s, 

saving considerable com putational effort.

10 

8
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O
-2 4
3Q.
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O ^
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The warped time o -8 Logarithm of the real time 

Figure 5.6: Bi-dimensional representation of output voltage.

The local frequency /  determined by the warped function coofo) is 5.04 MHz, part of which 

was shown in  Fig. 5.7. /  represents the local frequency of the oscillator. Like the previous 

case, the result o f oscillator frequency also demonstrates the robustness o f the proposed method. 

Different in itia l frequencies quickly converge to  the correct value and become constant in  the 

asymptotic steady-state stage.

In  Fig. 5.8 the steady state is shown together w ith  the final m ulti-tim e result. The result 

is quite good, which demonstrates the efficiency of the proposed steady-state method. Fig. 5.9 

shows the Jacobian m a trix  size and the number of Newton iterations at each tim e step (line 

number). I t  can be observed tha t few iterations are necessary at each tim e step. The Jacobian
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Figure 5.7: Fundamental frequency as a function of r2.

m atrix  size increases jus t as the number of harmonics increases.

5 .2 .2  T ra n s ie n t A nalysis

The in itia l conditions comes from the boundary condition system to  improve the accuracy 

of the transient analysis. Adaptive techniques are applied to both time axes t \  and t 2 : adaptive 

HB in  7~i and adaptive tim e step in  r 2. The W aM PDE simulation simply starts from the specified 

in itia l conditions and the stop tim e along r 2 is set to be 0.07 seconds. Fig. 5.10 shows the m u lti­

tim e expression of the output voltage. The in itia l number of harmonics is 11 and the adaptive 

harmonic balance autom atically increases the number to  maximum 32 and decreases the number 

to  m inimum  6 at the end of the simulation. The adaptive tim e step algorithm  increases the step 

size (Fig. 5.11) depending on the local truncation error and largely speeds up the simulation 

time. The oscillator frequency determined by the warped function uio{t2) is also represented in  

Fig. 5.11.

Very good agreement between W aM PDE sim ulation and the regular tim e domain simulation 

has been achieved at the beginning of the simulation shown in  Fig. 5.12. I t  is mentioned here 

th a t there exists a very small phase error accumulation in  the W aMPDE analysis compared w ith  

ODE result after a certain long tim e interval (also shown in  Fig. 5.12). The relative am plitude
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Figure 5.8: Steady-state solution compared to final multi-time solution.
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Figure 5.9: Jacobian size and number of Newton iterations.
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The warped time
Logarithm of the real time

Figure 5.10: Bi-dimensional representation of output voltage.
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Figure 5.11: Adaptive time step and the fundamental frequency.
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Figure 5.12: W aM PDE solution compared to  ODE solution.

error and absolute phase error of the firs t harmonic in  W aM PDE and ODE simulations are 

presented in Fig. 5.13. The amplitude error is very small, bu t the phase error may be im portant 

in  some cases. The phase error in  the W aM PDE simulation can be reduced i f  the acceptable 

local truncation error in  the W aM PDE simulation is reduced as the results of Fig. 5.14 indicate. 

However, the reduction in  the acceptable local truncation error increases the number of tim e 

steps along T2 and this results in  a significantly longer simulation time.

5.3 Circuit 2: BJT Voltage Controlled Oscillator

Tuned oscillators are a very im portant class in the oscillator family. I f  a reactive component 

is a varactor diode then the oscillator may be frequency controlled by the varactor voltage. 

This kind of oscillator is called Voltage Controlled Oscillator (VCO). A  simple VCO circu it was 

analyzed w ith  W aM PDE in  Chapter 2. In  this section, we w ill present a practical B JT  VCO 

circu it which is based on the C lapp-Gouriet configuration from [8] w ith  W aM PDE analysis.

Fig. 5.15 shows the electrical schematic of a B JT  VCO. In  this circu it C y =  82 pF, C2 =  

220 pF, C3 =  47 pF, C4 =  0.46 /uF, L y =  102.55\ iH , R y =  220 k SI, R2 =  22 k ft, R3 =  47 Q, 

Rc =  2.2 k f l,  R e =  220 D, Ri — 100 D, Vcc =  12 V , B F  — 70, and B R  =  5. The oscillator 

frequency is tuned by a diode connected to  a control voltage V *  which is either a DC value
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or a sinusoidal function in th is VCO circuit. VCOs are used in  many applications, such as in  

frequency modulators, phase-locked loops, and frequency synthesizers.

V

■o v

* C ,
✓ ” C3

Figure 5.15: A  voltage-controlled oscillator using Clapp-Gouriet configuration. 

The diode is replaced by the model shown in  Fig. 5.16 w ith:

r .  — c j o

I D =  I a( e -  1)
(5.1)

0 i q=r O H  

T

Figure 5.16: The model of the varicap.

Eq. 5.1 express the junction  capacitance C j and the diode current I d - C j is modeled by the 

model parameters C J 0, V J , and /j,j [23]. C',/0 is the zero-biased junction  capacitance which is the 

measured capacitance w ith  no voltage applied to  the diode. V  J  represents the b u ilt- in  potentia l 

of the diode, and \ i j  represents the grading coefficient of the device. I d  is calculated by the 

model parameters I s, N , and VT . N  represents the emission coefficient factor. The calculation
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of those parameters are in Appendix B.

Then we substitute Fig. 5.15 w ith  a ll the models and define the node numbers in  Fig. 5.17.

-o V

0 0
V ’

R.7

K7 V

Figure 5.17: The equivalent circuit of the VCO circuit.

The DC bias point is calculated w ith  V/c — 1-5 V.

'  U! =  0V  

f /2 =  1.44V 

Uz =  1.44 V  

Xj\  =  4.61V 

Us =  1.5 V  

U6 =  0.75V 

 ̂ U7 =  0V

We w ill analyze this c ircu it in  two different control voltages: a constant DC control voltage 

Vdcl and a sinusoidal control voltage V ^ :

Vdcl =  1.5 V

Vdc2 — 3 +  sin(2 ir x  104t)V  

The practical system on the printed circu it board is shown in  Fig. 5.18.

The experiment equipment is presented in  the follows and a detailed description of the test 

setup is provided in  Appendix B.
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Figure 5.18: The VCO circuit on the actual printed circuit board.

1. Bipolar transistor (MPS918)

2. Oscilloscope (T E K  2445A)

3. Selection of resistors, inductors, capacitors

4. Varactor diode (SK3323RCA)

5. 0-5V  power supply and 0-20V power supply

5.3.1 Steady-state Analysis

In  steady state analysis, we consider a constant control voltage applied to  the diode. The 

regular Spice tim e domain sim ulation is shown in  Fig. 5.19.

In  this c ircu it, the output voltage also presents strong nonlinear behavior sim ilar to  the 

Colp itts oscillator. I t  is suitable to  use the proposed W aM PDE method to  analyze the steady- 

state stage under th is condition. Fig. 5.20 shows the W aM PDE simulation result. Compared 

w ith  the regular tim e domain simulation, the m ulti-tim e representation contains less undulation 

and is easy and clear to analyze.

In  Fig. 5.21 the steady state is shown together w ith  the final m ulti-tim e result. The steady 

state result is calculated using the final m u lti-tim e solution as the in itia l condition. The number 

of Newton iterations in  regular oscillator HB is only 2, which means the final periodic solution is
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Figure 5.19: Transient response with a constant control voltage (1.5V).

Warped time (rad) Logarithm of real time

Figure 5.20: Bi-dimensional representation of output voltage.
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very close to the steady-state response. The local frequency determined by the warped function 

wq(t2) is 6.03 MHz shown in  Fig. 5.22.

0.5

> - 0.5
a>o>

-1.5

-2
  Steady-state solution

» Final multi-time solution
-2.5

The warped time

Figure 5.21: Steady-state solution compared to final multi-time solution.

The adaptive tolerance and the adaptive tim e step control a lgorithm  keep the number of 

Newton iterations small for each value of r 2. Fig. 5.23 shows the Jacobian m atrix  size and the 

number of Newton iterations at each tim e step (line number).

5.3 .2  T ran s ien t A nalysis

In  transient analysis, we consider a sinusoidal control voltage applied to  the diode. The 

value of C4 is changed to 330 pF to reduce the oscillation starting time. The regular Spice tim e 

domain simulation is shown in Fig. 5.24. I t  was shown tha t th is VCO circu it exhibits a very 

slow in itia l transient under the tim e varying control voltage. The in itia l number of harmonics is 

set to  be 8  and the adaptive HB algorithm  w ill autom atically reduce or increase the harmonics 

in  each specific node for each value of r 2. A t the end of the simulation, the maximum number o f 

harmonics is 11 and the m inimum is 5. The bi-dimensional p lo t of the output voltage is shown 

in  Fig. 5.25.

The oscillator frequency in Fig. 5.26 follows the tim e varying control voltage. Adaptive tim e 

steps are also shown in the same figure. I t  is interesting tha t adaptive tim e steps also change 

w ith  the control voltage. Good agreement between W aM PDE simulation and trad itiona l tim e
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Figure 5.24: Transient response with a sinusoidal control voltage (V ^  =  3 +  sin 104t.)

The warped time

Figure 5.25: Bi-dimensional representation of output voltage.
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domain simulation has been achieved as shown in Fig. 5.27.

3.5

Q.
2 .5 -g

V
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0.15 0.250.05 0.2 
Time (ms)

0.3 0.35

Figure 5.26: Adaptive time step and the local frequency.

A p lo t showing the firs t harmonic magnitude and phase difference between the time-marching 

and W aM PDE analysis is shown in  Fig. 5.28. As w ith  the previous case study, there is some 

phase error th a t can be reduced by reducing the tolerance of the local truncation error shown in  

Fig. 5.29.

5.3 .3  E x p e r im e n t R e s u lt

To explore the efficiency of proposed methods, the voltage-controlled oscillator was tested. 

During the test, the control voltage is manually set, and the output is monitored by an oscillo­

scope. Comparison of experiment results w ith  the simulations is shown in  the following sections.

C om pariso n  o f E x p e r im e n t and  S im u la tio n  R e s u lt

A  comparison between the simulation and the measurement at the output port of the oscillator 

is presented in  this part.

1. Constant control voltage (1.5 V )

First, we connect a constant control voltage equal to  1.5V to  the diode. The experiment 

results are shown in  Fig. 5.30. A n  inspection of the output voltage shows tha t it  exhibits 

very sim ilar performance as presented in  the sim ulation part shown in  Fig. 5.31.
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Figure 5.27: Proposed WaMPDE solution compared to ODE solution.
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Figure 5.28: Comparison of ODE and Warped MPDE in First harmonic.
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Figure 5.29: Comparison of ODE and WaMPDE with a smaller maximum local truncation error.

Figure 5.30: The experiment steady-state when control voltage equal 1.5 V.
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Figure 5.31: simulation result of the output voltage.

From Fig. 5.30, i t  is observed th a t the measured oscillation period is approximately 5.41 MHz 

while the simulated oscillation period is 6.03 MHz. The difference could be a ttribu ted  to  a 

number of factors:

(a) The internal resistor of the inductor and the error from the predicted diode model.

(b) The SPICE models of the diode and transistor also play a role in  the discrepancy.

The main components determ ining the oscillation frequency are C\, C i , C3 , the diode Co, 

and the inductor L. Given tha t there are many uncertainties, the simulated oscillation 

frequency is considered close to  the measured oscillation frequency. Another form  of visu­

alization is shown in  Fig. 5.32. Here we set a square power supply (see Appendix B), so 

the transient behavior o f th is oscillator can be observed. Fig. 5.33 enlarges the beginning 

part of Fig. 5.32, which is sim ilar to  the simulation result (see Fig. 5.19).

2. Sinusoidal control voltage

Since i t  is usually d ifficu lt to  get the result from regular tim e domain simulation such as 

SPICE when the control voltage is time-varying, the experiment is again processed using a 

sinusoidal control voltage. Fig. 5.34 shows the result when the voltage across the diode is
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Figure 5.32: The experiment transient when control voltage equal 1.5 V.

Figure 5.33: The beginning part.
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driven by a sinusoidal voltage source w ith  amplitude of 1 V.

Figure 5.34: The experiment steady-state when sinusoidal control voltage equal 3 +  sin 104f V.

The result does not agree very well w ith  the simulations shown in  Fig. 5.35. I t  is noted 

th a t the voltage drop in  the experiment is 2 V, smaller than 2.5 V  in  the simulation result. 

Also there is a very slow rate of oscillations on the top of the simulation result bu t none is 

in  the experimental result. We use the H ybrid -n  model (constant and Cv) to  represent 

the transistor (see Appendix B). and are not constant any more when the transistor 

is in  saturation. In  th is case sometimes the transistor is in  saturated stage. We tried  

different combinations in  Spice simulation: one w ith  the separate and CV and the other 

w ith  particu lar parameters of the transistor. The results are almost the same. So the 

measurements of the current elements (inductor, capacitor, and transistor) are needed to  

improved to get a closer f it  w ith  measurements.

Optimizing the Tuning Range

The oscillation frequency of the c ircu it is given by Eq. 2.9. We rewrite i t  in  the following form:

1 1
^cv ~ ^ c b ~  ’
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Figure 5.35: Simulation result of the output voltage.

Where Ct =  an<̂  £f> the to ta l capacitance in  the tuning network, including the diode

junction  capacitance. The oscillation frequency of the final steady-state value is:

f  —  I ___________

Josc 2 t 'Z7rV cT+cb

Let C),i  and be the m inim um and maximum capacitance of the tun ing passive network.

Then the range of frequency is:

A /  “  s  ~

In  this case, the VCO accepts a DC control voltage between - 4  V -0  V  and is capable of 

generating an output signal w ith  a frequency between 4.42 MHz and 6.16 MHz. The illus tra tion  

seen in  Fig. 5.36 shows the voltage across the diode being driven voltage source from an in it ia l 

value of 0 V  to  —4 V . The tun ing range of the VCO was characterized by incrementally sweeping 

the control voltage in  steps of 0.2 V  w ith  the ou tpu t frequency at each step being measured by 

the oscilloscope. The frequency of the output signal is regulated by the control voltage. Any 

changes in the control voltage produce a proportional change in  the output frequency.
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Figure 5.36: O utput frequency vs. control voltage of the VCO.
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C hapter 6

Conclusions and Future Work

6.1 Conclusions

W aM PDE is extremely useful and effective for oscillator analysis. In  th is thesis two novel 

and fast approaches to capture the transient and steady-state response of oscillators in frequency 

domain derived from W aM PDE were presented. The following are the main conclusion items 

based on the simulation and experimental results:

1. For transient analysis the accuracy of the W aM PDE method depends on the accuracy of 

the boundary conditions. I t  was also the firs t tim e to  show how to  obtain precise in it ia l 

boundary conditions in  both the oscillation frequency and the transient solution of each 

state variable to  improve the accuracy o f the W aM PDE simulation. I t  also provides a robust 

route to switch between m ultip le tim e domain and trad itiona l tim e domain simulations. A n  

adaptive tim e step control a lgorithm  depending on the local truncation error is employed 

and the computational tim e is orders of magnitude faster than trad itiona l transient analysis.

2. For steady-state analysis the new method does not require a good in itia l guess o f the 

oscillation frequency and incorporates several ideas to  improve robustness and reduce the 

computational cost. The method uses the W aM PDE approach to natura lly  bring the c ircu it 

state to  the region of convergence o f the HB analysis. I t  was shown for the firs t tim e 

th a t the transient evolution along the slow tim e axis provide the optimum conditions to  

determine the m inim um  number of harmonics required at each node in the circuit. I t  also 

uses adaptive techniques to  reduce the computational effort: adaptive HB determines the
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minimum number of harmonics required at each variable and the number of harmonics 

does not need to  be known in  advance; adaptive tim e step decides the optimum size along 

the real time; adaptive tolerance reduces Newton iterations. As a result of this adaptive 

scheme the Jacobian m a trix  in  the Newton method is reduced and a significant reduction 

in  the computational effort is achieved. Both the oscillation frequency and the steady-state 

solution of each state variable are obtained in  a fast and accurate way.

The simulation of different types of oscillators and the experiment of the VCO circuit demon­

strate the excellent performance of both proposed methods.

6.2 Future Work

Following the investigations described in  th is thesis, some topics could be taken up in  the 

future research work:

1. Development of a general method to  w rite  the system nonlinear equations. I t  is beneficial 

to deal w ith  some large circuits w ith  hundreds of nodes.

2. I f  Rf in  the c ircu it of Fig. 3.24 is reduced to  200 0 , the oscillation period eventually doubles 

and this originates a subharmonic component as shown in  Fig. 6.1. The proposed method 

is not able to  detect th is condition. The detection of subharmonic generation and chaos in  

a W aM PDE simulation is a topic for the future research.

> 4.4

4.2

3.8

Figure 6.1: Transient simulation with Rf =  200 ft showing subharmonic generation.
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3. Improvement of the phase error in  transient analysis. Now we need to  sacrifice the simula­

tion  time to  reduce the phase error.

4. W aM PDE study in  Phase-Locked-Loops (PLLs). Now we use two tim e scales to  analyze 

oscillators. In  PLLs the voltage-controlled oscillator can be represented in  two tim e axes: 

warped tim e and slow time, since the slow varying control voltage from the low pass filte r 

and the comparatively much faster oscillations. Simultaneously the external signal which 

is one of the inputs of the phase detector can be also represented in  m ultip le  tim e domain. 

So PLLs can be analyzed in  three tim e axes: warped time, fast tim e and slow time.

5. Improve c ircu it modeling to  get a closer f i t  w ith  measurements.
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A p p en d ix  A

N ew ton-R aphson M ethod

The Newton-Raphson method uses an iterative process to converge one root of a function [15, 24]. 

Consider a function

f ( x )  =  0.

The specific root tha t the process locates depends on the in it ia l value xn

x n+\ — xn
/ O n )

(A . l)

(A.2)
/ ' O n ) ’

w ith  n =  0 ,1,2---. Here, x n is the current known value, / O n )  represents the value of the function 

at xn, and / ' O n )  is the derivative at xn. x n+i represents the next value tha t converges to  the 

final solution.

I f  a system consists of n  non-linear equations:

F  0 )

/ i 0 ) "

/ 2 0 ) 0

_ /n O )  _ 0

(A.3)

w ith  n  variables x  =  O i,  * 2 . •••, xn). Eq. A.3 can be solved iterative ly as:

x*+1 =  xJ -  J - xF (a /)  (A.4)

where J  is the Jacobian M a trix  presented by:
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J = d- ^  =  
dx

OR dR . ... AR
d x i 6x2 d x n

d h d R d h
d x i dx2 6Xn

d f n d f n d f n
d x i 6x2 dx n

(A.5)

Eq. A.5 can be formulated numerically in  the following equation when the nonlinearities are 

not very strong:

d f j
dxk x k x \

(A.6)
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A p p en d ix  B

Experim ent Param eter Validation

B .l  DC analysis

The B JT  employed in the oscillator is M PS918, a wide-band 800 MHz NPN transistor in  

TO  — 92 plastic package (M otorola Semiconductors 1996). The datasheet and the Spice model 

of M P S 918 are in  [25] and [26] respectively supplied by the manufacturers. The transition  

frequency /t(8 0 0  MHz) is more than sufficient for th is job. The forward beta B F  is equal to  70. 

The circuit for DC bias simulation is shown in  Fig. B .l.

VCC

Figure B.l: DC bias analysis of the VCO circuit.

The result of DC simulation for th is VCO circu it in  the calculations below:
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I c =  B F  x /{, =  3.36mA

I e =  (B F  +  1) x  I b =  3 A lm A  

Uc =  Vcc -  I c x  Rc =  4.61V  

Ub =  Vcc - I b x R x =  1.44V 

Ue — I e  x /?£ =  0.75V 

9m =  ^ r  =  0.129

B.2 Diode

The diode in  the VCO circu it is the tun ing element. I t  plays an im portant role: varying the 

frequency of oscillation by the control voltage Vfa. Because the varactor diodes directly affect 

the tuning range and the gain of the VCO, the ir specifications are critica l to  achieving adequate 

performance. The diode in th is experiment is the SK3323RCA. We use the circu it in Fig. B.2 

to determine its capacitance.

Figure B.2: The circuit used to check the capacitance of the diode.

In  Fig. B.2, Ra — 470, Rb =  10 kO, and Rc =  100 kO. The to ta l resistor seen from the diode

is
I -  1 J_
R (Ra +  R b) R c
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Then we can measure r  and calculate the capacitance of the diode by:

In  SPICE, the junction  capacitance is modeled by the model parameters C J 0, V  J, and fXj

[23]. C J 0 is the zero-biased junction  capacitance which is the measured capacitance w ith  no 

voltage applied to  the diode. V  J  represents the b u ilt- in  potentia l of the diode, and y,3 represents 

the grading coefficient of the device. They a ll influence the capacitance characteristic of the 

diode. The junction  capacitance C j related to  voltage is expressed in Eq. B .l:

C J  0
(B . l)

Fig. B.3 illustrates the effect of the diode capacitance variation for reverse voltage. A  sim ilar 

curve from the calculation of Eq. B . l  is also inserted for comparison. C J 0 is easily obtained from 

the intersection o f the curve onto the y -axis as shown in  Fig. B.3. The C JO value is 15.29 pF.

LL 14

-4  -3 .5  -3  -2 .5  -2 -1.5 -0.5

« experiment result 
  estimation result (VJ=1, M=0.55)

Reverse voltage (V)

Figure B.3: Diode capacitance variation for reverse voltage.

Fig. B.4 gives the p lo t of the optimum value of V J  and M  where C  is the measured ca­

pacitance and D C  is the diode voltage. This figure also provides some insight of the diode 

characteristic. I f  the value of V  J  used for the x -axis variable is equal to  the value of V  J  needed
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for the model, the p lo t curve w ill be close to a straight line. I f  the value of V J  is too large or 

too small, the p lo t w ill be curved [23]. We choose V J  =  1 and M  =  0.55.

  VJ=1 M=0.55

-0.05

- 0.1
o

■0.15

- 0.2

-0.3

-0.35

-0.4
0.2 0.3 0.4

Logarithm of (1-DC/VJ)
0.5 0.6 0.7

Figure B.4: Graph to determine the model parameters M  and V J.

B.3 Inductor

To measure the precise value of the inductor, a measurement circu it is selected in Fig. B.7 

w ith  Ra =  Rb =  100 Q.

Cose

L

Figure B.5: The circuit used to measure the inductor.
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The to ta l resistor seen from the inductor is:

R =  , j_  j *  +  Rb +  t
1 Rs +  R a '

Then we measure r  and calculate the inductance by using L  =  r  x  R. The inductance is 

102.55/i H w ith  series resistance r  =  8.6512. I t  is clear tha t the internal resistor r  satisfies Eq. 2.8 

and the oscillation w ill na tu ra lly  bu ild  up.

B.4 Transistor

This part deals w ith  measuring and CV in the H ybrid -tt model of the M PS918 transistor 

shown in  Fig. B.6. is the collector-base junction  capacitance and CV is the base-charging or 

diffusion capacitance plus the base-emitter junction  capacitance. They all influence the perfor­

mance of the experiment.

C.
c b o—

^  -
e e o—

Figure B.6: Hybrid-7r model of the transistor.

The test c ircu it shown in  Fig. B.7 is used to check those parameters. Because of two unknowns 

we need two equations w ith  two different values of R c: 2.2 k f i and 687.5 12. The procedure of 

the calculation is shown below.

rv =  A  =  =  542.1512
9m 0.129

Req =  "1------- T  ~  76.812
r  7T Rs

7total — CpiReq T Ĉ [R-eq( 1 T 9mRc) T  Rc\ 4“ R'oscRc

=  0.73 p F  

Cv =  59.9 p F
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« V

Second
measurementA C

Figure B.7: The circuit used to check the parameters of the transistor.

B.5 Square Power Supply

To observe the transient behavior of experiment results, a square power supply is generated 

by a L M 741 operational amplifier. The c ircu it is shown in  Fig. B.8. We can get an amplified 

square power supply (from 0 v to  12 v) w ith  the inpu t (from 0 v to 1 v) generated by the function 

generator.

12k
A A V

+12v

LM74

VCO
'T ' luF

-12v

Figure B.8: The circuit used to generate square power supply.

B.6 Summary

We summarized a ll the parameters in  table B .l.
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The experimental parameters

DC Analysis h 48 nA

Ic 3.36 mA

h 3.41 mA

Ub 1.44 V

Uc 4.61 V

Ue 0.75 V

9m 0.129

Diode CJO 15.29 pF

V J 1

M 0.55

Inductor L 102.55 iiA

r 8.65 a

Transistor B F 70

BR 5

c „ 0.73

c n 59.9

Table B .l: The experimental parameters.
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A p p en d ix  C

M atlab File List

C .l LC-tuned bipolar oscillator

Steady-state analysis

oscillatorMain.m 

nonlinearthree.m 

lanadiff2.m 

nonlinearfiveinf. m

resultlana.m 

nonlinearfour.m 

nonlinearoneinf. m 

nonlinearsixinf. m

EXPlana.m

nonlinearfive.m

nonlineartwoinf.m

lanaplot.m

nonlinearone.m 

nonlineaxsix.m 

nonlinearthreeinf. m

nonlineaxtwo.m 

amplitudelana.m 

nonlinearfourinf. m

Transient analysis

oscillatorMain.m icfromNewton.m icfromode.m lanaIC2.m

PolyInter2.m oscifilter.m initial VT.m EXPlana.m

derilanafirst.m odelanafirst.m odelanasecond.m nonlinearonefirst.m

nonlinearthreefirst .m nonlinearfourfirst.m nonlinearfivefirst.m nonlinearsixfirst. m

ifftlanafirst.m ifftlanasecond.m resultlana.m derilana.m

derivativetau2ub.m nonlinearone.m nonlineartwo.m nonlinearthree.m

nonlinearfive.m nonlinearsix.m amplitudelana. m Aprolana.m

AHB.m twotooneHB.m twotooneHuatu 1 .m lanaplot.m

lanaIC3.m bipolar.m nonlineartwofirst.m nonlinearsevenfirst. m

derivativetau2ua.m nonlinearfour.m parlanal.m
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C.2 Colpitts oscillator

oscillatorMain.m

nonlinearthree.m

lanadiff2.m

nonlinearfiveinf.m

resultlana.m

nonlinearfour.m

nonlinearoneinf.m

nonlinearsixinf.m

Steady-state analysis 

EXPlana.m j

nonlinearfive.m i

nonlineartwoinf.m i 

lanaplot.m

nonlinearone.m

nonlinearsix.m

nonlinearthreeinf.m

nonlineartwo.m

amplitudelana.m

nonlinearfourinf.m

Transient analysis

oscillatorMain.m icfromNewton.m icfromode.m lanaIC2.m

PolyInter2.m oscifilter.m initial VT.m EXPlana.m

derilanafirst.m odelanafirst.m odelanasecond.m nonlinearonefirst.m

nonlinearthreefirst. m nonlineaxfourfirst.m nonlinearfivefirst.m nonlinearsixfirst.m

ifftlanafirst.m ifftlanasecond.m resultlana.m derilana.m

derivativetau2ua.m nonlinearone.m nonlineartwo.m nonlinearthree.m

nonlinearfive.m nonlinearsix.m amplitudelana.m Aprolanal.m

AHB.m twotooneHB.m twotooneHuatul .m lanaplot.m

lanaIC3.m bipolar.m nonlineartwofirst.m nonlinearsevenfirst.m

derivativetau2ua.m nonlinearfour.m parlanal.m colpitts.m

nonlinearsevenfirst. m parlana2.m

C.3 Voltage-controlled oscillator
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Steady-state analysis

oscillatorMain. m 

nonlinearthree.m 

lanadiff2.m 

derilanaBE.m

resultlana.m

nonlinearfour.m

nonlinearseven.m

EXPkris.m

EXPlana.m

nonlinearfive.m

nonlineareight.m

EXPsophiel.m

nonlinearone.m

nonlinearsix.m

amplitudelana.m

lanaplot.m

nonlineartwo.m

amplitudelana.m

derivativetau2ua.m

Transient analysis

oscillatorMain.m icfromNewton. m icfromode.m lanaIC2.m

PolyInter2.m oscifilter.m initialVT.m EXPlana.m

derilanafirst.m odelanafirst.m odelanasecond.m nonlinearonefirst. m

nonlinearthreefirst.m lanaIC3.m bipolar.m nonlinearseven.m

ifftlanafirst.m ifftlanasecond. m resultlana.m derilana.m

derivativetau2ua.m nonlinearone.m nonlineartwo.m nonlinearthree.m

nonlinearfive.m nonlinearsix.m amplitudelana.m Aprolanal.m

AHB.m twotooneHB.m twotooneHuatul.m lanaplot.m

derivativetau2ua.m nonlinearfour.m parlana2.m onetime, m

nonlinearsevenfirst.m parlana2.m derivativetau2ub.m nonlineareight.m
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