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Abstract

In the development of rough set theory, many different interpretations and for­

mulations have been proposed and studied. One can classify the studies of rough 

sets into algebraic and constructive approaches. While algebraic studies focus on 

the axiomatization of rough set algebras, the constructive studies concern with the 

construction of rough set algebras from other well known mathematical concepts and 

structures. The constructive approaches are particularly useful in the real applica­

tions of rough set theory. The main objective of this thesis to provide a systematic 

review existing works on constructive approaches and to present some additional re­

sults. Both constructive and algebraic approaches are first discussed with respect to 

the classical rough set model. In particular, three equivalent constructive definitions 

of rough set approximation operators are examined. They are the element based, the 

equivalence class based, and the subsystem based definitions. Based on the element 

based and subsystem based definitions, generalized rough set models are reviewed and 

summarized. One can extend the element based definition by using any binary rela­

tions instead of equivalence relations in the classical rough set model. Many classes 

of rough set models can be established based on the properties of binary relations. 

The subsystem based definition can be extended in the set-theoretical setting, which 

leads to rough set models based on Pawlak approximation space, topological space, 

and closure system. Finally, the connections between the algebraic studies, relation 

based, and subsystem based formulations are established.
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Chapter 1

INTRODUCTION

The theory of rough sets was proposed by Pawlak more than 20 years ago [25]. 

There is a rapid grow of interest in the theory and its applications [14, 20, 23, 28]. 

Many interpretations and formulations of the theory have been proposed and stud­

ied [2, 48, 40, 43, 46, 53, 55]. Each of them captures a particular aspect of the theory. 

The co-existence of the many views and formulations shows the flexibility and wide 

applicability of the theory. This chapter reviews the basic concepts of the classical 

rough set model, i.e., the Pawlak rough set model. The formulation of rough set the­

ory is divided into constructive and algebraic methods [42]. For constructive methods, 

there exist at least three definitions of rough set approximation operators [43, 46]. 

The algebraic methods focus on axioms of rough approximation operators [19, 48]. 

The relationships between the constructive and algebraic approaches can be estab­

lished [48, 50, 53]. It should be commented tha t for an easy comparison with other 

mathematical systems and related theories, in this thesis a same property is often 

labeled differently in different contexts.
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1.1 Pawlak Approximation Spaces

Let U denote a finite and non-empty set called the universe. Suppose E  Ç U  x U  

is an equivalence relation on U. That is, E  satisfies the following three conditions:

(i) refiexibility : Vx € U(xEx),

(ii) symmetry ; Vx,y  G U{xEy  = >  yEx),

(iii) transitivity : Vx,y , z  E U{xEy  A yE z  =4> xEz).

The pair apr =  (U,E)  is called a Pawlak approximation space. In an approximation 

space apr — (U,E),  the equivalence relation E  partitions the set U into disjoint 

subsets. Such a partition of the universe is denoted by U/E.  For an element x  E U, 

the equivalence class containing x is defined by:

M g =  {3/ I æEî/}. (1.1)

The equivalence relation reflects the relationships between elements in the universe 

U. It captures the indiscernibility of objects defined by available information [25, 27]. 

If two elements x , y  in U belong to the same equivalence class, we say tha t x and y 

are indistinguishable. In real applications, the equivalence relation can be defined in 

an information table [27, 52]. The equivalence classes of E  are called the elementary 

sets in the approximation space apr =  (U,E). The empty set 0 and the union of one 

or more elementary sets is called a composed set [25, 27]. The family of all composed 

sets is denoted by Com(!7), which forms a Boolean algebra. In general, Com(I7) ^  2^, 

where 2^ is the power set of U. That is, some subsets of U are not composed sets.

1.2 Rough Set Approximations

An important imphcation of the equivalence relation is the granulation of the

universe. Under the equivalence relation, we can not differentiate two elements x
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and y if xEy.  That is, the available information or knowledge forces us to think the 

equivalence class [x ] e  as a whole, instead of many individuals. This implies that we 

can only describe a subset of elements which is an equivalence class of E,  and, more 

generally, the subsets in Com{U). For this reason, we also refer to a subset in Com(l7) 

as a definable, measurable, or interpretable set, depending on the particular context 

of applications [46]. Recall that in general, we have Com([/) ^  2^. This suggests 

that we can not have a precise characterization of a subset X  not in Com(17). The 

question of how to describe X  roughly or approximately is to the development of the 

rough set theory. Institutively, this question can be answered as follows. Given a 

subset X  Ç U such that X  is not a composed set, one can find a family of sets in 

Com([/) that are subsets of X ,  and one can also find another family of sets in Com(ü7) 

that are supersets of X .  Hence, one can infer information about X  based on the two 

families of sets in Com{U), because X  falls within the sets in two families. We observe 

that the first family has a maximum element and the second has a minimum element. 

Those two extreme elements are used to define a pair of approximations called the 

lower and upper approximation of X .  More specifically, they are defined by [25]:

apr{X) — the largest subset of X  which is an element of Com(t/),

apr{X) =  the smallers superset of X  which is an element of Com(17). (1.2)

This definition is well defined and is applicable to any subset of U. In the case when 

X  E Com([/), the lower and upper approximations are in fact X  itself. This agrees 

with the interpretation of Com(Z7). In the next section, we further examine the rough 

set approximations based on three constructive definitions.
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1.3 Constructive Studies of Rough Set Theory

We examine three equivalent definitions that offer different interpretations of 

rough set approximations. They can be used to establish connections between rough 

set theory and other related theories, such as modal logic, topological operators, belief 

functions, and so on [37, 48, 49, 50, 53]. Furthermore, in the following two chapters, 

we will show that they allow derive different generalizations of the classical rough set 

theory. More specifically, the element based definition enables us to generalize the 

theory by using an arbitrary binary relation, the subsystem based definition enables 

us to generalize the theory using other mathematical structures such as topological 

spaces, closure systems. Boolean algebra, Lattices, and Posets [43, 46, 50].

1.3.1 Subsystem based definition

The subsystem based defined was first used by Pawlak in the study of the topo­

logical characteristics of rough set approximations [25]. In an approximation space 

apr =  (17, E),  the set of composed sets Com(C7) is in fact an u-algebra with U /E  as 

its basis. That is, Com(Z7) is closed with respect to set complement, intersection and 

union. Thus, we also denote this cr-algebra as cr{U/E). The rough set approximations 

can be immediately defined by [25]:

g2r(%) =  | J { ^ | y e n ( [ 7 / E ) , y ç x } ,

w (% ) =  r i{ ^ |: ^ G n ( [ / /F ) ,y D % } , (1.3)

According to this definition, apr{X)  is the largest definable set in the subsystem 

a{U/E)  that is contained in X ,  apr(X)  is the smallest definable subset in crÇU/E) 

that contains the set X .  A Pawlak approximation space defines uniquely a topological 

space (U, Com(Z7)), in which Com([7) is the family of all open and closed sets [25]. 

Thus, the lower approximation is related to the interior, and the upper approximation
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is related to the closure, of a set in the topological space U, Com{U)). This proves a 

topological interpretation of rough set approodmations [25].

1.3.2 Element based definition

With respect to the lower and upper approximations, Pawlak introduced two types 

of memberships [25]. If x € apr(X),  we say that X  surely belongs to X  in apr and 

hence x is a strong member. If x g âpf{X),  we say that x possibly belongs to X  in 

apr, and hence x is a weak member [25]. The element based definition focuses on the 

conditions for strong and weak members. For an arbitrary set X  Ç.U, its lower and 

upper approximation is defined by:

apr{X) {x E U Ç

{ x E U for all y e U, x E y  implies y E X }

{ x E U V;/[!/ € [x]g ÿ E A]},

{x e U 0}

{ x E U there exists a y  e U such that x E y  and y E

( x E U G [x]^,ÿ € %]}. (1.4)

belongs to the lower approximation of X  if all its equivalent

elements belong to A . It belongs to the upper approximation of X  if at least one of 

its equivalent elements belongs to X .  The element based definition relates rough set 

approximation to the necessity and possibility in modal logics [50, 48].

1.3.3 Equivalence class based definition

In an approximation space, the equivalence classes may be considered as the small­

est definable subsets. All composed set can be expressed as a union of equivalence
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classes. Thus, equivalence classes are the basic building blocks for rough set approx­

imations. Being composed sets, the lower and upper approximations of a set can be 

expressed as unions of some equivalence classes. This offers the following equivalence 

class based definition:

I ME Ç A"}, 

W ( ^ )  =  U { M g  I  M g  n  X  0} . (1.5)

That is, apr{X)  is the union of equivalence classes which are subsets of X ,  Spf(X) 

is the union of equivalence classes which have a nonempty intersection with X .  The 

equivalence class based definition can be used generalize rough set theory based cov­

erings of a universe [47, 46, 55].

1.4 Properties of Rough Set Approximations

The three constructive definitions give the same rough set approximations, but 

different semantic interpretations. This section summarizes the main properties of 

such approximations. For any subsets X,  Y  Ç U, the lower approximation opr satisfies 

properties:

(LO

(LI

(L2

(L3

(L4

(L5

(L6

apr(X) = ~ 3 p ^(~ X ), 

apr(U) = U,

apr( X  n  y )  — apr(X)  n  apr{Y), 

aprjX  U y )  D apr{X) U apr{Y), 

A Ç y  =*- opr(%) Ç opr(y), 

opr(0) = 0, 

o2r(X) Ç X,

7
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(L7) X  Ç apr (apr (X)),

(L8) gpr(X) Ç opr(opr(X)),

(L9) ô^(X ) Ç gpr(^(X )),

and the upper approximation âpr satisfies properties:

(UO) apf(X)  =  ~ o p r(~ X ),

(Ul) ôpf(0) =  0,

(U2) U y) = ôpf (X) u ôpf(y),

(U3) ôpf(x n y ) ç  o ^ (x )  n z#'(y),

(U4) X  ç  y  = >  ô ^ (x )  ç  opr(y),

(U5) ôpF([/) = u,

(U6) x ç w ( ; ^ ) ,

(U7) Z#:(a2r(X)) Ç X,

(U8) âpf{âpr{X)) Ç âpr(X),

(U9) âpr(apr(X))  Ç apr(X),

where ^  X  — U — X  denotes the set complement of X .  Moreover, lower and upper 

approximations obey properties:

(K) o p r ( ~ X u y ) C  r^apr(X)  U apr(Y),

(K') r^npr(X) nnpr(y) ç  n y),

(D) opr(X) Ç # r (X ) .

Properties (LO) and (UO) state that two. approximations are dual to each other. 

Hence, properties with the same number may be regarded as dual properties. These
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properties are not independent. For example, property (L2) implies property (L3) 

and (U2) implies property (U3). Properties (L8), (L9), (U8) and (U9) are expressed

in terms of set inclusion. The standard version using set equality can be derived 

from (L0)-(L9) and (U0)-(U9). For example, it follows from (L6) and (L8) that 

apr{X) ~  apr (apr (X)).

1.5 Algebraic Studies of Rough Set Theory

One may interpret apr, âpr : 2^ — > 2^ as a pair of dual unary set-theoretic 

operators called approximation operators. The system (2^, apr, apr, n, U) is called 

a rough set algebra [48]. It is an extension of the set algebra (2^, n, U) with added 

operators. By interpreting rough set approximations as unary operators, one can 

have algebraic studies of the rough set theory. Instead of of constructing rough set 

operators first, and then studying their properties, one can study directly the rough 

set algebras by imposing on properties given in the last section. That is, we define 

a pair of dual approximation operators and states properties that must be satisfied 

by the operators. In an algebraic method, we focus on an algebraic system (2^,n, 

U ,~ ,L ,H ) ,  where (2^, n, U, ~ ) is the set algebra, and L ,H  : 2^ — > 2^ are two 

unary operators on the power set 2^. A pair of unary set-theoretic operators L ,H  

are called dual operators, if they satisfy the properties:

(LO) L(X) =  ' - H ( -X ) ,

(HO) H ( X ) = - L ( - X ) ,
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With respect to the properties given in the last section, we consider the following list 

of axioms of approximation operators L  and H:

(K) L ( - X  U y )  Ç - L ( X )  U L (y ) ,

(K ') - H ( x  n  H y )  Ç H ( - x  n  y ) ,

(Ll) L(U) =  U,

(L2) L (x n y ) =  L(X) n L(y),

(HI) H(0) =  0,

(H2) H(X U y ) =  H(X) U H (y),

(D) L(X) Ç H(X);

(T) L(X) Ç (X),

(T) X Ç H(X);

(B) X Ç LH(X),

(B3 HL(X) Ç X;

(4) L(X)CLL(X),

(40 HH(X)CH(X);

(5) H(X) Ç LH(X),

(50 HL(X) Ç L(X).

The axioms in the list are relabeled by following the convenient in modal logic [4, 48, 

50]. Based on those axioms, we can study and classify different rough set algebras [42].

10
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1.6 Connections of Constructive and Algebraic Studies

The connection between constructive and algebraic methods can be established 

by finding a set of axioms so that there exists an equivalence relation that produces 

the same approximation operators [19]. The following theorem gives a set of such 

axioms [48].

T h eo rem  1.1 Suppose L ,H  : 2^ — > 2^ is a pair of dual operators. I f  H  satisfies 

axioms (HI), (H2), (T ), (4') and (B), then there exists an equivalence relation E  on 

U such that for all X  C U , L{X) = apr(X)  and H{A)  — 'apr(X), where apr and apr 

are the approximation operators defined by the equivalence relation E.

This theorem can be extended when studying other rough set algebras [48, 50]. Some 

authors also studied operators L and H  that are not dual to each other [29, 30, 55].

1.7 Organization of the Thesis

The main contribution is a more complete and coherent study of constructive ap­

proaches of rough set theory. Our emphasis is on putting the majority of existing 

studies in a unified framework. This enables us to gain more insights into existing 

studies, and at the same time, to obtain new results that enriches the constructive 

approaches. In order to achieve such objectives, the thesis is organized as follows. 

In Chapter 1, by reviewing the existing studies on constructive and algebraic ap­

proaches, we establish a unified framework in which one can construct generalized 

rough set models. The generalized models can be obtained by extending the three 

constructive definitions. In Chapter 2, we briefly review and summarize constructive 

approaches based on the use of an arbitrary binary relation, instead of an equiva­

lence relation. For such generalizations, element based defining is used. A connection 

between properties binary relations and rough set approximation operators can be

11
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established. Different rough set models can be derived. In Chapter 3, we examine 

generalized rough set models constructed by using the subsystem based definition. 

The discussion is developed in the set-theoretic setting. In particular, Pawlak topol- 

ogy, topological spaces and closure systems are used. The generalization of rough set 

theory using other mathematical structures greatly enriches the theory. In Chapter 4, 

we study the connections between algebraic studies, binary relation based and sub­

system based formulations. The results of Chapters 2 and 3 are thus linked together. 

In Chapter 5, we summarize this thesis and point out some further research topics.

12
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Chapter 2

CONSTRUCTION OF GENERALIZED 

ROUGH SETS BASED ON BINARY 

RELATIONS

The element based definition can be easily extended to construct generalized rough 

set models based on an arbitrary binary relations [39, 50]. As shown by Yao and 

Lin [50], such a study can be carried out by drawing results from modal logic [4].

2.1 Generalized Approximation Spaces

The Pawlak approximation space is defined by an equivalence relation. This un­

necessarily limits the flexibility and applicability of the theory. In many real appli­

cations, the requirement of the transitivity may be too strong [33, 34]. Hence, it is 

necessary to consider non-equivalence relations. Let R  Ç U x U he a binary relation 

on U. The pair apr — {U, R) is called a generalized approximation space. Depending 

on the properties of the binary relation R, one can derived many classes of approx- 

imation spaces. For two elements x , y  € U, if xRy,  we say that y is E-related to x. 

The physical meaning is that x  and y are somewhat semantically related. It can be 

interpreted as indistinguishable, accessibility, similarity, or connectivity, depending

13
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on the context. A binary relation can be equivalently defined by a mapping from U 

to the power set 2^:

=  { * /  I  x A y } .

The set x R  Ç U consists of elements of U th a t are i?-related to x. It is called the 

successor neighborhood of x. In general, one may also other types of neighborhoods []. 

When an equivalence relation E  is used, the successor neighborhood x E  is in fact the 

equivalence class [z]g containing x.

2.2 Generalized Approximation Operators

Many generalized models have been developed for the theory of rough set by 

constructing different types of approximation operators based on non-equivalence re­

lations [39, 50]. As shown by Yao [47, 46], by substituting [x ] e  with xR,  one can 

obtain generalized approximation operators by extending either the element based 

definition or the equivalence class based definition. We consider the extension of ele­

ment based definition. By replacing equivalence classes with successor neighborhoods 

in the element based definition, we define generalized approximation operators as:

apr(X) — {x  I \/y[xRy = >  y E X]}

— {x I xR  Ç X},

W ( A )  =  { x  I 3% /[xA y, ÿ  e  X ] } .

=  {x [ x R n X f  0}. (2.6)

The set gpr(X) consists of those elements whose R-related elements are all in X , and

apf{X)  consists of those elements such that at least one of whose R-related elements is 

in X. The generalized approximation operators are defined in a similar manner as that 

of the necessity and possibility operators in modal logic [50]. It follows that we can

14
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employ the results from modal logic to study generalized rough set models. As a first 

step, we adopt the same labeling system from Chellas [4] for naming approximation 

operators:

(K) ap r(~ X  U y )  Ç r^apr(X)  U apr(Y),

(D) opr(X) Ç ôpf(X),

(T) apr(X)  Ç X,

(T') X  Ç üpf(X);

(B) X  Ç o p r (^ (X )) ,

(BO apr{apr{X)) Ç X;

(4) apr{X)  Ç apr{apr(X)),

(40 apr{apf{X)) C ôÿF(X);

(5) apf{X)  Ç apr(âpr{X));

(50 ôpr(opr(X)) Ç opr(X).

The Pawlak approximation operators satisfy all those properties. Generalized approx­

imation operators do not necessarily satisfy them. Property (K) does not depend on 

any particular binary relation. The other properties depends on the properties of bi­

nary relations. Each of the properties (D)-(5) corresponds to a property of the binary 

relation. Table 2.1 summarizes the coimections between properties of binary relations 

and properties of approximation operators [43, 47]. More specifically, the properties 

(D), (T), (B); (4), and (5) correspond to serial, refiexive, symmetric, transitive, and 

Euclidean binary relations, respectively. By combining these properties,

one can construct many distinct rough set models. The respective models are named

15
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Property of 
binary relation

Property of 
approximation operators

none (K)
serial: for all X E U, there exists a y E 17, 

such that y E x R
(D)

reflexive: for all X E 17, X € x R (T)
symmetric: for all x , y  E U, X  £ y R  y  € x R (B)
transitive: for all x , y , z  E U,

[y £ xR, z E yR] = >  z  E x R
(4)

Euclidean: for all x , y , z  E U,
[y E x R , z E xR ] = >  y E zRorz E yR

(5)

Table 2.1: Relationships between properties of binary relations and approximation
operators

according to the properties of the binary relation or the properties of the approx­

imation operators. For example, a rough set model constructed from a symmetric 

relation is referred to as a symmetric rough set model or the KD model. If the binary 

relation is serial, one obtains a rough set algebra that is an interval structure [38]. 

If the binary relation is reflexive and transitive, one obtains a topological rough set 

algebra [16, 48]. If R  is reflexive and symmetric, i.e., R  is a compatibility relation, 

properties (K), (D), (T) and (B) hold. This model is labeled by KTB. Property (D) 

does not exphcitly appear in the label because it is implied by (T). Pawlak rough 

set model is labeled by KT5, which is also commonly known as S5 in modal logic. 

It should be noted that two different subsets of properties in Table 2.1 may produce 

the same rough set model. By considering all subsets of the property set, {none, 

serial, reflexive, symmetric, transitive, Euclidean}, one can derived at least fifteen 

distinct classes of rough set models [50]. Figure 2.1, adopted from Chellas [4] and 

Marchai [21], summarizes the relationships between these models. A line connecting 

two models indicates the model in the upper level is a model in the lower level. These 

lines that can be derived from the transitivity are not explicitly shown. The model K
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KD

K45

KTB

K5

KDB

KB4

KD4

K4KB

KT4

KD5KT

KD46

KT5

Figure 2.1; Rough set models

may be considered as the basic and the weakest model. It does not require any special 

property on the binary relation. All other models are built on top the model K. The 

model KT5, i.e., the Pawlak rough set model, is the strongest model.
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Chapter 3

CONSTRUCTION OF GENERALIZED 

ROUGH SET MODELS BASED ON 

SUBSYSTEMS

In this chapter, we review and discuss generalizations of rough set theory based 

on subsystem based definition in the set-theoretical setting. The subsystem of the 

power set of the universe, such as close-open topological spaces, topological spaces, 

and closure systems, are used.

3.1 Pawlak Topological Space

The Pawlak approximation space, apr — (U, E),  is characterized by an equivalence 

relation E  Ç U  x U  defined on the finite and non-empty universe U. The equivalence 

relation E  partitions the universe U into pairwise disjoint subsets called the partition 

of the universe, written U/E.  The equivalence classes and the empty set 0 are called 

elementary sets. The empty set and the unions of elementary sets are called composed 

sets, or the definable, observable, measurable sets [25, 48]. The family of all definable 

sets is denoted by Com(I7). The system Com(I7) is closed under set complement.
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intersection and union. It is a subsystem of the power set 2^. In fact, it is an a- 

algebras of subsets of 17. There is a closely connection between Pawlak approximation 

spaces and special type of topological spaces where the family of open and closed sets 

are the same. For a Pawlak approximation space on a finite universe, we have a 

topological space (17, Com({7). Moreover, the family of clopen sets, i.e., closed and 

open sets, the same as the family of closed sets, and the family of the open sets are the 

same, namely, they all equal to Com(î7). This type of topological space is sometimes 

called Pawlak topology [18]. For a finite set U, there is a natural correspondence 

between the set of all equivalence relations on U and the set of topologies on U in 

which each closed set is open (i.e., Pawlak topology) [9]. We can restate the subsystem 

based definition as follows:

(defl) o p rW  =  U { ^  I ^  € Com([/), Y Ç X },

opr(X) =  I y  E Com([7),X Ç Y}.

The greatest clopen set contained in X  is the lower approximation of X  and the 

least clopen set containing X  is the upper approximation of X .  The pair of lower 

and upper approximations may be interpreted as two unary set-theoretic operators 

U : apr,apr : 2^ — > 2^. Under this view, the rough set theory can be regarded as 

extension of set theory with two additional unary set-theoretic operators apr(X)  and 

ôpr(X ). Together with the standard set-theoretic operators negative ~ , intersection n  

and union U, the system (2^, üpf, n, U) is called a Pawlak rough set algebra.

The approximation operators are in fact the interior and closure operators in the 

Pawlak topology (U, Com(/7). The set of fixed points of the two operators are defined
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by:

0((7) =  { X | o ^ ( X ) = X }  

=  {X  I apr(X) =  X }

= C([f)

== (3.7)

That is, we can recover the set of clopen sets in a Pawlak topology by using the fixed 

points of approximation operators.

3.2 Topological Space

In a Pawlak topology, the family of all open and closed sets [25]. This is not 

necessarily true for an arbitrary topological space. The subsystem based definition 

of approximation operators can be extended for any topological space [5, 16, 36, 48]. 

Let {U, 0(17)) be a topological space, where 0(17) Ç 2^ is a family of subsets of U 

satisfying the following axioms:

(01) 0EO([/),[7eO(17);

(02) 0(17) is closed under union, i.e.,

for any subsystem T> Ç 0(17), we have [JT> € 0(17);

(03) 0(17) is closed under finite intersection, i.e.,

for any A , B e 0(17), we have A D B  E 0(17).

Elements of 0([7) are called open sets. A set in 17 is called closed set if and only if 

its complement set is a open set. This establishes the duality between the closed sets 

and open sets by means of set complement. One can easily deduce the properties of
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closed sets. The family of all closed sets C(f7) =  X  | X  g 0(17)} is characterized 

by the following axioms:

(01) 0 E C ([ /) ,[ /E C ([ f ) ;

(02) 0(17) is closed under intersection, i.e.,

for any subsystem V  C 0(17), we have Q D  E 0(17);

(03) 0(17) is closed under finite union, i.e.,

for any A, E 0(17), we have A U B  E 0(17).

In general, the family of open sets is different from the family of closed sets, tha t is 

0(17) f  0(17). We denote

00(17) 0(17) n 0(17) (3.8)

the set of all clopen (simultaneously closed and open) sets. For a finite universe 17, 

axioms (02) and (02) may be simply stated in terms of finite union and intersection. 

The approximation operators can be constructed based on the subsystem based def­

inition [3, 46]. The system 0(17) can be viewed as the sets of inner definable sets, 

and the system 0(17) as the set of outer definable elements. By extending defini­

tion (defl), a subset X  Ç 17 can be approximated from below by an element of 

0(17), and from above by an element of 0(17):

( d e f l a )  o2 T(X) =  | J { ^  I  Y  E  0(17), y  Ç X },

ôpr(X) =  Q{y I y E 0(17), x ç  y}.

That is, opr(X) the largest open set contained in X , and qpr(X) is the smallest

closed set containing X . They in fact define a pair of Kuratowski topological interior 

and closure operators characterized by the axioms:

(il) opr(X n y )  =  gpr(X) 11 ogr(y),
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(12) ^ ( X )  Ç X,

(13) apr(apr{X)) — apr{X),

(14) a£r{U) = U,

and

(cl) apr(X  U F ) =  apr{X) U apr(Y),

(c2) X  Ç # r (X ) ,

(c3) ôpr(z#'(X)) =  ôpf'(X),

(c4) apf(@) = 0.

Conversely, given a pair of dual approximation operators, opr, ôpf : 2^ — > 2^, 

satisfying axioms (il)-(14) and axioms (cl)-(c4), respectively, the sets of their fixed 

points:

0(17) =  { X | ^ ( X )  =  X },

0(17) =  { X |g p f ( X ) = X } ,  (3.9)

are families of open and closed sets of a topological space.

3.3 Closure System

The notion of closed sets in a topological space may be further generalized by 

removing some of axioms from (cl)-(c4). A family C(17) of subsets of 17 is called a 

closure system if 17 6 C(U) and is closed under intersection [6]. That is,

(OT) 17 e  C(17);

(02) C(17) is closed under intersection, i.e.,

for any subsystem D Ç C(17), we have QZ) € C(17).
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By collecting the complements of members of C{U), we obtain another system 0{U)  =  

{-iX  I X  € C{U)}. According to properties of C{U), the system 0{U)  contains the 

empty set 0 and is closed under union, namely,

(01') 1/ G 0(1/);

(02) 0{U) is closed under union, i.e.,

for any subsystem T> Ç 0(1/), we have ( J D  € 0(1/).

The pair of systems 0(1/) and 0(1/) correspond to the families of open sets and 

closed sets in a topological space. Definition (defl) may be generalized to produce 

approximation operators in a closure system;

(defib) ^(x) = (J{y I y € 0 (1/), y ç x},

^ ( x )  = Q {y  I y  e c(i/), x  ç  y }.

The upper approximation operator is in fact a closure operator satisfying the following 

axioms:

(jl) If X  Ç y, then Spf(X) C  âpf{Y),

(j2) X  Ç spr(X),

(j3) âpf(ôpr(X)) =  âpr{X).

The lower approximation operator satisfies the properties:

( j l ' )  If X  Ç  y, then apr{X) Ç  apr(Y),

(12') gpr(X) Ç X,

(j3') apr(ggr(X)) =  opr(X).

Properties (j2) and (j3) are in fact part of the properties of closure operator and 

(j2') and (j3') are part of the properties of interior operator in a topological space.
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Rough set approximation operators based on closure system are weaker those defined 

in a topological space. Conversely, for a closure operator Spf : 2^ — > 2^ satisfying 

axioms (jl), (j2), and (j3), the set of fixed points of 5pf:

C(17) -  {X  I  W (;^ ) -  A"}, (3.10)

is a closure system. Similar results can be stated between the system 0{U):

0(1/) =  { X |g p r ( X ) = X } ,  (3.11)

and the dual operator apr(X).

3.4 Boolean Algebra and Lattice

In the Pawlak topological space, the power set 2 ^  is a Boolean algebra, and the 

family of composed set Com(17) is a sub-Boolean algebra. Thus, the subsystem based 

definition can be easily generalized using Boolean algebra and lattice [45, 46, 53]. 

Suppose (B,-i,A , V ,0 ,1) is a finite Boolean algebra and (Bo, -i, A, V, 0,1) is a sub- 

Boolean algebra. One may approximate an element of B using elements of Bq;

(Ldefl) 1(2) =  \ / { l / 1 G < a;}, 

c(r) =

Since any finite Boolean algebra is a complete Boolean algebra, thus the above defi­

nition is well defined. Moreover, operators i and c satisfy the following axioms:

(il) z(a;A3/) =^(æ) A*(%/)

(i2) *(z) <  z,

(13) %(i(z)) =  %(z).

(14) %(1) =  1,

(15) c(i) =  z(c(z)).
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and
(cl) c(a: V ï/) =  c(%) V c(3/),

(c2) I  <  c(z),

(c3) c(c(z)) =  c(%),

(c4) c(0) =  0,

(c5) %(i) =  c(ï(z)),

One may define a pair of approximation operators directly, and use their fixed points 

as inner and outer definable elements. The sets of fixed points of i and c are open 

and closed elements. The system (Bq, i, c, A, V, 0 ,1) is a topological Boolean alge­

bra [32], which is an extension of Boolean algebra with added operators. Gehrke and 

Walker [10] considered a more generalized definition in which the Boolean algebra B 

is replaced by a completely distributive lattice. The subsystem Bq is a sub-lattice. 

A more detailed and systematic study of approximation operators in special types 

of lattice and posets, as well as examples, can be found in a recent paper by Catta- 

neo [2] and Yao [45]. A different formulation of approximation operators in poset can 

be found a paper by Iwinski [15].

25

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 4

CONNECTIONS OF DIFFERENT 

FORMULATIONS

The main objective of this chapter is to give a synthesis of different formulations 

of rough set approximation operators. It is devoted to revealing interconnections be­

tween algebraic studies and the rough set approximation operators defined by binary 

relations and subsystems. There is a correspondence between an equivalence relation 

and a Pawlak topology, and between a reflexive, transitive relation and a topological 

space. On the other hand, a different type of correspondence can be obtained between 

a binary relation and a closure system.

4.1 Algebraic Studies and Binary Relation Based Formula­

tion

Like the Pawlak rough set model, the constructive method can be related to 

the algebraic method by listing a set of axioms on the approximation operators for 

the existing of the respective binary relations. According to Table 2.1, each axiom 

corresponds to a property of the lower and upper approximation operators constructed 

from a binary relation having a particular property. Relationships between operators
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defined by axiomatic and constructive approaches are summarized below [43].

Theorem  4.2 Suppose L ,H  : 2^ — >• 2  ̂ is a pair of dual approximation operators 

satisfy axioms (LI) and (L2), and axioms (HI) and (H2). There exists

a). a serial relation R  on U,

b). a reflexive relation R  on U,

a sym m etric relation R  on U,

d). a transitive relation R  on U,

e). an Euclidean relation R  on U,

such that L(X) =  opr (X) and H (X ) — ôpf^(X) fo r  all X  Q U, if  and only i f  L 

and H satisfy axiom:

(a). (D);

(b). (T);

(c). (B');

(d). (40;

(e). (50;

where apr^ and opr^ are the approximation operators defined by the binary relation  

R.

In this theorem, the corresponding pair of condition and conclusion is linked together 

by the same letter. For instance, one can conclude that there exists a serial binary 

relation R  such that L(X ) =  apr(X) and H (X ) — a p r{X )  for all X  Ç 17, if and only 

if the pair of approximation operators L and H  satisfies axiom (D). The theorem may
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view considered as a generalization of Theorem 1.1. The theorem establishes, in gen­

eral, a link between approximation operators constructively defined and algebraically 

defined, respectively. Based on the one-to-one correspondence, we may use either the 

properties of binary relations or the axioms of operators to label particular classes

of rough set algebras. The only i f  part of the theorem can be proved based on the 

discussion of Chapter 2. The i f  part can be proved by constructing a binary relation 

R  based on the upper approximation operator H  as follows [42, 48];

xR y  <=> x  e  H({p}). (4.12)

That is, x R  — {y \ X  e  H({y})}, and conversely H ({y}) = {x \ y € xR}. Let

Ry = {x \ xRy}, (4.13)

denote the predecessor neighborhood of y. Then we have:

R y = H({%/}). (4.14)

Given a upper approximation operator H  satisfying a particular property, one can 

show that the constructed binary relation R  satisfies the corresponding property.

4.2 Algebraic Studies and Subsystem Based Formulation

In the subsystem based constructive approaches, we define a pair of approxima­

tion operators using subsystems with certain properties. Conversely, given a pair 

of approximation operators, we can find a set of axioms tha t implies the existence 

of a pair of subsystems that produce the same operators. This would establish the 

connections between the algebraic studies and subsystem based formulation. Based 

on the discussion in Chapter 3 and results from topological spaces and closure sys- 

tems, we can easily obtain the connections of algebraic studies and subsystem based 

formulation. The results are summarized as follows.
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Theorem  4.3 Suppose L, H  : 2^ — >■ 2^ is a pair o f dual approximation operators. 

There exists a Pawlak topology U, Com(t/)) such that L(X) =  a p r^ {X ) and H (X ) =  

apT p(X ) fo r  all X  Ç.U, if  and only i f L  and H  satisfy following axioms:

(il) L (x n y )= L (x )n L (y ) ,

(12) L(X)CX,

(13) L(L(X))=L(X),

(14) L(B) =

(15) H(X) Ç L(H(X)),

(cl) H (x u y )  = H (x)uH (y)

(c2) X Ç H(X),

(c3) H(H(X)) = H(X),

(c4) H(0) = 0,

(c5) H(L(X)) Ç L(X),

where apr^ and aprp  are the approximation operators defined by the subsystem based 

definition using the Pawlak topology (U, Com([7)).

The only if  part follows the discussion of Chapter 3. The if  part can be proved by 

first constructing the families of fixed points of the lower and upper approximation 

operators L and H, and then showing the two families are the same. In fact, they 

are subsystem Com([/) of the Pawlak topology [/,Com([/)). The above theorem can 

be generalized to deal with subsystem based constructive methods using topological 

space and closure system.
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Theorem  4.4 Suppose L ,H  : 2^ — *■ 2^ is a pair of dual approximation operators. 

There exists a topology {U, 0(1/)) such that L(X) =  opr_(X) and H (X ) =  aprp{X) 

for all X  C U, if and only i f L  and H satisfy axioms ( il)-(14) and (cl)-(c4), where 

gpr and apfp are the approximation operators defined by the subsystem based defi­

nition using the topological space (U,0{U)).

Theorem  4.5 Suppose L ,H  : 2^ — > 2^ is a pair of dual approximation operators.

There exists a closure system {U,C(U)) such that L{X)  — apr^{X) and H (X ) =

âpr^lX ) for all X  Ç U , if and only i f L  and H  satisfy the following axioms:

(jl) If X  Ç y, then H(X) Ç H(y),

(j2) X Ç H(X),

(j3) H(H(X)) = H(X),

and

(jl') If X Ç y, then L(X) Ç L(y),

(i2') L ( X ) Ç X ,

(j3') L(L(X)) =  L(X),

where apr^ and apf^ are the approximation operators defined by the subsystem based 

definition using the closure system {U,C{U)).

The proofs of those theorems easily follow from the results from topological spaces 

and closure systems [6]. The can be proved in the similar manner discussed earlier 

for Theorem 4.3.

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.3 Connection Between Relation Based and Subsystem Based  

Formulât ions

For a Pawlak rough set model with a finite universe, the family of clopen sets (i.e., 

closed and open sets) is defined by an equivalence relation, and vice versa [9]. Thus, 

the subsystem based definition and element based definition (i.e., the relation based 

definition) are the same. When an arbitrary binary is used, we need to seek similar 

type of connections. Suppose i? Ç f/ x [/ is an arbitrary binary relation. The element 

based definition is given by [19, 48):

(defZa) apr (X) { z E f 7 1 Ç X }

{x e u  \1 Vy[y G x R  = >  y  € X]}

{ z € [ 7 | 1 z T Z n x f  0}

{a:Gf7|1 G G X]}.

The subscript R  indicates that the approximation operators are defined with respect 

to a binary relation R. Independent of the properties of R, apr^ satisfies axioms (il) 

and (14), while aprp satisfies axioms (cl) and (c4). The sets of fixed points of the 

two operators are defined by:

0;z(B) =  {X |n p [^ (X ) =  X },

0^(1/) =  { X | # f ^ ( X ) = X } .  (4.15)

Obviously, Or{U) contains U and satisfies axiom (03), while Cr{U) contains 0 and 

satisfies axiom (03). Since 0^(17) is not closed under union and C;{((7) is not closed 

under intersection, we cannot use the generalized definition (defla) with 0j%(17) 

and Og([7). In other words, for an arbitrary binary relation, the generalization 

(def2a) cannot be obtained by a generalization (defla). Suppose T is a refiexive
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and transitive binary relation. The pair of approximation of operators given by defi­

nition (def2a) satisfies axioms (i2) and (i4), and axioms (c2) and (c4). In this case, 

their families of fixed points:

Or(l7) =  { X | o p r ^ ( X ) - X } ,

CT([/) =  {X I Z%pTr(X) =  X }, (4.16)

are sets of open and closed sets of the topological space {U, O t{U )) .  Operators opr 

and apfrp are in fact the interior and closure operators defined using (defla) with 

respect to the topological space {U, O t { U ) .  It can be easily verified that the successor 

neighborhood xT of x € [/ is an open set, namely, qpr^(xT) =  xT .  By definition, 

we have apr^{xT) = {y \ yT  Ç. xT}.  Suppose y € opr_(xT). It follows from the 

definition that y T  C xT.  According to the reflexivity of T, it follows y Ç. yT  Ç xT. 

Assume now tha t y € xT). By the transitivity of T  we have yT  Ç xT,  that is, 

y € apr^{xT). Let

B O r([/) =  {xT I X E [/},

BCr(B) =  {-ixT I X E [/}. (4.17)

Any fixed point X  of opr^, i.e., apr.^{X) =  X  E Ot{U), can be written in terms 

of a union of a subsystem of BOt{U). More precisely, we have X  =  U{Y | Y  E

BOt {U), Y  Ç  X}. The set B O t ( U )  is a base of the topology Ot {U). W ith families

BOt {U) and B C t(//) , we obtain another definition of approximation operators:

(defSa) opr^(X) =  | J { ^ | y  E B O r ( [ / ) , y Ç X }

=  U {xT  I X E [ / ,  7),(x) Ç X }

=  {x E [/ I 3p[x E pT, pT Ç X]},
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âprj,(X) = -n{x e  U I 3y[x € yT, yT  Ç -nX]}

— {x e U \ Vp[x e  yT  yT  % -iX]}

=  {x e U  \ \/y[x G r T  =4> pT n  X  ^  0]}

=  n ( - .x T  I X G B ,X  ç  -ixT} 

=  r | { ^ | y  E B C r ( [ / ) , X ç y } .

This definition may be considered as a generalization of equivalence class based def­

inition. We used the successor neighborhood x T  to substitute the equivalence class 

[ x ] e  in defining one operator and derive the other by duality. If [x]g is replaced by 

x T  in defining both operators, we would have obtained a pair of operators which are

not dual to each other [47]. For a binary relation R, if definition (def2a) is used, the

set of fixed points of cpr^ is closed under finite union. This is obviously not required 

by a closure system. Therefore, we may not use (def2a) to establish connections 

between a closure operator and a binary relation. By generalizing (defSa), we have;

(defSb) opr^(X ) =  \J { x R  \ x e U , x R  Ç. X }

=  U { ^ I ^ G B O a ( [ / ) , y ç X } ,

ôpf^(X ) — P |{-ix iî I X € [/, X  Ç ->xR},

=  r |{ y  | y € 5 C a M , X ç y } ,

where

50^(17) =  { x 7 ü | x e B } ,

BCr{U) — {-ixR  I X E U}. (4.18)

Operator opr^ satisfies axioms (jl), (j2), and (j3), and operator satisfies ax­

ioms (jl'), (j2'), and (j3'). That is, oprj  ̂ is a closure operator. The families of their
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fixed points are:

% ([/)  =  { X |g p r ^ (X )= X } ,

0^(17) =  (X  I =  X }. (4.19)

The system Cr{U) is a closure system satisfying axioms (jl), (j2), and (j3). For 

X € U, the complement of its the successor neighborhood -<xR is a member of Cr{U). 

Any member of Cr(U)  can be expressed as an intersection of a subsystem of BCr{U).  

That is, by finding the intersection closure of the system BCr{U)  we can derive a 

closure system Cr{U). Similar connection can be established between BOr{U)  and 

% ([ /) .
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Chapter 5

CONCLUSION

This thesis reviews and summaries many existing results on the constructive meth­

ods of rough set theory. It contributes to the field by providing a unified framework, a 

more complete, comprehensive, and coherent study of the problem, and a systematic 

investigation of the cormection established between algebraic methods and construc­

tive methods, and between different constructive methods. The results bring new 

insights into the theory of rough sets.

5.1 Summary

In Chapter 1, we use the classical rough set model to lead out brief discussion 

of constructive studies of rough set theory. Three definitions of approximation op­

erators are examined. They are element based, equivalence based, and subsystem 

based. Properties of rough set approximations are described. Based on such prop­

erties, algebraic approaches of rough set theory is discussed and the connections 

between constructive and algebraic methods are established. The main contents of 

the thesis include two parts. One part, consisting of Chapters 2 and 3, focuses on two 

constructive methods for developing generalized rough set models. One is based on 

binary relation, and the other is based on subsystems. In both approaches, a pair of
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lower and upper approximation operators is defined. The second part, consisting of 

Chapter 4, connections between algebraic and constructive approaches, and between 

different constructive approaches are studied in detail. There is a nice correspondence 

between properties of binary relations and rough set approximation operators. The 

classical rough set model defined by an equivalence relation is same as the one de­

fined by a Pawlak topology. The rough set model based on a reflexive and transitive 

relation equals to the one defined by a topological space. On the other hand, there is 

a different type of correspondence between rough set models and closure systems.

5.2 Main Contributions

An advantage of constructive approaches is that every notion has a clear and 

well understood physical meaning. The constructive approach is more suitable for 

practical applications of rough sets. Many studies have focused on the constructive 

approach, due to its simplicity and associated intuitiveness. This thesis make addi­

tional contributions to the constructive approaches to rough set theory. It presents 

a more complete, coherent and systematic study. W ithin the presented framework 

of Chapter 1, results from existing studies are clearly classified and put into proper 

perspective. It is shown that the consideration of different but equivalent definitions 

leads to very different generalization. The connections established between algebraic 

and constructive methods provide more insights into the theory. Moreover, the new 

results of such connections fill in a gap in the existing studies.

5.3 Future Research

The results of the thesis have several implications and immediately offer new 

research problems. One needs to consider other definitions approximation operators, 

which may introduce more generalized rough set models. One need also to study in
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more details about the connections between different approaches of rough sets. In 

this thesis, we only focus on the rough set theory on its own. It is important to study 

various approaches and notions in relation to other theories, such as modal logic, 

machine learning, and data analysis. To truly appreciate the usefulness of a theory, 

one need to find many applications of the theory. It may be useful to investigate the 

methods and notions discussed in this thesis in real world applications.
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