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ABSTRACT

There has been recent global concern over the decline of some amphibian 

populations. The loss of amphibian species is of concern because they play a crucial role in 

ecosystem structure and are indicators of ecosystem health. Amphibians within the boreal forest, 

especially in Northern Ontario, have not been studied as extensively as in other parts of the 

world. The lack of knowledge concerning amphibians within the boreal forest is troubling 

because the boreal forest contains half of the world’s wetlands and is facing increasing pressure 

from human activities such as forest harvesting. Therefore by investigating the patterns and 

distribution of amphibian species richness, species incidence and turnover and the effect habitat 

has on each of these, we can infer the status of a species, determine how communities and 

species’ populations are structured and have a better understanding of how to manage and protect 

them. My goals were to investigate the patterns of amphibian species richness, turnover, and 

incidence over a 4-year period and compare these communities between northern and southern 

Ontario; to assess the role local habitat and landscape characteristics have on amphibian species 

richness and turnover; and to develop single-species habitat models for amphibian species of 

Northwestern Ontario.

I surveyed pond sites around the Thunder Bay region of Northwestern Ontario from 

1999 to 2002. Multiple day and night surveys were used to generate species lists at all study 

sites. I mapped out each pond along with the surrounding habitat characteristics and estimated 

local habitat variables. Landscape variables were collected using a GIS (Geographical 

Information System). I found that ten amphibian species made up the pond communities in 

Northwestern Ontario. There was higher immigration than extinction among the pond sites and

1
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species incidence differed over time. Species incidence was significantly different between 

northern and southern Ontario. These differences were related to where northern and southern 

Ontario were located within each species’ geographic range. Those species with high incidence 

were located near to the core of their range while those with a low incidence were near the 

periphery. Species richness was positively associated with distance to the closest stream, pH, 

area of agriculture and percentage of shrubs surrounding a pond site, and was negatively 

associated with conductivity. Turnover was positively associated with the proportion of substrate 

around the edge of a pond and negatively associated with bank slope. Thus richer amphibian 

communities occur at pond sites with high pH, a mosaic of complementary habitat surrounding 

the breeding site, gentle sloping banks and open areas which may promote juvenile recruitment. 

Species’ habitat models depended on each species’ natural history, and its distribution. As a 

result, each species was associated with different habitat variables.

From this study, we can see that there are many factors to consider when trying to 

conserve an amphibian community or population. When conserving a single species, we need to 

take into account each habitat component on both a local and regional scale and consider each 

species habitat requirements. From a community perspective, we can select a mosaic of habitats 

that are complementary to all species. Another very important point to keep in mind is where 

species are within their geographic range. Depending on the where a species is located within its 

range can determine whether is it common or rare. Because species habitat requirements appear 

to vary so greatly among species, I recommend including individual species habitat models in 

amphibian conservation strategies and not limiting our efforts to habitat restoration/creation.
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GENERAL INTRODUCTION

A central goal of ecology is to document and explain patterns of biological diversity 

and to understand why these patterns differ spatially and temporally. A variety of approaches are 

used to achieve this goal such as studying both populations and communities. Population 

ecologists are interested in, among other things, the variation of population densities and how 

they are spatially structured (Delibes et al. 2001; Campbell & Reece 2002) whereas community 

ecologists are interested in determining community composition, and how communities are 

affected by environmental factors and interspecific interactions (Begon et al. 1990; Smith 1996). 

Studies of ecological processes have provided insights into many factors responsible for 

community structure. These factors include local, regional, biotic, abiotic, current and historical 

processes (Ricklefs 1987; Dunson & Travis 1991; Cornell & Lawton 1992; Ricklefs & Schluter 

1993).

In order to explain patterns in the distribution of populations and communities, we 

need to look at them on different spatial scales. What can be viewed as a disturbance at one scale 

can be unimportant at another. Local extinction processes can be determined on a smaller scale 

however the status of a species is determined at the regional scale by looking at metapopulations 

or metacommunity dynamics. Recently, studies have shown that some amphibian species display 

metapopulation spatial structure as a consequence of their reliance on aquatic habitat for breeding 

and terrestrial habitat for hibernation and foraging (Gill 1978; Sjogren 1991; Hecnar & 

M ’Closkey 1996c; Sjogren-Gulve & Ray 1996; Skelly et al. 1999; Carlson & Edenhamn 2000). 

Metapopulations are groups of local populations, interconnected by dispersal and characterized 

by the opposing processes of colonization and extinction (Levins 1969; Hanski & Gilpin 1991).
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Regional species incidence is determined by the balance between local colonization and 

extinction. By investigating species incidence, we can determine if a species is common or rare 

within a region. Due to the dynamic nature of metapopulations, taking a metacommunity 

perspective may reveal changing species compositions. Turnover is the rate at which new 

species are colonizing and others are becoming extinct per unit time (Clark & Rosenzweig 1994; 

Gotelli 1998; McKinney & Drake 1998). Species with high turnover tend to go extinct sooner 

because they experience greater fluctuations in abundance which takes them to zero abundance 

more often than those species with lower turnover (McKinney & Drake 1998). However, this is 

dependent on the rates of colonization and extinction. If the rate of colonization exceeds the rate 

of extinction, there will be high turnover characterized by high species richness. Conversely if 

the rate of extinction exceeds the rate of colonization, there will be high turnover but a decline in 

species diversity causing species and communities to be more vulnerable to extinction (Gilinsky 

1998). Thus explaining patterns of species richness, species incidence, turnover and spatial 

dynamics is an important step for amphibian conservation (Green 1997; Hecnar 1997) because it 

allows us to assess the status of populations and communities as well as providing insight into 

how they are structured.

There are a number of reasons why the loss of amphibians from ecosystems should be 

of concern. Amphibians constitute a major component of the biomass in some ecosystems. In 

the eastern deciduous forest more biomass is contributed by just one species of salamander than 

all bird species or about that amount equal to small mammals (Burton & Likens 1975). Being 

both predator and prey, amphibians play an important role in energy flow and trophic dynamics 

of both aquatic and terrestrial ecosystems (Dunson et al. 1992; deMaynadier & Hunter 1995;
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Murphy et al. 2000). For example, tadpoles convert a large amount of aquatic plant biomass, 

zooplankton, insect larvae, and other tadpoles into energy that can be transported to terrestrial 

environments via predation (Wassersug 1975; Murphy et al. 2000). Also, adults are able to 

exploit and convert small invertebrate biomass into energy that becomes available to larger 

vertebrates (deMaynadier & Hunter 1995; Murphy et al. 2000). Amphibians are important as 

prey to fish, snakes, small mammals, birds and other larger amphibians and they also act as 

middle to upper level predators. Therefore all phases of an amphibian’s life cycle provide 

important food resources for many species from a number of trophic levels.

Since amphibians are an important link within the food chain, may act as “keystone” 

as well as “indicator” species (Vitt et al. 1991). A keystone species is one that’s role in the 

ecosystem is so vital that it’s disappearance or even reduction would cause changes throughout 

the community resulting in declines or extinctions of many dependent species (Morin 1983; Mills 

et al. 1993; Murphy et al. 2000). Experiments performed by Morin (1983) showed that slight 

alterations in the abundance of two predatory amphibians, Notophthalmus viridescens dorsalis 

and Ambystoma tigrinum, significantly altered the abundances of the rest of the anuran 

community. In the absence of these predators, competitively inferior species did not survive 

well. At high predator densities, competitively superior species declined. Thus, these 

salamander predators acted as keystone species by mediating interspecific competition among 

larval anurans which allowed competitively inferior species to persist and promote community 

diversity. Hecnar and M ’Closkey (1996a) studied the disappearance of bullfrogs from Point 

Pelee National Park, Ontario, Canada and the impact it had on the structured amphibian 

community. They reported a four-fold increase in green frog abundance and considered it a
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result of predatory release.

A number of biological and natural history traits of amphibians suggest that they 

make good indicators of ecosystem health. An indicator species is one that is very sensitive to 

changes in the environment and thus declines of these species could reflect declines in 

environmental quality (Murphy et al. 2000). Amphibians may be more sensitive than other 

vertebrates to anthropogenic changes because of their unique biological characteristics and 

habitat requirements (Vitt et al. 1991). Most amphibians have a biphasic life cycle and use both 

aquatic and terrestrial habitats (Wilbur 1984). Their permeable skin and eggs readily absorb 

substances from the surrounding aquatic and terrestrial environments (Vitt et al. 1991; Dunson et 

al. 1992; Blaustein 1994; deMaynadier & Hunter 1995). Amphibian skin also acts as a 

respiratory organ which increases vulnerability to drought and microhabitat drying (Vitt et al. 

1991; deMaynadier & Hunter 1995; Murphy et al. 2000). Aquatic larvae have high growth rates 

in order to metamorphose before microhabitat drying (Dunson et al. 1992). Also, metamorphosis 

involves ontogenetic shifts with a change in habitat and /or a trophic level shift from herbivory to 

camivory (Wemer 1994; deMaynadier & Hunter 1995; Murphy et al. 2000). Amphibians have 

relatively poor dispersal abilities and strong site fidelity (Sinsch 1990, 1991) which hinders them 

in dispersing from disturbed environments (Ash 1988; Petranka et al. 1994; deMaynadier & 

Hunter 1995). Thus small-scale alterations to both aquatic and terrestrial habitats could affect 

amphibians much more than other organisms. Therefore amphibians may be useful for 

monitoring the effects of local environmental disturbances (Vitt et al. 1991; Blaustein 1994).

Recent global concern over the decline of some amphibian populations has increased 

interest in determining the causes and developing preventive conservation measures (Blaustein &
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Wake 1990; Wake 1991; Wake & Morowitz 1991; Blaustein et al. 1994; Pechmann & Wilbur 

1994; Houlahan et al. 2000; Alford et al. 2001). Concerns are warranted because amphibians 

have survived for more than 350 million years in the wake of numerous pressures from predators 

and climate changes (Murphy et al. 2000). Recent evidence of large-scale die-offs and 

disappearances of numerous species suggest that rapid, widespread anthropogenic environmental 

changes are exceeding the ability of these survivors to adapt (Murphy et al. 2000).

Anthropogenic causes of declines can be attributed to numerous factors including habitat 

destruction, pollution, UV radiation, disease, introduced predators or competitors, acid 

precipitation and climate change (Dunson et al. 1992; Blaustein et al. 1994).

The most important causes of amphibian declines are habitat destruction, 

fragmentation and degradation (Green 1997; Hecnar 2004). Most amphibians require more than 

one habitat for foraging, hibernation and breeding (Pope et al. 2000). Therefore loss or 

degradation of even one type of habitat could be detrimental to populations or communities. One 

way to prevent this is to determine and understand the role habitat components play in amphibian 

habitat selection. Since amphibians require both aquatic and terrestrial habitat, it would be 

beneficial to look at choice on both a local habitat and regional landscape level (Hecnar & 

M ’Closkey 1998).

The loss of woodland habitat for agriculture or forestry and the increase in roads and 

highways have increased the fragmentation of forests (Vos & Stumpel 1995; Forman & 

Alexander 1998; Murphy et al. 2000). Fragmentation severs connections between local 

populations, decreasing the possibility for recolonization from other sites and increases the risk 

of extinction (Laan & Verboom 1990; Vos & Stumpel 1995; Green 1997). The increase in
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roads, highways, and their traffic volumes, increase road mortality of amphibians (deMaynadier 

& Hunter 1995; Findlay et al. 2001) as individuals cross during seasonal migrations (Fahrig et al. 

1995). Roads also act as barriers reducing gene flow between populations (Reh & Seitz 1990). 

Since most amphibians use aquatic and terrestrial habitat, suppression of movements between 

these habitats may cause a substantial decline in amphibian species. However roads can also 

provide good habitat. Ditches can act as migration corridors and breeding sites for temporary 

pond species. Woodland surrounding a breeding site is important for salamanders, woodfrogs, 

gray treefrogs and spring peepers because they use these sites for foraging and hibernation 

(Hecnar & M ’Closkey 1996c; Hecnar 1997; Conant & Collins 1998). Many studies have shown 

that some salamander species are negatively affected by forest harvesting practices and especially 

by clearcutting (Bury 1983; Petranka et al. 1993, 1994; deMaynadier & Hunter 1995). Timber 

harvesting practices modify the amount of cover, shade and moisture that is available to 

amphibians. Removal of coarse woody debris and understory vegetation, and lack of leaf litter, 

decreases the amount of microhabitat that amphibians rely on, decreases the amount of moisture 

and increases risk of desiccation (Pough et al. 1987; Petranka et al. 1994). Hecnar and 

M ’Closkey (1998) found that amphibian species richness in southern Ontario was highly 

correlated with forest cover. Also, regional faunas now differ as a consequence of land-use 

history (Hecnar & M ’Closkey 1996c). However Ash (1997) found that plethodontid 

salamanders began to return to clearcut sites four to six years after cutting occurred, and their 

return to clearcut sites was strongly correlated with the reformation and increase of the leaf litter 

layer.

At a breeding site, vegetation is used by many amphibians for calling and oviposition

8
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sites and as refuge from predators (Johnson 1989, Hecnar & M ’Closkey 1996b; Baker &

Halliday 1999; Carr & Fahrig 2001). The size of a pond may also be important to amphibians.

In temporary ponds, hydroperiod is short and larvae run the risk of desiccation before they can 

metamorphose (Semlitsch 2000). Although some amphibians use larger ponds for hibernation, 

there is a higher risk of predation from fish species (Beebee 1981; Petranka 1983; Hecnar & 

M ’Closkey 1997; Eason & Fauth 2001). Amphibians are also negatively affected by high acidity 

levels in aquatic habitats due to their permeable skin (Roudebush 1988; Dunson et al. 1992; 

Kams 1992; Eason & Fauth 2001). By determining the relationship between amphibians and 

their habitat, we can begin to explain local and regional patterns and aid in future conservation 

efforts such as habitat protection, habitat restoration, and repatriation programs.

Human activities have placed increasing pressures on the boreal forest ecosystem. As 

of 1995, about 10 million cubic metres of wood a year had been harvested from Northwestern 

Ontario’s boreal forests. This is troubling because the boreal forest contains almost half of the 

world’s wetlands (Schindler 1998). In addition, the ecology of amphibian populations within the 

boreal forest is poorly understood (Elmberg 1993), especially in northern Ontario (see maps in 

Oldham & Weller 1992).

My goal was to determine and to try to explain the patterns of species richness, 

incidence, and turnover in boreal amphibian communities. Specifically, 1 investigated the 

relative association of local habitat characteristics and regional landscape features in relation to 

amphibian species richness, incidence, and regional dynamics over a four-year period, and 

compared these communities to previously studied amphibian communities in Southern Ontario.
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GENERAL METHODS

Study Area

I conducted my study in the Thunder Bay region of northwestern, Ontario, Canada 

(Figure 1). Thunder Bay has been colonized by humans since the 1700's although the population 

did not start to boom until the logging industry started up in the early 20* century. Now two 

thirds of northern Ontario’s communities rely on forests and forest industry. This region is 

situated on the Canadian shield and glacial scouring has resulted in minimal soil, and rolling 

topography. This area experiences brief warm, moist summers and long, cold, dry winters 

(Zoladeski & Maycock 1990). The Thunder Bay region is located within the Boreal Shield 

Ecozone and lies on the border of two major biomes, the Northern Boreal Forest Region and the 

Southern Great Lakes-St. Lawrence Forest Region (Wiken 1986; Wiken et al. 1993). Vegetation 

consists of a combination of coniferous and mixed forests comprised of black and white spruce 

(Picea mariana, P. glauca), jack pine (Pinus banksiana) and balsam fir {Abies balsamea) as well 

as trembling aspen (Populus tremuloides), and white birch (Betula papyrifera) (Baldwin & Sims 

1989; Ecoregions Working Group 1989; Zoladeski & Maycock 1990). These tree species occur 

on humo-ferric podzols or brunisols that are often shallow and coarse-textured (Thompson 

2000).

Pond Surveys

A set of 41 ponds had been previously surveyed by Stephen J. Hecnar from 1999 to 

2000. 1 continued surveying these ponds from 2001 to 2002 and used the combined data for all 

four years to investigate the patterns of species richness, incidence, and turnover. In 2001,1 

increased my sample size to 69 ponds and surveyed these from 2001 to 2002. 1 used the 69

10
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ponds to look at the effects of local habitat and landscape characteristics on amphibian species 

richness, incidence and turnover. Pond sites were located by using topographic maps, 

information provided by private landowners, inquiring at conservation authorities and provincial 

parks, and by chance discovery.

Ponds were chosen because many amphibians use ponds for breeding, foraging, 

oviposition, and hibernation and ponds provide refuge for eggs and larvae from predators, such 

as fish, and exposure to extreme elements. Therefore all stages of an amphibian’s life cycle can 

be sampled in pond habitats. I considered ponds to be small bodies of still water that ranged in 

depth from 0.5 to 7 m and 7.0 x 10'  ̂to 0. 04 km^in area.

I surveyed all ponds from late April to September each year. A minimum of four day 

and four night visits were made to each site, spread throughout the collection period, to account 

for seasonal phenology that exists in temperate-zone amphibian faunas. I conducted visual 

surveys around and within at least ten metres from the pond edge, searching underneath any 

woody debris that was found as well as wading and canoeing within the pond. The amount of 

time spent at each pond varied, depending on the size and the difficulty manoeuvring around it. I 

used dipnets to search for larvae through the submerged vegetation and along the edge. I 

identified larvae to species at the pond when possible or took specimens back to the lab to permit 

further development to facilitate species identification. Night surveys consisted of listening at 

each site for up to ten minutes for anuran breeding calls. I considered this sufficient as over 90% 

of breeding anuran species present at a site can be detected within the first three minutes of 

listening to calls (Shirose et al. 1997; Paton & Crouch 2002). Species were recorded as present if 

eggs, tadpoles, juveniles or adults were observed or calls were heard at any visit during the

11
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sampling year. The goal of the surveys was to construct accurate species lists for individual 

ponds that I could compare among sites and over time.

Statistical Analyses

I report descriptive statistics as mean ± standard error of the mean (SE). I used a  = 

0.05 for minimal significance when interpreting test results, but used p < 0.15 when selecting 

variables for stepwise model building. I consulted Sokal & Rohlf (1994) and for most analyses I 

used SYSTAT 9 (Wilkinson 1990).

12
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Figure 1. Map of study sites around and within the region of Thunder Bay, Ontario. Small 
black dots represent ponds.
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CHAPTER 1 

Patterns of species richness, incidence, and turnover in am phibian pond communities of
Northwestern O ntario

INTRODUCTION

A long-standing goal of ecology is to understand the dynamics of biological diversity. 

Ecological communities often undergo fluctuations in abundance and distribution among species 

as their environments change. Demographic changes in populations (i.e. immigration, 

emigration, birth and death rates) can result in replacements of species in communities over time. 

Much attention has focussed on turnover of species in ecology. Specifically, the topic of 

ecological succession (Wissinger & Whiteman 1992; Weitzel & Panik 1993; Rosenzweig 1995) 

and the debate regarding whether these changes are deterministic (Clementsian community) or 

stochastic (Gleasonian community) continues. Species turnover has also received much attention 

in the field of island biogeography (MacArthur & Wilson 1963, 1967; Diamond & May 1977; 

Hanski & Gilpin 1991; Nores 1995). Equilibrium theory models species richness and species 

turnover as a dynamic balance between immigration and extinction (MacArthur & Wilson 1963, 

1967). Similarly, turnover is also an important factor in metapopulation or metacommunity 

theory being a product of local colonization and local extinction (Hanski & Gilpin 1991).

A metapopulation is a set of local populations connected by migration, gene flow, 

extinction and colonization (Levins 1969; Hanski & Gilpin 1991). Recent studies have started to 

take a metapopulation approach to amphibian ecology (Sjogren 1991; Sjogren-Gulve 1994; 

Hecnar & M ’Closkey 1996c; Skelly et al. 1999). This is because amphibian breeding ponds 

form habitat patches of subpopulations between which individuals move and are open to
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extinction and recolonization from other ponds (Marsh & Trenham 2001). Local extinctions at 

ponds can be frequent but recolonization allows amphibian species to persist on a regional scale. 

Metapopulation dynamics can be studied by investigating pond occupancy, extinction and 

recolonization from annual pond surveys. This can be done by looking at species richness, 

incidence and turnover. Species richness is an important component of biological diversity and 

can be measured at a variety of scales. Species incidence is the fraction of patches of habitat that 

are occupied by a species and this changes over time due to colonization of unoccupied patches 

and extinction of presently occupied patches (Mauer & Nott 1998). Therefore an increase in 

incidence of a species lowers the risk of extinction. Local extinction and recolonization are 

assessed by examining turnover. Turnover is the rate at which new species are colonizing and 

others are becoming extinct per unit time (Clark & Rosenzweig 1994; Gotelli 1998; McKinney & 

Drake 1998). There are many studies of species turnover in the literature (Diamond & May 

1977; Hecnar & M ’Closkey 1996b, 1996c, 1997; Caley & Schluter 1997; Skelly et al. 1999; 

Hanski & Singer 2001). Understanding turnover is important because it reflects the stability of 

communities. To assess community status, a minimum of one complete turnover is needed 

(Connell & Sousa 1983; Hecnar 1997). However, to avoid concluding that communities are 

stable (by only looking at one complete turnover) when they just may be composed of long-lived 

individuals, turnover should be observed throughout the entire lifespan of a species. Species 

with high turnover tend to go extinct sooner because they experience more fluctuations in their 

abundance which takes them to zero abundance more often then those populations with lower 

turnover (McKinney & Drake 1998). However if colonization exceeds extinction events, species 

will exhibit high turnover and high species diversity reducing risk of extinction (Gilinsky 1998).
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Some local populations may also be considered source populations while others may be acting as 

sinks (Pulliam 1988; Harrison 1991). Source populations produce excess individuals that 

emigrate to nearby sink populations while population sinks survive based on the continual 

immigration of individuals from the source populations. Thus the loss of the source population 

will cause losses to the surrounding populations that are dependent on the emigration of 

individuals from the source population (Holt 1985; Green 1997; Gotelli 1998). Continual local 

losses of species will eventually make them rare on a regional scale. Therefore these source/sink 

dynamics are important in determining whether loss is temporary or permanent. Furthermore, 

with the size and number of suitable patch habitats decreasing, the role of metapopulation 

dynamics becomes more crucial (Hanski et al. 1994) especially in predicting effects of future 

habitat loss and fragmentation (Marsh & Trenham 2001).

There has been little to no investigation on the status of amphibian species in 

Northwestern Ontario. However, extensive research has been conducted in Southwestern 

Ontario (Hecnar & M ’Closkey 1996a, 1996b, 1996c, 1997, 1998; Hecnar 1997). Although 

climate, habitat and the nature of landscape modification differs between northern and southern 

Ontario, the species pool between is virtually the same (exceptions include Rana palustris, Rana 

catesbeiana whose ranges does not extend into northern Ontario and Pseudacris maculata whose 

range does not extend into southern Ontario). However, how rare or common these species are 

within northern Ontario is unknown. Habitat loss from forest harvesting and agriculture has not 

been as extensive and intense in the north where extensive forest regeneration has occurred and is 

not restricted by agriculture. Thus it is important to gain more knowledge about boreal forest 

species so we can assess the impact future forest harvesting may have on these communities.
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Species also vary in abundance throughout their geographic range, being numerous in 

some areas and scarce or absent in others. A pattern of spatial variation often emerges where the 

density of a species decreases and population patchiness increases from the centre towards the 

periphery of its geographic range (Whittaker 1956, 1965; Hengeveld & Haeck 1982; Brown 

1984). Therefore, depending on where species are located within their ranges could effect how 

common or rare that species will be, possibly as a result of decreasing availability of niche 

requirements farther from the centre of the range (Brown 1984). Consideration of range position 

in ecological studies may provide insights into possible reasons why conservation efforts may not 

be working for some species. Many believe that when a species becomes endangered, its 

geographical range will shrink towards the centre and only the core population will persist until 

the end (Brown 1995). Efforts to try to protect, relocate, or reintroduce a species may be in vain 

when working with a population at or near the edge of their range (Griffith et al. 1989, Dodd & 

Seigel 1991). However a study by Channell & Lomolino (2000) found that 98% of endangered 

species maintained populations in a portion of their peripheral range and that 37% of those 

species had remnant populations occurring exclusively in the periphery of their historical range. 

Although this may prove insightful for maintaining and the possible discovery of new 

populations of endangered species, many of these populations may be sinks or isolated 

populations that will go extinct without a continual source of immigrants.

In this study, I assess the patterns of amphibian species richness, incidence and 

turnover over a four-year period. My objectives were 1) to construct a list of amphibian species 

that were present in Northwestern Ontario, 2) to evaluate and compare species richness, 

incidence and turnover among pond sites from year to year and 3) to compare the species
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incidence findings to Southern Ontario. I expected to find low turnover, high species richness 

and high species incidence among my pond sites in Northwestern Ontario. I also expected to 

find differences in incidence between the two regions, with woodland species having higher 

incidence in Northern Ontario. Species were expected to have a higher incidence in either region 

if they are located close to the core of their geographic range.

METHODS

I surveyed 41 ponds between 1999 and 2002 in the Thunder Bay region of 

Northwestern Ontario to determine the presence of amphibian species. Amphibian species 

richness, and turnover was calculated for each pond and species incidence was calculated for the 

entire region.

Cumulative species richness, over all of the visits made to a site within a year, was 

used for analyses. I calculated species incidence by dividing the number of ponds in which each 

species occurred by the total number of ponds surveyed. I calculated annual turnover by 

estimating local extinction and colonization rates at pond sites and compared the presence or 

absence of a species between consecutive years using the following equation (Clark & 

Rosenzweig 1994; Hecnar 1997; McKinney & Drake 1998):

T  =
^ C + E  ^

\ S t

where T is the turnover rate, C is the number of new species that colonized a local site, E is the
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number of species that became locally extinct at the site, and is the number of species at the 

site at time t.

I used the average species incidence over the four years to conduct comparisons 

between northern and southern Ontario. I also divided species for both regions into two 

categories. Core and Periphery, and compared their incidence. This was done by visual 

inspection of each species’ range map (Conant & Collins 1998). I placed species in either 

category based on which area within their geographic range they were closest to. Core species 

were those located close to or in the middle of their geographical range and Periphery species 

were those that were located close to or along the edge of their range. I expected lower incidence 

for peripheral species relative to core species.

Statistical Analysis

I used F-max and One-sample Kolmogorov-Smimov tests using Lillifor’s 

distribution to check for homogeneity of variance and normality of data. Data that did not pass 

these tests were transformed accordingly (Sokal & Rohlf 1994).

I used one-way ANOVAs to determine if species richness and turnover differed 

among years and Tukey HSD Multiple Comparisons tests to determine which years differed. I 

also used correlation analyses to determine if a temporal trend existed. I used G-tests (William’s 

Correction) to compare species incidence among years and between northern and southern 

Ontario. I used a two-sample t-test to compare species incidence between northern and southern 

Ontario for each species and between Core and Periphery species. A statistical significance of a  

= 0.05 was used. All analyses followed Sokal & Rohlf (1994) and were generated using 

SYSTAT 9 (Wilkinson 1990).
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RESULTS

I found nine amphibian species over the four years (Table 1.1). Mean species 

richness over the four years was 4.1 (±0.11) and ranged from 1.0 - 7.0. Mean species richness 

increased from 1999 to 2002 (Table 1.2) as values ranged from 3.8 (±0.22) in 1999 to 4.6 (±0.20) 

in 2002 (Figure 1.1). Mean species richness also differed among years (F3 igo = 5.01, df = 3, p < 

0.05; Figure 1.1).

Mean overall turnover was 0.189 (± 0.015) and decreased over sample seasons from 

0.24 (± 0.032) in 1999/2000 to 0.13 (± 0.020) in 2001/2002 (Figure 1.2). Mean turnover also 

differed among years (Fj 120 = 4.74, df = 2, p < 0.05; Figure 1.2). The results from the 

correlations indicated species richness was increasing over time and that turnover was decreasing 

over time (Table 1.2).

No pond was inhabited by all species. Species incidence varied among species and 

among years (Figure 1.3). The overall incidence distribution was significantly different between 

1999 and 2001 (G = 23.04, df = 7, p < 0.005), and 2002 (G = 25.57, df = 7, p < 0.001). There 

were no differences in incidence distribution between 1999 and 2000 (G = 12.71, df = 7, p = 

0.080), 2000 and 2001 (G = 6.97, df = 6, p = 0.324), 2000 and 2002 (G = 8.50, df = 6, p = 0.204) 

and between 2001 and 2002 (G = 3.85, df = 6, p = 0.70). Most species incidence increased over 

time (Figure 1.3). P. maculata showed the most change in distribution by more than doubling 

it’s incidence from 1999 to 2002. R. sylvatica also showed a high change in distribution among 

these years, increasing by nearly 50 %. Between 1999 and 2000, R. septentrionalis contributed 

the most to the change in incidence distribution even though I did not find a significant change 

between the rest of the years. P. crucifer, B. americanus, and R. sylvatica all increased to almost
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90% incidence over the four years while R. pipiens and R. clamitans varied between 5-10%. I  

found A. latérale only during the first year of surveying.

Species incidence differed significantly between northern and southern Ontario (G = 

87.67, df = 5, p < 0.0001; Figure 1.4). There were four species that showed the largest 

differences in incidence between the two regions. R. clamitans (t = 28.83, df = 135, p < 0.001) 

and R. pipiens (t = 7.918, df = 135, p < 0.001) had a higher incidence in southern Ontario while 

R. sylvatica (t = 10.365, df = 135, p < 0.001) and B. americanus (t = 4.091, df = 135, p < 0.001) 

had a higher incidence in northern Ontario. There were no differences between regions for 

Pseudacris crucifer (t = 0.726, df = 135, p = 0.469) and A. latérale (t = 0, df = 135, p = 1.0). 

Pseudacris maculata and R. septentrionalis, were only found in northern Ontario and N. 

viridescens and A. maculatum were only present in southern Ontario and therefore were 

eliminated from the analysis.

Core species had higher incidence than peripheral species (t = 3.35, df = 17.2, p < 

0.01; Table 1.3 & Figure 1.5). Mean species incidence was 58.2% for core species and 17.6% 

for peripheral species.
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Table 1.1. Amphibians encountered at study pond between 1999 and 2002.

Scientific Name Common Name

Pseudacris crucifer Spring Peeper

Pseudacris maculata Boreal Chorus Frog

Hyla versicolor Gray Treefrog

Rana sylvatica Wood Frog

Rana clamitans Green Frog

Rana septentrionalis Mink Frog

Rana pipiens Northern Leopard Frog

Bufo americanus American Toad

Ambystoma latérale Blue-spotted Salamander

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ic
£u

.2
VQ.
CO
C
3

5 -

4  -

3 -

2 -

1 -

be

ab
a

1999  2000  2001 2002
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Figure 1.2. Mean turnover (+ SE) of species among aquatic amphibian breeding
sites from 1999 to 2002. Different letters denote significance (p < 0.05).
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Table 1.2. Pearson correlations comparing mean species richness and mean turnover over time 
in years. Both variables were significantly correlated to year at p < 0.05. N = 164

Variable Years

Species Richness 0.256

Turnover -0.270
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Table 1.3. Mean amphibian species incidence for Northern and Southern Ontario and
categorized into core and/or peripheral areas within the geographical ranges of each 
species

Species Ontario Location Core/Periphery Incidence

P. maculata* North Periphery 0.494

South Not in range* -

P. crucifer North Core 0.945

South Core 0.919

H. versicolor North Periphery 0.396

South Periphery 0.324

R. sylvatica North Core 0.756

South Core 0.213

R. clamitans North Periphery 0.146

South Core 1.0

R. septentrionalis North Core 0.451

South Periphery 0

R. pipiens North Core 0.116

South Periphery 0.544

B. americanus North Core 0.817

South Core 0.588

A. latérale North Periphery 0.012

South Periphery 0.015

A. maculatum North Periphery 0

South Core 0.074

N. viridescens North Periphery 0

South Core 0.522
P. maculata’  ̂geographical range does not extend into Southern Ontario
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DISCUSSION

Diverse amphibian communities exist in ponds in Northwestern Ontario. 

Unfortunately, historical records for comparison are not available. My study also revealed that 

species richness and incidence increased and turnover decreased over the course of this study. 

This study suggests complex spatial dynamics with high population turnover and recolonization 

and stresses the importance of metapopulation processes. Similar results were found in a study 

by Hecnar & M ’Closkey (1996c) who found high turnover within regions and at the individual 

species level. A study on pond populations of the tree frog, Hyla arborea, revealed the 

metapopulation consisted of a set of larger persistent populations mixed with smaller populations 

characterized by high turnover (Carlson & Edenhamn 2000). A possible reason for my observed 

patterns of species richness, incidence and turnover is that temporary pond species may be 

moving into semi-permanent pond sites, such as the ones I surveyed, due to the recent drought 

conditions in Northwestern Ontario. Annual snowfall was much lower (145 cm) than normal 

(196 cm) from 1999 to 2002 (t = -6.76, df = 3, p<0.01). Most amphibians in northern Ontario 

hibernate underground under a think blanket of insulating snow. Some of them are able to 

withstand temperatures of 0°C while others have antifreeze in their cells to allow them to survive 

to temperatures of -5°C to -7°C (Johnson 1989). Without a thick layer of snow, the ground can 

freeze and expose amphibians to much lower temperatures than they can withstand.

Furthermore, melting waters help to fill wetlands especially temporary ponds. Without sufficient 

amount of water, amphibians are forced to move to more permanent wetlands. A recent study by 

Robinson (2004), looked at the importance of hydroperiod in amphibian communities in 

Northwestern Ontario. He found more species in permanent wetlands than in temporary and that
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species richness peaked in semi-permanent wetlands.

There were four species of amphibians that I did not find that are known to occur in 

Northwestern Ontario. I was not surprised at the absence of Plethodon cinereus and Necturus 

maculosus at my pond sites. Plethodon cinereus, red-backed salamander, is a terrestrial 

salamander that lays its’ eggs in water-soaked logs rather than in water bodies (Johnson 1989). 

Necturus maculosus, the mudpuppy, lives permanently in large lakes or rivers and therefore 

would not be found in semi-permanent sites (Johnson 1989). I was surprised, however, by the 

absence of N. viridescens and A. maculatum and the rarity of A. latérale at any of my pond sites 

even though the study area was within their ranges (Johnson 1989; Conant & Collins 1998). 

Although adult ambystomatid salamanders are only known to occupy ponds during the short 

breeding season and then migrate to surrounding woodland (Johnson 1989), I still expected to 

find larvae as they would persist longer within the pond sites. Ambystomatids are long lived 

iteroparous species that can skip breeding in unsuitable years by remaining underground (Conant 

& Collins 1998). They return to disturbed areas, such as cutovers, as long as there is no 

continued disturbance and there is a reformation of leaf litter (Ash 1997). The majority of my 

sites were located near residential and agricultural areas where logging and land clearance has 

been continuous and therefore there is no sufficient amount of forest or microhabitat left for 

salamanders. However most of the other amphibian forest species are still common. This could 

mean that salamanders are more sensitive to continual land clearance than other amphibian 

species. This may also explain why there was an absence of N. viridescens. Juveniles are 

terrestrial and can remain juvenile for 2 - 5 years (Johnson 1989; Conant & Collins 1998). If 

there is no habitat for hibernation and for juvenile newts to disperse into, there will be no
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recruitment at pond sites the following year. The adult stage of the Red-spotted newt is aquatic, 

only leaving aquatic sites to hibernate under rocks, logs and leaf litter (Helferty 2002). Therefore 

hydroperiod is also an important factor in determining where the red-spotted newt is found. 

Robinson (2004) found a high incidence of N. viridescens in lakes while finding none in 

temporary and semi-permanent wetlands.

There seemed to be an increase in species distribution over the years on both a 

community and population level. This may be indicative of species which can adapt to any type 

of habitat, regardless of land-use type (as I will explain in the proceeding chapters). For P. 

crucifer and R. sylvatica, this also could be because in Northern Ontario, the boreal forest has not 

undergone severe deforestation or other habitat disturbances for as long as in some other parts of 

it’s range (eg. Southern Ontario). For example, Hecnar (1997) found that P. crucifer, R. 

sylvatica, H. versicolor and ambystomatid salamanders were rare in some parts of Southwestern 

Ontario due to the loss of woodland and wetland habitat. Historically humans have had a greater 

impact on habitat, and logging and land clearance has occurred longer and more often in southern 

Ontario than in northern Ontario (Moss and Davis 1989). This may explain the high incidence of 

species associated with woodlands {P. crucifer, R. sylvatica, P. maculata, and H. versicolor). 

Many of the species whose incidence increased over time were those that normally occupy 

temporary or spring ephemeral ponds (R. sylvatica, P. maculata, B. americanus). As previously 

mentioned, I may be seeing a shift in these species from temporary to more permanent aquatic 

habitat because of recent drought conditions.

Since my pond sites were situated in both woodland and agricultural areas, I was not 

surprised to find a low incidence of Rana pipiens among my sites. Rana pipiens is known to
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migrate to grasslands and meadows after breeding where it spends the summer foraging (Johnson 

1989; Conant & Collins 1998). Agricultural practices around these ponds could be too intense or 

perhaps there may not be enough meadow (open) habitat available for R. pipiens to survive.

Although I found nine amphibian species, some of these appear to be rare. Rana 

clamitans is one species that I found to be rare. Rana clamitans has been found more often in 

lakes than semi-permanent wetlands (Robinson 2004) mainly because its dependence on water 

for hibernation. Another reason for species to be common or rare in northwestern Ontario is 

higher incidences near the core of species geographic ranges as opposed to the periphery. In 

northern Ontario, R. clamitans is close to the periphery of it’s range but is near to the core of it’s 

range in southern Ontario. Those species that had less than 50% incidence were also found to be 

near the edge of their ranges {P. maculata, H. versicolor, and A. latérale). This may also explain 

the low incidence of A. latérale and the absence of A. maculatum and N. viridescens from my 

sites in northern Ontario and R. septentrionalis in southern Ontario.

In conclusion, species richness and incidence increased and turnover decreased over 

time most likely as a result of temporary pond species moving into more permanent ponds due to 

recent drought conditions. There seems to be more species at each pond and more ponds being 

occupied by the same species thus resulting in low extinction. However there are some species 

that are rare. Salamander species may be rare due to a combination of continual forest 

harvesting, lack of microhabitat and low dispersal ability. Other species with low abundance or 

in this case incidence, may not necessarily be a result of habitat destruction or alteration. Simply 

by looking at where these species occur within their geographic range could explain the 

reasoning for low or high incidence in a region. Considering range position in the context of
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abundance can provide important insight into assessing species status and explaining incidence 

patterns we see among communities and populations. Conservation efforts may be better spent 

on species declining near the centre of their range rather than declining peripheral populations.
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CHAPTER 2 

The effect of local habitat and landscape characteristics on amphibian species richness and
turnover in Northwestern Ontario

INTRODUCTION

Ecological communities are products or processes (either biotic or abiotic) that 

operate on different spatial and temporal scales. Arguably, ecologists have traditionally focussed 

more on biotic processes (i.e. competition, predation) than on abiotic factors (Dunson & Travis 

1991). The nature of these structuring factors may differ among locations and their relative 

importance may change through time. Communities may also be affected by either contemporary 

or historical processes (Ricklefs & Schluter 1993). Former evolutionary or dispersal events, or 

human land use history, leaves a legacy on present day communities. Understanding the relative 

importance of these structuring factors are of interest to contemporary community ecologists 

(Connell & Sousa 1983; Ricklefs & Schluter 1993).

Patterns in the distribution of populations or communities, and their causal processes, 

may differ depending on scale of perception (Hecnar 1997). By investigating populations at the 

local scale, we can determine the causes of local extinction (Hecnar 1997). However it is not 

sufficient just to investigate populations at the local scale. The actual status of species is more 

accurately determined at the landscape or regional scale by considering metapopulation or 

metacommunity dynamics (Hecnar 1997). By considering the overall outcome of extinction and 

colonization processes at local sites, we can assess the overall status of species in a region and 

the cause of declines at the local scale (Hecnar 1997; Baker & Halliday 1999; Gill 1978; Sjbgren- 

Gulve 1994).
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Metapopulation theory offers a useful way to understand, manage and conserve 

spatially isolated populations of species including amphibians (Sjogren-Gulve & Ray 1996; 

Hecnar 1997; Levins 1969; Hanski & Gilpin 1991). Many amphibian populations are thought to 

have a metapopulation structure due to the patchy nature of breeding habitat, restricted 

movement and strong site fidelity in many species (Sjogren-Gulve 1994). When living as 

metapopulations, amphibians are able to colonize new ponds as long as the distance between 

ponds is not too great (Baker & Halliday 1999). This allows for long-term persistence of local 

populations, a reduction in the risk of isolation resulting in local extinction (Reh & Seitz 1990; 

Hecnar 1997; Baker & Halliday 1999). Understanding metapopulation dynamics is important for 

amphibian conservation because it allows us to assess the structure and composition of 

amphibian communities as well as their persistence across all spatial scales (Gotelli 1998; Marsh 

& Trenham 2001). Studying a single taxon such as amphibians may provide us with information 

on community-level dynamics which may be much more effective than concentrating on a single 

species (McKinney & Drake 1998).

Recently much attention has focussed on declines of some amphibian populations 

(Wake & Morowitz 1991; Green 1997; Alford & Richards 1999; Houlahan et al. 2000; Carey et 

al. 2001). The primary causes of amphibian declines include: habitat destruction, fragmentation 

and degradation (Blaustein et al. 1994; Pechmann & Wilbur 1994; Green 1997; Hecnar 1997). 

Loss of habitat is mainly caused by anthropogenic disturbances such as timber harvesting, 

deforestation, road construction and drainage of wetlands (dcMaynadier & Hunter 1995; Findlay 

et al. 2001). The loss of woodland habitat and the increase in roads and highways have increased 

habitat fragmentation (Vos & Stumpel 1995; Murphy et al. 2000). Fragmentation severs
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connections between local populations, decreasing the possibility for recolonization from other 

sites or rescuing those populations that are going extinct (Laan & Verboom 1990; Vos &

Stumpel 1995; Fahrig et al. 1995; Green 1997). Fragmentation is a problem for most amphibians 

as they require more than one habitat for foraging, hibernation and breeding (Pope et al. 2000). 

Although some species remain in or near aquatic sites all year round, others migrate to upland 

forest or meadow habitats to forage and overwinter (Reh & Seitz 1990; Sjogren-Gulve & Ray 

1996; Baker & Halliday 1999). Therefore, suppression of movements between these habitats 

may cause a substantial decline in the number of amphibian populations.

Gaining more knowledge about the relationship between amphibians and their habitat 

will help us in our conservation efforts. One way to gain this knowledge is to determine what 

ecological features, on both a local and regional level, are important in structuring amphibian 

communities. On a landscape scale, woodland habitats are important because they provide most 

amphibians species with a place to forage and hibernate. Hecnar & M ’Closkey (1996b, 1996c, 

1998) examined the effects of forest fragmentation on amphibian communities and the 

importance of regional dynamics in assessing amphibian species. They found a difference in 

species richness among regions in southern Ontario and that as a result of large-scale 

deforestation, woodland species had become rare. Therefore they suggested using a regional 

approach to assess the status of amphibians. A study by Laan & Verboom (1990) also found that 

the presence of amphibians was positively influenced by the amount of woodland near a pond.

On a local habitat scale, factors that have been found to be important are those that affect 

oviposition, and tadpole development such as aquatic vegetation and pH. Amphibians are very 

susceptible to water pollution because of their permeable skin (Vitt et al. 1990) and are known to
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be highly effected by acidity (Dunson et al. 1992). Amphibian sensitivity to pH has been 

observed by Eason & Fauth (2001) where anuran species richness declined with decreasing pH. 

Aquatic vegetation within a pond provides refuge from predators, places to call and bask on, and 

to attach eggs to (Johnson 1989). A study by Pavignano et al. (1990) revealed that amphibians 

selected ponds with abundant aquatic vegetation, low human disturbance and surrounded with 

terrestrial habitats consisting of gardens or woodlands.

The purpose of my study was to document and evaluate the association between 

amphibian species richness and turnover and local habitat and landscape characteristics. I 

hypothesize that species richness and turnover will be affected by a combination of local habitat 

and landscape characteristics due to different habitat requirements among species and I should 

see an overall effect of characteristics related to woodland.

METHODS 

Habitat Characteristics

I examined the association of amphibian species richness and species turnover with 

local habitat and landscape characteristics at 69 pond sites (Table 2.1 and 2.2). At the local scale, 

I mapped each pond using optical range finders and compasses. Pond area and perimeter were 

calculated using image analysis of my hand drawn field maps (SigmaScan Pro 5.0). I calculated 

pond volume (V) using the following equation (Wetzel 2001):

V  = 4.67 X MaximumDepth x Area
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I divided dominant edge vegetation into four classes: substrate (no vegetation), 

grasses (including small herbaceous plants), shrubs and trees. Using the total perimeter found for 

each pond, I calculated the length (m) and the percent of each vegetation type. I divided 

vegetation within a pond into 2 categories: emergent and floating vegetation. For each category,

1 calculated the amount of cover (m^) and the percentage cover for each category using my field 

maps and image analysis.

I classified bottom type as an index based on increasing particle size, where 1 = mud,

2 = sand, and 3 = gravel. The bank slope was measured at 4 randomly chosen locations. At each 

location, water depth was taken one metre from the edge. The slope angle was determined by 

using the formula:

- rise
t a n ^ = ------

run

6 =  tan -1
/  . \  nse 
V run)

where rise is the depth of the water one metre from shore and run is one metre.

To determine habitat richness, I recorded the number of microhabitats occurring 

along the perimeter of each pond. A microhabitat could consist of a single habitat variable such 

as shrubs or could be a combination of different habitat variables such as trees, grass and 

emergent vegetation. The habitat variables that were used were emergent vegetation, substrate, 

grass, shrubs and trees. I calculated the proportions of each microhabitat occurring along the 

edge of a pond, and then calculated habitat diversity using the inverse of Simpson’s Index:
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I, pi-

where is the proportion of each microhabitat and D is habitat diversity.

I used two variables to represent turbidity, one measured and one categorical. I 

measured turbidity, given in Jackson’s Turbidity Units (JTU), by using the LaMotte turbidity in 

water test kit and Fuller’s Earth as the standard turbidity reagent. I also divided turbidity into 4 

categories: 1 = transparent, 2 = translucent, 3 = moderate, and 4 = opaque. I measured 

conductivity and pH using Oakton pocket metres (TDSTestr 3 and pHTestr 2).

At the landscape scale, the variables were measured within a 2 km radius of each 

pond. I used a 2 km radius because most individuals in an amphibian population will not 

disperse more than 2 km (Semlitsch 1981; Sinsch 1990; Pechmann & Wilbur 1994; Hecnar & 

M ’Closkey 1996b, 1996c). Furthermore Rana pipiens, considered to be the most vagile anuran 

in Ontario (Hecnar & M ’Closkey 1997), has been known to migrate up to 1.5 km overland 

between habitats (Carr & Fahrig 2001). Therefore using 2 km could provide a guideline for 

measuring the effect of landscape variables on anuran populations in general.

Landscape variables were calculated using Environmental Systems Research 

Institute’s (ESRI) Arc View Software package 3.2 (E SR I1996). Global Positioning System 

(GPS) points of study sites (WGS84) were projected into the NAD83 CNT datum, with a 

Universal Transverse Mercator projection to match the Ontario Ministry of Natural Resources’s 

(OMNR 2000) Natural Resource Values Information System (NRVIS). These points were then 

buffered with a 2 km radius to create a polygon centred around each point. The polygons were
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used to clip and identify NRVIS data layers and to derive quantities within each polygon for each 

map feature. For streams, ArcView Spatial Analyst extension was used to process a 25 m digital 

elevation model (DEM) to generate a flow accumulation grid for the data extent. All flow 

accumulation cells with a value of >150 were used to generate a vector coverage representing 

streams. Compared to the NRVIS stream layer, using flow accumulation cells with a value of > 

150 increases the number of streams displayed across the extent because not all stream layers are 

digitized. The area and percent of wetlands, lakes, forest cover measurements including 

coniferous, deciduous and mixed forest, as well as agricultural and cutover areas were derived 

from provincial land cover data (OMNR 2000). Elevation was calculated as the average of all 

elevation points derived within each polygon at each site. The spatial heterogeneity or the 

variation in the landscape for each site was calculated by taking the covariance of all the 

elevation values within each polygon. I classified roads based on traffic flow into 3 categories: 1 

= low use, 2 = moderate use, 3 = heavy use. Traffic flow was based on how many cars one 

would see per unit time. Roads with low use had < 1 vehicle pass by/hour, moderate use had 1 

vehicle pass by every 30 minutes to an hour and heavy use had 1 vehicle pass by every minute to 

0.5 hour.
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Table 2.1. Local habitat variable abbreviations and their descriptions.

Local Habitat Characteristics Description

Area Total pond area (m^)

Perimeter Total pond perimeter (m)

Volume Total pond volume (m^)

Depth Maximum water depth (m)

Floatm Area of pond covered by floating vegetation (m^)

Hoatper Proportion of pond covered by floating vegetation

Emergm Area of pond covered by emergent vegetation (m^)

Emergper Proportion of pond covered by emergent vegetation

Subm Length of substrate (m) on pond edge

Subp Proportion of substrate on pond edge

Grassm Length of pond edge consisting of grass (m)

Grassper Proportion of pond edge consisting of grass

Shrubsm Length of pond edge consisting of shrubs (m)

Shrubsper Proportion of pond edge consisting of shrubs

Treesm Length of pond edge consisting of trees (m)

Treesper Proportion of pond edge consisting of trees

Bottom Type of pond bottom (1,2, 3, 4)

Slope Average bank slope (°)

Richness Number of microhabitats along perimeter of ponds

Diversity Simpson’s Diversity

Turb Water Turbidity (JTU)

Turbcat Turbidity (4 categories)

Cond Conductivity (ps)

PH pH
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Table 2.2. Landscape variable abbreviations and their descriptions.

Landscape Characteristics Description

Woodp Proportion of forest cover

Woodkm Area of forest cover (km^)

Coniferp Proportion of coniferous forest

Coniferkm Area of coniferous forest (km^)

Deciduousp Proportion of deciduous forest

Deciduouskm Area of deciduous forest (km^)

Mixedp Proportion of mixed forest

Mixedkm Area of mixed forest (km^)

Wetlandp Proportion of wetlands

Wetlandkm Area of wetland (km^)

Dwetland Distance to nearest wetland (km)

Lakesp Proportion of lakes

Lakeskm Area of lakes (km^)

Dlakes Distance to nearest lake (km)

Streams Total length of streams (km)

Dstream Distance to nearest stream (km)

Roads Total length of roads (km)

Roaduse Traffic Flow (1 ,2 ,3 )

Elevation Elevation (m)

Spatial Spatial Heterogeneity

Cutoverp Proportion of cutovers

Cutoverkm Area of cutover (km^)

Agriper Proportion of agricultural areas

Agrikm Area of agriculture (km^)
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Statistical Analyses

F-max and One-sample Kolmogorov-Smimov tests using Lillifor’s test distribution were 

performed on all of my data to check for homogeneity of variance and normality and non-normal 

data was transformed using either logjo, square root or arcsine transformations (Sokal & Rohlf 

1994). Correlations were used to rank the association between habitat variables and species 

richness and turnover. Only those variables with a probability of p <0.15 were used in the 

stepwise regressions. A statistical significance of a  = 0.05 was used. All analyses followed 

Sokal & Rohlf (1994) and were generated using SYSTAT 9 (Wilkinson 1990).

I used stepwise multiple regression to examine the association of species richness and 

turnover with local habitat and regional landscape characteristics. I constructed three models; 

local variables only, regional variables only, and a combined model. If different results were 

obtained between the forward and backward regressions, I took those variables that were 

significant from both regressions and ran a complete regression. The local and landscape habitat 

variables found to be of significant importance to species richness, and turnover were then 

combined using multiple linear regressions. Principal Components Analysis (PCA) with a 

varimax rotation was used to determine if habitat variables could be separated into groups based 

on multiple collinearity between the habitat variables. The factor scores from each factor 

component were then used to run a stepwise multiple regression with species richness and 

turnover as the dependent variables.
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RESULTS

When I expanded the original 42 pond sites to 6 9 ,1 found ten amphibian species. Mean 

species richness over all of the sites was 4.6 (± SE 0.14) (Figure 2.1) and the mean turnover was 

found to be 0.16 (± SE 0.016).

Species richness was correlated with thirteen local habitat and eight landscape 

characteristics (Table 2.3). Stepwise multiple regression with local habitat variables revealed 

that species richness was positively associated with Shrubsper, Richness and PH and negatively 

associated with Perimeter (Table 2.4). When I compared species richness to the landscape 

variables, I found a positive significant association with Woodkm, Wetlandkm, Dstream and 

Agrikm (Tahle 2.4). The final model included Shrubsper, Richness, Perimeter, Wetlandkm, 

Dstream, Agrikm (Table 2.4). The percentage of variance explained by the models was: 33.4% 

for local, 31.7% for landscape, and 53.4% for the combined model.

Turnover was correlated with seven local habitat and four landscape characteristics 

(Table 2.5). I found turnover to be negatively related to Slope and positively related to Perimeter 

and Subp (Table 2.5). When I compared the landscape variables to turnover, I found that 

turnover was negatively related to Deciduouskm, Woodp and positively related to Deciduousp 

(Table A6). I omitted case 11 and 68 because they were outliers and ran the stepwise multiple 

regression without Deciduouskm and Deciduousp because tolerance levels were close to zero. I 

found that turnover was negatively related to Woodkm (Table 2.5). The final model included 

Perimeter, Slope and Subp (Table 2.6). The pereentage of variance explained by the models 

were: 11% for landscape, and 31% for local and the combined model.

The Principal Components Analysis resulted in twelve components (or factors)
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explaining a total variance of 83% (Table A2). I chose to use only the first nine factors in the 

stepwise multiple regressions because factors ten, eleven and twelve only explained 12% of the 

total variance. I found species richness to be positively related to Factor 3 and 7 (Table 2.7 & 

2.8). I found turnover to be negatively related to Factor 1 (Table 2.7 & 2.8).
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Figure 2.1. Mean amphibian species richness (+SE) at 69 aquatic 
breeding ponds in Northwestern Ontario during 2001 
and 2002.
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Table 2.3. Pearson correlation matrix between amphibian species richness and local habitat and 
landscape variables. Those variables that had a correlation with p<0.15 are

Local Variables Landscape Variables

Perimeter -0.296 Woodp -0.212

Area 0.165 Woodkm -0.199

Volume 0.238 Coniferp 0.029

Depth 0.261 Coniferkm 0.031

Floatm -0.081 Deciduousp -0.168

Floatper -0.210 Deciduouskm -0.163

Emergm -0.080 Mixedp -0.061

Emergper -0.166 Mixedkm -0.059

Subm 0.244 Wetlandp 0.242

Subp 0.173 Wetlandkm 0.242

Grassm 0.053 Dwetland 0.038

Grassper -0.129 Lakesp 0.139

Shrubsm 0.295 Lakeskm 0.140

Shrubsper 0.242 Dlakes 0.039

Treesm -0.110 Streams -0.032

Treesper -0.004 Dstream 0.309

Bottom 0.151 Roads -0.018

Slope 0.013 Roaduse 0.033

Richness 0.302 Elevation 0.099

Diversity 0.315 Spatial -0.276

Turb 0.033 Cutoverp 0.026

Turbcat -0.211 Cutoverkm 0.027

Cond -0.214 Agriper 0.260

PH 0.253 Agrikm 0.259
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Variable Coefficient Std Error Tolerance t P

Local Habitat Variables (F4 64 = 8.01, p  < 0.001, == 0.334)

Constant 0.55 0.445 - 1.237 0.22

Perimeter -0.079 0.026 0.961 -3.093 < 0.01

Shrubsper 0.295 0.09 0.945 3.285 < 0.01

PH 0.171 0.055 0.919 3.135 < 0.01

Richness 0.037 0.016 0.963 2.233 <0.05

Landscape Variables (F  ̂̂  ̂= 7.44, p  < 0.001, R  ̂= 0.317)

Constant 1.541 0.174 - 8.832 < 0.001

Wetlandkm 0.282 0.085 0.689 3.307 < 0.005

Dstream 0.599 0.20 0.93 2.992 < 0.005

Agrikm 0.075 0.02 0.31 3.718 < 0.001

Complete Model (F  ̂gj = 10.0, p < 0.001, R^ = 0.534)

Constant 0.91 0.403 - 2.258 <0.05

Wetlandkm 0.147 0.069 0.749 2.126 <0.05

Dstream 0.638 0.173 0.894 3.688 < 0.001

Agrikm 0.04 0.012 0.649 3.385 < 0.005

Shrubsper 0.255 0.082 0.825 3.107 < 0.005

Perimeter -0.061 0.023 0.853 -2.604 <0.05

Richness 0.049 0.014 0.93 3.425 < 0.005
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Table 2.5. Pearson correlation matrix between amphibian turnover and local habitat and

Local Landscape

Perimeter 0.211 Woodp -0.199

Area -0.058 Woodkm -0.213

Volume -0.051 Coniferp 0.168

Depth -0.056 Coniferkm 0.164

Floatm 0.153 Deciduousp -0.250

Floatper -0.061 Deciduouskm -0.255

Emergm -0.111 Mixedp -0.005

Emergper -0.112 Mixedkm -0.014

Subm 0.256 Wetlandp 0.105

Subp 0.441 Wetlandkm 0.103

Grassm -0.137 Dwetland 0.079

Grassper -0.227 Lakesp 0.122

Shrubsm 0.084 Lakeskm 0.120

Shrubsper 0.018 Dlakes 0.020

Treesm -0.054 Streams 0.051

Treesper -0.071 Dstream 0.133

Bottom 0.245 Roads -0.084

Slope -0.207 Roaduse -0.168

Richness 0.060 Elevation -0.021

Diversity 0.098 Spatial -0.050

Turb 0.028 Cutoverp 0.085

Turbcat -0.201 Cutoverkm 0.080

Cond 0.118 Agriper 0.036

PH -0.105 Agrikm 0.036
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Table 2.6. Stepwise multiple regression of amphibian turnover with local habitat and landscape 
variables (N=69).

Variable Coefficient Std. Error Tolerance t P

Landscape Variables (F  ̂gj = 7.891, p  < 0.01, = 0.108) *

Constant 0.235 0.033 7.084 <0.001

Woodkm -0.001 0 1.0 -2.809 <0.01

Local Variables and Complete model (F  ̂gg = 9.681, p  < 0.001, R^ = 0.309)

Constant 0.243 0.066 3.688 < 0.001

Perimeter 0.032 0.012 0.984 2.566 <0.05

Slope -0.048 0.024 1.0 -2.004 <0.05

Subp 0.452 0.099 0.984 4.583 <0.001
* without outliers (N = 67)
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Table 2.7. Rotated loading components from the principal components analysis that were 
significantly associated with species richness and turnover. Factors 1, 3 and 7

Variables Factor 1 Variables Factor 3 Variables Factor 7

Woodp 0.95 Diversity 0.831 Shrubsm 0.888

Woodkm 0.949 Richness 0.807 Shrubsper 0.875

Agrikm -0.833 Subp 0.627

Agriper -0.833 Bottom 0.626

Elevation 0.653 Subm 0.56

Mixedkm 0.597

Mixedp 0.594

Streams -0.529
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Table 2.8. Stepwise multiple regression of species riehness and turnover with the component

Variable Coefficient Std Error Tolerance t P

Species Richness (F  ̂gj = 4.45, p  < 0.01, = 0.17)

Constant 2.128 0.031 - 69.06 < 0.001

Factor 3 0.066 0.031 1.0 2.121 <0.05

Factor 7 0.074 0.031 1.0 2.397 <0.05

Turnover (F^ ĝ  = 3.809, p <  0.01, R ' = 0.195)

Constant 0.147 0.013 - 11.383 <0.001

Factor 1 -0.032 0.013 0.998 -2.455 <0.05

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DISCUSSION

My analyses revealed complex associations of amphibian species richness and turnover 

with local and landscape characteristics. This was expected considering that local communities 

are products of processes operating on multiple scales (Caley & Schluter 1997; Hecnar & 

M ’Closkey 1997, 1998). Mazerolle & Villard (1999) reviewed studies that included both 

landscape-scale and patch-scale effects to determine if landscape characteristics increased the 

prediction of species presence and distribution when local habitat variables were known. They 

found that including habitat variables at many scales improved models for vertebrate species.

The results from Mazerolle & Villard’s (1999) study were similar to what I found when I looked 

at the association between species richness and local habitat and landscape characteristics. My 

results revealed that species richness was associated with a diverse array of local habitat variables 

and landscape variables related to land-use and wetlands.

I found a positive association between species richness and the area of wetlands around a 

pond. Wetlands are important sources for sink habitats such as temporary ponds and some semi­

permanent ponds that may be experiencing lower water levels due to lower snow fall as 

explained in Chapter 1.

I found that species richness was positively related to the distance to streams. One 

possible explanation for this association is that fish are present in streams and amphibians have 

been found to be negatively affected by fish predation (Hecnar 1997; Hecnar & M ’Closkey 1997; 

Baker & Halliday 1999; Semlitsch 2000; Eason & Fauth 2001). Most amphibians are not able to 

cross streams due to fast flowing, cold waters and thus streams become barriers for movement 

between breeding sites and terrestrial habitat.
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Contrary to what I expected, species richness was positively related to the area of 

agriculture around a pond site. Similar results were found by Knutson et al. (1999), where 

relative anuran abundance was higher in areas with more agricultural land. Agriculture, 

especially mixed farm land, increases diversity of habitats that may support a variety of 

amphibians (Baker & Halliday 1999). Previous studies have suggested that amphibian presence 

in agricultural areas is determined by geology and the nature of adjacent terrestrial habitat to 

ponds, pond vegetation and age (Beebee 1985; Laan & Verboom 1990; Pavignano et al. 1990; 

Baker & Halliday 1999). Agricultural areas open up the landscape allowing more light and faster 

warming of pond waters. Increased water temperature shortens time to metamorphosis for larvae 

(Newman 1998). Agrieultural areas ean also provide excellent refuge for migrating adults or 

juveniles (Knutson et al. 1999). Lemckert (1999) found that species richness was higher in more 

disturbed areas as opposed to undisturbed forest. He also found that more recent disturbances 

increased the richness of generalist species at ponds. There are many species that prefer open 

canopy habitats such as Pseudacris maculata, Rana pipiens and Bufo americanus (Werner & 

Glennmeier 1999). The presence of agriculture in the predominately forested landseape of the 

study area promotes habitat heterogeneity by creating a ‘mosaic’ of complementary habitats 

(Pope et al. 2000).

Species riehness increased with decreasing perimeter. Smaller ponds usually indicate 

shallower waters with no predators and are good substitutes for species that normally breed in 

ephemeral ponds.

I found a positive relationship between species richness and the percentage of shrubs 

surrounding a pond. Shrubs are important to amphibians because they are used for basking on,
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calling sites, and to provide protection from predators. Shrubs also help to stabilize the pond 

edge, decreasing erosion and sediment flow into ponds. Gomez & Anthony (1996) found that 

species richness was similar among forest types but greater in shrub stands. Shrubs could be 

complementing the needs of amphibian species who rely on woodland habitat more than 

agricultural.

I was not surprised to find that high habitat richness along the edge of a pond promotes 

high species richness. Having a variety of microhabitats within a pond complements each 

species’ niche requirements allowing a diverse community of amphibians to exist together.

The regression models for turnover showed a negative relationship with slope and a 

positive relationship with perimeter and the percent of substrate around a pond. The presence of 

substrate indicates disturbance along the edge of the pond that is affecting edge habitat. Without 

any edge vegetation, all stages of an amphibian’s life cycle cannot survive leading to an increase 

in local extinction and an increase in species moving out of the ponds. Steep banks prevent 

species from dispersing in or out of the pond, resulting in low turnover. The positive relationship 

with perimeter coincides with the negative relationship found between species richness and 

perimeter. This supports the theory that high turnover is caused by extinction or migration out of 

the pond and not colonization into the pond. If turnover was high because of high colonization, 

then we would see a positive relationship with species richness and perimeter which is not the 

case.

Local habitat and landscape characteristics play an important role in determining species 

richness and turnover in amphibian pond communities. Specifically smaller ponds situated in 

heterogeneous landscapes that are open with diverse microhabitat along the edge and local
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habitat characteristics promote high species richness and low turnover. In order to conserve on a 

community level we must provide adequate habitat, at the local and regional level, to meet all of 

the species needs within that community.
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CHAPTER 3

Single-species habitat models for amphibian species in Northwestern Ontario

INTRODUCTION

The local distribution of species is fundamentally determined by the availability habitats 

and how characteristics of a species’ habitat satisfy its natural history requirements (Campbell & 

Reece 2002). The amounts, quality and juxtaposition of essential habitats can affect fitness of 

individuals and population persistence (Walters et al. 2002). The factors or processes affecting 

species presence can also be either abiotic or biotic and operate on different spatial scales 

(Ricklefs & Schluter 1993; Smith 1996).

The regional distribution of a species is ultimately determined by the balance between 

colonization and extinction of local populations that together make up a metapopulation (Levins 

1969; Hanski & Gilpin 1991; Clark & Rosenzweig 1994; Gotelli 1998; McKinney & Drake 

1998). In order for a species to persist and to reduce the risk of extinction, there must be 

multiple populations between which individuals are able to migrate or be within a large, 

continuous population (Sjogren-Gulve 1994). Many amphibian populations form 

metapopulations as a consequence of their reliance on ponds (Marsh & Trenham 2001) and 

surrounding terrestrial habitats for breeding, larval development, hibernation and foraging (Pope 

et al. 2000). If we can understand the regional dynamics of these amphibian populations, then 

we will be able to determine the status of species (Hecnar & M ’Closkey 1996c). Using presence 

and/or absence of a species at a breeding site is a better indicator of the present state of a 

population than using population size because amphibians are viviparous and thus it is hard to
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determine population size when surveying at multiple times during the year. Besides with no 

previous population density data to compare populations to, it makes it hard to determine if the 

species is declining.

Determining the status of species is crucial because of recent concerns over the decline of 

amphibian populations (Wake & Morowitz 1991; Green 1997; Alford & Richards 1999; 

Houlahan et al. 2000; Carey et al. 2001). This has lead to a search for the causes of these 

declines and to determine which populations are declining. The major factor affecting 

amphibians is habitat loss (Wake & Morowitz 1991; Blaustein et al. 1994; Pechmann & Wilbur 

1994; Green 1997). Because most amphibians use both aquatic and terrestrial habitat, loss or 

degradation of these habitat components could be damaging to populations and communities.

In order to conserve both amphibians and their habitats, we must determine what 

components within each habitat are both important for, and detrimental to, amphibian survival 

(Semlitsch 2002). It is also important to consider habitat characteristics at both local and 

regional landscape scales because amphibians migrate between breeding sites and terrestrial 

habitats. At the local scale, vegetation within a pond (i.e. emergent vegetation) acts as important 

refuge from predators and is used for calling and oviposition sites (Johnson 1989; Hecnar & 

M ’Closkey 1996b; Baker & Halliday 1999; Carr & Fahrig 2001). On the other hand, acidity has 

been found to negatively affect amphibians (Roudebush 1988; Dunson, et al. 1992; Kams 1992; 

Eason & Fauth 2001). At the local and regional scale, woodland surrounding a breeding site is 

important for salamanders, woodfrogs, gray treefrogs and spring peepers because they use these 

sites for foraging and hibernation (Hecnar & M ’Closkey 1996b; Hecnar 1997; Conant & Collins 

1998). However, roads can be detrimental to amphibians. Roads act as physical barriers to
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amphibian movement (Reh & Seitz 1990; Carr & Fahrig 2001) and dissect the landscape creating 

small patches of habitat that may lead to population isolation (Sjogren-Gulve 1994; Carr &

Fahrig 2001) or high traffic mortality as a result of migration between seasonal habitats 

(deMaynadier & Hunter 1995; Fahrig et al. 1995; Carr & Fahrig 2001; Findlay et al. 2001). 

However roads can be beneficial for amphibian species. Ditches along roads act as migration 

corridors and breeding sites for temporary pond species. Thus the survival and movement of 

individuals between the aquatic and terrestrial environments is the crucial process that ensures 

successful dispersal and recolonization among metapopulations (Semlitsch 2002).

The importance of assessing relationships between amphibians and habitat features may 

help explain local and regional patterns of species incidence, and aid in future conservation 

efforts. Information gained by assessing habitat quality will help in translocation/reintroduction 

programs, habitat restoration, environmental impact assessments, and determining species status 

(Griffith et al. 1989; Beebee 1997; Helferty 2002; Semlitsch 2002). For example, Griffith et al. 

(1989) found that the success rate of translocations of birds and mammals was higher in good 

quality habitat compared to those in poor habitat. Assessing habitat quality is an important 

aspect in conservation in addition to determining a species’ habitat requirements. Hamer et al. 

(2002) investigated the habitat requirements of the endangered green and golden bell frog 

(Litoria aurea) in order to create and manage wetland habitats. The study revealed that the 

diversity of vegetation on the banks of water bodies, including three plant species, were 

significant predictors of the presence of Litoria aurea. Hamer et al. (2002) recommended that to 

create successful habitat for the green and golden bell frog, the wetlands need to be placed close 

to existing populations and contain those predictors mentioned previously. Habitat quality
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information can allow us to assess the probability of each individual species occurring at a site 

depending on what habitat and landscape variables are present.

The purpose of my study was to document and explain the patterns of amphibian species 

incidence in terms of local and landscape characteristics within the boreal forest biome in 

northwestern Ontario. The distribution patterns of boreal amphibians are poorly understood 

despite potential threats to populations by human activities such as forestry (Elmberg 1993; 

Constible et al. 2001). My objectives were to create single species habitat models based on 

species incidence and habitat characteristics. Due to differences in habitat preferences between 

species, I expected unique habitat models to emerge.

METHODS

I sampled 69 ponds for the presence and absence of amphibian species in 2001 and 2002. 

I considered an amphibian as present at a site if it was found there in either of the two years. 

Habitat Characteristics

Local habitat and landscape characteristics were measured using the same methods 

discussed in Chapter 2.

Statistical Analyses

I used stepwise logistic regression analysis to examine the effects of the habitat variables 

(Table 2.1 & 2.2) on individual species. If results differed between the forward and backward 

stepwise regressions, I took those variables that were significant from both regressions and ran a 

complete regression.

I performed F-max and one-sample Kolmogorov-Smimov tests using Lillifor’s 

distribution to check for homogeneity of variance and normality and non-normal data was
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transformed using either logm, square root or arcsine transformations. MANOVA was used to 

narrow down the habitat variables to those that were most associated with each individual species 

among all sites. Only those variables with a probability of p < 0.15 were used in the logistic 

regressions. I used a statistical significance of a  = 0.05. All analyses followed Sokal and Rohlf 

(1994) and were generated using SYSTAT 9 (Wilkinson 1990).

RESULTS

I found 10 amphibian species during pond surveys (Figure 3.1). By expanding the 

number of ponds to 6 9 ,1 found one more species of amphibian, Ambystoma maculatum. This 

may be attributed to the addition of ponds located within more forested habitat giving me study 

sites within a variety of different landscapes. Pseudacris crucifer, Rana sylvatica and Bufo 

americanus occurred at over 90% of the sites whereas Rana pipiens, Ambystoma maculatum and 

Ambystoma latérale were found at less than 15% of sites (Figure 3.1). Logistic regression 

revealed complex patterns of species association with habitat characteristics (Table 3.1). 

Pseudacris crucifer

There were no correlations for P. crucifer with any of the habitat variables because it was 

found at all of my pond sites.

Pseudacris maculata

Pseudacris maculata presence was negatively related to Woodp, Woodkm, Mixedp, 

Mixedkm, Streams, Roaduse, Elevation, Spatial, Cutoverp, Cutoverkm and positively related to 

Agriper, Agrikm, Dstream and Roads. When I compared P. maculata to the local habitat 

variables, I found that Area, Volume, Depth, Emergm, Shrubsm, PH, Cond and Turb were 

positively correlated.
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Logistic stepwise regressions revealed a positive association with P. maculata and 

Shrubsm, PH and Turb = 23.744, Rho^ = 0.270, p < 0.001). When I compared incidence to 

the landscape characteristics, I found P. maculata to be positively related to Dstream and Agrikm 

and negatively related to Mixedp, Streams, and Cutoverp = 67.463, Rho^ = 0.768, p <

0.001). The final model included PH, Cutoverp, Agrikm, Mixedp, and Streams and the 

probability of finding P. maculata at pond sites with these characteristics was 84% = 50.437;

Table 3.1).

Hyla versicolor

The MANOVA narrowed down the landscape variables to Woodp, Woodkm, Mixedp, 

Mixedkm, Roaduse, Cutoverp, Cutoverkm which were negatively correlated and Dwetland, 

Dlakes, Dstream, Agriper and Agrikm which were positively correlated. When I compared H. 

versicolor to all of the local habitat variables, I found Area, Volume, Depth, Subm, Emergm, 

Grassm, Shrubsm and Turb to be positively correlated.

Logistic regression revealed that Depth, Shrubsm and Turb were significantly different 

(X 3̂ = 19.379, Rho^ = 0.203, p < 0.001). I also found a significant difference with Dstream (%% = 

26.467, Rho^ = 0.277, p < 0.05). When all of these significant variables were placed together in 

one final model, only Shrubsm, Depth, and Turb were significant = 23.07; Table 3.1).

Rana pipiens

When comparing R. pipiens with landscape variables, I found Woodp, Woodkm, 

Coniferp, Coniferkm, Mixedp, Mixedkm, Elevation, Cutoverp, and Cutoverkm to be negatively 

correlated and Dwetland, Streams, Agriper and Agrikm to be positively correlated. I also found 

R. pipiens to be positively correlated with Volume, Depth, Subp, Subm, Grassm, Richness,
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Diversity and PH.

I found significant differences with Volume, Depth, Subm (x 3̂ = 24.534, Rho^ = 0.459, p 

< 0.001) and Agrikm = 22.35, Rho^ = 0.418, p < 0.001). A complete regression of all of the 

significant variables revealed only Agrikm was significantly different (x^i = 22.350; Table 3.1). 

Rana clamitans

Rana clamitans was negatively associated with Deciduousp, Dlakes, Agrikm and Agriper 

and was positively associated with Woodkm, Mixedp, Mixedkm, Wetlandp, Wetlandkm, Lakesp, 

Lakeskm and Elevation. Similarly R. clamitans was negatively correlated with Floatper, 

Emergper and Turbcat and positively correlated with Subm, Richness and Diversity.

Logistic regression revealed significant differences with Floatper = 7.814, Rho^ = 

0.099, p < 0.005) and Dlakes (x 4̂ = 20. 865, Rho^ = 0.263, p < 0.001). These results were also 

found to be significant when they were both placed into a complete regression = 15.738; 

Table 3.1).

Rana septentrionalis

Rana septentrionalis incidence was negatively correlated with Roads, Floatper,

Emergper, Cond, and Turb and positively correlated with Volume, Depth, Subm, Subp, Bottom, 

Richness, Diversity, Slope, and PH.

Logistic regressions revealed significant differences with Richness, Turb (x 3̂ = 12.898, 

Rho^ = 0.143, p < 0.01) and Roads (x^i = 4.753, Rho^ = 0.053, p < 0.05). In the final regression 

model, all of these variables were significant ( x \  = 18.204; Table 3.1).

Rana sylvatica

I did not find Rana sylvatica to be correlated with any of the landscape variables however
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I did find negative correlations with Grass and Cond. However when I ran the logistic 

regression, I did not find any significant results between R. sylvatica and any of the habitat 

variables.

Bufo americanus

I found negative correlations with Coniferp, Coniferkm, Wetlandp, Wetlandkm, and 

Roads and positive correlations with Deciduousp, Deciduouskm, Lakeskm and Lakesp. I also 

found negative correlations with Shrubsper, and positive correlations with Perimeter, Area and 

Volume.

Stepwise logistie regression revealed significant associations between B. americanus and 

Area = 6.179, Rho^ = 0.152, p < 0.05; Table 3.6), Deciduousp, and Lakesp (%% = 10.504, 

Rho^ = 0.258, p < 0.005). After eombining these latter variables in a complete regression, I 

found only Area and Lakesp to be significant (x 2̂ = 10.922; Table 3.1).

Ambystoma maculatum

I found Ambystoma maculatum to be negatively correlated with Deciduousp, 

Deciduouskm, Dwetland, Roads, Spatial, Agriper, Agrikm and positively correlated with 

Coniferp, Coniferkm, Mixedp, Mixedkm, Wetlandp, Wetlandkm, Lakesp, Lakeskm, Dstream, 

Elevation, Cutoverp and Cutoverkm. When I compared A. maculatum to the local habitat 

variables, I found positive correlations with Shrubsper, Shrubsm, Bottom and negative 

correlations with Perimeter, Area, Volume, Depth, Floatper, Grassm, Grassper, Slope, PH, Cond 

and Turbcat.

Logistic regression revealed that Slope, Cond (x^s = 31.552, Rho^ = 0.637, p < 0.001), 

and Dstream, and Cutoverkm (x^z = 38.63, Rho^ = 0.78, p < 0.001) were significant. A complete
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regression revealed that only Dstream and Cutoverkm were significantly different to incidence 

(X 2̂ = 38.63; Table 3.1)

Ambystoma latérale

Correlations revealed negative relationships with Deciduousp, Deciduouskm, Dwetland, 

Spatial, Agriper, Agrikm and positive relationships with Coniferp, Coniferkm, Mixedp, 

Mixedkm, Wetlandp, Wetlandkm, Lakesp, Lakeskm, Dstream, Roaduse, Elevation, Cutoverp 

and Cutoverkm. A. latérale was also negatively correlated with Area, Volume, Depth, Roatper, 

Emergm, Grassm, Slope, PH, and Cond and positively correlated with Shrubsper, Shrubsm, and 

Bottom.

I found significant differences with Area, Slope and Cond (x 3̂ = 38.74, Rho^ = 0.725, p < 

0.001), as well as Wetlandp and Lakesp (x^e = 18.728, Rho^ = 0.35, p < 0.001). The final model 

revealed that Area, Slope and Conductivity were the only variables to be significant (x 3̂ = 38.74; 

Table 3.1).
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Figure 3.1. Percent amphibian species incidence (SE+) for 2001 to 
2002 in aquatic breeding ponds in Northwestern 
Ontario (N = 69).
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Table 3.1. Final logistic regression models for each amphibian species. Number of presence and

Species Variable Estimate Std. Error t-ratio P

P. maculata Constant -15.275 10.037 -1.522 0.128

PH 3.391 1.443 2.350 0.019

Mixedp -13.263 5.295 -2.505 0.012

Streams -0.314 0.101 -3.120 0.002

Cutoverp 38.091 12.537 3.038 0.002

Agrikm 1.353 0.575 2.354 0.019

Full Model (46,30) Rho^ = 0.840 < 0.001

H. versicolor Constant -4.982 1.493 -3.337 0.001

Shrubsm 0.015 0.006 2.567 0.010

Depth 1.40 0.624 2.243 0.025

Turb 1.025 0.495 2.072 0.038

Dstream 3.957 2.127 1.861 0.063

Full Model (33,36) Rho^ = 0.242 <0.001

R. pipiens Constant -5.386 1.385 4T888 < 0.001

Agrikm 0.814 0.239 3.410 0.001

Full Model (9,60) Rho^ = 0.418 <0.001

R. clamitans Constant 0.555 0.508 1.091 0.275

Floatper -7.366 3.424 -2.152 0.031

Dlakes -2.824 1.105 -2.556 0.011

Full Model (18,51) Rho^ = 0.199 <0.001

R. septentrionalis Constant 7.456 3.601 2.484 0.013

Richness 0.438 0.199 2.202 0.028

Turb -1.174 0.474 -2.477 0.013

Roads -1.953 0.825 -2.366 0.018
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Full Model (44,25) Rho^ = 0.201 <0.001

B. americanus Constant -2.967 3.560 -0.833 0.405

Area 1.335 0.582 2.294 0.022

Lakesp 0.660 0.315 2.094 0.036

Full Model (63,6) Rho^ = 0.268 <0.005

A, maculatum Constant -25.778 11.184 -2.305 0.021

Dstream 45.275 20.505 2.208 0.027

Cutoverkm 4.807 2.009 2393 0.017

Full Model (8,61) Rho^ = 0.780 <0.001

A. latérale Constant 38.374 17.810 2.155 0.031

Area -3.056 1.48 -2.065 0.039

Slope -5.06 Z386 -2.12 0.034

Cond -0.763 0.373 -2.048 0.041

Full Model (9, 60) Rho^ = 0.725 <0.001

DISCUSSION

Pseudacris crucifer & Rana sylvatica

Pseudacris crucifer and Rana sylvatica are woodland species that require woodland 

habitat for foraging and hibernation. Despite current forestry and agricultural practices, finding 

no relationship between P. crucifer and R. sylvatica and any of the habitat variables suggest there 

is still a sufficient amount of forest habitat left. Logging and land clearance has not been as 

extensive and intense as in other parts of the country where these species occur, such as Southern 

Ontario. Hecnar & M ’Closkey (1996) found the decline of R. sylvatica from most regions in 

southern Ontario was related to loss of forest cover, however there was still sufficient amount of
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woodlots that sustained P. crucifer populations. Gibbs (1998) found that wood frogs were absent 

from areas where forest cover was reduced to below 30%. However northern spring peepers 

were able to occupy any type of available habitat regardless of forest fragmentation.

Pseudacris maculata

The presence of Pseudacris maculata at ponds was positively related to pH, area of 

agriculture and the percent of cutover and negatively related to the percent of mixed forest and 

the total length of streams surrounding a pond. Most amphibians are very sensitive to their 

aquatic environment thus it was no surprise to find that P. maculata may prefer ponds with high 

pH. Amphibians are known to be negatively affected by high acidity due to the nature of their 

skin (Pierce et al. 1984; Roudebush 1988; Dunson et al. 1992; Kams 1992; Eason & Fauth 

2001). Low pH also inhibits fertilization and development of eggs and larvae (Dunson et al. 

1992). Species sensitivity differs along the pH gradient. The range of pH detected in my study 

was not a large enough change to detect an effect with all species. This may indicate that P. 

maculata is more sensitive to slight changes in pH than other amphibian species.

Pseudacris maculata forages in open woodlands and open areas such as meadows and 

fields and prefers breeding in shallower ephemeral ponds including flooded fields (Johnson 

1989) which is why I found a positive relationship with the area of agriculture. Agricultural 

areas provide a variety of vegetated habitats including grasses from which P. maculata call.

This, in turn, explains why I found a positive relationship with the percentage of cutover. 

Although I should have found a negative relationship with woodland, I did find a negative 

relationship with mixed forest which was positively correlated with woodland.

In addition, I found that P. maculata prefers ponds that do not have a lot of streams/rivers
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within 2 km of them. Streams and rivers contain fish which have been shown to negatively 

affect amphibians especially the boreal chorus frog (Johnson 1989; Hecnar & M ’Closkey 1997). 

Pseudacris maculata has no anti-predator defence which requires them to seek out temporary 

ponds that won’t contain predatory fish. Also, the boreal chorus frog is a poor swimmer and fast 

flowing streams/rivers may become a barrier for P. maculata when migrating between habitats. 

Hyla versicolor

I found that Hyla versicolor will select deep, turbid ponds with shrubs along the edge and 

are far away from streams. Hyla versicolor forage in and call from small trees and shrubs along 

the edge of the water (Johnson 1989; Hecnar & M ’Closkey 1996b; Conant & Collins 1998). 

Metamorphs also forage and hide under bushes along the edge before migrating to woodlands 

(Johnson 1989). Thus it was not surprising to find that H. versicolor prefers wetlands or ponds 

that are surrounded by shrubs.

I found positive relationships with H. versicolor and depth and turbidity. This was 

puzzling because some amphibians are known to avoid deep breeding sites due to fish predation 

(Beebee 1981; Baker & Halliday 1999; Eason & Fauth 2001). With drought-like conditions 

occurring in the Thunder Bay region over the past few years, the decrease in hydroperiod may be 

forcing H. versicolor to breed in deeper ponds to avoid dessication. Richardson (2002) found 

that Hylidae frogs had higher growth rates in more permanent ponds than vernal ponds.

However there has been recent concern over the effects of UV-B radiation on amphibians 

(Blaustein et al. 2001; Blaustein & Kiesecker 2002). A recent study by Kiesecker et al. (2001) 

found that hatching success of Bufo boreas was significantly lower in shallow waters due to the 

exposure of UV-B radiation which in return resulted in infection by Saprolegnia ferax, a
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pathogenic oomycete. Kiesecker et al. (2001) also observed that UV-B flux decreased with 

increasing water depth, with almost 50% less UV-B radiation in just 50 cm of water compared to 

10 cm of water. This may also explain why the gray treefrog may prefer more turbid waters. An 

increase in turbidity cuts down the amount of light penetrating the water column (Moore 1999), 

reducing the amount of UV-B radiation. Alternatively, H. versicolor could be occupying more 

turbid breeding sites because of the likelihood that fish will be present in deeper, more permanent 

ponds. The more turbid the water is, the easier it is for the tadpoles to hide from visually 

oriented predators.

Rana pipiens

Rana pipiens migrate after breeding to surrounding fields, meadows and moist grasslands 

to spend the sununer foraging (Johnson 1989; Pope et al. 2000). Leopard frogs prefer dense 

terrestrial vegetation and use open fields more often than other species (Werner 1992). Werner 

(1992) also found that leopard frog tadpoles had higher growth and survivorship in open canopy 

ponds. Thus agricultural fields provide prime summer habitat for northern leopard frogs 

explaining the positive relationship I found with agriculture.

Rana clamitans

Since Rana clamitans hibernate at the bottom of ponds or lakes, it is dependent on 

permanent deep water bodies (Johnson 1989; Hecnar & M ’Closkey 1996b; Hecnar 1997). As I 

previously mentioned. Thunder Bay has been experiencing drought-like conditions in recent 

years thus reducing hydroperiod. Therefore R. clamitans may be selecting ponds based on how 

close they are to lakes in the event that they will have to hibernate in a nearby lake. As a result of 

this, ponds may be sink populations in relation to lakes that are acting as sources. This may
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explain why I found a negative correlation with the distance to a lake. Rana clamitans tadpoles 

are more dependent on permanent water bodies because they overwinter 1-2 years as tadpoles 

before reaching maturity. Semi-permanent ponds may not be prime breeding sites for Rana 

clamitans in this particular region. This is supported by a study by Robinson (2004) who found 

higher incidences of R. clamitans in lakes than in semi permanent wetlands.

I found a negative relationship with R. clamitans and the percent of floating vegetation 

within a pond. Adult green frogs spend most of their time near the edges of fresh water calling 

from the banks, and foraging within the dense vegetation (Johnson 1989; Conant & Collins 

1998). Rana clamitans will lay its eggs on the surface, supported by submergent and emergent 

vegetation, within the warmest shallow water of the pond (Johnson 1989; Carr & Fahrig 2001). 

Green frogs also inhabit the littoral zone of water bodies that consist of a combination of open 

water and herbaceous vegetation. Too much floating vegetation will fill in any open water areas 

within a pond, thus reducing preferred habitat of the green frog. Rana clamitans also prefer 

warm water (Johnson 1989). Therefore, floating vegetation along the edge may filter out the 

sunlight that is needed to warm the shallow areas of the pond which helps speed up 

metamorphosis.

Rana septentrionalis

I found a positive relationship between R. septentrionalis and habitat richness. Thus R. 

septentrionalis may prefer ponds with a mixture of different types of habitat along the edge of a 

pond providing more resources and microhabitats.

I found a negative relationship between R. septentrionalis and turbidity. Turbidity 

prevents sunlight from penetrating the water column causing the water to remain cooler which
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inhibits tadpole development (Johnson 1989). Lack of sunlight also restricts the growth of 

aquatic vegetation. The mink frog uses aquatic vegetation for basking, cover, during foraging 

and to attach egg masses to (Johnson 1989; Conant & Collins 1998).

I also found a negative relationship between the mink frog and the amount of roads near a 

pond. Studies have shown that there is a high road mortality amongst amphibian species trying 

to migrate between habitats or water bodies (Fahrig et al. 1995; Findlay & Houlahan 1997; Vos 

& Chardon 1998; Semlitsch 2000; Carr & Fahrig 2001; Findlay et al. 2001). In this case, R. 

septentrionalis may need to cross roads as a dispersing juvenile or as an adult seeking more 

permanent water bodies if semi-permanent ponds begin to dry up due to recent drought 

conditions.

Bufo americanus

I found a positive relationship with Bufo americanus and area and the percentage of lakes 

surrounding a pond. American toad may prefer larger ponds or lakes because breeding in 

shallow ponds have a higher risk of desiccation. Recent dry conditions are turning temporary 

ponds into sink habitats. Lakes and larger ponds act as source populations supplying temporary 

ponds with individuals. The American toad is known to breed in more temporary ponds however 

toads also have been found to use shallow areas of large, more permanent water bodies as 

breeding areas (Johnson 1989; Conant & Collins 1998). Both adults and tadpoles have anti­

predator defences that allow them to occupy permanent ponds that contain fish (Watt et al. 1997). 

The adults contain poison glands behind their eyes and the tadpoles congregate together and fan 

their tails to stir up food particles from the substrate to confuse predators (Johnson 1989). Plus 

with a high fecundity, they increase their chances of tadpoles surviving in areas of high predation
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or drought conditions by breeding in permanent water bodies.

Area was also found to be positively correlated with all of the vegetation types both 

around and within the pond and habitat richness. This could mean by choosing larger ponds, it 

provides itself with more of a variety of vegetation to meet all of it’s life cycle needs (Conant & 

Collins 1998). For example, toads lay their eggs by wrapping them around submerged 

vegetation, and they call from vegetation along the shore or within the pond (Johnson 1989). 

Ambystoma maculatum

Ambystoma maculatum breeds in temporary waters or shallow areas of permanent 

woodland ponds in early spring and during the summer can be found under logs, rocks, boards or 

even underground in tunnels when it is dry (Johnson 1989; Conant & Collins 1998). As a result, 

A. maculatum has no need to use streams or ditches as migration corridors or for breeding sites. 

Streams are usually too fast flowing for salamanders to cross and contain fish, which is a 

predator to the salamander. Thus streams can hinder movement between habitats and could 

explain why there was a positive relationship between incidence and the distance to the nearest 

stream. However, Dupuis et al. (1995) found no differences in salamander densities with 

distance from streams in both managed and old growth forests. I was surprised to find that the 

yellow spotted salamander was positively related to the area of cutover around the pond 

considering many papers have shown the opposite (Bury 1983; Petranka et al. 1993; Petranka et 

al. 1994; deMaynadier & Hunter 1995; Pough et al. 1987; Ash 1997; Brooks 2001). However 

deMaynadier at al. (1995) suggested that clearcuts have only a short-term negative impact on 

salamanders and these impacts can be lessened with regeneration practices that leave adequate 

microhabitat intact. Ash (1997) also reported that salamanders returned to clearcuts 4-6 years
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after cutting and their numbers increased rapidly with the reformation of litter layer. Thus the 

area of clearcuts around my study sites could either be older cuts in which the salamanders have 

returned to or could be recent clearcuts but possess adequate microhabitat and leaf litter for 

salamander survival. As long as there are plenty of logs and rocks to hide or burrow under and 

sufficient vegetative cover to conserve moisture (deMaynadier & Hunter 1995), the spotted 

salamander should be able to survive in logged forests.

Ambystoma latérale

I found that Ambystoma latérale favoured small ponds with low conductivity and gentle 

sloping banks. This is consistent with it’s natural history in that it prefers to breed in temporary 

or small ponds (Johnson 1989; Conant & Collins 1998), and after the breeding season, it 

migrates to nearby woodlands. Thus steep banks can become a barrier to a salamander, 

preventing it from migrating out of the pond. Also the relationship with conductivity tells us that 

there is a high amount of ionic activity in the pond and indicating that there may be some 

chemical in those ponds that is negatively affecting the salamanders. However further chemical 

testing should be done in order to correctly determine this.

Caveat

Interpretation of results should be done with caution as I found low incidence in Rana 

pipiens, Ambystoma maculata and Ambystoma latérale as well as high incidence in Pseudacris 

crucifer, Rana sylvatica and Bufo americanus. Therefore associations found between the latter 

species and local and landscape variables may be coincidental.

Conclusion

I found significant differences in preference between most amphibian species and their
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habitat. I also discovered that amphibians rely on both local habitat and regional landscape 

variables for selection of breeding ponds and adjacent terrestrial habitat. Specifically, single­

species habitat models appeared to differ with each other at the local scale but there were 

similarities at the landscape scale. There was a general preference for ponds situated in 

agricultural landscapes with larger water bodies nearby and no streams. In order to conserve 

more than one species of amphibian, we have to take into account each species own habitat 

preference in our conservation plans. Stable amphibian populations require habitat that provides 

basic resource requirements for all life history stages (Waldick 1997). Thus conserving 

amphibian habitat is complex in that not only do you have to take into account local breeding 

sites but you also have to consider what is happening on a landscape scale. Recolonization of a 

breeding site depends on landscape characteristics (distance between habitat patches), barrier 

effects (roads) and species characteristics (dispersal ability) (Laan & Verboom 1990). A species’ 

population may be doomed if isolated from other populations. Waldick (1997) suggested that 

ponds act as stepping stones which ease recolonization of suitable habitats by allowing dispersal 

across patches of unfavourable habitat.

I also found that my models may be affected by low incidence of species studied. Thus 

using presence/absence data for habitat models may only be advantageous when a species is not 

rare. This may not be a problem if there is a distinct separation of differences between ponds 

however in this case there was not. Thus it may prove difficult to try to determine habitat 

preference of a species that is rare everywhere. By expanding this study into different areas 

where these species occur may provide more solid models for species that may be rare in 

northwestern Ontario but not elsewhere.
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GENERAL CONCLUSION

Based on a four year study of amphibians in northwestern Ontario, I found an increase in 

species richness, a decrease in turnover and a difference in species incidence over time. 

Pseudacris crucifer, B. americanus, R. sylvatica occupied most ponds whereas, R. pipiens, R. 

clamitans and A. latérale occupied few. I also found species incidence to differ between 

northern and southern Ontario. These differences in incidence of species within and between 

regions can be explained by where species are located within their geographic range and the 

difference in land-use patterns. Species incidence was found to be higher near the core of a 

species’ range than near the periphery. Thus species that had a low incidence in either region 

were located near the edge of their ranges. Exceptions to this rule were A. maculatum and R. 

sylvatica, which were affected by the intense habitat destruction in Southern Ontario, and R. 

pipiens, where the lack of meadow and grassland habitat in northern Ontario could be the cause.

I found interesting results when I looked at the role local habitat and landscape 

characteristics play in determining species richness and turnover at ponds sites. I found species 

richness to be positively affected by the distance to nearby streams, the area of agriculture and 

wetlands, habitat richness and the percent of shmbs surrounding a pond. I also found it to be 

negatively affected by perimeter. Turnover was found to be positively correlated with the percent 

of substrate and perimeter and negatively correlated to slope. This shows that generally, 

amphibian species in Northwestern Ontario prefer smaller aquatic habitats that are situated in 

landscapes with a good mixture of habitat types adjacent to them, are open but with sufficient 

amount of vegetation cover and microhabitat within and around them.

I also looked at individual amphibian species and established species habitat models. I
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found that each species preferred ponds that satisfied its own niche requirements. Pseudacris 

crucifer & Rana sylvatica were found at almost all of my pond sites thus suggesting that 

northwestern Ontario still has a sufficient amount of forested habitat left. Pseudacris maculata 

was associated with sites having high pH, surrounded by agriculture, and had little to no streams 

close to it. Hyla versicolor may prefer sites that are deep, murky and surrounded by shrubs.

Rana clamitans was found to be negatively associated with the distance to nearby lakes and the 

amount of floating vegetation within a pond. Rana septentrionalis were found at pond sites 

where the water was low in turbidity, was surrounded by different habitat types and no roads. 

Bufo americanus was associated with large ponds that were surrounded by lakes. Although I 

found a low incidence of Rana pipiens, Ambystoma maculatum and Ambystoma latérale, I still 

managed to find variables that were highly correlated with each species. It was no surprise to 

find that R. pipiens was associated with ponds that were within areas of agriculture since this 

species spends most of the summer foraging in nearby meadows. I actually found a positive 

relationship with the presence of A. maculatum and the area of cutover and the distance to the 

nearest stream. Ambystoma latérale was negatively associated with conductivity and bank slope.

Single-species habitat models differed at the local scale but were similar on the landscape 

scale. These results were similar to Chapter 2 when I looked at the association between species 

richness and local habitat and landscape characteristics. In both cases, there was a general 

preference for ponds in agricultural landscapes, near larger water bodies and far away from 

streams. However they differed in local preferences with ponds containing variables that 

represent each species local habitat preferences. Therefore it is important to take into account 

each species habitat preferences when making conservation plans to protect all species within a
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community. We should also keep in mind that we shouldn’t limit our conservation efforts to 

habitat restoration/creation. In order for a species to colonize a pond, the pond needs to be close 

to other existing populations. Therefore the placement of habitat is cmcial. On a geographical 

scale, populations located close to the periphery of a species’ range may always show a low 

incidence and conservation efforts may be in vain because rarity may not be related to a simple 

solution such as habitat restoration.

I recommend incorporating habitat models into amphibian conservation strategies 

keeping in mind that it is habitat destruction and not something else that is causing amphibians to 

decline. For future work, I would suggest expanding on my habitat analysis to try to include 

more habitat variables such as the actual types of vegetation within and around the aquatic sites, 

invertebrates in the pond, types of microhabitat that may be used for hibernation within their 

terrestrial habitat. I would also suggest testing my species models on the same or different 

amphibian species in different parts of their geographic ranges to see if this could work as a 

potential method for amphibian conservation. I would like to look at different types of aquatic 

habitat such as wetlands, swamps, bogs to see if there is a difference between them and the pond 

habitats I studied.
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APPENDIX 1: Additional Pond Information 

Table A l. Species richness from 1999 to 2002 at 69 pond sites.
S ites S R 9 9 SR 00 SR 01 SR 02 SR 01-02

At - - 4 4 4

A2 - - 3 6 4.5

A3 - - 5 5 5

A4 - - 4 4 4

A5 - - 5 7 6
A6 - - 3 4 3.5

A7 - - 3 4 3.5

A8 - - 5 5 5

A9 - 4 3 3.5

AID - - 6 4 5

A11 - - 3 4 3.5

A ll - - 5 6 5.5

AL5 - - 5 7 6

AL6 - - 7 6 6.5

AL7 - - 5 8 6.5

B1 - - 7 7 7

G1 3 5 3 3 3

G2 5 4 3 4 3.5

N1 3 2 3 3 3

N2 4 3 3 4 3.5

N3 2 4 3 2 2.5

o i 4 4 5 5 5

0 2 5 5 4 5 4.5

0 3 3 4 5 5 5

0 4 5 4 6 6 6

0 5 5 5 7 6 6.5

0 6 2 3 4 5 4.5

0 7 5 5 4 5 4.5

0 8 - - 5 4 4.5

0 9 - - 3 5 4

011 - - 4 6 5

0 1 2 - - 3 5 4

P1 2 1 3 5 4

P2 a/b 5 3 4 5 4.5

P3 3 4 5 4 4.5

P4 3 5 7 6 6.5

PS 5 5 7 6 6.5

P6 5 5 6 7 6.5

P7 5 5 6 5 5.5

P8 1 2 5 3 4
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P9 3 4 5 5 5

PIG 6 3 5 6 5.5

PI 2 a/b/c 3 4 5 3 4

P13 4 4 7 7 7

P14 a/b 3 3 5 6 5.5

P15 2 2 5 6 5.5

P16 4 3 6 5 5.5

P17 4 2 3 3 3

P18 5 3 5 7 6

P19 - - 6 6 6

P20 - - 3 5 4

P21 a/b/c - - 4 5 4.5

P 2 3 a /b - 3 5 4

P24 - - 3 4 3.5

S I MB 6 5 5 5 5

S2 6 3 4 4 4

S3 - - 5 4 4.5

S4 - - 5 5 5

TB1 4 4 4 4 4

TB2 3 4 2 4 3

TB3 a/b/c/d 5 3 5 5 5

TB4 5 3 4 4 4

TB5 2 5 3 2 2.5

TBS 1 2 2 4 3

T B 7 a/b 4 5 4 4 4

TB10 2 1 1 3 2

TB11 5 4 5 4 4.5

TB12 5 5 4 4 4

TB14 5 S 5
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APPENDIX 2: Principal Components Analysis and Pearson Correlation
Matrix

Table A2. Results of the principal components analysis using varimax rotation comparing local 
habitat and landscape characteristics. Each numbered column represents a different 
factor loading.

V a r i a b l e s F a c t o r  1 F a c t o r  2 F a c t o r  3 F a c t o r  4 F a c t o r  5

ARSWOODPER 0 . 9 5 0 0 .1 5 5 0 . 0 3 0 0 . 1 7 1 - 0 . 0 8 6
SQW00DKM2 0 . 9 4 9 0 . 1 6 9 0 . 0 4 4 0 . 1 5 7 - 0 . 0 8 2
AGRIKM2 - 0  . 8 3 3 0 . 2 5 0 0 . 0 4 3 0 . 1 0 9 0 .1 1 8
A G R IPER - 0 . 8 3 3 0 . 2 4 9 0 . 0 4 4 0 . 1 0 8 0 .1 1 7
LOGELEVATION 0 . 6 5 3 - 0 . 2 8 4 - 0 . 0 3 0 0 . 2 5 3 - 0 . 1 6 8
MIXEDKM2 0 . 5 9 7 - 0 . 5 2 9 0 . 0 5 4 0 . 2 4 7 - 0 . 2 5 7
MIXEDPER 0 . 5 9 4 - 0 . 5 2 9 0 . 0 5 7 0 . 2 5 0 - 0 . 2 5 9
STREAMSKM - 0 . 5 2 9 - 0 . 0 1 3 - 0 . 1 5 6 0 . 4 3 7 0 . 0 7 0
DECIDUOUSPER 0 . 3 2 1 0 . 8 6 4 - 0 . 0 5 2 - 0 . 0 0 3 0 . 1 4 5
DECIDU0USKM2 0 . 3 1 7 0 . 8 6 4 - 0 . 0 5 4 - 0 . 0 0 8 0 . 1 5 0
CONIFERPER 0 . 3 8 6 - 0 . 7 5 2 0 . 1 2 7 - 0 . 2 5 4 0 . 0 3 5
C0NIFERKM2 0 . 3 8 6 - 0 . 7 5 1 0 . 1 2 6 - 0 . 2 5 8 0 . 0 3 6
WETLANDPER 0 . 1 4 4 - 0 . 6 6 6 - 0 . 1 9 9 0 . 0 3 3 0 . 1 5 3
WETLANDKM2 0 . 1 4 3 - 0 . 6 6 5 - 0 . 2 0 0 0 . 0 3 1 0 . 1 5 3
CUT0VERKM2 0 . 1 9 5 - 0 . 5 1 3 - 0 . 0 3 9 0 . 1 0 7 - 0 . 0 0 9
CUTOVERPER 0 . 1 9 3 - 0 . 5 1 2 - 0 . 0 3 8 0 . 1 0 8 - 0  . 0 0 9
LOGDIVERSITY - 0 . 0 0 0 0 . 0 3 1 0 . 8 3 1 0 . 0 2 3 - 0 . 1 9 0
HABITATRICH 0 . 0 8 8 0 . 0 7 8 0 . 8 0 7 - 0 . 0 1 5 - 0 . 1 4 0
SUBSTRATEPER - 0 . 1 7 5 - 0 . 0 4 7 0 . 6 2 7 0 . 2 1 6 0 . 2 0 7
BOTTOMTYPE 0 . 2 8 6 - 0 . 3 3 4 0 . 6 2 6 0 . 0 2 4 0 . 2 2 1
SUBSTRATEM2 - 0 . 3 0 0 - 0 . 0 4 8 0 . 5 6 0 - 0 . 0 1 2 0 . 1 1 4
LOGROADS - 0 . 0 9 5 - 0 . 0 7 3 - 0 . 1 0 0 - 0 . 7 8 1 0 . 1 4 3
LOGPERM - 0 . 1 3 2 - 0 . 2 1 9 - 0 . 0 8 0 - 0 . 6 3 4 - 0 . 0 7 2
SQRTCOND - 0 . 4 4 0 0 . 0 6 6 0 . 0 3 4 - 0 . 5 8 9 0 . 0 9 6
TREESP 0 . 2 5 3 - 0 . 0 8 4 0 . 1 2 2 0 . 0 8 7 - 0  . 8 2 0
TREESM 0 . 1 4 7 - 0  . 0 7 0 0 . 0 4 0 0 . 1 3 0 - 0 . 8 1 5
SQRTEMERPER 0 . 0 1 4 0 . 1 1 6 - 0 . 3 8 6 - 0 . 1 7 1 - 0 . 5 9 4
GRASSPER - 0 . 2 3 3 0 . 1 5 7 - 0 . 3 9 4 - 0 . 1 3 7 0 . 5 0 9
LOGAREA - 0 . 1 0 4 0 . 0 7 5 0 . 1 7 2 - 0 . 0 2 4 - 0 . 1 2 8
LOGVOL - 0 . 1 9 0 0 . 1 4 2 0 . 1 9 8 0 . 0 7 5 - 0  . 0 7 8
SQRTGRASSM - 0 . 2 9 4 0 . 1 4 5 - 0 . 0 9 1 - 0 . 0 3 8 0 . 3 3 7
L0GEMERGM2 - 0 . 1 0 5 0 . 2 4 0 - 0 . 1 3 3 - 0 . 1 8 4 - 0 . 4 7 1
SHRUBSM - 0 . 0 0 1 - 0 . 0 9 4 0 . 1 3 2 - 0 . 0 4 8 - 0 . 0 7 7
SHRUBSPER 0 . 0 9 5 - 0 . 1 7 4 - 0  . 023 0 . 0 6 7 0 . 0 2 2
L0GLAKEKM2 0 . 1 1 2 - 0 . 0 6 9 0 . 0 8 9 0 . 0 5 4 - 0 . 0 9 0
LOGLAKEPER 0 . 1 1 2 - 0 . 0 7 0 0 . 0 9 0 0 . 0 5 5 - 0 . 0 9 2
ROADUSE 0 . 1 4 9 0 . 1 7 3 0 . 2 2 4 0 . 3 2 2 0 . I l l
FLOATINGPER - 0 . 1 4 6 0 . 2 7 7 - 0 . 0 9 7 - 0 . 1 2 2 0 . 0 3 8
FL0ATINGM2 - 0 . 0 4 7 0 . 0 7 1 - 0 . 1 1 6 0 . 0 1 8 0 . 0 2 8
SQRTDSTREAM 0 . 0 7 8 - 0 . 1 7 5 0 . 0 3 0 - 0 . 1 0 7 - 0 . 1 4 0
LOGTURB - 0 . 1 2 7 0 . 1 6 6 0 . 0 2 1 0 . 2 4 0 0 . 0 3 9
LOGTOPOGRAPH 0 . 1 9 7 0 . 1 7 6 - 0  . 0 4 0 - 0 . 1 0 6 0 . 1 8 0
DISTWETLAND - 0 . 3 9 4 0 . 1 2 7 - 0  . 0 0 8 - 0 . 1 6 7 0 . 0 0 6
LOGDISTLAKE - 0 . 4 4 7 0 . 0 4 9 - 0 . 3 5 1 0 . 2 5 5 - 0 . 2 2 8
LOGSLOPE - 0 . 1 8 3 0 . 1 3 2 - 0  . 0 4 0 0 .1 8 6 0 . 0 6 6
LOGDEPTH - 0 . 2 9 8 0 . 2 1 1 0 . 1 3 6 0 . 2 0 3 0 . 0 5 6
AVGPH - 0 . 3 2 5 0 . 0 8 8 0 . 1 4 8 - 0 . 2 7 0 0 . 1 7 6
TURBCATEGORY - 0 . 0 0 5 0 . 0 3 1 - 0  . 3 8 0 0 . 2 9 3 - 0 . 0 5 7
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V a r i a b l e s F a c t o r  6 F a c t o r  7 F a c t o r  8 F a c t o r  9 F a c t o r  10

ARSWOODPER - 0 . 0 8 1 0 . 0 1 2 0 . 0 1 5 0 . 0 1 7 0 . 0 0 6
SQW00DKM2 - 0 . 0 8 1 0 . 0 1 2 0 . 0 1 2 0 . 0 3 1 0 . 0 2 1
AGRIKM2 0 . 1 9 2 - 0 . 0 7 8 0 . 0 9 7 0 . 3 1 5 0 . 0 0 7
AG R IPER 0 . 1 9 2 - 0 . 0 7 9 0 . 0 9 7 0 . 3 1 6 0 . 0 0 7
LOGELEVATION - 0 . 1 6 0 0 . 1 7 5 - 0 . 1 0 3 - 0 . 2 3 3 0 . 0 4 4
MIXEDKM2 - 0 . 2 1 2 0 . 0 3 6 - 0 . 1 5 1 - 0 . 2 0 2 0 . 0 9 7
MIXEDPER - 0 . 2 1 2 0 . 0 3 8 - 0 . 1 5 4 - 0 . 2 0 4 0 . 0 9 5
STREAMSKM 0 . 0 0 6 - 0 . 1 6 0 0 .3 1 6 - 0 . 2 4 9 0 . 0 7 0
DECIDUOUSPER 0 . 1 6 5 - 0  . 0 2 8 0 . 1 6 4 0 .1 5 6 - 0 . 1 0 2
DECIDU0USKM2 0 . 1 6 5 - 0 . 0 2 8 0 . 1 6 7 0 . 1 5 6 - 0 . 1 0 0
CONIFERPER - 0 . 1 7 0 0 . 0 8 8 0 . 0 6 7 0 . 0 7 0 - 0 . 0 0 6
C0NIFERKM2 - 0 . 1 6 9 0 . 0 8 6 0 . 0 7 0 0 . 0 7 2 - 0 . 0 0 5
WETLANDPER 0 . 1 0 2 0 . 2 7 1 0 . 0 0 2 - 0 . 2 5 3 0 . 0 3 2
WETLANDKM2 0 . 1 0 3 0 . 2 6 9 0 . 0 0 4 - 0 . 2 5 1 0 . 0 3 2
CUT0VERKM2 - 0 . 0 9 4 0 . 1 0 4 - 0 . 0 7 2 - 0 . 7 5 1 0 . 0 2 7
CUTOVERPER - 0  . 0 9 3 0 . 1 1 0 - 0 . 0 7 4 - 0 . 7 5 1 0 . 0 2 6
LOGDIVERSITY - 0 . 0 3 6 0 . 1 1 4 0 . 0 1 0 - 0 . 1 2 5 0 .1 0 1
HABITATRICH 0 . 2 1 1 - 0  . 0 0 6 0 . 0 7 3 - 0 . 1 0 0 0 . 0 5 1
SUBSTRATEPER 0 . 0 8 4 0 . 0 0 1 - 0 . 4 1 4 0 . 2 2 8 0 . 0 0 6
BOTTOMTYPE - 0  . 0 3 4 0 . 1 3 5 - 0 . 1 3 9 0 . 0 9 3 0 . 0 7 8
SUBSTRATEM2 0 . 3 8 1 0 . 0 3 4 - 0 . 3 4 2 0 . 2 0 1 0 . 0 4 7
LOGROADS 0 . 0 3 6 0 . 1 2 5 0 . 0 9 8 0 . 1 4 2 0 . 0 9 0
LOGPERM - 0 . 2 6 0 - 0 . 0 5 6 - 0 . 0 6 3 - 0 . 0 2 7 - 0 . 0 3 9
SQRTCOND 0 . 1 1 0 - 0 . 3 5 2 0 . 1 8 7 0 . 1 3 8 - 0  . 0 3 7
TREESP - 0 . 0 0 7 0 . 0 5 7 - 0 . 0 0 6 - 0 . 0 0 3 0 . 0 3 8
TREESM 0 . 1 6 5 - 0 . 1 0 9 - 0 . 1 7 9 0 . 0 9 7 0 . 0 1 3
SQRTEMERPER 0 . 1 0 8 0 . 2 8 5 0 . 0 5 6 - 0 . 1 0 3 - 0 . 2 1 0
GRASSPER 0 . 1 5 6 - 0 . 4 9 8 0 . 2 4 5 0 . 0 8 5 - 0 . 0 4 2
LOGAREA 0 . 9 0 6 0 . 0 1 2 - 0 . 0 9 5 0 . 0 7 9 - 0 . 0 2 6
LOGVOL 0 . 8 9 4 - 0  . 0 6 0 0 . 0 4 1 0 . 0 4 9 0 . 1 0 1
SQRTGRASSM 0 . 6 8 4 - 0 . 3 9 1 0 .1 3 1 0 . 1 3 6 - 0 . 1 2 0
L0GEMERGM2 0 . 6 4 5 0 . 1 6 0 0 . 0 8 3 - 0 . 0 0 7 - 0 . 1 6 1
SHRUBSM 0 . 1 3 1 0 . 8 8 8 0 . 1 0 1 - 0 . 0 1 8 0 . 0 4 9
SHRUBSPER - 0 . 2 4 1 0 . 8 7 5 0 . 0 7 7 - 0 . 0 6 0 0 . 0 5 9
L0GLAKEKM2 - 0 . 0 3 8 - 0  . 0 4 1 - 0 . 9 3 2 - 0 . 0 9 3 0 . 0 9 3
LOGLAKEPER - 0  . 0 3 8 - 0 . 0 4 0 - 0 . 9 3 2 - 0 . 0 9 4 0 . 0 9 3
ROADUSE - 0  . 2 3 2 0 . 0 8 8 - 0 . 1 1 8 - 0 . 6 1 7 0 . 1 8 2
FLOATINGPER - 0 . 1 0 1 - 0 . 2 0 0 0 . 2 3 5 0 . 1 3 6 - 0 . 7 1 1
FL0ATINGM2 0 . 4 9 4 0 . 0 0 6 0 . 0 7 5 0 . 1 5 1 - 0 . 5 9 1
SQRTDSTREAM - 0 . 2 2 1 0 . 0 1 0 - 0 . 0 2 9 0 . 0 7 4 0 . 1 3 2
LOGTURB 0 . 1 9 6 - 0 . 1 6 0 0 . 2 1 7 - 0 . 1 4 4 - 0 . 4 6 8
LOGTOPOGRAPH 0 . 1 2 6 - 0 . 0 8 8 0 . 0 6 4 - 0 . 0 7 5 0 . 0 8 5
DISTWETLAND - 0 . 0 2 7 0 . 1 9 5 - 0 . 0 9 4 0 . 3 3 1 0 . 0 2 2
LOGDISTLAKE 0 . 0 0 1 - 0 . 0 0 6 0 . 2 0 6 - 0 . 0 2 1 0 . 0 5 5
LOGSLOPE 0 . 0 4 1 - 0 . 4 5 7 0 . 2 2 4 0 . 3 9 4 0 . 3 4 7
LOGDEPTH 0 . 4 6 8 - 0 . 1 7 3 0 . 3 5 7 0 . 0 6 9 0 . 3 1 5
AVGPH 0 . 1 2 7 - 0 . 1 8 5 0 .1 3 6 0 . 2 4 5 0 . 4 8 8
TURBCATEGORY - 0 . 0 2 4 - 0 . 4 2 1 0 . 2 2 1 0 . 1 6 0 - 0 . 4 2 9
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V a r i a b l e s F a c t o r  11 F a c t o r  12

ARSWOODPER - 0  . 0 4 0 0 . 0 3 7
SQW00DKM2 - 0 . 0 4 3 0 . 0 3 6
AGRIKM2 - 0 . 0 6 8 0 . 1 4 1
A G RIPER - 0 . 0 7 0 0 .1 4 1
LOGELEVATION 0 . 2 0 4 0 .3 1 2
MIXEDKM2 - 0 . 1 1 9 0 . 0 7 5
MIXEDPER - 0 . 1 2 0 0 . 0 7 4
STREAMSKM - 0 . 1 4 8 - 0 . 0 7 1
DECIDUOUSPER 0 . 0 7 3 - 0 . 0 1 8
DECIDU0USKM2 0 . 0 7 4 - 0 . 0 1 8
CONIFERPER 0 . 0 4 3 - 0 . 0 3 2
C0NIFERKM2 0 . 0 4 3 - 0 . 0 3 1
WETLANDPER 0 . 3 5 5 0 . 2 6 3
WETLANDKM2 0 . 3 5 5 0 . 2 6 4
CUT0VERKM2 0 . 0 6 8 0 . 1 0 4
CUTOVERPER 0 . 0 6 5 0 . 1 0 2
LOGDIVERSITY - 0 . 0 9 6 0 . 1 5 4
HABITATRICH - 0 . 0 1 9 0 . 0 3 0
SUBSTRATEPER 0 . 1 9 0 - 0 . 0 4 0
BOTTOMTYPE 0 . 0 5 0 - 0 . 1 9 6
SUBSTRATEM2 0 . 1 4 2 - 0 . 0 6 0
LOGROADS 0 . 0 1 0 - 0 . 1 3 8
LOGPERM 0 . 0 2 8 - 0 . 5 2 8
SQRTCOND - 0 . 1 2 5 - 0 . 0 2 1
TREESP 0 . 0 2 9 0 . 1 1 1
TREESM - 0 . O i l 0 . 0 7 7
SQRTEMERPER 0 . 2 2 7 - 0 . 0 4 8
GRASSPER - 0 . 0 2 3 0 . 1 0 7
LOGAREA - 0 . 0 8 6 - 0 . 0 7 1
LOGVOL - 0 . 0 1 7 0 . 0 0 6
SQRTGRASSM - 0 . 1 0 9 0 . 0 3 8
L0GEMERGM2 0 . 0 7 4 - 0 . 0 4 0
SHRUBSM - 0 . 0 6 3 0 . 0 2 3
SHRUBSPER 0 . 0 3 2 - 0  . 0 3 2
L0GLAKEKM2 - 0 . 0 3 9 0 . 0 0 9
LOGLAKEPER - 0 . 0 3 9 0 . 0 0 9
ROADUSE - 0 . 1 4 4 - 0 . 1 3 1
FLOATINGPER 0 . 0 5 5 0 .1 5 5
FL0ATINGM2 - 0 . 1 2 5 - 0 . 0 1 4
SQRTDSTREAM 0 . 7 0 9 0 . 0 9 0
LOGTURB 0 . 6 1 8 - 0 . 0 1 7
LOGTOPOGRAPH - 0 . 1 1 6 - 0 . 8 2 2
DISTWETLAND 0 . 0 1 5 - 0 . 6 4 4
LOGDISTLAKE 0 . 3 0 7 - 0 . 2 7 9
LOGSLOPE - 0  .0 1 1 - 0 . 1 6 0
LOGDEPTH 0 . 1 2 9 0 . 1 6 0
AVGPH 0 . 0 8 5 0 . 0 4 2
TURBCATEGORY 0 . 0 5 7 - 0  . 0 0 7

" V a r i a n c e "  E x p l a i n e d  b y  R o t a t e d  C o m p o n e n ts

1

6 . 6 6 4

8

2 . 9 1 8

2

5 . 5 2 4

9

2 . 7 6 5

3

3 . 4 5 1  

10 

1 .  9 8 0

4

2 . 6 7 4  

11 

1 . 6 1 1

5

2 . 9 8 9  

12  

1 . 9 9 8

6 7

3 . 9 2 8  3 . 0 8 4
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P e r c e n t  o f  T o t a l  V a r i a n c e  E x p l a i n e d

1 2 3 4 5 6 7

1 3 . 8 8 3  1 1 . 5 0 7  7 . 1 9 0  5 . 5 7 1  6 . 2 2 6  8 . 1 8 4  6 . 4 2 5

8 9 10  11  12

6 . 0 8 0  5 . 7 6 0  4 . 1 2 6  3 . 3 5 6  4 . 1 6 2
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Table A3. Pearson Correlation Matrix for all of the landscape variables (N = 69)

ARSWOODPER SQW00DKM2 C0NIFERKM2 CONIFERPER DECIDU0USKM2

ARSWOODPER 1 . 0 0 0
SQW00DKM2 0 . 9 9 6 1 . 0 0 0
C0NIFERKM2 0 . 2 0 7 0 . 2 0 5 1 . 0 0 0
C ONIFERPER 0 . 2 0 9 0 . 2 0 6 1 . 0 0 0 1 . 0 0 0
DECIDU0USKM2 0 . 3 9 9 0 . 4 1 0 - 0 . 4 9 8 - 0 . 5 0 0 1 .  0 0 0
DECIDUOUSPER 0 . 4 0 5 0 . 4 1 6 - 0  . 4 9 7 - 0  . 4 9 9 1 .  0 0 0
MIXEDKM2 0 . 6 0 1 0 . 5 8 6 0 . 4 8 2 0 . 4 8 6 - 0 . 4 6 8
MIXEDPER 0 . 6 0 0 0 . 5 8 3 0 . 4 8 2 0 . 4 8 6 - 0 . 4 7 0
WETLANDKM2 - 0 . 0 0 3 - 0 . 0 1 9 0 . 5 0 5 0 . 5 0 5 - 0 . 4 9 1
WETLANDPER - 0 . 0 0 3 - 0 . 0 1 8 0 . 5 0 6 0 . 5 0 6 - 0 . 4 9 3
DISTWETLAND - 0 . 4 0 7 - 0 . 3 9 6 - 0 . 1 9 3 - 0 . 1 9 5 0 . 0 1 5
L0GLAKEKM2 0 . 0 9 5 0 . 1 0 4 0 . 0 5 7 0 . 0 6 0 - 0 . 2 2 7
LOGLAKEPER 0 . 0 9 6 0 . 1 0 5 0 . 0 5 8 0 . 0 6 1 - 0 . 2 2 8
LOGDISTLAKE - 0 . 3 5 0 - 0 . 3 6 4 - 0 . 2 9 9 - 0  . 2 9 7 - 0 . 0 4 9
STREAMSKM - 0 . 3 9 4 - 0 . 4 0 8 - 0  . 3 3 3 - 0 . 3 3 2 - 0 . 1 3 9
SQRTDSTREAM 0 . 0 6 2 0 . 0 5 5 0 . 2 2 8 0 . 2 2 9 - 0 . 1 7 3
LOGROADS - 0 . 2 5 0 - 0 . 2 4 0 0 . 2 3 5 0 . 2 3 1 - 0 . 0 1 4
ROADUSE 0 . 2 3 2 0 . 2 3 0 - 0 . 0 2 0 - 0 . 0 1 5 0 . 0 1 0
LOGELEVATION 0 . 6 4 5 0 . 6 3 8 0 . 3 6 7 0 . 3 6 9 - 0 . 1 4 9
LOGTOPOGRAPH 0 . 1 2 0 0 . 1 2 3 - 0 . 0 3 9 - 0 . 0 4 0 0 . 2 6 8
CUTOVERPER 0 . 1 0 9 0 . 0 8 8 0 . 3 7 5 0 . 3 7 8 - 0 . 5 1 7
CUT0VERKM2 0 . 1 0 9 0 . 0 8 9 0 . 3 7 5 0 . 3 7 8 - 0 . 5 1 6
AGRIKM2 - 0  . 7 5 3 - 0 . 7 4 6 - 0 . 4 9 8 - 0 . 4 9 9 0 . 0 5 7
A G R IPER - 0 . 7 5 2 - 0 . 7 4 6 - 0  . 4 9 8 - 0  . 4 9 9 0 . 0 5 6

DECIDUOUSPER MIXEDKM2 MIXEDPER WETLANDKM2 WETLANDPER

DECIDUOUSPER 1 .  0 0 0
MIXEDKM2 - 0 . 4 6 2 1 .  0 0 0
MIXEDPER - 0 . 4 6 4 1 . 0 0 0 1 .  0 0 0
WETLANDKM2 - 0  . 4 9 3 0 . 3 9 8 0 . 3 9 5 1 . 0 0 0
WETLANDPER - 0 . 4 9 5 0 . 4 0 0 0 . 3 9 7 1 . 0 0 0 1 .  0 0 0
DISTWETLAFtD 0 . O i l - 0  .4 1 1 - 0 . 4 1 2 - 0 . 2 8 2 - 0 . 2 8 3
L0GLAKEKM2 - 0 . 2 2 4 0 . 3 0 2 0 . 3 0 3 0 . 0 3 4 0 . 0 3 5
LOGLAKEPER - 0 . 2 2 6 0 . 3 0 4 0 . 3 0 6 0 . 0 3 4 0 . 0 3 6
LOGDISTLAKE - 0  . 0 4 8 - 0 . 2 4 6 - 0 . 2 4 3 - 0  . 0 3 0 - 0  . 0 3 0
STREAMSKM - 0 . 1 4 2 - 0  . 2 0 6 - 0 . 2 0 5 - 0 . 0 6 0 - 0 . 0 5 9
SQRTDSTREAM - 0  . 1 7 2 0 . 1 8 3 0 . 1 8 3 0 . 2 3 8 0 . 2 3 9
LOGROADS - 0 . 0 1 8 - 0  . 3 0 2 - 0 . 3 0 4 - 0  . 0 1 9 - 0  . 0 2 0
ROADUSE 0 . 0 1 6 0 . 2 6 1 0 . 2 6 6 - 0 . 0 6 1 - 0 . 0 5 8
LOGELEVATION - 0 . 1 4 7 0 . 7 6 6 0 . 7 6 2 0 . 4 8 9 0 . 4 9 0
LOGTOPOGRAPH 0 . 2 6 5 - 0 . 1 3 3 - 0 . 1 3 6 - 0  . 2 5 3 - 0 . 2 5 4
CUTOVERPER - 0 . 5 1 6 0 . 5 8 9 0 . 5 9 0 0 . 5 8 3 0 . 5 8 6
CUT0VERKM2 - 0 . 5 1 6 0 . 5 8 9 0 . 5 9 0 0 . 5 8 6 0 . 5 8 9
AGRIKM2 0 . 0 5 3 - 0 . 7 5 3 - 0 . 7 5 1 - 0 . 3 4 7 - 0 . 3 4 9
AG RIPER 0 . 0 5 2 - 0 . 7 5 2 - 0 . 7 4 9 - 0  . 3 4 8 - 0  . 3 4 9
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DISTWETLAND L0GLAKEKM2 LOGLAKEPER LOGDISTLAKE STREAMSKM
DISTWETLAND 1 . 0 0 0
L0GLAKEKM2 - 0 . 0 3 0 1 .  0 0 0
LOGLAKEPER - 0  . 0 3 1 1 .  0 0 0 1 . 0 0 0
LOGDISTLAKE 0 . 2 3 5 - 0 . 2 4 1 - 0 . 2 4 1 1 . 0 0 0
STREAMSKM 0 . 0 3 4 - 0 . 3 1 9 - 0  . 3 1 9 0 . 3 8 4 1 .  0 0 0
SQRTDSTREAM - 0 . 0 1 3 0 . 0 5 3 0 . 0 5 4 0 . 1 4 2 - 0 . 1 2 5
LOGROADS 0 . 3 4 3 - 0 . 1 5 9 - 0 . 1 6 0 - 0  . 0 2 8 - 0 . 2 9 1
ROADUSE - 0 . 2 0 6 0 . 2 4 9 0 . 2 5 1 - 0 . 0 9 5 0 . 1 6 3
LOGELEVATION - 0 . 4 9 4 0 . 2 1 4 0 . 2 1 5 - 0 . 2 2 4 - 0 . 2 7 6
LOGTOPOGRAPH 0 . 4 5 5 - 0 . 0 6 1 - 0 . 0 6 2 0 . 0 3 7 - 0 . 0 1 7
CUTOVERPER - 0 . 4 4 1 0 . 1 8 6 0 . 1 8 8 - 0 . 0 7 3 0 . 0 5 8
CUTOVERKM2 - 0 . 4 4 2 0 . 1 8 5 0 . 1 8 6 - 0 . 0 7 6 0 . 0 5 6
AGRIKM2 0 . 3 1 7 - 0 . 2 2 3 - 0 . 2 2 4 0 . 3 2 1 0 . 4 3 1
A G R IPER 0 . 3 1 6 - 0 . 2 2 3 - 0 . 2 2 4 0 . 3 2 1 0 . 4 3 0

SQRTDSTREAM LOGROADS ROADUSE LOGELEVATION LOGTOPOGRAPH

SQRTDSTREAM 1 . 0 0 0
LOGROADS 0 . 1 0 0 1 . 0 0 0
ROADUSE - 0 . 1 3 1 - 0 . 3 0 9 1 . 0 0 0
LOGELEVATION 0 . 2 9 6 - 0 . 3 0 3 0 . 1 8 3 1 . 0 0 0
LOGTOPOGRAPH - 0 . 2 1 7 0 . 1 4 5 0 . 0 9 5 - 0 . 2 7 4 1 . 0 0 0
CUTOVERPER 0 . 1 2 8 - 0 . 1 3 0 0 . 4 0 3 0 . 6 0 2 - 0  . 1 2 6
CUT0VERKM2 0 . 1 2 9 - 0 . 1 3 0 0 . 4 0 1 0 . 6 0 5 - 0  . 1 2 6
AGRIKM2 - 0 . 1 8 4 0 . 0 3 0 - 0 . 2 4 5 - 0 . 7 1 8 - 0  . 1 7 8
A G R IPER - 0 . 1 8 4 0 . 0 3 1 - 0  . 2 4 5 - 0 . 7 1 9 - 0 . 1 7 9

CUTOVERPER CUT0VERKM2 AGRIKM2 AG RIPER

CUTOVERPER 1 . 0 0 0
CUT0VERKM2 1 . 0 0 0 1 . 0 0 0
AGRIKM2 - 0 . 5 4 6 - 0 . 5 4 7 1 . 0 0 0
A G R IPER - 0 . 5 4 6 - 0 . 5 4 8 1 . 0 0 0 1 .  0 0 0

Table A4. Pearson correlation matrix for all of the local habitat variables.
LOGPERM LOGAREA LOGVOL LOGDEPTH FL0ATINGM2

LOGPERM 1 . 0 0 0
LOGAREA - 0  . 2 0 0 1 .  0 0 0
LOGVOL - 0 . 2 9 0 0 . 9 2 5 1 .  0 0 0
LOGDEPTH - 0  . 3 3 3 0 . 3 7 5 0 . 6 6 6 1 .  0 0 0
FL0ATINGM2 - 0 . 0 8 5 0 . 4 5 9 0 . 3 9 0 0 . 0 6 6 1 .  0 0 0
FLOATINGPER - 0 . 0 0 7 - 0 . 0 3 9 - 0 . 0 6 6 - 0  . 0 4 9 0 . 4 1 6
L0GEMERGM2 - 0 . 0 4 7 0 . 6 1 6 0 . 5 5 1 0 . 1 8 3 0 . 3 6 3
SQRTEMERPER 0 . 1 1 8 0 . 0 3 2 - 0 . 0 4 8 - 0 . 1 7 4 0 . 0 7 7
SUBSTRATEM2 - 0 . 0 8 8 0 . 4 6 7 0 . 4 4 5 0 . 1 8 7 - 0 . 0 0 4
SUBSTRATEPER - 0 . 1 2 6 0 . 1 9 5 0 . 1 9 9 0 . 1 0 1 - 0  . 0 8 0
SQRTGRASSM - 0 . 1 4 2 0 . 6 0 4 0 . 6 5 3 0 . 4 7 2 0 . 5 0 7
GRASSPER - 0 . 0 0 0 0 . 0 0 4 0 . 1 0 2 0 . 2 8 5 0 . 1 7 0
SHRUBSM 0 . 0 0 1 0 . 1 7 1 0 . 1 2 2 - 0 . 0 3 3 0 . 0 4 8
SHRUBSPER 0 . 0 5 8 - 0 . 2 6 2 - 0 . 2 9 7 - 0 . 2 4 6 - 0 . 1 6 9
TREESM - 0 . 0 8 6 0 . 2 4 6 0 . 1 8 7 - 0 . 0 1 4 - 0 . 0 0 6
TREESP - 0 . 1 2 2 0 . 1 1 1 0 . 0 5 9 - 0 . 0 4 6 - 0 . 0 7 1
BOTTOMTYPE 0 . 0 2 3 0 . 0 3 6 - 0 . 0 3 2 - 0 . 1 6 0 - 0 . 1 6 7
HABITATRICH - 0 . 1 2 9 0 . 2 7 7 0 . 3 0 4 0 . 2 0 1 0 . 0 0 9
LOGDIVERSITY - 0  .1 3 4 0 . 0 9 2 0 . 1 3 7 0 . 0 9 8 - 0 . 1 8 6
LOGSLOPE - 0  . 0 2 0 0 . 0 2 5 0 . 1 5 5 0 . 4 0 0 - 0 . 0 4 4
AVGPH 0 . 1 0 8 0 . 1 6 8 0 . 2 1 0 0 . 2 3 5 - 0 . 0 5 9
SQRTCOND 0 . 3 9 2 0 . 1 5 7 0 . 1 7 4 0 . 2 0 2 0 .1 2 1
LOGTURB - 0 . 1 4 6 0 . 1 2 2 0 . 1 9 4 0 . 2 5 5 0 . 2 9 3
TURBCATEGORY - 0  . 1 2 7 - 0 . 0 9 8 - 0 . 0 4 4 0 . 0 8 7 0 . 2 2 1
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FLOATINGPER L0GEMERGM2 SQRTEMERPER SUBSTRATEM2 SUBSTRATEPER
FLOATINGPER 1 . 0 0 0
L0GEMERGM2 0 . 1 3 6 1 . 0 0 0
SQRTEMERPER 0 . 1 1 4 0 . 7 1 7 1 . 0 0 0
SUBSTRATEM2 - 0 . 1 4 8 0 . 1 9 7 - 0 . 1 6 7 1 . 0 0 0
SUBSTRATEPER - 0 . 1 7 5 - 0  . 1 3 4 - 0 . 3 6 5 0 . 7 3 0 1 .  0 0 0
SQRTGRASSM 0 . 2 3 7 0 . 3 2 4 - 0  . 2 0 8 0 . 2 5 2 0 . 0 2 7
GRASSPER 0 . 3 8 6 - 0 . 0 5 7 - 0 . 2 2 3 - 0 . 1 3 8 - 0 . 2 5 3
SHRUBSM - 0 . 2 1 3 0 . 1 9 2 0 . 1 7 4 0 . 0 8 1 - 0 . 0 1 9
SHRUBSPER - 0 . 2 6 5 - 0 . 1 0 5 0 . 1 7 0 - 0 . 1 4 1 - 0 . 0 9 7
TREESM - 0 . 1 2  0 0 .3 1 8 0 . 3 4 3 - 0 . 0 0 8 0 . 0 0 9
TREESP - 0 . 0 9 4 0 . 2 0 9 0 . 3 6 0 - 0 . 1 2 6 - 0 . 1 5 4
BOTTOMTYPE - 0 . 2 8 5 - 0 . 2 7 2 - 0 . 3 3 9 0 . 3 9 4 0 . 4 7 7
HABITATRICH - 0 . 1 4 7 0 . 0 9 9 - 0 . 1 8 4 0 . 3 6 3 0 . 3 5 2
LOGD IVERSITY - 0 . 2 0 0 - 0  . 0 7 8 - 0 . 2 4 6 0 . 3 5 7 0 . 3 4 9
LOGSLOPE - 0 . 0 2 8 - 0 . 0 3 5 - 0 . 1 9 4 0 . 0 7 4 0 . O i l
AVGPH - 0 . 0 7 7 0 . 0 4 0 - 0 . 1 9 6 0 . 2 7 0 0 . 1 4 6
SQRTCOND 0 . 2 6 0 0 . 1 6 7 - 0 . 0 8 8 0 . 2 0 2 - 0 . 0 0 2
LOGTURB 0 . 3 8 2 0 . 2 2 6 0 . 2 1 4 0 . 0 5 1 0 . 0 4 7
TURBCATEGORY 0 . 3 8 1 0 . 0 1 3 0 . 1 1 5 - 0 . 2 8 7 - 0 . 2 7 2

SQRTGRASSM GRASSPER SHRUBSM SHRUBSPER TREESM
SQRTGRASSM 1 . 0 0 0
GRASSPER 0 . 6 9 6 1 . 0 0 0
SHRUBSM - 0 . 2 8 5 - 0 . 4 8 0 1 . 0 0 0
SHRUBSPER - 0 . 5 3 3 - 0 . 5 0 0 0 . 8 1 5 1 . 0 0 0
TREESM - 0 . 1 8 6 - 0 . 4 1 1 0 . 0 0 5 - 0 . 1 0 3 1 . 0 0 0
TREESP - 0 . 4 2 4 - 0 . 5 7 5 0 .1 1 2 0 . 0 2 1 0 . 7 0 5
BOTTOMTYPE - 0 . 2 5 4 - 0 . 3 9 0 0 . 1 9 2 0 . 1 8 1 - 0 . 0 7 6
HABITATRICH 0 . 0 4 9 - 0 . 2 8 6 0 . 1 0 3 - 0 . 0 4 4 0 . 1 7 0
LOGDIVERSITY - 0 . 1 5 8 - 0 . 4 1 4 0 . 2 4 5 0 . 1 3 8 0 . 1 7 2
LOGSLOPE 0 . 3 2 6 0 . 3 6 0 - 0 . 3 1 3 - 0 . 3 3 3 - 0 . 0 6 7
AVGPH 0 . 3 1 9 0 . 2 8 6 - 0 . 1 0 8 - 0 . 2 2 0 - 0 . 1 6 1
SQRTCOND 0 . 4 4 5 0 . 4 5 3 - 0 . 2 0 1 - 0 . 3 7 2 - 0 . 1 5 8
LOGTURB 0 . 2 6 5 0 . 1 8 7 - 0  . 1 0 9 - 0 . 1 3 6 - 0 . 0 3 1
TURBCATEGORY 0 . 2 5 7 0 . 3 3 4 - 0 . 4 1 0 - 0 . 2 6 2 0 . 1 0 5

TREESP BOTTOMTYPE HABITATRICH LOGDIVERSITY LOGSLOPE

TREESP 1 . 0 0 0
BOTTOMTYPE 0 . 0 4 4 1 . 0 0 0
HABITATRICH 0 . 1 6 2 0 . 3 2 7 1 . 0 0 0
LOGDIVERSITY 0 . 2 3 7 0 . 3 1 0 0 . 8 4 2 1 . 0 0 0
LOGSLOPE - 0  . 1 9 5 - 0 . 1 3 0 - 0  . 0 1 2 - 0 . 0 7 5 1 .  0 0 0
AVGPH - 0 . 2 8 8 0 . 0 8 4 0 . 1 2 9 0 . 0 4 8 0 . 4 2 3
SQRTCOND - 0 . 3 3 0 - 0 . 1 4 0 - 0 . 0 6 9 - 0 . 1 1 5 0 . 2 5 3
LOGTURB - 0  . 0 8 9 - 0 . 1 2 6 0 . 0 1 2 - 0 . 0 7 7 0 . 1 1 5
TURBCATEGORY - 0 . 0 7 7 - 0 . 4 1 2 - 0 . 2 8 7 - 0 . 3 2 0 0 . 3 0 5

AVGPH SQRTCOND LOGTURB TURBCATEGORY

AVGPH 1 . 0 0 0
SQRTCOND 0 . 3 9 7 1 . 0 0 0
LOGTURB - 0 . 1 1 4 0 . 0 0 4  . 1 .  0 0 0
TURBCATEGORY - 0 . 2 2 6 0 . 0 1 5 0 . 4 4 3 1 . 0 0 0
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APPENDIX 3: Full Regression Models

Variable Coefficient Std Error Tolerance t P

Local Habitat Variables (F4 64 = 8.01, p  < 0.001, == 0.334)

Constant 0.55 0.445 - L237 0.220

Perimeter -0.079 0.026 0.961 -3.093 0.003

Shrubsper 0.295 0.09 0.945 :k285 0.002

PH 0.171 0.055 0.919 3H35 0.003

Richness 0.037 0.016 0.963 2.233 0.029

Landscape Variables = 7.44, p < 0.001, R  ̂= 0.317)

Constant 1.541 0.174 - &832 0

Woodkm 0.002 0.001 0.355 1.763 0.083

Wetlandkm 0.282 0.085 0.689 3.307 0.002

Dstream 0.599 0.20 0.93 2.992 0.004

Agrikm 0.075 0.02 0.31 3.718 0

Complete Model (F  ̂gj = 10.0, p  < 0.001, R  ̂= 0.534)

Constant 0.91 0.403 - 2.258 0.028

Wetlandkm 0.147 0.069 0.749 2.126 0.038

Dstream 0.638 0.173 0.894 3.688 0

Agrikm 0.04 0.012 0.649 3.385 0.001

Shrubsper 0.255 0.082 0.825 3.107 0.012

Perimeter -0.061 0.023 0.853 -2.604 0.003

Richness 0.049 0.014 0.93 3.425 0.001

PH 0.086 0.052 0.74 1.658 0.102
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Table A6. Stepwise multiple regression of amphibian turnover with local habitat and landscape 
variables (N=69).

Variable Coefficient Std. Error Tolerance t P

Landscape Variables = 4.713, p < 0.01, = 0.183

Constant 0.248 0.044 - 5.709 0

Woodkm -0.001 0 0.788 -2.437 0.018

Deciduouskm -0.844 0.403 0 -2.092 0.04

Deciduousp 10.482 5.059 0 2.072 0.042

Landscape Variables (F  ̂ĝ  = 7.891, p  < 0.01, R^ = 0.108) *

Constant 0.235 0.033 - 7.084 0

Woodkm -0.001 0 1.0 -2.809 0.007

Local Habitat Variables and Complete Model (F  ̂gg = 9.681, p  < 0.001; R^ = 0.309)

Constant 0.243 0.066 - 3.688 0

Perimeter 0.032 0.012 0.984 2.566 0.013

Slope -0.048 0.024 1.0 -2.004 0.049

Subp 0.452 0.099 0.984 4.583 0
* without outliers (N = 67) and Deciduouskm and Deciduousp
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Table A7. Stepwise multiple regression of species richness and turnover with the component

Variable Coefficient Std Error Tolerance t P

Species Richness (F^ gg = 4.45, p < 0.01, = 0.17)

Constant 2.128 0.031 - 69.06 0

Factor 1 -0.055 0.031 1.0 -1.763 0.083

Factor 3 0.066 0.031 1.0 2.121 0.038

Factor 7 0.074 0.031 1.0 2.397 0.019

Turnover (F^g  ̂= 3 .809 ,p<  0.01, R^ = 0.195)

Constant 0.147 0.013 - 11.383 0

Factor 1 -0.032 0.013 0.998 -2.455 0.017

Factor 2 -0.026 0.013 0.998 -1.976 0.053

Factor 3 0.02 0.013 0.996 1.546 0.127

Factor 4 -0.021 0.014 0.994 -1.580 0.119
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