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Abstract

Sulfide is most often encountered as a waste product of the pulp and paper, 

petroleum, and mining industries. Organic decomposition is another major source of 

sulfide. During my M. Sc. program, I have studied electrochemical oxidation o f aqueous 

sulfide on Pt electrodes as well as on IrOi-based electrodes using a number of 

electrochemical methods {e.g., cyclic voltammetry, cyclic and linear galvanic voltammetry, 

differential capacitance, chronoamperommetry, chronopotentiommetry, galvanostatic 

technique, and electrochemical impedance spectroscopy (EIS)) and surface analytical 

techniques such as scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDS).

Investigating electrochemical oscillations plays an important role in nonlinear 

dynamic studies. During the oxidation of sulfide on a platinum electrode we observed 

current oscillations and two distinct potential oscillations (Oscillation a  and Oscillation P) 

as well as bistability features. Two peaks are observed in the CV curve when scanning the 

potential from -0.8 to +1.8 V. The small peak is located in the potential range between 

-0.5 and 0.0 V, while the large one is located between 0.6 and 1.4 V. The current 

oscillations occur within the large peak potential range and are likely caused by the 

periodic formation and removal of platinum oxide and sulfur deposits. Our EIS studies 

show that both Oscillation a  and Oscillation p can be classified as hidden negative 

differential resistance (HNDR) oscillators. The formation and removal of sulfur on the Pt 

surface, switching the direct oxidation of S “̂/HS~ to polysulfides off and on, are 

responsible for Oscillation a , which occurs at low current densities (below 10 mA/cm^). 

Oscillation P appears at high current densities and it may be due to the synergic effect of
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sulfur formation/removal combined with oxygen evolution on the Pt oxide surface. The 

well-defined bistability features are caused by the change of the electrode surface states; in 

the low potential region sulfide is oxidized on a platinum surface, while in the high 

potential region platinum oxides are formed and sulfide is oxidized on a platinum oxide 

surface.

The above mentioned electrochemical techniques were also used to study the 

oxidation of sulfide on a microstructured oxide electrode Ti/TazOg-IrOz. Our surface 

analysis illustrated that the Ta2 0 5 -Ir0 2  oxide layer has a “cracked mud” structure, typical 

o f oxide electrodes prepared from the thermal decomposition technique, with oxide 

particles, sitting on the top of the electrode surface. For the first time, two distinct 

galvanostatic potential oscillations, named as Oscillation A and Oscillation B, are observed 

during the electrooxidation of sulfide on an oxide electrode. The appearance of these 

features strongly depends on the applied current densities. Oscillation A, located in the low 

current region, has larger amplitudes and much smaller frequencies than Oscillation B 

which occurs in the high current region. Our EIS studies indicate that both Oscillation A 

and Oscillation B can be classified as HNDR oscillators with oxygen evolution involved. 

Oscillation A is caused by the variation of the S^VHS' surface concentration from 

diffusion-limited depletion by oxidation and firom convection-induced replenishment by 

periodic oxygen evolution. Oscillation B is due to the synergic effect of sulfur 

formation/removal and constant oxygen evolution.

The impact of current density, concentration and temperature on the potential 

oscillations observed during the anodic oxidation of sulfide on Ti/Ta2 0 s-Ir0 2  oxide 

electrodes was investigated. Raising current density increases the fi-equency of oscillations
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as well the onset potential. Raising either concentration or temperature yields a significant 

increase in current density prior to the onset of potential oscillations. The activation 

energy for electrochemical oxidation of sulfide was estimated fi-om temperature studies to 

be 24 kJ/mol. Potential oscillations were found to have a detrimental impact on electrode 

lifetime.
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Chapter 1

1. Introduction

Chemically reacting systems exhibit interesting steady-state and dynamic 

behaviors such as simple and complex periodic oscillations, quasiperiodicity, and 

chaos. Electrochemical oscillations are attractive in nonlinear dynamic studies as 

one can easily monitor the change of both current and voltage. There are probably 

more examples o f oscillating systems in electrochemistry than in any other area o f 

chemistry. The following sections will outline the relevant theory associated with 

electrochemical oscillations, focusing on the classification of different oscillators 

with the aid o f electrochemical impedance spectroscopy. Also, a discussion of 

dimensionally stable anodes (DSA®) involving conunon fabrication methods, 

morphological properties, and general composition characteristics will be 

presented. Finally, the electrochemical oxidation of sulfide will be reviewed with 

a focus on some of the observations noted during its oxidation as well as the 

electrode materials used.

1.1. Electrochemical Oscillators

The observation of spontaneous periodic variations in potential or current during 

electrochemical reactions was first reported in the late 1800’s [1]. Since this first 

observation, numerous other systems have been shown to exhibit oscillatory 

phenomenon either at constant potential or current. These systems include the 

anodic dissolution of a variety o f metals (Fe, Cu, Ni, Sn, and Zn) [2,3], the anodic 

oxidation of small organic molecules and hydrogen [4-10]. Oscillations have also 

been observed for a number of cathodic processes, including the reduction of
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hydrogen peroxide, persulfate and iodate [11-17]. Although oscillations have 

been observed for a number o f years, the underlying processes involved were 

poorly understood. The ease with which the current or electrode potential can be 

controlled during an electrochemical experiment has attracted a considerable 

amount of interest from researchers in the field o f non-linear chemical kinetics. 

Several methods derived from the theory of dynamic systems and non-linear 

science have been applied, giving rise to a greater understanding of the origins o f 

non-lineararity generated in electrochemical systems [18]. Two variables are 

required for an oscillation to occur: a positive and negative component. If a 

system only contains one variable bistability can occur (where the system can be 

in one of two stable stationary states, for example one at high current density and 

another at low current density). To generate bistability, the mechanism of the 

reaction must contain a self-enhancing step known as a positive feedback loop 

[18]. The inclusion of a second feedback loop acting in a negative maimer then 

allows for the appearance of oscillations.

Classification of electrochemical oscillations under both potentiostatic and 

galvanostatic control has led to a greater understanding of the conditions required 

to generate the observed instabilities. Initially, oscillations were characterized as 

either chemical or electrochemical in nature [19]. This has since been further 

expanded by researchers in the field o f non-linear chemical kinetics. Their use o f 

the theory o f dynamical systems and non-linear science, most notably bifurcation 

theory, has allowed for a systematic determination of the origin o f a variety of 

non-linear dynamical phenomena found in electrochemical systems [20]. This
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discipline of science, in conjunction with electrochemical impedance 

spectroscopy, has allowed for significant expansion and classification of 

electrochemical oscillators. It has been determined that the unstable behavior is 

linked to the negative impedance characteristics of the faradaic processes 

occurring at the electrode surface [20]. The occurrence of negative impedance 

does not necessarily indicate the generation of oscillations or instabilities since it 

is dependent on the manner in which the electrode is coupled electrically to the 

rest o f the system[20].

1.2. Classification of electrochemical oscillations

As mentioned oscillators were origionally classified as being either chemical or 

electrochemical in nature. In 1996 Koper suggested a classification system based 

on the experimental control mode as well as the impedance spectra where the 

oscillatory mechanisms included at minimum one autocatalytic variable that was 

either a chemical species or an electrical quantity [21]. Koper proposed three 

classes of oscillators. The first class contained current oscillations which occur 

under truly potentiostatic conditions. The second class pertained to oscillations 

which occur under potentiostatic conditions with a large ohmic drop. The third 

class contained oscillations which occur under both potentiostatic and 

galvanostatic conditions with a large ohmic drop present [22].

In the case of the first class o f oscillator, the feedback on to the external 

circuit is not an essential component of the oscillatory mechanism and these 

oscillations will still occur under potentiostatic conditions providing that the 

ohmic drop can be minimized and thus neglected. Koper et al. pointed out that
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the instability mechanism that give rise to oscillations in such systems must be 

purely chemical in nature [23]. These instabilities can be related to autocatalytic 

surface chemistries, adsorbate-induced surface phase transitions, or non-ideal 

adsorption isotherms [22]. Therefore, if  every effort to minimize the ohmic drop 

is taken (minimize electrolyte resistivity or electrode surface area) and the 

oscillation disappears then it does not belong to the first class [22]. Due to the 

difficulties associated with minimizing the ohmic drop there is some dispute as to 

how many systems, if  any, belong in this class o f oscillator. However, even with 

the difficulties associated with minimizing the ohmic drop, there are a few 

systems which are thought to be related to or exhibit “class 1” oscillatory 

behavior. These include: electrocrystallization of zinc in the Leclanché cell; the 

electrodissolution o f iron in nitric acid; and oscillatory electrodissolution of 

silicon in fluoride media [22].

The second class involved oscillations under potentiostatic conditions with 

a large ohmic drop. The conditions for the appearance of this type o f oscillator 

include a region of negative slope in the steady-state current-voltage curve. Also, 

the current oscillations occur exactly in the area o f the negative slope on the curve 

when a large enough ohmic potential drop is present. The negative polarization 

slope is thought to be related to inhibition of the electron transfer process via 

electrode passivation or electrostatic repulsion. Under galvanostatic conditions, 

this type of system will only exhibit bistability as opposed to oscillations [22].

The final class o f oscillation proposed by Koper was oscillations under 

both galvanostatic and potentiostatic control with a large ohmic drop. This class
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was further divided based on its respective mechanistic character, namely the 

presence or absence of “hidden” negative faradaic impedance (where the system 

exhibits positive real impedance at high frequencies, negative real impedance for 

intermittent frequencies and reverts back to positive real impedance when co = 0) 

[22]. They have since become known as negative differential resistance (NDR) 

and hidden negative differential resistance (HNDR) oscillators and comprise the 

bulk of the known electrochemical oscillators described in literature.

1.2.1. Negative differential resistance oscillators

The conditions for the appearance of a NDR type oscillator involves the 

double layer potential acting as an autocatalytic variable with chemical 

instabilities typically absent. In the case of a NDR, the current oscillations only 

appear on the negative slope of a I/O curve and, at vanishing ohmic resistance, a 

N-shaped voltammetric profile is generated that prevents oscillations from 

occurring under galvanostatic conditions and giving rise to bistable behavior 

under current controlled conditions [24].

1.2.2. Hidden negative differential resistance oscillators

Although the conditions leading to the appearance of a HNDR are the 

same as those for a NDR, the behavior of these two oscillators is significantly 

different. A HNDR’s current oscillations can occur on a positive slope o f an 1/0 

curve and will have a potentiostatic Hoph Bifurcation (HE) associated with it [21]. 

A HNDR oscillator also generates galvanostatic potential oscillations, which 

indicates that the oscillation is hidden on the I/O curve and, therefore, working on 

a quick time scale [21]. It was also found to be necessary to divide the HNDR
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class into three sub classes: potential dependant source of the inhibitor; the 

H2/formic acid group; and the IO‘̂  group [24]. This has since been revised once it 

was determined that the mechanism involved with the iodate group was 

associated with mass transport/convection as opposed to a HNDR mechanism 

[25]. The first sub class requires the assumption of two conditions: the adsorption 

of the chemical species is potential dependant; and the source term of the slow, 

inhibiting species is also potential dependant [21]. The second sub class 

generally requires an independent current carrier that exhibits a normal potential 

regulation and an N-shaped profile during a cyclic voltammogram. This current 

carrier is created by rapid production and removal of an essential chemical species 

as it blocks active sites. At this point a second essential chemical species is added 

to the mechanism which generates the negative feedback and the 

production/removal of this second species is normally potential dependant [21]. 

The behavior o f the second species may completely cover up the N-shaped profile 

of the NDR, thus generating a hidden NDR that is hidden for all potential ranges.

1.2.3. Coupled negative differential resistance oscillators

Further investigations into electrochemical oscillatory systems by 

Mukouyama et al. led to the development of another class of oscillator known as 

coupled negative differential resistance oscillator (CNDR) [11]. Investigating the 

oscillations during the reduction of H2O2 in acidic media led to the development 

of this new class of oscillation since previous mechanisms could not fully account 

for one of the observed oscillations. They explained the observed oscillation 

using the idea of active and non-active areas on the electrode surface where the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coupling of an electrochemical reaction in a potential region associated with 

positive differential resistance occurs with an NDR in another potential region 

giving the electrochemical oscillation. In addition, this oscillator also requires the 

presence of surface inhomogeneities (i.e. atomically rough surfaces) as well as 

solution stirring by an electrochemical reaction [11].

1.2.4. Mass transport/convection

The most recent oscillator was proposed by Li et al. to explain the origin 

o f potential oscillations during iodate reduction in alkaline solution [17, 25]. 

Previous work with this system had demonstrated the presence o f an HNDR 

oscillator [21], but Li et al. did not feel that classifying it solely as an HNDR 

oscillator took into account the impact of periodic gas evolution on the potential 

oscillation. They proposed a pair of overlapping positive and negative feedback 

loops involving the diffusion-controlled depletion of iodate at the electrode 

surface and the convection induced replenishment (by periodic hydrogen gas 

evolution) o f iodate to account for the potential oscillations. Furthermore, they 

proposed that the presence of a crossing cycle in a CV which indicate the 

presence of overlapping positive and negative feedback steps maybe a better 

indicator for the presence o f oscillatory phenomena with this type of system then 

the observation of negative impedance [26].

1.3. Dimensionally Stable Anodes

Dimensionally stable anodes (DSA®), also known as (mixed) oxide electrodes, 

are considered one of the greatest technological breakthroughs in electrochemistry 

in the 20**' century [27]. It is interesting to note that oxide electrodes were more
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or less unknown in electrochemistry and were undisclosed (while industry was 

testing their performance) for at least 7 years after their discovery [28]. Prior to 

their discovery, significant research was put forth in relation to metallic anodes, 

most notably platinized Ta and Ti [29]. Unfortunately, from an industrial 

standpoint, these anodes demonstrated numerous limitations: high electrode 

potential, high wear rate, and the occurrence of passivation with operation time 

[30]. The afore mentioned problems led to the development of metallic oxide 

coatings as anode catalysts for both chlorine and oxygen evolution reactions. 

DSA® consisting of both RuOa and IrOa as electroactive components 

demonstrated marked improvement over previous anodes in that they exhibited 

lower overpotential for both chlorine and oxygen evolution reactions compared to 

conventional anodes.

DSA® are generally comprised of oxides prepared by the thermal 

decomposition technique from chloride precursors. These chloride precursors are 

dissolved in an appropriate solvent and spread onto a metallic support. The 

metallic support is generally a valve metal (Ti, Ta, Zr etc.). Ta demonstrates the 

highest service life in acidic medium with a lifetime of 1700 hours [31]. 

Unfortunately, Ta has two significant drawbacks: a density of 16 654 kg m'^ 

(making it difficult for substrate pretreatment); and a high cost (in excess of 

$740.00 kg’’). This makes Ti one o f the more popular choices for a substrate 

since it delivers good stability, its pretreatment is relatively easy, and it is fairly 

inexpensive (-$250.00 kg ') [32]. The substrate is pretreated prior to application 

of the oxide precursor to give the appropriate support structure. This is
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accomplished by polishing then acid etching the substrate to give better adhesion 

o f the coating particles and a more consistent morphology by creating a uniform 

surface for the coating to be applied [31]. The preparation of a DSA® is normally 

accomplished by repeated applications of the combined precursor solutions 

alternated with a high temperature calcination step. Once the desired coating load 

is met, the oxidation process is completed by a final post bake. The selection o f an 

electrocatalyst is driven by its ability to promote the desired reaction. The broad 

definition of electrocatalysis can be expressed as “the dependence of the electrode 

reaction rate on the nature of the electrode material” [33]. Depending on the field 

of application, this term can have different meanings. From a research point of 

view, it is an avenue to developing a guide to applied problems leading to the 

development of new materials. Industry views it as the potential to improve 

existing processes by improving electrocatalysis performance thereby reducing 

operation costs [33]. The primary target o f the electrolytic industry is to generate 

an applied cell potential difference (AV) that lies close to the thermodynamic 

value as expressed in equation (1.1) where AE is the equilibrium potential, t|a and 

Tic are the

AV AE + T|a + 11c + AVn + AV(t) (1.1) 

anodic and cathodic overpotentials (where the overpotential is the potential 

necessary to initiate the reaction) , AVn is the potential drop due to ohmie drop 

(IR), and AV(t) is the potential drop related to changes in the electrode stability 

with time [33]. The changes in electrode stability can be attributed to 

deterioration of the catalyst, metal support, or the support/catalyst interface.
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Therefore reducing r|a and as well as AV(t) are the primary concerns of 

electrocatalysis with the proper selection of the oxide catalysts being paramount 

to improve these conditions [33].

The morphology o f a DSA® varies depending on the preparation method, 

precursor selection, the solvent in which the precursor is dissolved, and the time 

and temperature o f calcination [33]. Scanning electron microscopy (SEM) has 

shown that the oxide films can exhibit “cracked” or “compact”, crystalline and 

amorphous morphologies [34]. In general, DSA® made by thermal 

decomposition of chloride precursors exhibit the “cracked mud” structure 

observed by Conminellis et al [35]. The morphology of the oxide layer is thought 

to contain three interfaces which again relate to the effectiveness of an oxide 

catalyst. The outer surface (comprised of the oxide/solution macroboundary), the 

inner surface (derived from penetration of the liquid into intergrain regions and 

pores), and the oxide layer/support interface. The outer and inner surface are 

thought to control the effectiveness of the oxide for electrocatalysis and the oxide 

layer/support interface governs the stability (lifetime) of the electrode which is 

derived from the potential for the formation of insulating TiO; film between the 

substrate and the oxide layer [33].

The oxide layer of a DSA® normally consists of two components, an 

active oxide which promotes the electrode reaction and a second oxide which acts 

as a stabilizer to help the stability of the active component in harsh operating 

conditions. The stabilizing oxide can either be conducting (addition of Ir02 to 

RUO2) [36] or nonconducting in the case o f the addition of Ti02 to RUO2 [30].
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The addition of a stabilizing agent to the electroactive component can lead to a 

reduction in the electrocatalytic activity, especially with the addition of non 

conductive oxides, o f the DSA®. However, the addition of non-precious oxides 

is more attractive due to their significantly lower price. The loss of 

electrocatalytic activity is more than compensated by the longer operating 

lifetimes making the DSA economically viable.

1.4. Sulfide chemistry

The removal o f sulfide from industrial processes is becoming increasingly 

important since sulfide compounds are known to have a detrimental impact on 

many industrial processes. Sulfide, in the form of HiS, contaminates geothermal 

brines that are encountered during the drilling of oil wells [37]. In addition, 

hydrogen sulfide leads to corrosion o f metallic components and generate sulfide 

scales which can plug tubulars, reduce the quality of the produced oil and increase 

the amount of biocides required to control sulfate reducing bacteria [37]. Sulfides 

also strongly poison the catalysts used in fuel cells and oil refining [38-39]. 

Additional sources of sulfide not related to industrial processes are naturally 

occurring water sources. These include mineral, deep-well, ground, and well 

water. Analysis for sulfide in these water sources is an important process due to 

the high toxicity of hydrogen sulfide as well as its organoleptic properties [39]. 

Although sulfide has numerous detrimental issues associated with it, sulfide in the 

form of sodium sulfide (as a component o f white liquor) is an integral part o f  the 

Kraft pulping process. It has also been reported that the addition of polysulfides 

to white liquor can improve pulp yields by as much as 2% [40].

11
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There are a number of existing techniques for the treatment and removal 

o f H2S. The treatment of liquid streams employs precipitation and oxidation 

reactions. Sulfide is either removed as insoluble sulfides o f Zn or oxidized to 

sulfate or elemental sulfur using chromâtes and nitrites. Depending on the level 

of H2S in the system, huge quantities of H2S scavengers (in some cases up to 

hundreds of tons per month) are needed to control the problem making such 

processes expensive and environmentally detrimental [37]. For gas streams, H2S 

is normally removed as elemental S using the high temperature (-500 -  700 °C) 

Claus catalytic process [41]. The use o f electrochemistry to treat sulfide in its 

various forms is an attractive alternative to existing technologies since 

sulfide/hydrosulfide can be oxidized to sulfur, polysulfides, and oxyanions of 

sulfur according to the anodic half reactions (E/V vs SCE) listed below [42-43]:

HS' + OH' ^  S + H2O + 2e -0.478 (1.2)

S^' S + 2e -0.508 (1.3)

HS' + 90H ' ^  S04 '̂ + 5 H2O + 8e' 1.10 (1.4)

2 0 H + SOs^ S04 '̂ + H2O + 2e' 0.6887 (1.5)

60H ' + 8203 '̂ -> 2 SÜ3 + 3H2O + 4e 0.3388 (1.6)

40H + 8204 '̂ ^  2 SÜ3 + 2H2O + 2e' 0.8788 (1.7)

28^' 82 '̂ + 2e' 0.2388 (1.8)

8 '̂ + 82 '̂ -> 83 '̂ + 2e' 0.2488 (1.9)

8 '̂ + 83 '̂ ^  84 '̂ + 2e' 0.2788 (1.10)

8 + 60H ' ^  803^' + 3H2O + 6e 0.4188 (1.11)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Electrochemical oxidation o f aqueous and gaseous sulfide has garnered 

significant attention for detection and removal/conversion of the highly toxic 

sulfide species [37, 39,44-48]. The electrochemical behavior of sulfide has been 

investigated using different electrode materials, including platinum [40-41, 43, 

49-51], graphite [37,44-47, 52-53], and gold [54-55]. It has been demonstrated 

that electrochemical techniques including stripping voltammetric analysis [39], 

high sweep rate linear sweep voltammetry [48], and differential pulse 

polarography [56] can be used with good accuracy to identify and quantify a 

number o f different sulfur and organosulfur compounds derived from naturally 

occurring water sources. In addition, the formation of a sulfur layer on the 

electrode surfaces as well as the production of polysulfides in solution are 

observed during the anodic oxidation of sulfide. The passive sulfur layer formed 

on the electrode surface prevents efficient removal/conversion of sulfide from a 

solution [44-45]. The composition o f the produced polysulfides have also been 

determined experimentally using a range of diffusion coefficients for the various 

polysulfide ions as well as for the hydrosulfide ion in a ratio to calculate the 

number of electrons from those reactions. It has been demonstrated that the 

number of sulfur atoms in the chains can range from as low as 2 to as high as 5 

and the stability of the polysulfide species is highly dependent on the pH of the 

solution [43, 54, 57]. In contrast, adsorbed sulfide/sulfur on noble metal 

electrodes significantly enhances the electrocatalytic activity of the anodic 

oxidation of carbon monoxide, formic acid, and methanol [58]. However, the 

mechanisms of sulfide oxidation and soluble polysulfide ions formation, and the
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nature o f the deposited sulfur are still not clear. In addition, oxyanions o f sulfur, 

for instance, thiosulfate and sulfate, can also be formed. Thus, further 

investigation of sulfide oxidation is critical in order to effectively remove sulfide 

from wastewater streams and to economically convert sulfide into polysulfide for 

the white liquor of the kraft pulping process.

1.5. Scope of the Thesis

Chapter 2 will describe some of the electrochemical techniques 

used in this study as well as the surface analysis techniques used to 

characterize mixed oxide electrodes. Preparation procedures for all 

electrodes used will also be presented in chapter 2. Chapters 3 to 5 will 

present the experimental results. Chapter 3 describes the oscillatory 

instabilities observed during the electrochemical oxidation of sulfide on a 

platinum electrode. An oscillation mechanism to account for the observed 

oscillations will also be presented in this chapter. Chapter 4 shows the 

results observed for the potential oscillations during the electrocatalytic 

oxidation of sulfide on microstructured Ti/TazOg-IrOz electrodes Chapter 

5 will describe the influence of both temperature and Na2S concentration 

on the potential oscillations that are observed during the electrochemical 

oxidation of sulfide on the microstructured Ti/Ta2 0 5 -Ir0 2  electrode.

Finally, Chapter 6 will provide a summary of the results and conclusions.
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Chapter 2 

Experimental Section

2.1. Electrochemical techniques

A wide variety o f electrochemical techniques were used in this study 

including cyclic voltammetry, cyclic and linear galvanic voltammetry, 

chronoamperommetry, chronopotentiommetry, differential capacitance, 

galvanostatic technique, and electrochemical impedance spectroscopy were used 

in this study. The following sections outline the relevant theory and applications 

of electrochemical impedance spectroscopy.

2.1.1. Theory

All discussions involved in this section will be restricted to simple circuits 

to simplify the mathematics involved. Ohm’s law, which can be expressed as 

E = IR (2.1)

defines the relationship between potential and current. If we consider ac signals, 

the sinusoidal voltage can be expressed using the angular frequency 

e = E sin(cot) (2.2)

where <a is the angular frequency and is 27t times greater than the conventional 

frequency [59]. The voltage is normally considered as a phase quantity so that the 

observed potential at any time t is a component o f the amplitude E and the 

frequency of rotation co [59]. To compare related sinusoidal signals (ac potential 

and current), they can be expressed as separate phasors (E’ and T) rotating at the 

same frequency that are not normally in phase (i.e. separated by a phase angle ^).
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If the phasor E’ is the reference signal and <j) is measured with respect to it then 

the current can be expressed as

i = I sin(©t + (j)) (2.3)

If the frequency is constant, the rotation component can be dropped from phasor 

diagrams and the phasors expressed as vectors with a common origin and 

separated by the appropriate angles [59].

Applying this information to simple circuits, a pure resistance with a 

sinusoidal voltage applied of e = E sin(cot), the current can be expressed as I = 

(E/R)sin(cot) due to Ohm’s law, or in terms of phasor notation 

r  = E’/R (2.4)

If a pure resistor is replaced with a pure capacitance the current can be written as 

i = coCE cos(cot) (2.5)

or

i = (E/Xc) sin(o)t + ti/2) (2.6)

where the capacitive reactance (Xc) is equal to l/mC. In this case the phase angle 

is now Till as opposed to 0 for the case o f a pure resistance and the current now 

leads the voltage [59]. Thus, it is a good idea to include complex notation to 

express phasors and they are multiplied by j = V-1. Even though the current’s 

phase angle is measured with respect to the voltage, the voltage phasor E’ can still 

be expressed for a pure capacitance

E’ = -jXcT (2.7)

where -jXc takes the place of the resistance in Ohm’s law [59].
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At this point, a simple circuit can be constructed with a pure resistance and 

pure capacitance in series with an applied voltage (E’) which must equal the sum 

of the voltage drops across each component. Thus,

E’ = E ’r +E’c (2.8)

E’ = I’(R-jXc) (2.9)

E’ = rz (2.10)

This expression allows for the link between voltage and current through Z which 

is called the impedance and is equal to R -  jXc. Generally, the impedance is 

expressed as

Z(œ) = ZRe-jZta (2.11)

where Zrb = R for a pure resistance and Zim = 1/coC = Xc for a pure capacitance 

and the magnitude of the impedance is

\z\  ̂= (Zref  + (Z im f  (2 .12)

Another method for the analysis of ac circuits is the idea o f admittance (Y). 

Admittance is simply the inverse of impedance and in some cases may be easier 

to work with since procedures used to model circuits often involve the conversion 

of a series circuit to a parallel circuit and vice versa [60]. With this in mind 

admittance can be expressed as

Y = l /Z -Y R e+ jY lm  (2.13)

and can also allow Ohm’s law to be rewritten as

r  = E’Y (2.14)

This is a useful term when considering parallel circuit elements since the overall 

admittance is simply the sum of the individual admittance elements [59].
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2.1.2. Equivalent circuits

To understand the behavior of an electrochemical system from an impedance 

standpoint it is often useful to express the resulting impedance in the form of an 

equivalent circuit. The equivalent circuit is an electrical representation of the 

behavior of the system at different potentials or currents. Table 2.1 is comprised 

o f the available elements that can be used in the construction o f an equivalent 

circuit [61].

Table 2.1: Available elements for equivalent circuits.

Notation Mentification Notation Identification
R

CPE

L

G

Resistance 
Constant Phase 

Element

Inductance 

Gerischer Impedance

C

W

T

0

Capacitance 
Warburg Element 

(Diffusion) 
Tangent Hypeibolic 

(Diffusion) 
Cotangent Hyperbolic 

(Diffusion)

The simplest electrochemical cell essentially behaves like a resistor in series with 

a capacitor and can be expressed as shown in figure 2.1, where Rsol and Cdl 

represents the resistance of the solution and capacitance of the double layer 

respectively [61].

Rsol Cdl
H h

Figure 2.1: Equivalent circuit representation of a simple electrochemical cell.

When a faradaic process occurs at the electrode there is the generation of a 

faradaic impedance that is in parallel with the double layer. If the reaction is 

irreversible, then the faradaic impedance can be considered a pure resistance and
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is called the charge transfer resistance and would be reflected in the revised 

equivalent circuit shown in figure 2.2.

Rsol Cdl
1—

Ret

Figure 2.2: Equivalent circuit for a simple faradaic process.

As in figure 2.1, Rsol and Cdl represent the solution resistance and double layer 

capacitance, and the new term Ret represents the resistance to charge transfer for 

the faradaic process. The equivalent circuit shown in figure 2.2 is generally 

referred to as the Randles circuit and is most often used as a starting point for 

modeling of an impedance set. The Randles circuit is also used for diffusion 

controlled, low frequency processes for which it may be expanded to include the 

Warburg impedance as shown in figure 2.3. The Warburg impedance is 

encountered whenever diffusion effects dominate the electrochemical reaction 

mechanism and can be easily identified by a 45° straight line in an impedance 

plots [61-62].

Rsol Cdl
 #  I I------------------ r

I Ret Warburg I
■n/ S / '  W  '

Figure 2.3: Equivalent circuit for a Randles circuit with diffusion control.

2.1.3. Representation of impedance data

The observed results from EIS experimentation can be expressed in a number of 

different manners with the most commonly reported being the Nyquist and Bode 

Plots. The Nyquist plot (also known as Cole-Cole or complex impedance plane
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plot) is expressed by plotting the imaginary impedance component (Zim) against 

the real impedance component (Zrc) for each frequency [62]. The main 

advantage of the Nyquist plot is the ease with which the ohmic resistance can be 

evaluated if  data is acquired at high enough frequency. The disadvantage is that 

frequency dependant information cannot be easily derived from the plot [62]. The 

other common method of presenting impedance data is the Bode plot. The Bode 

plot uses the absolute impedance (eq 2.12) and the phase shift (j) (of the impedance) 

as a function of the applied frequency. This method of presenting impedance has 

its advantages. It is easier to see how impedance is dependant on frequency and 

since frequency is plotted logarithmically, a wide range of frequencies can be 

plotted on one graph with each decade given equal weight [62]. The largest 

disadvantage associated with the Bode plot is that the shape of the curve can 

change if  the values for the circuits change. The Nyquist and Bode plots will be 

discussed in greater detail in section 2.3. Other methods of plotting impedance 

data include Z rb  v s  coZ rc or more commonly known as the Randles plot which for 

simple Randles circuit has the advantage of being a straight line and allows for a 

more reasonable fit for scattered data points than a Nyquist plot [62]. Also if  the 

polarization resistance is determined, it is then easy to determine the capacitance 

for the system. Another plotting system that is sometimes encountered involves 

plotting Yim/o vs Y rJ(£), also known as a capacitance plot. This method is 

especially useful when circuits elements are in parallel [62]. The capacitance plot 

allows for easy identification of the capacitance since it only has an imaginary 

component which is independent of frequency and thus appears as a single point
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on the graph and only requires extrapolation to the y-axis. Comparatively, the 

resistance only has a real component and is frequency dependant which means 

that it would show up as a straight line on a capacitance plot [62]. Although 

both the Randles and capacitance plots have their uses, they are generally 

encountered in specific cases including Randles or parallel type circuits and are 

not listed nearly as often as the Nyquist or Bode plots in literature.

2.1.4. Experimental applications

EIS experiments can be performed under either constant potential or 

constant current. If the constant potential case is considered, a small signal 

perturbation (time dependant) is applied to the equilibrated system to shift it 

slightly away from its equilibrium position. The applied perturbation must be 

kept small to ensure that the response of the system to the perturbation will 

remain linear [60]. The applied signal can be a single wave or a number o f waves 

containing varying amplitudes, frequencies and phases which can be generated by 

potential steps, pulse shaped signals or noise [60]. Generally speaking, signal 

amplitudes of 10 mV or smaller are required to maintain linearity of the system, 

especially in low frequency applications. In high frequency applications, the 

signal can have a higher amplitude since the equivalent circuit can be said to have 

behavior similar to that in figure 2.1. Subsequently the bulk of the amplitude 

signal is consumed by the potential drop of the solution [60]. There are two 

techniques for the experimental measurement of impedance the time domain and 

frequency [63]. The time domain technique uses a frequency rich signal that acts 

as a perturbation and the cell response is measured as a function of time. The
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resulting impedance data are then converted using a transformation algorithm to 

the frequency domain [63]. The frequency technique uses a sine wave 

perturbation and the impedance is obtained for a single frequency. This means 

that numerous measurements must be conducted over a wide frequency range, 

making the method far more time consuming than the time domain technique [63]. 

The above information outlines the methods for obtaining impedance data but 

external input is still required to determine potentials to be studied. This is 

normally accomplished by examining results obtained from cyclic voltammetry 

experiments for appropriate areas o f interest. These may include, but are not 

limited to, positive and negative slopes, build up of material on the electrode 

surface, or gas evolution.

2.1.3. Modeling

Currently, several commercial programs are available that can model 

impedance plots quite effectively which only require reasonable starting points. 

The general method employed in these programs involves the generation of an 

equivalent circuit, from the elements listed in table 1, that will hopefully imitate 

the impedance data set fairly well when values for the parameters are loaded into 

the program [60]. The second step involves checking the validity of the 

impedance data using the Kramer-Kronig rule check. This system is derived from 

the Kramers-Kronig frequency domain transformations. These transformations 

can allow for the components o f one impedance to be calculated from another, the 

determination o f the phase angle from the magnitude of the impedance or the
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polarization resistance from the imaginary resistance using the equations listed 

below [60].

Z R e (© )  -  Z R e(o o ) =  ( 2 co /7r ) o / "  [ ( x Z f e  -  c o Z t a ( ( o ) ) / ( x ^  -  c o ^ ) ] d x  ( 2 . 15)

Z R e ( ® )  -  Z R e (O ) =  ( 2 co /7t ) o / ”  [ ( ( ® / x ) Z t a ( x )  -  c o Z im ( ® ) ) / ( x ^  -  c o ^ ) ] d x  ( 2 . 16)  

Z im ( ® )  =  - ( 2 © /7r )  [ Z R e ( x )  -  Z R e ( ® ) ) / ( x ^  -  ( o ^ ) ] d x  ( 2 . 17)

6 ( ® )  =  -(2co/7i)o/ “ [ ( l o g  1Z I  ) / ( x ^  -  c o ^ ) ] d x  ( 2 . 18)

0(©) = (2/n)J^ [(Zta(x))/x]dx (2.19)

The main conditions for the application of the Kramers-Kronig transforms to 

validate an impedance data set are (a) the impedance must have finite values for © 

-> 0 and CO 00, and (b) all intermediate values must be continuous and finite 

valued functions [60]. The final step employs the use o f complex non-linear 

regression least squares (CNRLS) method of adapting the model parameters to the 

measured data. In this step both the experimental and the optimized calculated 

data are plotted and compared (normally using the Nyquist and Bode Plots) to 

determine how closely the optimized data set compares to the experimental values 

for the frequency range in question [60]. It should be noted that although 

computer simulation has significantly decreased the time required to determine 

the best fit for a set o f impedance values, it is still crucial to start with a 

reasonable equivalent circuit with the minimal amount of circuit elements to
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generate a reasonable comparison with the calculated data and maintain low 

errors.

2.2. Electrode preparation

2.2.1. Ti/TazOg-IrOz Anode

The Ti substrate (area =1.0 cm^) was first polished using silicon carbide 

grit 600 powder and then by grade 1 diamond compound (particle size less then 2 

pm). The polished Ti substrate was then etched in a 32% HCl solution at 85 °C 

for 15 minutes. The coating solution was prepared by mixing the chloride 

precursors of Ta and Ir. The combined coating solution was then brushed onto the 

pretreated Ti substrate. The solvent was evaporated at 80 °C under an air stream; 

and then calcinated to form the respective oxides at a temperature of 500 °C for 

10 minutes. This process was repeated until a desirable coating load was obtained. 

A final post bake at 530 °C completed the preparation procedure.

2.2.2. Pt wire/Pt coil (counter electrode)

The Pt wire (A = 1.0 cm^) was attached to a Ti lead and was flame 

annealed and quenched using pure water prior to experimentation . The counter 

electrode (A = 10.0 cm^), Pt wire, was flame annealed and quenched with pure 

water.
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2.3. Surface analysis

Analysis o f the substrate and coating was accomplished via scanning 

electron microscopy (SEM) and X-ray dispersive spectrometry (EDS) using a 

JEOL 5900LV.

2.4. Electrochemical experiments

The three electrode cell system used in this study is described in ref [64]. 

Cyclic voltammetry (CV), linear galvanic voltammetry (GL), 

chronoamperommetry (CA), and chronopotentiommetry (CP) were performed 

using a Solartron Analytical SI 1287 electrochemical interface with data 

acquisition accomplished with Corrware electrochemical software. 

Electrochemical Impedance Spectroscopy (EIS) was performed with a Solartron 

Analytical 1252A fi’equency response analyzer in conjunction with the 1287 

electrochemical interface. Zplot electrochemical software was used to acquire the 

impedance data. Unless otherwise stated, the amplitude of the AC modulation 

potential was 10 mV and the fi’equency range selected was 40 KHz to 25 mHz.

Lifetime tests were conducted using an Arbin Instruments four-channel 

potentiostat/galvanostat with data acquisition accomplished using Arbin 

Instruments MITS Pro software.

2.5. Solution Preparation

Sulfide solutions o f 2.0, 1.0, 0.6M, and 0.3 M were prepared by dissolving 

the appropriate mass o f reagent-grade sodium sulfide crystal Na2S»9H20 

(Caledon Laboratories Ltd.) in pure water obtained from a NANOpure® 

Diamond™ UV ultrapure water purification system (18.2 MD cm). Solutions of
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1.0 M and 0.65 M reagent-grade sodium hydroxide (Anachemia) of the same 

concentrations listed above were prepared in the same manner for comparison 

purposes. Prior to experimentation, all solutions were deaerated with ultrapure 

argon (99.9995%) to remove dissolved oxygen, and argon was passed over the 

solution during the experiment.
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Chapter 3

Oscillatory Instabilities during the Electrochemical Oxidation of 
Sulfide on a Pt Electrode

3.1 Current oscillations during the sulfide oxidation

3.1.1 Cyclic voltammetry and linear voltammetry

Cyclic voltammetry (CV) was used for the general characterization of the 

electrochemical behavior of sulfide on a Pt electrode. Fig. 3.1 shows the effect of 

potential sweep rate and sulfide concentration on the CV curves during sulfide oxidation. 

Two CV curves from -0.8 V to 1.8 V/SCE recorded in 1.0 M NazS (solid line) and 1.0 M 

NaOH (dotted line) solutions at a sweep rate of 20 mV/s are shown in Fig. 3.1a. As seen 

by the CV curve in the sodium hydroxide solution (dotted line), oxygen evolution occurs 

at around 0.8 V/SCE and, by further increasing the electrode potential, the current o f the 

oxygen evolution increases linearly. In the presence of sulfide (solid line), sweeping the 

potential from -0.8 V to 1.8 V/SCE, a broad hump occurring in the negative potential 

range is observed in the CV, followed by a large and wide peak. The inset to Fig. 3.1a 

presents a CV curve in the range between -1.1 and 0.4 V/SCE recorded in a 1.0 M Na^S 

solution at a sweep rate o f 20 mV/s. It is obvious that the strong adsorption of sulfide on 

the Pt electrode surface inhibits hydrogen adsorption. The broad hump starting at around 

-0 .6  V corresponds to the oxidation of sulfide to sulfur, which can be converted to 

polysulfides [41]. Fig. 3.1b presents the CV curve measured in a 1.0 M Na2S solution at a 

sweep rate o f 5 mV/s; the current density of all the peaks becomes smaller compared to 

those in Fig. 3.1a. In addition, a new peak centered at 1.37 V appears when sweeping 

back from 1.8 to -0.8 V. Further decreasing the potential scan rate to 1 mV/s, current
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Figure 3.1. Cyclic voltammograms (CV) of (a) 1.0 M Na2S (solid line) and 1.0 M 

NaOH (dotted line) at a sweep rate of 20 mV/s; (b) 1.0 M NaiS at 5 mV/s; (c) 1.0 M 

NazS at 1 mV/s. Linear voltammograms (LV) of (d) 2.0 M Na2S at 1 mV/s; and the inset 

to Fig. le: 0.65 M Na2S at 1 mV/s. Inset to Figure la  is a CV curve of 1.0 M Na2S from 

-1100 mV to +400 mV.
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oscillations are observed in the CV curve as seen in Fig. 3.1c. The current oscillations are 

located in the large peak range; their amplitude and frequency depend on the applied 

electrode potential. The inset to Fig. 3.1c presents a linear voltammetric (LV) curve 

measured in a 0.65 M NazS solution from -0.8 V to 1.8 V at 1 mV/s. Instead of the 

current oscillations, only one large spike centered at 1.3 V is observed. On the other hand, 

when we increase the sodium sulfide concentration to 2.0 M, as seen in Fig. 3.Id, current 

oscillations with higher frequency and larger amplitude are observed in the LV curve 

compared to the oscillations presented in Fig. 3.1c. The above results show that the 

current oscillations observed during the sulfide oxidation strongly depend on the potential 

sweep rate and the sulfide concentration.

3.1.2 Chronoamperommetric study and stirring effect on the current oscillations

Chronoampermmetric (CA) technique was employed to determine the behaviors o f the 

current oscillations. Fig. 3.2 is comprised of three CA curves recorded in 1.0 M NazS at 

three different electrode potentials: (a) 1.0 V, (b) 1.1 V and (c) 1.3 V. The frequency of 

the current oscillations increases with the increment o f the potential from 1.0 V to 1.3 V. 

The amplitude of the current oscillations at these potentials is similar, around 300 

mA/cm^. The current oscillates between 0 and 300 mA/cm^, which indicates the electrode 

surface is activated and deactivated periodically. The change from the deactivated state 

(lowest current) to the activated state (highest current) is very slow. For instance, at 1.1 V 

it takes approximately 20 seconds to change the surface from the deactivated state to the 

activated state as seen in Fig. 3.2b. This is consistent with the above CV studies where 

the oscillations only appear at the very slow sweep rate. Fig. 3.2c also shows the effect of 

stirring on the current oscillations. A magnetic device was used for stirring. The magnetic
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device was turned on at 350 seconds, and turned off at 630 seconds during the CA study 

as marked in Fig. 3.2c. The stirring enhances the amplitude of the oscillations. The 

current oscillates between 20 mA/cm^ and 400 mA/cm^ with the stirring. In contrast, the 

frequency of the oscillations decreases slightly. When the stirring is turned off, the 

oscillations quickly recover to their initial behavior. These results indicate that mass 

transport, through solution stirring, strongly affects the current oscillations. Now let us 

look at the behavior of sulfide oxidation under galvanostatic conditions.

3.2 Potential oscillations during the sulfide oxidation

3.2.1 Cyclic galvanic voltammetry

Fig. 3.3 presents cyclic galvanic voltammetric (CGV) curves at a current scan rate o f 10 

pA/s. As shown in Fig. 3.3a, when sweeping the current from 2 to 150 mA/cm^, potential 

oscillations are observed at low current densities. Increasing the current from 20 to 80 

mA/cm^, the electrode potential only slightly increases (AE « 50 mV). When further 

increasing the current to 114 mA/cm^, the potential suddenly jumps to 2.0 V, then 

decreases while the current continues to increase, resulting in a peak centered at 116 

mA/cm^. Further increasing the current, the potential only slightly increases. In the 

reversing scan, potential oscillations are also observed and they disappear when the 

current decreases to 20 mA/cm^. When further decreasing the current to 11 mA/cm^, the 

potential suddenly falls from 1.3 V to 0.0 V. For discussion purposes, we refer the 

potential oscillations at the low potential range as Oscillation a  and the potential 

oscillations occurring at the high potential range as Oscillation (3. To determine whether 

the oscillations observed at the high current densities are related to the processes which 

occur on the electrode surface at the low current density another CGV was run
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starting with a fresh solution at a high current (150 mA/cm^) as shown in Fig. 3.3b. This 

CGV curve is very similar to the CGV curve presented in Fig. 3.3a. The above results 

show that two distinct potential oscillations, plus well-defined bi-stability features, are 

observed in the CGV studies during the anodic oxidation of sulfide. The dashed line 

shown in Fig. 3.3a represents a CGV curve of Pt measured in 1 M NaOH solution: no 

oscillation and no bi-stability feature are observed. Chronopotentiometric technique was 

employed to further characterize the behavior of Oscillation a  and Oscillation p during 

sulfide oxidation.

3.2.2 Chronopotentiometric study

Figure 3.4 presents four chronopotentiometric (CP) curves at: (a) 5 mA/cm^, (b) 40 

mA/cm^, (c) 50 mA/cm^, and (d) 100 mA/cm^. In all cases the initial current density (j,) 

was set at 0.0 mA/cm^ for one minute. The current was then stepped to jz and held there 

for 15 minutes. No oscillation is observed at the low current 2 mA/cm^, where the 

electrode potential is constant, at around -0.2 V/SCE. At jz = 5 mA/cm^, the potential 

increases from -0.15 V to -0.08 V as seen in Fig. 4a, then jumps to 1.2 V and suddenly 

falls to 0.35 V; five large spikes with some small oscillations are observed during the first 

8  minutes and then the potential decreases slowly. When the potential drops below 0.25 

V, instead of the large spikes, oscillations with small amplitude but high frequency are 

observed. The inset to Fig. 3.4a shows a portion o f the potential oscillations during the 

period between 570 seeond and 600 seeond. The amplitude o f  the oscillations is around 

150 mV (between 0.1 V and 0.25 V), and the frequency of the oscillations is 

approximately 0.3 Hz. At js = 20 mA/cm^, except for the initial one large spike, no

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UJ
ü
CO
(0

â

1.2 -

0.8 -

0.4 -

0.0

LU
O
CO
w 1.0 

LU
0.5

0.0

0.2

0.1

570 585 600

^  ' ' ' "i

I (a)

200

J_
200 400 600

_ L

400

t/sec

800

1.7

1.6

1.5

450 465 480
(C )

600

Ü l|

200 400 600

lilPPÏÏ

200 400 600 800

t/sec

Figure 3.4. Chronopotentiometric curves of 1.0 M NazS on a Pt electrode at: (a) 5

mA.cm'^; (b) 40 mA.cm''^; (c) 50 mA.cm’"̂; and (d) 100 mA.cm''^. The insets present a 

portion of the corresponding CP curves.

-2 -2 -2

3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



oscillation is observed, when the electrode potential is above 0.25 V. When further 

increasing the current to 40 mA/cm^ (Fig. 3.4b), the potential jumps to 1.75 V and 

oscillations with small amplitude and high frequency are observed; after five minutes, the 

potential falls down to 0.4 V and the oscillations disappear immediately. The inset to Fig. 

3.4b presents a portion of the potential oscillations during the period between 240 second 

and 270 second. The frequency o f the oscillation is similar to that observed in Fig. 3.4a; 

however, the amplitude is over two times larger (approximately 400 mV) and at much 

higher potential (between 1.4 V and 1.75 V). Further increasing the current to 50 mA/cm^, 

potential oscillations with high frequency are observed during the entire electrolysis (Fig. 

3.4c). The inset to Fig. 3.4c displays a portion of the potential oscillations in the period 

between 450 second and 480 second, showing that the potential oscillation range is 

between 1.5 V and 1.7 V. As seen in Fig. 3.4d, when increasing the current to 100 

mA/cm^ the potential oscillations occur at a higher potential range between 1.6 V and 

1.85 V and the potential oscillations become non-periodic. While at the current J2 =160  

mA/cm^, the electrode potential is above 1.8 V and no oscillation is observed. All these 

results indicate that both Oscillation a  and Oscillation (3 strongly depend on the applied 

current. Oscillation a  occurs at the low current densities, where the potential oscillation 

range is located between 0 and 0.3 V. In contrast. Oscillation P takes place at the high 

current, where the potential range is between 1.4 V and 1.8  V. Electrochemical 

impedance spectroscopy (EIS) is a powerful technique in classifying unknown 

electrochemical oscillators [21-22]. Thus, we investigated further using EIS to decipher 

the nature of Oscillation a  and Oscillation p.
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3.3 Electrochemical impedance study

Figure 3.5 presents Nyquist plots recorded in 1.0 M NaaS at the electrode potential: (a) - 

150 mV, (b) +100 mV, (c) 400 mV and (d) 1450 mV, where Zj and Z, are the real and 

imaginary components of the impedance, respectively. The frequency used in this study 

was varied from 40 kHz to 25 mHz. The behavior o f the impedance plots at +100 mV is 

totally different from the Nyquist plots recorded at -150 mV and +400 mV. Only positive 

faradic impedance is observed at -150 mV and 400 mV. In contrast, negative real 

impedance appears at the potential +100 mV. This is very consistent with the above 

galvanostatic studies. No potential oscillation is observed at 2 mA/cm^ and 20 mA/cm^, 

where the electrode potential is below -0.15 V or above 0.25 V. On the contrary, 

potential oscillations are observed at 5 mA/cm^ when the potential locates between 0 and 

0.25 V (Fig. 3.4a). Further increasing the potential, negative faradic impedance is also 

observed at 1.45 V (Fig. 3.4d) and only positive faradic impedance is observed at 1.35 V 

and 1.85 V. This is very consistent with Oscillation p, whose amplitude is in the potential 

range between 1.4 V and 1.85 V. For instance, when the potential falls from 1.5 V to 0.4 

V, the potential oscillations vanish immediately (Fig. 3.4b). All these results clearly show 

the presence of a hidden negative differential resistance (HNDR) (i.e., negative 

differential resistances in a region of intermediate frequencies and positive differential 

resistances in low frequencies) in both Oscillation a  and Oscillation p.
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Equivalent electric circuits were also used to fit the experimental impedance 

spectra. The equivalent circuit shown in Fig. 3.6a was used to fit the EIS data presented 

in Fig. 3.5a and 3.5c [65], where only positive faradic impedance was observed. The 

other equivalent circuit shown in Fig. 3.6b was employed to fit the hidden negative 

impedance spectra presented in Fig. 3.5b and 3.5d [6 6 ]. All the fitting curves are shown 

as solid lines together with the experimental data denoted as symbols in Fig. 3.5. The 

excellent fits to the impedance spectra at all four potentials demonstrate the utility o f the 

two equivalent circuits. In both circuits, the Rj represents the uncompensated solution 

resistance. In Circuit a, the parallel combination of a charge transfer resistance (Ret) and a 

constant phase element (CPEdi) takes into account the sulfide oxidation, while the parallel 

combination (RiCPEi) is associated with the properties of specific adsorbed species on 

the electrode surface at the investigated electrode potential. A CPE is defined by CPE-T 

and CPE-P. If CPE-P equals 1, then the CPE is identical to a capacitor Cji. The parallel 

combination (RCPE) leads to a depressed semi-circle in the corresponding Nyquist 

impedance plot. In Circuit b, the parallel combination of a charge transfer resistance (Ret) 

and a capacitor (Cji) takes into account the sulfide oxidation. Another branch consists of 

a parallel combination of a capacitor (C,) and a resistor (Ri), where Rj is in series with a 

parallel combination of a resistor (R;) and a capacitor (Cz). This branch is associated with 

specific adsorbed species and sulfur deposits formed on the electrode surface to account 

for the negative faradic impedance. The values for the parameters determined by the 

fitting of the experimental EIS data (Fig. 3.5a & 3.5c) using Circuit a are summarized in 

Table 3.1. The fitting results of Fig. 3.5b and 3.5d using Circuit b are summarized in
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TABLE 3.1; Impedance Components for Positive Faradaic Impedance on a 
Platinum Electrode by Fitting the Experimental Data Measured in 1.0 M Na^S 
Using the Equivalent Circuit Shown in Figure 3.6a.

Potential
(mV)

CPEi-T
(mF.cm'^)

CPEi-P CPEdi-T
(mF.cm'^)

CPEdi-P

-150
400

33.62
117.2

121.8
0.514

0.7
0.51

9.421
87.01

0.195
1.05

0.72
0.98

TABLE 3.2: Impedance Components for Negative Faradaic Impedance on a 
Platinum Electrode by Fitting the Experimental Data Measured in 1.0 M NazS 
Using the Equivalent Circuit Shown in Figure 3.6b.

Potential
(mV)

R i ,
(O.cnf)

Cdi , 
(mF.cm )

R̂
(Q.cnf)

C: , 
(mF.cm )

100
1450

-400
-31

-0.24
-0.052

26.74
6.8

0.069
0.041

1600
32.5

0.17
0.051
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Table 3.2. All the associated errors are within 6  %, indicating that the proposed models 

shown in Figure 6  can fit the experimental EIS data presented in Fig. 3.5 effectively. Ret 

is the charge-transfer resistance, and the inverse charge-transfer resistance Ret ' describes 

how fast the rate o f charge transfer changes with a change in electrode potential, i.e., the 

potential dependence of the rate constants for charge transfer [65-66]. As shown in Table

3.1 & 3.2, the Ret value increases as:

Ret (1450 mV) < Ret (-150 mV) < Ret (100 mV) < Ret (400 mV).

This is consistent with the observation in the CV studies shown in Fig. 3.1. It is expected 

that Ret has the lowest value at 1.45 V as both sulfide oxidation and oxygen evolution are 

expected at the potential 1.45 V vs SCE. As shown in Fig. 3.1a & 3.1b, a current peak is 

seen at around -150 mV, and the current change with the change of potential at 400 mV is 

very small. The CPEji-P value at 400 mV is very close to 1, which indicates the CPEji in 

Circuit a can be replaced with a capacitor when it is used to fit the EIS data measured at 

400 mV. As shown in Table 3.2, at 100 mV and 1450 mV, both R; and Ci are negative, 

which is consistent with oscillations occurring in the above two potential ranges during 

the electrooxidation of sulfide. The large value of the Rz at 100 mV indicates that sulfur 

deposits are formed on the electrode surface since the conductivity of a sulfur layer is 

very low. All these EIS results are consistent with the above CGV and CP studies. Both 

Oscillation a  and Oscillation p can thus be classified as HNDR oscillators.

3.4. D iscussion

The mechanisms for the electrochemical oxidation of sulfide are complicated since sulfur 

has a number of different oxidation states such as -2, 0, +4 and +6 . Anodic oxidation of 

sulfide can produce elemental sulfur, polysulfides (Sx^~) or sulfur oxyanions depending
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on the potential, pH and temperature of the electrolyte. In what follows, we aim: (i) to 

describe how the electrode surface states influence nonlinear kinetics, and (ii) to explain 

the occurrences of oscillations and the bistability during sulfide oxidation on a Pt 

electrode.

3.4.1. Mechanistic consideration for Oscillation a , Oscillation P and the bistability

Although the above EIS study shows that both potential Oscillation a  and Oscillation p 

occurring under galvanostatic conditions can be classified as HNDR oscillators, there is a 

significant difference between Oscillation a  and Oscillation p. As shown in Fig. 3a, the 

onset potential for oxygen evolution on the Pt electrode surface in a 1 M NaOH solution 

(dashed line) is around 0.8 V. Oxide growth and oxygen evolution on noble metals have 

been studied extensively and the reaction mechanism has been proposed as [30,67]:

Pt + OH' Pt-OH + e" (3.1)

Pt-OH + O H '^  Pt-O + HzO + e ' (3.2)

2 Pt-O -> 2 Pt + O2 (3.3)

An electrochemical FTIR study by Sun and Chen has also shown that the formation of 

platinum oxide (Pt-O) occurs at potentials higher than 0.55 V vs SCE in a 0.05 M NaOH 

solution [6 8 ]. Oscillation a  occurs at low current densities (below 10 mA/cm^), where the 

electrode potential is between 0 and 0.3 V. It should be recognized that there is no oxide 

formation at such a low potential range. On the other hand, the adsorption of sulfide on a 

Pt surface is much stronger than that o f hydroxide, and sulfur adsorption on the Pt surface 

even occurs at very low electrode potential (— 1.4 V):

Pt + S^' -> PtS + 2 e ' (3.4)

Pt + H S ' O H ' -> PtS + H2O + 2 e ' (3.5)
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This is consistent with the fact that there is no hydrogen adsorption/desorption peak seen 

in the CV curves o f Fig. 3.1. The pH of the 1.0 M NazS electrolyte used in this study is 

close to the pH value o f the 1.0 M NaOH solution, which indicates that H S ' ions are the 

predominant species. It is well known that hydrosulfide can be oxidized to sulfur and 

polysulfides. Sulfide and polysulfides can also be oxidized to form sulfur. Based on our 

CP study, the electrode potential is almost constant, staying at around -0.2 V during the 

15 minute electrolysis at 2 mA/cm^. This indicates that there is no sulfur build-up on the 

electrode surface at the applied low current. As the conductivity of the sulfur layer is very 

low, if there was a sulfur layer build-up, the electrode potential would go up in order to 

satisfy the applied constant current. The small impedance observed in Fig. 3.5a further 

supports the absence o f sulfur build-up on the electrode surface at -0.15 V. It is known 

that the sulfur deposits can be removed from the Pt surface by the formation of 

polysulfides:

PtS + H S' + OH' ^  Pt + Sz^' + H2O (3.6)

PtS -F 8 2^' ^  Pt + 8 3^' (3.7)

Thus, even if there were sulfur formation on the electrode surface, it would not be seen if  

the dissolution of sulfur was equal to or faster than its formation. In contrast, at 5 mA/cm^ 

(Fig. 4a), the potential slowly increases from -150 mV to -80  mV during the first 200 

seconds, and then jumps to over +1000 mV. This potential jump indicates that there was 

a build-up of sulfur deposits. Further evidence showing the formation of sulfur deposits is 

the large negative faradic impedance observed in Fig. 3.5b. When strongly bonded sulfur 

forms, surface sites are blocked and the potential must increase so that the rates of 

reactions increase at the remaining vacant sites to satisfy the applied constant current. As

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shown in the inset to Fig. 3.4a, the potential oscillations are in the range between 0.1 V 

and 0.3 V. At the bottom part of the oscillations, the sulfur formation (Reaction 3.4 & 3.5) 

is faster than the sulfur dissolution (Reaction 3.6 & 3.7),-resulting in sulfur build-up, thus 

the electrode potential goes up. When the potential reaches the top part o f the oscillations, 

sulfide can be directly oxidized to form polysulfide (8 2  ̂) at around 0.23 V [41]:

2 8 ^ '^  8 2 ^ '+  2 e ' (3.8)

The effects of Reaction 3.8 are two-fold: (i) the sulfur formation becomes less as the 

applied current is constant and partial current is used for Reaction 8 ; and (ii) the product 

(8 2^') o f Reaction 3.8 also increases Reaction 3.7. Thus, the oxidation of 8 ^' to 8 2^' 

results in sulfur removal from the electrode surface. As a result, the electrode potential 

drops down Reaction 3.8 switches off, and sulfur deposits are formed on the electrode 

surface again. Therefore, the deposition of sulfur on the Pt surface alternating with its 

removal by forming soluble polysulfides are the main reasons for Oscillation a .

Oscillation p appears at higher current densities with the electrode potential 

between 1.4 V and 1.8 V. At such a high potential range, platinum oxides (PtO%) are 

formed and oxygen evolution also occurs on the Pt surface. As seen in Fig. 3.3, there are 

well-defined bistability features in the presence of sodium sulfide; however, we did not 

observe any oscillations or a bistability feature in the j -E  curve in the NaOH solution. The 

appearance o f the bistability feature is an indicator of the change of the electrode surface 

states. At the low potential region, sulfide is oxidized on a platinum surface, while at the 

high potential region platinum oxide forms and sulfide is oxidized on the platinum oxide 

surface. The appearance of the bistability features indicates that the electrochemical 

activities of the Pt surface and the platinum oxide surface towards sulfide oxidation are
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different. As seen in Fig. 3.4c, periodic potential oscillations are observed at 50 mA/cm^. 

At the bottom portion of the oscillations, the predominant reaction is sulfide oxidation to 

sulfur. Indeed, we did observe sulfur deposits formed on the electrode surface. Bue to the 

build up of sulfur, the eleetrode potential increases. It ean be seen in Fig. 3.1a that oxygen 

evolution strongly depends on the applied potential. Thus, at the top part o f the 

oscillations, oxygen evolution becomes the predominant reaction where we observe more 

gas evolution, i.e., mueh less sulfur is produced at the top part of the oscillations than that 

at the bottom of the oscillations as the applied current is constant. Therefore, more HS 

/S^' are used for sulfur dissolution (Reaction 3.6 & 3.7) at the top part of the oscillation 

than at the bottom of the oscillation. Also, oxygen evolution increases mass transport, and, 

more HSVS^' are available for sulfur dissolution (Reaction 3.6 & 3.7). Actually, we 

observed partial removal of sulfur deposits periodically from the electrode surface during 

the experiments. Thus, Oscillation p is caused by the synergic effect o f sulfur 

formation/removal and oxygen evolution at the high potential range.

3.4.2. Mechanistic consideration of the current oscillations

As shown in Fig.3.1, the current oscillations strongly depend on the potential sweep rates. 

They appear in the CV curves recorded in 1.0 M NazS at 1 mV/s (Fig. 3.1c), but they do 

not show up at the sweep rates o f 20 mV/s (Fig. 3.1a) and 5 mV/s (Fig. 3.1b), which 

indicates that the current oscillations occur on a relatively slow time scale. The sulfide 

concentrations also play a key role in the current oscillations. No current oscillation is 

observed in 0.65 M NazS (the inset to Fig. 3.1c); in contrast, significant current 

oscillations are seen in Fig. 3.1c (1.0 M NazS) and in Fig. 3.Id (2.0 M NazS). The current 

oscillations are located in the large peak during anodic oxidation of sulfide as shown in
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the CV curves (Fig.3.1). Several reactions may occur in the potential range of the large 

peak: (1) HS'/S^ may be oxidized to form sulfur and polysulfides as we discussed in 

Section 3.4.1 ; (2) the increase of the current with the increment of the potential on the 

climbing portion of the peak (positive slope of the j -  E profile) indicates the occurrence 

of hydroxide adsorption comparing the CV curves recorded in 1 M NazS and 1 M NaOH 

(Fig. 3.1a); (3) the adsorbed hydroxide radicals may react with sulfide or hydrosulfide to 

form sulfate [43,51]; (4) the decrease o f the current with the increment of potential on the 

declining portion of the peak (negative slope of the] -  E feature) may result from 

platinum oxide (Pt-Ox) formation which inhibits sulfide oxidation; and (5) sulfide species 

can also reduce the formed platinum oxide. As shown in Fig. 3.2, the amplitude of the 

current oscillations is very large (~ 300 mA/cm^), which indicates that the 

electrochemical activity o f the electrode is much higher at the top part o f the oscillations 

than that at the bottom portion o f the oscillations. The lower activity o f the electrode 

surface at the bottom of the oscillations is likely due to the formation of sulfur deposits 

and platinum oxide. Indeed, we did observe a sulfur coating on the electrode surface 

during the CV and CA studies. At the bottom of the oscillation, a large amount o f HS'/S^ 

and OH is available for sulfur dissolution (Reaction 3.6) to form polysulfide (Sz^‘). The 

formation of Sz ’̂ further catalyzes the dissolution of sulfur deposits (Reaction 3.7). On 

the other hand, the formed platinum oxide can be reduced by sulfide and this also frees Pt 

sites:

PtOx + 2 x H S '-+ P t  + 2 S + xHzO (3.9)

More Pt sites are available for sulfide oxidation, thus increasing the current. When the 

current reaches the top portion of the oscillation, because o f the very large current (-300
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mA/cm^), it is expected that most sulfide species available in the double-layer region are 

consumed by the oxidation reactions. Sulfur deposits and platinum oxide may be formed; 

hence, the activity of the surface decreases and the current decreases. This is consistent 

with the effects of high sulfide concentration (Fig. 3.1) and stirring (Fig. 3.2c). In 

summary, the above results indicate that the current oscillations results fi’om the 

formation of platinum oxide (by the oxidation of hydroxide) and sulfur deposits (by the 

oxidation of HSVS^') followed by the subsequent removal of the platinum oxide (by the 

reduction of sulfide) and sulfur deposits (by forming polysulfides).

3.5. Summary

The electrooxidation o f sulfide on a Pt electrode has been investigated through a number 

of electrochemical methods such as cyclic voltammetry, cyclic/linear galvanic 

voltammetry, galvanostatic/potentostatic techniques and electrochemical impedance 

spectroscopy. Sulfide and hydrosulfide are oxidized to sulfur, polysulfides and sulfate 

depending upon the electrode potential. Three distinct electrochemical oscillations as 

well as a bistability feature are observed during the anodic oxidation of sulfide. Two 

peaks are observed in the CV curve when scanning the potential from -0.8 to +1.8 V. 

The small one is located in the potential range between -0.5 and 0.0 V, while the large 

peak locates in between 0.6 and 1.4 V. The current oscillations with very large amplitude 

and small frequency are located in large peak potential range. The current oscillations 

strongly depend on the potential sweep rate and the concentration of sulfide. The current 

oscillations are likely caused by the periodic formation of platinum oxide (via oxidation 

of hydroxide) and sulfur deposits (via oxidation of HSVS^') and by removal of the 

platinum oxide (via reduction of sulfide) and sulfur deposits (by forming polysulfides).
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Oscillation a  and Oscillation P are galvanostatic potential oscillations. Our EIS studies 

show that both Oscillation a  and Oscillation P can be classified as HNDR oscillators. 

Oscillation a  occurs at low current densities (below 10 mA/cm^), where the electrode 

potential is between 0 and 0.3 V. The formation of sulfur on the Pt surface and the 

removal of sulfur from the Pt surface through forming soluble polysulfides, switching the 

direct oxidation of S^7HS“ to polysulfides (Reaction 3.8) off and on, are the main reasons 

for Oscillation a . Oscillation P appears at high current densities, with an electrode 

potential between 1.4 V and 1.8 V. Oxygen evolution occurs at this high potential range 

and platinum oxides (PtO%) are also formed on the Pt electrode surface. Oscillation P is 

due to the synergic effect o f sulfur formation/removal and oxygen evolution at the high 

potential range. Our EIS studies show that both Oscillation a  and Oscillation P can be 

classified as HNDR oscillators. The well-defined bistability feature is due to the change 

of the electrode surface states: in the low potential region, sulfide is oxidized on a 

platinum surface, while in the high potential region platinum oxides are formed and 

sulfide is oxidized on a platinum oxide surface.
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Chapter 4

Potential Oscillations during the Electrocatalytic Oxidation of 
Sulfide on a Microstructured Ti/TazOg IrO; Electrode

4.1 Microstructure of the Coatings

The surface morphology of the IrOz-TazOg oxide coatings was examined by scanning 

electron microscopy (SEM). As shown in Figure 4.1a, the oxide coatings exhibit a typical 

porous ‘cracked mud’ structure. This is consistent with the observation by Comninellis et al 

[35]. Sitting on the ‘cracked mud’ are some oxide particles. Figure 4.1b shows that the size 

of the particles is between 100 and 150 nm. The above images indicate that the IrOz-TazOg 

oxide electrode prepared in this study has a much larger surface area than a planar metal 

electrode surface such as Pt and Au. A large electrode surface area is desirable for most 

industrial electrochemical processes. EDX analysis of the oxide coating shows a higher 

iridium content in the oxide particles than that in the ‘cracked mud’ region.

4.2 Cyclic Voltammetry and Differential Capacity

Figure 4.2a shows two cyclic voltammograms (CVs) recorded in 0.65 M NazS (solid line) 

and 0.65 M NaOH (dotted line) solutions. The pH of the sulfide solution is close to that 

o f the 0.65 M hydroxide solution, and thus HS ions are presumed to be the major sulfide 

species. As seen by the CV curve in the sodium hydroxide solution, oxygen evolution 

occurs at around 0.5 V/SCE and, by further increasing electrode potential, the current of 

the oxygen evolution linearly increases. All these results indicate that the Ti/TazOg-IrOz 

electrode possesses high electrocatalytic activity for oxygen
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400 nm

Fig. 4.1. Scanning electron micrographs of Ta and Ir oxide based electrodes (Ti/TazOg- 

IrOz) (a) Magnification: x 3,000; (b) Magnification: x 35,000
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evolution. In the presence of sulfide (solid line), sweeping potential from -0.8 V to 1.0 

V/SCE yielded a broad hump starting at -0.62 V/SCE in the CV, followed by a large and 

wide peak centred at ~0.1 V/SCE. The broad hump may be due to sulfide adsorption 

and/or polysulfide formation. The large (irreversible) peak may correspond to sulfide 

oxidation [41, 43]. When scanning back from 1.0 to -0.8 V/SCE, three peaks at 

approximately 0.9,0.2 and 0.05 V are observed in the CV curves. The multiple-peaks 

shown in the CV curves indicate that a number of different oxidation state sulfur 

compounds could be formed during the electro-oxidation of sulfide. Figure 4.2b shows 

two differential capacity (DC) curves determined from the AC impedance measurements 

using 0.65 M NazS (solid line) and 0.65 M NaOH (dotted line) solutions. The shape of 

these two DC curves is consistent with the forward scan of the CV curves shown in Fig. 

4.1a, which indicates that both cyclic voltammetry and differential capacity can be used 

to characterize the electrode surface and the electro-oxidation of sulfide. The capacitance 

of this Ti/TazOs-lrOz electrode is 215 pF cm'^ at the electrode potential -0.75 V/SCE 

(Fig. 4.2b); in contrast, the capacitance of Pt is 4.78 pF cm'^at the same potential, which 

indicates that the Ti/TazOg-lrOz electrode has much larger real surface area than regular 

metal electrodes such as Pt due to the porous structure of the oxide coating as observed in 

the SEM images.

4.3 Galvanostatic Potential Oscillations during the Anodic Oxidation of Sulfide

Figure 4.3 shows a linear galvanic voltammetric curve recorded in the 0.65 M NazS 

solution from 5 mA to 150 mA at a current scan rate of 20 pA/s. Two different regions of 

potential oscillation are observed in the galvanic curve, named here as Oscillation A and
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Fig. 4.2. (a) Cyclic voltammograms of 0.65 M NasS (solid line) and 0.65 M NaOH (dotted 

line) at a potential sweep rate o f 20 mV/s; and (b) differential capacitance plots of 0.65 M 

NazS (solid line) and 0.65 M NaOH (dotted line).
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Oscillation B, respectively. The amplitude of Oscillation A is significantly larger than 

that of Oscillation B. In contrast, the frequency of Oscillation A is much smaller than that 

of Oscillation B.

Figure 4.4 shows Oscillation A under galvanostatic conditions. In each 

galvanostatic experiment, the initial current density (ji) was set at 0 mA/cm^ for one 

minute. The current was then increased and held at jz for 15 minutes. At the low current 

density jz = 20 mA/cm^ the potential increases slowly from -0.115 V and then stays 

constant at around -0.1 V. In contrast, periodic potential oscillations are observed when jz 

is increased to 25, 30 and 35 mA/cm^. The amplitude o f these oscillations is very large, 

ranging between -0.1 and +1.4 V/SCE, and similar for the three different current 

densities. Initially, the potential increases slowly from -0.1 V to 0.0 V. Then, after 

suddenly jumping to + 1.4 V, it slowly down to -0.1 V. The time to increase the potential 

from -0.1 V to 0.0 V decreases when increasing jz from 25 to 35 mA/cm^; thus, the 

frequency o f the oscillations increases. On the other hand, there is a shoulder present at 

around 1.0 V when the potential drops from 1.4 V to -0.1 V. This shoulder becomes more 

and more definitive with increasing current density. At 40 mA/cm^, the shoulder becomes 

a platform and dominates the E - 1 curve with the presence of some small oscillations and 

two large oscillations. When further increasing jz to 45 mA/cm^, all oscillations 

disappear, and the electrode potential is slightly higher than +1.0 V. All these results 

show that the potential oscillations strongly depend on the applied current density. Figure 

4.5 presents four galvanostatic curves in the Oscillation B region. The h i ^  frequency 

oscillations observed at 60 mA/cm^ range between 1.15 and 1.4 V/SCE. Increasing
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Fig. 4.3. Linear galvanic voltammogram of 0.65 M NazS on the Ti/TazOs-IrOz electrode. 

Galvanic scan rate: 20 fiA/s
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Fig. 4.4. Chronopotentiometric curves of 0.65 M NazS: (a) 20 niA.cm'^; (b) 25 mA.cm'^;

(c) 30 mA.cm '̂ ; (d) 35 mA.cm'^; (e) 40 mA.cm''^; and (f) 45 mA.cm '
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the current density jz, the upper boundary of the oscillations remains constant, but the lower 

boundary of the oscillations shifts to higher potentials. As a result, the amplitude of the 

oscillation becomes smaller and smaller. The oscillation vanishes at jz = 75 mA/cm^, where 

the potential stays slightly above 1.4 V. As shown in Fig. 4.2, there is no oscillation present 

in the CV curve, and we did not observe any potentiostatic current oscillations in our 

investigated potential range ft-om -0.8 V to 1.8 V, which is different fi"om the behavior 

observed during the anodic oxidation of sulfide on the Pt electrode [49]. In order to 

understand the nature of the galvanostatic potential oscillations, we did further studies on 

sulfide oxidation using electrochemical impedance spectroscopy.

4.4. Electrochemical Impedance Study

Figure 4.6 presents six Nyquist plots at different electrode potentials, where Zr and -Zj are 

the real and imaginary components of the impedance, respectively. The frequency was 

changed from 25 kHz to 25 mHz as indicated in the plots. The potential chosen in the EIS 

study was determined from the galvanostatic results. The behavior of the impedance plot at 

-0.05 V is totally different from the Nyquist plot recorded at -0.1 V; negative impedance 

appears at the potential -0.05 V. This is consistent with the galvanostatic study where no 

potential oscillation were observed at 20 mA/cm^ when the electrode potential is -0.1 V; 

and potential oscillations occurred at 25 mA/cm^ where the electrode potential is above -0.1 

V. With increasing potential, negative faradic impedance is also observed at 0.5 and 1.2 V. 

Those two potentials lie in the range of the potential oscillations. All these results clearly
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Fig. 4.5. Chronopotentiometric curves of 0.65 M NazS: (a) 60 mA.cm'^; (b) 65 mA.cm'^;

(c) 70 mA.cm'^; and (d) 75 mA.cm'^
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show the presence of a hidden negative differential resistance (HNDR) (i.e., negative 

differential resistances in a region of intermediate frequencies and positive differential 

resistances in low frequencies). Thus, both Oscillation A and Oscillation B can be 

classified as HNDR oscillators with oxygen evolution involved (as shown later in the in 

situ images of the electrode surface). This conclusion can be further supported by the EIS 

results. The Nyquist plot at -0.05 V is similar to the plot at 1.2 V. At +1.0 and +1.4 V/SCE, 

only positive faradic impedance is seen. The oscillation vanished at current density jz = 45 

mA/cm^ and 75 mA/cm^, where the corresponding potential is around 1.0 and 1.4 V, 

respectively. The positive real impedance for 1.0 V is consistent with the galvanostatic 

results; a broad shoulder is observed at the top part of the Oscillation A, and the potential 

range for Oscillation B is above 1 .OV. Moreover, three capacitive loops presented in the 

frequency-dependent impedance (Fig. 4.6f) indicate a stable electrochemical system at 1.4 

V with three chemical processes on different time scales.

4.5. Effect of Stirring and Purging on the Potential Oscillations

Figure 4.7 shows the effect of purging/stirring on the potential oscillations at 30 mA/cm^.

In Fig. 4.7(a), purging with ultrapure Ar starts at the bottom of the oscillation; while in Fig. 

4.7(b), purging begins at the upper part of the oscillation. Curves 4.7(a) and 4.7(b) are 

almost identical, which indicates that the effect o f purging is independent of the start point 

where the bubbling is applied during the potential oscillation. In Fig. 4.7(c), magnetic 

stirring was turned on at the bottom part of the oscillation. With either purging or stirring, 

the electrode potential stays at around -0.1 V and the oscillation disappears. This is
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Fig. 4.7. Stirring/purging effects on the chronopotentiometric curves o f 0.65 M NazS at 30 

mA.cm'^: (a) purging at bottom of the oscillation; (b) purging at top of the oscillation; (c) 

stirring at bottom of the oscillation
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consistent with the above impedance study. Only positive impedance (rather than negative 

faradic impedance) was observed at the potential -0.1 V in the Nyquist plot. After the 

purging/stirring was turned off, the potential oscillation quickly recovers to its initial 

behavior.

Figure 4.8 shows the effect of purging/stirring on the potential oscillations in the 

Oscillation B region. With either stirring or purging at j2 = 60 mA/cm^, the periodic 

potential oscillations still appear in the galvanostatic curve. The shape of the wave form is 

similar to that without stirring and purging. The frequency of the oscillations is only 

slightly different from that without stirring. The amplitude of the potential oscillation 

becomes slightly larger with the stirring/purging, between 1.15 and 1.4 V. Based on the 

results of our impedance study (negative impedance observed at 1.2 V/SCE) one can 

predict that the potential oscillations can occur in this potential range. As shown in Fig. 

4.8(c), the electrode potential at 85 mA/cm^ is higher than 1.4 V and no potential oscillation 

is present in the galvanostatic curve. However, when the stirring is turned on, the electrode 

potential is lowered and the potential oscillations appear. The oscillations vanish right away 

when the stirring is stopped. All the above results are very consistent with our impedance 

study, and also indicate that mass transfer plays an important role in the potential 

oscillations during the electrooxidation of sulfide.

4.6. Oscillation Mechanisms

The mechanisms for the electrochemical oxidation of sulfide are complicated since sulfur 

has a number o f different oxidation states such as -2, 0, +4 and +6. Anodic oxidation of 

sulfide can produce elemental sulfur, polysulfides or sulfur oxyanions depending on the
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Fig. 4.8. Stirring/purging effects on the chronopotentiometric curves of 0.65 M Na2S at: (a) 
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potential, pH and temperature of the electrolyte. As described in Section 4.2, the pH of the 

0.65 M NazS electrolyte used in this study is close to the pH value of a 0.65M NaOH 

solution, which indicates that HS' ions are the predominant species. Some possible anodic - 

reactions [37,41-43] are listed here:

H S + 0 H = S  + H20 + 2 e  (4.1)

S '̂ = S + 2 e  (4.2)

2HS + 2  OH = Sẑ - + 2 HzO + 2 e' (4.3)

S2̂ ‘ = 2S  + 2 e  (4.4)

HS" + 9 OH = s o / -  + 5 HzO + 8 e (4.5)

Figure 4.9 shows five in situ images of the electrode surface taken by a digital camera at 20 

mA/cm^ (Image a) where no potential oscillation occurs, at 35 mA/cm^ in the Oscillation A 

region (Image c, d and e), and at 65 mA/cm^ (Image f) where Oscillation B is located. Fig. 

4.9b indicates where the images c, d and e were taken during the oscillation. Our 

galvanostatic study shows that the electrode potential is -0.1 V/SCE at 20 mA/cm^. Under 

the potential -0.1 V, all the above listed anodic reactions can occur, except Reaction 5 as 

this takes place at much higher potential 1.1 V [43]. For instance, the electrode potentials 

for the reactions 1 and 2 are -0.48 and -0.51 V/SCE, respectively [42]. Hydrosulfide can be 

oxidized to sulfur and/or polysulfides. Sulfide and polysulfides can also be oxidized to 

form sulfur. However, there is no sulfur build-up on the electrode surface as shown in the 

image 4.9a. It has been reported that the sulfur layer can be dissolved by forming 

polysulfides [57], i.e.

S + H S +  OH = Sz '̂ + HzO (4.6)

S + Sz '̂ = Sŝ - (4.7)
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1 mm

Fig. 4.9. In situ images of the Ti/TazOs-IrOz electrode surface at 20 mA/cm (a), at 35 

mA/cm^ (c, d and e), and at 65 mA/cm^ (f). Fig. 9b indicates where the images c, d and e 

were taken during the oscillation.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Thus, even if  it occurred, one would not see sulfur build-up on the electrode surface, if  the 

dissolution of sulfur is faster than its formation. This is also supported by the results shown 

in Fig. 4.8. The potential oscillations vanish and the electrode potential stays at around - 

0.1 V when the stirring/purging was turned on. The stirring/purging increases the mass 

transfer by moving HS', S^'and OH to the electrode surface and moving sulfur away. 

Because there is no sulfur build-up on the electrode surface the potential oscillations 

vanish.

Fig. 4.9b shows the potential oscillations at 35 mA/cm^ in the Oscillation A region. As 

shown in Fig. 4.9b, Images c and d were taken at the bottom part of the oscillation, and 

Image f  was taken at the top portion of the oscillation. As seen in Images c and d, more 

and more sulfur deposits are formed on the electrode surface as the electrode potential 

increases from -0.1 to 0.0 V. The conductivity of the sulfur layer is very low, which 

explains why negative impedance is observed in the impedance spectrum at -0.05 V. Once 

the electrode potential reaches approximately 0.0 V, it jumps to around +1.4 V and then 

drops slowly. When the potential decreases to 0.9 V, it suddenly drops to -0.1 V. As seen 

in Image e, oxygen evolution is present in Oscillation A in the upper potential regions, 

which stops as the potential decreases according to the experiment results (Figure 2a and 

3). In other words, periodic oxygen evolution occurs in Oscillation A. In addition. 

Oscillation A appears above the limiting current (Figure 2a and 3) and the current for the 

backward scanning is larger than that for the forward scanning (Figure 2a) for a range of 

potentials, while the potential is reversed at 1 V where oxygen evolution occurs. 

Oscillation A stops by imposing a constant convection as no depletion could occur 

because of stirring or purging (Figure 4.7). Thus, the variation of the S2-/HS- surface
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concentration from the diffiision-limited depletion by oxidation and from the convection- 

induced replenishment by oxygen evolution, respectively, might be the main reason for 

oscillation A. The sulfur deposit/removal might also cooperate with the 

depletion/replenishment in Oscillation A, depletion accompanying sulfur deposition and 

replenishment accompanying sulfur removal. To test whether the sulfur deposits can be 

directly oxidized to sulfate or not, we first deposited sulfur on the electrode surface at 0.6 

V for five mintues in a 0.65M.NazS solution and then transferred the electrode into a 0.65 

M NaOH solution. After five-minute electrolysis at 1.4 V in the 0.65M NaOH, we could 

still see sulfur deposits on the electrode surface. Therefore, the removal o f sulfur from the 

electrode surface is mainly through forming soluble polysulfides rather than through 

oxidation of sulfiir into sulfate.

As seen in image 4.9f, there are sulfur deposits and gas bubbles on the electrode surface 

at 65 mA/cm^, where Oscillation B is located. As seen in Fig. 4.3, the potential range for 

Oscillation B is only a portion of Oscillaiton A. However, the rates for the electrode 

processes in Oscllation B are dramatically different from those in Oscillation A, since 

Oscillation B appears at a much higher current range. Oscillation B is irregular, and has 

much smaller amplitudes and higher frequencies in comparison with Oscillation A. The 

surface concentration of S^'/HS' depletes much more rapidly (higher frequency), and the 

oxygen evolution immediately becomes predominant, which prevents the S^'/HS' surface 

concentration from being completely restored resulting in smaller amplitude oscillations. 

As a result, oxygen evolution continuous and the electrode surface is similar to what is 

shown in Figure 4.9f although it may vary from time to time (irregular). Additional 

stirring of the solution is helpful to lower the potential by partially restoring the S^VHS'
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surface concentration. The negative potential shift is due to the stirring as shown in 

Figure 4.8. All these results indicate that the Oscillation B is due to the synergic effect of 

sulfur formation/removal and constant oxygen evolution.

4.7. Summary

The electrooxidation of sulfide on a microstructured oxide electrode Ti/TazOs-IrOz has 

been investigated by.a number of electrochemical methods such as cyclic voltammetry, 

differential capacity, galvanostatic measurements and electrochemical impedance 

spectroscopy. Sulfide and hydrosulfide can be oxidized to sulfur, polysulfides and sulfate 

depending upon the electrode potential. The SEM analysis shows that the Ti/TazOs-IrOz 

electrode prepared in this study has a ‘cracked mud’ structure with oxide particles sitting on 

the top. The particle size is around 100 nm. This oxide electrode has much larger surface 

area than planar metal electrodes such as Au and Pt. Two distinct ranges of galvanostatic 

potential oscillations, Oscillation A and Oscillation B, are observed during the electro­

oxidation of sulfide on the oxide electrode. Oscillation A is in the range from 20 to 45 

mA/cm^, while Oscillation B is located in the region between 55 and 75 mA/cm^. It is also 

found that mass transfer plays an important role in the potential oscillations. The variation 

of the S^'/HS' surface concentration from the diffusion-limited depletion by oxidation and 

from the convection-induced replenishment by periodic oxygen evolution, respectively, 

might be the main reason for oscillation A, while Oscillation B is due to the synergic 

effect of sulfur formation/removal and constant gas evolution. The EIS studies show that 

both Oscillation A and Oscillation B can be classified into a new type of HNDR oscillator 

with oxygen evolution involved. The oxide TazOs-IrOz is a promising electrocatalyst in the
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electrochemical treatment of sulfide solutions, and the influence of the oscillations on the 

life time of the Ti/TazOs-IrOa is being investigated by our group. In summary, we have 

demonstrated that the electrooxidation of sulfide on the oxide electrode Ti/TazOs-IrOz is an 

excellent system for understanding the nature o f the oscillations as one can directly observe 

the change of the electrode surface during the potential oscillations caused by sulfur 

formation/removal.
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Chapter 5

Effect of concentration and temperature on electrochemical 

oscillations during sulfide oxidation on Ti/TazOs-IrOi electrodes

5.1. Cyclic voltammetry and linear galvanic voltammetry

Fig. 5.1a shows two cyclic voltammograms (CV) recorded at a sweep rate o f 20 mV/s for 

solutions o f 1.0 M NazS (solid line) and 1.0 M NaOH (dotted line). The onset of oxygen 

evolution for the sodium hydroxide solution occurs near 0.5 V and the current for oxygen 

evolution increases linearly with increasing potential. In comparison, when sweeping the 

potential from -0.8 to 1.8 V/SCE with sulfide present, a broad hump starting at 

approximately -0.65 V/SCE as well as a large wide peak centered at ~ 0.1 V is observed 

during the forward scan. This large wide peak could be due to sulfide oxidation to 

polysulfide or sulfur in combination with the chemical formation of polysulfides through 

dissolution of the sulfur layer on the electrode [Chapter 4]. The return scan demonstrates 

two sharp peaks with shoulders occurring at approximately 1.25 and 0.9 V as well as 

broader peaks occurring at 0.6 and 0.45 V. The numerous peaks shown in the CV curve 

indicate that many possible potential-dependent oxidative state sulfur compounds can be 

formed, most likely involving oxyanions of sulfur. In addition, Fig. 5.1b shows a linear 

galvanic voltammogram of a 1.0 M NazS solution ranging from 10 to 150 mA recorded at 

a sweep rate of 20 pA/s. Two potential oscillatory regions can be distinguished, with the 

first ranging from 40 to 105 mA and the second appearing from 110 to 135 mA. As can 

been seen in the galvanic voltammogram, the first oscillatory region is of large amplitude 

and high frequency whereas the second region appears to have a somewhat erratic 

amplitude and low frequency. Obviously, the potential oscillations strongly depend
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Fig. 5.1: (a) Cyclic voltammograms of 1.0 M Na2S (solid line) and 1.0 M NaOH (dotted 

line) with a potential sweep rate of 20 mV/s and (b) linear galvanic voltammogram o f 1.0 

M NazS with a galvanic sweep rate of 20 pA/s.
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on the applied current.

5.2. Effect of current densities on the potential oscillations

Fig. 5.2 presents a series o f curves under galvanostatic conditions with current densities 

ranging from 40 to 125 mA/cm^. In all cases the initial current density (ji) was held at 0 

mA/cm^ for one minute and then stepped to jz and held there for 15 minutes. For clarity 

purposes, only the portion between 400 and 800 seconds of each experiment is shown in 

Fig. 5.2. As seen in Fig. 5.2a, at the low current density (jz = 40 mA/cm^) the poterttial 

initially starts at aroimd -0.05 V and slowly increases until the potential reaches 0 V 

where there is a sudden and large increase in potential to approximately 1.1 V. The 

potential then decreases to -0.05 V, with the appearance of a small shoulder around 0.75

V as the potential drops. As the current density is increased, both the frequency as well

as the peak potential o f the oscillation increases with the shoulder becoming more distinct. 

The observed shoulder then disappears once the current density is further increased to 95 

ruA/cm^. At 125 mA/cm^ (Fig. 5.2h), the character of the oscillations changes 

dramatically. The potential starts around 1.3 V and slowly increases until it reaches 1.35

V at which point the potential drops sharply to 0.1 V. These periodic potential 

oscillations are caused by the synergic effect of sulfur formation/removal and oxygen 

evolution at the high potential range. At the bottom part o f the oscillations, the 

predominant reaction is sulfide oxidation to sulfur. Indeed, sulfur deposits were observed 

on the electrode surface. Because o f  the sulfur build up, the electrode potential increases. 

As shown in Fig. 5.1a, oxygen evolution strongly depends on the applied potential. When 

the electrode potential increases, oxygen evolution significantly increases. Thus, at the
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top part o f the oscillations, oxygen evolution becomes the predominant reaction, i.e., 

much less sulfur is produced at the top part o f the oscillations than at the bottom of the 

oscillations since the applied current is constant. Therefore, more HSVS^’ are used for 

sulfur dissolution at the top part o f the oscillation than at the bottom of the oscillation. 

Furthermore, oxygen evolution increases mass transport, thus, more HSVS^' are available 

for sulfur dissolution. The above results demonstrate that the applied current density has 

a large impact on the behavior of the potential oscillation, most notably affecting.the 

amplitude and frequency.

5.3. Impact of concentration on potential oscillations

Fig. 5.3 shows four linear galvanic voltammograms (LGV) of NazS solutions with 

concentration o f (a) 0.3 M, (b) 0.65 M, (c) 1.0 M and (d) 2.0 M. One oscillatory region is 

observed for the 0.3 M NazS solution, starting at ~10 mA/cm^ and stopping at 20 mA/cm^. 

The oscillation shows large amplitude with low frequency. Further increasing current 

density does not generate a second region of oscillation. Increasing the NazS 

concentration to 0.65 M (Fig. 5.3b), shifts the onset of oscillation to slightly above o f 20 

mA and extends the upper limit to 40 mA. These oscillations have similar amplitude to 

those observed for the 0.3 M case but the frequency is higher. The increased 

concentration also leads a second region of oscillation between 55 mA and 65 mA. This 

second region o f oscillation has an appreciably reduced amplitude when compared to the 

first region but its frequency is significantly higher. As shown in Fig. 5.3c, a further 

increase of concentration to 1.0 M shifts the onset of potential oscillations to 40 mA.

Also, the first region of oscillation is greatly expanded now ranging between 40 and 105
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mA. Again, although the amplitude is similar to the previous curves, the frequency o f the 

oscillation has dramatically increased. The character of the oscillations located in the 

second region has also changed with a decrease in the frequency and non-periodic large 

potential drops are observed. Fig. 5.3d shows the linear galvanic voltammogram of the

2.0 M sulfide solution. The onset of oscillations occurs at 100 mA and runs up to 170 

mA. Unlike in the 0.65 M and 1.0 M cases, only one oscillation range is observed.

These four voltammograms demonstrate that sulfide concentration plays an important 

role in the appearance and location of potential oscillations. These results are consistent 

with the oscillatory mechanisms proposed in chapter 4 where by the oscillations are 

driven by a combination of formation/removal o f the sulfur layer via sulfide oxidation, 

oxygen evolution and formation of polysulfides. The shift to higher current densities 

prior to the onset of potential oscillations for these solutions can be explained by the 

increase in sulfide concentration since chemical dissolution of the sulfur layer on the 

electrode surface increases with increasing sulfide concentration. The lack of a second 

oscillation region at the low sulfide concentration may be a result of insufficient sulfide 

in solution to remove the sulfur layer faster than it can be formed at higher current 

densities. The 2.0 M sulfide also yielded only one oscillatory region which can most 

likely be attributed to the opposite case: where the sulfide in solution is in a high enough 

concentration, in combination with oxygen evolution, to prevent the formation of any 

significant sulfur layer. This is further supported by the potential that is observed after 

the oscillations have finished. After the oscillations stop the potential stays around 1.0 V, 

whereas in the other three solutions the potential observed after the oscillations stop 

approaches or exceeds 1.5 V, indicating a thicker sulfur layer is present at higher current
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densities. The influence of sulfide concentration was further investigated using 

electrochemical impedance spectroscopy (EIS).

5.4. Impact of concentration on the switch point potential for negative faradaic 

impedance

Fig. 5.4 presents six EIS complex plane plots o f the Ti/TazOg-IrOz electrode in (a, b) 0.3 

M NazS, (c, d) 0.65 M NazS and (e, f) 1.0 M NazS. As seen in Fig. 5.4a, c and e, only 

positive faradic impedance is observed at -0.2 V for these three different concentrations. 

Negative faradic impedance is observed for all three concentrations (Fig. 5.4b, d and f) at 

less negative electrode potentials. The onset potential for negative faradaic impedance 

increases with increasing sulfide concentration. At 0.3 M NazS (Fig. 5.4b) the onset 

potential for negative faradic impedance occurs at -0.1 V. At 0.65 M NazS (Fig. 5.4d) it 

shifts to -0.05 V. For both 1.0 M and 2.0 M NazS solutions negative faradic impedance 

is first observed at 0.0 V. Therefore we did not include the impedance spectra for 2.0 M 

NazS in Fig. 5.4. These results are consistent with the LGV shown in Fig. 5.3. In Fig. 

5.3a, which corresponds to the 0.3 M sulfide solution, the initial potential during the 

oscillation is ~ -0.1 V. The initial potential for oscillation in 0.65 M NazS (Fig. 5.3b) also 

shows similar characteristics with it starting at ~ -0.05V. At 1.0 M and 2.0 M sulfide 

solutions (Fig. 5.3 c, d) the onset potential for the oscillation is 0 V. All these results 

show that the EIS and LGV studies are in excellent agreement with the effect of sulfide 

concentration on the behavior of the oscillations.

To understand the EIS spectra, equivalent circuits were used to fit the 

experimental EIS data presented in Fig. 5.4. The circuit shown in Fig. 5.5a was used to 

fit the positive faradic impedance spectra shown in Fig. 5.4a, c and e; and the
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circuit shown in Fig. 5.5b was employed to fit the negative impedance spectra shown in 

Fig. 5.4b, d and f. The fit results match the experimental data very well indicating that 

the circuits selected can be considered valid. In both circuits, Rs takes into account the 

solution resistance, the parallel combination of RfCf takes into account the properties o f 

the oxide film [69] and the second parallel combination of RlCPEl is associated with the 

oxidation of sulfide. A CPE is composed of two portions: CPE-T and CPE-P. If CPE-P 

is equal to one then it can be considered a capacitor. The use of a R lC PEl when CPEl-P 

is < 1 leads to the generation of a depressed semicircle in complex plane plots. It has 

been reported earlier that the use o f a CPE circuit element as opposed to a capacitor in 

fitting impedance data obtained fi-om porous type electrodes better accounts for the 

inhomogenities of the surface structure o f the coating material [70]. Circuit b contains 

additional elements o f a resistor (R2) and a capacitor (C2) in parallel with R2 in series 

with another parallel combination of a resistor (R3) and capacitor (C3). The addition of 

this second branch takes into account sulfur deposits as well as other specific adsorbed 

species formed on the electrode surface which generates the negative impedance [66].

The values obtained fi'om fitting the experimental data are presented in Tables 1 and 2. 

Table 1 presents the data obtained from the fit results o f the experimental data for 

positive impedance (Fig. 5.4a, c, and e) using the circuit shown in Fig. 5.5a. The 

resistances associated with the oxidation of sulfide decrease with increasing 

concentration, also the CPE values are shown to increase with increasing concentration. 

Table 5.2 presents the data obtained from fitting the experimental results shown in Fig. 

5.4b, d and f. The elements R2 and C2 shown in Table 5.2 are negative. This is in good 

agreement with the start of oscillations occurring at these potentials for the three
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Fig. 5.5: Equivalent circuits used to fit experimental data from Fig. 4: (a) positive 

impedance and (b) negative impedance

Table 5.1: Impedance Components for the Positive Faradaic Impedance Fitted by 
the Equivalent Circuit Shown in Figure 5a.

Concentration
(mol/L)

Potential
(V) - X  (Q  cm 7

Çf ^
(mF cm 7

Ret 
(Q  cm^

CPEct-T 
(mF cm'^

CPEct^P

0 3 -0 3 5 3 6 14.9 38.63 17.8 0.66
0.65 -0 3 1.88 16.7 11.91 32.3 0.54
1.0 -0 3 2.4 21.3 5.4 76.4 0.46

Table 5.2: Impedance Components for the Negative Faradaic Impedance Fitted by 
the Equivalent Circuit Shown in Figure 5b.

Concentration

(md/L)

Potential

(V)
Rf
G

Cf
mF
cm^

R i
G

cm^

CPEl
mF
cm'̂

R2
G

cm

02
mF
cm'^

R3
G

en?

Ç3
mF
cm'̂

0.3 -0.1 1.67 0.22 16.63 16.5 -86 65.9 125 -68.4
0.65 -0.05 0.79 0.22 3.58 19.1 -19.9 45.1 25.6 -29.4
1.0 0 1.2 15.9 0.82 16.9 -9 42.9 10.54 -83.9
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different concentrations. The large values associated with R3 for all concentrations are 

also an indication that there are sulfur deposits on the electrode since sulfur has poor 

conducting properties. The R3 values are also consistent within themselves. The largest 

value o f R3 is observed for the 0.3 M NaaS solution while the smallest is observed for the

1.0 M NaaS solution. This demonstrates an increase in the sulfur layer at lower 

concentrations compared to that at the higher concentrations, giving rise to negative 

impedance at lower potentials for lower sulfide concentrations. This is very consistent 

with the impact o f concentration on the LGV’s.

5.5. Effect of temperature on the oxidation of sulfide

Fig. 5.6a presents three linear voltammograms from -0.8 to 1.35 V at a scan rate o f 20 

mV/s and T = 2,40, and 60 °C. At 2 “C, the current densities are significantly reduced in 

the S^'/HS' oxidation region as well as in the oxygen evolution reaction (OER) region. At 

room temperature (Fig. 5.1a), the peak current density raises to ~ 120 mA. Increasing the 

temperature to 40 °C gives rise to an increase in the peak current density from -120 mA 

at 22 °C to over 200 mA as well as an overall increase in current density for the OER 

region (Fig. 5.6a). Increasing the temperature to 60 °C yields a significant increase in 

current density in the HSVS^' oxidation region, the peak current density being 350 mA. 

Also, increasing temperature shifts the location of the peak current density to higher 

potential. As can be seen from Fig. 5.6a, the peak current density at 2 °C is located at 

—160 mV, at 40 °C the location of the peak current density shifts to —255 mV. Finally, at 

60 °C, the peak current density shifts to an even higher potential (335 mV). The 

activation energy (Ea) can be calculated as outlined by De Silva et al [71]. Where the rate 

of electrode processes can be expressed in terms of current density (j) if  the energy of the
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Fig. 5.6: (a) Linear voltammograms of 1.0 M Na2S with a potential sweep rate of 20 

mV/s at 2 °C (solid line); 40°C (dashed line); and 60°C (dotted line), (b) Arrhenius plot 

for sulfide oxidation at 0.16 V.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reactant follows a Maxwell distribution:

j = k*exp(-Ea/R*T) (5.1)

where k is the rate constant. Eg is the activation energy, R is the gas constant, and T is the 

temperature in Kelvin. De Silva et al also demonstrated that activation energy is a 

function of the overpotential (r|) and is related by the following equation [71]:

Ea  ̂= Ea - «T*F*Ï1 (5.2)

with ttT the transfer coefficient at constant temperature, and F the Faraday constant. 

Therefore, at a constant overpotential q, one can calculate the activation energy from the 

dependence of j on temperature (Arrhenius plot) using the following relation:

(d ln j/d r‘) ,  = -(Ea’’/R) (5.3)

In determining the activation energy for sulfide oxidation the current densities 

corresponding to the peak current density potential for the CV curve of the oxidation of 

sulfide at 2 °C was selected. This corresponds to a potential o f 0.16 V and gives current 

densities o f 40, 107, 187 and 295 mA/cm^ for 2, 22, 40 and 60 °C, respectively. Fig. 5.6b 

shows the resulting Arrhenius plot for the current densities at 0.16 V and gives an 

activation energy for the oxidation of sulfide of 24 kJ/mol.

Continuing the investigation into the temperature effects on the electroxidation of sulfide. 

Fig. 5.7 presents the effect o f temperature on the potential oscillations observed during a 

linear galvanic voltammetric study. Fig. 5.7a shows a LGV of 1.0 M Na2S taken at 2 °C. 

For the selected current range a steady increase in potential is observed with no 

oscillations present. This indicates that there is no periodic formation and removal o f 

sulfur on the surface at such a low temperature. Increasing the temperature to 40 °C (Fig. 

5.7c), yields a large increase in current prior to the onset of oscillations. The onset o f
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oscillations now occurs around 80 mA instead of 40 mA, as observed at room 

temperature (Fig. 5.7b). The frequency o f the oscillation is somewhat erratic with some 

fluctuations in the amplitude as well. A further increase in temperature to 60 °C gives a 

significant increase in current to ~ 145 mA before the onset of oscillations occurs as seen 

in Fig. 5.7d. The overall amplitude of the potential oscillations at 60 °C appears to be 

slightly reduced when compared to those observed at 40 and 22 °C. These results 

demonstrate that the behavior and appearance of the potential oscillations is highly 

dependant on the applied temperature. They also show that increased temperature 

prevents the formation of a sulfur layer on the electrode until the rate o f formation o f the 

sulfur layer exceeds that of the rate o f dissolution, which can only occur at high current 

densities. This is due to: (1) increasing temperature increases the mass transfer o f  HS 

/S^’ ions from the bulk solution to the electrode surface; and (2) increasing temperature 

promotes the sulfur dissolution and polysulfides formation (Reaction 4 & 5). Thus, the 

periodic formation and removal o f sulfur occurs at a higher current density when 

increasing temperature.

5.6. Effect of potential oscillations on electrode lifetime

In an effort to determine the impact of the potential oscillations on electrode 

lifetime, investigations were performed at four different current densities in a 1.0 M NazS 

solution. Current densities were selected to determine the behavior of the Ti/TazOg-lrOz 

towards sulfide oxidation below the first oscillation region (20 mA/cm^), in the first 

oscillation region (65 mA/cm^), in the second oscillation region (125 mA/cm^) and at 180 

mA/cm^ (which is well above both oscillation regions). The Ti/TazOs-lrOz electrode has 

excellent activity towards oxygen evolution [35] as well as strong affinity for sulfide
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oxidation [Chapter 4], indicating the possibility o f a long lifetime. Our investigations are 

not directed towards total electrode deactivation. Instead, we selected an endpoint o f  200 

hours which gives a good indication of the impact of potential oscillations during sulfide 

oxidation on the electrode lifetime.

EIS studies were performed to determine the change in the electrical behavior o f the 

electrodes after 200 hours o f operation at the selected current densities. Fig. 5.8a shows 

five complex plane EIS spectra of the Ti/TazOs-IrOz electrodes in 1.0 M NaOH at 0.5 V 

which corresponds to the onset o f oxygen evolution for the Ti/TazOs-lrOz electrode. 

Before the lifetime tests, all four Ti/TazOg-IrOz electrodes were characterized in 1.0 M 

NaOH; their impedance spectra are very similar and are represented by Curve 1. After the 

lifetime tests, the electrodes were washed completely using NANOpure water and then 

heated using a hot plate to ~ 200 "C for 20 minutes. Curves 2 - 5  are the corresponding 

impedance spectra after the 200-hour test at 20, 180, 125 and 65 mA/cm^ respectively. 

Compared to the fresh Ti/TazOs-lrOz (Curve 1), all tested Ti/TazOs-lrOz electrodes 

exhibit an increase in impedance. The EIS studies indicate an almost ten fold increase in 

impedance for the electrode that was run at 65 mA/cm^ (Curve 5) followed by larger 

impedance for the second oscillation region (125 mA/cm^, Curve 4). As expected, the 

impedance spectrum associated with the electrode run at 20 mA/cm^ (Curve 2) shows the 

smallest increase in impedance. Surprisingly, the highest current, density 180 mA/cm^ 

(Curve 3), does not give rise to the largest increase in impedance, indicating that the 

oscillatory regions have a detrimental impact on the electrode lifetime.
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Fig. 5.8: (a) EIS complex plane plots of Ti/TazOg-lrOz electrode in 1.0 M NaOH at 0.5V

vs SCE: Curve 1 : initial; Curve 2 - 5 :  the corresponding impedance spectra after the

200-hour test at 20, 180,125 and 65 mA/cm^, respectively, (b) Equivalent circuit used to

fit impedance spectra. Symbols: experimental data. Solid lines: fit results.

Table 5.3: Impedance Components for the Oxygen Evolution Reaction Fitted by the 
Equivalent Circuit Shown in Figure 8b.

Electrode Rf

Q c n f

CPEf-P

mFcm'^

CPEf-T Ret 

□  cm?

CPEdl-P 

mF cm‘̂

CPEdl-T

Initial 2.35 13.3 0.38 3.087 79.8 0.94
20 mA cm'^ 1.73 5.3 0.51 4.87 38.1 0.85
65 mA cm'^ 1.55 7.4 0.52 26.48 14.2 0.95
125 mA cm'^ 1.82 0.79 0.73 10.6 30.8 0.86
180 mA cm'^ 1.86 1.8 0.60 7.96 38.4 0.86
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The equivalent circuit shown in Fig. 5.8b was used to fit the experimental data 

shown in Fig. 5.8a, where the symbols represent the experimental data and the solid lines 

indicate the fit curves. In this Rs(RfCPEf)(RctCPEdl) circuit, the normal notations are 

applicable where Rs is the solution resistance and RfCPEf corresponds to the film 

properties [69]. The combination of Ret and CPEdl takes into account the charge transfer 

resistance and double layer capacitance associated with the oxygen evolution reaction. In 

our initial fitting trials a capacitor was put in place of both CPE elements. The fitting 

results did not correspond well to the experimental data. Table 5.3 gives the resulting 

data obtained from fitting the experimental data using the circuit shown in Fig. 5.8b. In 

general, a slight decrease is observed in the film resistance (Rf) and the film capacitance 

(CPEf-P). The charge transfer resistance shows similar trends with the largest increase 

found to correspond to the first oscillation region (26.48 Q cm^) and the smallest increase 

with the electrode tested at 20 mA/cm^. Based on the impedance results, the electrode 

lifetime t would change in the following order:

t (20 mA/cm^) > t (180 mA/cm^) > t (125 mA/cm^) > t (65 mA/cm^)

The periodic formation and removal o f sulfur at 65 mA/cm^ firom the electrode surface 

would greatly decrease the electrode lifetime. The surface morphology of the IrOz-TazOg 

oxide coatings was examined by scanning electron microscopy (SEM). Fig. 5.9 shows 

SEM images of (a) the unused oxide coating and (b) the electrode tested at 65 mA/cm^. 

Compared to the unused sample, the tested sample is seriously corroded. Our weight 

measurements before and after the 200-hour lifetime test reveal that the sample tested at 

65 mA/cm^, where harmonic potential oscillations were observed, has the highest weight 

loss. These results indicate that the observed potential oscillations have a detrimental
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Fig. 5.9: Scanning electron micrographs of the Ti/TaiO^-IrOz electrodes: (a) unused; and 

(b) after a 200-hour test at 65 mA/cm^ in 1.0 M Na2S solutions. Magnification: x 10,000.
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impact on electrode lifetime.

5.7. Deactivation Mechanism of TazOg-IrOz during Sulfide Oxidation

To further understand the impact o f both oscillations and sulfide oxidation on the 

lifetime of TazOg-IrOz electrodes we continued the lifetime experiments until the first 

deactivated (point at which a large increase in potential is observed) anode occurred. The 

primary deactivation mechanism of IrOz-based DSA® is coating consumption [72-73]. 

This can be caused by chemical consumption associated with interactions involving the 

electrolyte or impurities, electrochemical consumption (electrooxidation and dissolution 

of the metal oxides), and/or erosion of the oxide particles by way o f gas evolution which 

can lead to detachment of coating particles. In addition to coating consumption it is also 

possible to form an insulating TiOz interlayer between the Ti substrate and the oxide 

coating. This can occur during the calcination process [74] where the substrate is 

oxidized to TiOz. It can also occur from selective loss of catalysts and active sites o f the 

coating allowing for the substrate to be exposed to the electrolyte and the anodic 

oxidation of the Ti substrate to TiOz [75]. The deactivation point in this study 

corresponds to the electrode run at 65 mA cm‘̂  and a time of 360 hours. Figure 5.10 

presents the resulting CV (Figure 5.10a) and EIS (Figure 5.10b) of the initial and final 

electrochemical characterizations. It has long been known that the integration of a CV 

curve in the double-layer region is proportional to the active surface area o f a DSA®, 

giving an indication o f the number of active sites on the electrode surface [35]. The CV 

curve after 360 hours (dotted line) shown in Figure 5.10a demonstrates a significant 

decrease in the EASA when compared to the initial characterization (solid line). 

Integration of the region between the hydrogen and oxygen evolution regions indicates a
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16-fold decrease in the EASA after 360 hours of oxidation of sulfide in the first 

oscillatory region. Figure 5.10b presents the EIS spectra o f both the initial 

characterization (circles) and the deactivated characterization (triangles) in 1.0 M NaOH 

at 500 mV of the TazOs-lrOz anode. The EIS spectrum of the deactivated TazOs-lrOz 

shows a significant increase in impedance compared to the initial Nyquist plot. This is 

very consistent with the observed results for the CV studies where a significant decrease 

in the EASA is observed. Figure 5.1 la  shows the SEM image of the deactivated TazOs- 

IrOz anode. When compared to the fresh TazOs-lrOz anode we can see that significant 

degradation of the oxide coating has occurred to such an extent that the cracked mud 

structure is now completely absent. The EDS spectra shown in Figure 5.11b further 

support this as well. The spectrum of the fresh TazOs-lrOz anode shows well defined 

peaks associated with Ta and Ir and the absence of evidence of Ti (indicating little to no 

TiOz was formed during the electrode fabrication process). However, after deactivation 

of the TazOs-lrOz anode the peaks associated with Ta are completely absent and the 

generation o f a very strong Ti peak occurs. This is further supported with elemental 

analysis. The initial composition of the fresh TazOs-lrOz anode was 70% IrOz, 30% 

TazOs and 0% TiOz. At the end of its lifetime the composition of the anode has changed 

dramatically. The final composition o f the anode was 20% IrOz, 0% TazOg, and 80% 

TiOz indicating the preferential dissolution of TazOg from the coating mixture. The 

above information the deactivation mechanism of the TazOg-lrOz anode during sulfide 

oxidation in the first oscillatory region can be described as follows: 1) the oscillations 

accelerate the removal of loosely bound coating particles, 2) preferential chemical 

dissolution of the TazOg component o f the TazOg-lrOz anode, and 3) the loss o f TazOg

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i
I

-2

i.-6
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

EA/ vs SCE

Eü

25

20

15

10

5

0

40 50 600 10 20 30

Z/Q  cm

Figure 5.10. (a) Cyclic voltammogram of initial (solid) and deactivated (dotted) TaiOs- 

Ir02 electrode in 1.0 M NaOH. (b) EIS complex plane plots of initial (circle) and 

deactivated (triangle) TaaOs-lrOa in 1.0 M NaOH at 500 mV.
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opens up the Ti substrate to the electrolyte allowing for its oxidation to non-conducting 

Ti02. Therefore the primary deactivation mechanism for this process is the oxidation of 

the Ti substrate to form non-conducting Ti02. However, the manner in which this 

process occurs is quite different from the loss of the electroactive component that is 

traditionally found to be the cause of the formation of the Ti02 insulating layer. To the 

best of our knowledge this is the first time that the loss of Ta2 0 s (stabilizing component 

o f the oxide mixture) has been the cause of the deactivation of a Ta2 0 s-Ir0 2  anode.

Consequently, when using an electrochemical process to treat a sulfide solution, one 

should try to avoid potential oscillations in order to achieve a long lifetime for Ti/Ta2 0 s- 

fr0 2  electrodes.

5.8. Conclusions

The influence o f current density, concentration and temperature on the 

electrochemical oscillations during anodic oxidation of sulfide on the Ti/Ta2 0 5 -Ir0 2  

oxide electrode was investigated. The observed potential oscillations are caused by the 

periodic formation/removal of sulfur from the electrode surface. Increasing current 

density increases the frequency of the potential oscillations as well as shifting the onset 

potential to slightly higher values. The concentration of sulfide in solution has a large 

impact on the location and amplitude of the observed potential oscillations. Increasing 

the concentration shifted the potential oscillations to higher current densities as well as 

shifting the onset potential to slightly higher values. EIS studies further showed that the 

onset o f negative impedance increases in potential with increasing sulfide concentration; 

and equivalent circuit models were developed to fit the impedance spectra. Temperature 

also significantly influences the behavior o f potential oscillations. Increasing
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Figure 5.11. (a) SEM image of deactivated Ta20;-Ir02 electrode. Magnification: x 10000; 

(b) EDS spectra o f initial (solid line) and deactivated (dotted line) Ta20s-Ir02 anode.
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temperature shifts the location of the oscillations to much higher current densities. The 

activation energy of sulfide oxidation was estimated as 24 kJ/mol based on the Arrhenius 

plot. Finally, the effect of potential oscillations on electrode lifetime was also 

investigated. It was found that potential oscillations appear to have a detrimental impact 

on the electrode lifetime. In addition, it was determined that the preferential dissolution 

of Xa2 0 5  exposed the Ti substrate to the electrolyte. This exposure of the substrate 

allows for the formation of an anodically grown insulting Ti0 2  interlayer which is the 

main reason for the deactivation of the Ta2 0 s-Ir0 2  electrode during sulfide oxidation.
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Chapter 6 

Summary

The ability to effectively reduce or eliminate sulfide emissions from waste 

processes is becoming increasingly important as environmental regulations continue to 

tighten allowable limits for sulfide emissions. Currently, sulfide species are removed 

through adsorption, chemical oxidation and precipitation reactions [76-77]. However, 

these processes are expensive and it is difficult to achieve desirable economical benefits 

[78]. On the other hand, electrochemical oxidation of aqueous and gaseous sulfide has 

garnered significant attention for detection and removal/conversion of the highly toxic 

sulfide species [37,39,44-48]. However, the mechanisms of sulfide oxidation and 

soluble polysulfide ion formation, as well as the nature o f the deposited sulfur, are still 

not clear. In addition, oxyanions of sulfur such as thiosulfate and sulfate can also be 

formed. Thus, further investigation of sulfide oxidation is critical in order to effectively 

remove sulfide from wastewater streams and convert sulfide economically into 

polysulfides for use in the kraft pulping process.

During my M. Sc. program, I studied electrochemical oscillations (which play an 

important role in the study o f nonlinear dynamics) during the anodic oxidation of 

aqueous sulfide on Pt and TazOs-IrOz electrodes. To accomplish this I used a number o f 

electrochemical methods {e.g., cyclic voltammetry, cyclic and linear galvanic 

voltammetry, differential capacitance, chronoamperommetry, chronopotentionunetry, 

galvanostatic technique, and electrochemical impedance spectroscopy). Also, surface 

analytical techniques such as scanning electron microscopy (SEM) and energy dispersive
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X-ray spectroscopy (EDS) were used to study changes in the eomposition and structure 

of the Ta2 0 5 -Ir0 2  electrode. The main results o f my studies are summarized below.

6.1. Electrochemical oxidation of sulfide on a Pt electrode

The oxidation of sulfide on a Pt electrode demonstrated a current oscillation, and 

two potential oscillations (Oscillations a  and P). A bistability feature has also been 

observed. The current oscillations are thought to be caused by periodic formation and 

removal of PtO% and sulfur deposits. The removal of PtO% is most likely accomplished 

through reduction with sulfide. The sulfur deposits can be removed by a number of 

different mechanisms including polysulfide and sulfate formation. The two potential 

oscillations labeled a  and P have been classified as hidden negative differential resistance 

(HNDR) type oscillators using EIS. Oscillation a  appears at low current densities with 

amplitude of 0.3 V and is caused by the formation and removal o f sulfur on the Pt surface, 

which turns the direct oxidation of S^VHS' to polysulfides on and off. Oscillation P 

occurs at higher current densities with the electrode potential ranging between 1.4 and 1.8 

V. Oscillation p occurs on a PtOx surface that is formed at higher potentials from the Pt 

metal. The oscillation is due to the combined effects o f sulfur formation and removal in 

concert with constant oxygen evolution. The bistability feature observed during the 

oxidation of sulfide is a result of a change in the surface state of the electrode. In regions 

of low potential, sulfide is oxidized on a Pt surface. At high potentials Pt is converted to 

PtOx and sulfide is oxidized on the PtO* surface.
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6.2. Ëlectrocatalytic oxidation of sulfide on a microstructured Ti/TazOg-IrOz 

electrode

The Ta20s-Ir02 electrode used in this study exhibits the typical cracked mud 

structure (SEM analysis) traditionally seen of oxide electrodes prepared from the thermal 

decomposition technique. Particles of Ir02 (-100 nm) sit on top of the cracked mud 

structure, further enhancing the surface area. During the electrooxidation of sulfide on 

this electrode two distinct potential oscillatory regions were observed. Oscillation A 

ranged from 20 to 45 mA cm'^ and oscillation B from 55 to 75 mA cm'^. The features of 

the oscillations depend on the applied current density. Oscillation A is due to variations 

in the HSVS^' surface concentration caused by oxidative depletion of HSVS^' and the 

replenishment of HS VS '̂ by periodic oxygen evolution. Oscillation B is caused by sulfur 

formation/removal combined with constant gas evolution. Our EIS studies have 

demonstrated that these oscillations can be classified into a new type of HNDR oscillator 

that involves oxygen evolution, indicating that mass transport plays a critical role in the 

generation of the oscillations.

Investigations were conducted into the impact of current density, concentration, 

and temperature on the oxidation of sulfide and the behavior of the oscillations. It was 

determined that raising current density increases both the frequency and the onset 

potential of the oscillations. Raising the concentration of sulfide yields a significant 

increase in the current density and onset potential of the oscillation. The increase in 

current density and onset potential are thought to be a result of the increase in S '̂ 

concentration which chemically dissolves the sulfur layer faster than it can form. The
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higher sulfide concentrations would require higher current densities before a sufficient 

sulfur layer is formed causing oscillations to occur. EIS studies showed that the onset 

potential o f negative impedance increases with increasing concentration. Raising 

temperature causes a significant increase in current density prior to the onset o f 

oscillations, indicating that the formation of the sulfur layer is impeded. There are two 

reasons for this; (1) increased mass transfer of HSVS^' ions from the bulk solution to the 

electrode surface; and (2) enhanced sulfur dissolution and polysulfide formation. The 

activation energy for the electrochemical oxidation of sulfide was estimated to be 24 

kJ/mol. We also investigated the impact o f the potential oscillations on electrode lifetime 

and subsequently proposed a deactivation mechanism for the TazOg-IrOz electrode during 

sulfide oxidation. It was determined that potential oscillations have a detrimental impact 

on electrode lifetime and that the preferential dissolution of TazOg exposed the Ti 

substrate to the electrolyte. This exposure o f the Ti substrate allowed for its oxidation to 

an insulating TiOz interlayer and this insulating interlayer is the main cause of the 

deactivation of the TazOg-IrOz electrode during sulfide oxidation.

63. Comparison of the electrochemical oscillations during sulfide oxidation

To understand further the behavior o f oscillatory instabilities during sulfide 

oxidation we compared the performance o f Pt and TazOg-IrOz under potential and current 

control. Figure 6.1 presents potential linear voltammograms of (a) Pt and (b) TazOg-IrOz
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in 1.0 M NazS at a sweep rate of 1 mV/s. In Figure 6.1a, oscillations are observed at 

higher potential regions during the slow sweep rate scan, with the amplitude and 

frequency of the oscillations being dependent on the applied electrode potential. 

Conversely, no oscillations are observed during the slow sweep rate scan with the TazOg- 

IrOz electrode shown in Figure 6.1b; all that appears is a broad hump centred at —0.1 V. 

This indicates that the current oscillations are highly dependent on the electrode surface 

where both hydroxide and sulfur have weak .adsorption on TazOg-IrOz and strong 

adsorption on the Pt surface. Figure 6.2 shows a series o f galvanostatic curves o f Pt in 

1.0 M NazS: (a) 5 mA/cm^, (b) 50 mA/cm^ and TazOg-IrOz in 0.65 M NazS: (c) 30 

mA/cm^, (d) 60 mA/cm^. The amplitude of the oscillation in the case of Pt (fig 6.2a) is 

quite small (0.15 V) compared to that of TazOg-IrOz (1.5 V) (figure 6.2c) but the 

frequency is significantly higher. At low current densities we can see that the oscillatory 

behavior o f these electrodes is quite different, this is consistent with the proposed 

mechanisms. The variation of the S^'/HS'/OH" surface concentration from diffusion and 

oxidation, the deposit of sulfur on the Pt surface, and the removal o f sulfur from the Pt 

surface through forming soluble polysulfides are the main reasons for Oscillation a . The 

variation of the S^'/HS' surface concentration from the diffusion-limited depletion by 

oxidation and from the convection-induced replenishment by periodic oxygen evolution 

is the main reason for oscillation A. However, at high current densities both Oscillation 

3 and Oscillation B show somewhat irregular behavior, and have small amplitudes and 

high frequencies. Oscillation B is caused by the synergic effect of sulfur 

formation/removal and constant oxygen evolution. Consequently, Oscillation 3 is 

observed at the high potential range, where the surface concentration
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of S^VHS' depletes rapidly (high frequency), and the oxygen evolution becomes 

predominant. This prevents the S^'/HS' surface concentration from completely restoring 

- giving a smaller amplitude. As a result, oxygen evolution behaves continuously and the 

surface sulfur deposits remain although their quantities may vary from time to time 

(irregular) indicating that the same mechanism occurs for both systems at higher current 

densities.

Overall, the finding of electrochemical oscillations using both Pt and TazOs-IrOz 

has advanced the understanding of the electrochemical oxidation of sulfide, providing 

insight into the development o f more efficient electrochemical processes to treat sulfide 

waste streams and to convert sulfide into polysulfides for the white liquor o f the kraff 

pulping process
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